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Abstract

As the world becomes more digital we see a greater push for digital elections,
but we need to be cautious when we modernize to make sure we don’t in-
troduce issues that affect the election. These issues are related to trust, on
the one hand, how can we trust that the result of the election is correct, and
on the other hand we can we trust that the secrecy of the vote is preserved.
These seemingly contradictory statements have fuelled new developments in
cryptography, but the question remain can we trust these developments?

The thesis of my dissertation is that it possible to formalise the proofs
used to justify both the correctness and security of such cryptographic con-
structions inside type theory. This requires a theory of probabilities in order
to describe the probabilistic algorithms used. My contributions include, using
types and type isomorphisms to simplify both specification and calculation of
probabilities, in particularΣ-types are used as they correspond to summation.
Furthermore, I extend the type theory with process algebraic constructions in
order to capture attack games as defined by semantic security in cryptography.
To type these processes I propose a session type system based on based on lin-
ear logic, extended with the possibility of depending on the actual messages
sent. I prove the consistency of this extension by giving a model of it in Agda.
These contributions are combined to form a library, which is named Cryp-
toAgda, to reason about cryptography, and as an example of the approach I
prove the receipt freeness of Prêt à Voter using this model.
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Introduction

It’s not improvise, it’s called
research, when you do not know
what to do.

Magnus & Brasse

Elections based on digital technologies have been used in recent years, which
makes this an important topic of study. Since elections are a vital part of
democracy, we need to have strong guarantees that the systems provide cred-
ible elections, which should be secure and guarantee secrecy of the vote. One
reason why this is more difficult to achieve in the area of voting than in for
example net banking, is because we wish for privacy of the vote. This is an
important principle of democratic systems, that we can not see how someone
have voted, in order to protect voters from being coerced into voting in a
particular way. In fact, destroying the connection between the voter and the
vote, is not limited to only hiding the link to the outside, but even hiding the
link for the election officials and the state. In contrast when interacting with
a bank on-line, both parties are aware of all the interaction and one wishes
only to hide the nature of the interaction for third parties.

Almost all of the proposed digital systems for digital elections use some
form of cryptography, in order to achieve privacy. As such it is vital to under-
stand how to reason about cryptographic constructions that are used, which
leads to the notion of semantic security proofs [Ste03, GM84]. Semantic
security proofs are based on a computational information theory, where we
mathematically measure leakage of using the these constructions. A system is
deemed to be secure, according to a semantic security notion, if this leakage
is minimised. Here leakage is measured against an adversary that is trying
to figure out some sort of secret, by interacting with the system, and using
the cryptographic constructions, this interaction is called a game. Leakage
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is then that the adversary is able to find out something which was supposed
to be hidden to it. The adversary is in general modelled by a probabilistic
polynomial time algorithm, that will be interacting with the system in some
way which can be seen as playing a game[BR06, Sho04]. The reason for the
adversary to be probabilistic is since some cryptographic construction is using
randomness and the adversary must be able to use these constructions.

There is a lot of different types of mathematics that are involved in order
to be able to do such proofs, and as such the possibility of mistakes creeping
in increases. Since the systems that we wish to prove correct are of such im-
portance, as e.g. a voting system, we need to be able to trust that these proofs
have been carried out in a correct manner. As such this thesis formalises the
background material needed, and creates a library, in the dependent type
theory of AGDA [Nor07], for formally verify semantic security proofs. By for-
malising the proofs we get a stronger guarantee that the proofs are indeed
valid, and furthermore the proof assistant is helpful when doing the proof
in pointing out what have been done, and what still needs to be done. The
reason for doing this within a type theory is to use to already existing notion
of computation that is already resides within type theory, since type theory is
based on programming languages, rather than set theory.

In the semantic security proofs there is often two, or more, agents com-
municating with each other, sending messages to each other using the cryp-
tographic constructions. One of theses agents is the adversary who is try-
ing to find a out anything about the secret. Usual type theories does not by
come with a method for describing these kind of communications by them-
selves, and as such taking inspiration, and taking ideas from process calcu-
lus [Mil99, Hon93] is desirable.

Related Work

Canonical big operators [BGOBP08], is a library in the dependently typed
language COQ [CH88, dt04, BCHPM04], and is used for reasoning about what
are call big operators. These big operators, are indexed versions of normal
operators, e.g. the big operator of normal addition + is summation

∑

. The
library defines the big version as a fold on the small version on a list, where
the list represents the index set, and this list is supposed to not contain any
duplicates, or missing any element. The library gives multiple lemmas and
theorems how properties of the small operator can be lifted to the big one.
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Reasoning about probabilistic functions in type theory have been done
before, for example the ALEA [APM09] library, also for the COQ type the-
ory. This library is axiomatising the real numbers in the interval [0,1], as
an ω-cpo, which allows e.g. to take the least upper bound of monotonic
sequences. This needs to be axiomatised since taking the lub is not in gen-
eral a computable operation. On top of this, a layer for defining probability
measures are added, which are used to define and reason about probabilistic
programs. These measures are given a monadic structure in order to easier
combine them.

On top of the ALEA library, the CERTICRYPT [BGZB09, Zan10]was created
to reason about semantic security proofs. This library defines an imperative
programming language, called PWHILE, which adds the possibility of asking
for randomness from a probability distribution. This language is used to de-
scribe the semantic security games, and the adversary is considered to be
another PWHILE program. The adversary have access to some part of the
memory, but not all, and it is in the private part that the secret is stored.
To reason about these programs, a machinery based on Relational Hoare-
logic [Ben04] is employed, extended to reason about the new probabilistic
capabilities added to the PWHILE language.

In contrast to CERTICRYPT, where the user have to write the proof, tools
like PROVERIF [Bla09], employ model checkers to automatically verify secu-
rity. PROVERIF tries to find bugs in security protocols. This tools simulate
the protocol using a process calculus which is an extended version of the π-
calculus [Mil99], where an malicious process interacts with the system. This
uses the so-called Dolev-Yao model [DY83], where we assume that a cipher-
text can’t be decrypted unless the key is known, but it can be duplicated.
Notice that that in order to model-check, limits are put on the amount of ses-
sions that can be active, in order to keep the state space finite. This kind of
restriction, on the power on what the adversary can do, is one of the major
differences between this and semantic security approach. This approach uses
a symbolic method, whereas semantic security is more analytical.
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Synopsis

The first part of this thesis provides background information needed to un-
derstand the rest of this thesis, and includes topics such as:

• Group theory, Section 1.1, since some encryption schemes such as El-
Gamal uses groups in the construction.

• Probability theory, Section 1.2, and the theory of negligible functions,
Section 1.3 is provided since these are vital for semantic security proofs.

• Although not entirely standard, we use communicating processes when
we model agents, where communication is the method for which an ad-
versary interacts with the system, an introduction to processes is pro-
vided in Section 1.5.

• Semantic security proofs, which are the way we prove security state-
ments, are introduced and discussed in Section 1.4.

• Finally in Chapter 2, the type theory that the rest of the thesis is using
is introduced. This chapter is introducing the important constructs that
are used for formalising the mathematical constructs in this thesis.

The second part of this thesis contains type theoretic proofs about the
background material, all the proofs have been formalised in AGDA, with the
exception of semantic security proofs, which are presented in the next part.

• In order to model probabilistic programs, and reason about probabil-
ities, we device exploration functions, which in contrast to ALEA, are
based on a computational foundation. Exploration functions, are sim-
ilar to canonical big operartors [BGOBP08], but are derived from the
fold function immediately rather than from a fold of a list. They are
defined and studied in Section 3.1, in particular how to define proba-
bilities and use them for probabilistic reasoning, see Section 3.4.

• To model the agents of a semantic security game, we use communicat-
ing processes, but since communication is not an inherit notion in type
theory, we need to develop a theory for it. This is done in Chapter 4,
we also show how such a theory can be embedded into AGDA.
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The final part of this thesis, is about the library CRYPTOAGDA, which is
combining all the theory of the second part.

• The CRYPTOAGDA library makes it possible to fully model semantic se-
curity in the type theory, and is shown in Chapter 5.

• As a bigger case study, of the CRYPTOAGDA library, in Chapter 6, we
demonstrate how to prove that Prêt à Voter [RBH+09, KTR13], which
is a end-to-end verifiable voting scheme, is indeed receipt-free. End-
to-end verifiable means that the voter can check that their vote have
indeed been counted, but can’t from this fact prove for whom. This
latter property is what is called receipt-freeness.





Part I

Background Material





Chapter 1

Background

We begin our exposition with an introduction of the different mathematical
theories used in the process of verifying cryptographic systems, such as a
voting system. These theories range from introductory level algebra, such
as group theory, a discourse about probabilities and also an introduction to
concurrent process calculi and a linear logic based typing of such concurrent
processes. In the following sections we will give a mostly standard account
of these topics, with the exception of the process calculi which do contains
original content. In Chapter 3, most of the results in this chapter are fully
formalised, in the type theory of AGDA.
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1.1 Group Theory Primer

We begin our presentation with group theory, a short primer is given here to
aid the reader with the few ideas that is needed for the rest of this thesis.
Groups are an abstract algebraic structure that provide an associative opera-
tor together with a neutral element, which is invertible. In this primer we will
use a multiplicative reading of a group, i.e. we will often use the · operator
standing for the operator in the group.

Definition 1.1.1: Group

A group (G, 1, ·,−1) is a set G, an element 1 ∈ G, a binary operator · on
G and a unary operator −1, such that the group axioms are satisfied:

Neutral: ∀x ∈ G. 1 · x = x = x · 1
Associativity: ∀x , y, z ∈ G. (x · y) · z = x · (y · z)
Inverse: ∀x ∈ G. x · x−1 = 1= x−1 · x

Furthermore the order of a group (G, 1, ·,−1) is defined to be the cardi-
nality of G.

By having an inverse for all elements we get cancellation laws for free,
these mean that the ·x operation is injective for any element x . This is a
useful property when using equational reasoning.

Lemma 1.1.2: Group Cancellation

Given a group (G, 1, ·,−1) and three elements a, x and y such that a · x =
a · y or x · a = y · a then x = y .

Proof. If a · x = a · y then the proof goes by equality reasoning:

x = 1 · x = (a−1 ·a) · x = a−1 ·(a · x) = a−1 ·(a · y) = (a−1 ·a) · y = 1 · y = y

The other direction, i.e x · a = y · a follows in a similar fashion.

Furthermore we know that the identity element is unique in every group,
and that for every element in the group there is only one other element that
is its inverse.
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Lemma 1.1.3: Uniqueness of Identity and Inverse

Given a group (G, 1, ·,−1) then

1. if x is an element of G such that for all y , x · y = y then x = 1,

2. if x is an element of G such that for an element y , x · y = 1 then
x = y−1.

Proof. Both cases follows by equational reasoning:

1. since x = x · 1= 1,

2. we first show that x · y = 1 = y−1 · y and by Lemma 1.1.2 we can
conclude x = y−1.

One general operation to construct elements from a group, given an ele-
ment g is to take the integral power of that g. This is used by for example
the ElGamal encryption scheme, which will be explained in Section 1.4.

Definition 1.1.4: Integer Exponentiation

Given a group (G, 1, ·,−1), an element a ∈ G and an integer n ∈ Z we
define integer exponentiation as follows:

an =











1 if n= 0

an′ · a if n= 1+ n′ and n> 0

(a−1)−n if n< 0

The standard laws of exponentiation that one is used to from high school
mathematics still holds when working in an arbitrary group.

Theorem 1.1.5: Exponential Laws

Given a group (G, 1, ·,−1), an element a and two integers m, n ∈ Z, then
gm · gn = gm+n and (gm)n = gmn

Proof. By induction on m.
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A cyclic group is a group such that all elements are generated from some
element g, which is called a generator of the group. That is to say that all
elements can be constructed from this generator. The ElGamal encryption
scheme works inside an cyclic group of some finite order.

Definition 1.1.6: Cyclic Group

A group (G, 1, ·,−1) is cyclic if there exists an element g, called a gen-
erator, such that for all elements x ∈ G there exist an n ∈ Z such that
gn = x .

A consequence of being cyclic is that the operator of the group is commu-
tative.

Theorem 1.1.7: Cyclic Groups are Commutative

Given a cyclic group (G, 1, ·,−1) with generator g, then · is commutative
i.e. ∀x , y ∈ G.x · y = y · x .

Proof. Since g is a generator there exists n, m ∈ Z such that gm = x and
gn = y . So x · y = gm · gn = gm+n = gn · gm = y · x by Theorem 1.1.5.

One group that we will pay extra attention towards is the integer modulo
q, which is often denoted Z/qZ or sometimes Zq. Informally this is the group
of integers between 0 and (q− 1) where the operation is addition that loops
around. Since we want the equality on this group to be equality modulo q we
formally work with congruence classes modulo q, such that [x]·[y] = [x+ y].
This is a cyclic group with generator [1]. Furthermore we extend the integer
exponentiation in the following way, which requires that the order of the
group is n where x is an element of Z/nZ in order to be well defined.

a[x] = ax

Definition 1.1.8: Discrete Logarithm

Given a group (G, 1, ·,−1) and elements g, b ∈ G, the discrete logarithm
is an integer k such that gk = b.

Given two groups, we can ask what kind of mappings exists between them.
A function that preserves the structure of the group is called a group homo-
morphism.
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Definition 1.1.9: Group Homomorphism

Given two groups, (GA, 1A, ·A,−1
A ) and (GB, 1B, ·B,−1

B ) a function f : GA →
GB is a group homomorphism if for all x , y then f (x ·A y) = f (x) ·B f (y).

Such a function does indeed, as the name implies, preserve all of the struc-
ture of the group, not only ·A but the identity and inverse are also preserved
as shown by the following lemma:

Lemma 1.1.10: Group Homomorphism

Given a group homomorphism ϕ between two groups GA and GB. Then

1. the identity is preserved ϕ(1A) = 1B,

2. and inverse is preserved so that for all x then ϕ(x−1) = ϕ(x)−1.

Proof. 1. We first show that for all x ϕ(1A) ·B ϕ(x) = ϕ(1A ·A x) =
ϕ(x) = 1B ·B ϕ(x) and by lemma 1.1.2 we conclude ϕ(1A) = 1B.

2. We first show that ϕ(x−1) ·B ϕ(x) = ϕ(x−1 ·A x) = ϕ(1A) = 1B and
by Lemma 1.1.3 we can conclude that ϕx−1 = ϕ(x)−1.

Integer exponentiation with a value g ∈ G, is a group homomorphism
from the group of integers with addition to the group G. The exponential
laws, i.e. Theorem 1.1.5, proves that this is indeed a group homomorphism.
Furthermore if for the element g, there always exists a unique discrete loga-
rithm, then this integer exponentiation is a group isomorphism. This isomor-
phism will later be used in the ElGamal encryption scheme.
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1.2 Probability Theory

We present here the standard presentation of probability theory, but since the
applications we have in mind is for reasoning about randomised programs,
we will focus entirely on discrete probabilities later. Furthermore only finite
sample spaces will be used, where the sample space is the set of all possible
outcomes. A predicate on a sample space is called an event, and is what we
wish to assign a probability of, i.e. how likely is it that a particular predicate
is true? The structure of events forms a σ-algebra, which is a set theoretical
definition, with the idea that a predicate is simply a subset of the sample
space. Being an element of the predicate subset means that the predicate is
true for that outcome. The formal definition of a σ-algebra is as follows:

Definition 1.2.1: σ-algebra

Let Ω be a set, called sample space, and let E be a collection of subsets
of Ω. Then E is an σ-algebra over Ω if:

• If Ω ∈ E .

• E is closed under complement, i.e. if A∈ E then so is Ω \ A∈ E .

• E is closed under countable unions, i.e. if A1 ∈ E , A2 ∈ E , A3 ∈ E , . . .
then so is A= A1 ∪ A2 ∪ A3 ∪ . . . ∈ E .

We don’t need to postulate anything about neither the empty set ;, nor
how a σ-algebra interacts with intersection. The current axioms are enough
to capture this:

Lemma 1.2.2: ; and Intersection with σ-algebra

Let Ω be a set, and E a σ-algebra of Ω, then:

• The empty set ; is in E .

• E is closed under intersection, i.e. if A ∈ E and B ∈ E then so is
A∩ B ∈ E .
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Proof. Both properties follows from the axioms.

• Since Ω ∈ E and because E is closed under complement with Ω
then ;= Ω \Ω ∈ E .

• Note that A∩ B = Ω \ (Ω \ A∪Ω \ B) by De Morgan’s laws, which
is applicable since A, B ⊂ Ω. Since E is closed under union and
complement we can conclude that A∩ B ∈ E .

In order to get a probability, i.e. a real number between 0 and 1, for an
event we use a probability measure.

Definition 1.2.3: Probability Measure

A probability measure on a σ-algebra E over a sample space Ω is a func-
tion µ : E → [0,1], where [0,1] is the set of real numbers between 0
and 1, such that:

• The measure of the whole sample space is 1, i.e. µ(Ω) = 1.

• Given a countable collection of pairwise disjoint sets Ai, the mea-
sure of the disjoint union is the sum of each individual measure,
i.e. µ(

⋃

i Ai) =
∑

i µ(Ai).

The number in the interval [0,1] is the probability and it tells how likely
an event is to happen in a given sample space with a particular measure.
Since an event will either happen or not, there is a direct way of computing
the probability of the complement of an event.

Lemma 1.2.4: Measure the Complement

Let µ be a probability measure for the σ-algebra E over a sample space
Ω, and E be an event, i.e. E ∈ E , then µ(Ω \ E) = 1−µ(E).

Proof. Because µ(Ω) = 1 andΩ= E ∪ (Ω \ E), it follows that 1= µ(Ω) =
µ(E ∪ Ω \ E) = µ(E)+µ(Ω \ E). The result is given by subtracting µ(E)
from both sides.
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A simple corollary from this is that the measure of the empty set ; is 0 for
any probability measure.

Corollary 1.2.5: Measure of Empty Set

Let µ be a probability measure for the σ-algebra E over a sample space
Ω, then µ(;) = 0.

Proof. By equational reasoning µ(;) = µ(Ω \ Ω) = 1−µ(Ω) = 0.

The axioms for probability measures only specify the behaviour of mea-
suring disjoints sets, but nothing about normal union and intersection. We
can get a relationship of how the union and intersection interacts with the
operands:

Lemma 1.2.6: Measure of Union

Let µ be a probability measure for the σ-algebra E over a sample space
Ω, and A and B be events, i.e. A∈ E and B ∈ E , then µ(A∪B)+µ(A∩B) =
µ(A) +µ(B).

Proof. Note that A= A\ B ∪ (A∩ B), and that the sets A\ B and A∩ B are
disjoint, similarly B = B \ A∪ (A∩ B). Therefore the union A∪ B is equal
to A\ B ∪ B \ A∪ (A∩ B) and the left-hand side of the equation becomes
µ(A\ B)+µ(B \A)+2µ(A∩ B). Expanding the right-hand side yields the
same expression.

By packaging in all the components we get a probability space:

Definition 1.2.7: Probability Space

A probability space is (Ω,E ,µ) such that Ω is a sample space for the σ-
algebra E , and µ is a probability measure for E .

A simple example of a probability space is the roll of a six-sided die. The
sample space Ω is simply the value of the die, i.e. a value from 1 to 6. And
the possible events is the power set of the sample space. For example one
event could be that the die have an even value which is the set {2,4, 6} or
that the die have a value of 4 or higher, which would be the set {4, 5,6}.
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The probability measure will be the uniform distribution, since we wish
that the die is fair. This can quite elegantly be described using Iverson bracket,
[P], which have the value 1 if the proposition P is true, otherwise is 0.

µ(E) =

∑6
i=1[i ∈ E]

6

This is indeed a measure since µ(Ω) = 6
6 = 1 and measuring a union of

disjoint events is the same a summing up the measure of each event. The
general construction of uniform distributions will be the primary measures
used in this thesis.

A somewhat confusing term used in probability theory is that of random
variable, that is neither a variable, nor random for that matter. Instead it is
a probabilistic computation, that depends on the outcome from the sample
space. This is easily represented as a function from the sample space to the
set of results.

Definition 1.2.8: Random Variable

A random variable X for some sample space Ω is a function Ω → A,
where A is the set of results.

Random variables will be used throughout this thesis since they capture
the concept of probabilistic computation. The events of interest will often be
properties about said computations. An example of one such computation
could be to compute the sum of two random dice throws, and an event could
be that the value of the summation is above 10.

The final concept is about conditional probability, i.e. taking the probabil-
ity of an event B assuming that we know that another event A is true, we will
use the conditional probability measure. This new measure only measures
the probability of B being satisfied, when A is satisfied.

Definition 1.2.9: Conditional Probability

Given a probability space (Ω,E ,µ), and an event E ∈ E , such that the
event has a positive measure, i.e. µ(E) > 0, then the conditional proba-
bility measure can be defined and is µE(A) =

µ(A∩E)
µ(E) .

The conditional probability measure is indeed a probability measure, as
shown by the following lemma.
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Lemma 1.2.10: Conditional Probability Measure

Given a probability space (Ω,E ,µ), and an event E ∈ E , such that the
event have a positive measure, i.e. µ(E) > 0, then the conditional prob-
ability measure µE is a measure:

• µE(Ω) is equal to 1.

• Let Ai be a family of disjoint sets, thenµE(
⋃

i Ai) is equal to
∑

i µE(Ai).

Proof. We need to prove two things:

• µE(Ω) is equal to µ(Ω∩E)
µ(E) , and we know that Ω∩ E = E, since E ⊆ Ω,

we can therefore conclude that µE(Ω) =
µ(E)
µ(E) = 1.

• µE(
⋃

i Ai) is equal to µ(
⋃

(Ai∩E))
µ(E) since intersection distributes over

unions, and sinceµ is a probability measure this is equal to
∑

i
µ(Ai∩E)
µ(E)

which is
∑

i µE(Ai).
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1.3 Negligible Functions

The theory of negligible functions is used in order to talk about a function
that is asymptotically “too small to matter” [Bel97]. This will often be used
in order to say that the advantage that an adversary has of breaking a system
is too small to matter. Formally this means that the function vanishes faster
than any polynomial:1

Definition 1.3.1: Negligible Function

A function ε : N → R+ is negligible if for all c ∈ N there exists nc ∈ N
such that for all n> nc ∈ N it is the case that ε(n)¶ n−c.

A simple example of a negligible function is the constant zero function,
which is trivially negligible.

Theorem 1.3.2: Zero Negligible

The constant zero function 0(n) = 0 is negligible.

Proof. Given c, let nc = 0 then for all n> 0 it is the case that 0¶ n−c.

On the other hand constant functions are not negligible as demonstrated
by this simple lemma:

Lemma 1.3.3: Counterexample of Negligible Function

Given a real number p ∈ R+ such that p > 0, then the constant function
p(n) = p is not negligible.

Proof. Assume that p is negligible then in particular we know that there
exists a n1 such that for all n> n1 we have p < n−1. But this is a contradic-
tion since there exists an natural number k ∈ N such that k > p−1+n1.

Just to make sure that we are not formalising an abstract theory about the
constant zero function we here show that there are indeed other functions
that are negligible:

1Regarding notation, R+ denotes the set {r|r ∈ R, 0¶ r}.
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Lemma 1.3.4: Existence of Negligible Function

The function f (n) = n−n is negligible.

Proof. Given c, let nc = c then we need to show for all n > c that n−n ¶
n−c which is trivial.

A common case is that we wish to scale a negligible function by some
constant, it turns out that the resulting function is indeed also negligible.

Theorem 1.3.5: Scalar Multiplication with Negligible Function

Given a real number r ∈ R+ and a negligible function ε, then (r · ε)(n) =
r · ε(n) is negligible.

Proof. Given c then pick nc to be the maximum of nc+1 from ε such that
|r| ¶ nc, then for all n > nc, we have |rε(n)| ¶ |r| · |ε(n)| ¶ |r|n−(c+1) ¶
n−c.

Furthermore addition of two functions preserve the property of being neg-
ligible. This is useful when we later will define a relation ∼ of functions that
are close to each other. Then the fact that negligible functions are closed
under addition will be used to prove that ∼ is transitive.

Theorem 1.3.6: Addition of Negligible Function

Given two negligible functions ε,ν then ε+ ν is negligible.

Proof. Given c then pick nc to be the maximum nc+1 from ε and ν and
bigger than 2, then: |ε(n) + ν(n)| ¶ |ε(n)|+ |ν(n)| ¶ n−(c+1) + n−(c+1) =
2n−(c+1) ¶ n−c.

A final proof is that multiplying two negligible functions preserve the
property of being negligible.

Theorem 1.3.7: Multiplication of Negligible Functions

Given two negligible functions ε,ν then (ε ·ν)(n) = ε(n) ·ν(n) is negligi-
ble.

Proof. Given c then pick nc to be the maximum nc from ε and ν and then
for all n, then: |ε(n) · ν(n)|= |ε(n)| · |ν(n)|¶ n−c · n−c ¶ n−2c ¶ n−c.
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Before we give the general definition of∼we will give an indexed version,
the namely f ∼ε g which means that the function f (x) and g(x) are within
ε(x) of each other. Put it in another way, the distance between f and g is
limited by the function ε.

Definition 1.3.8: Limited Distance

Given two functions f , g : N → R and one function ε : N → R+ then the
relation f ∼ε g holds if and only if for all x then | f (x)− g(x)|¶ ε(x).

This indexed relation is not really an equivalence relation, since the rela-
tion is not transitive. The issue is that the index needs to change, this will
later be solved, but first we will prove some indexed version of the equiva-
lence axioms.

Theorem 1.3.9: Indexed Reflexivity

Given a function f : N → R and a function ε : N → R+ then f ∼0 f .

Proof. Given x then | f (x)− f (x)|= 0= 0(x).

Which is a kind of reflexivity, furthermore we can prove that the relation
is really symmetric.

Theorem 1.3.10: Indexed Symmetry

Given two functions f , g : N → R and a function ε : N → R+ such that
f ∼ε g then g ∼ε f .

Proof. For all x , |g(x)− f (x)| is equal to | f (x)− g(x)| which is less than
or equal to ε(x) by the fact that f ∼ε g.

As mentioned above we don’t get transitivity for the same index, the lim-
iting distance increases. For functions f , g and h, such that the distance be-
tween f and g is described by ε, and the distance between g and h is described
by ν, the distance between f and h is at most ε+ ν.

Theorem 1.3.11: Indexed Transitivity

Given three functions f , g, h : N → R and two functions ε,ν : N → R+
such that f ∼ε g and g ∼ν h then f ∼ε+ν h.

Proof. For all x , by the triangle inequality property we know | f (x)− h(x)|
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is less than or equal to | f (x)− g(x)|+|g(x)− h(x)|which by assumption
is less than or equal to ε(x) + ν(x).

Now we can define the relation ∼ that represents that two function even-
tually will be very close to each other. This relation is going to be an equiv-
alence relation, and is going to be used when reasoning about cryptographic
schemes and how increasing the security parameter will eventually be secure
enough.

Definition 1.3.12: Negligible Distance

Given two functions f , g : N → R the relation f ∼ g holds, if there exists
a negligible function ε : N → R+ such that f ∼ε g holds.

This relation is indeed an equivalence relation as show below:

Theorem 1.3.13: ∼ is an Equivalence Relation

The relation ∼ is an equivalence relation, i.e. the following properties
holds:

• Reflexive: Given a function f : N → R, then f ∼ f .

• Symmetric: Given two functions f , g : N → R, such that f ∼ g
then g ∼ f .

• Transitive: Given three functions f , g, h : N → R, such that f ∼ g,
and g ∼ h, then f ∼ h.

Proof. Each property is proved as follows:

• By Theorem 1.3.9 f ∼0 f holds, and 0 is negligible.

• By assumption there exists ε such that f ∼ε g holds, by Theo-
rem 1.3.10 then g ∼ε f holds.

• By assumption there exists ε and ν such that f ∼ε g and g ∼ν
h holds, by Theorem 1.3.11 then f ∼ε+ν h holds, and by Theo-
rem 1.3.6 we know that ε+ ν is negligible.
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Finally we prove two theorems about this relation, and how it relates to
the arithmetic functions, i.e. addition and multiplication. The first theorem
states that the relation is congruent with respect to addition.

Theorem 1.3.14: ∼ is Congruent with Addition

Given functions f , f ′, g, g ′ : N → R, such that f ∼ f ′, and g ∼ g ′, then
f + g ∼ f ′ + g ′ holds.

Proof. For all x , by the triangle inequality | f (x) + g(x)− ( f ′(x)− g ′(x))|
is less or equal to | f (x)− f ′(x)| + |g(x)− g ′(x)|, which is less than or
equal, by assumption, to some ε(x) + ν(x), which is negligible by Theo-
rem 1.3.6.

The final theorem is one can multiply with a negligible function and still
be in the relation.

Theorem 1.3.15: Multiply with a Neglible Function

Given functions f , g : N → R, and a negligible function h : N → R+,
such that f ∼ g, then h · f ∼ h · g holds.

Proof. For all x , we know that |h(x) · f (x)− h(x) · g(x)| is equal to |h(x)|·
| f (x)− g(x)|, which by assumption is less than or equal to h(x) · ε(x),
where ε is limited distance between f and g. By Theorem 1.3.7 we know
that h · ε is a negligible function, and therefore h · f ∼ h · g.



24 Chapter 1. Background

1.4 Semantic Security

Semantic security [GM84, Ste03, Sho04, BR06] have risen to become a ma-
jor foundation for security proofs. This is also the form of security proof that
receipt freeness of Prêt à Voter [RBH+09, KTR13] is of, so we need a proper
understanding of these proofs in order to be able to model them within our
type theory. Semantic security derives it’s notion of security by working with
information theory. One measures how much information is gained, for ex-
ample about a message, by an adversary when for example it is given a ci-
phertext of said message. This leads to working with probabilities, and to our
desire to minimise the probability, i.e. to make it negligible, that an adversary
would gain any information from a ciphertext.

The adversaries used in semantic security, are thought to be unknown
probabilistic programs, where we think of a probabilistic program as a nor-
mal program that gets one extra input which is random. The reason for using
probabilistic programs is because most cryptographic primitives use random-
ness, and an adversary needs to be able to use these primitives. In most
contexts it is possible to detect leakage by some form of brute force enumer-
ation, of for example all ciphertexts of a particular size, which is obviously
not a realistic attack. Therefore, one often limits the attention to polynomial
time programs, but this thesis will not focus on time complexity of programs.

Semantic security proofs are used since they can in contrast to symbolic
proofs [Bla09], prove the security of some cryptographic primitives such as
encryption schemes. Symbolic proofs works by axiomatising the properties
of the primitives and on top of these build up security protocols, and then
prove the security of these by some form of model checking, but there is no
guarantee that these axioms are indeed valid. Furthermore, whilst symbolic
proofs can find security holes in protocols, there is always a question if one
has given enough power to the adversary.

Asymmetric encryption is based on two kinds of keys, one that is used
for encryption, usually called the public key, and one for decryption, called
private key. Often these keys are bit vectors of some size, and this size is often
referred to as the security parameter of the encryption scheme. Symmetric
encryption is using the same key for both encryption and decryption, while
these may be easier to relate to keys in the real world, it is often much more
preferable to split the power of the key. The public key is called public since
in most cases it is indeed preferable if everyone have access to this key, for
example everyone can encrypt a message, but only the recipient can decrypt.
We can be more formal about this with the following definition:
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Definition 1.4.1: Asyymetric encryption

An asymmetric encryption scheme for message space M , cipher text space
C , public key space PK and private key space SK are three programs
(keyGen, enc, dec) such that:

• keyGen : N×RKG → PK×SK is a program that generates a private
and a public key of the given security parameter,

• enc : M × PK × RE → C is a program that takes a message m ∈ M
and a public key pk and returns a ciphertext,

• dec : C × SK → M is a program that decrypts a cipher text to the
original message.

It is important to note that the programs are both terminating and prob-
abilistic, i.e. they have access to randomness, which are the extra RX

arguments. For example, in the case keyGen this is by RKG and in the
case of enc this represented by the parameter RE.

In order to be an encryption scheme it furthermore needs to satisfy a law,
which we call the functional correctness. That is to say that if one decrypts
a message encrypted with keys generated together by the key generator then
one gets back the original message.

Definition 1.4.2: Functional Correctness

An asymmetric encryption scheme (ke yGen, enc, dec) is functionally
correct if for all security parameter k ∈ N, and messages m ∈ M , such
that ke yGen(k) = (pk, sk) and enc(m, pk) = c then dec(c, sk) = m.

The example of an asymmetric encryption scheme, that we will use in the
following section is the ElGamal encryption system [Elg85]. This encryption
system was the first public key encryption scheme based on the Diffie-Hellman
key exchange protocol [DH76], and it is using group theory to derive its cryp-
tographic properties.
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Definition 1.4.3: ElGamal

The ElGamal encryption scheme is based on a cyclic group (G, 1, ·,−1)
of order q, for which computing the discrete logarithm is difficult. This
set G will be the set of both messages and ciphertexts. The randomness
needed by key generation and the encryption are integers in Z/qZ, notice
that the size q is the security parameter.

keyGen(_, x) = (g x , x)
enc(pk, m, y) = (g y , pk y ·m)
dec(sk, (r, c)) = (r sk)−1 · c

The ElGamal encryption scheme is indeed an encryption scheme since it
is functionally correct according the laws of encryption schemes:

Theorem 1.4.4

The ElGamal encryption scheme satisfy functional correctness, i.e de-
crypting an encryption with the corresponding private and public keys
is the identity.

Proof. By equational reasoning:

dec(x , enc(g x , m, y)) = dec(x , (g y , (g x)y · m))
= ((g y)x)−1 · (g x)y · m = m

But just functional correctness is not enough to get security, in fact leaving
both encryption and decryption be identity function satisfy functional correct-
ness! Therefore we need to introduce some more properties of security that
an encryption scheme can provide. The semantic security notion IND-CPA
aims to capture that a ciphertexts hides the underlying message, i.e. that
even if we gets access to a ciphertext the only thing we learn about the origi-
nal message is its length. In fact even if we have some information about the
original message we don’t learn anything more from the ciphertext.

The intuition for how this is proved is as follows. Assume an adversary
A that will play a game with a challenger C . The goal of the game, is for
the adversary to guess a secret bit b that is known only to the challenger C .
In order to do so, A will receive a public key pk and will then give C two
messages m0 and m1 (of the same length). The challenger C will return the
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C Ab pk

m0, m1
c = enc(pk, mb)

pk, sk = keyGen()

?

c b′

Figure 1.1: The IND-CPA game

encryption c = enc(pk, mb) of one of the messages, depending on the value
of the bit b. Given c, and the public key used for the encryption, can the
adversary A guess b or not? If the A is not more successful than flipping a coin
we can conclude that the encryption scheme is secure, and no information
have leaked. The communication between the two parties are summarised
in Figure 1.1.

The way we measure how much better an adversary A is from random
coin-flipping will be through what is called the advantage Adv(A). This is a
real number between 0 and 0.5 which is the distance between the probability
of A guessing correctly and a random coin flip guessing correctly.

Definition 1.4.5: Advantage

The advantage for an adversary A is defined to be:

Adv(A) =

�

�

�

�

Pr[b = b′]−
1
2

�

�

�

�

If there is no adversary that have any significant, i.e. above a negligi-
ble amount, advantage, then we deem the encryption scheme to be secure
according to the IND-CPA semantic security notion. In general a semantic
security notion is defined in a similar fashion of having an adversary trying
to distinguish between two different scenarios.
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Definition 1.4.6: Semantic Security Notion

The notion of semantic security comprises of three parts.

Attack Game An attack game of a specified challenger C playing an
probabilistic adversary A, were the challenger have a secret bit
b ∈ Bool and the final action of A is to output a guess b′ ∈ Bool.

Advantage The advantage is the distance Adv(A) =
�

�Pr[b = b′]− 1
2

�

�.

Security If there exists an negligible function ε such that for security
parameter k and polynomial time adversaries A then Adv(A)¶
ε(k).

As a remark we note that an adversary A′ that performs the same interac-
tion as A except guesses ¬b′ instead of b′ will have the same advantage as A.
This shows that we are measuring that an adversary can detect a difference
in the two situations, not that they will guess correctly.

As mentioned above ElGamal derives its security from the difficulty of
computing the discrete logarithm in the group. Of course the way we should
state the difficulty is by stating it in terms of a semantic security notion. The
notion is called Decisional Diffie-Hellman, or DDH for short, and captures
that an adversary will not be able to distinguish between a particular expo-
nentiation and an random exponentiation. The DDH semantic security notion
is formally defined using the following attack game.

Definition 1.4.7: DDH Attack Game

The decisional Diffie-Hellman attack game is defined as the challenger
have a secret bit b, and generates three random integers x , y and z in
Z/qZ. If the bit b is 0 then the challenger will send (g x , g y , g x+y), oth-
erwise the challenger sends (g x , g y , gz).

A stronger notion than IND-CPA is the notion IND-CCA1 (Indistinguisha-
bility Under Chosen Ciphertext), this security notion let’s the adversary have
access to a decryption oracle, before the challenge phase. The decryption
oracle can decrypt any encrypted messages, as long as the proper public key
have been used, that the adversary sends. If the adversary have access to the
decryption oracle after the challenge phase the game is IND-CCA2 (Adaptive
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Chosen Ciphertext Attack), of course the oracle is restricted not to decrypt
the actual challenge since that would make the game trivial.

Not all IND-CPA secure encryption schemes are also IND-CCA2 secure,
e.g. ElGamal is not secure under IND-CCA2. The fact that ElGamal is not
IND-CCA2, follows from the fact that given a ciphertext for M it is possible
to construct a ciphertext for c ·M for any element c in the group. One simply
multiply the second component with c and one gets the new ciphertext, this
breaks IND-CCA2 since the new ciphertext can be decrypted by the decryp-
tion oracle after the challenge phase. The property that one can manipulate
a ciphertext like this is called malleability, and one of the primary reasons
of IND-CCA2 is to show non-malleability. It is currently an open problem
whether ElGamal is IND-CCA1 or not [Lip11].

A common method that is employed to make ElGamal, or other encryption
schemes that is only IND-CPA secure, be IND-CCA1 secure is the Naor-Yung
construction [NY90, DDN91], similar construct exists for IND-CCA2 [NY95,
Sah99]. The basic problem is that the adversary should not be allowed to
manipulate the received ciphertext into a new, and still valid, ciphertext, and
therefore be able to ask the decryption oracle. The Naor-Yung IND-CCA2
construction solves this problem by encrypting the message twice, and then
use a sound zero-knowledge proof system [BFM88, GMR89] that shows that
both of these encrypted messages are encryption of the correct message. Even
if one can manipulate the inner ciphertexts, the zero-knowledge proof will not
be correct, and therefore the resulting ciphertext is not a valid ciphertext.
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1.5 Processes

Semantic security is defined by different parties communicating with each
other, we are therefore working with some sort of communicating processes.
These processes are similar to what is usually found in the process calcu-
lus community. In particular we will work with a typed π-calculus[Mil99,
Hon93].

The terms of the process calculus can be considered to all live in a big soup
of processes, where they use channels to send messages to each other. This
soup is both one of its strong points, but also it complicates meta-reasoning
since now more terms are supposed to be equated. We are going to embed
these terms later in our type theory, and use these in order to represent the
communicating processes. We start with the basic primitives:

c〈M〉 P c(x : A)Q

Here c〈M〉 P sends the message M on channel c and then continues as
process P. The receiving process, on the channel c, is c(x : A)Q, and it binds
the message to the variable x and continue as the process Q which has access
to the message.

0 P ‖Q

The process 0 is the empty process, i.e. the processes that is done. The
process P ‖Q is the parallel execution of processes P and Q. Semantically, this
operation is both commutative and associative and 0 is a neutral element.

(νcd) P c↔d

The process, (νcd) P, will create two new channels c and d that can be
used in P [Vas12]. These channels are linked with each other so sending on
one of them will be received on the other. The reason that we are using two
linked channels rather than one, as is customary, is because when we are giv-
ing types to these processes we wish to have a linear usage of channels. By
splitting the creation into two connected channels we can enforce a linear us-
age on the channels, and still allow for internal communication. The process
c↔ d will equate the two channels c and d, by sending any messages on c
to d and vice versa.

c{de} P c[de] P

The final two process constructions are for splitting a channel into two
new channels. The process c{de} P and c[de] P are in this regard similar to
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each other, the only difference is that with c{de} P the process P can use d
and e in the same process, whereas with c[de]Q, the process Q must use d
and e in parallel, so there can’t be any dependencies between d and e.

Linear Logic. The channels are only used once, in a linear fashion, in
order for the processes to guarantee deadlock freedom. But only well-typed
processes are deadlock free, so how does one type these processes? Looking
in the literature we find Session Types[Hon93] as the prominent candidate
for typing processes. Typing inspired from Linear Logic[Gir87], were given
by Abramsky [Abr93], but the use of Linear Logic did not take off until much
later[CP10, Wad14].

Before giving our typing to the processes we will first provide the very
basics of Linear Logic. The judgement is � Γ , where Γ is a context of formulas.
A central concept of Linear Logic, is that every formula is associated with a
dual formula. The dual of a formula A is denoted A, and is defined in the
meta-theory. The formulas of the multiplicative fragment are as follows:

A, B ::= P | P | A⊗ B | AO B

The tensor ⊗ is used to combine to formulas, which will be paired up in
two separate branches, whereas the par O can be in the same process. The
atoms come in two forms, P or the dual version P⊥, each atom has its own
dual. The dual of formulas are defined to satisfy the following equations:

P⊥ = P P
⊥
= P

(A⊗ B)⊥ = A⊥O B⊥ (AO B)⊥ = A⊥ ⊗ B⊥

The rules for Linear Logic tries to balance the formulas so that every atom
P is matched up with its dual P. In contrast to ordinary logic, Linear Logic
does not have rules for weakening nor contraction. The context is a multiset
of formulas, as such swapping formulas in the context is permitted, but one
can neither duplicate nor remove a duplicate of a formula.

ax −−−−−−−−−
� P, P

� Γ , A �∆, A⊥
cutA −−−−−−−−−−−−−−−−−−−−−−−−

� Γ ,∆

� Γ , A, B
O −−−−−−−−−−−−−−−−
� Γ , AO B

� Γ , A �∆, B
⊗ −−−−−−−−−−−−−−−−−−−−−−−
� Γ ,∆, A⊗ B
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The rules we will use to type processes are variations on the standard
use of linear logic as a type system for the π-calculus, described in [Abr93]
and [BS94]. This interpretation of linear proofs has been later modified in
both an intuitionistic linear [CP10] and a classical linear [Wad14] variant,
to follow the principles of session types [Hon93], but we return here to the
original design of Abramsky.

An important problem in such an interpretation of sequent calculus proofs
lies in the handling of parallel composition and the corresponding branching
in a proof. Indeed, if a communication operation is associated to a logical rule
such as the rule for ⊗, we will need to type both the operator and a parallel
composition, as done for example following the translation of Abramsky:

� P :: Γ , d : S �Q ::∆, e : T
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� c[de] (P ‖Q) :: Γ ,∆, c : S ⊗ T

where we have simplified the picture by using a binding output. This leads
to a host of problems with the syntactic congruence on processes and the
preservation of typing. In order to avoid this, we depart from the usual pre-
sentation of linear logic and enrich its sequent calculus with two levels, i.e.
using nested contexts, where the typing judgements is of the shape � P :: J ,
where:

I ,J ::= · | [H ] | I ,J G ,H ::= · | c : S | G ,H

and where c denotes a channel name, while S denotes a linear formula seen
as the type of this channel. The intuitive interpretation of this two-level ap-
proach is simple: comma in J represents a meta-level O while in H it rep-
resents a meta-level ⊗. The view of the comma as the O is the standard
interpretation of sequents in linear logic, but here we can indicate that for-
mulas should be distributed into different sequents, using brackets [·]. The
purpose of this generalisation is to make branching — and the splitting of the
context — independent from the decomposition of the connectives. From
a proof-theoretical viewpoint, this is related to the need to decompose the
formulas not only at top level, a question adressed partially using hyperse-
quents [Avr96] and more thoroughly studied in the setting of deep inference
[Gug07]. The form of nesting required here is quite limited, as it only offers
access to formulas appearing under aO and a⊗, when considering the logical
interpretation of sequents.

This approach leads to the system described in Figure 1.2, where processes
can contain binary inputs and outputs, parallel compositions and scopes, as
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� P :: J , [d : S], [e : T]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� c{de} P :: J , [c : S O T]

� P :: J , [d : S, e : T,G ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� c[de] P :: J , [c : S ⊗ T,G ]

� P :: J , [H ,G ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� P :: J , [H ], [G ]

−−−−−−−−−−−−−
� 0 :: [·]

� P :: I , [G ] �Q :: J , [H ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� P ‖Q :: I ,J , [G ,H ]

� P :: J , [c : S, d : S⊥]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� (νcd) P :: J

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� c↔d :: [c : S], [d : S⊥]

Figure 1.2: Typing rules for processes based on linear logic

well as the inactive process and a form of forwarder found in [CP10]. An
important observation here is that in the rule for parallel composition, both
G andH can be · and thus the mix rule is present. Although it is not a prob-
lematic rule, and in fact is desireable from the process viewpoint2, it is not
part of standard linear logic. Moreover, in order to obtain the expected prop-
erties for ‖ we need the rule treating the composition of two blocks [·], which
also amounts to the presence of mix, by interpretation of the judgements: the
implication (A⊗ B)−◦ (AO B) is valid here.

Polyadic communication. We can easily extend the rules for O and ⊗ to
support the n-ary variants of the multiplicative connectives, as follows:

� P :: J ,
−−−→
[e : S]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� c{~e} P :: J , [c :O~S]

� P :: J , [
−−→
e : S,H ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� c[~e] P :: J , [c :⊗~S,H ]

and thereby obtain typing rules for general polyadic communication, as found
in theπ-calculus. Here, a concise syntax indicates the use of a whole sequence
of blocks [·] or types of the shape c : S, extracted from the n-ary connective.
Note that by doing so, we obtain the multiplicative units of linear logic for
free, but we are not interested in the distinction between the two. Beyond
accepting the implication induced by mix, we simply collapse the two units,
so that the rule for 0 can be written:

−−−−−−−−−−
� 0 :: ·

and the distinction beetween the nullary case of O and ⊗ will not be empha-
sised in the following, since they are now logically equivalent. Observe that
extending linear logic with the mix rule is neither problematic nor surpris-
ing, since the concurrent interpretations of linear logic are related to the use

2The mix-rule allows for an easy way to make independent processes be in parallel.
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of proof-nets [Gir96], as observed in [BS94], where mix simply translates as
the juxtaposition of valid nets. The collapse of the two multiplicative units
makes sense when considering them as types simply indicating termination
of a process.

There is one rule in the system described in Figure 1.2 that is not reflected
in the structure of processes, which is not fully satisfactory from a proofs-
as-programs perspective. However, this could be avoided by using a more
complicated variant of the rule for ‖ where several [·] blocks are split, under
some conditions on groupings chosen in the premises.

Finally, note that we use a binary form of scoping, reminiscent of [Vas12]
but introducing two distinct channel names c and d. This stems from the
design of the cut rule chosen here, where no branching is performed: this
perspective on cut is consistent with the treatment of ⊗ in a system where
depth is used and cut is essentially viewed as the implication (A⊗ A⊥)−◦⊥.
Indeed, we wish to avoid repetition of channel names inside a sequent, while
grouping dual session types of the cut into a [·] block.

Congruence and permutations. The decoupling of ⊗ and of cut from
branching allows us to clarify the interpretation of each rule as a single con-
struct in the π-calculus, but also provides a natural interpretation of the syn-
tactic congruence ≡ on processes in terms of permutations of inference rules.
Indeed, in the sequent calculus and in the generalisation we consider here,
many rules can be exchanged without changing the essential structure of the
proof. Moreover, such permutations are necessary in the cut elimination pro-
cess, which proceeds by permuting cut instances upwards in a proof tree.

The acknowledgement of rule permutations has two consequences. First,
we can derive the expected equations on ‖ from permutations of its rule with
itself and others:

P‖Q ≡ Q‖P P‖(Q‖R) ≡ (P‖Q)‖R P‖0 ≡ P (νcd) (P‖Q) ≡ (νcd) P‖Q

under the condition that neither c nor d appear in Q in the last equation.
Then, permutations involving the rules for O and ⊗ justify the syntax of pre-
fixes where no indication of sequentiality appears, just as in [BS94], since ex-
change of prefixes is possible. This means that we can validate the equations
πκP ≡ κπP if π and κ involve fully distinct names, and (νcd)πP ≡ π(νcd) P
if c and d do not appear inside π. Moving prefixes past each other is unusual
in the π-calculus, but it is necessary from a logical viewpoint to ensure that
no cut can reach a blocked situation preventing its elimination.

Cut elimination and communication. In a type system for π based on
the sequent calculus, cut elimination appears at the level of processes as re-
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duction, specified through a rewrite system performing communication steps
in appropriate configurations. The multiplicative fragment has a simple cut
elimination procedure, with a single principal case involving O and its dual
⊗. The cut reduction in that case translates on processes as the rewrite rule:

(νcd) (c[c0c1] P ‖ d{d0d1}Q) → (νc0d0) (νc1d1) (P ‖Q)

which corresponds to the usual communication rule of the π-calculus, when
considering binary scoping as an alternative to channel renaming. Beyond
the simple reorganisation of the channel connections appearing in a process,
the integration of this system into type theory will provide the means of com-
municating functional data, thus moving closer to the setting of a functional
programming language extended with communication [GV10].





Chapter 2

Type Theory and Agda

Jag ska be att få ställa upp
med en visa om en tupp.
Som var gammal och utsliten
impotent och väderbiten.

Lyrics from: Hönan Agda
Cornelis Vreeswijk

The Curry-Howard correspondence [Cur34, How80], is a relationship be-
tween a logic and a typed programming language, where the formulas of the
logic are related to types, and the proofs are related to programs. Through
this lens, dependent types can serve a dual purpose, both by providing a logi-
cal foundation for reasoning, but also give expressive types to programs. De-
pendent types allow the types to express properties about terms. For example,
quantification, as seen in e.g. first order logic, is generalised to dependent
functions, where the return type can mention the input value. This dual view-
point allows for programs to be used for proofs, but furthermore the types are
more expressive since they have the power of logic at their disposal.

The particular type theory we use in this thesis is based on Per Martin-
Löf [ML75, MLS84], and is the basis of the type system of AGDA [Nor07],
which is the proof assistant, and/or programming language, that has been
used to formalise the results of this thesis. Although AGDA was picked, the
results are general and can be transferred to other dependently typed pro-
gramming languages, such as COQ [CH88, dt04, BCHPM04] or IDRIS [Bra13].
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2.1 A Dependent Type Theory

In the type theory we are working with, i.e. AGDA, we can define new in-
ductive data types. A standard example of an inductive type, is the natural
numbers N, which is defined below using the data declaration of AGDA:

data N : Set where
zero : N
suc : N→ N

Here three new constants have been defined, the first is for the type itself
namely N : Set, which declares that N is a type. Note that Set is the type of
small types in AGDA, and we will come back to this type later. The other two
constants are the data constructors, zero : N for zero, and suc : N→ N for the
successor function. A function going from natural numbers, can be defined by
pattern matching against the different constructors. A simple example of such
a function is the addition function _+_, note that in AGDA binary operators
are surrounded by underscores, and in general a definition may be mix-fix
and have multiple underscores, where each underscore indicates where an
argument should be.

_+_ : N→ N→ N
zero +m = m
suc n +m = suc (n +m)

This definition uses recursion on the first argument. The type theory,
AGDA, automatically checks if this function is total, i.e. it is defined for all
inputs and it terminates. This is done by a coverage checker and a termina-
tion checker, which due to Rice’s Theorem [Ric53] can’t detect all cases, so
some total functions will not be found by the checker to be total. The reasons
for checking totality is to guarantee a logical soundness when looking at the
types from a logical interpretation.

The next to illustrate here is the List type, which follows a similar scheme
as the one for the natural numbers. Lists are polymorphic in the element
type, which is achieved by having the type of the elements be a parameter to
the list type.

data List (A : Set) : Set where
nil : List A
cons : A→ List A→ List A
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So far the data types we have shown that are similar to that of functional
programming languages like Haskell [P+03] or Standard ML [MTM97]. We
have not seen any dependent types yet, but the next example will illustrate
one, and show how we can use real data dependencies, by using inductive
families [Dyb97]. In the dependent types literature, list that are indexed
by their length, are usually called Vectors and we will not depart from this
tradition and also call them Vector:

data Vector (A : Set) : N→ Set where
nil : Vector A zero
cons : {n : N} → A→ Vector A n→ Vector A (suc n)

In the cons constructor, we use a dependent function type {n : N} → . .,
which shows that cons really have three arguments: a natural number for the
length, the head and finally the tail of the Vector. The use of curly braces
{n : N} → . . indicates that we wish this argument to be implicit and let the
AGDA system to try to infer this argument.

Now we can write dependent functions, once again we will follow the
standard examples of the dependently typed literature, and show the append
functions for Vector. This function takes two Vectors and combine them into
one big Vector, notice that the type of the append function shows that the
resulting Vector is of the size of the summation of both its arguments.

append : {A : Set} {n m : N} → Vector A n→ Vector A m
→ Vector A (n +m)

append nil ys = ys
append (cons x xs) ys = cons x (append xs ys)

The AGDA system will infer all the implicit arguments. If we so desired we
could have written everything explicitly, but often this gets very cumbersome
but for illustrative purposes we show below how the append function looks
with explicit annotations.

append : {A : Set} {n m : N} → Vector A n→ Vector A m
→ Vector A (n +m)

append {A} {.zero} {m} nil ys = ys
append {A} {.(suc n)} {m} (cons {n} x xs) ys
= cons {n +m} x (append {A} {n} {m} xs ys)

The curly braces on the left hand side of the equation brings implicit ar-
guments into scope, and can be used on the right hand side. This is done
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by position, but could also be by name using the syntax n = .zero, which is
useful if only one of the implicit argument is needed.

The dot makes the pattern a dot pattern and is used to mark that we are
not actually matching this argument, instead we statically asserting that the
argument n must really be equal to zero. The reason why n is equal to zero in
this case is that we match the first Vector against nil which only makes sense
if n is indeed zero. The arguments to a dot pattern don’t have to be patterns,
i.e. only constructors or variables, but can be any kind of expression. A good
example of when patterns are not enough, and an expression is needed, is
when working with the image type, which is a type for defining the image of
a function.

data Img {A B : Set} (f : A→ B) : B→ Set where
im : (a : A)→ Img f (f a)

When pattern matching on an element of Img f b we get access to an
element a of type A such that f a is equal to b. A function projecting out
this element such as inv below needs to use a dot pattern, and the expression
inside the dot pattern is not a pattern itself, since it uses an arbitrary function.

inv : {A B : Set} {f : A→ B} (y : B)→ Img f y→ A
inv {f = f} .(f a) (im a) = a

2.2 Records and Modules

Another construct to create new data types is the record declaration, which
in contrast to types declared by data construct which are defined by the con-
structors, defines types by projections out from the type. The example we
use here is that of Σ-types which are dependent pairs. In contrast to normal
pairs, i.e. Cartesian products, the type of the second field of the dependent
pair, can depend on the value of the first field.

record Σ (A : Set) (B : A→ Set) : Set where
constructor _,_
field

fst : A
snd : B fst

The keyword constructor introduce a convenient function for creating an
element of the record, in this case a pair. There are two ways of constructing
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pairs, one is to use copatterns [APTS13] as opposed to normal pattern match-
ing, whereas the other is to use the record expression. The function that the
keyword constructor creates could have been defined in one of these ways:

_,_ : {A : Set} {B : A→ Set} (fst : A) (snd : B fst)→ Σ A B
fst (_,_ x y) = x
snd (_,_ x y) = y

-- or using the record expression
_,_ x y = record {fst = x; snd = y}

Whereas normal pattern matching enables matching on arguments, co-
patterns allows matching on the result. The informal reading is that _,_ x y
is a pair such that projecting the first field returns x, similar for projecting
with snd. Using the record construct, one lists each field in the record, and
assigns a value. The distinction between copatterns and the record construct
is similar to the difference of defining function by pattern matching or using
a λ-expression, i.e. an anonymous function.

Another example using copatterns is the function that swaps the argument
of the pair, which requires that there is no type dependencies. We use the type
_×_ for pairs that don’t have any type dependencies. This function will simply
map the first projection to the second and vice versa.

_×_ : (A B : Set)→ Set
A × B = Σ A (λ _→ B)

swap : {A B : Set} → A × B→ B × A
fst (swap p) = snd p
snd (swap p) = fst p

In contrast to records, which are useful in combining data together larger
pieces of data, modules are a way of structuring a program definitions to-
gether, so that related topics are grouped together in the same file. In con-
trast to records, modules are only used for name spacing, i.e. control which
definitions are in scope, and what names these definitions are supposed to
have. Take as an example the Nat module which contains the type of natural
numbers as defined above, together with the addition function.
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module Nat where
data N : Set where

zero : N
suc : N→ N

_+_ : N→ N→ N
zero + n = n
suc m + n = suc (m + n)

The contents of the module are shown by being indented under the module
declaration. The contents of the module can be accessed from the outside by
prefixing the name of the identifier with the name of the module and sep-
arating with a dot, for example the addition function is written as Nat._+_.
By opening a module it is possible, to bring into scope the identifiers of the
scope, but this can be restricted by declaring with the using modifier which
identifiers one is interested in. As an example here is a module for Vector that
will use the module of Nat.

module Vector where
open Nat using (N)
data Vector (A : Set) : Nwhere

nil : Vector A zero
cons : {n : N} → Vector A n→ Vector A (suc n)

append : ∀ {m n A} → Vector A m→ Vector A n→ Vector A (m Nat.+ n)
append nil ys = ys
append (cons x xs) ys = cons x (append xs ys)

Records and modules are closely related, with the difference that records
are actual types, and their values can be passed around. Modules on the other
hand does not have an affect on the runtime. As a small remark we note that
each record will define a module, with the same name as the record, that
contains the projection functions.

We will mostly use records to define algebraic theories, like monoids or
groups, with their data, such as identities and operators. They may further-
more also contain proofs that the particular laws are satisfied.

2.3 Universes

So far we have used Set to describe types, and one may wonder what is the
type of Set? It is known that picking Set : Set leads to inconsistencies [Hur95,
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Gir72], so instead one introduces a whole hierarchy of types. These are Set,
Set1, Set2 and so forth, in particular Set : Set1 : Set2. Although the different
levels are important for the consistency, we don’t display them in this thesis
in order to avoid clutter. Note that this does not mean that we are working
in a theory with Set : Set , but simply that we will assign levels as necessary.

The type Set is an open universe, since we can populate it with new types
using the data or record declaration, at any point. But it is useful to some-
times work with a closed universe, which in particular allows to write generic
functions over the type in the universe. A closed universe can be defined by
first giving a type of codes for the types in the closed universe, and then give
an elimination function that computes the actual type for each code. Generic
functions can now be defined by looking at the code to learn what the type
is.

An example of such a universe would be a universe that guarantees that
the inhabitants are functors. This universe contains the identity functor, con-
stant functors, and then functors for disjoint sums and products, where dis-
joint sum A ] B is a type that will either contain a value of type A or a value
of type B. The type of codes Fun, for this universe is defined as follows:

data Fun : Set where
Id’ : Fun
K’ : Set→ Fun
_]’_ _×’_ : Fun→ Fun→ Fun

We use the prime as a convention for the codes, also note that AGDA allows
to define multiple constructors of the same type by letting them share the type
declaration. In order to get the real type of the functor, we use the elimination
function El which maps each code to the type it represents, and is defined as
follows.

El : Fun→ (Set→ Set)
El Id X = X
El (K A) _ = A
El (F ]’ G) X = El F X ] El G X
El (F ×′ G) X = El F X × El G X

All types we get by the El functions are functors, which we can demon-
strate by giving the functor mapping. This mapping will take a function from
A → B and will transform this function to a function over El F, where F is
code for the functor. This function is defined by induction on the code F, and
by learning which code F is, we learn what kind of structure El F is.
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map : {A B : Set} (F : Fun)→ (A→ B)→ El F A→ El F B
map Id h x = h x
map (K _) _ k = k
map (F ]’ G) h (inl f) = inl (map F h f)
map (F ]’ G) h (inr g) = inr (map G h g)
fst (map (F ×′ G) h p) = map F h (fst p)
snd (map (F ×′ G) h p) = map G h (snd p)

2.4 Equality

As we saw in a previous section with the Img type, dependent pattern match-
ing can introduce equality constraints on the indices of the type. The canon-
ical type describing these kinds of equality constraints is the equality type,
also known as the identity type, which is inductively defined as follows:

data _≡_ {A : Set} (x : A) : A→ Set where
refl : x ≡ x

The identity type a ≡ b has only an inhabitant if a and b can be identified
as being equal, otherwise this type is uninhabited. This motivates an elim-
ination rule which is traditionally called J, which states that if something is
true when the identity is refl, it is true for all identifications:

J : {A : Set} {x : A} (P : (y : A)→ x ≡ y→ Set)
→ P x refl→ (y : A) (p : x ≡ y)→ P y p

J {x = x} P p .x refl = p

Traditionally this type was thought to only have at most one inhabitant,
but recent models [Voe11, AW09] of dependent type theory have emerged
based on homotopy theory [Uni13], in which this is no longer necessary. In-
stead of thinking of a type as some sort of a set, it is interpreted as a form of
space, and the identity type a ≡ b is the type of paths from the point a to the
point b. The constructor refl represents the identity path between an object
and itself. With this interpretation, which Homotopy Type Theory is based
on, a type can have multiple paths, but all paths can be transported along
the identity path. This justifies the elimination rule, which is still in use in
Homotopy Type Theory, but one can’t prove that there is only one inhabitant
of x ≡ x, which is commonly known as axiom K:

K : {A : Set} {x : A} (P : x ≡ x→ Set)
→ P refl→ (p : x ≡ x)→ P p

K P p refl = p
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While we could define this axiom with pattern matching, we will not make
use of this power in this thesis. Instead we will only use pattern matching that
could be explained by a conversion to the J-eliminator [CDP14]. But since
using the J-rule directly is somewhat messy we continue to define by pattern
matching. The major problem with using the eliminator is to construct the
motive, the value of type P in J. This is hidden in the definitional style, com-
pare for example the proof of transitivity using the eliminator and not using
it:

transJ : {A : Set} {x y z : A} → x ≡ y→ y ≡ z→ x ≡ z
transJ {x = x} {_} {z} x≡y y≡z = J (λ y _→ y ≡ z→ x ≡ z)
(λ p→ p) x≡y y≡z

trans : {A : Set} {x y z : A} → x ≡ y→ y ≡ z→ x ≡ z
trans {x = x} {.x} {z} refl x≡z = x≡z

The fact that the identity type was invented to capture equality explains
why we could derive transitivity, in fact this relation is an equivalence relation
since it is furthermore symmetric.

sym : {A : Set} {x y : A} → x ≡ y→ y ≡ x
sym refl = refl

Everything in type theory respects this equality, i.e. it is impossible to
distinguish between to equal terms. This is shown by two different kind of
proofs, the first called ap which shows that all functions will map equal input
to equal output. The second proof, called tr which is short for transport,
shows that for all properties if the property holds for an element, it holds for
all equal elements as well.

ap : {A B : Set} (f : A→ B) {x y : A} → x ≡ y→ f x ≡ f y
ap f refl = refl

tr : {A : Set} (P : A→ Set) {x y : A} → x ≡ y→ P x→ P y
tr P refl p = p

A simple consequence of tr, it is possible to get a coercion function be-
tween equal types. By simply choosing the property to be the identity func-
tion, here specialised to the type Set→ Set, the transport will act as an type
safe coercion.

coe : {A B : Set} → A ≡ B→ A→ B
coe = tr id
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In some of the proofs in this thesis, we use axioms that don’t have any com-
putational interpretation. These axioms, of which there are two, are sound
with respect to the type theory we are working in. The first of this axioms is
functional extensionality which states that if two (dependent) functions are
equal for all inputs, then they are equal as functions. This statement can’t be
derived in intentional type theory, but it is consistent to assume it:

postulate
λ= : {A : Set} {B : A→ Set} {f0 f1 : (x : A)→ B x}
→ (∀ x→ f0 x ≡ f1 x)→ f0 ≡ f1

The second axiom we use when reasoning, is motivated by homotopy
type theory, which is a type theory where Identity proofs are seen as paths
in topological spaces. The second axiom is the univalence axiom and is one
of the most characteristic feature of this homotopy type theory. This axiom
asserts what the equality on the universe Set should be, which the intentional
type theory of Martin-Löf left open. In a Martin-Löf type theory there is only
one way of constructing an element of the identity type, and that is by refl. In
contrast homotopy type theory states that homotopically equivalent types can
be made identical, where homotopically equivalent is a type isomorphism,
and with a condition on the proofs of the isomorphism, namely that they are
natural. In our type theory we capture the fact that a function f : A → B
is a homotopical equivalence between the two types A and B, by the type
Is-Equiv f:

record Is-equiv {A B : Set} (f : A→ B) : Set where
field

inv : B→ A
inv-is-linv : ∀ x→ inv (f x) ≡ x
inv-is-rinv : ∀ x→ f (inv x) ≡ x
is-hae : ∀ x→ ap f (inv-is-linv x) ≡ inv-is-rinv (f x)

The fact that two types A and B are homotopically equivalent is expressed
by the fact that there exists a function that is a homotopical equivalence be-
tween the A and B. The collection of such a function and the proof that the
function is an equivalence is gathered together in the type _'_, which is just
a Σ-type.

_'_ : Set→ Set→ Set
A' B = Σ (A→ B) Is-equiv
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The univalence axiom, at least the part that will be used in this thesis,
states that if two types A and B are equivalent, i.e. A ' B, then they are
equal, i.e. A ≡ B. We add to the type theory an axiom that witnesses this
fact, but we will be careful to point out when we are using it.

postulate
ua : {A B : Set} → A' B→ A ≡ B

This will be used when proving that Σ-types respect equivalence, but be-
fore we can prove that we first show that they respect the equality type.

Lemma 2.4.1: Σ-type Respects ≡

Asuming functional extensionality, let A0, A1 be types, such that they are
identified A= : A0 ≡ A1. Let B1, B1 be type families on A0 and A1

respectively. Let B= be a family over A0 of equivalences between B0 and
B1. The type of B= is (x : A0)→ B0 x ≡ B1 ((coe A=) x) and coe A= is
the identity transport along A=. It is then possible to construct a identity
Σ A0 B0 ≡ Σ A1 B1.

Proof. By induction on A= one has only to consider the case for reflexivity
on the base point A0. Notice that the family B1 now is on A0, and that B=
is now convertible to (x : A0)→ B0 x ≡ B1 x since coe computes to the
identity function on the reflexivity path. It remains to show that there is
proof of equality between Σ A0 B0 and Σ A1 B1, which amounts to first
use function extensionality on B= to get a path B0 ≡ B1, which can then
be applied to the context Σ A0.

We can now prove that Σ-types respect type equivalences, this requires
the univalence axiom.

Theorem 2.4.2: Σ-type Respects '

Let A0, A1 be types, and A' be a type equivalence : A0 ' A1. Let
B0, B1 be type families on A0 and A1 respectively. Let B= be a fam-
ily over A0 of equalities between B0 and B1. The type of B= is (x :
A0) → B0 x ≡ B1 (fst A' x) It is then possible to construct an equiva-
lence Σ A0 B0 ' Σ A1 B1.

Proof. The equivalence A' is transformed into a path using the univa-
lence axiom ua. To use the previous Lemma 2.4.1 it remains to show a
family of equalities: ∀ x→ B0 x ≡ B1 (coe (ua A') x). Considering such
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an x : A0 we first use the equality (B=) x. To show a equality proof
between B1 (·→ A' x) and B1 (coe (ua A') x) we apply the context B1.
Finally we use the β-rulea for the univalence axiom which gives a path
between ·→ A' x and coe (ua A') x, which concludes the proof.

aThe β-rule is that coe (ua A') is fst A'.

A convenient way to construct an equality proof is to use equational rea-
soning syntax, which is used to make the proof look comparable to mathe-
matical proofs. Although in the type theory this is just a small syntactic trick,
for the uses of transitivity and reflexivity, we use it in this thesis to improve
the readability of proofs.

As an example we show here a proof that for a commutative and associa-
tive operator it is possible to exchange two elements “in the middle” of an
expression. This proof assumes that x,y,z and w are elements of a type A and
that • is the commutative and associative operator, and we will exchange the
place of y and z:

example : (x • y) • (z • w) ≡ (x • z) • (y • w)
example = (x • y) • (z • w)

≡〈 •-assoc x y _ 〉
x • (y • (z • w))
≡〈 ap (_•_ x) (! •-assoc y z w) 〉

x • ((y • z) • w)
≡〈 ap (_•_ x_ (ap (λ p→ p • w) (•-comm y z)) 〉

x • ((z • y) • w)
≡〈 ap (_•_ x) (•-assoc z y w) 〉

x • (z • (y • w))
≡〈 ! •-assoc x z (y • w) 〉
(x • z) • (y • w)
�

The use of equational equality makes it easier to read of the proof, fur-
thermore we use the unary operator !_ for symmetry proofs to further reduce
clutter and make the proof more concise.
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2.5 Relational Parametricity

Polymorphic types satisfies some theorems for free [Wad89], indeed some
programming languages have been shown to enjoy a so called abstraction the-
orem [Rey83, Wad89, BJP10]. The abstraction theorem is called the funda-
mental theorem in logical relations [Tai67, Sta85]. The theory behind AGDA

is known to enjoy this abstraction theorem [BJP10], and the free-theorem
statement can be mechanically derived from types, furthermore any well-
typed program satisfy the free-theorem arising from its type. While they,
the free theorems, are uninformative for monomorphic types they are inter-
esting for polymorphic types. Usually, these theorems are stated using pen
and paper proofs for HASKELL programs, but we are in a dependently typed
language, i.e. AGDA, where the types, programs, statements and proofs all in-
habit a common system. Although these free-theorems are mechanical they
are currently not automated by the system.

The high level overview, is that each type T : Set will induce a (binary)
relation, which we will denote by oxford brackets1

¹Tº : T→ T→ Set. The
(binary) free-theorem is that this relation, ¹Tº, is reflexive, i.e. for all terms
t : T there is a proof term ¹tº : ¹Tº t t. If parametricity was internalised, in
our type theory, then this proof, i.e. ¹tº, would come for free, but instead we
need to prove it in each instance. The ¹_º relation is defined by induction on
the type. For example, functions are in the relation if they map related inputs
to related outputs:

¹A→Bº : (A→ B)→ (A→ B)→ Set
¹A→Bº f f ’ = (x x’ : A)→ ¹Aº x x’→ ¹Bº (f x) (f ’ x’)

Since polymorphism is expressed using a universe type Set, we need to
know what the relation ¹Setº is. Following [BJP10] we pick ¹Setº to be the
type of all relations. An intuitive reason for this is that the type of Bool : Set
and parametricity will say that ¹Boolº : ¹Setº Bool Bool and since we already
know that ¹Boolº is a binary relation on Bool it follows that ¹Setº is the type
of relations.

¹Setº : Set→ Set→ Set
¹Setº A B = A→ B→ Set

Furthermore we need to extend the relation on functions to dependent
functions in order to express the type of polymorphic functions. The tricky

1Also called double brackets.
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part in defining the relation for a dependent function such as (x : A)→ B x
is that the type of B is indeed dependent, i.e. B : A→ Set, which implies that
the relation on B is defined to be:

¹Bº X X’ = (x x’ : A)→ ¹Aº x x’→ X x→ X’ x’→ Set

Which leaves that dependent functions have the following relation:

¹ (x:A)→Bº : ((x : A)→ B x)→ ((x : A)→ B x)→ Set
¹ (x:A)→Bº f f ’ = (x x’ : A)
→ (xr : ¹Aº x x’)→ ¹Bº x x’ xr (f x) (f ’ x’)

For inductive types T, the relation ¹Tº is an indexed inductive type, which
has the same number of constructors as T, where each constructor relates
each constructor to itself. This is the reason why if the type is monomorphic,
the relation just turns out to become an equality type. But if the data type is
polymorphic, as for example List A, which can be related to a List B, then list
are related as long as the elements in the lists are pair-wise related using a
relation between the types A and B.

data ¹Listº {A B : Set} (_≈_ : ¹Setº A B) : List A→ List B→ Set where
¹[]º : ¹Listº _≈_ [] []
_¹::º_ : ∀ {x y xs ys} → x ≈ y→ ¹Listº _≈_ xs ys

→ ¹Listº _≈_ (x :: xs) (y :: ys)
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Chapter 3

Mathematics in Type Theory
Joint work with: Nicolas Pouillard

This chapter introduces the way formalise the mathematics used in Chap-
ter 1, i.e. probabilities, the concept of negligible functions and group theory.
In order to do so we utilise the computational content of the type theory we
working with, in order to both simplify and specify the correctness of our for-
malisation. As a consequence of the domain we use probabilities in, namely
cryptography, we will only need finite sample spaces, which allows for a more
direct computational interpretation of the calculus of probabilities.

When talking about probabilities there is always a sample spaceΩwhich is
the discourse of the subject. This space will in the type theory be represented
as some type, for example when studying a single coin toss the sample space
is {0,1} which we will represent by the types of boolean Bool.

Definition 3.0.1: Event

An event on a sample space Ω is a subset A⊆ Ω.

We can use the constructive nature of type theory and define a subset by
the characteristic function. In other words to define a subset A⊆ Ω we give a
function 1A : Ω → Bool, such that 1A(x) = true if and only if x ∈ A.

Since we working with uniform distributions, the probability of an event
A is how often, if we pick a random element x from our sample space Ω, that
this element is in A, i.e. x ∈ A. This can be computed by simply compar-
ing the different cardinalities Pr[A] = |A|

|Ω| . This leads to our first challenge
when trying to model this in type theory since we don’t have the cardinality
available to us, which we will explore in the following section.
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The question of cardinalities leads us to work with functions, that count
how many elements there is in of a particular subset. Since we use a charac-
teristic function to identify subsets this means that a counting function for a
sample space Ω would have the type (Ω → Bool) → N. The idea is that the
function will return for how many elements of type Ω for which the predi-
cate is true. In general there is no such function in the type theory we are
working in, so we need to introduce one for every type. The next section will
present a general framework for deriving such functions, and furthermore
reason about them.

3.1 Exploration Functions

We wish to derive counting functions, i.e. functions of type (Ω→ Bool)→ N
for some type Ω, but these can’t be built in a composeable way. To illus-
trate this consider the product type A × B for some types A and B. As-
suming we have counting functions for these types, fA : (A → Bool) → N
and fB : (B → Bool) → N, can we combine them to a function fA×B :
(A × B→ Bool)→ N?

A start could be to write fA×B p = fA (λ (x : A) . ?) but we get stuck,
since ? is supposed to be a Bool but we wish to also use fB which is going to
return a N. In fact the problem is that counting functions are too restrictive,
we need to generalise the type. The issue is that the type Bool and N are
two different types, so instead of giving a predicate we give a measure. We
generalises counting functions to summation functions, i.e. (Ω → N) → N,
this makes it possible to compose functions more easily. Let’s return to the
previous example with the product type. Assume we have fA : (A→ N)→ N
and fB : (B→ N)→ N, we can know define:

fA×B : (A × B→ N)→ N
fA×B p = fA (λ (x : A) . fB (λ (y : B) .p (x , y)))

There is of course nothing particular about N, and we generalise this to
any monoid. We give the name exploration to this generalisation since it is a
type that is supposed so explore the elements of the given type, the particular
exploration is given by the operations of the monoid. An exploration function
is parametric over the given monoid and takes the operations as arguments:
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Definition 3.1.1: Exploration Function

An exploration function for a type A is given a type M, a value ε of type
M, a function _⊕_ of type M → M → M, and function f of type A → M.
The exploration function finally yields a result of type M:

Explore : Set→ Set
Explore A = {M : Set} (ε : M) (_⊕_ : M → M → M)
→ (A → M) → M

For any type A, an exploration function is given a default result ε, a binary
operator _⊕_ and a function f realising the body of the big operator. The
function f is then called on every value of the type to be explored. All results
are combined with the operator _⊕_. If there are no values to explore the
default result ε is returned.

One viewpoint is that the task of an exploration function is thus to trans-
form any small operator _⊕_ into the corresponding big operator

⊕

of type
(A → M) → M. For instance, if explore is an exploration function for a type
A, then explore 0 _+_ is

∑

and explore 1 _*_ is
∏

, where 0, 1, _+_ and _*_
are defined on the type N.

Note that the type does not specify that the exploration will be over a
monoid, the laws are not given, but only the operations. Though when prov-
ing properties about explorations, the monoid laws will be assumed as well.
The reason for not having to provide the monoid laws when performing an
exploration is to makes it easier to write transformations of exploration func-
tions.

Further note that there is nothing in the type that enforces that every
element is applied once, and only once, in the result. These exploration func-
tions are the motivating example but we will first study exploration functions
in general. The exploration functions that do explore all values of a type A
are said to be exhaustive. The name “exploration” is used because these func-
tions are designed to systematically examine every possible value of the type.
But it is also useful to study explorations that are not necessary exhaustive.
The exhaustiveness of an exploration implies the finiteness of A.

In order to easily define new exploration functions we provide three build-
ing blocks inspired by binary trees. These three combinators are defined for
any type A and correspond to the constructors empty, leaf, and fork respec-
tively. The exploration function that corresponds with empty is empty-explore,
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an exploration function which does not explore anything and just returns the
default value ε. The function point-explore takes a value x of type A and de-
fines an exploration function which explores only this point x using the given
exploration body. Finally the function merge-explore takes two exploration
functions and combines them using the received binary operator _⊕_.

empty-explore : ∀ {A} → Explore A
empty-explore ε _⊕_ f = ε

point-explore : ∀ {A} → A→ Explore A
point-explore x ε _⊕_ f = f x

merge-explore : ∀ {A} → Explore A→ Explore A→ Explore A
merge-explore e0 e1 ε _⊕_ f = (e0 ε _⊕_ f) ⊕ (e1 ε _⊕_ f)

For exhaustively exploring finite types, we have some more specialised
combinators. Generally, finite types are a combination of sums and products,
and we therefore provide exploration combinators for those. As base case for
finite types we have exploration functions for types such as ⊥, 1 and Bool.
These are defined by the simple exploration functions we defined above:

explore⊥ : Explore⊥
explore⊥ = empty-explore

explore1 : Explore 1
explore1 = point-explore tt

exploreBool : Explore Bool
exploreBool = merge-explore (point-explore false) (point-explore true)

For sum types A ] B, the exploration explore] eA eB ε _⊕_ f combines
the two results given by exploring the function f specialised to types A and B
using inl and inr — the injections for the type _]_. The two results are then
combined using _⊕_.

explore] : ∀ {A B} → Explore A→ Explore B→ Explore (A ] B)
explore] eA eB ε _⊕_ f = (eA ε _⊕_ (f ◦ inl)) ⊕ (eB ε _⊕_ (f ◦ inr))

For Cartesian products A × B we define the exploration explore× eA eB ε _⊕_ f
as we did when only working on N i.e. by nesting the exploration of B into
the function exploring A. Note how this combinator is independent of the
operator _⊕_. Support for dependent pairs and functions is detailed in Sec-
tion 3.3.

explore× : ∀ {A B} → Explore A→ Explore B→ Explore (A × B)
explore× eA eB ε _⊕_ f = eA ε _⊕_ (λ a→ eB ε _⊕_ (λ b→ f (a , b)))
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Derived big operators: We now derive some standard big operators,
these are derived from an exploration function exploreA by choosing the ap-
propriate monoid structure. Sums and products are defined using the monoids
(N , 0 , _+_) and (N , 1 , _*_) as mentioned earlier.

sum : (A→ N)→ N
sum = exploreA 0 _+_

product : (A→ N)→ N
product = exploreA 1 _*_

From a summation function we derive a counting function count, this
shows that indeed exploration functions are a generalisation of counting func-
tions. Summing (with sum or count) using a constant function 1 yields the
size of the exploration, which when the exploration function is exhaustive
will be the cardinality of the type.

count : (A→ Bool)→ N
count f = sum (BoolÂN ◦ f) -- BoolÂN converts Bool into N
size : N
size = count (const true)

Finally the functions all and any test a given predicate to tell whether it
holds for all the explored values or any of the explored values, respectively.

all : (A→ Bool)→ Bool
all = exploreA true _∧_

any : (A→ Bool)→ Bool
any = exploreA false _∨_

As a last example, we show two transformation on exploration functions.
The first is that we have a functorial action on explorations, i.e. we can map
a function on the exploration.

map : (A→ B)→ Explore A→ Explore B
map f eA ε _⊕_ g = eA ε _⊕_ (g ◦ f)

Next we consider the monoid of endomorphisms featuring the identity
function as the neutral element and function composition as the multiplica-
tion operation. Exploring with the monoid of endomorphisms expects a func-
tion body that will turn values of type A into functions of type M→ M. The
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body composes the original small operator _⊕_ with the original body f. We fi-
nally pass in the default value ε to the resulting big composition. When (ε,_⊕_)
is a monoid, this transformation computes to the same result as the original
exploration. Its utility lies in the fact that function composition has an as-
sociative computational content which will force all the calls to _⊕_ to be
associated to the right, finally ending with a single ε. This technique, known
as difference lists, has been used before and is part of the standard toolbox
of functional programmers. Its original motivation was to improve the per-
formance, but it is also useful for reasoning since it gives associativity for
free. A proof of this technique has been given in [Voi09] and it is our Corol-
lary 3.2.9. Notice that this technique is nicely captured by the following ex-
ploration transformer:

explore-endo : Explore A→ Explore A
explore-endo eA ε _⊕_ f = eA id _◦_ (_⊕_ ◦ f) ε

3.2 Exploration Principle

We now focus our attention how we can reason about exploration functions,
and since we will start by looking at what parametricity tells us. The para-
metricity relation for the Explore type is shown bellow, and while it looks
daunting it is fairly straightforward to use. The trick lies in that it is possible
to pick any relation for ¹Mº.

¹Exploreº : Explore A→ Explore A→ Set
¹Exploreº e e’ = (M M’ : Set) (¹Mº : M→M’→ Set)
(ε : M) (εp : M’) (εr : ¹Mº ε εp)
(_⊕_ : M→M→M) (_⊕p_ : M’→M’→M’)
(⊕r : ∀ {x y} {x’ y’} → ¹Mº x x’→ ¹Mº y y’
→ ¹Mº (x ⊕ y) (x’ ⊕′ y’))

(f : A→M) (f ’ : A→M’)
(fr : ∀ x→ ¹Mº (f x) (f ’ x))
→ ¹Mº (e ε _⊕_ f) (e’ εp _⊕p_ f ’)

As an example of using this relation we work with monoid morphisms,
which is the notion of structure preserving maps between monoids.
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Definition 3.2.1: Monoid Morphism

A monoid morphism between two monoids m and n is a function f :
m→ n, such that f ε = ε and f (x ⊕ y) = f x ⊕ f y for all x and y of type
m.

We can prove that monoid homomorphisms distributes over explore, and
we prove this by instantiating the relation ¹Mº appropriately when we use
the parametricity relation.

Theorem 3.2.2: Exploring Homomorphism

For any type A, exploration function eA : Explore A, two monoids: (M, ε, _⊕_)
and (N, ι, _⊗_), we have a monoid homomorphism h from M to N, and a
function g : A→M, then h (eA ε _⊕_ g) ≡ eA ι _⊗_ (h ◦ g)

Proof. By parametricity of eA we pick ¹Mº x y to be h x ≡ y. We need to
prove: h ε ≡ ι and for all x, x’, y and y’ such that h x ≡ x’, h y ≡ y we
have h (x ⊕ y) ≡ x’ ⊗ y’. Both of these requirements follow from the fact
that h is a monoid homomorphism. The final requirement is that for all
x, h (g x) ≡ h (g x) holds, which is trivial.

As a simple example of this we see that multiplication distributes over
summation.

Corollary 3.2.3: Multiplication of a Summation

For any type A, exploration function eA : Explore A, function f : A→ N
and constant k : N, we have k * sum eA f ≡ sum eA (λ x→ k * f x).

Proof. By Theorem 3.2.2 and the fact that (_*_ k) is a monoid homomor-
phism, since k * 0 ≡ 0 and k * (x + y) ≡ k * x + k * y.

The final property we show with the parametricity relation is that we can
find sometimes find an bound on the result of an exploration if the monoid is
an pre-order.



60 Chapter 3. Mathematics in Type Theory

Theorem 3.2.4: Monotonicity

For any type A, exploration function eA : Explore A, a monoid (M, ε, _⊕_)
equipped with a preorder _¶_ such that _⊕_ is monotonic, two functions
f, g : A→M such that for all x, f x ¶ g x, we have eA ε _⊕_ f ¶ eA ε _⊕_ g.

Proof. By parametricity of eA we pick ¹Mº to be _¶_, all the requirements
follow from assumptions.

The parametricity relation is a powerful tool but sometimes we want
something closer to an induction principle. An induction principle allows
the target property (known as ¹Mº in our previous proofs) to be not only a
relation between two explorations, but can be an arbitrary predicate on the
exploration function itself.

Definition 3.2.5: Exploration Principle

The exploration principle states that any property P on an exploration
function eA holds if: P holds for empty-explore; P holds for all points (us-
ing point-explore); and P is preserved by merge-explore.

ExploreP : ∀ {A} → Explore A→ Set
ExploreP {A} eA =
∀ (P : Explore A→ Set) (εP : P empty-explore)
(⊕P : ∀ {e0 e1} → P e0→ P e1→ P (merge-explore e0 e1))
(fP : ∀ x→ P (point-explore x))→ P eA

All the exploration functions we have defined so far all come with the
principle defined above. This principle is the induction principle on binary
trees, but where empty, node, and leaf, respectively become empty-explore,
merge-explore and point-explore. Put differently, this property enforces that
an exploration function is essentially a binary tree where empty trees are ε,
nodes are calls to _⊕_, and leaves are calls to f.

Moreover, while the type of the principle, i.e. ExploreP , looks a bit daunt-
ing, it is a simple mechanical process to prove it: one mimics what happens
in the underlying exploration function. Below is the actual proof term of this
principle for our explore× function. Thanks to implicit parameters, also we
hide the motive, the proof term exploreP

× is almost like explore×:
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exploreP
× : ExploreP eA→ ExploreP eB → ExploreP (explore× eA eB)

exploreP
× eP

A eP
B ε _⊕_ f = eP

A ε _⊕_ (λ a→ eP
B ε _⊕_ (λ b→ f (a , b)))

In an impredicative setting at least the principle is equivalent to the para-
metricity relation, but so far we have not been able to prove this correspon-
dence in a predicative setting. This causes some duplication in the amount
of work one has to do when providing an exploration function, though this
work is mostly mechanical.

The first example of when we need to use this stronger principle is that
explorations act homomorphically over the monoid operation, if we are ex-
ploring a commutative monoid.

Theorem 3.2.6: Exploration over Commutative Operator

For any type A, exploration function eA : Explore A, a commutative
monoid (M, ε, _⊕_) and two functions f, g : A→M, we have
eA ε _⊕_ (λ x→ f x ⊕ g x) ≡ eA ε _⊕_ f ⊕ eA ε _⊕_ g.

Proof. By the principle of eA and picking the motivea P e to be

e ε _⊕_ (λ x→ f x ⊕ g x) ≡ e ε _⊕_ f ⊕ e ε _⊕_ g

We need to show P empty-explore which is ε ≡ ε ⊕ ε which follows by
monoid law. The case P (merge-explore e0 e1) where P e0 and P e1 follows
by the interchange law (i.e for all a, b, c, and d then (a ⊕ b) ⊕ (c ⊕ d)
≡ (a ⊕ c) ⊕ (b ⊕ d). Finally we need to prove for all x that it holds that
P (point-explore x) which is f x ⊕ g x ≡ f x ⊕ g x which is trivial.

aIt is common to refer as P being the motive for the induction which is a form of
elimination. As Conor McBride writes in [Mcb02] “we should give elimination a motive”.

We can furthermore show how the product monoid compute, which shows
that the two monoids are in fact computed independently.

Theorem 3.2.7: Exploring the Product Monoid

For any type A, exploration function eA : Explore A, two monoidsa (M, εm, _⊕m_)
and (N, εn, _⊕n_), two functions fm : A → M and fn : A → N, we have
the exploration of the product monoid is the product of explorations,
namely eA ε _⊕_ < fm × fn > ≡ (eA εm _⊕m_ fm , eA εn _⊕n_ fn). Where
((M × N) ,ε ,_⊕_) is the product monoid.
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Proof. By the principle of eA and picking the motive to be P e to be

e ε _⊕_< fm × fn > ≡ (e εm _⊕m_ f_m, e εm _⊕m_ fn))

We need to show P empty-explore which holds by definition of the product
monoid. The case for P (merge-explore e0 e1) where P e0 and P e1 follows
by congruence of _⊕_ and its definition. Finally we need to prove for all
xm and xn that P (point-explore (x_m, xn))) which is< fm × fn > (x_m, xn))
≡ (fm x_m, f_n, xn) which holds by definition.

aThe monoid laws are actually not used for this theorem

At the end of section 3.1 we introduced explore-endo which re-associates
the exploration. We can now prove that this indeed only does associate in an
other way. First we need to prove a slightly more general theorem:

Theorem 3.2.8: Reassociate the Exploration

For any type A, exploration function eA : Explore A, monoid (M ,ε ,_⊕_),
function f : A→M, and point z : M, we have that:
eA ε _⊕_ f ⊕ z ≡ eA id _◦_ (_⊕_ ◦ f) z.

Proof. By the principle of eA and picking the motive P e to be:

∀ z→ e ε _⊕_ f ⊕ z ≡ e id _◦_ (_⊕_ ◦ f) z

We need to show P empty-explore which is ∀ z → ε ⊕ z ≡ z and fol-
lows by monoid law. The case for P (point-explore x) holds by defi-
nition. Finally we need to prove the case for P (merge-explore e0 e1)
where P e0 and P e1 hold. By definition it amounts proving that for all z,
(e0 ε _⊕_ f ⊕ e1 ε _⊕_ f) ⊕ z equals e0 id _◦_ (_⊕_ ◦ f) (e1 id _◦_ (_⊕_ ◦ f) z).
The assumption P e1 can be used on z and P e0 can be used on e1 ε _⊕_ f ⊕ z.
Using the associativity and congruence of _⊕_ the proof is complete.

And now we can prove that explore-endo indeed only re-associate:

Corollary 3.2.9: explore-endo Preserves Exploration

For any type A, exploration function eA : Explore A, then any exploration
can be re-associated using the monoid on endomorphisms, namely for
all monoid (M, ε, _⊕_) and function f : A → M, we have eA ε _⊕_ f
≡ explore-endo eA ε _⊕_ f.
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Proof. Use Theorem 3.2.8 with z being ε and conclude by monoid laws.

The final theorem of this section show that the deep connection with bi-
nary trees and exploration functions. With binary trees we mean the follow-
ing data type:

data Tree (A : Set) : Set where
empty : Tree A
leaf : A→ Tree A
fork : (l r : Tree A)→ Tree A

We can write functions back and forth between binary trees and explo-
ration functions:

{-Fold over binary trees: -}
foldMapT : ∀ {A} → Tree A→ Explore A
foldMapT empty = empty-explore
foldMapT (leaf x) = point-explore x
foldMapT (fork l r) = merge-explore (foldMapT l)
(foldMapT r)

toTree : ∀ {A} → Explore A→ Tree A
toTree eA = eA empty fork leaf

These functions are inverses of each other, which allows us to treat explo-
ration functions as data. We show below one direction, the other is proved
by induction on binary trees.

Theorem 3.2.10: Explorations as Trees

For any type A, exploration function eA : Explore A, monoid (M, ε, _⊕_)
and function f : A→M, we have eA ε _⊕_ f ≡ foldMapT (toTree eA) ε _⊕_ f.

Proof. By the principle of eA and picking the motive to be

P e = e ε _⊕_ f ≡ foldMapT (toTree e) ε _⊕_ f

All cases are trivial.
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3.3 Exploring Dependent Types

The function explore× explores the Cartesian product A × B given explorations
for A and B. This construction nicely scales to dependent pairs, in order to
explore Σ A B one needs a family of explorations for each B x where x has
type A. This implies a small change in comparison to explore×, namely that x
is also given to exploreB:

exploreΣ : Explore A→ (∀ x→ Explore (B x))
→ Explore (Σ A B)

exploreΣ exploreA exploreB ε _⊕_ f
= exploreA ε _⊕_ λ x→

exploreB x ε _⊕_ λ y→ f (x , y)

While we found no way to combine two exploration functions to get get
an exploration function over the function type, such as Explore (A → B),
but there is an attractive workaround. One can use type equivalences on
functions to incrementally build such an exploration function. Namely, one
decomposes the domain with type equivalences towards simpler types we can
explore:

1 → A = A
A] B → C = (A → C)× (B → C)
A× B → C = A → (B → C)

In order to prove these type equivalences we are required to use func-
tion extensionality. Though we are not required to define the exploration
functions themselves using function extensionality, the proofs of these type
equivalences are required to prove their adequacy.

As an example of building such an exploration function consider that we
wish to build an exploration function e : Explore (Bool ] 1 → A) for some
type A, for which we have an exploration function eA : Explore A. By us-
ing the above type equivalences we get that Bool ] 1 → A is equivalent to
(A × A) × A:

conv : (A × A) × A→ Bool ] 1→ A
conv ((x , y) , z) (inl true) = x
conv ((x , y) , z) (inl false) = y
conv ((x , y) , z) (inr _) = z

e : Explore (Bool ] 1→ A)
e = map conv (explore× (explore× eA eA) eA)
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How can we ensure that we have a correct summation function? We
need to ensure that an adequate summation function is going to count every
value exactly once (i.e. an adequate summation function is not allowed to
forget a value or over-count it). In order to guarantee this we use a strong
correspondence between the sizes1 of types in type theory and the act of
summing. We use this correspondence as a specification for the summation
functions that fully explores a type. It boils down to the observation that
Σ A F is acting as a big operator for disjoint union of all F x where x is of
type A. Therefore the size of a Σ-type is the summation of the sizes over the
type family: |Fin n| ≡ n and |Σ (x : A) .B| ≡ Σx:A|B|.

Using these size relations we can show that sumA a summation function
is correct, assuming a particular type equivalence exists. Since type equiva-
lences preserve sizes, we argue as follows.

sumA f ≡ |Fin (sumA f)|
≡ |Σ A (Fin ◦ f)|
≡
∑

x∈A |Fin (f x)|
≡
∑

x∈A f x

Definition 3.3.1: Adequate Summation

A function sumA for a type A is said to be an adequate sum if for all f there
is an equivalence between Σ A (Fin ◦ f) and Fin (sumA f).

This correspondence can be further extended to products, as Π-types can
be seen as the big operator for products. The correctness for product func-
tions can be defined using correspondence similar to the one for summation
functions:

prodA f ≡ |Fin (prodA f)|
≡ |Π A (Fin ◦ f)|
≡
∏

x∈A |Fin (f x)|
≡
∏

x∈A f x

1We use the notion of size only as an informal guide.
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Definition 3.3.2: Adequate Product

A function prodA for a type A is said to be an adequate product if for all
f there is an equivalence between Π A (Fin ◦ f) and Fin (prodA f).

Not only does the proof of adequacy show that our summation or product
function acts like they are supposed to, we can use the property for to prove
new equalities. Our first use of adequacy for sums and products is to prove
the following equation:

∀( f ∈ (A× B) → N).
∏

x∈A

∑

y∈B

f (x , y) ≡
∑

g∈A→B

∏

x∈A

f (x , g(x)) (3.1)

At first we prove a more general result, where B is a family indexed by A
and thus dependent functions and dependent pairs are required. The non-
dependent version is given as a corollary.

Theorem 3.3.3: Dependent Product of Summation

Let prodA be an adequate product function for the type A. Let sumAB

be an adequate summation function for a type Π A B. Finally let sumB

be a family over A of summation functions on the type B. Then for all
function f : (x : A) → B x → N, prodA (λ x → sumB x (λ y → f x y)) is
equal to sumAB (λ g→ prodA (λ x→ f x (g x))).

Proof. Using the adequacy properties together with the type equivalence
between Π A (λ x→ Σ (B x) λ y→ C x y) and Σ (Π A B) λ f→ Π A λ x→
C x (f x)a.

a The logical interpretation of the forward direction is usually known as the depen-
dent axiom of choice.

The proof of the equation 3.1 follows as an corollary.

Corollary 3.3.4: Product of Summation

Let sumB and sumAB be adequate summation functions for a type B and
A→ B respectively. Furthermore let prodA be an adequate product func-
tion for the type A. Then for all function f : A→ B→ N,
prodA (λ x→ sumB (λ y→ f x y)) is equal to
sumAB (λ g→ prodA (λ x→ f x (g x))).
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Proof. Since non-dependent functions are a particular case of dependent
functions one can directly use Theorem 3.3.3.

Furthermore, we can prove that size which is the specialisation of an ex-
ploration function to compute the cardinality of an exploration really does
compute the cardinality. In fact we can show that for a type A with an ade-
quate summation function, A needs to be a finite type.

Lemma 3.3.5: Adequate Exploration and Cardinality

Having an adequate summation function sum over type A, with a derived
size size : N, it is possible to construct an equivalence Fin size' A.

Proof. By sum being adequate summation and the type equivalence:
Fin size' Σ A (λ _→ Fin 1)' A.

The order in which one sums the elements of a type doesn’t matter, since
all elements are counted once and only once. One way we can show this is
to reshuffle the elements in the summation, and we expect that this should
not affect the result. One way of performing a reshuffling is to first apply an
function that forms a type isomorphism, the following theorem shows that
adequacy alone guarantees that an adequate summation function is invariant
under shuffling.

Theorem 3.3.6: Adequate Summation and Type Isomorphism

Given two adequate summation functions sumA and sumB for types A and
B respectively, for all equivalences π : A' B and functions f : B→ N the
summation sumA (f ◦ π) is equal to the summation sumB f.

Proof. Using adequacy of the summation functions and the Lemma ref
finsize and Theorem 2.4.2 we get an equivalence thm : Fin (sumA (f ◦ π))
' Fin (sumB f). Since Fin is injective (i.e. Fin m ' Fin n→ m ≡ n) the
proof is complete.

Fin (sumA (f ◦ π)) Fin (sumB f)

Σ A (Fin ◦ f ◦ π) Σ B (Fin ◦ f)

thm

sumA adequate sumB adequate

lemma 2.4.2
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One particular example of such an invariance is that the order of nested
summations doesn’t matter.

Lemma 3.3.7: Exchanging Summations

Given two summation functions sumA and sumB for type A and type B, if
both are adequate they satisfy the commutation property that
sumA (λ a→ sumB (λ b→ f (a , b))) is equal to
sumB (λ b→ sumA (λ a→ f (a , b))).

Proof. By adequacy of sumA and sumB and the type equivalence between
Σ A λ x→ Σ B λ y→ C x y and Σ B λ y→ Σ A λ x→ C x y.

Finally, we prove that all values are indeed summed once and only once
when using an adequate summation function sum.

Theorem 3.3.8: Adequate Summation Count Uniquely

Assume for a type A that we have a boolean equality testa _==_ such
that, for all x and y of type A, the type (x == y) ≡ true is equivalent to
x ≡ y. Furthermore, assume an adequate summation function sum, from
which we derive a counting function count. Then, for all x, the equation
count (λ y→ x == y) ≡ 1 holds.

Proof. Using the fact that sum is an adequate summation function to-
gether with the type equivalence Σ A (λ y→ x ≡ y)' 1.

aSince we have an adequate summation function we know that Fin size' A so such
an boolean equality test must exist.
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3.4 Probabilities and Negligible Distance

Our original motivation was to work with summation functions as a way to
compute and reason about uniform discrete probability distributions. Us-
ing an exploration function, we can derive a summation function which has
stronger properties, by getting the theorems that follows from the principle
and adequacy. We can sum the values of a given type, if they belong to a
particular event. But before diving into probabilistic reasoning we will first
formally define the positive rational numbers.

Any positive rational number can be represented by a pair of natural num-
bers such that the second one is non-zero, with the idea is that (x , y) is really
the number x/y . To get the positive rational numbers from this construction
one should perform a quotient such that (1, 2) and (2, 4) are the same num-
bers. This causes problems since quotient types are not available in our type
theory, and we need to emulate them using a setoid construction[BCP00].
We will therefore construct bare rational numbers and then give an explicit
equality relation that will equate (1,2) and (2, 4). I will continue to use Q+

for these terms, even though they are not of the quotient.

recordQ+ : Set where
constructor _/_[_]
field
εN : N
εD : N
εD−pos : εD> 0

We can define addition on Q+ in the usual way, i.e. a
b +

c
d is equal to

a∗d+c∗b
b∗d . Furthermore we need to prove that the denominator is larger then 0,

which we can do by the fact that * is monotonic in both it’s arguments.

_+Q_ : Q+→Q+→Q+

(εN / εD [ εD+ ] +Q µN / µD [ µD+ ])
= (εN * µD + µN * εD) / εD * µD [ εD+ *−mono µD+ ]

Instead of giving the equivalence relation we will directly go for ¶ since
this is the relation we are actually interested in for the rational numbers. This
is captured by the type _¶Q_. We choose here to give this using a record in
order to be able to control the unfolding of the definition.
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record _¶Q_ (p q : Q+) : Set where
constructor mk
field

unfold : εN p * εD q ¶ εN q * εD p

We get here by taking as definition, the property that a/b ¶ c/d holds if and
only if a∗d ¶ c∗b. Using this definition we can prove the usual properties we
expect such as reflexivity, transitivity. Reflexivity holds by reflexivity on the
underlying order ¶ on natural numbers, whereas getting transitivity requires
some more work, the proof below for transitivity uses an extended equational
reasoning, that also works for partial orders.

¶Q−trans : ∀ {f g h} → f ¶Q g→ g ¶Q h→ f ¶Q h
¶Q .unfold (¶Q−trans {fN / fD [ fD−pos ]} {gN / gD [ gD−pos ]}

{hN / hD [ hD−pos ]} (mk fg) (mk gh))
=¶−*−cancel gD−pos lemma
where

open ¶−Reasoning
lemma : gD * (fN * hD) ¶ gD * (hN * fD)
lemma = gD * (fN * hD)

≡〈 ! N◦.*−assoc gD fN hD • ap (flip _*_ hD) (N◦.*−comm gD fN) 〉
(fN * gD) * hD
¶〈 fg *−mono N ¶ .refl 〉
(gN * fD) * hD
≡〈 N◦.*−assoc gN fD hD • ap (_*_ gN) (N◦.*−comm fD hD)
• ! N◦.*−assoc gN hD fD 〉
(gN * hD) * fD
¶〈 gh *−mono N ¶ .refl 〉
(hN * gD) * fD
≡〈 ap (flip _*_ fD) (N◦.*−comm hN gD) • N◦.*−assoc gD hN fD 〉

gD * (hN * fD)
�

Remark 3.4.1

As a consequence we get equality by defining that ¶Q should hold in
both directions, which is equivalent to the standard definition namely
(a, b) = (c, d) if a ∗ d = c ∗ b.
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A probabilistic value, also called random variable, of type A over some
sample space Ω is a function Ω→ A. We will use adequate exploration func-
tions to automatically derive probability distributions, these distributions are
finite, discrete and uniform by construction. Of particular interest is prob-
abilistic values of the Boolean type, i.e. the type A is Bool, which is means
that the probabilistic value is an event. It is of these values that we calculate
the probability of them being true, either concretely or abstractly, by simply
dividing the number of times the event returns true by the total size of the
sample space. This puts in the extra requirement that the sample space can’t
be empty, which we represents by an extra assumption that the size is strictly
bigger than 0. Types that have such an adequate exploration function with
the non-zero size is called a RSpace:

record RSpace (A : Set) : Set where
constructor mk
field

explore : Explore A
adq-exp : Adequate explore
nz-size : 0< size explore

For every RSpace we can define the probability function Prob:

Prob : {A : Set} → RSpace A→ (A→ Bool)→Q+

Prob RS E = sum (explore RS) (BoolÂN ◦ E) / size (explore RS) [ nz-size RS ]

syntax Prob e (λ x→ E) = Pr[ e >> x || E ]

In the rest of this thesis we use a syntactic short-cut to call the Prob func-
tion, by using Pr[ e >> x || E ] we use the sample space explained by the
exploration function e and bind the sample x in the event E. The function
b2ÂN is the simple conversion function from Booleans to natural numbers,
that maps false to 0 and true to 1.

Since summation functions are invariant under type isomorphism, so is
probabilities which is shown by the following theorem.

Theorem 3.4.2

Given two types A and B, each with adequate exploration functions eA and
eB respectively, a type isomorphism π : A' B, and an event on B namely
F : B→ Bool, then Pr[ eB >> x || F x] is equal to Pr[ eA >> x || F (π x) ].
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Proof. Follows by Theorem 3.3.6.

A function is negligible if after some point will tend towards zero, another
way of phrasing this is that the function is bounded by a 1

x c , for some c.
Using mathematical notation the latter criterion can be characterised by the
following inequality should hold for ε to be negligible.

∀c.∃nc.∀n> nc.ε(n)¶ n−c

We push out the existential and instead use a function to compute at which
point the function is bound by the polynomial for each input. This function
is called cn in the following predicate for functions of type N→Q+:

record Is-Neg (ε : N→Q+) : Set where
constructor mk
field

cn : (c : N)→ N
prf : ∀ (c n : N)→ n> cn n→ n c * εN (ε n) ¶ εD (ε n)

We can of course add two functions of such at type, i.e. N → Q+, by
point-wise addition, i.e. (f + g) (n) is f (n) + g (n). This point-wise addition is
called _+NQ_ and we can indeed prove that adding two negligible functions
results in a negligible function. We omit for presentation purpose the lemma
the helper lemma, and here only gives the type.

+NQ−neg : {ε µ : N→Q} → Is-Neg ε→ Is-Neg µ→ Is-Neg (ε +NQ µ)
cn (+NQ−neg ε µ) n = 1 + cn ε n + cn µ n
prf (+NQ−neg {εM} {µM} ε µ) c n n>nc
=¶−*−cancel {x = n} (N¶.trans (s¶s z¶n) n>nc) lemma
where
open module DUMMY x = Q+ (εM x)
open module DUMMY2 x = Q+ (µM x)

renaming (εN to µN;εD to µD;εD−pos to µD−pos)

lemma : n * (n c * (εN n * µD n + µN n * εD n)) ¶ n * (εD n * µD n)

So with that done, we can now move on to limit a function by another
function, this is just lifting point-wise the partial relation ¶ on Q. We have
here in-lined the definitions.
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infix 4 _¶→_
record _¶→_ (f g : N→Q+) : Set where

constructor mk
field

-- fN k / fD k ¶ gN k / gD k
unfold : ∀ k→ f k ¶Q g k

Since this is just lifting a known partial order, it is easy to show that the
result is also a partial order. We show here the proof of transitivity and that
point-wise addition is monotonic, the other follows by a similar construction.
The latter uses the proof that addition onQ+ is monotonic, which is witnessed
by the term +Q-mono.

¶→−trans : ∀ {f g h} → f ¶→ g→ g ¶→ h→ f ¶→ h
¶→.unfold (¶→−trans (mk fg) (mk gh)) k =¶Q−trans (fg k) (gh k)

+NQ−mono : ∀ {f f ’ g g’} → f ¶→ f ’→ g ¶→ g’→ f +NQ g ¶→ f ’ +NQ g’
¶→.unfold (+NQ−mono (mk ff) (mk gg)) k = +Q-mono (ff k) (gg k)

We make use of NegBounded, which is a predicate that a function is less
than some negligible function.

record NegBounded (f : N→Q+) : Set where
constructor mk
field
ε : N→Q+

ε−neg : Is-Neg ε
bounded : f ¶→ ε

Here comes three simple properties about NegBounded functions. The
first one is that a negligible function is trivially NegBounded by itself.

fromNeg : {f : N→Q} → Is-Neg f→ NegBounded f
ε (fromNeg f-neg) = _
ε−neg (fromNeg f-neg) = f-neg
bounded (fromNeg f-neg) =¶→−refl

The second property, that a smaller function than a NegBounded function
is also NegBounded. This is a simple way to prove that a function is negligible
bounded.

¶−NB : {f g : N→Q} → f ¶→ g→ NegBounded g→ NegBounded f
ε (¶−NB le nb) = ε nb
ε−neg (¶−NB le nb) = ε−neg nb
bounded (¶−NB le nb) =¶→−trans le (bounded nb)
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The third property is that point-wise addition of NegBounded functions is
still NegBounded.

_+NB_ : {f g : N→Q} → NegBounded f→ NegBounded g
→ NegBounded (f +NQ g)

ε (fNB +NB gNB) = ε fNB +NQ ε gNB
ε−neg (fNB +NB gNB) = +NQ−neg (ε−neg fNB) (ε−neg gNB)
bounded (fNB +NB gNB) = +NQ−mono (bounded fNB) (bounded gNB)

The final thing we need to define about rational numbers, is the concept
of distance between two rational numbers. This captures the mathematical
concept of |x − y| which we denote by distQ, this shows up when we later
define the concept of advantage. This uses a function to compute the distance
on natural numbers called distN:

distN : N→ N→ N
distN 0 n = n
distNm 0 = m
distN (suc m) (suc n) = distNm n

distQ : Q+→Q+→Q+

distQ (εN / εD [ εD+ ]) (µN / µD [ µD+ ])
= dist (εN * µD) (µN * εD) / εD * µD [ εD+ *−mono µD+ ]

This function is congruent over the equality ofQ+ and furthermore satisfy
the triangle inequality. This property is very useful when doing proofs, and
we will use it.

Theorem 3.4.3

Given three rational numbers, p,q and r, then the distance distQ p q is
less than distQ p r +Q dist r q.

Proof. This proof uses two facts of the distN function, one that it also sat-
isfy the triangle inequality property, and two that one can factor out multi-
plication, i.e. for all a,b and c, then c * distN a b is equal to distN (c * a) (c * b).
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3.5 Group Theory in Type Theory

In this section we present type theoretic proofs of the group theory presented
in the background material. In general an algebraic structure is represented
by using records, since this provides with clearer names for both operators
and laws. Furthermore we split of all the operations, which we will call the
“data”, and the proofs, i.e. the laws. The first component for groups is the
type Group-Ops, which contain only the data, the operators, of the group of
a given type G.

record Group-Ops (G : Set) : Set where
field

_•_ : G→ G→ G
ε : G
_−1 : G→ G

_/_ : G→ G→ G
x / y = x • y −1

The type G represents the carrier set, and the fields are the operators,
namely the binary operation _•_, the identity element ε and finally an in-
verse operator _−1. Furthermore we have a general definition of x / y which
is defined for every group to be x • y −1. As mentioned above this record does
not contain any of the group axioms, they are instead captured by the follow-
ing record Group-Struct which is indexed by the data of Group-Ops which
contains the operators of interest.

record Group-Struct {G : Set} (grp-ops : Group-Ops G) : Set where
open Group-Ops grp-ops
field

assoc : Associative _•_
identity : Identity ε _•_
inverse : Inverse ε _−1 _•_

ε•-identity : LeftIdentity ε _•_
ε•-identity = fst identity
−1•-identity : LeftInverse ε _−1 _•_
−1•-identity = fst inverse
•= : ∀ {a b a’ b’} → a ≡ a’→ b ≡ b’→ a • b ≡ a • b’
•== ap2 _•_

There are three properties, and each are represented by one field in
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Group-Struct2. The field assocs is that the operator of the group _•_ is asso-
ciative, the field identity is stating that ε is indeed the identity element for
_•_, and inverse which states that _−1 is indeed an inverse for _•_. Later in
the record there are definitions to project out particular equality proofs, e.g.
ε•-identity states that ε is a left inverse. In this definition only the first pro-
jection is given for each proof, the second projection is similar, e.g. and the
second •ε-identity that it is a right identity. Furthermore we have a short cut
for the congruence proof of _•_ in •=. The combination of both of these
records, constructs a proper Group:

record Group (G : Set) : Set where
field

grp-ops : Group-Ops G
grp-struct : Group-Struct grp-ops

open Group-Ops grp-ops public
open Group-Struct grp-struct public

Now that we have a proper type theoretic definition Group we can prove
the theorems stated in the preliminaries in the introduction. The first of these
will be the for a given group we can cancel elements see Lemma 1.1.2.

cancels-•-left : LeftCancel _•_
cancels-•-left {c} {x} {y} e
= x ≡〈 ! ε•-identity 〉
ε • x ≡〈 •= (! −1•-inverse) refl 〉
c −1 • c • x ≡〈 !assoc= e 〉
c −1 • c • y ≡〈 •= −1•-inverse refl 〉
ε • y ≡〈 ε•-identity 〉
y �

As a second example of how to transcribe a proof, we give the proof that
the identity of the group is unique, which is Lemma 1.1.3.

unique−ε−right : ∀ {x y} → x • y ≡ x→ y ≡ ε
unique−ε−right eq
= y ≡〈 ! is−ε−left −1•-inverse 〉

x −1 • x • y ≡〈 assoc 〉
x −1 • (x • y) ≡〈 •= refl eq 〉
x −1 • x ≡〈 −1•-inverse 〉
ε �

2The definition of the properties can be found in Figure 3.1
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module Properties where
Op1 : Set→ Set
Op1 A = A→ A

Op2 : Set→ Set
Op2 A = A→ A→ A

Associative : ∀ {A} → Op2 A→ Set
Associative _•_ = ∀ {x y z} → (x • y) • z ≡ x • (y • z)

Commutative : ∀ {A} → Op2 A→ Set
Commutative _•_ = ∀ {x y} → x • y ≡ y • x

LeftIdentity : ∀ {A} → A→ Op2 A→ Set
LeftIdentity ε _•_ = ∀ {x} → ε • x ≡ x

RightIdentity : ∀ {A} → A→ Op2 A→ Set
RightIdentity ε _•_ = LeftIdentity ε (flip _•_)
Identity : ∀ {A} → A→ Op2 A→ Set
Identity ε _•_ = LeftIdentity ε _•_ × RightIdentity ε _•_
LeftInverse : ∀ {A} → A→ Op1 A→ Op2 A→ Set
LeftInverse ε _−1 _•_ = ∀ {x} → x −1 • x ≡ ε
RightInverse : ∀ {A} → A→ Op1 A→ Op2 A→ Set
RightInverse ε _−1 _•_ = LeftInverse ε _−1 (flip _•_)
Inverse : ∀ {A} → A→ Op1 A→ Op2 A→ Set
Inverse ε _−1 _•_ = LeftInverse ε _−1 _•_ × RightInverse ε _−1 _•_
Interchange : ∀ {A} → Op2 A→ Op2 A→ Set
Interchange _•_ _⊕_ = ∀ {x y z t} → (x • y) ⊕ (z • t) ≡ (x ⊕ z) • (y ⊕ t)

LeftCancel : ∀ {A} → Op2 A→ Set
LeftCancel _•_ = ∀ {c x y} → c • x ≡ c • y→ x ≡ y

RightCancel : ∀ {A} → Op2 A→ Set
RightCancel _•_ = LeftCancel (flip _•_)
HomoMorphism : ∀ {A B} → (A→ B)→ Op2 A→ Op2 B→ Set
HomoMorphism f _�_ _•_ = ∀ {x y} → f (x � y) ≡ f x • f y

Figure 3.1: Definition of Properties
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Other theorems from Section 1.1 is proved in a similar way, as the theo-
rems shown above. Furthermore it is easy to define integer exponentiation,
first by defining it on the natural numbers:

_∧N_ : G→ N→ G
x ∧N 0 = ε
x ∧N (suc n) = x • x ∧N n

To finish the integer exponentiation definition, the type Z that is defined
inductively to be either a negative number, excluding 0, or being a natural
number is used. The definition of integer exponentiation is defined as follows:

_∧Z_ : G→ Z→ G
x ∧Z -[1+ n ] = (x −1) ∧N (1 + n)
x ∧Z (+ n) = x ∧N n

Finally, we give a theorem that is useful for proving the ElGamal encryp-
tion scheme correct. But before that we need to note of a small lemma that
multiplying with the binary operator and an element of the group is an type
isomorphism.

Lemma 3.5.1

For all groups G, with binary operator _•_, for all k : G the function
φ x = x • k is a type isomorphism.

Proof. The inverse is the function φ−1 x = x • k −1, the equalities are
trivial.

This lemma is useful when one is drawing randomness from a group, i.e.
calculating probabilities with a sample space that is a group. In these cases,
since probabilities are preserved under type isomorphism, multiplying with
an element of the group everywhere don’t affect the probability. A useful
theorem when proving ElGamal secure, that uses this fact is the following:

Theorem 3.5.2

For all types A and B, with group structure GA : Group A and GB :
Group B, let _•_ be the operator of GB, with group isomorphism φ :
A→ B, furthermore A is an explorable RA : RSpace A, for all events O :
B→ Bool, then for all m : B, the probability Pr[ RA || x >> O (φ x •m) ]
is equal to Pr[ RA || x >> O (φ x) ].
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Proof. Since probabilities respects type isomorphisms, by Theorem 3.4.2,
and Lemma 3.5.1, it is possible to add to x in the probability. By picking
the -φ−1 m, the event sees O (φ (x + -φ−1 (m)) • m), which is equal
to O (φ x • φ (-φ−1 (m)) • m), since φ is an group homomorphism,
simplifying further one ends up with O (φ x) since m −1 •m is the identity.





Chapter 4

Dependent Communication
Joint work with: Nicolas Guenot and Nicolas Pouillard

The representation of communication in programs has been intensively inves-
tigated over the last few decades, in particular with the development of pro-
cess algebras [Hoa85] and the π-calculus [Mil99]. This has lead to progress
in the area of types for processes, in particular with the introduction of session
types [Hon93] and later with their connection to linear logic [CP10, Wad14].
However, the theory of typed communicating programs is not yet as devel-
oped as the theory of functional programs, and this leads naturally to the
question of how one might integrate one into the other.

Among the possible combinations of the functional and communication-
centric paradigms, we are interested here in the idea of extending our type
theory, with primitives for communication, as done for example in the study of
session types for functional programs [GV10]. However, the system we con-
sider integrates communication of functional data as well as channel names,
building on the connection between the π-calculus and linear logic and go-
ing further than previous integrations based on a similar scheme [TCP13]. In
particular, we use full dependent type theory as our host functional language.
The difficulty lies in the smooth integration of the delicate linear typing of
processes in a system where dependencies can appear between non-linear
terms and types. The reward for such an integration is high, as it provides
the means of defining communication protocols, in particular semantic secu-
rity protocols, which can depend on the data transmitted, and ensure that
these protocols are implemented by well-behaved programs.

The association of communicating processes and dependent types has two
complementary sides: it extends the expressive power of session types as
used for variants of the π-calculus, and it simplifies the task of reasoning
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about communicating programs. The purpose of the here is to introduce a
minimal extension to type theory: it shall support enough communication to
avoid extending further the language, but rather encode the types necessary
to express more complex interactions.

Linear types for processes. The cornerstone of this investigation is the
introduction of the multiplicative fragment of linear logic [Gir87], as pre-
sented in the sequent calculus, into Martin-Löf’s type theory. In order to
maintain the properties of linear typing of processes, we isolate processes
from functional terms but define an interface to allow these two forms of
programs to mix. Such a separation is essential, and is enforced by using two
different typing judgements.

A notable difference between our system and related ones [TCP13] based
on the interpretation of linear formulas as sessions [CP10, Wad14] is that the
linear connectives O and ⊗ are used to organise channels rather than indi-
cate input/output behaviour. The strictly behavioural part of the types we use
consists in the standard input and output types from session types [Vas12].
As a result, the processes typed in this system are those obtained from proofs
through the translation described by Abramsky [Abr93], extended with spe-
cial inputs and outputs for functional terms. The particular use of linear rules
to type processes and are described in the preliminaries in Section 1.5 and
their integration in type theory are described in Section 4.1 — note that basic
knowledge of linear logic [Gir87] is assumed.

Encoding processes in AGDA. On a more practical level, one of the in-
terests of the extension to the Martin-Löf’s type theory proposed here is that
it can be encoded in AGDA by introducing a new universe for protocols —
collections of session types associated to channel names — and defining pro-
cesses in the language of type theory. We describe in Section 4.2 such an
encoding, and discuss the subtleties involved in the handling of linear proofs.
This development also contains a proof of cut elimination in AGDA, see Sec-
tion 4.3, ensuring that well-typed terms containing processes reduce correctly
and without deadlock nor livelock. Furthermore, it forms a basis for future
investigations into the use of processes inside type theory, or the mechanised
verification of protocol specifications expressed in the language of type the-
ory.

Representing complex protocols. Only a small fragment of linear logic
is introduced into type theory here, where rules are purely multiplicative and
thus contain no duplication, even in a restricted or controlled way. An in-
teresting observation is that this, combined with the interface between intu-
itionistic type theory and linear logic, is enough to recover the specification of
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more complex behaviours, using for example controlled forms of duplication.
Limits to linearity in type theory. One should note that although the

type theory we present here allows one to exploit the expressivity of depen-
dent types in a language supporting processes and sessions, defining a depen-
dent form of session types is a different matter entirely. Indeed, dependencies
are handled at the level of intuitionistic types and we cannot specify a type
linearly depending on a term, as it would require defining a precise meaning
for such a dependency. The investigations conducted towards this end all face
the difficulty of this question, and so far only limited forms of linearity have
been mixed with dependent types, in the sense that the dependent product
is disconnected from the linear decomposition of implication [CP02, KPB15].
Even though the modalities of such an integration are better understood now,
the limits to the use of dependencies in a linear type theory have not yet been
overcome.

4.1 Dependent Types with Communication

We now turn to the extendend type theory, incorporating processes into de-
pendent type theory. This system is based on the version of Martin-Löf type
theory underlying AGDA [Nor07]. Our methodology is to extend the syntactic
categories of terms involved with both a term level for communicating pro-
grams, using a syntax coming from the π-calculus [Mil99], and a type level of
sessions inspired by both linear logic [Gir87] and session types [Vas12]. The
resulting type theory, including processes, will be called PTT in the following.

Definition 4.1.1

The terms, processes, types and sessions of the PTT type theory are defined
by t, P, A and S respectively in the following grammar:

t, u ::= x | a | λ(x : A).t | t u | 〈t, u〉 | • | π1 t | π2 t | ~c.P | A | S
P,Q ::= 0 | P ‖Q | (νcd) P | c{~e} P | c[~e] P | c(x : A) P | c〈t〉 P | t @ ~c

A, B ::= t | Π(x : A).B | Σ(x : A).B | 1 | {| ~S |} | Seti | Sessioni

S, T ::= t | ?(x : A). S | !(x : A). S | O~S | ⊗~S
where letters such as x , y and z denote term variables and a denotes a
constant, while c, d and e denote channels used in processes.



84 Chapter 4. Dependent Communication

A large part of this syntax is standard for type theory, but functional terms
are extended with the binding construct ~c.P representing the process P inter-
acting on the channels recorded in the sequence ~c. This can be viewed as the
packaging of a process in a functional form, where no free channel name is
allowed, as this would correspond to dangling connections from a program-
ming perspective, and lead to problems during reduction.

The part of the syntax intuitively representing types is also extended, with
a construct {| ~S |} in which a sequence of sessions is mentioned. Note that
order matters in this operator, since these sessions will describe the chan-
nels recorded in the sequence ~c in the term ~c.P. Moreover, we add the type
Sessioni representing the universe of sessions: this type, just as Seti, is anno-
tated with a level in order to distinguish the levels of the type hierarchy, and
we will consider an additive treatment of levels.

The fragment of the PTT system dealing with functional terms and types
is essentially the standard type theory from AGDA [Nor07] with additional
rules for the extra universes. The typing rules are shown in Figure 4.1, where
Γ ` t : A denotes a typing judgement associating type A to the term t in a
context Γ , which is a list of typing hypotheses. The alternate judgement Γ ` ·
corresponds to the verification of well-formation for Γ , ensuring that each
assumption mentions a type valid at that position in the context.

In Figure 4.1, we denote by S the signature, containing typed constants,
that we leave implicit in all rules since it is specified externally. The rules
for dependent products and sums involve the substitution of a term t for a
variable x in a type A, denoted by A{t/x}. Moreover, the conversion rule
allowing to consider normal forms of types is based on a relation defined
externally.

Definition 4.1.2

The conversion relation ' between PTT terms t and u under a given Γ ,
written Γ ` t ' u, is defined as the smallest congruence such that:

t → u
−−−−−−−−−−−−−−−−
Γ ` t ' u

Γ ` t : Π(x : A).B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` t ' λ(x : A).t x

Γ ` t : Σ(x : A).B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` t ' 〈π1 t,π2 t〉

Γ ` t : 1
−−−−−−−−−−−−−−−
Γ ` t ' •

where → denotes the reduction relation that we will define on PTT
terms.

The verification of well-formedness of types, shown at the top of Figure
4.1, deals with levels of types using the notation i t j for the maximum of i
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Γ ` · Γ ` A : Seti
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : A ` ·

Γ ` ·
−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` Seti : Seti+1

Γ ` A : Seti Γ , x : A ` B : Set j
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` Π(x : A).B : Setit j

−−−−−−
· ` ·

Γ ` ·
−−−−−−−−−−−−−−−−−−
Γ ` 1 : Set0

Γ ` A : Seti Γ , x : A ` B : Set j
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` Σ(x : A).B : Setit j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ ` · x : A∈ Γ
−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` x : A

Γ ` t : A Γ ` A ' B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t : B

Γ , x : A ` t : B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λ(x : A).t : Π(x : A).B

Γ ` · a : A∈ S
−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` a : A

Γ ` t : Σ(x : A).B
−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` π1 t : A

Γ ` t : Π(x : A).B Γ ` u : A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t u : B{u/x}

Γ ` ·
−−−−−−−−−−−−−
Γ ` • : 1

Γ ` t : Σ(x : A).B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` π2 t : B{π1 t/x}

Γ ` t : A Γ ` u : B{t/x}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` 〈t, u〉 : Σ(x : A).B

Figure 4.1: Functional terms and types fragment of the PTT system

and j, and has a rule stating that the type Sessioni has itself type Seti+1 so that
this type can itself be used in the theory. In particular, one can write terms
computing sessions, for which typing requires knowing the relation between
the levels of Session and Set.

Finally, the verification that {| ~S |} is a valid type relies on the rule checking
that every single session Sk it contains is a valid session. In this rule, the
notation t~i denotes the maximum of a sequence of levels — the sequence
obtained from the premises verifying each of the Sk sessions.

Processes and protocols. The typing rules for the fragment of PTT where
processes, sessions and protocols — collections of sessions — appear are
shown in Figure 4.2. Most rules are defining a judgement Γ � P :: J , where
J is a two-level structure as defined in the previous section:

I ,J ::= · | [H ] | I ,J G ,H ::= · | c : S | G ,H

considered under the equations making · a unit for comma, and ensuring
the commutativity and associativity of commas. Note that this structure is
entirely at the meta-level in the type system, and is not part of the syntax of
PTT.
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The rules for polyadic input and (bound) output from the π-calculus, par-
allel composition and scoping are directly imported from the system we con-
sidered in Section 1.5. However, the treatment of duality is more subtle here,
and performed through a special relation.

Definition 4.1.3

The duality relation '⊥ on sessions of PTT is the smallest symmetric
relation containing the relation defined by the following rules:

Γ , x : A` S '⊥ T
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` ?(x : A). S '⊥ !(x : A). T

(Γ ` Sk '⊥ Tk)k
−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ `O~S '⊥⊗ ~T

Γ ` S ' S′ Γ ` S′ '⊥ T
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` S '⊥ T

Notice that this relation is invariant under conversion, by the last rule.

The core π-calculus is extended in PTT with operators for the input and
output of functional data, and we write c(x : A) and c〈t〉 for a reception on a
channel c of a value of type A named x in the continuation, and an emission
of t on c, respectively. The corresponding typing rules are best compared
to those of the functional language from [Wad14], inspired by [GV10], but
incorporate the additional treatment of dependent types.

Beyond the interaction between functional terms and processes in data in-
put and output, the interface between judgments ` and� offers the possibility
of combining these paradigms. From one to the other, packaging processes
as terms and unpackaging terms to processes is trivial but for one question:
that of the treatment of channel names in a protocolJ . The solution adopted
here is to select an order among the free channel names when packaging, and
to preserve that order in the functional layer until it is unpackaged following
the same order. Notice that typing t @ ~c requires that blocks in the protocol
contain a single session type, implying that compound blocks handled by cut
and the ⊗ rule must be split within the phase where the corresponding rule
appears. This allows the functional type {| ~S |} to remain a simple sequence of
sessions.

Congruence and reduction. As mentioned in Section 1.5, the correspon-
dence of reductions in a process calculus to the dynamics of cut elimination
crucially relies on the identification of a number of syntactically distinct pro-
cesses that are, for all intents and purposes, the same. The language of PTT
is therefore equipped with an equivalence relation dealing with basic prop-
erties of ‖ as well as the exchange of unrelated prefixes. This last notion is
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Γ ` ·
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` Sessioni : Seti+1

(Γ ` Sk : Sessionik)k−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ `O~S : Sessiont~i

Γ ` A : Seti Γ ` S : Session j
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` ?(x : A). S : Sessionit j

(Γ ` Sk : Sessionik)k−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` {| ~S |} : Sett~i

(Γ ` Sk : Sessionik)k−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ `⊗~S : Sessiont~i

Γ ` A : Seti Γ ` S : Session j
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` !(x : A). S : Sessionit j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ � P :: I , [G ] Γ �Q :: J , [H ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � P ‖Q :: I ,J , [G ,H ]

Γ � P :: J ,
−−−→
[e : S]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � c{~e} P :: J , [c :O~S]

Γ ` ·
−−−−−−−−−−−−−
Γ � 0 :: ·

Γ � P :: J , [c : S, d : T] Γ ` T '⊥ S
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ � (νcd) P :: J
Γ � P :: J , [

−−→
e : S,H ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � c[~e] P :: J , [c :⊗~S,H ]

Γ � P :: J , [H ,G ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � P :: J , [H ], [G ]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ ` A : Seti Γ , x : A� P :: J , [c : S]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � c(x : A) P :: J , [c : ?(x : A). S]

Γ ` t : {| ~S |}
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ � t @ ~c ::
−−−→
[c : S]

Γ ` t : A Γ � P :: J , [c : S{t/x}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � c〈t〉 P :: J , [c : !(x : A). S]

Γ � P ::
−−−→
[c : S]

−−−−−−−−−−−−−−−−−−−−−−−
Γ ` ~c.P : {| ~S |}

Figure 4.2: Process fragment of the PTT system

made precise by considering channel names in prefixes, and stating that in-
put/output prefixes π and κ are orthogonal, which is denoted by π⊥κ, if and
only if they have no channel name in common.

Definition 4.1.4

The equivalence ≡ on terms and processes of PTT is the smallest con-
gruence relation satisfying the equations below:

P ‖ 0 ≡ P (νcd) (P ‖Q) ≡ (νcd) P ‖Q (c, d 6∈Q)
P ‖Q ≡ Q ‖ P (νcd)πP ≡ π(νcd) P (c, d ⊥π)

P ‖ (Q ‖ R) ≡ (P ‖Q) ‖ R πκP ≡ κπP (π⊥κ)
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Although the equivalence considered here is close to the one used in an
untyped π-calculus, it has no equation to remove unnecessary scope restric-
tions. Indeed, the logical correspondence of this construct to the cut rule
prevents this, as a cut cannot be introduced or eliminated silently — because
the definition of sessions prevents cuts on a symbol like · or an equivalent.

The next step is to equip the language of PTT with a reduction relation,
defined as a rewrite system. The semantics given to the standard part of the
type theory is as usual β-reduction, while the reductions involving communi-
cation operators correspond to the reduction of processes in the π-calculus.
We have two additional reductions that treat the packaging and unpackaging
of processes inside terms or of terms inside processes, but these are simple
unboxing operations.

Definition 4.1.5

The reduction relation → on PTT terms and processes is the contextual
closure of the following set of rewrite rules:

(λx .t) u → t{u/x}
π1 〈t, u〉 → t
π2 〈t, u〉 → u

(~c.P)@ ~e → P{~e/~c} if |~c|= |~e|
(νcd) (c[~e] P ‖ d{~g}Q) → (ν~e~g) (P ‖Q)
(νcd) (c〈t〉 P ‖ d(x)Q) → (νcd) (P ‖Q{t/x})

Notice that the two reduction rules for processes correspond to synchroni-
sation with the O and ⊗, or message communication. In the case of message
communication the process Q will receive the message t from the process P.
In both of these cases the cut will continue to reduce a new smaller cut.

We now have a complete system, and we turn to the properties it sat-
isfies. First, we consider the stability of typing under the syntactic congru-
ence defined to identify processes. This result is rather straightforward here,
but it does not generally holds in session type systems based on linear logic
[CP10, Wad14], where the grouping of outputs and parallel composition is
problematic, for example, and restricts the shape of well-typed processes.

Theorem 4.1.6

For any terms t and u of PTT, if Γ ` t : A and t ≡ u then Γ ` u : A.
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Proof. By inspection of the equations for ≡ . In each case, we reorganise
the typing derivation to obtain a new derivation for the equivalent term.
Note that ≡ is homomorphic on the functional fragment of the theory,
and modifies only the parts of derivations corresponding to linear logic
rule instances, which admit permutations with other independent rule
instances.

Then, we show that the system has subject reduction, so that typing is
stable under reduction:

Theorem 4.1.7

For any terms t and u of PTT, if Γ ` t : A and t → u then Γ ` u : A.

Proof. By induction on the structure of the reduction from t to u, and by
analysis of the shape of the typing derivation for t. In the case where
the subterm reduced in t appears at top level, a case analysis shows that
the reduction to u corresponds to a case from either normalisation in the
type theory, or cut elimination in the linear system, based on the sequent
calculus.

More details on the normalisation result, in particular concerning the lin-
ear system where cut elimination corresponds to reduction, can be found in
the next section, described from the viewpoint of the AGDA formalisation of
PTT.

4.2 Embedding in Type Theory

The type theory presented in the previous section is based on the idea that a
layer of processes can be introduced into a type theory à la Martin-Löf, thus al-
lowing a calculus modelling concurrent programming to use dependent types.
We now consider the realisation of this idea on a more practical level, in a
dependently typed programming language: a part of the PTT language has
been implemented in AGDA [Nor07], using a partial shallow embedding where
the functional layer of PTT is directly translated as the corresponding part of
the AGDA language, on the other hand the concurrency part into a deep em-
bedding with a corresponding data type.

Embedding the process layer in a functional language requires to define
a representation that supports the properties expected from processes, but
we have designed rules exploiting a rather general syntax to allow for more
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flexibility. In the AGDA representation, we simplify the theory by considering
binary forms of O and ⊗, and replace the cut and ⊗ rules by the branching
variants:

Γ � P :: I , [c : S] Γ �Q :: J , [d : T] T '⊥ S
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ � (νcd) (P ‖Q) :: I ,J

Γ � P :: J , [d : S] Γ �Q :: J , [e : T]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � c[de] (P ‖Q) :: I ,J , [c : S ⊗ T]

Moreover, we drop the pure mix rule and retain only, beyond the two
rules above, the binary O rule, the axiom typing 0, the mix rule typing ‖ by
branching and the rules for data input and output as well as the interfaces
to the functional layer. The resulting system is equivalent to the original one
on a logical level, except for the units. Indeed, n-ary connectives can be
recovered in all cases where n ¾ 1 and the pure mix rule was used because
of the congruence only.

Data input and output. Interestingly, the rules introducing dependencies
in a session type can be interpreted in a straightforward way inside pure type
theory, building on the similarity of ? and ! toΠ and Σ respectively. A product
Π(x : A).B can indeed interact with a sum Σ(x : A).C in a way similar to input
and output: the sum provides a proof of A and B assumes the existence of
a proof x of A. These constructions are thus simple to handle in the AGDA

representation.

Cut elimination in linear logic. The most important property of the
PTT system is that any term can be reduced to a normal form. However,
this requires the normalisation of terms containing processes and therefore
to showing that the linear typing implies that communication can be prop-
erly executed in processes. This amounts to a proof of cut elimination in
the multiplicative fragment of linear logic extended with mix, message com-
munication, and accommodating the rules interfacing functional terms and
processes. We discuss now the proof of cut admissibility used in the AGDA

representation.

The proof proceeds by induction on the cut formula, and relies on splitting
lemmas, in which a continuation term is inserted in a process to modify the
subprocess involving the channel on which cut was performed. There is a
splitting lemma for each possible shape of the session, but we show here only
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the case of ⊗:

� P :: I , [c : S ⊗ T]

�Q0 :: I0, [d : S] �Q1 :: I1, [e : T]
...

� R :: I0,I1,J
(splitting lemma for ⊗) =====================================================================

� P{R� c[de] (Q0 ‖Q1) } :: I ,J

where the notation indicates that we modify some process P using a second
process R parametric in the structures I0 and I1. The key idea is that inside
P, there exists a subprocess of the shape c[de] (Q0 ‖Q1) corresponding to the
decomposition of [c : S⊗T]. The notation { ·�· }, in the style of a substitution,
denotes the replacement of this output process by R where Q0 and Q1 are
plugged. This splitting rule commutes upwards with all other rules until the
adequate ⊗ rule is met — and this rule is unique by linearity.

The splitting lemma for O, the dual of ⊗, is expressed by the following
scheme, where R is parametric in a single structure I0 and contains only one
open premise Q0:

� P :: I , [c : S O T]

�Q0 :: I0, [d : S], [e : T]
...

� R :: I0,J
(splitting lemma for O) =========================================================

� P{R� c{de}Q } :: I ,J

and the combination of these two lemmas yields the case of cut reduction
involving a formula S⊗ T and its dual. Notice that no functional context Γ is
mentioned here, since by the time normalisation requires eliminating a cut,
this context is empty — as a consequence of reduction not being performed
under abstractions in type theory. Consider a cut on ⊗ and O:

� P :: I , [c : S ⊗ T] � P ′ :: J , [d : S⊥O T⊥]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

� (νcd) (P ‖ P ′) :: I ,J

that we rewrite into two cuts, on the two subformulas of these connectives,
where the rightmost premise is an unknown process Q′ typed using an un-
known structure J ′ that we introduce in the conclusion:

�Q0 :: I0, [e : S]

�Q1 :: I1, [ f : T] �Q′ :: J ′, [g : S⊥], [h : T⊥]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

� (ν f h) (Q1 ‖Q′) :: I1,J ′, [g : S⊥]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

� R ¬ (νeg) (Q0 ‖ (ν f h) (Q1 ‖Q′)) :: I0,I1,J ′
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to obtain a process that we name R, parametric in the unknowns Q′ and J ′.
We can now use this R to produce the expected proof, using a combination of
the splitting lemmas for ⊗ and O:

� P :: I , [c : S ⊗ T]

� P ′ :: J , [d : S⊥O T⊥] � R :: I0,I1,J ′
============================================================
� P ′{R� d{gh}Q′ } :: I0,I1,J

====================================================================================
� P{ P ′{R� d{gh}Q′ }� c[e f ] (Q0 ‖Q1) } :: I ,J

This procedure can be applied the other rules, and we can therefore prove
that all cuts can be eliminated from a typing derivation of PTT. As a con-
sequence, functional reductions blocked by some process constructs can be
performed once the process has been reduced. Note that proving normali-
sation in PTT requires proving normalisation in the functional layer and cut
elimination in the process layer simultaneously.

Forwarders. The process layer of the PTT system has no correspondent
to the identity axiom, which was interpreted as a forwarder in Section 1.5,
following [CP10]. However, we can express this process as follows:

fwd : Π (S : Session) .{| S; S⊥ |}
fwd (? (x:A) . S x) = i o. i(x : A) o〈x〉 fwd (S x)@ (i; o)
fwd (! (x:A) . S x) = o i. i(x : A) o〈x〉 fwd (S x)@ (o; i)
fwd (S0 O S1) = i o. i {i0,i1} o[o0,o1] (fwd S0 @ (i0; o0) | fwd S1 @ (i1; o1))
fwd (S0 ⊗ S1) = o i. i {i0,i1} o[o0,o1] (fwd S0 @ (o0; i0) | fwd S1 @ (o1; i1))

By doing induction on the Session we can find a process that will perform
the communication necessary. This communication will always input mes-
sages before sending them to the other channel, similarly it will always break
a O before a ⊗ and then continue in the two independent branches.

4.3 The Model

The result in the previous section was proven by giving a model inside AGDA.
This model is defined by introducing a type for the session types and an in-
dexed type for the process terms. The type of the sessions are defined by the
following type in AGDA:

data Com : Set where IN OUT : Com

data Session : Set where
act : Com→ {M : Set} (P : M→ Session)→ Session
_O_ _⊗_ : Session→ Session→ Session
1’⊥’ : Session
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The act constructor, represents either a ?(x : M). P or a !(x : M). P depend-
ing on the value of the Com field. The remainder of the protocol is described
by the function P, which is allowed to inspect the value that is sent between
the two parties. The other constructors are rather self explanatory of what
formula they corresponds to. Notice that since we are embedding directly
into AGDA we get for free the possibility of computing the session.

The duality relation is defined as an indexed type, once again we get the
conversion rule for free since we are embedding into the type theory of AGDA.

data DualC : Com→ Com→ Set1 where
?! : DualC IN OUT
!? : DualC OUT IN

data Dual : (P Q : Session)→ Set1 where
1⊥ : Dual 1’⊥’
⊥1 : Dual⊥’ 1’
act : ∀ {C C’} {M : Set} {F G : M→ Session}
→ DualC C C’
→ (∀m→ Dual (F m) (G m))
→ (∀m→ Dual (G m) (F m))
→ Dual (act (com C F)) (act (com C’ G))
⊗O : ∀ {A A’ B B’}
→ Dual A A’→ Dual A’ A
→ Dual B B’→ Dual B’ B
→ Dual (A ⊗ B) (A’ O B’)

O⊗ : ∀ {A A’ B B’}
→ Dual A A’→ Dual A’ A
→ Dual B B’→ Dual B’ B
→ Dual (A O B) (A’ ⊗ B’)

There might seem to be some redundancy in the definition of the duality,
but this is to make induction simpler. When splitting we are not only getting
that the substructures are in dual relation, but we get the symmetric version
as well. Another way of defining this would be to use sized types[Abe06],
prove that the duality relation is symmetric and that the symmetric version
is of the same size.

Theorem 4.3.1

The duality relation Dual is symmetric, i.e. for all sessions: P and Q such
that d : Dual P Q there exists a term of type Dual Q P.
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Proof. By inversion on d, it is immediate by re-arranging the sub-terms.

Before we type processes, we need to explain how we will represent the
linear context. Since it is nested we can’t just use a list of channels and
Session’s immediately. We could just have contexts be List (List (URI × Session)),
where URI is the type we give to channels, but we give a special purpose type
for this, and do this for two reasons. One is to document our intention, the
second is to index the type over which channels that will occur in the con-
text. On the inner level we define the type Dom as the list of channels that
will appear, morally this is just a snoc-list of URI.

data Dom : Set where
ε : Dom
_,_7→* : (δ : Dom) (c : URI)→ Dom

The actual inner context will be indexed over a Dom for which channels
that occur in the context. Once again we work with snoc-list since this is
more natural when describing contexts. The definition here is parametric
over what will be stored, as a context it will be used with Session.

data Map {a} (A : Set a) : Dom→ Set a where
ε : Map A ε
_,_ 7→_ : ∀ {δ} (E : Map A δ) c (v : A)→Map A (δ , c 7→*)

The membership predicate, i.e. the relation that relates a particular chan-
nel with a value, is split up in two steps. The first is where in the Dom we can
find the channel, which looks like the normal snoc-list membership predicate:

data _∈D_ (c : URI) : Dom→ Set where
here : ∀ {δ} → c ∈D (δ , c 7→*)
there : ∀ {δ d} (p : c ∈D δ)→ c ∈D (δ , d 7→*)

The second part, is what value is associated with the particular channel.
This will be computed by a lookup function _!!_, this also works in a similar
way to ordinary lists.

infix 7 _!!_
_!!_ : ∀ {a} {A : Set a} {c δ} →Map A δ→ c ∈D δ→ A
(M , c 7→ v) !! here = v
(M , c1 7→ v) !! (there l) = M !! l
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By combining these two we get the membership predicate. This split of
having an inductive type for finding the channel, and a computational inter-
pretation to find the value will make certain, is useful when doing proofs.
This makes it possible to delay the unification of indexes, which sometimes
is a major source of problems.

record _7→_∈_ {a} {A : Set a} (d : URI)
(S : A) {δ} (M : Map A δ) : Set a where

constructor 〈_,_〉
field

lA : d ∈D δ
7→A : M !! lA ≡ S

module 7→∈ = _7→_∈_ -- shorter name when using projections

That was the inner context, the outer context will follow a similar ap-
proach, just one level up. We once again split the information about where
we can find the particular Map and the actual Map. The type Doms is a snoc-
list of Dom, i.e. a list of list of channels.

infixl 3 _,[_]
data Doms : Set where
· : Doms
_,[_] : Doms→ Dom→ Doms

And the contents will be stored in Maps which will store a Map inside.
This type is also polymorphic what is stored in the inner Map’s.

data Maps {a} (A : Set a) : Doms→ Set a where
· : Maps A ·
_,[_] : ∀ {δs δ} (I : Maps A δs) (∆ : Map A δ)→Maps A (δs ,[ δ ])

When using this type as a context we will use the type Proto which will be
indexed over the information about which channels are in the context. Our
particular encoding is going not remove old channels, instead it will mark
them as ended. This is achieved by using a particular kind of option type
MSession which is either an active Session or an ended one. Furthermore we
use Env as a name for tensor blocks.

data MSession : Set where
�_� : (S : Session)→MSession
end : MSession

Env Proto : Doms→ Set where
Env = Map MSession
Proto = Maps MSession
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As before we split the membership predicate into an inductive definition
where one can find a particular snoc-list of channels.

infix 3 [_]∈D_
data [_]∈D_ (δ : Dom) : Doms→ Set where

here : ∀ {δs} → [ δ ]∈D δs ,[ δ ]
there : ∀ {δs δ’} → [ δ ]∈D δs→ [ δ ]∈D δs ,[ δ’ ]

And a computational lookup function that computes what Map one would
find at that particular place.

lookup : ∀ {a δs δ} {A : Set a} →Maps A δs→ [ δ ]∈D δs→Map A δ
lookup (M ,[∆ ]) here = ∆
lookup (M ,[∆ ]) (there l) = lookup M l

Both of which are combined to find be that a particular ∆ : Map can be
found in the outer context M : Maps.

record [_]∈_ {a} {A : Set a} {δ} (∆ : Map A δ)
{δs} (M : Maps A δs) : Set a where

constructor 〈_,_〉
field

l∆ : [ δ ]∈D δs
7→∆ : lookup M l∆ ≡ ∆

module []∈ = [_]∈_

So from then outer level if we wish to prove that a particular Session is
in a particular Proto one needs to use two membership predicates. One for
the outer level, and one for the inner level. It is therefore useful to combine
these, basically doing a composition of the two relations, which is shown in
Figure 4.3.
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infix 0 [_ 7→_...]∈_
record [_7→_...]∈_ {δs} (c : URI)
(S : Session) (I : Proto δs) : Set
where
constructor mk
field
{δE} : Dom
{E} : Map MSession δE
lI : [ E ]∈ I
lE : c Env.7→ � S�∈ E

open [_]∈_ lI public
open _ 7→_∈_ lE public
E/ : Map MSession δE
E/ = E Env./’ lE

module [ 7→...]∈ = [_ 7→_...]∈_

infix 0 [_ 7→_]∈_
record [_7→_]∈_ {δs} (c : URI)
(S : Session) (I : Proto δs) : Set
where
constructor mk
field

l... : [ c 7→ S ...]∈ I
open [ 7→...]∈ l... public
field

E/c : Env.Ended E/
module [ 7→]∈ = [_7→_]∈_

Figure 4.3: Channel membership in Proto, and a version for which the chan-
nel is the only active in the tensor block.

The reason for making Map and Maps polymorphic, is so that we can reuse
the structure to describe how to split the context. As mentioned before we
are using MSession, so some channels are in the context but not active. This
makes splitting easier, both branches will still use the same Doms but every
active channel will only be active in one of the branches. So by instead of
picking MSession if we pick Bool we get a structure that describes a split.

Selections : Doms→ Set
Selections = Maps Bool

To actually perform the split, we use a zipWith function that, which will
preserve all channels. This operation becomes simple due to the fact that
we made both Maps and Map indexed over the channels. So zipWiths can
be given a descriptive enough type to only zip when the two Maps have the
same structure. Furthermore we define Map.zipWith that works on the inner
level.
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zipWith : ∀ {A B C δs} (f : ∀ {δ} →Map A δ→Map B δ→Map C δ)
→Maps A δs→Maps B δs→Maps C δs

zipWith f · · = ·
zipWith f (I ,[∆ ]) (σs ,[ σ ]) = zipWith f I σs ,[ f∆ σ ]

Map.zipWith : ∀ {A B C δ} (f : A→ B→ C)
→Map A δ→Map B δ→Map C δ

Map.zipWith f ε ε = ε
Map.zipWith f (∆ , c 7→ v0) (σ , .c 7→ v1) = Map.zipWith f∆ σ , c 7→ f v0 v1

Performing a particular selection is a special case of zipWith. Now a se-
lection gives two Maps, one for each branch. We select which of the two we
want with the function _[]/[_]_ which takes a boolean as the second argu-
ment, which represents which of the two cases that is desired.

selectProj : Bool→ (MSession→ (Bool→MSession))
selectProj 0 2 v = [0: v 1 : end ]
selectProj 1 2 v = [0: end 1 : v ]

_Map./[_]_ : ∀ {δ} (∆ : Env δ) (b : Bool) (σ : Selection δ)→ Env δ
∆Map./[ b ] σ = Map.zipWith (selectProj b)∆ σ

_sel[_]_ : ∀ {δs} (I : Proto δs) (b : Bool) (σs : Selections δs)→ Proto δs
I sel[ b ] σs = zipWith (λ E σ→ E Map./[ b ] σ) I σs

We can furthermore introduce a few more operations on contexts, in par-
ticular we have the are using the operations I / l and I /... l which are
deactivating all sessions in the same tensor block, in I, as session which the
membership predicate l is living in. The difference is that _/_ is for mem-
bership proofs that have a unique active session, whereas _/..._ have no such
requirement.

One can also perform substitution, which will be used when we are up-
dating a channel in a continuation. The substitution [ I / l ]:= S will replace
what the membership predicate l points to in I with S.

The final thing we need before we can give the process derivations are a
predicate that a particular Selections is only splitting at most one tensor block.
In fact it is easier to make a predicate that at most n tensor blocks have been
split where n is a natural number. We use the relation SelAtMost n E σ m to
tell if σ is splitting E, in which case m = n +1, and if σ does not split E, i.e.
σ sends everything to the same side, then m = n.
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data SelAtMost (n : N) {δ : Dom} (E : Env δ) (σ : Sel δ) : N→ Set where

01 : ∀ b→ EnvSelectionAll≡ b E σ→ SelAtMost n E σ n

m : SelAtMost n E σ (suc n)

data AtMost : N→∀ {δs} → Proto δs→ Selections δs→ Set where
· : ∀ {n} → AtMost n · ·
_,[_] : ∀ {n m δ δs} {E : Env δ} {I : Proto δs} {σs σ}
→ AtMost n I σs→ SelAtMost n E σ m→ AtMost m (I ,[ E ]) (σs ,[ σ ])

With all the machinery set up we can define well typed processes, i.e. we
are using a intrinsic typing approach, is given in Figure 4.4. The type TC’〈_〉,
represents cut free derivations indexed by a type Proto which is the current
protocol that the process is following. Each constructor of this type is one
action the process can perform. Most of these are going to have continuations
for what to do after the action have been performed.

The way the multiplicative connectives are modelled is deactivate all chan-
nels and creating new tensor blocks at the end. The reason for this is that per-
forming a complicated substitution were one would replace a channel with
potentially several tensor blocks is a complicated one. Furthermore notice
that the rule TC-⊗-out is also splitting the context, so it have two parallel
continuations. The splitting is performed by the σs : Selections, and since
we are splitting with the rule we don’t allow any further splitting inside ten-
sor blocks by the AtMost predicate, and setting the allowed number of splits
to 0.

Notice that we are reusing the type theory in for example the rule TC-?-inp
where we are putting the continuation under a function in the type theory.
This gives an embedding such that we don’t have to worry about boxing the
channels when moving between the type theory part and the process layers.

The final two actions are TC-end which is the process that has finished,
which requires that all sessions are not active, this check is performed by the
predicate Ended. The other action is TC-split which is (potentially1) perform-
ing a splitting on a tensor block. This action is also using a Selections and the
AtMost predicate, but this time we allow 1 split.

1It is possible to use a m constructor but still send everything to the same side
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data TC’〈_〉 {δI} (I : Proto δI) : Set1 where
TC-⊗-out : ∀ {c S0 S1}
(l : [ c 7→ S0 ⊗ S1 ]∈ I)
(σs : Selections δI)
(A0 : AtMost 0 (I / l) σs)
(P0 : ∀ c0→ TC’〈 I / l sel[ 0 2 ] σs ,[ c0 7→ S0 ] 〉)
(P1 : ∀ c1→ TC’〈 I / l sel[ 1 2 ] σs ,[ c1 7→ S1 ] 〉)
→ TC’〈 I 〉

TC-O-inp : ∀ {c S0 S1}
(l : [ c 7→ S0 O S1 ]∈ I)
(P : ∀ c0 c1→ TC’〈 I / l ,[ c0 7→ S0 ] ,[ c1 7→ S1 ] 〉)
→ TC’〈 I 〉

TC-1-out : ∀ {c}
(l : [ c 7→ 1’ ...]∈ I)
(P : TC’〈 I /... l 〉)
→ TC’〈 I 〉

TC-⊥-inp : ∀ {c}
(l : [ c 7→ ⊥’ ]∈ I)
(P : TC’〈 I / l 〉)
→ TC’〈 I 〉

TC-?-inp : ∀ {c A S1}
(l : [ c 7→ act IN {A} S1 ]∈ I)
(P : (m : A)→ TC’〈 [ I / l ]:=� S1 m� 〉)
→ TC’〈 I 〉

TC-!-out : ∀ {c A S1}
(l : [ c 7→ act OUT {A} S1 ]∈ I)
(m : A) (P : TC’〈 [ I / l ]:=� S1 m� 〉)
→ TC’〈 I 〉

TC-end : ∀ (E : Ended I)→ TC’〈 I 〉
TC-split :
(σs : Selections δI)
(A1 : AtMost 1 I σs)
(P0 : TC’〈 I sel[ 0 2 ] σs 〉)
(P1 : TC’〈 I sel[ 1 2 ] σs 〉)
→ TC’〈 I 〉

Figure 4.4: AGDA model of PTT
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The type Proto, does not have the proper definitional equalities as we
want, and therefore we need to once again use a setoid construction. We first
define a relation for equivalent inner contexts, named _∼_, which represents
the equality. Notice that we don’t reqire the Dom for the two sides to be equal,
this because non-active channels can be removed with this representation.

infix 0 _∼_
data _∼_ : ∀ {δE δF} (E : Env δE) (F : Env δF)→ Set1 where
∼-refl : ∀ {δE} {E : Env δE}
→ E∼ E
∼-trans : ∀ {δE δF δG} {E : Env δE} {F : Env δF} {G : Env δG}
→ E∼ F→ F∼ G→ E∼ G
∼, 7→ : ∀ {δE δF} {E : Env δE} {F : Env δF} {c S}
→ E∼ F→ E , c 7→ S∼ F , c 7→ S
∼, 7→end : ∀ {δE} {E : Env δE} {c}
→ E , c 7→ end∼ E
∼, 7→end’ : ∀ {δE} {E : Env δE} {c}
→ E∼ E , c 7→ end
∼,[swap] : ∀ {δE c d A B} {E : Env δE}
→ E , c 7→ A , d 7→ B∼ E , d 7→ B , c 7→ A

In order to simplify proofs using this equality we don’t have a constructor
for symmetry directly, which complicates induction. Instead we have an ex-
ternal proof that the given relation is indeed symmetric. In order to be able
to prove this, we need to be able to push down the symmetry, and all the leafs
need to have the symmetric version as well, which is the reason we have the
symmetric version of ∼- 7→end.

Lemma 4.3.2

The relation _∼_ is symmetric.

Proof. Follows immediately by induction, notice that∼-refl and∼-[swap]
are self symmetric.

For the outer level, i.e. equality on Proto, we also define an external
equivalence relation, named _≈_. This relation is very similar to _∼_ with
the exception that equality of the inner context is _∼_ instead of the equality
of the type theory.
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infix 0 _≈_
data _≈_ : ∀ {δI δJ} (I : Proto δI) (J : Proto δJ)→ Set1 where
≈-refl : ∀ {δI} {I : Proto δI}
→ I ≈ I
≈-trans : ∀ {δI δJ δK} {I : Proto δI} {J : Proto δJ} {K : Proto δK}
→ I ≈ J→ J ≈ K→ I ≈ K
≈,[] : ∀ {δE δF δI δJ} {E : Env δE} {F : Env δF}

{I : Proto δI} {J : Proto δJ}
→ I ≈ J→ E∼ F→ I ,[ E ] ≈ J ,[ F ]
≈,[ε] : ∀ {δI} {I : Proto δI}
→ I ,[ ε ] ≈ I
≈,[ε]! : ∀ {δI} {I : Proto δI}
→ I ≈ I ,[ ε ]
≈,[swap] : ∀ {δE δF δI} {I : Proto δI} {E : Env δE} {F : Env δF}
→ I ,[ E ] ,[ F ] ≈ I ,[ F ] ,[ E ]

Lemma 4.3.3

The relation _≈_ is symmetric.

Proof. Follows by induction, and that _∼_ is symmetric 4.3.2.

To use the definitional equality we use TC-conv which transports a process
of some protocol to an equivalent one. This transformation is homomorphic
in the sense that it will map every action to an equivalent action.

Theorem 4.3.4

For all Proto, I and J such that eq : I ≈ J, and process p : TC’〈 I 〉 there
exists a process TC-conv eq p : TC’〈 J 〉.

Proof. By induction on the process p, use the equality eq to map all mem-
bership proofs.

Cut Elimination. Currently in syntax of the actions for processes there
is no action for cut. Rather cut will be implemented in the type theory as a
computation that will perform the inner communication. As such there will
be a function of the following type:
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TC-cut : ∀ {c0 c1 S0 S1 δ0 δ1} {I0 : Proto δ0} {I1 : Proto δ1}
(D : Dual S0 S1)
(l0 : [ c0 7→ S0 ]∈ I0) (l1 : [ c1 7→ S1 ]∈ I1)
(P0 : TC’〈 I0 〉) (P1 : TC’〈 I1 〉)
→ TC’〈 (I0 / l0) �Proto (I1 / l1) 〉

Where �Proto is the append function for two Proto. So the type of TC-cut
takes two processes P0 and P1, that contains sessions S0 and S1 respectively,
and these sessions are dual to each other. The result is the concatenation
of the two protocols, where we have removed the cut session in both cases.
The TC-cut function works by induction on the Dual predicate, this will tell us
what is the cut formula. In each case we can perform commuting conversions
using the splitting lemma, until we reach the principal case. These splitting
lemma takes a bunch of continuations on what do when the principal case
have been found. Which of the continuation to use depends on what the split
formula is.
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Chapter 5

Semantic Security in Type Theory
Joint work with: Nicolas Pouillard

In this chapter we use the type theoretical definitions defined in the previ-
ous chapters, to create CRYPTOAGDA1. This is a library in AGDA for reasoning
about semantic security, as presented in Section 1.4, about various crypto-
graphic constructions. Although this library have been implemented in AGDA,
we stress that the constructions could be implemented in other type theories.
Furthermore since we are using the communicating version of type theory
presented in Chapter 4 the programs presented here, are not valid AGDA, but
instead they are presented in a version of AGDA with communication prim-
itives. It is important to note that all the formalised proofs in AGDA of this
chapter uses the model for the proofs, since no implementation of this version
of AGDA exists. This makes it easier to understand the proofs, since the details
of the model is hidden, but all the proofs are still type checked by AGDA.

5.1 Definitions

We begin by combining the formalisations from the previous chapters, to for-
mally define semantic security. This will use the definitions of probabilistic
processes, for example the challenger and adversary will be represented by
such processes, and defining and reasoning about advantage makes use of
probabilistic reasoning. Furthermore the interactions between the challenger
and the adversary is dictated by a protocol, defined by a dependent session
type. The communication in the game will be represented by communication

1The url is: https://github.com/crypto-agda/

https://github.com/crypto-agda/
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by the processes. This leads to the following formal definition of a Game that
we will use in CRYPTOAGDA.

Definition 5.1.1: Crypto-Game

A Crypto-Game in CRYPTOAGDA is defined to be:

• A protocol, P, describing the behaviour interaction between the
adversary and its environment, which includes the interaction with
the challenger, but also possible oracles.

• A type, Rη, for the sample space for the environment.

• An implementation, i.e. a process, of the probabilistic environ-
ment, that is parametrised by a Boolean. In CRYPTOAGDA:

record Crypto-Game : Set where
constructor mk
field

P : Protocol
{Rη} : Set
Rη-fin : RSpace Rη
η : Bool→ Rη→ {| P |}

The adversary is a probabilistic function communicating with the chal-
lenger of the Crypto-Game. We use the ability that processes can communi-
cate over multiple channels, in order to describe the powers of the adversary.
By making the final guess on a different channel, we get a simpler expla-
nation of the adversary, since we don’t have to change the protocol of the
challenger. Furthermore by having a separate channel for the result, gives
us a convenient definition of advantage, and also the possibility of making
reductions easier.

Definition 5.1.2: Adversary for Crypto-Game

An adversary for a Crypto-Game in CRYPTOAGDA is defined to be:

• A type, RA, for the sample space.
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• A probabilistic process over the sample space RA that follows two
protocols: the first is P⊥ and the second one is the trivial protocol
of just outputting a boolean, !(x : Bool).⊥. In CRYPTOAGDA:

record Adversary (G : Crypto-Game) : Set where
constructor mk
field
{RA} : Set
RA-fin : RSpace RA
Adv : RA→ {|P⊥; ! (x : Bool) .⊥|}

By connecting an environment with an adversary, i.e. by utilising a cut,
the result will be a process of type ! (x : Bool) .⊥. Such a process is exten-
sionally equal to c〈b〉 0, where c is the channel for the protocol, and b is a
Boolean value. It is therefore possible to extract the value, i.e. b, from the
process. We will use the function run : {A : Set} → {|! (_ : A) .⊥|} → A,
to extract such a value. This is used to define the notion of advantage, by
extracting the value of the final Boolean after cutting the environment and
the adversary. Since the processes are probabilistic, the result is a probability.

Definition 5.1.3: Advantage

The advantage of an adversary for a Crypto-Game is defined to be:

Advantage : (G : Crypto-Game)→ Adversary G→Q+

Advantage (mk P Rη-f η) (mk RA-f A)
= distQ Pr[ Bool-f ×f Rη-f ×f RA-f || (b , rη , ra)

>> run (TC-cut (η b rη) (A ra) == b) ]
1
2

Here we compute the probability of the fact that after performing the cut
between the environment η b and the adversary A, the resulting process will
output the answer b. The distance between this probability and 1

2 is computed
by the distQ function. Notice that I have hidden the channels used for the
communication.

So far we have not seen the security parameter, all the definitions above
have used an implicit, and fixed, security parameter. To really make it a pa-
rameter, all we need to do is consider not Crypto-Game directly but functions
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of the security parameter returning the Crypto-Game. As mentioned in 1.4,
we use N for the security parameter. The notion of semantic security for such
a family of games is that for every adversary, their advantage is negligible.
Formally the semantic security is defined as follows:

Definition 5.1.4: Semantic Security

A family G of Crypto-Games, is semantically secure if for all families of
adversaries Adv the Advantage is Negligible. In CRYPTOAGDA:

Semantic-Security : (N→ Crypto-Game)→ Set
Semantic-Security G = ∀ (Adv : (n : N)→ Adversary (G n))
→ Negligible (λ n→ Advantage (G n) (Adv n))

We can now return to the example of IND-CPA as described in Section 1.4,
and provide the corresponding definition in CRYPTOAGDA. Since IND-CPA
depends on an encryption system, this definition will be parametrised over
functions for key-generation, encryption and decryption. We make no as-
sumptions about the types of these functions, other than the type of random-
ness for encryption and key generation, is an sample space, i.e. an RSpace.

Example 5.1.5: IND-CPA

The signature of the encryption system is described below, notice that we
don’t provide the laws here:

key-gen : RG→ Public × Secret
enc : RE→ Public→M→ C
dec : Secret→ C→M

The environment is the following process:

ηIND-CPA : Bool→ RG × RE→ {| ! (pk : Public) .? (ms : M ×M) .
! (c : C) .⊥|}

ηIND-CPA b (rg , re) = let pk , sk = key-gen rg
in p. p〈pk〉 p(ms) p〈enc re pk (select ms b)〉 0

This process for IND-CPA first generates the public and private keys, i.e.
pk and sk, and then will use channel p for communication. It first sends the
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public key, pk, and then receives the two messages ms. Finally the process
sends the encrypted message that corresponds to b back to the adversary.

5.2 ElGamal revisited

This section will use the definitions seen in the previous sections to prove
that El Gamal is semantic secure under IND-CPA, assuming the group is DDH.
First we provide the type theoretic version of ElGamal that we will work with.
This encryption system works over a group G of order q, this group have a
generator g, i.e. any element in the group can be represented as gn for some
n. Of course the idea is that it is difficult to invert, which is what the DDH
property of the group tells.

Definition 5.2.1: ElGamal - Encryption System

The type of public keys, PubKey is from the group G, whereas the secret
key, SecKey is a number in Z/qZ. Message are in the also in the group,
and the ciphertexts, CipherText are a pair of elements in the group. Fi-
nally the randomness needed by both encryption and key generation,
Re and Rk respectively, is an element in Z/qZ. In the code below, the
multiplication in the group is •, the integer exponentiation is ∧, and the
division, i.e. multiplication with inverse, is /.

KeyGen : Rk→ PubKey × SecKey
KeyGen x = (g ∧ x , x)

Enc : PubKey→Message→ Re→ CipherText
Enc gx m y = gy , ζwhere

gy = g ∧ y
δ = gx ∧ y
ζ = δ •m

Dec : SecKey→ CipherText→Message
Dec x (gy , ζ) = ζ / (gy ∧ x)

This is indeed a valid encryption system if we are really working with a
group as shown by the following theorem.
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Theorem 5.2.2: ElGamal Functional Correctness

ElGamal satisfies the functional correctness, i.e. decrypting with a secret
key a message that have been encrypted with the corresponding public
key is the identity operation.

Proof. The proof have two assumptions that the type G is really a group.

module FunctionalCorrectness
(/-• : ∀ {αm} → (α •m) / α ≡ m)
(comm−∧ : ∀ {α x y} → (α ∧ x) ∧ y ≡ (α ∧ y) ∧ x)where

functional-correctness : ∀ x y m→ Dec x (Enc (g ∧ x)m y) ≡ m
functional-correctness x y m = trans (ap Ctx comm−∧) /-•

where Ctx = λ z→ (z •m) / ((g ∧ y) ∧ x)

We now return to the DDH and define this game in our type theory. The
formal statement we are going to prove below is that if the group is semanti-
cally secure according to the DDH Crypto-Game then ElGamal is semantically
secure according to IND-CPA Crypto-Game. The Crypto-Game for DDH tells
that an adversary can’t find a discrete logarithm in the group, and does so by
showing that the adversary cannot distinguish between the multiplication of
two elements and random:

Definition 5.2.3: DDH Crypto-Game

The environment takes three numbers from Z/qZ as randomness, i.e.
Zq × Zq × Zq, and follows the protocol of sending three elements in the
group G:

ηDDH : Bool→ Zq × Zq × Zq→ {| ! G . ! G . ! G .⊥ |}
ηDDH false (x , y , z) = p. p〈g ∧ x〉 p〈g ∧ y〉 p〈(g ∧ x) ∧ y〉 0
ηDDH true (x , y , z) = p. p〈g ∧ x〉 p〈g ∧ y〉 p〈g ∧ z〉 0

We now prove that ElGamal is semantically secure according to the IND-
CPA Crypto-Game, under the DDH assumption. By DDH assumption we refer
to the fact that the DDH Crypto-Game is semantic secure, which depends on
the group. This is done by giving a simulator that will connect the two games
and act as the challenger in one, and as an adversary in the other. The goal
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is to transform an IND-CPA adversary into a DDH adversary, that will be as
effective, or at least negligible close, in playing both games. Therefore if an
adversary is good, i.e. can break, the IND-CPA game, then it would also be
good against DDH which would break our assumption.
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DDH
Challenger Simulator

IND-CPA
Adversary

Figure 5.1: The reduction between IND-CPA and DDH

As depicted in Figure 5.1, the simulator will be situated in-between the
challenger of the DDH game, and the adversary of the IND-CPA game. As
such it is implemented as a process that communicates with both parties at
the same time. The simulator is also going to change the guess of the ad-
versary, and will therefore have the type of a tensor for the communication
with the IND-CPA adversary. In other words the simulator have three active
channels, one for DDH challenger, one for the adversary and the final one for
the final guess. The simulator, is also probabilistic, and as randomness takes
one boolean.

sim : Bool→ {| ?G.?G.?G.0; (!Public. ?M×M.!C.⊥ ⊗ ?Bool.0); !Bool.⊥ |}
sim b = i ar r. ar(a r’) (r’(b’) r〈b == b’〉 0) |
(i(gx) i(gy) i(gz) a〈gx〉 a(mb) a〈gy , gz • sel b mb〉 )

The simulator receives from the DDH game three elements from the group:
gx , gy and gz. The first element will act as the public key, the second as the
randomness for encryption and the final is the one that is used in the mul-
tiplication in the encryption. In order to make the final proof we use two
lemmas, the first one equates the probability of the IND-CPA game, and the
false case of DDH with the simulator.

Lemma 5.2.4

Pr[b,re,ra; run (TC-cut (ηIND-CPA b re) (A ra))] is equal to
Pr[γ,re,ra; run (TC-cut (ηDDH false re) (TC-cut (sim γ) (A ra)))]

Proof. Follows by definitional equality.

The second lemma, is for the true case with the simulator, the probability
here will be 1

2 .
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Lemma 5.2.5

Pr[γ,re,ra; run (TC-cut (ηDDH true re) (TC-cut (sim γ) (A ra)))] is equal to
1
2

Proof. This proof uses Theorem 3.5.2, to show that the adversary is un-
aware of which message it receives, a situation that is similar to the one
in one time pad [Sha49]. Therefore the probability is 1

2 .

Combining these two facts we can prove the security of ElGamal, this
proof uses a small mathematical fact about the advantage of an event, with
an sample space that is a product with a boolean. If the event is b == X
where b is the boolean, then the advantage is half of

�

�Pr X b=t rue − Pr X b= f alse

�

�.
Which can be proved by reasoning with exploration functions. Therefore the
following equation holds:

Theorem 5.2.6: ElGamal IND-CPA Security

For all IND-CPA adversaries A, the following is true:

2 * Advantage DDH (λγ ra→ TC-cut (sim γ) (A ra))
≡ Advantage CPA A

Which shows that if all DDH adversaries had negligible advantage then
all IND-CPA adversaries have it as well, since multiplying with a constant is
still negligible.

5.3 IND-CCA1 and IND-CCA2
There is a big zoo of Crypto-Games [BHK09], and in this section we introduce
some more variants of IND-CPA. These games will be stronger, i.e. provide
more security, and the big feature is that these schemes protect against mal-
leability. Which is the property that one can manipulate a ciphertext, for
example creating a new one based on an old one, in order to carry out a man
in the middle attack. In order to protect against such attacks, the extensions
IND-CCA1 and IND-CCA2 were invented.

The major difference between IND-CCA1 and IND-CPA is that the former
allows for oracle calls before the Challenge phase. These oracle calls, allows
the adversary to ask for decryption of certain encrypted messages. There is
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no limit on the number of calls the adversary makes, but since the adversary
is always terminating there will be a finite amount of them. But this poses a
problem for us, how does one describe a loop with the protocols? There is no
looping session type, in what was presented in Chapter 4.

There are several options available to us, one is to add a form of looping
construct. One way of guaranteeing that the loop always terminates is to base
it on a similar construct as the W -type. But instead of adding a new construct
we encode the loop within the current system, by using the fact that we can
compute protocols. The protocol Server n Q R C is one way of doing so, this
protocol loops n-times. In each cycle it receives a message q of type Q, and it
respond with a message of type R q. By computing the protocol, it is possible
to shift the recursion from the protocol to use the recursion already existing
in the type theory.

Server : N→ (Q : Set) (Resp : Q→ Set)→ Session→ Session
Server zero Q Resp Cont = Cont
Server (suc n) Q Resp Cont = ? (q : Q) . ! (Resp q) . Server n Q Resp Cont

The dual of this type is called Client n Q R C and one can show that
dual (Server n Q R C) is equal to Client n Q R (dual C). The reason for the
name is that a Client asks queries and gets responses from the Server, similar
to the client-server model. The amount of queries to answer is given by the
type, of course since the session can be dependent the number can come from
communication. We define Server? as a special version of the server that will
first receive the number of queries, and then act as a Server for the allotted
amount of queries.

Server? : (Q : Set) (Resp : Q→ Set)→ Session→ Session
Server? Q Resp Cont = ? (n : N) . Server n Q Resp Cont

Client! : (Q : Set) (Resp : Q→ Set)→ Session→ Session
Client! Q Resp Cont = ! (n : N) .Client n Q Resp Cont

Dually we define Client! to be a Client that before asking queries, first
sends the amount of queries that the Client will send. The definition of IND-
CCA1 is similar to IND-CPA with the exception that before the challenge phase
the Challenger acts as an oracle answering decryption requests. The Session
is formally described as follows:
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Definition 5.3.1: IND-CCA1

The IND-CCA1 (Indistinguishability Under Chosen Ciphertext Attack) is
similar to IND-CPA but with an Server? round before the challenge phase.
The environment is implemented by the following process.

ηCCA : Bool→ RG × RE→ {| ! (pk : Public) . Server? C M
(? (ms : M ×M) . ! (c : C) .⊥|}

ηCCA b (rg , re) =
let pk , sk = key-gen rg

oracle : (n : N)→ {| Server n C M
(? (ms : M ×M) . ! (c : C) .⊥ |}

oracle zero = p. p(ms) p〈enc re pk (select ms b)〉 0
oracle (suc n) = p. p(c) p〈dec sk c〉 (oracle n @ p)

in p. p〈pk〉 p(n) (oracle n @ p)

In order to be IND-CCA1 secure, the encryption scheme needs to be IND-
CPA secure. This fact can easily be demonstrated by the following lemma that
shows every IND-CCA1 secure encryption scheme is also IND-CPA secure.

Lemma 5.3.2: IND-CCA1 Implies IND-CPA

An encryption scheme (key-gen, enc,dec) that is IND-CCA1 secure is also
IND-CPA secure.

Proof. A IND-CPA adversary is a IND-CCA1 adversary that performs 0
oracle requests, so if the encryption scheme is secure against all IND-
CCA1 adversary then it is also secure against the IND-CPA ones.

The IND-CCA1 game is considered to be non-adaptive, since the adver-
sary can’t ask queries based on the encrypted message he receives. When
performing reductions for proofs it is often necessary to be able to adapt the
oracle request, and as such an adaptive version of IND-CCA1 was created.
This version is called IND-CCA2 (Adaptive Chosen Ciphertext Attack), and
is similar to IND-CCA1 with the exception that another oracle round is hap-
pening after the challenge phase. Of course the adversary is not allowed to
ask for the decryption of the encrypted text that was received as part of the
challenge, since it would make the game trivial then.





Chapter 6

Prêt à Voter
Joint work with: Nicolas Pouillard

In this chapter, as a case study, we will prove that the voting system Prêt à Voter
have the Receipt Freeness property. This proof, and the mathematical defini-
tion of Prêt à Voter is based on the paper [KTR13].

The voting system Prêt à Voter seeks to achieve voter verifiability and full
audibility. This means that every voter is provided with a method to confirm
that the vote has been cast correctly, while at the same time still provide ballot
privacy. This is in general quite difficult, since providing both of these notions
seems contradictionary, verifiability seeks transparency of the voting process,
whereas privacy seeks the opposite.

The solution employed by Prêt à Voter, is that the voter will be provided a
receipt that can be used to verify that the vote has been cast. But this receipt
can’t be used to prove for what the vote is and therefore provides secrecy of
the ballot.

A ballot comes in two parts, a left hand side(lhs) which provides a ran-
domised candidate order in clear text. The other part is the right hand side,
historically called the onion, which provides an area to mark the vote. The
ballot is represented in our type theory by the following data type:

record Ballot : Set where
field

lhs : CandidateOrder
rhs : Onion
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Figure 6.1: Example of process of voting starting with an empty ballot, that
gets marked and then finally separated.

The onion contains an encrypted representation of the candidate order
and a unique serial number. The serial number is used for administrative
purposes, it is of course important, for the privacy of the vote, that the link
between the voter and the serial number is not stored. The mark is a type
that identifies which box has been marked, if the ballot haven’t been marked
yet the none constructor of the Maybe type is used.

record Onion : Set where
field

mark? : Maybe Mark
permuation : CipherText
sn : SerialNumber

The voter will be given a random ballot and will proceed to mark the
ballot for the preferred candidate. Afterwards the lhs will be destroyed such
that there is no visible way to see what the mark is for. It is the rhs that is cast
and a signed copy of this is given to the voter such that the voter can verify
later that her vote has been accounted for. This since all the onions used in
the tally are published together with the result of the tally.

Since the voter can’t see that the encryption of the candidate order on
the onion, she can’t check if it is the same as the one on the lhs. Therefore
the voter is given the power of auditing the ballot, in doing so the encrypted
order will be decrypted and can therefore be compared against the visible
candidate order. This will spoil the ballot and can therefore not be used to
vote, and the voter will be given a new one. This process can be repeated
multiple times, and since the ballots are picked at random it is likely that if
the order was fraudulent, i.e. doesn’t match, this would be detected.
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6.1 ReceiptFreeness Game

The security notion we wish to establish, is that the voter can’t prove how she
voted. This is formalised by a somewhat complicated Crypto-Game, which is
essentially the same game as in [KTR13], in which there is an election, of
only two candidates, and we allow the adversary to corrupt as many votes as
he pleases. There is going to be two more votes, for different candidates, but
the adversary only sees one of the receipts. He should try to figure out for
whom this receipt is, i.e. trying to figure out how the person whose receipt
he received voted. The intent of the receipt is to verify that a person has
voted and not how one voted, so if the adversary is able to figure out from
the receipt then something is wrong.

In this game we assume that there are only two candidates, which are
named Alice and Bob. The goal of the adversary is to guess for which candi-
date a particular Receipt is from. The Adversary is given access to an oracle,
where he can query for certain powers. The powers is represented by the type
Q, which is the type of queries the adversary can ask.

data Q : Set where
REB RBB RTally : Q
RCO : Receipt→ Q
Vote : Receipt→ Q

For every query q : Q the oracle will respond with a message of type
Resp q, which is a type defined using large elimination. The type Accept?, is
a type equivalent to the boolean with two constructors accept and reject. The
type BB is for the bulletin board, which is just a list of onions. Finally the
Tally is represented by N × N where the first number is the total of votes for
Alice, and the second number of votes for Bob.

Resp : Q→ Set
Resp REB i = Ballot
Resp (RCO x) = CandidateOrder
Resp (Vote x) = Accept?
Resp RBB = BB
Resp RTally = Tally
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The intended semantic of the queries that adversary A is sending is as
follows:

REB Retrieve Empty Ballot: a new blank ballot, i.e. a ballot with both LHS
and RHS, is generated and given to the adversary.

RCO x Reveal Candidate Order: given an RHS x of a ballot the oracle will
reveal the candidate order.

Vote x A will send a vote, i.e. a marked RHS, this vote is validated and if it
is valid put on the bulletin board, otherwise the vote is rejected.

RBB Reveal Bulletin Board: Returns the bulletin board in its current state.

RTally Reveal Tally: Returns the current tally for each candidate.

Remark 6.1.1

We note here that for aesthetic reasons we have chosen to deviate a bit
from the original definition. In the paper the adversary always have read
access to the bulletin board and therefore RBB would return only the
tally. But it fits better with the rest of the system if access to the bulletin
board goes through an oracle call, therefore we separated this into two
separate requests.

The attack game, used by the receipt freeness property is using the fol-
lowing steps. The steps are similar to that of IND-CCA2†, in that oracle calls
happens before and after a Challenge.

Setup The challenger C sets up the system, and creates an empty bulletin
board. The public parameters are sent to the adversaryA .

Phase I In this phase, the adversaryA performs queries to the oracle.

Challenge The challenger C sends two receipts i and j, one is a vote for Alice
and one for Bob. These receipts are in a random order, and have been
freshly generated, i.e. not used in any oracle call before.

Phase II The adversary A can perform more oracle queries, although not al-
lowed to use the receipts i and j.

Guess A returns the guess if i is a vote for Alice.
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As usual, we can define advantage of an adversary as:

Definition 6.1.2: Advantage

A Prêt à Voter voting scheme is receipt free if for all polynomial time ad-
versariesA the advantage AdvRF(A ) =

�

�Pr[Ex pRF = 1]− 1
2

�

� is an negli-
gible function.

Formally we can describe the attack game using the following protocol
with types. We describe the protocol from the perspective of the challenger,
this is the reason why the Round which is used during each phase is using the
Server construct.

Round : Session→ Session
Round Next = Server #q Q Resp Next

Exchange : Session→ Session
Exchange Next = ? SerialNumber2. ! Receipt 2 .Next

ReceiptFreeness : Session
ReceiptFreeness = ! PubKey .Round (Exchange (Round⊥))

So a challenger in the Receipt Freeness game will first output a public key
(PubKey). It will then have a round of answering oracle queries before doing
the challenge exchange. Here it receives two serial numbers and will output
two receipts before finally doing another round of answering oracle queries.

We now focus our attention on the actual implementation of the chal-
lenger, i.e. a process that follows the aforementioned protocol. The first step
is the code that implements the oracle. This code has access to both the pri-
vate and public key of the challenger. Furthermore it has read access to the
bulletin board, write updates will happen in a separate function later on. The
randomness rgb is used for generating the ballots, in the case of a REB call.

module Oracle (sk : SecKey) (pk : PubKey) (rgb : Rgb) (bb : BB)where
resp : (q : Q)→ Resp q
resp REB = genBallot pk rgb
resp RBB = bb
resp RTally = tally sk bb
resp (RCO receipt) = DecReceipt sk receipt
resp (Vote v) = if Check bb v then accept else reject

Here Check is a function that checks if the given vote is acceptable given
the current bulletin board bb. The module Chal is used for defining the chal-
lenger, this uses similar arguments as the Oracle. But furthermore has access
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to two sets of randomness, one for each phase, and each phase has #q num-
ber of Rgb elements. The code to update the bulletin board is newBB, which
will only update if the request is a Vote, and then updates only if the ballot is
valid.

module Chal (b : Bool) (uri : URI) (pk : PubKey) (sk : SecKey)
(v : PhaseNumber→ Vec Rgb #q) (re : Re

2)where
newBB : BB→ Q→ BB
newBB bb (Vote v) = if Check bb v then v :: bb else bb
newBB bb _ = bb
{-... -}

Still inside the Chal module we can now define the process for each step
of the protocol. The service code is shared in each loop of the oracle phase,
and it simply calls the oracle for the response and decreases the loop variable
i. During the Challenge phase the challenger encrypts the two votes in some
order and returns.

module _ {X} p# (cont : BB→ Proc uri X)where
service : (i : N)→ BB→ Fin #q→ Proc uri (Round i X)
service zero bb i = cont bb
service (suc ri) bb i =

uri(q) uri〈Oracle.resp sk pk (lookup i (v p#)) bb q〉
service ri (newBB bb q) (pred i)

phase2 : BB→ Fin #q→ Proc uri (Round #q⊥)
phase2 = service 12 (λ _→ uri() (0)) #q

exc : BB→ Proc uri (Exchange (Round #q⊥))
exc bb = uri(sn)

let r2 = EncReceipts pk re sn b in
uri〈r2〉 phase2 (r2 :: 2 bb)max#q

phase1 : BB→ Fin #q→ Proc uri (Round #q (Exchange (Round #q⊥)))
phase1 = service 02 exc #q

Finally outside the Chal module we can now declare RF−C as the actual
process that implements the protocol. This code receives the secret bit b and
three pieces of randomness.
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RF−C : (b : Bool) (uri : URI) (rk : Rk) (v : PhaseNumber→ Vec Rgb #q) (re : Re
2)

→ Proc uri ReceiptFreeness
RF−C b uri rk v re =

let pk , sk = KeyGen rk

BBsetup = []
in uri〈pk〉 Chal.phase1 b uri pk sk v re BBsetup max#q

We will develop a simulator showing that if the encryption used is IND-
CCA2†, a variation of IND-CCA2, then Prêt à Voter is receipt free. But before
that we will introduce this new variant of IND-CCA2 named IND-CCA2†.

6.2 The IND-CCA2† game

The difference between IND-CCA2† and IND-CCA2 is very small, the only
difference is that in the challenge phase, the adversary receives encrypted
versions of both messages sent, but in an order that depends on the secret
bit b. Of course in the oracle phase after the challenge the adversary is not
allowed to ask for the decryption of any of the two cipher texts received. This
minimal change will be useful later. Now any encryption scheme that is IND-
CCA2 secure will also be IND-CCA2† secure, and vice versa. This result is the
main topic of this section.

Theorem 6.2.1: IND-CCA2† implies IND-CCA2

If a public-key encryption scheme (Ke yGen, Enc, Dec) is IND-CCA2† se-
cure then it is IND-CCA2 secure.

The simulator will behave just like the IND-CCA2 adversary, but dur-
ing the challenge phase it will only forward the first cipher text. This is
achieved by using the mapStrategy function that will behave similarly dur-
ing the first round, but will then apply the transformation function for the
challenge phase.

A-t’ = Map.A* id (λ f→ f false) id

A-transform : (adv : CCA2.Adversary)→ CCA2d.Adversary
A-transform adv ra pk = mapStrategy A-t’ (adv ra pk)

We can prove that the transformed process, i.e the one that is communicat-
ing with the simulator, will have the same probability playing the IND-CCA2†

game as the adversary have playing the IND-CCA2 game:
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correct : ∀ {re r′e rk ra} b adv
→ CCA2.EXP b adv (ra , rk , re)
≡ CCA2d.EXP b (A-transform adv) (ra , rk , re , r′e)

correct {re} {r′e} {rk} {ra} b m with KeyGen rk

... | pk , sk =
rs (put−resp rm (Enc pk (get−chal rm b) re))
≡〈 ap (λ x→ rs (put−resp rm (Enc pk x re))) rmrmd 〉

rs (put−resp (A-t’ (runStrategy (Dec sk) (m ra pk))) kd)
≡〈 ap (λ x → rs (put−resp x kd)) !rm 〉

rs (put−resp rmd kd) �
where open ≡−Reasoning

rs = runStrategy (Dec sk)
md = A-transform m ra pk
rmd = rs md
rm = rs (m ra pk)
!rm = ! run−map (Dec sk) A-t’ (m ra pk)
rmrmd = ap (λ x→ get−chal x b) !rm
kd = λ x→ Enc pk (get−chal rmd (x xor b)) ([0: re 1 : r′e ] x)

Proof. Since the probability of the two processes are the same we have that
the advantages are the same as well.

The other direction is more interesting, the proof is also based on the one
found in the original paper [KTR13], but with a slight change, since the orig-
inal makes a slight mistake and confuses advantage and probability. These
two concept are similar but not equal, and therefore the original proof can’t
be reconstructed as it was in the paper. The original proof makes a case dis-
tinction on the secret bit, and in the first case calculates an advantage to be
ε, and in the second case an advantage of ν. Then the proof conclude that
the overall advantage is the average of these ε+ν

2 , but this is not in general
true for advantages, although it is true for probabilities. In other words the

advantage is
�

�

ε+ν
2 −

1
2

�

�, which could be different from |ε−
1
2 |+|ν− 1

2 |
2 depending

on the values of ε and ν. This shows the value of doing mechanised proofs,
we can’t conflate similar concepts and as such simple mistakes like these are
not possible. The theorem is still true, and can be proven.
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Theorem 6.2.2: IND-CCA2 implies IND-CCA2†

If a public-key encryption scheme (Ke yGen, Enc, Dec) is IND-CCA2 se-
cure then it is IND-CCA2† secure.

Proof. There are two simulators which act similar to the one in [KTR13],
which are simulators that receive only one ciphertext from the IND-CCA2
challenger, therefore the simulator needs to create a new ciphertext for
the IND-CCA2† adversary. The simulator will encrypt at random one of
the previous messages received. The difference between the two is which
of the ciphertexts is the real one.

The proof of correctness has to jump between these two simulators,
which makes one more appeal to the negligible assumption of IND-CCA2,
than the original proof.

6.3 The Simulator for the Receipt Freeness Game

The simulator between the RF-Game and the IND-CCA2† is here implemented
as a process between the RF-Game adversary and the IND-CCA2† challenger.
This means that this is a process that can communicate with two other pro-
cesses, one following the ReceiptFreeness protocol and one following CCA2−
dagger⊥. Since the simulator are in the middle communicating with both the
protocols in question are combined with the O connective. For the reader
with a more intuitionist’s mind this could be represented by CCA2−dagger −◦
ReceiptFreeness.

The simulator will store its own version of the ballot box, and the current
tally. The ballot box will be set up using the public key from the IND-CCA2†

challenger, this means that the simulator can’t decrypt ballots by itself. So
whenever this is needed the simulator will have to be in the oracle phase
from IND-CCA2† game. Luckily we only need to decrypt during the oracle
phase of the Receipts Freeness game, and these will line up with each other.
Furthermore we will always be able to know what the current tally is.

Similar to how the processes for both the challengers of the two different
attack games have used one function to describe them, so will the simulator.
This code which is shown in Figure 6.2 will be called service, it assumes that
we have a process to handle the continuation cont. The continuation gets
access to the current ballot box and its current tally. The channel c is used
to communicate with IND-CCA2† challenger and the channel d is used for
communication with the adversary of the RF-Game.
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module _ {A B} (p# : Bool) (cont : BB→ Tally→ A −◦ B)where
service : (r : N)→ BB→ Fin #q→ Tally
→ Server r CipherText (const Bool) A −◦ Round r B

service zero bb i ta = cont bb ta
service (suc r) bb i ta =

d (REB→ d〈ballot p# i〉 ignore r (service r bb (pred i) ta)
;RBB→ d〈bb〉 ignore r (service r bb (pred i) ta)
;RTally→ d〈ta〉 ignore r (service r bb (pred i) ta)
; (RCO x)→ c〈permutation x〉 c (co) d〈co〉 service r bb (pred i) ta)
; (Vote x)→ c〈permutation x〉 d (co)

if Check bb x
then d〈accept〉 (service r (x :: bb) (pred i)
(tallyMarkedReceipt? co (m? x) +,+ ta))

else d〈reject〉 (service r bb (pred i) ta))
)

Figure 6.2: Simulator between two oracle rounds of the IND-CCA2† and Re-
ceipt Freeness games

Notice that we here are using a pattern matching receive, i.e. d (p→ t; q→ u)
is here used to represent an input on the channel d. The input are then
matched against the patterns p and q, and the resulting process will be either t
or u depending on which pattern match. Furthermore we use the ignore com-
binator which will perform a dummy run of the oracle in IND-CCA2† game.
It will simply send a dummy ciphertext and then throw away the result. Let
us discuss more general how each request is handled, we read a request from
the Receipt Freeness adversary and then case on this request. The first ar-
gument to service is how many rounds there are left in this oracle round, for
both games, and this will decrease by each round. The Fin #q is used to select
correct randomness for each round.

REB This requests an empty ballot for which we use the ballot function, the
definition of which is not shown, and then we ignore the IND-CCA2†

side.

RBB This requests the current ballot box, so the current ballot box is given
to the adversary, and then we ignore the IND-CCA2† side.
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RTAlly This requests the current tally, so the current tally is given to the ad-
versary, and then we ignore the IND-CCA2† side.

RCO x This requests to reveal the candidate order of a particular onion, here
we can ask the IND-CCA2† oracle for decryption since and return what
it returns.

Vote x The adversary wishes to vote the onion x. We first check if this onion
is valid. This check is possible to do without knowing the secret key of
the ballot box, since we only need to check that the amount of marks
is correct according to the voting scheme, and that this ballot have not
been cast before. If the vote is valid then we accept the vote and ask the
oracle to reveal the candidate order and we update the ballot box and
tally accordingly, otherwise we reject the vote.

The actual simulator can now be combined in a similar fashion as the
challengers have so far. The interesting bit is the code for the challenge phase,
where use the receipts function that votes on the first mark on both ballots.
Since we have picked the candidate order to be either Alice first, or Bob first,
this will result in one vote for Alice and one for Bob. The simulator don’t
know the order of course, but that doesn’t matter, finally since there is one
vote for each we can increase each tally by 1.

sim−phase2 : BB→ Fin #q→ Tally→ CCARound⊥ −◦ Round #q⊥
sim−phase2 = service 12 (λ _ _→ c〈〉 d () 0) #q

sim−chal : BB→ Tally→ CCAChal (CCARound⊥) −◦ Exchange (Round #q⊥)
sim−chal bb ta = d(sn) c〈(02 , 12)〉 d (ct)

let r = receipts sn ct in d〈r〉 sim−phase2 (r :: 2 bb)max#q (1 ,1 +,+ ta))

sim−phase1 : BB→ Fin #q→ Tally
→ CCARound (CCAChal (CCARound⊥)) −◦ Round #q (Exchange (Round #q⊥))

sim−phase1 = service 02 sim−chal #q

The final code for the simulator will first send the public key pk from
the IND-CCA2† challenger to the RF-Game adversary. The randomness for
simulator is here made explicit, it was hidden in the previous code, the only
code that relies on the randomness is the code for ballot for generating a new
ballot. Furthermore we make the channels explicit.

simulator : (Vec Rgb #q) 2→ CCA2−dagger −◦ ReceiptFreeness
simulator r = c d. c(pk) d〈pk〉 sim−phase1 c d r pk []max#q 0 ,0
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The simulator starts off with an empty ballot box and empty tally, both of
which are easy to without knowledge of the secret key. This concludes the
simulator between these two games . In the next section we will prove the
security property, that this simulator provides a proper reduction between the
two games.

The reduction is proved as follows, we first prove that the simulator when
talking with the IND-CCA2† challenger will be bisimilar to the Receipt Free-
ness challenger. Therefore any Receipt Freeness adversary RF−A will not be
able to distinguish them. But here we can use the associativity of the cut for
the processes and establish that the advantage of RF−A in the RF-Game will
the same as the advantage of (νcd) simulator rgb ‖ RF−A in the IND-CCA2†

game.

Theorem 6.3.1: Receipt Freeness for Prêt à Voter

For all Receipt Freeness adversaries RF−A, the final guess when com-
municating with the challenger of the Receipt Freeness challenger, is the
same as when communicating with the simulator communicating with
the IND-CCA2† challenger.

Proof. The proof goes by induction on the messages that the adversary
RF−A sends, in each step the behaviour of the challenger and simulator
is the same.

With this proof complete, we have proved that Prêt à Voter has the Receipt
Freeness property assuming that the underlying encryption system is IND-
CCA2†. Since all IND-CCA2 encryption systems are also IND-CCA2†, this
shows that one can indeed realise Prêt à Voter as a voting system.



Conclusion

As a stronger push to move to electronic voting is happening around the
world, it becomes increasingly important to build these systems in a way
that induces trust. For this endeavour to work, the security of the systems
need to be based on solid arguments. As such, we look into the use of seman-
tic security proofs to verify the proposed cryptographic constructions used to
build the voting systems. These mathematical proofs are rigorous and have
been used by the security community for decades. The added benefit of using
mathematical construction that are built on top of logical arguments is that
the proofs can be verified with proof assistants, as have been carried out with
this work.

We have worked within a type theory, since these formalisations work
make it easier to reason about computational systems. The agents that we are
modelling, and by that we mean not only the algorithms used for the crypto-
graphic construction, but also the adversaries that want to break the system,
can all be modelled by constructive functions. Furthermore it is important
that these functions are probabilistic, which can be modelled as deterministic
functions with randomness as an extra argument. Since the functions are just
normal functions, but with an extra argument, one can reason about them
in the present type theory as one would do with normal terms. This work
has introduced some new techniques to work with such functions though, in
particular since the notion of equality is changed from the normal. Instead
probabilistic values are equal if they have the same distribution. By using
types effectively, and in particular type isomorphisms, it is easier to reason
about such equivalences.
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The agents can apart from using computation, also communicate with the
environment. This is important to correctly capture the notion of games that
are used in semantic security proofs. The use of communication and con-
currency is not standard in type theory, as such, this work has proposed a
new type theory which includes communication and concurrency primitives.
The agents using communication, also called processes, can be typed with
behaviour types that can be included in the normal type theory. These be-
haviour types share a commonality with linear logic, and have been heavily
inspired by recent work in the area of using linear logic to type communi-
cating processes. The type theory has then been modelled in a current type
theory to prove it’s consistency.

The reasoning principles, and the model of communication, have been put
together in this work into a library by the name of CRYPTOAGDA. With this
library it is possible to formally verify semantic security notions, for proposed
constructions. In this thesis, as a case study the proof of receipt freeness for
the voting system Prêt à Voter, has been formally verified using this library,
and is a testament to the feasibility of the method for providing guarantees
about cryptographic constructions.
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