
Journal of Imaging Science and Technology R© 60(1): 010408-1–010408-10, 2016.
c© Society for Imaging Science and Technology 2016

End-User Development of Visualizations
Kostas Pantazos† and Soren Lauesen

IT University of Copenhagen, Rued Langgaards Vej 7, DK-2300, Copenhagen S., Denmark
E-mail: slauesen@itu.dk

Abstract. In this article the authors investigated a visualization
tool (uVis) for end-user developers, in order to see how end users
actually use it. The tool was an early version and the investigation
helped the authors to improve it. The investigation showed that users
appreciated the simple formula language, the coordinated panels,
and the drag-and-drop mechanism. However, the most important
thing for them was the immediate response when they changed
something, for instance part of a formula. The entire visualization
was updated immediately without having to switch from development
view to production view.

With uVis, developers construct a visualization from simple
visual components such as boxes, curvePoints, and textboxes. All
component properties such as Top and BackColor can be complex
formulas similar to spreadsheet formulas. The operands in the
formula can address relational data in a database, other visual
objects, and dialog data provided by the user. A special Rows
property can bind to a database query and make the component
replicate itself for each row in the query. In this way, traditional as
well as novel visualizations can be constructed.

The most serious usability problems were data binding and
not noticing errors (errors were shown in an error list, but not in
the formula that had the error). There were many other usability
problems. Removing them would speed up learning and make the
tool more successful. c© 2016 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2016.60.1.010408]

INTRODUCTION
The provision of good data visualizations is challenging. A
good understanding of the data is necessary, and several
visualizationsmust be tried and evaluated by domain experts.
Good visualizations will allow users to accomplish tasks
effectively and efficiently (usually a problem according
to Ref. 1). Traditionally, visualization development is a
collaboration between domain experts and professional pro-
grammers. Both parties spend time and resources to design
a good visualization. Usually, there are communication
problems in this user-centered design practice:2 users have
the domain knowledge but no programming skills, while
programmers do not have the domain expertise.

In the last decade, a new research discipline has emerged,
End-User Development (EUD). End-user developers are

† Kostas Pantazos passed away on October 2015. He received his BS in
informatics from the University of Athens (2005) and his PhD in software
engineering from ITUniversity of Copenhagen (2013). Since then heworked
as a postdoc at Copenhagen Business School, and recently as an external
lecturer at the IT University of Copenhagen.
Received June 26, 2015; accepted for publication Nov. 24, 2015; published
online Jan. 19, 2016. Associate Editor: Song Zhang.
1062-3701/2016/60(1)/010408/10/$25.00

users who may have little or no formal training or experience
in programming.3 The main goal of this discipline is to
empower users so they can create, modify, and extend
software artifacts, and as a result gainmore control over their
applications.4,5 Taking into consideration the predictions
from Ref. 6 and observing the increased use of computers,
it is important to investigate how end-user developers can
enter the visualization area. However, first we have to
investigate whether they actually can create visualizations
and what is required to make them do it. Investigation of
this path is an important factor for the advancement of EUD
and information visualization (InfoVis), which has been
discussed in prior research (e.g., see Refs. 7–9).

In response, we developed a visualization tool for
end-user developers, uVis, and conducted two usability
studies with end users. The first study involved nine
end-user developers in three-hour sessions. The second
study involved two clinicians in two-hour sessions. In both
studies, participants were asked to create a predefined
custom visualization from scratch.

The results showed that with a modest amount of
training, end-user developers can construct visualizations.
The most difficult part was data binding (all of them en-
countered this problem at least once). Future research should
investigate novel approaches to improve the understanding
of the relation between data and visualization. This study also
showed that the most appreciated feature for the participants
was to test the application without switching workspace
from development view to production view. Furthermore,
different strategies observed during the tests and from their
rating indicated requirements for a flexible development
environment. It seems that one solution does not fit all, and
a combination of panels yields a better understanding and
better visualizations.

The rest of the article is organized as follows. First,
we discuss related work on end-user development and
information visualization. Next, we describe uVis and the
two studies. The article concludes with a discussion of
limitations and directions for future work.

RELATEDWORK
As this work concerns end-user development and informa-
tion visualization, we reviewed the literature in both areas.

End-User Development
The End-User Development (EUD) field is a research disci-
pline that has emerged from research in Human–Computer

J. Imaging Sci. Technol. 010408-1 Jan.-Feb. 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50529055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:slauesen@itu.dk

Pantazos and Lauesen: End-user development of visualizations

Interaction, Cognitive Science, Requirements Engineering,
Software Engineering, Computer-Supported Cooperative
Work (CSCW), Artificial Intelligence, Information Systems,
and the Psychology of Programming.10 Lieberman et al.4
defines EUD as ‘‘a set of methods, techniques, and tools
that allow users of software systems, who are acting as
non-professional software developers, to at some point
create, modify and extend a software artifact.’’ Consequently,
end-user developers are not professional programmers, but
users who may have little or no formal training or experience
in programming.3 The main purpose of EUD is thus to
empower users so that they can create, modify, and extend
software artifacts, and as a result gainmore control over their
applications. Examples of end-user developers are system
administrators, interaction designers, teachers, accountants,
health care workers, and managers.

Rode et al.11 investigated EUD of web applications.
Their study showed that web development tools focus on
supporting developers with a wide range of functionalities.
Less attention is paid to ease of use. This finding was
also observed in another study that surveyed EUD and
visualization tools.12

Lieberman et al.4 define two types of end-user activities:
parameterization and customization (activities that allow
end users to parameterize or customize their applications
using existing presentations) and program creation and
modification (activities that allow end users to create
or modify software artifacts). In order to support these
types of activities, the system should be flexible and
expressive enough to set parameters, compose objects, etc.4
Simple changes are not difficult, but things become more
complicated as ambitions increase. MacLean et al.13 suggest
a ‘‘gentle slope’’ to reduce the level of complexity and support
development on different levels.

Information Visualization
The Information Visualization field (InfoVis) has enabled
the development of visualization systems that enhance
human cognitive processes by visually presenting data.14
Considering the variety of data and user tasks, it is obvious
that new visualizations have to be developed all the time.
Several InfoVis toolkits and tools have been developed to
assist users and improve visualization development.15–24
Most of them have ignored empirical evaluation with
end-user developers (e.g., Refs 16–18), focusing primarily
on case studies and novel visualizations developed by
programmers.

Isenberg et al.25 presented an assessment of the eval-
uation practices in articles from the IEEE visualization
conferences, and concluded that the work on visualization
often does not involve any participants at all.25 Another
study12 surveyed end-user developers of InfoVis, reviewing
existing InfoVis tools and how they constructed predefined
and custom visualizations. The survey showed that end-user
developers need better tools to create and modify custom
visualizations.

User-centered Design
To facilitate the visualization development process and
ensure that visualizations provide adequate information,
several InfoVis applications (e.g., Refs. 26–29) have been
developed with user-centered design, where users partic-
ipated during the entire development process. Norman30
and Nielsen31 describe user-centered design as the early
and continuous involvement of end users in the design and
development process.

Considerable work has been conducted to define
activities in the user-centered model for design and imple-
mentation of InfoVis tools.2,27–29 For example, Robinson
et al.28 describe a six-stage user-centered design process
where users are involved and provide input in each stage.

Using this model,28 Roth et al.29 present a modified
user-centered design approach that starts with prototyping,
followed by interaction and usability studies, work domain
analysis, conceptual development, and implementation, and
ends with debugging.

Although the user-centered model helps in producing
better visualizations, it is hard to bridge the gap of knowledge
between end users and programmers. This gap can create
challenges such as the following: programmers should
understand end-user needs, end users should gain some
knowledge of InfoVis, end users should be devoted to and
actively participate in the process, etc. The study by Koh
et al.2 reports on such challenges.

This article focuses on the development and modifica-
tion of visualizations by end-user developers, i.e., users with
limited programming skills. The purpose was to investigate
how they create visualizations and to elicit requirements for
improved tools.

uVIS
Belowwepresent a visualization tool for end-user developers.
It consists of the following.

• uVis Studio: The Studio has several panels similar
to many other development environments. Many of
the panels are coordinated to show the same data in
different ways. The developer can drag and drop visual
objects (controls) to the Forms in the central design
panel and define the properties of the visual objects by
means of the Property Grid (lower right).

• The Formula Language: In contrast to most other
development tools, a property can be a complex
formula. The operands in the formula can address
relational data from a database, other visual objects, and
dialog data provided by the user.

• Rows property: Each visual object has a Rows property
that can make the object generate several instances
of itself. The instances share the same formulas, but
the results of the formulas may vary from instance to
instance. In this way, a single visual object can generate,
for instance, all of the nodes in a line graph or all
of the pie slices in a pie diagram. The Rows formula
will typically be a database query expressed in a very

J. Imaging Sci. Technol. 010408-2 Jan.-Feb. 2016

Pantazos and Lauesen: End-user development of visualizations

Figure 1. A custom visualization being developed in uVis Studio. The Design Panel shows the evolution of technologies since 1985. The yellow column
and row show the total number of technologies per category and year. The wide black bars show the total number of technologies. Each box uses color
coding to show whether there have been publications or not. The narrow bar inside a box shows the number of technologies per year. The first column
aggregates the number of technologies for a range of years, which is defined in the two text boxes. End users can change the years and the visualization
updates. The developer has selected a control for modification (the dark blue border in the Design Panel). It is highlighted in the Control-Data Hierarchy
and its property formulas are shown in the Property Grid, where the developer can edit them.

compact way. It will cause the visual object to generate
an instance of itself for each row in the query. Moreover,
the Rows formula can address visual data and dialog
data, for instance in the Where clause.

Figure 1 is a screen shot of uVis Studio. The central
Design Panel shows a customvisualization created by an end-
user developer (it visualizes the evolution of technologies).

A uVis application is a folder that contains a vis-file for
each Form in the application and a vism-file (map file) that
specifies the connection to a database and the initial Form
to open (see Figure 2). This version of uVis was designed
after feedback from tests with programmers using the first
version.15

The uVis Formula Language
Developers construct visualizations by placing visual objects
on Forms and specifying uVis formulas for their properties,
as explained above. Figure 3 shows two steps in creating
a simple bar chart. In (a), the developer has put a simple
box control on the Form and made the background blue,
using the BackColor property. In (b), the developer has
specified the Rows property to be a simple database query
that retrieves all rows of a table. As a result, the box will
generate an instance of itself for each row. The developer has
also specified formulas for the size and position properties.
They compute their values based on data in the row and
the row number (index). As result, we see a bar graph. The
developer might also make the BackColor a formula, and as
a result each bar could have a data-dependent color.

uVis provides simple controls, e.g., Label, Textbox,
Box, Glyph (a control with data-dependent shape), and
GraphPoint. There are also a few advanced ones, e.g., a
TimeScale that can show several periods of time with
different zooms and align other controls according to time.

Controls have three kinds of properties, as follows.

• Value properties: All controls have common properties
such as Top, Left, Width, Height, BackColor, and Rows.
Each type of control can, in addition, have its own
special properties such as Text, Radius, or Shape.

• Designer properties: Any control can have additional
properties with names defined by the developer. He/she
may, for instance, write a complex formula in a designer
property and let other properties or controls refer to it.

• Event Properties: They do not have a formula that
computes a value, but one or more statements that are
executed when the event happens. As an example, the
click event handler for a button may assign values to
properties (overriding the formulas), assign values to
database fields, callRefresh() to update the screen, or call
OpenForm(. . .) to show one more Form on the screen.
At that time there were no conditional statements or
loops.

uVis Studio
The uVis Studio had nine panels at that time, as shown in
Fig. 1.

J. Imaging Sci. Technol. 010408-3 Jan.-Feb. 2016

Pantazos and Lauesen: End-user development of visualizations

Figure 2. A vis-file defines a Form. A vism-file defines a connection to a database.

(a) (b)

Figure 3. Two steps when creating a bar chart. In (a), the developer has put a simple box on the Form and made the background light blue, using the
BackColor property. In (b), the developer has specified the Rows property to be a simple database query that retrieves all rows of table tblIndicator. As
a result, the box will generate an instance of itself for each row. The developer has specified size and position properties that depend on the data. The
height of the box is Value, a field in the data row, and the Left property is index*width, where index is the row number. As result, we see a bar graph.

(1) The Toolbox contains the control types that uVis
supports, such as label, button, timescale, etc. The
developer drags and drops a control into the Design
Panel and Studio sets the default property values.

(2) The Explorer shows visualization files (vis-files) and data
mapping files (vism-files). When the developer clicks on
a vism-file, uVis connects to the database and opens the
initial Form in the design panel. When he/she clicks on
a vis-file, the Form opens in the design panel.

(3) The Design Panel shows a Form with one or more
visualizations. The developer drags and drops controls
from Toolbox, moves and resizes them. However, it was
not possible to move a control when it had a formula for
the position (left or top). Whenever the developer selects
a control, it becomes highlighted with a blue frame
and the corresponding formulas appear in the Property
Grid. The control is also selected in the Control-Data
Hierarchy, and the DataView shows its row data. The
Design Panel is ‘‘live.’’ It supports direct manipulation

and provides continuous feedback during development.
When the developer has changed a formula, the Design
Panel updates immediately. The update reuses database
data that have been retrieved already. This is calledWhat
You Bind Is What You See (WYBIWYS).

(4) The Property Grid shows the properties for the se-
lected control. A row in the Property Grid shows
the property name and the formula. Properties can
be sorted alphabetically or shown in groups to help
the developer to find them faster. A change in the
Property Grid is immediately reflected in the Design
Panel. Moreover, a change in the Design Panel (e.g.,
dragging a control) automatically updates the Property
Grid.Writing formulas can be challenging, as developers
must remember the syntax, and it is common to
misspell words. To help them, the Property Grid has
Auto-Completion which suggests what can follow. The
suggestions can be available variables and language

J. Imaging Sci. Technol. 010408-4 Jan.-Feb. 2016

Pantazos and Lauesen: End-user development of visualizations

functions, and also suggestions for tables, table fields,
and relationships in the database.

(5) The E/R Model uses the vism-file to extract tables, fields,
and relationships from the database. The E/R Model
shows the database as an Entity Relationship diagram
(E/R).32 As the database may contain many tables,
developers can expand or collapse table fields and detach
the E/R Model panel from the Studio to enlarge it and
get a better overview. The E/RModel has a feature called
Formula Suggestions. This feature helps users to specify
the row formulas.

(6) The Error List shows a list of errors detected in the
formulas. The developer double clicks the error, and
the wrong formula in the Property Grid appears and is
colored in red. Once the formula is changed, the error
list updates. In spite of errors, the visualization shows all
of the time. When a formula has an error, uVis uses a
default value.

(7) The Modes panel is positioned above the Design Panel.
It shows the Interaction-Mode (interaction with the
Design Panel as an end user or as a developer) and the
Data-Mode (whether the Design Panel shows data or
formulas).

(8) The DataView panel shows data from the database. This
panel is coordinated with the E/R Model. The developer
clicks a table in the E/RModel, and the rows are shown in
the DataView panel. The developermay also click a field,
and the column is brought to focus and highlighted.

(9) The Control-Data Hierarchy shows the data hierarchy in
the form, displayed in a tree format. If control A is bound
to a database table and control B is bound to a table that
has a one-to-many relation to A, we say that B is a data
child of A. Each control is represented by a node and the
data children as sub-nodes. The text style is bold if the
control or its Parent control is bound to data.

The ‘‘liveness’’ factor
uVis visualizations are constructed with a Drag–Drop–
Set–View–Interact approach. Developers drag and drop
controls, set control properties using formulas, immediately
see the new visualization, and immediately interact with the
visualization as end users. Tanimoto33 defined a taxonomy of
development environments based on how fast the developer
gets feedback, known as the ‘‘liveness’’ taxonomy. This
taxonomy has four levels of liveness. uVis Studio is highly
‘‘live’’ and falls somewhere between levels three and four.

Other Approaches
uVis resembles and has been inspired by existing visualiza-
tion tools. For example, the formula principle is inspired by
Excel and adjusted in order to access database items from
the formula. uVis utilizes the same principle as Protovis: it
uses the principle of building blocks, but does not require
knowledge of three languages (i.e., html, svg, and css). In
addition, uVis has an integrated development environment
(IDE) that Protovis did not have at that time. The IDE is
somewhat similar to the IDE of Tableau, Spotfire, and MS

Visual Studio. Existing tools mainly provide visualizations
that cannot be adjusted at the building block level, while uVis
formulas work on that level.

EVALUATION
We conducted two usability studies of uVis with end-user
developers as test subjects.

Usability Study 1
Participants
Participants were invited by email from our network at
the university. We specified the required skills and IT
knowledge. Sixteen participants responded. However, only
nine participants met the requirements and participated in
the study (three females and six males, between 20 and 35
years old). Three of them were master students, four were
PhD students, and two were employees. None of them had
used uVis, but all of them had used MS Excel to create a
standard visualization (e.g., a bar chart). None of them had
experience with designing or developing visualizations.

Activities
Each usability test had one participant, took three hours,
and consisted of two activities. The tests were conducted
at our university, using a laptop connected to an external
monitor to give an introduction to uVis. We explained the
uVis formula language and the Studio through a video.
During the construction of the visualizations, we assisted
the participants whenever there were misinterpretations,
confusions, or malfunctions of the system.Whenever we had
to assist the participant, we recorded it as a usability problem.

Activity 1—Introduction to uVis. This lasted around
one and a half hours. In the first 20 min, we asked some
background questions, briefly explained the uVis formula
language through a reference card (cheat sheet), and showed
uVis Studio on paper. Next, the participants followed a
video (played on the laptop screen) and replicated the steps
in uVis Studio. The video showed step by step how to
create a bar chart (Figure 4). The video was 10 min long.
It had no audio, but several call-outs to explain how to
use the uVis formula and the Studio. The participant was
informed from the beginning that he/she was allowed to
stop the video, and play it backwards and forwards. At
the end of activity 1, the participant was asked to rate
his/her experience with uVis using a five-point Likert scale:
1—strong disagreement . . . 5—strong agreement.

Activity 2—Construct a Process-Completion Diagram.
We presented a special visualization, a Process-Completion
Diagram (PCD),34 using a scenario from the medical do-
main, and explained how the event-log data were visualized.
The participant was asked to create such a PCD (Figure 5).
We encouraged the participant to do it in a think-aloud
manner. The steps involved are representative ones in
visualization development (e.g., drag and drop controls, refer
to properties, bind controls to data, map a field to a property,
view results, etc.). At the end, the participant answered the
same questionnaire as in activity 1.

J. Imaging Sci. Technol. 010408-5 Jan.-Feb. 2016

Pantazos and Lauesen: End-user development of visualizations

Figure 4. A bar chart and the E/R Data Model behind it.

Figure 5. A Process-Completion Diagram (PCD) used in this study and the E/R Data Model behind it.

Data Collection
We collected qualitative and quantitative data. More specif-
ically, we obtained data from interviews, observations, the
think-aloud approach, and questionnaires. During each
usability test, we kept notes and voice-screen records for later
analysis.

Each recorded problem was classified using the problem
classification in Ref. 35. For instance, in cases where the
system failed to perform correctly, we classified the problem
as a bug. In cases where participants could not complete a
step on their own, it was recorded as a task failure. When
participants complained about something, we recorded it as
a cumbersome problem.

Results
In this study, we identified 44 distinct usability problems
based on 154 problem observations: 12 task failures, two
cumbersome, two medium, six minor, nine bugs, and 13
cases of missing functionality. Participants faced several
problems, and all of them failed at least twice to accomplish
the task on their own. Each problem occurred more than
once. For instance, 47 task failures were observed, but they
comprised only 12 distinct problems. Similarly, 29 cases of
missing functionality were observed, but comprised only 13
distinct functionalities. A missing functionality corresponds

Figure 6. Number of problem observations and number of distinct
usability problems for the first usability study. Each distinct problem was
observed several times.

to something that the system did not have, but the user
expected. Figure 6 shows all of the problems recorded in this
study.

Despite their initial indication of their computer skills,
we classified two participants as users with too low computer
skills to be end-user developers. However, because we
noticed it late in the process (while doing the study), we
decided to run and record the tests anyway. Their problems
are included in the statistics.

Usability Problems
Below we comment on some of the observations.

J. Imaging Sci. Technol. 010408-6 Jan.-Feb. 2016

Pantazos and Lauesen: End-user development of visualizations

(1) Creating several instances of a control by binding it to
rows of a table was understandable to most participants.
However, it was hard in the case where they had to use
a Group By. During the study most of them reasoned
correctly, but they were not sure how to express it
in the formula language. This indicates the need for
better mechanisms for data binding. However, after the
first attempt, participants (apart from #2 and #8) could
proceed on their own, indicating that learning can be
overcome.

(2) Apart from participant 8, all participants could easily
refer to properties—also in other components. With the
help of Auto-Completion and a bit of experimentation,
they mastered it. In the evaluation they found it easier to
refer to properties than to database data.

(3) The uVis formula language has several keywords and op-
erators. Some of them were familiar and quickly under-
stood, others made participants skeptical or confused.
For example, two participants could not distinguish the
difference between thedot (used for referring to database
fields) and the bang (used to refer to components and
properties). Seven of them could guess that the left-join
operator -< generated rows by joining two tables.

(4) We noticed from the think-aloud protocol that partici-
pants found the Design Panel useful. Further, interacting
with visual objects was easy, and the WYBIWYS
feature continuously helped them to understand the
formulas and their actions. Participants were using
Auto-Completion to avoid misspellings and also to
comprehend what they were typing. We observed
this when they stopped typing, either because they
misspelled something or because they wrote a wrong
formula.

(5) uVis Studio provides several coordinated panels.
Changes in the PropertyGridwere immediately reflected
in the Design Panel, the Control-Data Hierarchy, the
Error List, and the DataView. This allowed participants
to view changes from different perspectives and improve
their understanding of the formula language.

(6) All participants had difficulties in identifying the errors.
(7) Participants found it useful to see the E/R Model and

the DataView panel, because they often referred to them
before writing a formula. We observed several strategies
for using these panels. Some of the participants used
mainly the Control-Data Hierarchy to navigate through
controls and view their properties in the Property Grid.
Others used the Design Panel. These strategies confirm
the need for a flexible set of panels.

Questionnaires
The questionnaires captured the subjective ratings of each
participant about general aspects of uVis, the formula
language, and features and panels of the development
environment. These ratings comply with our observations
and provide useful insights about end-user developers’
requirements. The ratings show that participants found
the development environment more interesting than the

formulas. They appreciated features/panels such as Auto-
Completion, Design Panel, Control-Data Hierarchy, Modes.
Nevertheless, several aspects in the visualization develop-
ment were confusing and less appreciated than others;
for example, the formula language, the error notification
mechanism, and data binding.

Debriefing
Participants’ comments varied frompositive to negative. One
participant said ‘‘It will be really easy to create visualizations
with this tool, but users need some IT and database
knowledge.’’ This once more points out the difficulty of data
binding. Another one mentioned ‘‘I think the Studio helps
you, especially the Design Panel.’’ The right balance between
the formula language and the development environment was
pointed out by one of the participants, who said ‘‘To find the
right balance of the formula language is probably a delicate
matter, but using the software for the first time was a bit
too technical.’’ Another participant commented ‘‘It reminds
me of Gemini, a tool I used in the bank in 2008. I liked
the panels, the drag and drop, and viewing the changes in
the Design Panel.’’ The following comment reports on data
binding and error notification: ‘‘Binding controls to data is
not easy, especially when you have to use a Group By. Also,
there are errors that I several times did not notice.’’

Usability Study 2
One of the goals of uVis is to be applicable in hospitals.
Therefore, we conducted a usability test with two clinicians
who had computer skills that correspond to being an
end-user developer. However, clinicians are very busy all of
the time, so we could not repeat the approach from the first
study. Therefore we adjusted the procedure to save an hour,
but retained the core principles for using uVis.

Participants
The first clinician was Søren Lippert, a former Senior
Surgeon, 62 years old. He was a part-time PhD student and
member of the uVis project. He had worked with Health
Informatics since 1994. He provided the medical expertise in
the project. He had started using a very primitive version of
uVis amonth before, but only around one day a week. He had
been using a simple text editor to write formulas since uVis
Studio did not exist yet. He had designed visualizations using
pencil and paper, but had never programmed one.

The second clinician had no prior experience with uVis.
He was a Senior Surgeon, 57 years old, started using IT in
1985, and had done a bit of programming using Visual Basic.
He does not program often and mostly uses MS Access.

Activities
This study was planned to run in two hours. It consisted
of two parts: introduction and constructing a LifeLine
visualization of a health record. The first usability test was
conducted at the university. The second usability test was
conducted at the clinician’s office.

Activity 1—Introduction to uVis. This activity lasted
30 min, where we explained the uVis formula language and

J. Imaging Sci. Technol. 010408-7 Jan.-Feb. 2016

Pantazos and Lauesen: End-user development of visualizations

Figure 7. A LifeLine health record and the E/R Data Model behind it.

the Studio.We explained how visualizations are created, what
the uVis formulas are, how to refer to control properties,
to data, etc. Next, we gave the clinician a list of what he
was supposed to do. We showed the clinician the reference
card for the formula language. The clinician was asked to
complete this activity because it would familiarize him with
the formulas and the Studio. At the end of this part, the
clinician was asked the same questions as in the first usability
study.

Activity 2—Construct a LifeLine. We showed the
clinician an already implemented version of a custom
visualization of a LifeLine health record, which used data
from four tables. Figure 7 shows the visualization and the E/R
Data Model. We explained some advanced concepts (i.e., use
-< to bind data), and asked the clinician to create a similar
LifeLine and think aloud during the process. At the end, the
clinician was asked to reply to the questionnaire again as in
activity 1. This activity was planned to last one and a half
hours.

Data Collection
The same procedure was followed as described in the first
study.

Results
We recorded 29 distinct usability problems based on 53 prob-
lem observations: seven task failures, three cumbersome,
three medium, four minor, four bugs, and eight missing
functionalities.

Eighteen problem observations were task failures, but
only seven were unique. Furthermore, the clinicians men-
tioned several missing functionalities and bugs, which
indicates their expectations and the need for improvements.
Figure 8 shows all of the problems recorded in this study.

Usability Problems
Below we comment on some of the observations.

Figure 8. Number of problem observations and number of distinct
usability problems for the second usability study. Most of the distinct
problems were observed several times.

(1) Clinicians had difficulties binding controls to data. Both
of them were unable to write the complex formula that
joins three tables and used a Group By. However, from
their comments we noticed that they knew what should
be shown, but were not sure how to express it with a
formula. Moreover, the Group By increased the level of
complexity, and both clinicians asked for a simple way to
specify a Group By. At the beginning of the study they
were skeptical about the syntax, but as they progressed it
became easier.

(2) Although the first clinician had some prior knowledge
of formulas, we observed that in several cases he was
confused by the bang and dot operators. On the other
hand, he was able to bind correctly to data. Both of them
could guess what the join-left -< operator meant by
referring to the E/R Model, but using it in practice was
difficult.

(3) Clinicians found the Design Panel and the WYBIWYS
feature useful. We observed that getting immediate
feedback helped them to reflect on formulas and adjust
them properly. Auto-Completion was appreciated and
used all of the time. At some point the first clinician
commented ‘‘I noticed that Auto-Completion is not

J. Imaging Sci. Technol. 010408-8 Jan.-Feb. 2016

Pantazos and Lauesen: End-user development of visualizations

suggesting anything. It is because I have to define the
Rows property.’’ This shows that the clinicianwas using it
not only to avoid misspelling, but also to reflect on what
he was doing.

(4) Several times they got information from the various
panels. From our observations, this helped them to
confirm what was visualized, view the changes from
different perspectives, and understand the formula
language better. We noticed that the first clinician
used the Control-Data Hierarchy extensively, unlike the
second clinician. The second clinician liked DataView
and used it in combination with the E/RModel. The first
clinician consulted the E/R Model panel, but DataView
was not used.

Questionnaires
As in the first study, the questionnaires captured the
subjective ratings about general aspects of uVis, the formula
language, and features and panels of the development
environment. Both clinicians rated the following features
high: the Design Panel, the Modes, the E/R Model, and
the Auto-Completion. uVis operators were difficult to use,
especially for the second clinician. More drag-and-drop
features were welcome.

Debriefing
The first clinician said ‘‘The uVis language requires training,
and I have no suggestions how to improve it. A great thing of
the Studio is the Design Panel placed in the center, where you
can see the results as you work. The Auto-Completion tells
you what you can write, this is great.’’ The second clinician
commented ‘‘I use databases because inMS Excel you cannot
use SQL to access the database. This (uVis) is another way,
but I can understand it. Also, I can understand the properties
because I know them from Visual Basic. It is extremely
important that we get some tools like this (uVis). I would
prefer something that does not require any IT skills at all. I
think there are some clinicians who can use tools like uVis.
But it has to be more user-friendly and the database concepts
are challenging as most clinicians are used to Spreadsheets
and don’t use databases.’’

DISCUSSION
Based on the studies, we have identified several issues
that could improve end-user developers’ ability to develop
visualizations.

(1) The formula language (e.g., keywords and operators)
was not as intuitive to participants as we expected. This
problem is shared with spreadsheet users.

(2) According to Ref. 36, ‘‘direct manipulation systems
offer the satisfying experience of operating on visible
objects.’’ Our solution provided several drag-and-drop
mechanisms, but the users asked for more.

(3) The study in Ref. 37 showed that multiple coordinated
views improve understandability and enable discovery of
unanticipated relationships.Wedeveloped a coordinated
environment, but it should be improved.

(4) Participants were enthusiastic about seeing the result
of changes without having to switch environment. This
should be kept.

(5) Data binding is one of the steps of the visualization
development process.14 It was the most difficult part
observed in our studies. Novel solutions are needed.

(6) Noticing errors is difficult for our audience, but ac-
cording to Ref. 15 it is not an issue with programmers.
Indicating the errors in the formulas as well as in a list of
errors is an improvement, but not sufficient.

Limitations
The studies have several limitations. In this work, we used
usability studies. A different approach would be to run a
controlled experiment where some participants used uVis
and others used another tool to create the same visualization.
However, a controlled experiment would not provide us with
the necessary information to improve the tool.

The number of test subjects in the first study was only
nine. This is inadequate for finding statistical significance,
but according to Refs. 38, 39 it can provide a good indication
of the existing problems. Asmore subjects are included, fewer
and fewer new problems are observed. The second study was
restricted to two participants, because recruiting clinicians is
difficult. Most likely additional problems would be identified
with more clinicians.

We have not tried to find out whether end-user devel-
opers can invent useful visualizations. This is a completely
different question.Whatwewant to know iswhether they can
implement the visualizations they might invent. We believe
that innovation is related to the ability to experiment with
visualizations, and here uVis seems to be a good possibility.

We are aware that some visualizations (e.g., network
visualization) cannot currently be carried out with uVis, but
this is a different matter from ease of use.

Since the uVis formulas are somewhat similar to
spreadsheet formulas, we might have compared the usability
of spreadsheets with the usability of uVis. We have not done
this since it seems irrelevant for further development of
uVis. We know, for instance, that end-user developers find
binding to the database a hard part of uVis. Here, there is no
inspiration from spreadsheets. Spreadsheet formulas cannot
refer directly to the database. The query has to be imported
to the spreadsheet cells.

CONCLUSION
uVis is a visualization tool for end-user developers. We have
investigated to what extent uVis actually can be used by
them. We performed two usability studies, one with a mix of
potential end-user developers and onewith two IT-interested
clinicians. Participants were asked to create visualizations
with uVis and evaluate the tool.

The results showed that with a modest amount of
training, end-user developers can construct visualizations
with uVis. They appreciated the simple formula language,
the coordinated panels, and the drag-and-drop mechanism.

J. Imaging Sci. Technol. 010408-9 Jan.-Feb. 2016

Pantazos and Lauesen: End-user development of visualizations

However, the most important thing for them was the imme-
diate response when they changed something, for instance
part of a formula. The entire visualization was updated
immediately without having to switch from development
view to production view.

The results of the studies also showed that the main
difficulties for end-user developers are data binding and
error noticing.

REFERENCES
1 J. J. Thomas and K. A. Cook, ‘‘A visual analytics agenda,’’ IEEE Comput.
Graph. Appl. 26, 10–13 (2006).

2 L. C. Koh, A. Slingsby, J. Dykes, and T. S. Kam, ‘‘Developing and applying
a user-centered model for the design and implementation of information
visualization tools,’’ 15th Int’l. Conf. on Information Visualisation (2011),
pp. 90–95.

3 J. Pane and B. Myers, ‘‘More natural programming languages and
environments,’’ End User Development , edited by H. Lieberman, F.
Patern and V. Wulf, Human–Computer Interaction Series (Springer,
Netherlands, 2006), Vol. 9, pp. 31–50.

4 H. Lieberman, F. Patern, M. Klann, and V.Wulf, ‘‘End-user development:
an emerging paradigm,’’ End User Development , edited by H. Lieberman,
F. Patern and V. Wulf, Human–Computer Interaction Series (Springer,
Netherlands, 2006), Vol. 9, pp. 1–8.

5 H. Lieberman, F. Paternò, and V. Wulf, End User Development (Human–
Computer Interaction Series) (Springer-Verlag, New York, Inc., Secaucus,
NJ, USA, 2006).

6 C. Scaffidi, M. Shaw, and B. Myers, ‘‘Estimating the numbers of end users
and end user programmers,’’ IEEE Symposium on Visual Languages and
Human-Centric Computing (IEEE, Piscataway, NJ, 2005), pp. 207–214.

7 W. Aigner, S. Miksch, W. Müller, H. Schumann, and C. Tominsky, ‘‘Vi-
sualmethods for analyzing time-oriented data,’’ IEEETrans. Vis. Comput.
Graphics 14, 47–60 (2008).

8 J. Heer, F. Ham, S. Carpendale, C.Weaver, and P. Isenberg, ‘‘Creation and
collaboration: engaging new audiences for information visualization,’’
Information Visualization, edited by A. Kerren, J. Stasko, J. D. Fekete
and C. North, Lecture Notes in Computer Science (Springer, Berlin,
Heidelberg, 2008), Vol. 4950, pp. 92–133.

9 C. Plaisant, ‘‘The challenge of information visualization evaluation,’’ Proc.
Working Conf. on Advanced Visual Interfaces. AVI ’04 (ACM, 2004),
pp. 109–116.

10 M. Klann, F. Patern, and V. Wulf, ‘‘Future perspectives in end-user
development,’’ End User Development , edited by H. Lieberman, F.
Patern and V. Wulf, Human–Computer Interaction Series (Springer,
Netherlands, 2006), Vol. 9, pp. 475–486.

11 J. Rode, M. Rosson, and M. Quiñones, ‘‘End user development of
web applications,’’ End User Development , edited by H. Lieberman,
F. Patern and V. Wulf, Human–Computer Interaction Series (Springer,
Netherlands, 2006), Vol. 9, pp. 161–182.

12 K. Pantazos, S. Lauesen, and R. Vatrapu, ‘‘End-user development of
information visualization,’’ IS-EUD, edited by Y. Dittrich, M. M. Burnett,
A. I. Mørch and D. F. Redmiles, Lecture Notes in Computer Science
(Springer, 2013), Vol. 7897, pp. 104–119.

13 A. MacLean, K. Carter, L. Lövstrand, and T. Moran, ‘‘User-tailorable
systems: pressing the issues with buttons,’’ Proc. SIGCHI Conf. on Human
Factors in Computing Systems. CHI ’90, New York, NY, USA (ACM, 1990),
pp. 175–182.

14 Readings in information visualization: using vision to think, edited by
S. K. Card, J. D. Mackinlay, and B. Shneiderman (Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1999).

15 K. Pantazos, M. A. Kuhail, S. Lauesen, and S. Xu, ‘‘uVis Studio: an
integrated development environment for visualization,’’ Proc. SPIE
8654-21, (2013).

16 M. Bostock, V. Ogievetsky, and J. Heer, ‘‘D3 data-driven documents,’’
IEEE Trans. Vis. Comput. Graphics 17, 2301–2309 (2011).

17 M. Bostock and J. Heer, ‘‘Protovis: a graphical toolkit for visualization,’’
IEEE Trans. Vis. Comput. Graphics 15, 1121–1128 (2009).

18 J. D. Fekete, ‘‘The infovis toolkit,’’ Proc. IEEE Symp. on Information
Visualization (IEEE, Piscataway, NJ, 2004), pp. 167–174.

19 Flare: Flare. http://flare.prefuse.org/, Accessed August, 2014.
20 Excel, M. http://office.microsoft.com/en-us/excel/, Accessed August,

2014.
21 Omniscope. http://www.visokio.com/, Accessed August, 2014.
22 Spotfire. http://spotfire.tibco.com/, Accessed August, 2014.
23 Tableau. http://www.tableausoftware.com/, Accessed August, 2014.
24 J. Heer, S. K. Card, and J. A. Landay, ‘‘Prefuse: a toolkit for interactive

information visualization,’’ Proc. SIGCHI Conf. on Human Factors in
Computing Systems. CHI ’05 (ACM, 2005), pp. 421–430.

25 T. Isenberg, P. Isenberg, J. Chen, M. Sedlmair, and T. Moller, ‘‘A system-
atic review on the practice of evaluating visualization,’’ IEEE Trans. Vis.
Comput. Graphics 19, 2818–2827 (2013).

26 C. Plaisant, R. Mushlin, A. Snyder, J. Li, D. Heller, B. Shneiderman, and
K. P. Colorado, ‘‘Lifelines: using visualization to enhance navigation and
analysis of patient records,’’ Proc. 1998 AmericanMedical Informatic Assn.
Annual Fall Symposium (1998), pp. 76–80.

27 T. A. Slocum, D. C. Cliburn, J. J. Feddema, and J. R. Miller, ‘‘Evaluating
the usability of a tool for visualizing the uncertainty of the future
globalwater balance,’’ CartographyGeographic Information Sci. 299–317
(2003).

28 A. C. Robinson, J. Chen, E. J. Lengerich, H. G. Meyer, and
A. M. MacEachren, ‘‘Combining usability techniques to design
geo-visualization tools for epidemiology,’’ Cartography Geographic
Information Sci. 32, 243–255 (2005).

29 R. E. Roth, K. S. Ross, B. G. Finch, W. Luo, and A. M. MacEachren, A
user-centered approach for designing and developing spatiotemporal
crime analysis tools. geovistapsuedu (Norman 1988) (2009).

30 D.A.Norman,TheDesign of EverydayThings (DoubledayBusiness, 1990).
31 J. Nielsen, Usability Engineering (Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1993).
32 P. P.-S. Chen, ‘‘The entity-relationship model toward a unified view of

data,’’ ACM Trans. Database Syst. 1, 9–36 (1976).
33 S. L. Tanimoto, ‘‘Viva: a visual language for image processing,’’ J. Vis.

Lang. Comput. 1, 127–139 (1990).
34 K. Pantazos, S. Tarkan, C. Plaisant, and B. Shneiderman, ‘‘Promoting

timely completion of multi-step processes—a visual approach to
retrospective analysis,’’ Technical Report HCIL-2012-27, University of
Maryland, Human Computer Interaction Lab (2012).

35 S. Lauesen, User Interface Design: A Software Engineering Perspective
(Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2005).

36 B. Shneiderman, ‘‘Direct manipulation: a step beyond programming
languages,’’ Computer 16, 57–69 (1983).

37 C. North and B. Shneiderman, ‘‘Snap-together visualization: can users
construct and operate coordinated visualizations?’’ Int. J. Hum.–Comput.
Stud. 53, 715–739 (2000).

38 J. Nielsen and T. K. Landauer, ‘‘A mathematical model of the finding of
usability problems,’’ Proc. INTERACT ’93 and CHI ’93 Conf. on Human
Factors in Computing Systems, CHI ’93 (ACM, 1993), pp. 206–213.

39 R. A. Virzi, ‘‘Refining the test phase of usability evaluation: how many
subjects is enough?’’ Hum. Factors 34, 457–468 (1992).

J. Imaging Sci. Technol. 010408-10 Jan.-Feb. 2016

http://dx.doi.org/10.1109/MCG.2006.5
http://dx.doi.org/10.1109/MCG.2006.5
http://dx.doi.org/10.1109/MCG.2006.5
http://dx.doi.org/10.1109/TVCG.2007.70415
http://dx.doi.org/10.1109/TVCG.2007.70415
http://dx.doi.org/10.1109/TVCG.2007.70415
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2009.174
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://flare.prefuse.org/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/excel/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://www.visokio.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://www.tableausoftware.com/
http://dx.doi.org/10.1109/TVCG.2013.126
http://dx.doi.org/10.1109/TVCG.2013.126
http://dx.doi.org/10.1109/TVCG.2013.126
http://dx.doi.org/10.1559/152304003322606210
http://dx.doi.org/10.1559/152304005775194700
http://dx.doi.org/10.1559/152304005775194700
http://dx.doi.org/10.1559/152304005775194700
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1016/S1045-926X(05)80012-6
http://dx.doi.org/10.1016/S1045-926X(05)80012-6
http://dx.doi.org/10.1016/S1045-926X(05)80012-6
http://dx.doi.org/10.1109/MC.1983.1654471
http://dx.doi.org/10.1006/ijhc.2000.0418
http://dx.doi.org/10.1006/ijhc.2000.0418
http://dx.doi.org/10.1006/ijhc.2000.0418

	F1
	F2
	F3
	F4
	F5
	F6
	F7
	F8
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39

