

PhD Dissertation

Foundations for Tools as a Service Workspace: A
Reference Architecture

Design Space, Architecture Models, Design Tactics,
Prototype and Experiences

Muhammad Aufeef Chauhan
December 2015

IT University of Copenhagen
Software and Systems Section
Rued Langgaards Vej 7
2300 Copenhagen S, Denmark

Supervisor:
M. Ali Babar, IT University of Copenhagen

Evaluation Committee:
Andrzej Wasowski, IT University of Copenhagen
Christian W. Probst, Technical University of Denmark
Rami Bahsoon, The University of Birmingham

 ii

 iii

Abstract	
	
Nowadays, on-demand provisioning of computing resources following a pay-
per-use service model have enabled client organizations to have easy and on
the fly access to the resources. The resources that are provisioned using the
service model are generally characterized as resource as a Service (*aaS).
However, providing the resources corresponding to a domain following *aaS
requires specific challenges associated with the domain to be addressed.
Software as a Service (SaaS) model enables software vendors to offer their
software solutions to end users following pay-per-use model. SaaS also
enables end users to have access to the software system without being bound
into long-term license commitments and without incurring additional
infrastructure and maintenance overheads. Though SaaS has been successful
in providing stand-alone applications where users can perform a specific set
of activities using an application, applicability of SaaS for scenarios where
users need to use a number of software systems to perform activities and
associated tasks is limited. A typical such use case is the activities associated
with software engineering domains in general and software architecting
domain in particular.

This dissertation presents an approach to provide Tools as a service
workSPACE (TSPACE), which is characterized as provisioning of a bundled
suite of Tools as a Service (TaaS) required to perform activities associated
with a specific domain as part of a cloud-enabled workspace. The presented
approach is focused on addressing the challenges using an architecture centric
solution by providing a Software Reference Architecture for TSPACE. As a
specific case, software architecting domain and the tools used for software
architecting have been focused in this dissertation.

This dissertation explores (a) the challenges associated with software
architecting of cloud-enabled systems, (b) TSPACE reference architecture
design guidelines, (c) TSPACE requirements, (d) information structuring
needs and methods of TSPACE reference architecture, (e) a detailed
description of TSPACE reference architecture sub-systems and components,
and (f) TSPACE reference architecture evaluation.

The research goals are achieved by applying systematic literature review
method, general literature surveys, reference architecture design
methodologies, cloud and general architecture styles and patterns, architecture
prototyping and architecture evaluation methods as tools.

The main results of this dissertation are (a) a systematic review of the
literature that identifies the challenges associated with software architecting of
cloud-enabled systems, (b) a framework that guides the development of

 iv

TSPACE reference architecture and its evaluation, (c) the business,
functional, quality and software architecture significant requirements of
TSPACE, (d) TSPACE reference architecture meta-models and a set of
ontologies to structure concepts and elements of TSPACE (e) a detailed
description of the reference architecture based on established design practices
and architecture patterns and (f) the detailed process of TSPACE reference
architecture evaluation based on using architecture evaluation methods and a
prototype of TSPACE reference architecture along with integrated tools to
analyze applicability, effectiveness and usefulness of TSPACE reference
architecture.

The main conclusions of this dissertation are (a) as the nature of the tools that
are used in a specific domain vary, the domain models play a vital role in
design of the TSPACE reference architecture for the respective domain (b)
TSPACE reference architecture should have the capability to identify tools
needed for the specific tasks (e.g. software architecting tasks and activities)
and be able to bundle the needed tools in a suite of tools to provision TaaS, (c)
as the nature of the tools vary in terms of the activities that are supported (e.g.
specifying architecture significant requirements, capturing architecture
knowledge and modeling architecture components), abstraction level of the
artifacts that are produced and the way artifacts are exchanged among the
tools and support for semantic as well as process-centric integration among
the tools play a vital role in the adaptation of the reference architecture and (d)
the reference architecture should be flexible enough to accommodate a wide
variety of the tools used in a domain and the operations that are performed on
the artifacts using the tools.

 v

Acknowledgements
	

I would like to express my deepest gratitude to Professor Ali Babar for giving
me an opportunity to carry out PhD research under his supervision and for
mentoring me throughout this exciting journey. His contributions on
publications, and his comments and suggestions on every stage of my research
work have always been valuable. I also thank him for making me familiar
with Danish education system.

I acknowledge Professor Sheng for providing an opportunity to visit The
University of Adelaide for my stay abroad period and for hosting me at the
university. I acknowledge his guidance and feedback on my PhD work. I
would also like to thank members of Centre for Research on Engineering
Technologies (CREST) and all my colleagues in Software and Systems
section.

Muhammad Aufeef Chauhan
Copenhagen, December 2015

 vi

 vii

Table of Contents

CHAPTER 1.	 INTRODUCTION 1	
1.1.	 SOFTWARE ARCHITECTURE (SA) 1	
1.2.	 SOFTWARE REFERENCE ARCHITECTURE (RA) 3	
1.3.	 *AAS MODEL OF CLOUD COMPUTING 5	
1.4.	 RESEARCH MOTIVATIONS FOR TOOLS AS A SERVICE WORKSPACE
(TSPACE) 7	
1.5.	 RESEARCH DESIGN 8	
1.5.1.	 RESEARCH OBJECTIVES 8	
1.5.2.	 RESEARCH APPROACH AND RESEARCH STEPS 9	
1.6.	 DISSERTATION STRUCTURE 12	
1.7.	 CONTRIBUTIONS AND DEMARCATION 14	
1.7.1.	 RESEARCH OUTPUT IN TERMS OF PUBLICATIONS 14	
1.7.2.	 DEMARCATION 16	

CHAPTER 2.	 ARCHITECTING CLOUD-ENABLED SYSTEMS: A
SYSTEMATIC SURVEY OF CHALLENGES AND SOLUTIONS 19	
2.1.	 INTRODUCTION 19	
2.2.	 RESEARCH METHODOLOGY 21	
2.2.1.	 RESEARCH PROTOCOLS 21	
2.2.2.	 RESEARCH QUESTIONS 21	
2.2.3.	 TARGET DATA SOURCES 22	
2.2.4.	 SEARCH QUERY 23	
2.2.5.	 INCLUSION AND EXCLUSION CRITERIA 24	
2.2.6.	 SEARCH AND STUDY SELECTION PROCESS 24	
2.2.7.	 DATA EXTRACTION, SYNTHESIS AND CLASSIFICATION 25	
2.3.	 RESULTS AND ANALYSIS 27	
2.3.1.	 CATEGORIES OF RESEARCH THEMES 27	
2.3.2.	 DATA SOURCES 29	
2.3.3.	 PUBLICATIONS OVER YEARS 29	
2.3.4.	 NUMBER OF PAPERS PUBLISHED IN DIFFERENT JOURNALS 30	
2.3.5.	 CLOUD ENVIRONMENTS USED 30	
2.3.6.	 DEPLOYMENT MODELS USED IN STUDIES 32	
2.3.7.	 THE NAMED ALGORITHMIC SOLUTIONS 33	
2.3.8.	 QUALITY ATTRIBUTES MAP 35	
2.3.9.	 MATURITY OF THE SELECTED STUDIES 36	
2.3.10.	 QUALITY ASSESSMENT OF THE STUDIES 37	
2.4.	 ANALYSIS OF THE CHALLENGES AND SOLUTIONS 39	
2.4.1.	 RESOURCE AND SERVICE MANAGEMENT 39	
2.4.1.1.	 QUALITY-SPECIFIC RESOURCE PROVISIONING AND MANAGEMENT 39	
2.4.1.2.	 PERVASIVE EMBEDDED NETWORKS 45	
2.4.1.3.	 CLOUD FEDERATION 46	
2.4.1.4.	 CACHE MANAGEMENT 47	
2.4.1.5.	 SUPPORT FOR MOBILE DEVICES 48	
2.4.1.6.	 HIGH PERFORMANCE AND SCIENTIFIC COMPUTING 50	

 viii

2.4.1.7.	 MULTI-TENANT ENVIRONMENTS 51	
2.4.1.8.	 DATA PROTECTION 51	
2.4.1.9.	 ENTERPRISE SERVICE BUS (ESB) ON CLOUD 52	
2.4.1.10.	 ARCHITECTURES FOR DATA INTENSIVE SYSTEMS 53	
2.4.2.	 WORKFLOW MANAGEMENT 54	
2.4.2.1.	 BUSINESS	PROCESS	MANAGEMENT	(BPM) 55	
2.4.2.2.	 RESOURCE	MANAGEMENT 55	
2.4.3.	 SERVICE LEVEL AGREEMENT (SLA) COMPLIANCE 56	
2.4.3.1.	 SERVICES	AND	DATA	MANAGEMENT 56	
2.4.3.2.	 RESOURCE	DISCOVERY	AND	MONITORING 58	
2.4.3.3.	 ARCHITECTURE	SUPPORT	FOR	PRICING	AND	BILLING 60	
2.4.4.	 ENERGY AWARENESS 60	
2.4.4.1.	 RESOURCE	OPTIMIZATION 61	
2.4.4.2.	 ENERGY	EFFICIENT	PROCESS 62	
2.5.	 DISCUSSION ON COMMERCIAL CLOUD SOLUTIONS AND RESEARCH
OUTCOMES 62	
2.6.	 THREATS TO VALIDITY 64	
2.7.	 CONCLUSIONS 65	

LISTING A 68	

LISTING B 68	

LISTING C 70	

CHAPTER 3.	 REFERENCE ARCHITECTURE DEVELOPMENT
PROCESS FRAMEWORK FOR TSPACE 79	
3.1.	 INTRODUCTION 79	
3.2.	 HIGH-LEVEL OVERVIEW OF TSPACE ELEMENTS AND THEIR
RELATIONSHIPS 81	
3.3.	 TSPACE REFERENCE ARCHITECTURE DESIGN PROCESS 84	
3.3.1.	 TSPACE REFERENCE ARCHITECTURE DESIGN PROCESS STAGES 84	
3.3.1.1.	 STAGE 1 - IDENTIFICATION OF TSPACE CONCEPTS AND ELEMENTS 84	
3.3.1.2.	 STAGE 2 - REFERENCE ARCHITECTURE DOCUMENTATION APPROACH 86	
3.3.1.3.	 STAGE 3 - CONCEPTS AND ELEMENTS REFINEMENTS, STRUCTURING AND
RELATIONSHIP MODELING 87	
3.3.1.4.	 STAGE 4 - REFERENCE ARCHITECTURE FUNCTIONAL DEMARCATION 88	
3.3.1.5.	 STAGE 5 - IDENTIFICATION OF PROVISIONING AND ENACTMENT
PARAMETERS 88	
3.3.1.6.	 STAGE 6 - IDENTIFICATION OF INTEGRATION NEEDS 89	
3.3.1.7.	 STAGE 7 - IDENTIFICATION OF ARCHITECTURE QUALITY
CHARACTERISTICS 90	
3.3.1.8.	 STAGE 8 - REFERENCE ARCHITECTURE ANALYSIS AND DESIGN 90	
3.3.1.9.	 STAGE 9 - REFERENCE ARCHITECTURE EVALUATION 91	
3.3.1.10.	 STAGE 10, 11 AND 12 – TSPACE REFERENCE ARCHITECTURE
IMPLEMENTATION AND TSPACE PROVISIONING 93	
3.3.2.	 DISCUSSION 93	

 ix

3.4.	 RELATED WORK 94	
3.5.	 CONCLUSIONS 95	

CHAPTER 4.	 BUSINESS DRIVERS AND REQUIREMENTS OF TSPACE97	
4.1.	 INTRODUCTION 97	
4.2.	 VALUE ANALYSIS AND BENEFITS OF TSPACE 98	
4.2.1.	 ON-DEMAND ACCESS TO THE TOOLS 98	
4.2.2.	 TOOLS ALIGNMENT WITH ORGANIZATIONAL PROCESSES 99	
4.2.3.	 SUPPORT FOR AWARENESS OF THE OPERATIONS AND COLLABORATION
 99	
4.2.4.	 WORKING WITH SENSITIVE ARTIFACTS AND DATA 100	
4.2.5.	 ACCESS TO SENSITIVE TECHNOLOGY 100	
4.2.6.	 ESTABLISHMENT OF KNOWLEDGE ECOSYSTEM 101	
4.3.	 TSPACE REFERENCE ARCHITECTURE REQUIREMENTS 101	
4.3.1.	 REFERENCE ARCHITECTURE DOCUMENTATION REQUIREMENTS 101	
4.3.2.	 FUNCTIONAL REQUIREMENTS 103	
4.3.2.1.	 FR1 - ENACTMENT AND PROVISIONING OF TSPACE 103	
4.3.2.2.	 FR2 - TOOLS MANAGEMENT 103	
4.3.2.3.	 FR3 - TOOLS BUNDLING 103	
4.3.2.4.	 FR4 - TOOLS INTEGRATION 104	
4.3.2.4.1.	 PROCESS-CENTRIC INTEGRATION AMONG THE TOOLS 105	
4.3.2.4.2.	 SEMANTIC INTEGRATION AMONG THE ARTIFACTS 105	
4.3.2.5.	 FR5 - SUPPORT FOR AWARENESS OF THE OPERATIONS THAT ARE
PERFORMED ON THE ARTIFACTS 105	
4.3.3.	 QUALITY REQUIREMENTS 105	
4.3.3.1.	 TSPACE QUALITY REQUIREMENTS 106	
4.3.3.1.1.	 QR1 - AUTOMATED PROVISIONING 106	
4.3.3.1.2.	 QR2 - MULTI-TENANCY 106	
4.3.3.1.3.	 QR3 - SCALABILITY 106	
4.3.3.2.	 REFERENCE ARCHITECTURE QUALITY REQUIREMENTS 106	
4.3.3.2.1.	 QR4 - FLEXIBILITY 106	
4.3.3.2.2.	 QR5 - TSPACE INTEROPERABILITY 106	
4.3.3.2.3.	 QR6 - COMPLETENESS, FEASIBILITY AND APPLICABILITY 107	
4.3.3.2.4.	 QR7 - MODIFIABILITY 107	
4.4.	 CONCLUSIONS 109	

CHAPTER 5.	 ONTOLOGIES FOR STRUCTURING AND
FORMALIZATION OF TSPACE 111	
5.1.	 INTRODUCTION 111	
5.2.	 SOLUTION APPROACH 113	
5.3.	 TSPACE ONTOLOGIES’ DETAILS 120	
5.3.1.	 CAPABILITY ONTOLOGY (CAPONT) 120	
5.3.2.	 ONTOLOGIES TO MANAGE RELATIONS AMONG ARTIFACTS AND
RELATIONS AMONG ARTIFACTS AND TOOLS (ARTTOOLONT) 126	
5.3.3.	 CHANGE ONTOLOGY (CHAONT) 131	
5.3.4.	 ANNOTATION ONTOLOGY (ANNONT) 132	
5.3.4.1.	 CONTEXT INDEPENDENT ANNOTATION 133	

 x

5.3.4.2.	 CONTEXT DEPENDENT ANNOTATION 135	
5.4.	 USE OF ONTOLOGIES FOR NOTIFICATION AND QUALITY OF SOFTWARE
ARCHITECTING ACTIVITIES 135	
5.5.	 DISCUSSION 136	
5.6.	 RELATED WORK 137	
5.7.	 CONCLUSIONS 143	

CHAPTER 6.	 REFERENCE ARCHITECTURE MODELS AND
COMPONENTS 145	
6.1.	 INTRODUCTION 145	
6.2.	 REFERENCE ARCHITECTURE DESIGN AND DESCRIPTION STRATEGY 147	
6.3.	 TSPACE REFERENCE ARCHITECTURE DESIGN TACTICS 148	
6.3.1.	 USE OF ONTOLOGIES TO FORMALIZE TSPACE 151	
6.3.2.	 USING SOA AND REST AS TSPACE FAÇADE 154	
6.3.3.	 USING CENTRALIZED (SHARED) REPOSITORY PATTERN 154	
6.3.4.	 USING PIPES AND FILTERS PATTERN 154	
6.3.5.	 LOOSELY COUPLED LAYERS 155	
6.3.6.	 USING RESOURCE DESCRIPTION FRAMEWORK FOR INFORMATION
EXTRACTION 155	
6.3.7.	 USE OF SPARQL FOR SUPPORTING DYNAMIC RULES 157	
6.3.8.	 USING REDUNDANCY OF PIPES AND FILTERS TO SUPPORT SCALABILITY
 157	
6.3.9.	 USING LOCATION-SPECIFIC PROVISIONING TO SATISFY LOCATION
CONSTRAINTS 159	
6.3.10.	 MULTI-TENANCY 159	
6.4.	 TSPACE ARCHITECTURE DESIGN AND DECOMPOSITION OF
ARCHITECTURE ELEMENTS 161	
6.4.1.	 FIRST LEVEL DECOMPOSITION 162	
6.4.2.	 SECOND AND THIRD LEVEL DECOMPOSITION 162	
6.4.2.1.	 TOOLS SELECTION AND PROVISIONING 163	
6.4.2.2.	 INTEGRATION SUPPORT IN TSPACE 165	
6.4.2.2.1.	 SEMANTIC INTEGRATION MANAGER 165	
6.4.2.2.2.	 PROCESS-CENTRIC INTEGRATION MANAGER 167	
6.4.2.2.3.	 PLAIN ARTIFACTS EXCHANGE 169	
6.4.2.3.	 AWARENESS AND INFORMATION DISCOVERY MANAGER 169	
6.4.2.4.	 TENANT (AND USER) MANAGER AND EVENT LOGGER 172	
6.4.3.	 FOURTH LEVEL DECOMPOSITION 174	
6.4.3.1.	 DECOMPOSITION OF TOOLS SELECTION AND PROVISIONING MANAGER 174	
6.4.3.2.	 DECOMPOSITION OF INTEGRATION MANAGER 177	
6.4.3.3.	 DECOMPOSITION OF COLLABORATION AND AWARENESS MANAGER 180	
6.4.3.4.	 DECOMPOSITION OF MULTI-TENANCY AND AUTHENTICATION 182	
6.5.	 OVERVIEW OF PROTOTYPE IMPLEMENTATIONS 183	
6.5.1.	 ADMINISTRATION USER INTERFACE 185	
6.5.2.	 PROCESS CENTRIC PROVISIONING AND INTEGRATION 186	
6.5.3.	 SEMANTIC INTEGRATION 192	
6.6.	 EVALUATION OF THE REFERENCE ARCHITECTURE 198	
6.6.1.	 EVALUATION FOR COMPLETENESS OF TSPACE REFERENCE
ARCHITECTURE 199	

 xi

6.6.2.	 EVALUATION OF FEASIBILITY AND APPLICABILITY 201	
6.6.3.	 EVALUATION VIA POTENTIAL STAKEHOLDERS’ PARTICIPATION 201	
6.6.3.1.	 EVALUATION SETTINGS 201	
6.6.3.2.	 EVALUATION RESULTS 204	
6.6.3.2.1.	 UTILITY TREE FOR TSPACE ARCHITECTURE AND SYSTEM QUALITIES
 206	
6.7.	 RELATED WORK 208	
6.8.	 CONCLUSIONS 209	

LISTING D 211	

CHAPTER 7.	 LESSONS LEARNED, CONCLUSIONS AND DIRECTIONS
FOR FUTURE WORK 217	
7.1.	 LESSONS LEARNED 217	
7.1.1.	 ADOPTING APPROPRIATE REFERENCE ARCHITECTURE DESIGN
APPROACH 217	
7.1.2.	 FUNCTIONAL DEMARCATION BETWEEN THE REFERENCE
ARCHITECTURE AND THE TOOLS TO BE PROVISIONED 218	
7.1.3.	 IMPACT OF STANDARDIZED DOMAIN MODELS ON THE REFERENCE
ARCHITECTURE DESIGN PROCESS 218	
7.1.4.	 SELECTING APPROPRIATE APPROACH TO ESTABLISH RELATIONSHIP
BETWEEN ARTIFACTS PRODUCED BY THE TOOLS 219	
7.1.5.	 ANALYZING INTEGRATION NEEDS OF TSPACE REFERENCE
ARCHITECTURE 219	
7.1.6.	 SELECTION OF APPROPRIATE IAAS CLOUDS AND CLOUD DEPLOYMENT
MODELS 220	
7.1.7.	 TSPACE ADOPTION FOR QUALITY CRITICAL DOMAINS 220	
7.1.8.	 A HYBRID APPROACH FOR TSPACE REFERENCE ARCHITECTURE
EVALUATION 220	
7.2.	 CONCLUSIONS 221	
7.3.	 THREATS TO VALIDITY OF TSPACE REFERENCE ARCHITECTURE 222	
7.4.	 DIRECTIONS FOR FUTURE WORK 223	

 xii

 xiii

List of Figures

Figure 1: TSPACE Reference Architecture Research 11	
Figure 2: Search and Study Selection Process .. 25	
Figure 3: Taxonomy of SA Research on Cloud Computing 27	
Figure 4: Studies Distribution ... 29	
Figure 5: Studies Distribution with respect to Cloud Deployment Models 33	
Figure 6: Studies Distribution with respect to Solutions Abstraction 34	
Figure 7: Quality Attributes distribution with respect to the Categories 36	
Figure 8: TSPACE Context .. 81	
Figure 9: TSPACE Concepts Relations .. 83	
Figure 10: Details of Tool Concept .. 84	
Figure 11: TSPACE Reference Architecture Design Process 85	
Figure 12: TSPACE Integration .. 104	
Figure 13: TSPACE Ontologies Relation ... 116	
Figure 14: TSPACE Elements and Relationships Meta-model for Software

Architecting ... 119	
Figure 15: Capability Ontology Structure ... 121	
Figure 16: Capability Ontology Examples ... 122	
Figure 17: Aggregated Capability Ontology ... 123	
Figure 18: Capability Ontology for Tools Selection 124	
Figure 19: TSPACE Abstract Tool and Artifact Ontology 128	
Figure 20: TSPACE Tool and Artifact Ontology Instance Example 129	
Figure 21: TSPACE Change Ontology ... 132	
Figure 22: TSPACE Annotation Ontology ... 133	
Figure 23: TSPACE Meta-model .. 150	
Figure 24: TSPACE Ontology Meta-model Structure 152	
Figure 25: TSPACE Ontology Meta-model Detail 153	
Figure 26: Semantic Integration Stages .. 156	
Figure 27: TSPACE Scalability Pattern .. 158	
Figure 28: Multi-tenancy Layers .. 160	
Figure 29: TSPACE Architecture - First Level Decomposition 161	
Figure 30: Tools Selection and Provisioning – Logical View 163	
Figure 31: Tools Selection and Provisioning - Process View 164	
Figure 32: Semantic Integration Manager - Logical View 166	
Figure 33: Semantic Integration Manager - Process View 167	
Figure 34: Process-Centric Integration Manager - Logical View 168	
Figure 35: Process-centric Integration Manager - Process View 169	
Figure 36: Simple Storage Wrapper ... 169	
Figure 37: Awareness and Information Discovery Manager - Logical View

 ... 171	
Figure 38: Collaboration and Awareness Manager - Process View 172	
Figure 39: Multi-tenant Access to Artifacts and Data 172	

 xiv

Figure 40: Log Management Component ... 174	
Figure 41: Tools Selection and Provisioning - Detailed Design 175	
Figure 42: TSPACE Provisioning - Initialization Factory 177	
Figure 43: Integration Manager – Detailed Design 178	
Figure 44: Simple Storage Manager - Details ... 180	
Figure 45: Collaboration and Awareness Manager - Detailed Design 181	
Figure 46: Multi-tenancy and Authentication - Detailed Design 183	
Figure 47: TSPACE Deployment on Amazon IaaS Cloud 184	
Figure 48: TSPACE Administration GUI ... 185	
Figure 49: Process Centric Integration - Process Definition GUI 187	
Figure 50: Create Process .. 187	
Figure 51: Process Centric Integration - Design Node 187	
Figure 52: Process Centric Integration - Development Node 188	
Figure 53: Process-Centric Integration - Artifacts' Flow Sequence 188	
Figure 54: Process Centric Integration - Access Information 189	
Figure 55: Tool Invocation Method Wrapper for Amazon IaaS Cloud 189	
Figure 56: Process Centric Integration - Tools Provisioned and Hosted in

VMs ... 191	
Figure 57: Semantic Integration - PAKME Architecture Significant

Requirements GUIs ... 193	
Figure 58: Conflict Notifications .. 194	
Figure 59: Semantic Integration - PAKME GUI and Visio Add-in 195	
Figure 60: Semantic Integration - ArchDesigner Design Decisions GUI 196	
Figure 61: Semantic Integration - ArgoUML add-in 197	
Figure 62: Semantic Integration Example Summary 197	
Figure 63: TSPACE Reference Architecture Quality Utility Tree 207	
Figure 64: TSPACE System Quality Utility Tree ... 208	
Figure 65: Initialize TSPACE - Code .. 211	
Figure 66: Get Authentication Key (OAuth) - Code 212	
Figure 67: Add Artifact Data and Relationship - Code 213	
Figure 68: Create RDF Incrementally – Code ... 214	
Figure 69: Load Balancer UML Model Ontology ... 215	
Figure 70: XML Representation of Abstract TSPACE Ontology RDF 216	

 xv

List of Tables

Table 1: Publication Summary .. 16	
Table 2: Research Questions and their respective Rationale 22	
Table 3: Electronic Data Sources .. 23	
Table 4: Inclusion and Exclusion Criteria .. 24	
Table 5: Primary Studies’ Distribution over Categories of Themes 28	
Table 6: Publication Venues ... 30	
Table 7: Cloud Environment used for research reported in the primary studies

 ... 31	
Table 8: Algorithms used or proposed in the Selected Studies 34	
Table 9: Study Distribution according to their Maturity Stages 37	
Table 10: Quality Assessment Criteria (a tailored version of the propositions

from [63, 64]) .. 38	
Table 11: Resource Provisioning and Management - Quality Attribute 39	
Table 12: Resource Provisioning and Management – Monitoring and

Deployment ... 42	
Table 13: Pervasive Embedded Networks .. 45	
Table 14: Federated Cloud .. 46	
Table 15: Cache Management .. 48	
Table 16: Support for Mobile Devices .. 48	
Table 17: High Performance Computing .. 50	
Table 18: Security Management in Multi-tenant application 51	
Table 19: Data protection .. 51	
Table 20: Security in Enterprise Service Bus ... 53	
Table 21: Data Intensive Architecture Challenges ... 53	
Table 22: Workflow Management .. 54	
Table 23: QoS Aware Services and Data Management 57	
Table 24: QoS-aware Resource Discovery, Monitoring and Management 58	
Table 25: Energy Awareness .. 60	
Table 26: Data Extraction Form ... 68	
Table 27: Detailed Quality Assessment Score of Selected Primary Studies .. 68	
Table 28: High-level TSPACE Concepts ... 82	
Table 29: Software Reference Architecture Design Dimensions 87	
Table 30: TSPACE Reference Architecture Documentation 102	
Table 31: TSPACE Requirements Summary .. 107	
Table 32: TSPACE Relations to manage the Tools and Artifacts 130	
Table 33: Sample Rules for TSPACE Notifications 136	
Table 34: Existing architecture design ontologies with respect to TaaS 142	
Table 35: TSPACE Reference Architecture Documentation 148	
Table 36: Phases and Components Mapping .. 199	
Table 37: Activities, Requirements and Components Mapping 199	
Table 38: Participants’ Software Architecting and Development Expertise 202	
Table 39: Questionnaire Used in Evaluation .. 203	

 xvi

Table 40: Evaluation Scale corresponding to Questions 204	
Table 41: TSPACE Evaluation corresponding to Quality Scale 204	
Table 42: Design Decision Ranking .. 205	

 1

Chapter	1. Introduction	

In this chapter, we provide an overview of the background, the research
objectives, the research methods that are used to address the research
objectives and the structure of this dissertation. We have organized this
dissertation in multiple chapters. We describe a brief overview of the research
that is presented in different chapters of this dissertation and references to
research papers that have been published as an outcome of the presented
research.

Parts of this chapter have been presented in [2].

1.1. Software	Architecture	(SA)	

The growth in the complexity of a specific domain raises the need to have
higher levels of abstractions that are easily understandable by a majority of
the stakeholders associated with the domain. The higher-level abstractions act
as a tool of communication between stakeholders so that they can express
their concerns regarding a specific system. Like other domains, a growth in
the complexity of a software system also raises the need to have higher levels
of software abstraction. For software system the higher-level abstractions are
covered under the umbrella of software architecture. There are many
definitions and perspectives on software architecture.

Clements et al. [3] define software architecture as “the structure of the
components of a system, their relationships, and principles and guidelines
governing their design and evolution over time”.

Buschmann et al. [4] define software architecture as “a description of the
subsystems and components of a software system and relationships between
them, and different views of the subsystems and components to show relevant
functional and non-functional properties of a software system”.

Bass et al. [5] define software architecture as “a set of structures needed to
reason about the system, which comprise software elements, relations among
the elements, and properties of both the elements and the relations”.

Gorton [6] elaborates the role of architecture as: architecture defines
structure, specifies communication among the sub-systems and components
and addresses non-functional requirements of a software system.

ISO/IEC/IEEE 42010:2011 architecture description standard [7] defines

 2

software architecture as “the recommended practices of the fundamental
organization of a system, embodied components, their relationships to each
other, their relationship to execution environment, and the principles
governing design and evolution of the architecture”.

Although software architecture is defined in various ways, there are common
properties and elements in different software architecture definitions. By
analyzing above-mentioned definitions of software architecture, following
dimensions of the software architecture can be observed.

• Software architecture abstracts different elements of a software system
and elaborates relationship between the elements.

• The elements and their relationships are abstracted with respect to

different functional and quality requirements of the system.

• Software architecture elaborates the properties of components and
their relations.

• Architecture defines system structures in terms of components and
specifies communication between the components.

• Architecture guides the design, development and evolution of a

software system over time.

• Architecture defines the recommended practices for design and
organization of a software system.

It is clear from various software architecture definitions that software
architecture is not only about defining and organizing software components,
but that the process through which software architecture is analyzed,
designed, represented and evaluated also plays a crucial role. Software
architecture literature covers multiple models for software architecture design
[8] including Attribute Driven Design [9], Rational Unified Process using
4+1 views [10] and Business Architecture Process and Organization [11]
that drive design of a software system. All the models focus on three common
activities named architecture analysis, architecture synthesis and architecture
evaluation [8]. Architecture analysis activity focuses on identifying
architecture concerns, context, architecture significant requirements and
candidate design solutions [8]. Architecture synthesis activity focuses on
combining candidate architecture solutions corresponding to multiple
architecture significant requirements, and architecture evaluation activity
focuses on evaluating the effectiveness of candidate architecture solution and
choosing the ones that best satisfy architecture significant requirements.

 3

Architecture patterns and styles are a proven way to reuse intra and inter
domain architecture and design knowledge [4]. Representing architecture of a
specific system using the patterns and styles facilitates adoption of the
architecture and its evolution. Pipes and filters, layers, and broker are
commonly used examples of architecture patterns [4]. Many methods have
been proposed for evaluation of software architecture including Software
Architecture Analysis Method (SAAM) [12], Architecture Tradeoff Analysis
Methods (ATAM) [13] and Quality-driven Architecture Design and Analysis
Method (QADA) [14]. The choice of method to be used for the evaluation of a
software architecture depends upon the goals of evaluation activity and the
nature of the project.

Hence, it can be concluded that software architecture of a specific system
should not only present components and relations among the components but
also the guidelines for the design, evaluation and implementation of the
system. Moreover, architecture design should be documented using
architecture styles and patterns for its easy adoption and enhancement.

1.2. Software	Reference	Architecture	(RA)	

While a concrete software architecture aims to provide the design of a single
system, a software reference architecture aims to “facilitate design and
development of multiple systems of same nature and domain” [15]. Concrete
software architectures are designed within a specific project and
organizational context, and focus on well-defined business goals and
requirements (both functional and quality requirements). On the contrary,
reference software architectures are less defined and try to address generic
business goals and requirements of a specific domain [15].

Bass et al. [5] describes software reference architecture as “a division of
functionality together with data flow between the pieces mapped onto
software elements (that cooperatively implement the functionality) and the
dataflow between the elements” of a specific domain.

Avgeriou [16] explains that the description of software reference architecture
is based upon: best practices of describing architectures of software intensive
systems, the process that guides analysis, design and development of the
reference architecture and how different components of the architecture are
modeled. Avgeriou emphasizes that a software reference architecture should
describe stakeholders’ concerns in terms of different viewpoints, describe
architecture using different architecture views [10], cover architecture quality
characteristics of the domain and show design of the reference architecture
using architecture patterns [16]. The use of architecture patterns to describe
the reference architecture has also been emphasized by Angelov et al. [15].

 4

Therefor as architecture patterns and styles are generic solutions to commonly
occurring architecture design problems, their use in software reference
architecture results in an architecture solution that addresses a generic set of
functional and quality requirements of a specific domain. Reference models
[5] also play a critical role in the design of the reference architectures [15].

Context, goal and design are three main dimensions of a software reference
architecture [15]. The context dimension elaborates the stakeholders that can
play a critical role in design of the reference architecture, potential uses of the
reference architecture, the context in which a reference architecture is defined
and whether the reference architecture is a preliminary proposal or a
standardization effort [15]. The goal dimension elaborates objectives of
defining the reference architecture [15]. The design dimension elaborates
what components, protocols, algorithms and guidelines are proposed in a
reference architecture, in how much detail different elements of the reference
architecture are elaborated and what notations are used to represent a
reference architecture [15].

Reference architectures are classified into different categories based upon the
goals of the reference architecture. Angelov et al. [15] have proposed four
major types of software reference architectures, as elaborated in following
points.

• Type 1: Standardization of classical architectures that are designed to
be implemented in a single organization. Standardization is performed
by a single organization that intends to use the reference architecture.

• Type 2: Standardization of classical architectures that are designed to

be implemented in multiple organizations. Standardization is
performed by a group of organizations that intend to use the reference
architecture.

• Type 3: Standardization of classical architectures to facilitate

architecture design in multiple organizations and the standardization
activity is carried out by an independent organization.

• Type 4: Standardization of preliminary architectures to facilitate

architecture designs of architectures of systems that will be needed in
future. These reference architectures are designed by an independent
research center or a group of independent research centers.

Identification of reference architecture type is important as it determines the
approach to be adopted for the construction of the reference architecture and
how the reference architecture should be evaluated. Evaluation of a reference

 5

architecture is specific as compared to evaluation of a concrete architecture
because of number of reasons including: a generic nature of software
reference architecture, unclear group of stakeholders, higher levels of
architecture abstractions because of the generic nature of the reference
architecture and ability of the reference architecture to address more
architecture qualities as compared to a concrete architecture [17]. As a result,
an effective evaluation strategy for the evaluation of a reference architecture
does not only require tailoring of architecture evaluation methods such as
ATAM [17], but can also require a combination of different architecture
evaluation methods (for example combine different scenario based evaluation
techniques including but not limited to SAAM, ATAM and QADA).
Moreover, evaluating a reference architecture in terms of its applicability
using a prototype implementation is also an effective way to demonstrate its
feasibility [16].

1.3. *aaS	Model	of	Cloud	Computing	

Cloud computing has become an active area of research and practice over the
last few years. It is based on computing utility and service provisioning
approaches. It offers organizations an opportunity to have on-demand
scalability and flexibility of computing as well as storage resources [18-20].
This utility model enables organizations to save upfront investment costs that
are needed for setting up and running large-scale computing infrastructure. It
frees organizations from low-level infrastructure-related tasks and allows
them to concentrate on their core business operations. This growth trend is
supported by big players of IT including Amazon[21], Google, Microsoft and
SalesForce[22]; that are providing cloud based infrastructure and services to
consumers. Applications of heterogeneous domains ranging from social
networking sites and gaming portals to scientific workflow systems and
business applications are utilizing the power of the cloud computing platform
[23].

Different people have different interpretations of the term cloud computing,
and there are many definitions [24-26]. US National Institute of Standards and
Technology (NIST) has a more comprehensive definition of cloud computing
and defines it as “A model for enabling convenient, on-demand network
access to shared pool of configurable computing resources (e.g. storage,
application services, servers and network) that can be rapidly provisioned
and released with minimal management effort or service provider interaction”
[26]. Key feature of this paradigm is the ability to deliver services and
infrastructure as pay-per-use basis [23]. Service level agreements (SLAs) are
used for specification of QoS requirements between cloud service providers
and consumers.

 6

In order to achieve flexible hardware and software resource provisioning,
cloud computing infrastructure should be capable of on-demand resource
acquisition, accommodating billing schemes to charge users and resource
publication through a single provider [27]. Cloud computing solutions offered
by public cloud providers are broadly classified into three services and five
deployment models [18, 19, 28-30]. The three categories of service models
are: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS). Five deployment models are: public, private,
hybrid, community and virtual private clouds.

IaaS cloud provides abstraction to underlying computing, storage and
network resources using virtualization technologies. It also provides basic
software resources such as operating system for utilizing the virtualized
hardware resources. IaaS poses additional overhead to applications and
technical staff for monitoring and optimizing resources to meet QoS
requirements specified in SLAs. IaaS has the advantage of support for
customization. Additional tools and software can be installed as per
requirements of the applications and end users. Amazon Elastic Cloud [31],
Amazon Simple Storage Services [32], Eucalyptus [33] and OpenNebula [34]
are example of IaaS cloud platforms. PaaS cloud provides application
programmable interfaces (APIs) for developing applications. Application built
using PaaS APIs, do not need to handle resource provisioning of underlying
infrastructure. Google App Engine [35], Microsoft Azure platform [36] and
SalesForce [22] are examples of the PaaS. Although PaaS provides support
for seamless scalability and easy way to develop applications for cloud, it also
has some disadvantages [27, 37]. One major disadvantage is that applications
developed on PaaS are tightly coupled with the PaaS platform. Porting these
applications on other platforms may require major refactoring and has
negative impact on long-term evolution of the system. Enhancements in
applications that are developed using a specific PaaS are also tightly coupled
with new features supported by the PaaS provider. Moreover, as PaaS does
not provide support for customization, it may not be straightforward to deploy
application using multiple frameworks on PaaS because of unavailability of
required frameworks. SaaS represents applications that are built on top of
either IaaS or PaaS clouds and offer business solutions to end users. One of
the key features of these applications is multi-tenancy. It enables single
instance of the application to service a large number of organizations and end
users. SaaS provides limited support for customization. Though some
characteristics distinguish SaaS from PaaS, the boundary between PaaS and
SaaS is blurry, and determining whether to classify a cloud-enabled solution
as PaaS or SaaS depends on the context of the usage.

Public cloud represents cloud infrastructure and software resources
maintained by an organization and is offered to end users for lease on basis of

 7

some pricing model. End users can access infrastructure by using Internet.
Amazon Elastic Compute Cloud (EC2) and Simple Storage Service (S3),
Google App Engine and Microsoft Azure are examples of public clouds.
Private cloud represents infrastructure and software resources that are
maintained by an organization for its internal use. In some cases,
organizations adopt a hybrid strategy and combine private infrastructure with
public clouds. It is called hybrid cloud. Virtual private cloud (VPC) [30] and
community cloud [28] are build on top of the public and private clouds [27].
A VPC utilizes resources of a public cloud with additional features of a virtual
private network. It provides support for customizable network topology and
network security settings [27]. In some cases, organizations with shared
business objectives decide to collaborate with each other and form a common
cloud by combining their private clouds. It is referred as community cloud.

Different cloud deployment models have their advantages and disadvantages.
Public clouds offer advantage to organizations of leasing resources from third
parties only when needed and do not require investing in infrastructure.
However, in public clouds, application and data is hosted at third party’s
premises, so the organization has less control over applications and data. In a
private cloud, an organization has control over resources but it requires
investment and maintenance of infrastructure and requires additional training
of staff. A private cloud is more suitable with high data security and privacy
requirements. The organizations with a private infrastructure also offload
some processing on public clouds during peak hours using a hybrid approach.
The hybrid approach enables the organizations to have their data on secure
premises and utilize processing capabilities of cloud. This approach also has a
drawback as it introduces latency delays as a result of network speed limits
that may become a significant problem when public cloud infrastructure is at a
distant geographic location. A community cloud provides more control over
data and resources but have less flexibility of resource acquisition because of
limited resource availability.

1.4. Research	Motivations	for	Tools	as	a	Service	Workspace	(TSPACE)	

The research that is being presented in this dissertation is motivated by the
need to provide a reference architecture that can be used to provision the
Tools as a Service (TaaS) on demand as part of the cloud-enabled workspace.
We refer to TaaS as a paradigm in which tools used to perform software
analysis, design and implementation can be provisioned on demand [38].
Although TaaS and SaaS are similar in many aspects, the need for the tools to
be able to perform as a part of a suite of tools distinguishes TaaS from SaaS.
We refer Tools as a service workSPACE (TSPACE) as a set of tools are
offered as a service as part of the cloud-enable workspace and formally define
it as:

 8

A specific runtime invocation of the TSPACE with a selected set of tools is
referred as TSPACE instance. Our research effort has been motivated by the
need to provide TSPACE reference architecture in terms of key specifications,
TSPACE architectural design guidelines, detailed reference architecture
design by providing reference architecture components and an evaluation of
TSPACE architecture based on *aaS model. To limit the scope of the
dissertation and to keep the discussion focused, we are considering tools that
are used for software architecture analysis and design related activities as a
specific case of TaaS. TSPACE reference architecture aims at utilizing
underlying IaaS cloud resources to provision the tools.

1.5. Research	Design	

Software architecture primarily aims to provide decomposition of a software
system into its constituents and relationships among the constituents. There
can be multiple perspectives that govern and guide software architecture
design activity. The process of designing a software architecture for different
types of system domains share some commonalities in terms of the steps that
are involved in the design activity and the views [10] used to represent
different elements of a software architecture. However, designing software
architectures for complex and emerging domains is a challenging task.
Software reference architectures aim to guide the development of complex
software systems for a specific domain by providing a generalized solution
that can be adopted in different context, as explained in Section 1.2. The
objective of TSPACE reference architecture is to provide an adoptable and
extendable reference architecture that can be adopted for TaaS provisioning.
In this section, we described the research objectives of the dissertation and the
research approaches that have been adopted to address the research objectives
along with concrete research steps that have been taken.

1.5.1. Research	Objectives	

The research goal (RG) of this dissertation is:

TSPACE is an aggregated platform that facilitates activity
or task specific tools selection and provisioning on demand,
provides support for integration among heterogeneous types
of tools and artifacts managed by the tools in a TSPACE,
and raises awareness of the operations that are performed
on the artifacts using the provisioned tools [1].

RG: To provide a TSPACE reference architecture
that can facilitate design and development of
concrete TSPACE architectures to facilitate TaaS
provisioning for software engineering tools in
general and software architecting tools in particular.

 9

We have chosen software architecting domain as a specific case of TaaS. The
research goal is addressed by incorporating multiple research objectives (RO)
into the research, as described in following points.

• RO1: The first objective of this research work is to investigate
challenges associated with software architecting of cloud-enabled
software systems and available solutions to address the challenges.

• RO2: The second objective is to identify critical design process stages

that can lead to TSPACE reference architecture analysis, design,
evaluation and implementation in context of a specific domain.

• RO3: The third objective is to identify main business, technological

and quality requirements of TSPACE reference architecture.

• RO4: The fourth objective is to provide a conceptual model that can
be used to identify and capture all the elements and relationships
among the elements of TSPACE reference architecture.

• RO5: The fifth research objective is to provide details of TSPACE

reference architecture in terms of reference architecture elements and
relations between the elements.

• RO6: The sixth research objective is to present the value of the

reference architecture presented in this dissertation in terms of its
compliance with the research objectives and its applicability.

TSPACE reference architecture can be classified as Type 4 reference
architecture (Section 1.2) because the reference architecture development is
carried out at a research institute (i.e. IT University of Copenhagen) and the
proposed reference architecture provides standardizations for the development
of future software systems (i.e. TaaS Workspaces).

1.5.2. Research	Approach	and	Research	Steps	

The research approach follows the principle of separation of concerns, and
different research steps (RS) are taken to achieve the research objectives.

1. Performing a systematic literature review (SLR) on software architecture

challenges and solutions for cloud-enabled systems (RS1)

 10

To identify software architecture challenges and solutions for cloud-enabled
software systems (RO1), a systematic literature review (SLR) was performed
following SLR guidelines that are presented by Kitchenham [39]. Through
SLR we have identified and reviewed the studies that are reporting the
software architecture and architecture-related challenges and solutions. We
have synthesized the identified challenges and corresponding solutions into
multiple categories. Some of the identified challenges are used as a source of
quality requirements of TSPACE reference architecture, and corresponding
synthesized solutions are used to achieve the quality requirements in TSPACE
(partially addresses RO3).

2. Analyzing reference architecture design and documentation approaches

and elaborate a process framework that can lead to TSPACE reference
architecture concepts, identify relationships between the concepts and
guide the design, development and evaluation of TSPACE reference
architecture (RS2)

The process framework guides TSPACE reference architecture by elaborating
the design process stages (RO2) to identify TSPACE elements, a reference
architecture documentation approach suitable for TSPACE reference
architecture, domain models that can lead to the analysis, design and
evaluation of the reference architecture. We have specifically focused on *aaS
constrains of TSPACE reference architecture while elaborating the process
framework.

3. Performing structured review of the literature on the tools to identify

business, technological and some of the quality requirements of TSPACE
(RS3)

This step leads to address third research objective (RO3).

4. Analyzing domain models and standardized reference models of software

architecture domain to identify TSPACE elements, relation between the
elements and conceptual models (RS4)

This step is used to address fourth research objective (RO4) and provides a
foundation for TSPACE reference architecture detailed design.

5. Designing and evaluating the reference architecture (RS5)

The TSPACE reference architecture requirements (RS3) and conceptual
domain model (RS4) are used to identify multiple abstraction levels of
TSPACE reference architecture. A tailored process framework (RS2) has been

 11

used to guide the design of TSPACE reference architecture. Well known
architecture design principles, architecture styles and patterns, and some of
the solutions that are identified as a result of RS1 have been used for the
detailed design of TSPACE reference architecture (RO5). TSPACE reference
architecture consists of architecture abstractions for three core functionalities
of TSPACE: (a) tools selection and provisioning, (b) runtime tools bundling
and process-centric and semantic integration among the tools (c) workspace
specific characteristics including awareness of the operations that are
performed on the artifacts. Multiple reference architecture design strategies
have been adopted. For tools selection and provisioning, findings from the
existing literature and solutions have been synthesized and tailored according
to specific needs of TSPACE reference architecture. For runtime tools
bundling and workspace specific characteristics, architecture solutions have
been proposed that can facilitate to incorporate business, functional and
quality characteristics in TSPACE reference architecture. Multiple
architecture evaluation methods [12-14] and reference architecture evaluation
approaches [16, 17, 40] have been studied to devise an optimal strategy for
the evaluation (RO6) of proposed TSPACE reference architecture. A
prototype of the reference architecture using a selected set of tools that are
used for software architecting has been developed to demonstrate the
feasibility and applicability of the proposed reference architecture.

Figure 1 depicts pictorial representation of TSPACE reference architecture
design research process.

Figure 1: TSPACE Reference Architecture Research

 12

1.6. Dissertation	Structure	

This dissertation consists of multiple chapters. The structure of the
dissertation follows the order of the research steps defined in Section 1.5.2.
Because TSPACE reference architecture focuses on *aaS model, literature
related to architecting of cloud-enabled systems has been discussed in a
separate chapter (Chapter 2). All the other chapters have a related work
section to discuss the findings reported in the literature related to the concepts
discussed in the respective chapter. This dissertation is organized as follows:

Chapter 2 identifies software architecture challenges and solutions for cloud-
enables software systems (RO1) and presents a systematic literature review
(SLR) that is performed following SLR guidelines presented by Kitchenham
[39]. Through SLR we have identified and reviewed 111 studies that are
published as journal papers and are reporting the software architecture and
architecture-related challenges and solutions. We have classified the
challenges into 44 unique categories and have synthesized the solutions
discussed in the selected studies of each category. Some of the identified
challenges are used as a source of quality requirements of TSPACE reference
architecture (RO3) and corresponding synthesized solutions are used to
incorporate the quality requirements in TSPACE reference architecture design
(RO5). As industrial cloud providers play a major role in cloud computing
adoption, the findings from SLR have also been discussed in terms of their
relations with commercial and open source cloud environments. Parts of this
chapter have been presented in [41, 42].

Chapter 3 describes TSPACE reference architecture development process
framework. Various reference architecture design methods [15, 16, 43, 44]
and evaluation approaches [16, 17, 40, 45] have been considered to develop
the tailored process framework. We have also utilized our experiences with
designing cloud-based systems [27, 37, 46] while identifying different stages
of the process. Software architecting domain models and TSPACE
requirements are used to identify elements of the TSPACE reference
architecture, the structure and relationship among the elements and meta-
model for TSPACE design. TSPACE elements are used as a foundation for
TSPACE functional demarcation, analysis of TSPACE *aaS requirements and
detailed design of the reference architecture and its components. The process
framework also guides TSPACE reference architecture evaluation,
implementation and instantiation. Information presented in this chapter
addresses second research objective (RO2).

Chapter 4 describes TSPACE reference architecture business paradigm and
functional and quality requirements. TSPACE reference architecture
documentation requirements emphasize describing reference architecture in

 13

terms of its context, goals, detailed architecture design, reference architecture
evaluation and guidelines for its instantiations. TSPACE functional
requirements describe tools selection, provisioning, bundling, integration
needs and workspace-specific characteristics. Quality requirements are
described in two categories: quality requirements of TSPACE system and
quality requirements of TSPACE reference architecture. This chapter
addresses third research objective (RO3). Parts of this chapter have been
presented in [38].

Chapter 5 discusses information structuring needs of the TSPACE. Software
architecture domain models IEEE 1471-2000 [47] and ISO/IEC/IEEE
42010:2011 [7] have been used as a baseline to identify elements and relations
among the elements. The domain models are then extended and tailored for
the specific needs of TSPACE. An ontology-driven approach [48] has been
adopted. The approach consists of a suite of ontologies to characterize
activities, tasks and artifacts, and to capture stakeholders’ requirements, tools’
features, and methods to provide semantic integration among artifacts that are
consumed or produced by the tools. The ontologies provide mechanisms to
raise awareness (artifacts’ addition, modification and conflicts) of the
operations that are performed on the artifacts using the tools. A selected set of
algorithms that use ontologies for TSPACE operations has also been
presented. The research presented in Chapter 5 addresses fourth research
objective (RO4). The parts of this chapter have been presented in [49].

Chapter 6 presents detailed design of TSPACE reference architecture. The
reference architecture has been designed by leveraging well-known design
principles, architecture styles/patterns [5, 50] and has been documented using
a views-based approach [51]. The reference architecture has been presented in
terms of its context, goals and design elements with respect to the
requirements, design tactics, and different components of the reference
architecture at multiple levels of abstraction. The detailed design of the
selected components is presented using multiple views [51]. The details of the
evaluation of the reference architecture, its prototype implementation and the
software architecting tools used in the prototype are also described. The
research presented in this chapter addresses fifth research objective (RO5).
The parts of this chapter have been presented in [1, 38, 52].

Finally, Chapter 7 concludes this dissertation by presenting our experiences
with designing TSPACE reference architecture, lessons learned and directions
for future work.

 14

1.7. Contributions	and	Demarcation	

This section describes the contributions of the research that is being presented
in this dissertation in terms of publications and describes scope of the
research.

1.7.1. Research	Output	in	terms	of	Publications	

The chapters of this dissertation are based on published and/or submitted
work. This section lists the publications on which this dissertation is based on
(is also summarized in Table 1). The publications are also cited in the
beginning of each chapter for a quick reference.

• [2] M. A. Chauhan, "A reference architecture for providing tools as a
service to support global software development," in Proceedings of
2014 IEEE/IFIP	 Conference	 on	 Software	 Architecture (WICSA)
Companion Volume, Sydney, Australia, 2014.

• [38] M. A. Chauhan and M. Ali Babar, "Cloud infrastructure for

providing tools as a service: quality attributes and potential solutions,"
in Proceedings of 2012 WICSA/ECSA Companion Volume, Helsinki,
Finland, 2012.

• [53] M. A. Chauhan and M. Ali Babar, "Towards a Reference

Architecture to Provision Tools as a Service for Global Software
Development," in Proceedings of 2014 IEEE/IFIP	 Conference	 on	
Software	Architecture (WICSA), Sydney, Australia, 2014.

• [1] M. A. Chauhan, M. Ali Babar, and Q. Z. Sheng, "A Reference

Architecture for a Cloud-Based Tools as a Service Workspace," in
Proceedings of 2015 IEEE Conference on Service Computing (SCC),
New York, USA, 2015.

• [41] M. A. Chauhan, M. Ali Babar, and B. Benatallah, "Architecting

Cloud-Enabled Systems: A Systematic Survey of Challenges and
Solutions," Software: Practice and Experience Journal.

• [49] M. A. Chauhan, M. Ali Babar, Q.Z. Sheng, "Reference

Architecture for Tools as a Service Workspace: Meta-model,
Ontologies and Design Elements," Future Generation Computer
Systems Journal.

 15

• [42] M. A. Chauhan and M. Ali Babar, "A Systematic Mapping Study
of Software Architectures for Cloud Based Systems," Technical
Report TR-2014-175, IT University of Copenhagen, 2014.

Additional Publication: Following publication is not included in this
disertation as it is not directly related to the research that is being presented.
However, some of the findings from this publication have been used while
desribing reference architecture development process framework that is
presented in Chapter 3. In this study we have described process guidelines for
migrating existing software systems to cloud computing paradigm.

• [46] M. A. Chauhan and M. Ali Babar, "Towards Process Support for
Migrating Applications to Cloud Computing," in Proceedings of 2012
IEEE International Conference on Cloud and Service Computing
(CSC), Shanghai, China, 2012.

 16

Table 1: Publication Summary

Venue
R

ef
er

en
ce

Pe
er

-r
ev

ie
w

ed

Pu
bl

is
he

d

U
nd

er
 R

ev
ie

w

Contributions

WICSA’2014 [2] ✓ ✓ Research Objectives and
Requirements

NordiCloud’2012
(WICSA/ECSA’
2012)

[38] ✓ ✓ Functional and Quality
Requirements, and
Architecture Design Tactics

WICSA’2014 [53] ✓ ✓ Reference Architecture Details
IEEE SCC’15 [1] ✓ ✓ Reference Architecture Details

and Views
SPE Journal [41] ✓ ✓ Software Architecting

Challenges and Solutions for
Cloud-enabled Systems

FGCS Journal [49] ✓ ✓ Reference Architecture Meta-
models, TSPACE Ontologies,
Algorithms and Architecture
Views

Technical Report [42] ✗ ✓ Architecture Styles and
Patterns for Cloud-enabled
software systems

1.7.2. Demarcation	

Although TSPACE is designed to facilitate a large variety of tools that can be
used to perform various software engineering activities, to confine the
discussion and keep the scope of this dissertation focused, we have considered
software architecting domain and the tools that are used to perform software
architecting related activities. The tools that are used to perform software
engineering activities in general and software architecting activities in
particular are designed and implemented using different technological
paradigms [54] and often four to five tools are required to perform a specific
software engineering activity [55]. Although diversified nature of the tools
has been considered while designing TSPACE reference architecture, design
and implementation of individual tools lie outside the scope of this
dissertation. Hence, an implementation of TSPACE reference architecture can

 17

be considered as a middleware platform that can bundle the tools together and
provision the tools as part of a cloud-enabled workspace. TSPACE acts as a
bridge between different types of tools and facilitates tools’ operations in the
workspace. As a result, the functional and quality requirements that are
considered while designing TSPACE reference architecture do not encompass
the features that can be provided by an individual tool or a group of tools
bundled together in a TSPACE instance. We have only focused on functional
and quality characteristics of TSPACE. TSPACE utilizes cloud resources
from underlying IaaS clouds to provision the tools as well as its own
components and services.

 18

 19

Chapter	2. Architecting	Cloud-Enabled	Systems:	A	
Systematic	Survey	of	Challenges	and	Solutions		

In this chapter, we provide an overview of software architecting challenges
for cloud-enabled systems along with high-level solutions. The literature on
the challenges of and potential solutions to architecting cloud-based systems
is rapidly growing, but is scattered. It is important to systematically analyze
and synthesize the existing research on architecting cloud-based software
systems in order to build a cohesive body of knowledge of the reported
challenges and solutions. We have systematically identified and reviewed 111
journal papers that report architecture related challenges and solutions for
cloud-based software systems. This chapter reports the methodological
details, findings, and implications of our systematic review that has enabled
us to identify 44 unique categories of challenges and associated solutions for
architecting cloud-based software systems. We assert that the identified
challenges and solutions classified into the categories form a body of
knowledge that can be leveraged for designing or evaluating software
architectures for cloud-based systems. Our key conclusions are that a large
number of primary studies focus on middleware services aimed at achieving
scalability, performance, response time and efficient resource optimization.
Architecting cloud-based systems presents unique challenges as the systems
to be designed range from pervasive embedded systems and enterprise
applications to smart devices with Internet of Things (IoTs). We also conclude
that there is a huge potential of research on architecting cloud-based systems
in areas related to green computing, energy efficient systems, mobile cloud
computing and IoTs.

Parts of this chapter have been presented in [41, 42].

2.1. Introduction	

The increasing popularity and adoption of Cloud Computing has also surfaced
a large number of challenges that need appropriate and resilient solutions. One
of the key challenges of Cloud Computing is designing, evaluating and
implementing suitable architectural solutions for cloud-enabled software
intensive systems and services. Like in any other large-scale software
intensive system, Software Architecture (SA) plays a vital role in cloud-
enabled systems. The role of SA in cloud computing needs to be well-
understood in terms of how SA can help to design cloud-based systems and
can facilitate the bridging of the gap between higher-level abstractions and
low-level algorithmic details. Like many other areas of Cloud Computing,
researchers have started conducting extensive and systematic research on
identifying the key challenges of and devising appropriate solutions to address

 20

the challenges of architecting cloud-based systems. Being an emerging area of
research and practice, the reported literature on SA challenges and solutions
for cloud-enabled systems is growing fast but is scattered. It is difficult for
researchers and practitioners to gain an easy access to systematically
identified peer-reviewed studies reporting challenges and solutions for cloud-
based systems. Whilst there have been some reviews on Cloud Computing, to
the best of our knowledge, there has been no effort to systematically identify
and rigorously analyze and report the literature on SA-related challenges and
solutions for cloud-enabled systems. In order to fill this gap, we decided to
conduct a Systematic Literature Review (SLR) [39] of SA-related challenges
and solutions to cloud-based software systems. The primary objective of this
research is:

This primary objective of our SLR has been operationalized into several
questions that this research sought to answer. The research questions of this
study and their respective rationale have been reported in Table 1. We have
designed and evaluated the research protocol using the SLR guidelines
reported in [39]. Our study planning, execution, and reporting were guided by
our experiences of using and extending SLR methodology and the reports on
best practices of and lessons learnt from SLR [56-58]. The primary
contributions of this work include:

• A systematic review of the state of the art of challenges of and solutions to

architecting cloud-based software systems. The systematically discovered
and synthesized knowledge can be leveraged by the practitioners for
designing and evaluating appropriate architecture for cloud-based software
intensive systems.

• A taxonomy of SA research on Cloud-based systems for studying and
categorizing the identified challenges and solutions related to architecting
cloud-based systems. The main categories in the taxonomy are: Resource
and Service Management, Workflow Management, Service Level
Agreement (SLA) Compliance and Energy Awareness. These main
categories have been further subdivided into subcategories for analyzing
and reporting the findings from this review.

• Identification of a set of quality attributes that have been frequently
reported in the context of cloud-enabled software systems; these quality

To provide a systematic map and review of literature related to
software architecture for cloud-enabled systems and to analyze and
synthesize the selected primary studies in order to identify: (i) the
challenges that need to be addressed for architecting cloud-enabled
systems and (ii) the key attributes of the solutions that are proposed
for addressing the identified challenges.

 21

attributes can be used as guide for designing and evaluating architectures
of the cloud-based systems, especially platforms and applications.		

This chapter is organized as follows. Section 2.2 provides an overview of the
methodology, research objectives and the approach used to synthesize the
findings. Section 2.3 describes the selected studies’ classification into
different research themes and analyses the findings corresponding to the
research objectives. Section 2.4 provides a comprehensive overview of the
identified architecture challenges and synthesizes the corresponding solutions.
Section 2.5 provides a perspective on commercial cloud offerings versus
research approach. Section 2.6 describes how the threats to validity were
addressed while conducting the presented research. Section 2.7 provides
concluding remarks.

2.2. Research	Methodology	

We used a Systematic Literature Review (SLR) [39] method. An SLR is a
systematic and repeatable research process to identify, extract, assess,
synthesize and report all available evidence (or information) on a particular
research topic (i.e., architectures for cloud-based systems). We used SLR
because we intended to carry out and report creditable analysis and evaluation
of the published literature on SA-related challenges and solutions for cloud-
based systems. Our research began by systematically designing and reviewing
and implementing research protocols. Following are the activities and artifacts
of this research study.

2.2.1. Research	Protocols	

The research study protocol included research study background and
motivation, research objectives, research questions, criteria for inclusion and
exclusion of target studies, search strategies, selection of target electronic data
sources along with customized search string for each data source, detail of
search and selection process for relevant publications, and data extraction and
synthesis. The protocol also specified a set of measures to assess the quality of
the selected studies.

2.2.2. Research	Questions			

Our research questions were derived from the objectives of our study. Table 2
presents the research questions and their respective rationale.

 22

Table 2: Research Questions and their respective Rationale

Research Questions and Rationale
ID Research Questions Rationale

RQ1 What are different dimensions
of software architecture for
cloud-based systems that are
addressed by researchers?

This research questions is aimed at
identifying different areas of
research focused by the cloud
computing research community.

RQ2 What are the publication
venues and trends of studies
on SA of Cloud Computing?

This research question aims at
highlighting the important
publication venues of the cloud
computing research and provide
information on the research
publication trends.

RQ3 Which cloud platforms and
deployment models are used
for implementation and
evaluation of the proposed
solutions?

This research question aims at
highlighting cloud environments
and deployment models popular
among researchers for
implementing and testing their
solutions.

RQ4 What quality attributes are
primarily focused for
evaluation of the proposed
solution?

This question aims at identifying
the important quality attributes that
have attracted the research efforts
for architectural challenges and
solutions for cloud-based systems.

RQ5 What is maturity level of
published studies and what is
reliability level of proposed
solutions?

This question determines the
maturity and reliability of the
research published in the selected
studies.

RQ6 What are the major challenges
of and solutions for designing
and implementing architecture
of cloud-based systems?

This question is aimed at
identifying the main challenges of
and solutions reported in the
literature on SA for cloud-based
systems.

2.2.3. Target	Data	Sources	

We performed searches on electronic databases that had been accessible
online. We did not look for information in books and printed sources. Table 3
presents a list of our selected electronic databases. These four electronic
databases are expected to cover most of the peer-reviewed literature on
software engineering and computer sciences according to our work reported in
[56, 59].

 23

Table 3: Electronic Data Sources

Data Sources
Electronic Database URI

IEEE http://ieeexplore.ieee.org/Xplore/
ACM http://dl.acm.org/
Springer http://www.springerlink.com/
ScienceDirect http://www.sciencedirect.com/

2.2.4. Search	Query	

We performed searches on the chosen digital libraries to retrieve the relevant
studies. We used following criteria to obtain the keywords for the search
queries.

• Derived the major terms from the research objectives and the research

questions.
• Identified alternatives and related terms. Literature related to Cloud

Computing is often referred with different cloud service models such as
infrastructure as a service, software as a service and platform as a service.
Therefore, we included the names of different service models while
preparing our search string. We also included different names used for
Cloud Computing including cloud and cloud technologies in our search
string.

• Used Boolean “or” and “and” operators to link the major terms of the
strings for target databases when the search engines allowed the use of
Boolean operators.

• Performed pilot searches to validate the effectiveness of the constructed
search queries.

The following search string represents our generic search query based upon
terms related to cloud computing and combining AND and OR operators.
(“cloud computing" OR "cloud" OR "cloud technologies”) AND
("architecture" OR "architectures" OR "software as a service" OR "SaaS”
OR "platform as a service" OR "PaaS" OR "infrastructure as a service"
OR "IaaS")

We included “* as a service” and “*aaS” in the search query to minimize the
risk that a potentially relevant paper is missed during our search. We did not
use “AND” clause with architecture keyword because our initial searches had
revealed that there were not many studies that were using architecture
keyword in title or abstract. We customized the generic search query

 24

according to standard of each of the target electronic database to get more
accurate search results. We performed searches using customized search
strings on documents’ metadata including both title and abstract.

2.2.5. Inclusion	and	Exclusion	Criteria	

We selected papers published in peer-reviewed journals till May 2015. We
decided to include only journal papers so that our review includes high quality
studies reporting mature and complete research results that are usually
published in journals. We excluded the studies that were not related to SA on
Cloud Computing or did not address any aspect of SA. In case of different
versions of the same paper were published, we included only the most
comprehensive version. Table 4 shows our inclusion and exclusion criteria for
selecting the papers in this review.

Table 4: Inclusion and Exclusion Criteria

Study Selection Criteria
Inclusion Criteria Exclusion Criteria

Material related to SA of cloud-
based systems published till May
2015, focusing on architecture
related challenges and solutions.

Material not related to SA of cloud-
based systems or published after May
2015.

Published in peer-reviewed venues. Published in non-peer reviewed
venues.

Research papers published in
journals.

Conference papers, workshops,
books, panel discussions, presented
slides, prefaces, tutorials and book
reviews.

Material published in English
language.

Papers published in languages other
than English.

2.2.6. Search	and	Study	Selection	Process	

SLRs usually take a long time to complete and report. Since we were targeting
a topic that is increasingly evolving in terms of technological advancements
and adoption, we decided to search, select, and review the relevant papers in
multiple stages. We started the searches in July 2011 and used those searches
as pilot. These searches provided us with the first set of papers that were
selected and reviewed to gain an initial understanding of the literature to be
reviewed. The pilot searches were followed by three rounds of extended
searches: April 2013, December 2013 and May 2015. Our multi-staged
strategy to carry out this SLR enabled us to include a large number of papers

 25

reporting mature research published in journals. Figure 2 presents a
diagrammatic view of SLR stages and the studies selected in each stage.

For the first stage search process, the electronic databases mentioned in Table
3 were searched using the search query described earlier. We retrieved 1491
papers from all searches of the selected data sources. In the second stage, we
filtered the papers according to the inclusion and exclusion criteria and
selected 14 journal studies, which were rigorously analyzed to provide a
foundation for the next three stages. We repeated the whole search process
again in April 2013 to update our review and include the papers between 2011
and April 2013. After performing the searches and merging them together, we
got 2529 papers. After filtering the studies according to inclusion and
exclusion criteria, we selected 38 papers. We performed third and fourth
round of searches by following the same process in December 2013 and May
2015. After combining the search results from previously selected papers and
removing the duplicates, we selected 111 journal papers to be included in this
review.

Figure 2: Search and Study Selection Process

2.2.7. Data	Extraction,	Synthesis	and	Classification		

We performed the data extraction according to the data extraction form that is
shown in Table 26 (Listing A). We used EndNote and Excel spreadsheets for

 26

maintaining the bibliographic information of the studies and extracted data.
The extracted data were organized in groups based on the main focus of this
SLR.

We synthesized the data with respect to architecture challenges and
corresponding solutions. Whilst the review is focused on architecture-level
solutions, the information about algorithms proposed was also extracted and
synthesized to guarantee completeness of the results as some of the challenges
had been addressed by combining high-level architecture abstractions with
low-level algorithmic strategies. Several approaches have been proposed for
synthesizing qualitative data from a SLR (such as Noblit and Hare [60] and
Cruzes and Dybå [61]). We used the multi-stage approach of thematic
synthesis that has been recommended by Cruzes and Dybå [61]. According
their guidelines, the data synthesis approach begins by identifying codes
corresponding to the concepts of interest. Then the codes are translated into
themes and sub-themes. In the last stage, relations between themes and sub-
themes are investigated to create higher order themes. We developed a
catalogue of codes. That catalogue consisted of multiple sub-catalogues. The
codes were assigned to selected studies according to: the main challenges they
were addressing, the venues that published the selected studies, different
cloud environments that were utilized for evaluation of the solutions, different
maturity stages of the studies and delivery model of the solutions proposed in
the selected studies. The codes for architecture challenges and solutions were
assigned to the selected study according to the main architecture challenges a
particular study addressed, and were used to perform synthesis at two levels
of abstraction: main categories of themes and sub-categories of themes. If a
study addressed architecture challenges that belonged to more than one
category, it was classified in both categories.

We used the line of argument approach [60] to combine the parts of the
challenges and the solutions in order to provide a comprehensive overview of
the challenges and associated solutions. We used reciprocal translation
synthesis approach [60] in order to combine similar or related solutions.
Section 2.3.1 describes the identified categories of the themes, the sub-themes
and the corresponding primary studies included in the relevant categories.

Figure 3 presents the taxonomy that we used to address the research
objectives. We built the taxonomy based on the studies included in the first
round depicted in Figure 3. We classified the studies into different categories
and subcategories based on the main theme of each of the studies. Each
category and its subcategories are explored in term of the challenges and the
proposed solutions to enable readers to have an in-depth view of the reported
approaches, the quality attributes and the target deployment models used to
identify suitability of the cloud environments with respect to a particular

 27

dimension of architecture quality. An analysis of the evaluation criteria is
used to measure the maturity of the proposed solutions.

Figure 3: Taxonomy of SA Research on Cloud Computing

2.3. Results	and	Analysis	

In this Section, we detail the classification of the reviewed studies,
distribution of the studies over publication venues, cloud environments and
deployment models, maturity and quality of the architecture solutions, and a
map of the quality attributes used for evaluation of the proposed solutions in
the reviewed papers.

2.3.1. Categories	of	Research	Themes		

We classified the selected studies into different categories based on the main
focus of the studies. The studies have been classified according to their
relevance to the themes as shown in Table 5. If a study belongs to more than
one category, it has been assigned to multiple categories. However, while
reporting the findings in Section 2.4, we have discussed the studies under one
of the category to avoid repetition and keep the structure of this review
uncluttered. Following is a brief description of the main categories.
• Studies classified into Resource and Service Management category

provide solutions for managing applications and services on the cloud
with respect to desired functional and quality requirements. The studies
that are included in this category also provide solutions for protecting
services and data that belong to multiple tenants.

Software Architecture of Cloud-based Systems

Research Theme Research Theme Research Theme Research Theme

Challenges
Architecture

Solutions
Evaluation

Criteria

Deployment
Models

Quality
Attributes

Algorithms

require

target

complement

evaluated by determine

Classified into

Research
Maturity

 28

• Studies classified into Workflow Management category provide solutions
for managing distributed workflows for processing computing intensive
and security sensitive data.
Studies classified into Service Level Agreement (SLA) Compliance
category provide solution to satisfy SLAs in cloud-based software
systems. SLA compliance is treated as a separate category rather than
making it a part of Resource and Service Management because papers
included in this category of theme are not only providing resource
management solutions but also providing solutions for SLA specific
service discovery, monitoring pricing and billing.

• Studies classified into Energy Awareness category provide energy
efficient solutions.

Table 5: Primary Studies’ Distribution over Categories of Themes

Software Architecture for Cloud Computing
Resource and Service Management

Quality-Specific Resource Provisioning
and Management

[PS1][PS3][PS4][PS10][PS14][PS17]
[PS20][PS27][PS31][PS41][PS42][PS45]
[PS47] [PS48][PS51][PS54] [PS56][PS63]
[PS66][PS69][PS73][PS78][PS79][PS82]
[PS86][PS87][PS89][PS95][PS97][PS98]
[PS102][PS103][PS107]

Pervasive Embedded Networks [PS22][PS23][PS30][PS68][PS109]
Cloud Federation [PS13][PS37]

[PS46][PS75][PS76][PS85][PS86]
[PS92][PS99][PS100][PS104]

Cache Management [PS39][PS77]
Support for Mobile Cloud-enabled
Devices

[PS2][PS6][PS29][PS35][PS36][PS44]
[PS83][PS105][PS111]

High Performance and Scientific
Computing

[PS80][PS94][PS101]

Multi-tenant Environments [PS7][PS70]
Data Protection [PS28][PS49][PS50][PS91][PS108]

[PS110]
Enterprise Service Bus [PS90]
Architectures for Data Intensive
Systems

[PS19][PS38][PS51][PS60]

Workflow Management
Business Process Management [PS26][PS40][PS52][PS71]
Workload Distribution and Resource
Management

[PS8][PS11][PS34][PS53][PS58][PS60]
[PS65][PS67][PS96]

Service Level Agreement (SLA) Compliance
Service and Data Management [PS12][PS15][PS18][PS43][PS45][PS51]

 29

[PS53][PS62][PS72] [PS81]
Resource Discovery and Monitoring [PS16][PS21]

[PS32][PS33][PS57][PS59][PS61]
[PS64][PS88][PS93][PS106]

Pricing and Billing [PS10]
Energy Awareness

Energy Aware Resource Optimization [PS5][PS9][PS24][PS25][PS55][PS84]
Energy Efficient Process [PS74]

Subcategories corresponding to main categories of themes are elaborated in
Section 2.4. Complete list of selected studies references is provided in Listing
C.

2.3.2. Data	Sources		

Figure 4(a) shows the distribution of studies over digital libraries on which
searches were performed. ScienceDirect is the most prominent source with 67
(66%) studies. IEEE is the second with 22 (22%) studies published followed
by Springer with 20 (12%) studies. There are 2(2%) studies that are published
by ACM.

Figure 4: Studies Distribution

2.3.3. Publications	Over	Years	

Figure 4(b) shows study distribution with respect to publication years. We did
not specify the lower bound when searches were performed. The results show
that 2009 is the first year with 2 journal papers published discussing SA of
Cloud-based systems. There is a significant increase in number of journal
papers during the following years; 5 in 2010, 16 in 2011, 19 in 2012, 27 in
2013, 33 in 2014 and 9 in 2015. These results indicate that quantity of
reported research on SA of Cloud-based system have increased over the years.

 30

2.3.4. Number	of	Papers	published	in	Different	Journals		

Table 6 shows prominent journal paper in which cloud software architecture
related studies have been published. The table lists only those journals that
have published two or more studies. Journal of Future Generation Computer
Systems (FGCS) is at the top place with 36 studies as it is a prime venue to
publish cloud-computing research. Computing journal is at second place with
6 studies. IEEE Transactions on Service Computing, Journal of Systems and
Software and Journal of Computer and System Sciences are at third place with
4 studies published in each of them. IEEE Transactions on Network and
Service Management has published three papers. All the remaining journals
shown in Table 6 have published 2 papers each.

Table 6: Publication Venues

Study Distribution Over Publication Venues
Publication Venue Publication

Venue
Abbreviation

No. of
Studies

Future Generation Computer Systems FGCS 36
Computing Computing 6
IEEE Transactions on Services
Computing

ITSC 4

Journal of Systems and Software JSS 4
Journal of Computer and System
Sciences

JCSS 4

IEEE Transactions on Network and
Service Management

ITNSM 3

IEEE Transactions on Consumer
Electronics

ITCE 2

IEEE Journal of Biomedical and Health
Informatics

IJBHI 2

Personal Ubiquitous Computing PUC 2
IEEE Transactions on Emerging Topics
in Computing

ITETC 2

China Communications CC 2

2.3.5. Cloud	Environments	Used		

The selected studies have used diversified cloud environments to implement
and deploy proposed solutions as shown in Table 7. Amazon is on top of the
list with 26 selected papers using Amazon as an underlying environment to
implement their proposed solutions. Google App Engine and Windows Azure
are at second and third place with 9 and 8 papers respectively using them as

 31

underlying cloud environment for implementing the proposed solutions. There
are also a significant numbers of papers using private cloud environments and
local hardware infrastructure as a simulated cloud environment to test the
proposed solutions.

Table 7: Cloud Environment used for research reported in the primary studies

Study Distribution with respect to Cloud Environments
Cloud

Environment
No. Of
Studies

Study References

Amazon 26 [PS7][PS8][PS10][PS13][PS14][PS16]
[PS29][PS33][PS42][PS44][PS48][PS50]
[PS52][PS56][PS65][PS75][PS78][PS82]
[PS84][PS86][PS88][PS91][PS93]
[PS95][PS101][PS102]

Google App
Engine

9 [PS29][PS30][PS40][PS48][PS49][PS80]
[PS88][PS92][PS100]

Windows Azure 8 [PS6][PS33][PS37][PS38][PS48]
[PS50][PS75][PS102]

Eucalyptus 6 [PS13][PS29][PS37][PS47][PS75][PS94]
Private Cloud
Simulations

6 [PS10][PS14][PS17][PS35][PS71][PS91]

Cloud Simulation
Toolkit

6 [PS5][PS8][PS51][PS57][PS64][PS102]

OpenStack 5 [PS1][PS7][PS63][PS79][PS93]
Xen/KVM
Virtualization
Environment

3 [PS61][PS78][PS97]

Rackspace 2 [PS33][PS102]
OpenNebula 2 [PS3][PS32]
OpenShift 2 [PS75][PS100]
Globus Toolkits 2 [PS12][PS54]
Cloud Storage
Solution
(Skydrive,
Dropbox)

2 [PS50][PS92]

GoGrid 1 [PS102]
IC-Cloud 1 [PS39]
RESERVOIR 1 [PS20]
Alchemy.com 1 [PS29]
NeCTAR 1 [PS52]
Flixiscale Cloud
Platform 1 [PS59]
DELL KACE, 1 [PS75]

 32

CloudBees, dot-
Cloud, Jelastic,
Heroku, Appfog,
TCloud 1 [PS82]
Nagios 1 [PS1]
WorkflowSIm 1 [PS53]
MMOG
Simulator

1 [PS72]

Others (local
machine cluster,
local setting non
cloud-based
machines)

16 [PS9][PS15][PS19][PS21][PS24][PS36]
[PS41][PS45] [PS55][PS62][PS70][PS77]
[PS87][PS105][PS106][PS108]

2.3.6. Deployment	Models	Used	in	Studies	

Cloud Computing solutions are offered for different deployment models. The
reviewed studies reported solutions for not only the three commonly referred
deployment models (i.e., public, private and hybrid), but some studies also
used local infrastructure as a simulated cloud environment. Figure 5 shows the
number of studies that used different deployment models or simulated cloud
environments. Our study has revealed that Amazon Web Services (AWS),
Windows Azure and Google App Engine are commonly used public cloud
environments. Eucalyptus, OpenStack, Amazon WS and Windows Azure are
common choices for building hybrid solutions. Eucalyptus, Flexiscale cloud
platform, UC-Cloud and RESERVOIR have been used for private clouds.
Grids, cloud simulations toolkits and local machines clusters have also been
used for building and using simulated cloud environments.

 33

Figure 5: Studies Distribution with respect to Cloud Deployment Models

2.3.7. The	Named	Algorithmic	Solutions	

The selected studies have reported solutions to the challenges of cloud-
enabled systems with primary focus on architecture centric solutions,
algorithm centric solutions or a combination of both. During the selection of
studies and extraction of data, we considered algorithmic aspects that
complement architecture solutions for specific quality attributes. For example,
to achieve scalability based on cost, the primary study [PS39] proposes an
algorithm to complement architecture solution for scalability. There are 25
studies that provide algorithmic-centric solutions, whereas the number of

 34

papers providing architecture-specific solutions and combination of
algorithmic and architecture solutions are 56 and 30 respectively, as shown in
Figure 6. Table 8 lists the studies providing algorithms specific to
corresponding architecture solutions. The table does not show the algorithms
that have not been reported with a particular name.

Figure 6: Studies Distribution with respect to Solutions Abstraction

Table 8: Algorithms used or proposed in the Selected Studies

Algorithms Used to Complement Architecture Based Solutions
Algorithm-Centric

SI-Cache [PS77] Task Management
Algorithm

[PS95]

Cost-Aware Scaling Algorithm [PS39] Modified Vickrey Auction
(MVA) and Continuous
Double Auction (CDA)

[PS103
]

Additive Homomorphic
Probabilistic public key
Encryption (AHPE)

[PS91] HEFT, Greedy task queue
and LATE Scheduling
Algorithms

[PS8]

Proxy Re-encryption [PS91] Median-Edge Detector
(MED) and Inter-Slice
Predictor (ISP) algorithms

[PS17]

Additive Homomorphic Proxy
Re-encryption

[PS91] Partitioning Algorithm
based on TABU Search

[PS34]

Extension to MapReduce [PS38]
[PS19]
[PS60]

Place/Transition Petri nets
based SBP Model

[PS71]

Feature Placement Algorithm [PS70] O-SLA and R-SLA
Algorithms

[PS72]

Local Consistency and Global
Consistency Auditing Algorithms

[PS82] Energy Optimization
Method based on Lyapunov

[PS25]

 35

Meta-data index creation, query
expansion, peer tracker and
information retrieval algorithms

[PS87] Genetic Algorithms [PS31]
[PS111
]

Algorithm and Architecture-Centric
Spot Instance-Aware
Provisioning Algorithm

[PS14] Assisted Anycast (AA) [PS9]

Backtracking Algorithm [PS66] Multi-fixed Sequencer
Protocol

[PS21]

Reactive & Predictive Algorithm
Models

[PS47] TF-IDF Algorithm [PS88]

Service Provider Search Engine
(SPSE) Algorithm

[PS107] Virtual Machine Share
Allocation Strategy and
Thick Client Reserved
Allocation Optimization
Strategy

[PS45]

ProfminVM, ProfRS & ProfPD
Algorithms

[PS102] MT-PerfMod and Mt-
ResElas Algorithms

[PS56]

Automatic Data Streaming
Service (ADSS) Algorithm

[PS96] LHS, Moldflow and GA
Algorithms

[PS63]

Partitioned Balanced Time
Scheduling (PBTS)

[PS11] Posterioir Playfair
Searchable Encryption
(PPSE)

[PS86]

Modified Best Fit Decreasing
(MBFD) Algorithm

[PS5] Particle Swarm
Optimization (PSO)
Algorithm

[PS94]

Minimization of Migration (MM)
Policy

[PS5] Ciphertext Policy Attribute-
based Encryption (CP-
ABE)

[PS68]

Extension to MOGAs, NSGA-II
& SPEA2 Algorithms

[PS41] Sieving Algorithm [PS53]

Full Anycast (FA) [PS9] BestFit, BFResvResource
and BFReschedReq
Algorithms

[PS64]

2.3.8. Quality	Attributes	Map	

The reported solutions focus on achieving certain quality attributes. Figure 7
shows the distribution of the studies with respect to quality attributes that are
shown on X-axis and the categories are shown on Y-axis. Scalability,
performance, efficient resource utilization, CPU utilization and response time
are the frequently reported quality attributes. The bubble at the intersection of
X-axis and Y-axis shows the number of corresponding studies. For example,
intersection of Performance and Resource and Service Management indicates
that there are 22 studies that address reliability in the presented solutions.

 36

Figure 7: Quality Attributes distribution with respect to the Categories

2.3.9. Maturity	of	the	Selected	Studies	

The identified solutions have been classified into five maturity stages. We
decide the maturity of the solutions based on the implementation and
evaluation reported in the selected paper using five maturity stages of the
technology maturity model of Redwine and Riddle [62].

i) Basic Research: The studies that are classified in this maturity stage

provide theoretical solutions for the problems but do not provide
details on how the solutions can be implemented. That is, the studies
neither provide implementation strategy nor evaluation of the
proposed solutions.

ii) Prototype Implementation: The studies that are classified in this
maturity stage propose solutions to the stated problems and provide
prototype implementation but do not provide evaluation.

iii) Evaluated in Simulated Environments: The studies that are classified
in this maturity stage provide evaluations of the proposed solutions in
simulated environments.

iv) Evaluated in Real Cloud Environments: The studies that are classified
in this maturity stage provide solutions to the described problems,
describe implementation details and provide evaluation along with
results by using commercially available private or public cloud
environments.

 37

v) Popularization: The studies that are classified in this maturity stage
demonstrate the applicability of the proposed solutions in real world
applications.

Table 9 shows the distribution of the studies into different maturity stages.
Most of the studies are at maturity stage (iv) and the proposed solutions have
been evaluated using commercial public or private clouds. There are only four
studies that belong to the popularization stage.

Table 9: Study Distribution according to their Maturity Stages

Studies Maturity Map
Maturity phase Study Reference

Basic Research (without
prototype
implementation and
evaluation)

[PS10][PS58][PS74][PS76][PS83][PS89][PS90][PS104]
[PS110]

Prototype
Implementation

[PS2][PS25][PS34][PS36][PS40][PS43][PS45][PS46]
[PS51][PS60][PS62][PS65][PS68][PS85] [PS92][PS99]
[PS109][PS111]

Simulations (Simulator
implementation,
Simulated platform)

[PS3][PS4][PS11][PS15][PS17][PS18][PS19][PS21]
[PS24][PS28][PS31][PS41][PS53][PS54] [PS55][PS57]
[PS64][PS67][PS70][PS72][PS73][PS81][PS87][PS96]
[PS97][PS98][PS103][PS105][PS106][PS107]
[PS108]

Evaluation in Real
Private or Public Cloud
Environment

[PS1][PS5][PS6][PS7][PS8][PS9][PS12][PS13][PS14]
[PS16][PS20] [PS22][PS29][PS30][PS32][PS33][PS35]
[PS37][PS39][PS42][PS44][PS47] [PS48][PS49][PS50]
[PS52][PS56][PS59][PS61] [PS63][PS66][PS69][PS71]
[PS75][PS77][PS78][PS79][PS80][PS82][PS84][PS86]
[PS88][PS91] [PS93][PS94][PS95][PS100][PS101]
[PS102]

Popularization [PS23][PS26][PS27][PS38]

2.3.10. Quality	Assessment	of	the	Studies	

We intended to assess the quality of the studies and their reliability in terms of
quality of the proposed solutions. Dybå and Dingsøyr [63, 64] have proposed
quality assessment criteria that were used to devise criteria for assessing the
papers in our review. We added one more question (Q5). Table 10 shows the
questions used to assess the quality of the included papers.

 38

Table 10: Quality Assessment Criteria (a tailored version of the propositions from [63, 64])

Quality Assessment Criteria
Id Question
Q1 Is paper based upon research or is it merely a “lessons learned” report

based upon expert opinion?
Q2 Is there a clear statement of aim of the research and research

objectives?
Q3 Is there an adequate description of the evaluation context in which

proposed solutions are evaluated?
Q4 Have the data been reported to support evaluation findings?
Q5 Are selected primary studies reporting limitations and areas for

improvement?

We used ternary scale with values of yes, partial or no. To quantify our
assessment criteria, we assigned values 1, 0.5 and 0 corresponding to yes,
partial and no respectively. With Q1, we assessed if a primary study’s
findings were based on research or not (on opinions). Question 2 accessed
whether or not a study reported clearly the research objectives and the
challenges addressed. Question 3 was used to analyze if a study had clearly
stated the evaluation setting in which the proposed solutions and the
corresponding implementations were evaluated. Question 4 was used to
evaluate whether or not a study had reported the data to support the evaluation
results. Question 5 helped us to assess whether or not a study clearly reported
the limitations of the proposed solutions, stating directions for improvement
and future enhancements in the solutions. The answer to this question helped
us to determine the future research scope of the problem areas discussed in a
paper.

Table 27 (Listing B) shows the quality score for each of the papers in this
SLR. All the papers have value score 1 for Q1 as none of the papers had
reported lessons learned and experience reports. The average scores for Q2,
Q3 and Q4 are 0.99, 0.86 and 0.86 respectively. It shows that aim and context
of the research is clearly reported in all of the studies and the findings have
been reported in an adequate manner. An average value score of Q5 is 0.64;
that means many of the selected papers have not provided clear directions for
their future work and enhancements. The aggregated average quality
assessment score is 4.27, which is an indication of high-quality research on
the reviewed topic being reported.

 39

2.4. Analysis	of	the	Challenges	and	Solutions	

In this section, we provide a detailed analysis of the selected papers in terms
of identified architecture challenges (problems) and the corresponding
solutions. We have classified the papers reporting similar challenges in the
same category of theme. When a paper has reported diversified set of
challenges, that study has been classified into more than one category or
subcategory. The primary studies have been further classified into sub-groups
to have a specialized grouping of closely related topics. The challenges
associated with the categories and subcategories have been tabulated in the
following sections and the solutions corresponding to the problems have been
described.

2.4.1. Resource	and	Service	Management	

The papers that have been classified into this category report the challenges
related to architecture of cloud middleware and related services. The
middleware acts as a bridge between applications and underlying IaaS cloud
resources. Based on the extracted data, we analyzed and classified the
challenges into ten subcategories. The following subsections describe the
reported challenges and solutions.

2.4.1.1. Quality-Specific Resource Provisioning and Management

Challenges: One of the primary challenges associated with resource and
service management on clouds is the incorporation of quality characteristics in
the solutions. Table 11 shows the challenges associated with incorporated
quality attributes.

Table 11: Resource Provisioning and Management - Quality Attribute

 Problems
Challenge Description Study

Reference
Interoperability Support for interoperability to

simultaneously use multiple collaborative
cloud services and data.

[PS41]
[PS86]

Privacy Trusted cloud services to process private
data.

[PS4]

Data placement strategies with respect to
privacy requirements.
Trusted service providers (to achieve
desired level of security and privacy).

[PS10]

Compliance with legal and regulatory

 40

requirements.
Availability Acquiring extra nodes for the high

availability of applications.
[PS31]

Isolating components deployed on
distributed nodes.
Identifying bottlenecks associated with
response time and resolving them
automatically.

[PS47]

Avoid overloading of infrastructure
resources and SLA violations.

[PS102]

Availability according to performance
parameter.

[PS3]

Scalability Accurately identifying traffic patterns for
dynamic scalability.

[PS47]

Autonomous and scalable self-organized
clouds for utilizing publically acquired
resources.

[PS103]

Portability Improving portability of applications and
services

[PS78]

Avoiding vendor lock-in for low-level
resources and application-level services.

Security Secure management of 3D medical images
data.

[PS17]

Security as a Service to support IaaS cloud
users.

[PS97]

Handling security liabilities of cloud
providers and hosted virtual machines
(VMs).

[PS98]

Elasticity Resource elasticity according to QoS
parameters.

[PS56]

Consistency Consistency of the replicated services on
multiple clouds.

[PS82]

Performance Efficient multi-media information retrieval. [PS87]
Adaptability Support adaptability of service transmission

environment according to specific QoS
requirements in cloud and provide
communication space specific to a
customer’s needs.

[PS73]

Solutions: To address the challenges of simultaneously using multiple
collaborative cloud services to satisfy the needs of end users while
maximizing profit, Hassan et al. [PS41] propose to share resources among
partners. An architecture of Combinatorial Auction (CA) based Cloud Market

 41

model, CACM, which provides an auction policy for a virtual organization-
based dynamic cloud platform among cloud providers. Ribeiro et al. [PS86]
present a proxy-based architecture to preserve interoperability, confidentiality
and searchability of shared cross-enterprise documents. The proxy is based on
Posterioir Playfair Searchable Encryption (PPSE) algorithm, which maintains
data confidentiality by hiding search patterns.

Two studies [PS4] and [PS10] have proposed an architecture to handle the
privacy challenges (data hosting on secure places and trusted service
provisioning) using trusted cloud services, data placement strategies and
trusted service providers. In order to overcome the challenges of trusted cloud
services and data placement strategies, a study [PS4] presents a platform to
allow home services to be selectively opened to remote users and semi-trusted
external services. To tackle the issues of trusted service providers and legal
and regulatory compliance, Buyya et al. [PS10] propose a concept of cloud
market, where users can interact with the market and make request for
resources according to the applications’ needs with the help of cloud broker.
The cloud broker facilitates service selection for end users.

To counter the challenges of acquiring extra nodes for the high availability of
applications and isolating components deployed on distributed nodes, Frincu
[PS31] presents an architecture-centric solution which finds the optimal
number of component types needed on nodes so that every type is presented
on every allocated node by using Genetic Algorithms. Iqbal et al. [PS47]
present an architecture-centric solution for availability by automatically
detecting the bottlenecks associated with response time using heuristics and
active profiling of CPU utilization. Wu et al. [PS103] present two economic
strategies for scalable and autonomous resource allocation mechanisms: (i)
Modified Vickrey Auction (MVA) when the resources are sufficient and (ii)
Continuous Double Auction (CDA) when resources are insufficient. By
dynamically negotiating resources among Cloud Coordinators in the
InterCloud environment, Wu et al. [PS102] intend to solve the problem
regarding overloading resources and SLA violations. An et al. [PS3] present a
publisher/subscriber based replication framework for autonomous virtual
machines management using different types of performance and availability
mechanisms. Petcu et al. [PS78] present a layered architecture to increase
portability of the applications among cloud environments and to avoid vendor
lock-in. The architecture proposes loosely coupled applications layers, cloud
neutral APIs and unified resource representation from multiple cloud
environments.

Castiglione et al. [PS17] present a security architecture for dynamic and
adaptive security 3D medical data imagery using security watermarks in
images. Varadharajan et al. [PS97] present a security architecture to provide a

 42

baseline security for protecting cloud infrastructure. The architecture is based
on Service Provider Attach Detection (SPAD) and Tenant-Specific Attach
Detection (TSAD) approaches. Vera-del-Campo et al. [PS98] present
DocCloud security architecture that focuses on plausible deniability,
anonymity of indexer, recommenders and intermediate nodes, and oblivious
routing. Kaur et al. [PS56] present a framework for dynamic scalability of
cloud resources based on desired performance parameters by examining
incoming request patterns and their corresponding response rates. Qin et al.
[PS82] present a two level auditing architecture, which is based on heuristic
auditing strategy and looks for commonalities of violations and staleness of
the data so that the users can verify data consistency. Rocha et al. [PS87]
present a layered architecture for meta-data and video segment retrieval using
ontologies, and to track and share video segments among cloud nodes.

Noh and Kim [PS73] present a communication bus network architecture for
multimedia services in cloud. The solution consists of adaptation middleware
and communication bus providing logical and physical end-to-end
connections. The proposed model supports profiles of collected information
from the user, devices and network to support adaptation.

Table 12: Resource Provisioning and Management – Monitoring and Deployment

Problems

Challenge Description Study
Referen

ce
Monitoring System monitoring for compliance with dynamic

scalability scheme.
[PS54]
[PS79]
 Adaptation of monitoring infrastructure with

respect to quality requirements.
Capturing and monitoring applications’ key
performance indicators.
Non-intrusive monitoring of cloud services.

Resource
Allocation

Selecting suitable service providers for hosting
application services.

[PS27]

Managing stakeholders’ conflicts during resource
allocation.
Quantitatively accessing and evaluating
stakeholders and their satisfaction.
Autonomic resource allocation and adjustment
against risk, trust, reliability and economic
efficiency.
Explicit architectural constraints for resource
allocation, replication, migration and de-allocation.

[PS20]

 43

Modeling and simulation of cloud resources with
respect to different types of QoS parameters.

[PS51]

Optimized hosting of the resources in cloud data
centers.

[PS63]

Mapping multi-media tasks to Virtual Machines
(VMs) and deploy the VMs on physical servers.

[PS95]

Service
Selection

Autonomous selection of appropriate services and
service providers in order to reduce resource
utilization cost.

[PS48]
[PS102]

Collaboration among cloud service providers
(service discovery, advertisement and
composition).

[PS48]

Providing scalable service scheduling mechanism
that considers dynamic number of service
providers and extensible QoS requirements.

[PS107]

Market-oriented resource and service provisioning. [PS14]
Discovery of cloud resources that are compliant
with end user needs.

[PS89]

Service
Deployment

Handling a large number of service deployment
requests in a short period of time.

[PS66]

Avoid redundant deployment of services in the
cloud.
Resource deployment according to optimization
criteria.

Challenges: Applications and services deployed on the cloud need to be
monitored for their execution according to desired quality parameters. In case
an anomaly is detected, additional resources need to be allocated. The papers
classified in this subcategory deal with monitoring, selection and deployment
of services on the cloud according to specific parameters. The challenges are
listed in Table 12.

Solutions: Katsaros et al. [PS54] present a layered architecture [4] to monitor
cloud-based applications. The monitoring components are deployed on, PaaS
for monitoring the infrastructure and application data, IaaS for monitoring the
hardware resources, and SaaS for monitoring applications. Povedano-Molina
et al. [PS79] present a Distributed Architecture for Resource manaGement and
mOnitoring in cloudS (DARGOS) to determine status and availability of
physical resources and services. The presented publisher subscriber paradigm
intends to help to accurately measure physical and virtual resources in cloud
with the help of monitoring metrics. Ferrer et al. [PS27] propose a holistic
approach for cloud service provisioning and single abstraction of multiple
coexisting cloud architectures for broader cloud service eco-system. To
address the issues of resource allocation, replication, and migration,

 44

Chapman et al. [PS20] present a policy including the requirements and
constraints that a provider must specify while deploying and hosting a multi
component application on cloud. Jararweh et al. [PS51] present CloudExp, a
cloud simulation toolkit to simulate different types of quality parameters for
testing cloud applications. Li et al. [PS63] present an optimization strategy
that is based on decomposing a deployment task into sub-tasks, which are
then converted into virtual applications that can be deployed on suitable IaaS
cloud resources. Song et al. [PS95] present a queue-based approach for task
management, which is based on allocation deadline to optimize the
performance of multi-media services. Itani et al. [PS48] present the
architecture of a routing decision engine named ServBGP. It is designed by
reusing the decision logic of the standard Border Gateway Protocol (BGP).
The ServBGP decision engine facilitates the selection of appropriate service
provider path based on specific quality attributes and autonomously forwards
the customer service request along with appropriate provider paths based on
pricing and reputation criteria.

Wu et al. [PS102] report three algorithms for maximizing resource utilization
and countering the challenge of selecting appropriate IaaS service providers.
The algorithms focus on maximizing the utilization of already initiated Virtual
Machines (VMs) and the profit by rescheduling and exploiting penalty delays.
A platform presented by Rodriguez-Garcia et al. [PS89] uses semantic
technologies to facilitate discovery of cloud resources. The presented
framework combines semantic annotation technique, ontology evolution, term
extraction and resource indexing to annotate cloud services. Zhao et al.
[PS107] propose a service-scheduling algorithm named Service Provider
Search Engine (SPSE). The presented algorithm is based on the job request
enforcing by QoS requirements (e.g., response time, trust degree, and
monetary cost).

Calheiros et al. [PS14] propose solutions to problems of market-oriented
resource provisioning, seamless integration of enterprise computing resources
and provide a framework named Aneka to support different programming
models including thread, task and MapReduce. Aneka framework provides a
common root application model, which provides a mechanism for defining
common properties of a distributed application. Liu et al. [PS66] discuss the
challenges associated with handling large number of service deployment
requests in a short period of time, avoiding redundant service deployments in
the cloud and ensuring not to omit required services during the optimization
process.

 45

2.4.1.2. Pervasive Embedded Networks

Challenges: The papers that have been classified in this subcategory provide
solutions for pervasive embedded networks on cloud which are characterized
as collection of networked services hosted on tiny and resource constraints
devices [PS22][PS23]. The summary of the challenges is presented in Table
13.

Table 13: Pervasive Embedded Networks

Problems

Challenge Description Study
Reference

Service
Compliance

Management of mash-up services on shared
cloud resources.

[PS22]
[PS23]

Collaboration between heterogeneous
devices.
Compliance with concrete semantic
structures for information presentation and
communication.
Embedding flowable services in pervasive
environments.

[PS109]

Data
Compliance

Data management from medical wireless
sensor networks.

[PS68]

Data visualization from various types of
data sources (wireless devices, web
applications and medical images) in
ubiquitous healthcare services.

[PS42]

Data collection using different types of
sensors.

[PS30]

Context
Awareness

Determine situational context of data and
select services according to the context.

Solutions: Two studies [PS22] and [PS23] present a Knowledge Aware and
Service Oriented (KASO) middleware platform, which carries out common
tasks by sharing resources. The middleware platform has been implemented
following the Perceptual Reasoning Agents (PRAs) paradigm. Zhu et al.
[PS109] present a framework for human centric context aware flowable
services. The framework takes advantage of users’ context information to
support proactive human activities and service integration. Lounis et al.
[PS68] present a secured architecture for collecting and processing large
volumes of medical sensor data. The security mechanism guarantees
confidentiality, integrity and fine-grained access to the data. A multi-layered
cloud platform for ubiquitous healthcare services to satisfy high magnitude of
concurrent requests have been presented by He et al. [PS42]. The platform

 46

consists of a Cloud Engine that acts as a broker and supports cooperation of
the components that are distributed over multiple layers. Forkan et al. [PS30]
present a scalable Context Aware Middleware (CAM) framework to facilitate
data flow between sensors capturing data and cloud components processing
data for facilitating ambient assisted living. The presented middleware
handles processing of context data, context-aware service management,
security of medical records and mapping between context and services.

2.4.1.3. Cloud Federation

Challenges: Cloud federation is a collection of cloud-enabled resources
collaborating with each other [65]. The studies that are classified in this
subcategory focus on the challenges associated with cloud federation. Table
14 presents the challenges.

Table 14: Federated Cloud

Problems

Challenge Description Study
Reference

Interoperable
Cloud
Services

Cloud brokerage for interoperable clouds. [PS99]
[PS100] Increase cloud capacity through delegation of

tasks on federated clouds.
Isolation of services in federated clouds.
Inter layer mappings of corresponding layers of
reference cloud mode among federated clouds.
Interoperability of cloud services. [PS85]

[PS92]
Maintain decentralize deployment infrastructure
that is provided by multiple cloud providers.

[PS76]

Limited resource in a single cloud provider in
stressed data centers.

[PS13]

Autonomous services composition from
multiple clouds.

[PS46]

Portability of services among clouds. [PS75]
Data discovery and selection from
heterogeneous cloud services.

[PS104]

Vendor Lock-
in

Avoid cloud vendor lock-in. [PS37]

Solutions: To address the challenges associated with cloud federation,
Villegas et al. [PS99] propose to provide inter-cloud federation only at
corresponding layers of NIST reference architecture model. This approach

 47

defines different federation methods at each layer to allow elastic and fault-
tolerant behavior at different stages without restricting them to a given cloud
environment and deployment model. Walraven et al. [PS100] present a
middleware platform named PaaSHopper for developing interoperable and
multi-tenant cloud services. Rezaei et al. [PS85] present a service-oriented
architecture to provide interoperability among the clouds by autonomously
converting semantic information to service syntax information and making the
services available to consumers. Silva et al. [PS92] provide a platform named
Service Delivery Cloud Platform (SDCP) to support common APIs to interact
with services of distinct cloud providers using "normalized interfaces". The
approach provides services that are secure, redundant and capable of on-the-
fly deciphering. The platform focuses on providing interoperability between
cloud providers, services delivery using multiple underlying cloud resources
and service composition using decoration and orchestration.

The architecture of an agent-based intelligent cloud infrastructure and
platform management framework based on Extensible Messaging and
Presence Protocol (XMPP) has been presented by Peifeng et al. [PS76]. The
aim of the proposed architecture is to simplify server management and
increase flexibility and scalability. The framework consists of Management
Server Agents for broad level control monitoring and communication, and
Host Agents to collect metrics from the cloud platforms. Calheiros et al.
[PS13] propose an approach to enable independent cloud data centers to
dynamically negotiate resources and to seamlessly meet elastic applications’
SLA by scaling applications across various data centers. The proposed
approach consists of a negotiation engine that allows Cloud Coordinators to
negotiate for selling or buying local or remote resources. Incheon et al. [46]
report a staged architecture for discovering services from multiple clouds,
selecting best available candidate services and executing the services by
composing these in a workflow manner. Paraiso et al. [75] present a
component based PaaS named soCloud to support portability and high
availability of the services across multiple clouds. Xu et al. [PS104] present
an architecture to support video data discovery from heterogeneous cloud
services with the help of semantic annotation and semantic searches on the
data. A framework to implement platform neutral cloud-based application has
been presented by Guillen [PS37]. The framework separates the application
code and cloud management and handles the management of cloud resources.

2.4.1.4. Cache Management
	
Challenges: The papers classified into this subcategory support caching,
which is essential for applications requiring high performance and throughput
[66]. Table 15 lists the challenges addressed by the research reported in this
categories of papers.

 48

Solutions: Two studies [PS39] and [PS77] report middleware-based solutions
to address cache management challenges. To tackle the issues of high
throughput and managing cache for stateful and transactional applications, an
elastic multi-tier architecture has been devised [PS77]. The proposed
architecture uses SI-Cache to attain high performance by using snapshot
isolation and extends the basic cache functionality by adding support for
replication. Han et al. [PS39] present an architecture that focuses on
minimizing application’s cost while maintaining QoS through a cost-aware
and workload-adaptive cache-based scaling approach.

Table 15: Cache Management

Problems

Challenge Description Study
Reference

Increase
Throughput

Increase throughput between application
layers and provide quick access to the data.

[PS77]

Minimize
Execution
Cost

Minimize applications execution cost while
maintaining QoS.

[PS39]

2.4.1.5. Support for Mobile Devices

Challenges: Cloud computing enables the provisioning of computing
intensive services to users using devices with limited computing and storage
resources by offloading computing intensive tasks to cloud. The papers
classified into this subcategory discuss cloud middleware solutions targeting
mobile devices. The identified challenges are shown in Table 16.

Table 16: Support for Mobile Devices

Problems
Challenge Description Study

Reference
Resource
Optimization

Satisfying QoS requirements on
heterogeneous networks including data
synchronization and presentation
requirements.

[PS35]

Off-loading processing tasks from
mobile devices on the cloud.

[PS2][PS29]
[PS45][PS111]

Resource optimization and reliability
enhancement.

[PS44][PS35]
[105]

Overcome limitation of wireless network [PS83]

 49

bandwidth.
Properties
Matching

Providing a match between properties of
mobile application and cloud resource.

[PS29]

Data
Collection

Data collection, harvesting and analysis
via mobile devices.

[PS6]
[PS36]

Solutions: A solution to minimize the time for data transfer and task
execution on mobile devices has been presented by Gkatzikis et al. [PS35].
The tasks are migrated to clouds for processing as follows: First, the lifetime
of a task on current host is calculated; an estimated migration cost and multi-
tenancy cost are calculated; migration gain for each potential host is
calculated. Finally, a task is migrated to a new host if potential hosts provide
migration gain. Amoretti et al. [PS2] present an architecture to provide
autonomic offloading of the tasks from mobile devices to the cloud services.
The architecture uses KLAIM language semantics for network-automated
machines to provide automaticity. A Mobile Cloud Middleware (MCM)
framework that supports interoperability, synchronous delegation of mobile
tasks and dynamic allocation of cloud infrastructure resources is presented by
Flores and Srirama [PS29]. Interoperability between services is provided with
the help of Interoperability Engine, which generates adapters to facilitate
interoperability. Zixue et al. [PS111] present a three-tier architecture to
offload portions of computing tasks from wearable devices to cloud nodes.
The offloading strategy maximizes the number of tasks that can be executed
on the devices while guaranteeing acceptable response rate to the users. Hu et
al. [PS44] present a cyber-physical system (CPS) named as Vita to support
mobile users while performing crowd-sensing tasks. The system has been
designed using SOA and supports intelligent distribution of tasks. The
platform addresses the challenges of low computing and communication
overhead on mobile devices. Zhang et al. [105] present an OSGi based
pervasive cloud infrastructure for services-offloading to the cloud. The
infrastructure uses an elastic open service gateway to migrate services from
small mobile devices to powerful cloud nodes.

An architecture named Cooperative Terminals Service Environment (CTSE)
for a Cloudlet solution has been presented by Qing et al. [PS83]. CTSE
increases bandwidth efficiency for supporting content delivery services on
mobile devices by pushing content closer to users to facilitate cooperation
among users. Hung et al. [PS45] present a broker-centric architecture for data
distribution and collaboration between thick servers and thin mobile clients
according to quality of service (QoS) parameters. Benharref and Serhani
[PS6] present an architecture for collection and analysis of chronic diseases
data that is collected from wearable mobile devices and processes on the
cloud. Gronli et al. [PS36] present a three-tier architecture for context aware
information harvesting in context of ubiquitous computing. The architecture

 50

consists of android client applications, a server side application and remote
Google cloud services and uses meta-tagging of users’ activities, social
settings and geographical locations.

2.4.1.6. High Performance and Scientific Computing

Challenges: The on-demand resource-provisioning model of Cloud
Computing makes it an ideal platform for scientific and high performance
computing. The reviewed papers classified in this subcategory propose
different strategies to offloading computing intensive tasks to clouds. The
challenges are listed in Table 17.

Table 17: High Performance Computing

Problems

Challenge Description Study
Reference

Cost
Effective
Computing

Providing support for low cost computing
cycles to perform complex scientific tasks.

[PS80]

Offering scientific applications following
SaaS model.

[PS101]

Resource
Management

Efficient resource management for deadline
specific job completion.

[PS94]

Solutions: Prodan et al. [PS80] present a generic master slave framework to
implement computing intensive algorithms on Google App Engine (GAE).
The framework consists of a master application that manages logic and
parallelization algorithm that can split a task into several parallel jobs. The
slave applications perform the jobs. The results from slave jobs are collected
by the master application and are combined together. The framework
presented by Wong and Goscinski [PS101] is used to deploy and expose High
Performance Computing (HPC) application on cloud as services. The
framework sets up an execution environment by resolving dependencies
(library decencies and searchable program paths) and provides a unique
interface for constructing application services as SaaS. Somasundaram and
Govindarajan [PS94] present CLOUDBR, which consists of a layered
architecture and Particle Swarm Optimization (PSO)-based resource
allocation and job scheduling mechanism. The framework guarantees deadline
specific job completion of scientific applications.

 51

2.4.1.7. Multi-Tenant Environments

Challenges: The primary studies included in this subcategory address
challenges regarding security on multi-tenant cloud applications. Table 18
shows the challenges.

Table 18: Security Management in Multi-tenant application

Problems

Challenge Description Study
Reference

Multi-
tenancy

Managing authorization and authentication
for multi-tenant cloud systems.

[PS7]

Lowering cost by sharing instances among
tenants.

[PS70]

Solutions: Bernabe et al. [PS7] propose a hierarchical RBAC (hRBAC) and
conditional RBAC (cRBAC) authorization that is a role based model. It
provides better expressiveness to describe advance authorization and
federation rules. The system can specify fine-grained definition of the
resources available for a particular tenant using its multi-tenancy support and
federation capabilities that are defined by means of a trust model, which
determines business alliances among cloud tenants. Moens et al. [PS70]
present a feature-based cloud resource management model using product line
engineering methods to share instances among multiple tenants. The presented
cost effective resource allocation model analyses cost of failure to place
services on cloud instances and cost of using the instances in terms of price
and energy consumption.

2.4.1.8. Data Protection

Challenges: Protecting security and privacy of the data hosted on cloud is a
primary quality concern for architects of cloud-based applications. Table 19
enlists the main challenges addressed by the selected papers classified into
this subcategory.

Table 19: Data protection

Problems

Challenge Description Study
Reference

Data
Security

Ensuring confidentiality, security,
integrity and authenticity of the data.

[PS49][PS50]
[PS91][PS108]

 52

Addressing traditional hardware,
software and network specific threats.

[PS110]

Secure Data
Search

Performing search (or SQL operations)
on encrypted data.

[PS28][PS50]

Solutions: Itani et al. [PS49] present a PaaS security framework, SNUGE, for
supporting confidentiality, integrity and authenticity of enterprise
application’s data in PaaS. The framework supports decoupling among
security domains to prevent spread of vulnerability from one domain to
another. Zissis and Lekkas [PS110] identify the threats in the traditional
security implementations and proposes the use of a certified hardened
operating system (OS) on a bootable media that is open to extensive audits.
The paper proposes a physical security mechanism, which eliminates the
threat of installing malicious software on a system and provides elastic cloud
architecture to prevent Distributed Denial of Service (DDoS) attacks.
Jammalamadaka et al. [PS50] provide a client side interoperable security
middleware, named iDataGuard, to facilitate adoption of heterogeneous
interfaces of data storage facilities on the Internet. The middleware consists of
a security model that provides confidentiality and integrity of outsourced data
by indexing encrypted data, and allows searching on the encrypted data.
Ferretti et al. [PS28] present an architecture centric solution and a formal
model that combines data encryption, key management, and authentication
and authorization solutions. The presented formal model guarantees
enforcement of confidential access control to meta-data and corresponding
data.
	
Samanthula et al. [PS91] present a Secure Data Sharing (SDS) framework to
prevent leakage of data from clouds. The approach specifically addresses
cases when an unauthorized or revoked user rejoins a system by using
holomorphic encryption and proxy re-encryption scheme [PS91]. The
architecture that is presented by Zhou et al. [PS108] proposes a role-based
encryption (RBE) approach that integrates cryptography techniques with role-
based access control (RBAC) for encrypting data that is stored in public
clouds. The approach allows storing data in public cloud while maintaining
sensitive information in a private cloud. This scheme allows data encryption
in such a way that cloud providers with appropriate roles and privileges can
decrypt the data.

2.4.1.9. Enterprise Service Bus (ESB) on Cloud

Challenges: Providing standard end-point abstraction and protecting publicly
exposed application interfaces are the challenges to consider for providing
cloud-based enterprise service bus. Table 20 lists the challenges that have
motivated the solutions reported in the studies classified into this subcategory.

 53

Table 20: Security in Enterprise Service Bus

Problems

Challenge Description Study
Reference

Secure ESB Protect internal applications when the
interfaces are publicly exposed.

[PS90]

Standards-based endpoint abstraction to
provide secure service integration.

Solutions: The architecture presented by Ryan [PS90] focuses on the security
of Enterprise Service Bus (ESB) on the cloud. To tackle the problem of
protecting internal application, a solution to include a hardware-based and
application-aware appliance to provide protection from attacks (e.g., XML-
based, message level and field level attacks) has been proposed. Message
privacy, integrity and access control policies are enforced using a consistent
configuration driven interface to provide secure integration. A SOA gateway
is used extend the traditional ESB role to solve data sensitivity problem.

2.4.1.10. Architectures for Data Intensive Systems

Challenges: The studies that are classified in this category report the
challenges related to architecture for service deployment and fault tolerant
execution at runtime [PS38]. Table 21 lists the identified challenges.

Table 21: Data Intensive Architecture Challenges

Problems
Challenge Description Study

Reference
Service
Deployment

Large data sets processing without huge
infrastructure.

[PS19][PS60]

Fault Tolerant
Execution

Parallel execution of sufficiently large
subsets of data and efficient use of cloud
computing environment.

[PS38]

Solutions: Chao et al. [PS19] present a FPGA-based acceleration solution
using MapReduce framework. The framework combines hardware-based and
software-based acceleration to process data of massive scale and complexity.
Kramer et al. [PS60] present a modular and flexible architecture that can
encompass multiple big data processing algorithms for processing geospatial
data. The data processing tasks are defined as workflows using domain
specific language and are processed using cloud resources. To handle data

 54

intensive computations, an architecture based on an extension to MapReduce
has been presented by Gunarathne et al. [PS38] by adding a merge step and
additional input parameters to Map and Reduce APIs to support the loop
variant delta inputs on Windows Azure Platform named Twister4Azure. The
Merge function is introduced as a new step to MapReduce for supporting
iterative MapReduce computation [PS38]. The framework also supports re-
execution of the failed tasks until the completion of the iterative
computations.

2.4.2. Workflow	Management	

The reviewed papers classified in this category focus on architecture-support
for the workflow management in cloud-based systems. Based on the extracted
data, we categorized the papers into two subcategories: business process
management and resource management.

Table 22: Workflow Management

Problems

Challenge Description Study
Reference

Business
Process
Management

Global access to the applications that are
supporting multiple grid types.

[PS26]

Management of different workflow types
(traditional, sustainable and parameter based).

[PS26]
[PS52]

Business processes cooperation for processing
sensitive data.

[PS40]

Resource
Management

Accessing the dedicated resources in existing
cloud environments.

[PS96]

QoS enforcements mechanisms.
Determine the right amount of resource (or
resource capacity) for a specific task execution.

[PS11][PS34]

Provide a framework for rationally fragmenting
a workflow model.

[PS58]

Deploy workflow fragments on the underlying
collaborative architectural components.
Resource allocation and tasks scheduling for
distributed workflows.

[PS8][PS65]
[PS71]

Supporting computing and data integrity in
distributed workflows.

[PS53]

Secure outsourcing of scientific data workflows
in the cloud.

[PS67]

 55

2.4.2.1. Business	Process	Management	(BPM)	

Challenges: We discuss the reported solutions for global access to the
applications supporting multiple grids and managing multiple workflow types.
The challenges associated with this category of theme have been described in
Table 22 against business process management column.

Solution: Farkas and Kacsuk [PS26] propose a generic solution to support
multiple types of workflows including traditional and parametric workflow
(run a given workflow according to the number specified in parameters). The
presented solution introduces BLACKBOX METAJOB for handling the core
workflow execution jobs, executing e-Workflow (executable workflow)
instances and running them as normal workflows. The Object Modeling
System (OMS) based framework presented by Javadi et al. [PS52] utilizes
open source software approach and allows users to design, develop and
evaluate loosely coupled service models. The service models (using
annotation) are used to support workflow composition and enactment. Han et
al. [PS40] propose a distributed processing model named PAD (Process
enactment, Activity execution and Data storage) for addressing problems
related to cooperation on cloud-based BMP platforms (decentralized
architecture supporting user-end distribution of business processes) and
processing sensitive data.

2.4.2.2. Resource	Management	

Challenges: The challenges associated with the resource management include
Quality of Service (QoS) enforcement, traceability between business
requirements and architecture evaluations, and collaboration among
fragmented architectures as shown in Table 22.

Solutions: An architecture for enabling staged enforcement of QoS as each
stage of a workflow has been presented by Tolosana-Calasanz et al. [PS96].
The proposed solution provides access to dedicated resources in existing
cloud environments and supports QoS enforcement mechanisms. The
performance rate is used to control transmission of data between two
workflow stages in case of network congestion. Byun et al. [PS11] discuss the
problem of determining the right amount of resource or resource capacity for
a specific task execution. To address this challenge, the authors have
presented an algorithm, called Partitioned Balanced Time Scheduling (PBTS),
which has the responsibility of identifying executable tasks, estimating
resource capacity, scheduling and then executing the tasks on the cloud
resources. Ghafarian et al. [PS34] present a workflow execution scheme on
hybrid cloud resources. Their architecture can divide a complex workflow into

 56

sub-workflows and deploying workflow nodes on suitable cloud resources.
The execution of the sub-workflows is monitored and monitoring values are
accounted in the feedback loop to access suitability of the cloud resources for
specific workflow tasks. For addressing the issues of providing a framework
for rationally fragmenting a workflow and deploying the workflow fragments
on the underlying collaborative architectural components, Kim [PS58]
proposes a model-driven workflow fragmentation approach. The approach
consists of a set of fragmentation algorithms that semantically fragment a
workflow model and disseminates its fragments into runtime components of
the underlying collaborative workflow system.
Bux and Leser [PS8] present DynamicCloudSim, which is an extension of
CloudSim simulation toolkit to support changes in performance and
robustness quality parameters at runtime while scheduling scientific
workflows. Liu et al. [PS65] present a bioinformatics workflow platform for
reliable and highly scalable large scale sequencing analysis. The platform is
based on Galaxy workflow system and adds data management capabilities to
transfer large quantities of data efficiently and reliably among the processing
nodes. Mohamed et al. [PS71] present an approach of dynamically adding
autonomic management to cloud workflow resources even though the
resources are designed without considering atomicity. A model-driven
development environment based on OCCI standard has been proposed to
describe resource requirements and elasticity parameters for service-based
business processes. Jrad et al. [PS53] present an architecture and ontology
model to support functional and non-functional quality of service (QoS)
requirements for acquiring computing and storage resources from underlying
IaaS cloud, and to execute distributed workflows. Liu et al. [PS67] present a
security overhead model for scientific workflow outsourcing that is based on
tasks, control flows and datasets to be processed.

2.4.3. Service	Level	Agreement	(SLA)	Compliance	

This category concentrate on the reviewed work related to QoS-aware service
composition, license management in a distributed environment, collaborative
QoS and data management. This category is further classified into three
subcategories; services and data management, resource discovery and
monitoring, and architecture-level support for pricing and billing.

2.4.3.1. Services	and	Data	Management	

Challenges: The problems associated with services and data management
include service management, service composition, license management in
distributed environments, service collaboration and data management. Table
23 shows the architectural challenges discussed.

 57

Table 23: QoS Aware Services and Data Management

Problems
Challenge Description Study

Reference
QoS-Aware
Service
Composition

Limited availability of qualified candidate
services on cloud platforms.

[PS81]
[PS72]
 Determine optimal composition of services

according to QoS requirements.
License
management in a
distributed
environment

Lack of support to provide hardware-based
licensing in the virtualized infrastructure
environments.

[PS12]

Service
Collaboration and
adaptability

De-coupling and structuring methodologies for
SOA dependability.

[PS43]

Incorporating QoS aspects such as service
availability, reliability and security.
Service adaptability on heterogeneous cloud
environments.

[PS18]

Data
Management

Characterizing compliance and regulatory
requirements for data retention, migration and
confidentiality.

[PS62]

Lack of fine-grained enforcement policies for
managing data during runtime operations.
Supporting and enforcing data assurance
policies on persistence data objects.

Consideration for
SLA
Implementation

SLA compliance in terms of scheduling,
security, billing and pricing.

[PS10]
[PS15]

Solutions: In order to overcome the identified challenges associated with
QoS-aware service composition, Qi et al. [PS81] propose a solution that
determines qualified web service composition to satisfy end users’ QoS
constraints. For each task in the service composition process, the candidate
services are searched using the local optimization strategy. In the next step, all
the possible web service composition solutions are enumerated to pursue a
QoS mechanism near to global optimal. Nae et al. [PS72] present three-tier
architecture for massive multiplayer online games to SLA issues using O-SLA
mathematical model. Cacciari et al. [PS12] discuss architecture level support
for license management in distributed environment and focuses on decoupling
authorization for using a license. The licenses are managed through
specialized services. To tackle the problems associated with service
collaboration, Hiltunen and Schlichting [PS43] propose a Collaborative
Quality of Service solution that supports collaboration among the services

 58

through translucent QoS interfaces and Test Collector services (used to report
positive or negative service experience with a provider). Castro et al. [PS18]
provide a semantic agent-based architecture for SLA management. The shared
knowledge plan is used to have a common knowledge base for SLA
management agents on heterogeneous cloud environments. To tackle the
problems of data management, Li et al. [PS62] propose a policy modeling and
enforcement framework. That framework is used for defining data assurance
policies along with customer specific requirements and for enforcing them at
runtime. Canuto and Guitart [PS15] present a cloud middleware platform
EMOTIVE that provides a policy management framework to generate
scheduling code on demand according to scheduling requirements of the
application. The framework is based on LEPIC language.

2.4.3.2. Resource	Discovery	and	Monitoring	

Challenges: These studies report architectural challenges associated with
QoS-aware resource discovery, monitoring and management as shown in
Table 24.

Table 24: QoS-aware Resource Discovery, Monitoring and Management

 Problems
Challenge Description Study

Reference
Resource
Management

Decentralization of consistency and scalability
management of the services.

[PS21]

Resource management according to workload
conditions and user behaviors.

[PS57]
[PS59]
[PS16]

Achieving QoS on shared hardware. [PS61]
Minimizing cost while maintaining SLAs. [PS64]

Service
Discovery

SLA specific cloud services discovery. [PS88]
[PS33]

SLA
Monitoring,
Anticipation
and
Compliance

SLA compliance for heterogeneous devices. [PS106]
SLA monitoring based on data from multiple data
sources using dynamic metrics.

[PS93]

Cloud system behavior anticipation according to
specific QoS requirements.

[PS32]

Monitoring cloud services based on customizable
monitoring parameters.

[PS1]

Solutions: Chen et al. [PS21] provide a solution to satisfy consistency
requirements of the application when cloud services are replicated. The
proposed architecture introduces the notion of consistency regions and

 59

proposes a Region-Based Election Protocol (REP) to elastically balance
workload among the regions. The architecture that is described by Kertesz et
al. [PS57] focuses on service virtualization following SLA and supports
interoperable service execution in a diverse and distributed virtualized service
system. MAPE (Monitor, Analyze, Plan and Execute) pattern is used for
processing SLA-based Service Virtualization (SSV) architecture. A
behavioral-based resource management approach that can manage resources
across multiple cloud layers (i.e., infrastructure, platform, and software),
minimize cost of satisfying QoS requirements and optimize infrastructure
capacity has been presented by Kousiouris et al. [PS59]. The proposed
approach analyzes information related to the application terms of use and
utilizes this information to estimate low-level resource attributes using time
series analysis method and Artificial Neural Networks. Casalicchio and
Silvestri [PS16] analyze the problem from the perspective of an Application
Service Provider (ASP) and uses a cloud infrastructure to achieve scalable
provisioning of its services with respect to QoS constraints using self-
adaptation.

Krebs et al. [PS61] present metrics to quantify performance isolation in cloud-
based systems. The proposed metrics are based on QoS impact and workload
ratios. The study [PS64] proposes a customer-driven SLA-based resource
provisioning architecture. The architecture uses customers’ profiling and
service providers’ quality parameters to handle dynamic customer requests.
The architecture that is described by Rodriguez-Garcia et al. [PS88] focuses
on SLA-specific cloud services discovery and facilitates services discovery by
creating a service repository using semantic discovery of cloud services.
Similarity between the query and available services is calculated with the help
of a cosine function of the semantic queries and services’ QoS vectors. Garg
et al. [PS33] propose a framework to create healthy competition among Cloud
providers and to satisfy SLAs. The framework (SMICloud) consists of a set of
business-relevant key performance indicators (KPIs) and provides a
standardized method for measuring and comparing business services.

Zhang and Zhou [PS106] present a service-centric computing environment to
implement socio temporal extension to von-Neuman architecture. The
presented approach exploits the idea that programs are stored and executed on
different virtualized computing resources and can be accessed by users from
different devices. Smit et al. [PS93] present an architecture to offer
Monitoring data as a Service (Monitoring-as-a-Service). The architecture is
based on a stream-processing framework, which intends to work on streaming
data instead of stored data. The monitoring infrastructure is built following
publisher-subscriber pattern, where the publisher acquires and converts the
metrics from the original sources and the subscribers consume the metrics.
Garcia et al. [PS32] present a platform (Cloudcompaas) for assessment of the

 60

cloud resources. The platform facilitates static resource deployment
scheduling based on a resource definition model. The monitoring feature of
the platform specifies SLA terms and checks the service execution with
respect to the SLA. When the SLA is violated, the monitor performs
corrective actions to restore proper functioning of the service. Calero et al.
[PS1] present an adaptive distributed monitoring PaaS architecture named
MonPaaS, for monitoring cloud providers based on consumers-specific SLA
metrics. The architecture monitors both virtual and physical resources.

2.4.3.3. Architecture	Support	for	Pricing	and	Billing	

Challenges: Billing of resources according to SLAs is a primary concern for
cloud providers.

Solutions: For solving the issue related to SLA implementation in terms of
billing, pricing and security, Buyya et al. [PS10] proposes an architecture-
level support for fine-grained pricing and billing mechanisms. The solution is
based on the concept of cloud market where users can request for the
resources according to the needs. The framework also supports workload
balancing and provisioning of resources from public cloud environments.

2.4.4. Energy	Awareness	

The reviewed papers included in energy awareness category provide solutions
for resource optimization and business process management according to
energy efficiency requirement. This category is further classified into two
subcategories as described in the following sections. Table 25 lists the
reported challenges.

Table 25: Energy Awareness

Problems
Challenge Description Study

Reference
Resource
Optimization

Optimizing profit margin. [PS5]
Reducing energy footprint.
Algorithms satisfying quality of service (QoS)
requirements and SLAs.
Energy efficient scheduling and routing
according to QoS parameters.

[PS9]

Energy efficiency solutions by powering off
idle nodes.

[PS24]

Virtual Machines placement according to
optimum energy consumption patterns.

[PS55]

Handling tradeoff between power and [PS25]

 61

performance in SaaS cloud platforms.
Energy
Efficient
Business
Process
Management

Cost effective and ecologically friendly
business process.

[PS74]

Business process management with respect to
changes in execution environment.

2.4.4.1. Resource	Optimization	

Challenges: Resource optimization challenges deal with optimizing profit
margins, reducing energy footprint, and satisfying energy related QoS.

Solutions: Beloglazov et al. [PS5] propose an algorithmic solution, called
Modified Best Fit Decreasing (MBFD). The algorithm validates whether the
energy utilization of a host is more than acceptable threshold. If so, the
Virtual Machines (VMs) are migrated from the host machine. Buysse et al.
[PS9] present a heuristic-based routing and scheduling algorithms to minimize
total energy consumption by switching off unused resources. The heuristic
model is based on finding an "IT endpoint" to process the request and finding
an optimal route (corresponding to Network and IT Infrastructure Utilization)
from the source to the endpoint in a network. Alfonso et al. [PS24] present an
energy management system for HPC clusters and cloud infrastructures. The
system focuses on integration with existing middleware and implementation
of different energy saving policies. The approach connects Local Resource
Management System (LRMS) with an energy saving system that manages
power and treat LRMS as black box

Katsaros et al. [PS55] present a service framework to optimize energy
consumption. The presented framework monitors the energy consumption of a
cloud platform and analyzes energy consumption for effectively managing
VMs with the help of external sensor devices. Fangming et al. [PS25] discuss
a unified profit maximizing objective method (Lyapunov optimization
method) that takes into consideration both revenue and cost. The presented
approach uses buffering to alleviate resource surge and improves robustness
of a system by associating power budget with each resource. Raycroft et al.
[PS84] present an analysis of energy consumption of real-world VM
allocations policies. The most prominent energy consumption policies are
Watts per Core policy and Stripping and Load Balancing policy.

 62

2.4.4.2. Energy	Efficient	Process	

Challenges: The papers classified into this category deals with the challenge
of cost effectiveness plus eco-friendly business process management
according to energy efficiency requirements as shown in Table 25.

Solutions: Nowak et al. [PS74] present a pattern-driven adaptation
methodology that annotates the green business process to the available
application components. In the next step, a green business process pattern is
selected that best fits with general strategic objective of an organization and
provides solution of ecological critical part of the process. The pattern formats
are described in terms of how resources are offered by a cloud platform and
which services are accessing the cloud resources.

2.5. Discussion	on	Commercial	Cloud	Solutions	and	Research	
Outcomes	

Commercial and Open Source Cloud Computing solution providers (such as
Amazon cloud services [21], Microsoft Azure [36], Google App Engine [35],
Eucalyptus [33] and OpenNebula [34]) are focused on providing IaaS, PaaS
and SaaS based offerings. In this section, we briefly discuss how the research
outcomes of our SLR are related to the commercial cloud solutions. Software
Architecture (SA) targeting cloud-based environments deals with different
levels of abstractions based on commonly known services models, i.e., IaaS,
PaaS and SaaS. We limit the scope of the comparison by using the well-
known Cloud Services, i.e., Amazon, Google App Engine and Azure. Most
prominent offerings from Amazon cloud services and Microsoft Azure are
IaaS and PaaS cloud resources. Amazon also provides additional services to
manage IaaS cloud resources. For example, Amazon’s auto scaling [67]
feature in combination with elastic load balancer [68] and cloud watch [69]
enable replicated allocation and de-allocation of VM instances based on
predefined rules on VMs’ CPU cycles and incoming requests. This type of
solution can provide a certain level of scalability for stateless applications, but
is far from autonomous scalability requirements of modern day applications
that are not always stateless. Amazon Simple Workflow Service is another
prominent service and can be referred as PaaS [70]. It facilitates using amazon
infrastructure for computing intensive workflows. Microsoft Azure [36] offers
a broad spectrum of services including virtual machines (VM), BizTalk
application integration services, and SaaS applications such as Visual Studio
online and SharePoint portal. Azure services also provide support for
integrating Azure infrastructure with organizations’ existing infrastructure and
services.

 63

Google App Engine [35] and Salesforce [22] are the examples of PaaS cloud
and provide APIs that can be used to write applications. The PaaS model
abstracts the management of underlying infrastructure. Google App Engine
provides a generic solution by offering application developers to write
applications using Python, Java, PHP or Google Go languages. It also
provides support for NoSQL and relational databases. Applications that are
deployed on Google App Engine platform run in a sandbox and underlying
infrastructure is managed by the platform [71, 72]. Everything associated with
application’s deployment and scalability are hidden from users. It is
guaranteed that a server response is generated within 30 seconds against every
request to the applications and services that are hosted on the platform,
although average response time is less than a second. While Google App
Engine provides developers with ease and convenience for using the platform
by abstracting all the information related to infrastructure management,
application architects and developers lose control on QoS and SLA
compliance parameters. Salesforce provides a more specialized PaaS solution
by providing APIs for office automation and Customer Relationship
Management (CRM) solutions, and supports multiple programming languages
including Java, Rails, Scala, Python, Node and Clojure [22].

Whilst commercial cloud providers are offering services for application
development and deployment, researchers and some industrial initiatives have
focused on providing solutions that facilitate the optimal utilization of
resources provided by IaaS and PaaS cloud services according to specific
requirements of the applications and their respective domains. An additional
interesting observation is that certain industrial initiatives focus on providing
reference architecture models while academic research is focusing on
solutions to small and fine grained problems associated with software
architectures of cloud-based systems that can be implemented and evaluated
in academic settings. The reviewed papers specifically focus on the following
aspect of architectures for Cloud Computing:

• Identifying trusted services from the available services that comply with

quality of service (QoS) requirements of the application and their end
users.

• Utilizing cloud services according to the legal and regulatory restrictions.
• Utilizing cloud offerings to facilitate availability of the applications that

are in compliance with end-user service level agreements (SLAs).
• Guaranteeing execution of the applications on cloud infrastructure with

respect to QoS (e.g. scalability and reliability) requirements.
• Supporting portability of applications among IaaS cloud to take benefits of

cloud bursting on hybrid cloud environments.
• Provisioning resource from underlying IaaS clouds in cost and energy

efficient manner.

 64

• Discovering optimal cloud resources that best match the desired
requirements.

• Providing mechanisms for resource monitoring.
• Supporting application and services on federated cloud environment.
• Providing support for multiple tenants, and securing tenant specific data

and services.

There are also some initiatives and solutions that have been reported but not
included in our review because we have only selected journal paper for this
SLR. The WSO2 carbon platform [73] implements multi-tenancy features in
cloud middleware. This is a componentized framework that is used to
configure cloud application servers. It consists of components that can fit into
servers’ runtime environment and offers web service APIs for service
management. It also supports provisioning of bundled components on tenant-
specific instances. IBM Altocumulus middleware framework [74] enables
interoperability across computing clouds. It is useful when organizations use a
combination of private and public clouds. A middleware named YML [75] can
be used for managing dedicated and non-dedicated computing resources,
hosting multiple types of operating systems, writing customized algorithms,
utilizing other middleware by specifying interfaces for each of them and
supporting user interaction with services through YML frontend.

Nix Package Manager [76] supports building packages from resources using
a functional language. This supports multiple versions of the packages in a
system with atomic upgrade and roll back features. Disnix [76] supports
distributed deployments of packages using model-based descriptions. MeDICi
framework [77] supports the processing of data-intensive applications on
distributed nodes. It facilitates the creation of a pipeline-based data processing
system. It is used for performing analysis on huge volumes of data by
deploying nodes of the processing framework on physical or virtual nodes.
FraSCAti [78] is used for runtime management and monitoring of
components’ or services’ properties dealing with their association with other
services. It can also be used for activating and deactivating components and
services. Choco [78], a Java based library, is used to define constraints and
associated domain functions as a model. It is also used for optimization
problems on cloud. IBM Tivoli Provisioning Manager (TPM) along with
Apache HTTP load balancer is used to automate manual tasks of configuring
and provisioning cloud resources [79].

2.6. Threats	to	Validity	

The quality of this SLR was ensured by developing and reviewing research
protocol following the guidelines of conducting SLRs reported in [39]. The
research protocol helped us to minimize the potential bias in the papers

 65

selection process. The research protocol contained research questions, search
strategies, inclusion and exclusion criteria, data extraction form, and literature
synthesis approach to be used in our review. The research protocol was
developed by the first author and was reviewed by the second author and an
external expert. We ensured that the search strings were appropriately derived
from research questions.

Accuracy and consistency during the review process are usually based on a
common understanding among the authors; misunderstandings can result in
biased effects. One of the main limitations of the review could be the
possibility of bias in selecting the papers to be reviewed. To help ensure that
the selection process was as unbiased as possible, we developed detailed
guidelines in the review protocol prior to the start of the review. During the
papers screening phase (i.e., study selection and filtration), we documented
the reasons for including or excluding each paper. Finally, we rechecked the
selected papers again based on the inclusion and exclusion criteria.

The review process was designed to address the threats to conclusion, internal
and construct validity. We used data extraction form to address the threats to
conclusion validity [80]. The use of a well-defined data extraction form is
expected to reduce bias in data extraction process and ensures data extraction
that is consistent and relevant to research questions. An uneven number of
studies from publication sources could also be a threat to conclusion validity
and was addressed by systematic study selection and review process. Bias in
papers selection process could be a threat to internal validity [80]. This was
addressed by our multi-stage search and papers selection process as described
in Section 2. The first author selected an initial set of included papers. The
second author and a research assistant reviewed the initial set of selected
papers and a disputed set of papers were included or excluded after
discussions among the authors and the research assistant. Validity of data
selection and its representation to address research questions is referred as
Construct Validity [80]. The searches were performed on multiple databases
to get relevant journal papers. The research protocol was developed in order to
minimize the potential threat to construct validity. The research question,
inclusion and exclusion criteria, search strings used for searches and data
extraction strategy ensured consistent data extraction process and valid
results.

2.7. Conclusions	

Cloud Computing is being widely adopted with an increasing number of
applications being deployed on Cloud-based platforms. Designing and
evaluating software-intensive systems and applications for Cloud platforms
are enormously complex and challenging undertakings. SAs of Cloud-based

 66

systems should be designed for fully exploiting Cloud Computing features.
Given the importance of identifying and addressing the challenges involved in
designing appropriate architectures, a large amount of literature has been
published in a relatively short time period. However, there has been no
attempt to systematically identify, rigorously assess and synthesize the
reported challenges of and associated solutions to build an evidence-based
body of knowledge on architecting for cloud computing.

We conducted a SLR of the peer-reviewed literature reporting the challenges
of and the solutions for architecting cloud-based software systems. We
decided to review only papers published in Journals as an indicator of their
high quality and completeness of work that is usually published as a journal
paper. Based on systematic analysis of 111 journal papers, we have identified
44 challenges of architecting cloud-enabled software intensive systems and
classified them in different categories including Resource and Service
Management, Workflow Management, Service Level Agreement Compliance
and Energy Awareness.

The results of our review show that the reported solutions have used a variety
of cloud environments for implementation and evaluation of the proposed
approaches. Amazon, Windows Azure and Google App Engine are the most
commonly used public cloud environments. A majority of the reviewed
papers used architecture centric strategies to address the challenges of
architecting cloud-based software systems; however, there are a significant
number of studies that are proposing algorithmic solutions to complement
architecture based solutions. For example, the algorithms to support
scalability to minimize execution cost are described in [PS39]. The reviewed
papers show an even distribution with respect to maturity stages as most of
the papers have evaluated the proposed solutions in real or simulated cloud
environments demonstrating that the solutions can be applied in real life
settings. The architectural solutions for cloud-based systems proposed in the
reviewed papers suggest that scalability, performance, response time and
optimum utilization of the cloud resources are frequently researched quality
characteristics.

The findings are expected to provide useful information and insights to both
researchers and practitioners. For researchers, the review provides important
information about different types of quality attributes that are more frequently
reported with respect to architecting cloud-based software systems. We have
systematically drawn a taxonomy that can be used to analyze and categorize
architectural challenges of and solutions to cloud-based systems. Moreover,
this review has also identified some emerging areas of research for
architecting cloud-based solutions (e.g., green cloud computing, cloud for
mobile and ubiquitous computing, and Internet of Things (IoTs)) and to fill

 67

the gap in the research areas that are still not mature (e.g., enhancing SLA
specification and management capabilities to cover overall life cycle of cloud-
enabled applications including but not limited to security, privacy, pricing and
quality concerns). The practitioners can use the findings as a source of
information to identify relevant approaches, and to learn and access relevant
solutions that can be tailored to a specific application’s requirements. The
details of our methodological approach can also provide useful insights into
the processes and procedures for building evidence-based body of knowledge
about a given topic. Researchers can also use the methodological details for
updating this literature review.

 68

Listing	A	
Table 26: Data Extraction Form

Elements of Data Extraction Form
Element Description

Study Identity Unique identity for the study.
Reviewer Reviewer’s name.
Review Date The date of data extraction.
Bibliographic
References

Author, year of publication, title and source of publication.

Focus of the Study or
Study Category

Main topic area or the problem study is trying to address.

Objective Description of study objectives.
Motivation Explanation of motivation behind study.
Challenges Issues and problems being addresses in the study
Solutions Solutions presented in the study to solve stated problems.
Algorithms Algorithms proposed/used to solve stated problem in combination

with architecture elements.
Quality Attributes
Focused

Primary quality attributes affected by the solutions.

Cloud Environment Cloud environments on which solutions are implemented and
tested.

Cloud Service Model Cloud service model on which solutions are applicable.
Maturity Stage Specification of maturity stage of the presented research. It has

one of the following values: basic research, concept formulation,
development and extension, internal enhancement and
exploration, and popularization.

Evaluation Settings Environment in which the proposed solutions are evaluated. It is
one of the following: Simulation Environment, Evaluated on
Local Infrastructure.

Limitations and Future
Research Directions

Limitations and areas of improvements in the reported solutions.

Listing	B	
Table 27: Detailed Quality Assessment Score of Selected Primary Studies

Quality Score

R
ef

er
en

ce
s

R
es

ea
rc

h
(Q

1)

A
im

 (Q
2)

C
on

te
xt

 (Q
3)

Fi
nd

in
gs

 (Q
4)

E
nh

an
ce

m
en

t (
Q

5)

A
gg

re
ga

te
d

Sc
or

e

R
ef

er
en

ce
s

R
es

ea
rc

h
(Q

1)

A
im

 (Q
2)

C
on

te
xt

 (Q
3)

Fi
nd

in
gs

 (Q
4)

E
nh

an
ce

m
en

t (
Q

5)

A
gg

re
ga

te
d

Sc
or

e

[PS41] 1 1 1 1 1 5 [PS42] 1 1 1 1 0 4

 69

[PS31] 1 1 1 1 1 5 [PS69] 1 1 1 1 0 4
[PS47] 1 1 1 1 1 5 [PS30] 1 1 1 1 0 4
[PS78] 1 1 1 1 1 5 [PS99] 1 1 0 1 1 4
[PS54] 1 1 1 1 1 5 [PS92] 1 1 1 1 0 4
[PS20] 1 1 1 1 1 5 [PS37] 1 1 1 1 0 4
[PS14] 1 1 1 1 1 5 [PS77] 1 1 1 1 0 4
[PS13] 1 1 1 1 1 5 [PS44] 1 1 1 1 0 4
[PS66] 1 1 1 1 1 5 [PS35] 1 1 1 1 1 4
[PS79] 1 1 1 1 1 5 [PS83] 1 1 1 1 0 4
[PS22] 1 1 1 1 1 5 [PS80] 1 1 1 1 0 4
[PS23] 1 1 1 1 1 5 [PS49] 1 1 1 1 0 4
[PS39] 1 1 1 1 1 5 [PS91] 1 1 1 1 0 4
[PS29] 1 1 1 1 1 5 [PS108] 1 1 1 1 0 4
[PS101] 1 1 1 1 1 5 [PS12] 1 1 1 1 0 4
[PS7] 1 1 1 1 1 5 [PS57] 1 1 1 1 0 4
[PS50] 1 1 1 1 1 5 [PS16] 1 1 1 1 0 4
[PS40] 1 1 1 1 1 5 [PS93] 1 1 1 1 0 4
[PS52] 1 1 1 1 1 5 [PS32] 1 1 1 1 0 4
[PS96] 1 1 1 1 1 5 [PS74] 1 1 1 0 1 4
[PS11] 1 1 1 1 1 5 [PS9] 1 1 1 1 0 4
[PS81] 1 1 1 1 1 5 [PS18] 1 1 1 1 0 4
[PS107] 1 1 1 1 1 5 [PS28] 1 1 1 1 0 4
[PS102] 1 1 1 1 1 5 [PS51] 1 1 1 1 0 4
[PS21] 1 1 1 1 1 5 [PS82] 1 1 1 1 0 4
[PS59] 1 1 1 1 1 5 [PS86] 1 1 1 1 0 4
[PS61] 1 1 1 1 1 5 [PS87] 1 1 1 0.5 1 4
[PS88] 1 1 1 1 1 5 [PS95] 1 1 1 1 0 4
[PS106] 1 1 1 1 1 5 [PS97] 1 1 1 1 0 4
[PS33] 1 1 1 1 1 5 [PS103] 1 1 0.5 1 1 4
[PS5] 1 1 1 1 1 5 [PS34] 1 1 0.5 1 1 4
[PS24] 1 1 1 1 1 5 [PS65] 1 1 0.5 1 1 4
[PS55] 1 1 1 1 1 5 [PS67] 1 1 0.5 1 1 4
[PS84] 1 1 1 1 1 5 [PS72] 1 1 0.5 1 1 4
[PS38] 1 1 1 1 1 5 [PS89] 1 1 0 0.5 1 3.5
[PS3] 1 1 1 1 1 5 [PS58] 1 1 0.5 0 1 3.5
[PS6] 1 1 1 1 1 5 [PS62] 1 1 0.5 0 1 3.5
[PS15] 1 1 1 1 1 5 [PS4] 1 1 0 0 1 3
[PS56] 1 1 1 1 1 5 [PS10] 1 1 0 0 1 3
[PS63] 1 1 1 1 1 5 [PS110] 1 1 0 0 1 3
[PS70] 1 1 1 1 1 5 [PS2] 1 1 0 0 1 3
[PS75] 1 1 1 1 1 5 [PS36] 1 1 0.5 1 0.5 3
[PS94] 1 1 1 1 1 5 [PS45] 1 1 0 1 0 3
[PS98] 1 1 1 1 1 5 [PS46] 1 1 0 1 0 3

 70

[PS1] 1 1 1 1 1 5 [PS105] 1 1 0.5 1 0 3
[PS8] 1 1 1 1 1 5 [PS68] 1 1 0.5 1 0.5 3
[PS17] 1 1 1 1 1 5 [PS111] 1 1 0.5 1 0 3
[PS19] 1 1 1 1 1 5 [PS26] 1 1 0.5 0 0 2.5
[PS71] 1 1 1 1 1 5 [PS76] 1 1 0 0 0 2
[PS109] 1 1 1 1 1 5 [PS90] 1 0 0 0 0 2
[PS53] 1 1 1 1 1 5 [PS43] 1 1 0 0 0 2
[PS64] 1 1 1 1 1 5 [PS85] 1 1 0 0 0 2
[PS100] 1 1 1 1 1 5 [PS104] 1 1 0 0 0 2
[PS73] 1 1 1 1 1 4 [PS60] 1 1 0 0 0 2
[PS27] 1 1 1 1 0 4 [PS25] 1 1 0.5 0 0 2
[PS48] 1 1 1 1 0 4

R
es

ea
rc

h
(Q

1)

A
im

 (Q
2)

C
on

te
xt

 (Q
3)

Fi
nd

in
gs

 (Q
4)

E
nh

an
ce

m
en

t
(Q

5)

A
gg

re
ga

te
d

Sc
or

e

Average 1 0.99 0.86 0.86 0.64 4.27

Listing	C	

Following is the list of the selected studies that are included in this review.

[PS1] J. M. Alcaraz Calero and J. Gutierrez Aguado, "MonPaaS: An Adaptive Monitoring

Platformas a Service for Cloud Computing Infrastructures and Services," Services
Computing, IEEE Transactions on, vol. 8, pp. 65-78, 2015.

[PS2] M. Amoretti, A. Grazioli, V. Senni, F. Tiezzi, and F. Zanichelli, "A formalized
framework for mobile cloud computing," Service Oriented Computing and
Applications, pp. 1-20, 2014.

[PS3] K. An, S. Shekhar, F. Caglar, A. Gokhale, and S. Sastry, "A cloud middleware for
assuring performance and high availability of soft real-time applications," Journal of
Systems Architecture, vol. 60, pp. 757-769, 2014.

[PS4] P. Belimpasakis and S. Moloney, "A platform for proving family oriented RESTful
services hosted at home," Consumer Electronics, IEEE Transactions on, vol. 55, pp.
690-698, 2009.

[PS5] A. Beloglazov, J. Abawajy, and R. Buyya, "Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing," Future
generation computer systems, vol. 28, pp. 755-768, 2012.

[PS6] A. Benharref and M. A. Serhani, "Novel Cloud and SOA-Based Framework for E-
Health Monitoring Using Wireless Biosensors," Biomedical and Health Informatics,
IEEE Journal of, vol. 18, pp. 46-55, 2014.

[PS7] J. Bernal Bernabe, J. M. Marin Perez, J. M. Alcaraz Calero, F. J. Garcia Clemente,
G. Martinez Perez, and A. F. Gomez Skarmeta, "Semantic-aware multi-tenancy

 71

authorization system for cloud architectures," Future Generation Computer Systems,
vol. 32, pp. 154-167, 2014.

[PS8] M. Bux and U. Leser, "DynamicCloudSim: Simulating heterogeneity in
computational clouds," Future Generation Computer Systems, vol. 46, pp. 85-99,
2015.

[PS9] J. Buysse, K. Georgakilas, A. Tzanakaki, M. De Leenheer, B. Dhoedt, and C.
Develder, "Energy-efficient resource-provisioning algorithms for optical clouds,"
Journal of Optical Communications and Networking, vol. 5, pp. 226-239, 2013.

[PS10] R. Buyya, S. Pandey, and C. Vecchiola, "Cloudbus toolkit for market-oriented cloud
computing," in Cloud Computing, ed: Springer, 2009, pp. 24-44.

[PS11] E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, "Cost optimized provisioning of
elastic resources for application workflows," Future Generation Computer Systems,
vol. 27, pp. 1011-1026, 2011.

[PS12] C. Cacciari, D. Mallmann, C. Zsigri, F. D’Andria, B. Hagemeier, A. Rumpl, et al.,
"SLA-based management of software licenses as web service resources in distributed
computing infrastructures," Future Generation Computer Systems, vol. 28, pp. 1340-
1349, 2012.

[PS13] R. N. Calheiros, A. N. Toosi, C. Vecchiola, and R. Buyya, "A coordinator for scaling
elastic applications across multiple clouds," Future Generation Computer Systems,
vol. 28, pp. 1350-1362, 2012.

[PS14] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya, "The Aneka
platform and QoS-driven resource provisioning for elastic applications on hybrid
Clouds," Future Generation Computer Systems, vol. 28, pp. 861-870, 2012.

[PS15] M. Canuto and J. Guitart, "Integrated policy management framework for IaaS Cloud
middleware," Computing, pp. 1-24, 2014.

[PS16] E. Casalicchio and L. Silvestri, "Mechanisms for SLA provisioning in cloud-based
service providers," Computer Networks, vol. 57, pp. 795-810, 2013.

[PS17] A. Castiglione, R. Pizzolante, A. De Santis, B. Carpentieri, A. Castiglione, and F.
Palmieri, "Cloud-based adaptive compression and secure management services for
3D healthcare data," Future Generation Computer Systems, vol. 43–44, pp. 120-134,
2015.

[PS18] A. Castro, V. A. Villagra, B. Fuentes, and B. Costales, "A Flexible Architecture for
Service Management in the Cloud," Network and Service Management, IEEE
Transactions on, vol. 11, pp. 116-125, 2014.

[PS19] W. Chao, L. Xi, C. Peng, W. Aili, Z. Xuehai, and Y. Hong, "Heterogeneous Cloud
Framework for Big Data Genome Sequencing," Computational Biology and
Bioinformatics, IEEE/ACM Transactions on, vol. 12, pp. 166-178, 2015.

[PS20] C. Chapman, W. Emmerich, F. Márquez, S. Clayman, and A. Galis, "Software
architecture definition for on-demand cloud provisioning," Cluster Computing, pp.
1-22, 2011.

[PS21] T. Chen, R. Bahsoon, and A.-R. H. Tawil, "Scalable service-oriented replication with
flexible consistency guarantee in the cloud," Information Sciences, vol. 264, pp. 349-
370, 2013.

[PS22] I. Corredor, J. F. Martínez, and M. S. Familiar, "Bringing pervasive embedded
networks to the service cloud: A lightweight middleware approach," Journal of
systems architecture, vol. 57, pp. 916-933, 2011.

[PS23] I. Corredor, J. F. Martínez, M. S. Familiar, and L. López, "Knowledge-aware and
service-oriented middleware for deploying pervasive services," Journal of Network
and Computer Applications, vol. 35, pp. 562-576, 2012.

 72

[PS24] C. De Alfonso, M. Caballer, F. Alvarruiz, and V. Hernández, "An energy
management system for cluster infrastructures," Computers & Electrical
Engineering, vol. 39, pp. 2579-2590, 2013.

[PS25] L. Fangming, Z. Zhi, J. Hai, L. Bo, L. Baochun, and J. Hongbo, "On Arbitrating the
Power-Performance Tradeoff in SaaS Clouds," Parallel and Distributed Systems,
IEEE Transactions on, vol. 25, pp. 2648-2658, 2014.

[PS26] Z. Farkas and P. Kacsuk, "P-GRADE portal: a generic workflow system to support
user communities," Future Generation Computer Systems, vol. 27, pp. 454-465,
2011.

[PS27] A. J. Ferrer, F. HernáNdez, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri, et al.,
"OPTIMIS: A holistic approach to cloud service provisioning," Future Generation
Computer Systems, vol. 28, pp. 66-77, 2012.

[PS28] L. Ferretti, F. Pierazzi, M. Colajanni, and M. Marchetti, "Scalable Architecture for
Multi-User Encrypted SQL Operations on Cloud Database Services," Cloud
Computing, IEEE Transactions on, vol. 2, pp. 448-458, 2014.

[PS29] H. Flores and S. N. Srirama, "Mobile cloud middleware," Journal of Systems and
Software, vol. 92, pp. 82-94, 2013.

[PS30] A. Forkan, I. Khalil, and Z. Tari, "CoCaMAAL: A cloud-oriented context-aware
middleware in ambient assisted living," Future Generation Computer Systems, vol.
35, pp. 114-127, 2014.

[PS31] M. E. Frîncu, "Scheduling highly available applications on cloud environments,"
Future Generation Computer Systems, vol. 32, pp. 138-153, 2014.

[PS32] A. G. García, I. B. Espert, and V. H. García, "SLA-driven dynamic cloud resource
management," Future Generation Computer Systems, vol. 31, pp. 1-11, 2014.

[PS33] S. K. Garg, S. Versteeg, and R. Buyya, "A framework for ranking of cloud
computing services," Future Generation Computer Systems, vol. 29, pp. 1012-1023,
2013.

[PS34] T. Ghafarian and B. Javadi, "Cloud-aware data intensive workflow scheduling on
volunteer computing systems," Future Generation Computer Systems, 2014.

[PS35] L. Gkatzikis and I. Koutsopoulos, "Migrate or not? exploiting dynamic task
migration in mobile cloud computing systems," Wireless Communications, IEEE,
vol. 20, pp. 24-32, 2013.

[PS36] T.-M. GrØnli, G. Ghinea, and M. Younas, "Context-aware and Automatic
Configuration of Mobile Devices in Cloud-enabled Ubiquitous Computing,"
Personal Ubiquitous Comput., vol. 18, pp. 883-894, 2014.

[PS37] J. Guillén, J. Miranda, J. M. Murillo, and C. Canal, "A service-oriented framework
for developing cross cloud migratable software," Journal of Systems and Software,
vol. 86, pp. 2294-2308, 2013.

[PS38] T. Gunarathne, B. Zhang, T.-L. Wu, and J. Qiu, "Scalable parallel computing on
clouds using Twister4Azure iterative MapReduce," Future Generation Computer
Systems, vol. 29, pp. 1035-1048, 2013.

[PS39] R. Han, M. M. Ghanem, L. Guo, Y. Guo, and M. Osmond, "Enabling cost-aware and
adaptive elasticity of multi-tier cloud applications," Future Generation Computer
Systems, vol. 32, pp. 82-98, 2014.

[PS40] Y.-B. Han, J.-Y. Sun, G.-L. Wang, and H.-F. Li, "A cloud-based bpm architecture
with user-end distribution of non-compute-intensive activities and sensitive data,"
Journal of Computer Science and Technology, vol. 25, pp. 1157-1167, 2010.

[PS41] M. M. Hassan, B. Song, and E.-N. Huh, "A market-oriented dynamic collaborative
cloud services platform," annals of telecommunications-annales des
télécommunications, vol. 65, pp. 669-688, 2010.

 73

[PS42] C. He, X. Fan, and Y. Li, "Toward ubiquitous healthcare services with a novel
efficient cloud platform," Biomedical Engineering, IEEE Transactions on, vol. 60,
pp. 230-234, 2013.

[PS43] M. A. Hiltunen and R. D. Schlichting, "Is collaborative QoS the solution to the SOA
dependability dilemma?," in Architecting dependable systems VII, ed: Springer,
2010, pp. 227-248.

[PS44] X. Hu, T. H. Chu, H. C. Chan, and V. C. Leung, "Vita: A crowdsensing-oriented
mobile cyber-physical system," Emerging Topics in Computing, IEEE Transactions
on, vol. 1, pp. 148-165, 2013.

[PS45] P. P. Hung, T.-A. Bui, M. A. Morales, M. Nguyen, and E.-N. Huh, "Optimal
Collaboration of Thin—thick Clients and Resource Allocation in Cloud Computing,"
Personal Ubiquitous Comput., vol. 18, pp. 563-572, 2014.

[PS46] P. Incheon, C. Wuhui, and M. N. Huhns, "A Scalable Architecture for Automatic
Service Composition," Services Computing, IEEE Transactions on, vol. 7, pp. 82-95,
2014.

[PS47] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, "Adaptive resource provisioning
for read intensive multi-tier applications in the cloud," Future Generation Computer
Systems, vol. 27, pp. 871-879, 2011.

[PS48] W. Itani, C. Ghali, R. Bassil, A. Kayssi, and A. Chehab, "ServBGP: BGP-inspired
autonomic service routing for multi-provider collaborative architectures in the
cloud," Future Generation Computer Systems, vol. 32, pp. 99-117, 2014.

[PS49] W. Itani, A. Kayssi, and A. Chehab, "SNUAGE: an efficient platform-as-a-service
security framework for the cloud," Cluster computing, vol. 16, pp. 707-724, 2013.

[PS50] R. C. Jammalamadaka, R. Gamboni, S. Mehrotra, K. Seamons, and N.
Venkatasubramanian, "A middleware approach for outsourcing data securely,"
computers & security, vol. 32, pp. 252-266, 2013.

[PS51] Y. Jararweh, M. Jarrah, M. kharbutli, Z. Alshara, M. N. Alsaleh, and M. Al-Ayyoub,
"CloudExp: A comprehensive cloud computing experimental framework,"
Simulation Modelling Practice and Theory, vol. 49, pp. 180-192, 2014.

[PS52] B. Javadi, M. Tomko, and R. O. Sinnott, "Decentralized orchestration of data-centric
workflows in Cloud environments," Future Generation Computer Systems, vol. 29,
pp. 1826-1837, 2013.

[PS53] F. Jrad, J. Tao, I. Brandic, and A. Streit, "SLA enactment for large-scale healthcare
workflows on multi-Cloud," Future Generation Computer Systems, vol. 43–44, pp.
135-148, 2015.

[PS54] G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis, A. Menychtas, and T.
Varvarigou, "A Self-adaptive hierarchical monitoring mechanism for Clouds,"
Journal of Systems and Software, vol. 85, pp. 1029-1041, 2012.

[PS55] G. Katsaros, J. Subirats, J. O. Fitó, J. Guitart, P. Gilet, and D. Espling, "A service
framework for energy-aware monitoring and VM management in Clouds," Future
Generation Computer Systems, vol. 29, pp. 2077-2091, 2013.

[PS56] P. D. Kaur and I. Chana, "A resource elasticity framework for QoS-aware execution
of cloud applications," Future Generation Computer Systems, vol. 37, pp. 14-25,
2014.

[PS57] A. Kertész, G. Kecskemeti, and I. Brandic, "An interoperable and self-adaptive
approach for SLA-based service virtualization in heterogeneous Cloud
environments," Future Generation Computer Systems, vol. 32, pp. 54-68, 2014.

[PS58] K. Kim, "A model-driven workflow fragmentation framework for collaborative
workflow architectures and systems," Journal of network and computer applications,
vol. 35, pp. 97-110, 2012.

 74

[PS59] G. Kousiouris, A. Menychtas, D. Kyriazis, S. Gogouvitis, and T. Varvarigou,
"Dynamic, behavioral-based estimation of resource provisioning based on high-level
application terms in Cloud platforms," Future Generation Computer Systems, vol.
32, pp. 27-40, 2012.

[PS60] M. Krämer and I. Senner, "A modular software architecture for processing of big
geospatial data in the cloud," Computers & Graphics, 2015.

[PS61] R. Krebs, C. Momm, and S. Kounev, "Metrics and techniques for quantifying
performance isolation in cloud environments," Science of Computer Programming,
vol. 90, pp. 116-134, 2013.

 [PS62] J. Li, B. Stephenson, H. R. Motahari-Nezhad, and S. Singhal, "GEODAC: A data
assurance policy specification and enforcement framework for outsourced services,"
Services Computing, IEEE Transactions on, vol. 4, pp. 340-354, 2011.

[PS63] Z. Li, H. Li, X. Wang, and K. Li, "A generic cloud platform for engineering
optimization based on OpenStack," Advances in Engineering Software, vol. 75, pp.
42-57, 2014.

[PS64] W. Linlin, S. K. Garg, S. Versteeg, and R. Buyya, "SLA-Based Resource
Provisioning for Hosted Software-as-a-Service Applications in Cloud Computing
Environments," Services Computing, IEEE Transactions on, vol. 7, pp. 465-485,
2014.

[PS65] B. Liu, R. K. Madduri, B. Sotomayor, K. Chard, L. Lacinski, U. J. Dave, et al.,
"Cloud-based bioinformatics workflow platform for large-scale next-generation
sequencing analyses," Journal of Biomedical Informatics, vol. 49, pp. 119-133,
2014.

[PS66] T. Liu, T. Lu, W. Wang, Q. Wang, Z. Liu, N. Gu, et al., "SDMS-O: A service
deployment management system for optimization in clouds while guaranteeing
users’ QoS requirements," Future Generation Computer Systems, vol. 28, pp. 1100-
1109, 2012.

[PS67] W. Liu, S. Peng, W. Du, W. Wang, and G. S. Zeng, "Security-aware intermediate
data placement strategy in scientific cloud workflows," Knowledge and Information
Systems, vol. 41, pp. 423-447, 2014.

[PS68] A. Lounis, A. Hadjidj, A. Bouabdallah, and Y. Challal, "Healing on the cloud:
Secure cloud architecture for medical wireless sensor networks," Future Generation
Computer Systems, 2015.

[PS69] J. L. Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente,
"Scheduling strategies for optimal service deployment across multiple clouds,"
Future Generation Computer Systems, vol. 29, pp. 1431-1441, 2013.

[PS70] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and F. D. Turck, "Cost-
Effective Feature Placement of Customizable Multi-Tenant Applications in the
Cloud," Journal of Network and Systems Management, vol. 22, pp. 517-558, 2014.

[PS71] M. Mohamed, M. Amziani, D. Belaïd, S. Tata, and T. Melliti, "An autonomic
approach to manage elasticity of business processes in the Cloud," Future
Generation Computer Systems, 2014.

[PS72] V. Nae, R. Prodan, and A. Iosup, "SLA-based operations of massively multiplayer
online games in clouds," Multimedia Systems, vol. 20, pp. 521-544, 2014.

[PS73] W. Noh and T. Kim, "Flexible communication-bus architecture for distributed
multimedia service in cloud computing platform," Consumer Electronics, IEEE
Transactions on, vol. 59, pp. 530-537, 2013.

[PS74] A. Nowak, T. Binz, C. Fehling, O. Kopp, F. Leymann, and S. Wagner, "Pattern-
driven green adaptation of process-based applications and their runtime
infrastructure," Computing, vol. 94, pp. 463-487, 2012.

 75

[PS75] F. Paraiso, P. Merle, and L. Seinturier, "soCloud: a service-oriented component-
based PaaS for managing portability, provisioning, elasticity, and high availability
across multiple clouds," Computing, pp. 1-27, 2014.

[PS76] S. Peifeng, S. Chuan, and Z. Xiang, "Intelligent server management framework over
extensible messaging and presence protocol," Communications, China, vol. 10, pp.
128-136, 2013.

[PS77] F. Perez-Sorrosal, M. Patiño-Martinez, R. Jimenez-Peris, and B. Kemme, "Elastic
SI-Cache: consistent and scalable caching in multi-tier architectures," The VLDB
Journal—The International Journal on Very Large Data Bases, vol. 20, pp. 841-865,
2011.

[PS78] D. Petcu, G. Macariu, S. Panica, and C. Crăciun, "Portable cloud applications—from
theory to practice," Future Generation Computer Systems, vol. 29, pp. 1417-1430,
2013.

[PS79] J. Povedano-Molina, J. M. Lopez-Vega, J. M. Lopez-Soler, A. Corradi, and L.
Foschini, "DARGOS: A highly adaptable and scalable monitoring architecture for
multi-tenant Clouds," Future Generation Computer Systems, vol. 29, pp. 2041-2056,
2013.

[PS80] R. Prodan and M. Sperk, "Scientific computing with Google App Engine," Future
Generation Computer Systems, vol. 29, pp. 1851-1859, 2013.

[PS81] L. Qi, W. Dou, X. Zhang, and J. Chen, "A QoS-aware composition method
supporting cross-platform service invocation in cloud environment," Journal of
Computer and System Sciences, vol. 78, pp. 1316-1329, 2012.

[PS82] L. Qin, W. Guojun, and W. Jie, "Consistency as a Service: Auditing Cloud
Consistency," Network and Service Management, IEEE Transactions on, vol. 11, pp.
25-35, 2014.

[PS83] W. Qing, H. Zheng, W. Ming, and L. Haifeng, "CACTSE: Cloudlet aided
cooperative terminals service environment for mobile proximity content delivery,"
Communications, China, vol. 10, pp. 47-59, 2013.

[PS84] P. Raycroft, R. Jansen, M. Jarus, and P. R. Brenner, "Performance bounded energy
efficient virtual machine allocation in the global cloud," Sustainable Computing:
Informatics and Systems, vol. 4, pp. 1-9, 2013.

[PS85] R. Rezaei, T. K. Chiew, S. P. Lee, and Z. Shams Aliee, "A semantic interoperability
framework for software as a service systems in cloud computing environments,"
Expert Systems with Applications, vol. 41, pp. 5751-5770, 2014.

[PS86] L. S. Ribeiro, C. Viana-Ferreira, J. L. Oliveira, and C. Costa, "XDS-I Outsourcing
Proxy: Ensuring Confidentiality While Preserving Interoperability," Biomedical and
Health Informatics, IEEE Journal of, vol. 18, pp. 1404-1412, 2014.

[PS87] V. Rocha, F. Kon, R. Cobe, and R. Wassermann, "A hybrid cloud-P2P architecture
for multimedia information retrieval on VoD services," Computing, pp. 1-20, 2014.

[PS88] M. Á. Rodríguez-García, R. Valencia-García, F. García-Sánchez, and J. J. Samper-
Zapater, "Ontology-based annotation and retrieval of services in the cloud,"
Knowledge-Based Systems, vol. 56, pp. 15-25, 2013.

[PS89] M. Á. Rodríguez-García, R. Valencia-García, F. García-Sánchez, and J. J. Samper-
Zapater, "Creating a semantically-enhanced cloud services environment through
ontology evolution," Future Generation Computer Systems, vol. 32, pp. 295-306,
2014.

[PS90] J. Ryan, "Rethinking the ESB: building a secure bus with an SOA gateway,"
Network Security, vol. 2012, pp. 14-17, 2012.

[PS91] B. K. Samanthula, Y. Elmehdwi, G. Howser, and S. Madria, "A secure data sharing
and query processing framework via federation of cloud computing," Information
Systems, vol. 48, pp. 196-212, 2013.

 76

[PS92] L. A. B. Silva, C. Costa, and J. L. Oliveira, "A common API for delivering services
over multi-vendor cloud resources," Journal of Systems and Software, vol. 86, pp.
2309-2317, 2013.

[PS93] M. Smit, B. Simmons, and M. Litoiu, "Distributed, application-level monitoring for
heterogeneous clouds using stream processing," Future Generation Computer
Systems, vol. 29, pp. 2103-2114, 2013.

[PS94] T. S. Somasundaram and K. Govindarajan, "CLOUDRB: A framework for
scheduling and managing High-Performance Computing (HPC) applications in
science cloud," Future Generation Computer Systems, vol. 34, pp. 47-65, 2014.

[PS95] B. Song, M. M. Hassan, A. Alamri, A. Alelaiwi, Y. Tian, M. Pathan, et al., "A two-
stage approach for task and resource management in multimedia cloud
environment," Computing, pp. 1-27, 2014.

[PS96] R. Tolosana-Calasanz, J. Á. BañAres, C. Pham, and O. F. Rana, "Enforcing QoS in
scientific workflow systems enacted over Cloud infrastructures," Journal of
Computer and System Sciences, vol. 78, pp. 1300-1315, 2012.

[PS97] V. Varadharajan and U. Tupakula, "Security as a Service Model for Cloud
Environment," Network and Service Management, IEEE Transactions on, vol. 11,
pp. 60-75, 2014.

[PS98] J. Vera-del-Campo, J. Pegueroles, J. Hernández-Serrano, and M. Soriano,
"DocCloud: A document recommender system on cloud computing with plausible
deniability," Information Sciences, vol. 258, pp. 387-402, 2014.

[PS99] D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda, et al.,
"Cloud federation in a layered service model," Journal of Computer and System
Sciences, vol. 78, pp. 1330-1344, 2012.

[PS100] S. Walraven, D. V. Landuyt, A. Rafique, B. Lagaisse, and W. Joosen, "PaaSHopper:
Policy-driven middleware for multi-PaaS environments," Journal of Internet
Services and Applications, vol. 6, pp. 1-14, 2015.

[PS101] A. K. Wong and A. M. Goscinski, "A unified framework for the deployment,
exposure and access of HPC applications as services in clouds," Future Generation
Computer Systems, vol. 29, pp. 1333-1344, 2013.

[PS102] L. Wu, S. K. Garg, and R. Buyya, "SLA-based admission control for a Software-as-
a-Service provider in Cloud computing environments," Journal of Computer and
System Sciences, vol. 78, pp. 1280-1299, 2012.

[PS103] X. Wu, M. Liu, W. Dou, L. Gao, and S. Yu, "A scalable and automatic mechanism
for resource allocation in self-organizing cloud," Peer-to-Peer Networking and
Applications, pp. 1-14, 2014.

[PS104] Z. Xu, L. Mei, Y. Liu, C. Hu, and L. Chen, "Semantic enhanced cloud environment
for surveillance data management using video structural description," Computing,
pp. 1-20, 2014.

[PS105] W. Zhang, L. Chen, X. Liu, Q. Lu, P. Zhang, and S. Yang, "An OSGi-based flexible
and adaptive pervasive cloud infrastructure," Science China Information Sciences,
vol. 57, pp. 1-11, 2014.

[PS106] Y. Zhang and Y. Zhou, "Transparent computing: spatiotemporal extension on von
Neumann architecture for cloud services," Tsinghua Science and Technology, vol.
18, pp. 10-21, 2013.

[PS107] L. Zhao, Y. Ren, M. Li, and K. Sakurai, "Flexible service selection with user-
specific QoS support in service-oriented architecture," Journal of Network and
Computer Applications, vol. 35, pp. 962-973, 2012.

[PS108] L. Zhou, V. Varadharajan, and M. Hitchens, "Achieving secure role-based access
control on encrypted data in cloud storage," Information Forensics and Security,
IEEE Transactions on, vol. 8, pp. 1947-1960, 2013.

 77

[PS109] Y. Zhu, R. Y. Shtykh, and Q. Jin, "A human-centric framework for context-aware
flowable services in cloud computing environments," Information Sciences, vol. 257,
pp. 231-247, 2014.

[PS110] D. Zissis and D. Lekkas, "Securing e-Government and e-Voting with an open cloud
computing architecture," Government Information Quarterly, vol. 28, pp. 239-251,
2011.

[PS111] C. Zixue, L. Peng, W. Junbo, and G. Song, "Just-in-Time Code Offloading for
Wearable Computing," Emerging Topics in Computing, IEEE Transactions on, vol. 3,
pp. 74-83, 2015.

 78

 79

Chapter	3. Reference	Architecture	Development	Process	
Framework	for	TSPACE	

For the implementation of Tools as a service workSPACE (TSPACE), a
thorough understanding of TSPACE needs to be established. In this chapter,
we define a conceptual framework that guides TSPACE reference architecture
development. The framework describes the concepts that are important to
design TSPACE reference architecture and to support multiple lifecycle
phases for on demand provisioning of Tools as a Service (TaaS). The
framework provides a foundation for TSPACE requirements and reference
architecture elements (to be discussed in detail in Chapter 4, Chapter 5 and
Chapter 6). The framework serves as a guiding tool for addressing the
challenges that emerge as a result of the highly dynamic nature of design time
and runtime functional requirements as well as architecture quality
requirements of TSPACE. The framework consists of multiple stages
corresponding to the reference architecture requirements identification,
reference architecture documentation approach, TSPACE meta-models
design, and detailed architecture design and evaluation approach.

3.1. Introduction	

The framework described in this chapter provides a general overview of
TSPACE and the design process that leads to the concrete architecture design
of TSPACE reference architecture. The framework contains concepts that
describe TSPACE environment as well as the relations between the concepts.
The identified concepts need to be addressed during TSPACE architecture
analysis, design and development. The framework provides process guidelines
and serves as a convenient tool for the structured analysis of TSPACE
requirements and domain. The concepts that are identified and described in
the framework are not only used to design the TSPACE reference architecture
but also to provide a valuable insight on implementation of the reference
architecture. For convenience, we have named Reference Architecture
Development process Framework as RADeF.

As discussed in the introductory chapter, TSPACE aims at providing
stakeholders involved in software architecture design and software
engineering activities easy access to the tools that are required to perform the
activities. RADeF provides a conceptual design framework for TSPACE and
serves as a guiding tool for the detail specification of the activities that are to
be performed not only during design and analysis of TSPACE reference
architecture, but also during its implementation and execution phases. The

 80

framework also discusses key elements of TSPACE and explains their
relationships.

The trend of offering Software as a Service (SaaS) has significantly increased
over the last few years and has been adopted in various domains [81-85].
Introduction of an *aaS model for software engineering tools, requires
tailoring of the design strategies that are used for SaaS. One of the primary
reason for this is that the software engineering tools often serve as part of
tools ecosystem or a suite of tools, where multiple tools can be provided by
different vendors and can be developed using different technologies [86]. To
perform software engineering activities in general and software architecting
activities in particular, four to five tools are used on average [55]. The tools
can provide support for specific activities and can provide a certain number of
features. The way in which artifacts are managed by the tools also varies.
Some tools store the artifacts in the proprietary data structures, while others
use standardized formats such as Unified Modeling Language (UML), which
is supported by many architecture-modeling tools. Moreover, the tools are
often developed using different technological paradigms such as desktop-
based tools and web-based tools. Providing integration among different type
of tools is challenging [87]. A paradigm that aims to offer the tools as services
has to address the fundamental issue of providing the tools as part of the tool
suite and supporting integration among the heterogeneous tools. Figure 8
presents a high-level overview of TSPACE context, in which tools are offered
as *aaS model using cloud infrastructure and can be made accessible to end-
users. In RADef, we consider technological and business aspects of all the
above-mentioned issues. In the research that is presented in this dissertation,
we have focused on the tools that are used in software architecting domain,
which is a subdomain of software engineering. Although the findings from the
research can be applied on other domains (disciplines), as per the focus of the
dissertation we are only making the discussion with reference to software
architecting domain. The concepts and the process that is described in this
chapter are used for the detailed analysis of the requirements and detailed
design of TSPACE reference architecture (which is further discussed in
forthcoming chapters).

 81

Figure 8: TSPACE Context

In the remainder of this chapter, we provide a high-level view of the
framework. First, we define groups of concepts related to TSPACE, establish
and elaborate the relationships among concepts and constituting elements of
the concepts and discuss the concepts and constituting elements with respect
to TSPACE domain. In second step, we elaborate the process that is used to
define the reference architecture for TSPACE. The process framework that is
discussed in this chapter is used to define TSPACE requirements (Chapter 4),
formalization of TSPACE reference architecture using meta-models and
ontologies [48] to address the semantic integration needs (Chapter 5) and
detailed design of TSPACE reference architecture and its evaluation (Chapter
6).

3.2. High-level	Overview	of	TSPACE	Elements	and	their	Relationships	

The provisioning of the TaaS is at the center of TSPACE framework. As
described in Chapter 1, TSPACE is defined as “A platform that facilitates
offering of a bundled suite of the desired tool to tenants as part of a
workspace on demand” [38]. This definition leads to the establishment of six
groups of concepts. The involvement of bundled suite of tools leads to an
integrated suite and the need for the tools to be provisioned in a way that is
compliant with the specific needs of the tenants. The presence of multiple
tenants shows that TSPACE should be configurable according to the specific
needs of the users who are going to use the tools provisioned in a TSPACE

 82

instance. The need for the tools to be a part of the workspace signifies that the
tools provisioning and bundling should be according to the specific activities
and tasks of the respective domain in which the tools are to be used. Table 28
describes high-level concepts encompassing TSPACE.

Table 28: High-level TSPACE Concepts

Concept Description
Tool Tools that are used to perform the activities in

TSPACE.
Tenant Users corresponding to a tenant for which a

TSPACE instance is provisioned.
Context Domains in which the tools as part of TSPACE are

to be used.
Provisioning Provisioning environment/infrastructure that is used

to host and provision TSPACE.
Artifacts Artifacts that can be produced or consumed by the

tools in a TSPACE instance.
Integration Tools integration needs that are necessary to bundle

the tools together in a suite.

Figure 9 shows the relations among multiple concepts constituting TSPACE.
All six elements of TSPACE, i.e. Tool, Tenant, Artifact, Provisioning,
Context and Integration, are contained by a TSPACE via an aggregation
relation. The users that can use the tools in a TSPACE instance are grouped
into tenants. The users can work on multiple artifacts. The context of the
domain for which TSPACE is designed, determines the integration needs of
the tools that can eventually support their bundling as a tool suite. The tools
integration approach needs to focus on two different aspects. First, it focuses
on integration support for the artifacts that can exist as a stand-alone entity
(are in standardized formats and can exist outside the scope of the tool) by
facilitating exchange of artifacts among the tools. Second, it focuses on
providing support for the artifacts that cannot exist as a stand-alone entity (are
in tools proprietary format and cannot exist outside the scope of the tool). The
tools are provisioned on the underlying infrastructure as per the selections of
the tools in a TSPACE instance and are bundled together using the integration
approach. TSPACE design approach should consider all the elements of
TSPACE and their specific needs.

 83

Figure 9: TSPACE Concepts Relations

Figure 10 shows details of the Tool element meta-model. A tool suite can
consist of multiple tools or components that together enable the tool suite to
perform certain features. In TSPACE, the tools and components can belong to
different layers of the tools, e.g. presentation layer, business layer or data
persistence layer. The components (and tools) can act as data sources for the
components of the same tools or for the components of the other tools.
Likewise the tools and components can also be the consumers of the data.
Hence, each artifacts or data that is produced in a TSPACE instance have
either a producer or a consumer associated with it. This configuration enables
TSPACE to bundle the tools and components in a suite. Every tool and
component has its deployment specifications that determine the runtime
environment of the components and their deployment configurations. The
tools and their constituting components can be implemented using object-
oriented paradigms or service-oriented architecture (SOA) based technologies.
The tools can belong to different types of technological paradigms such as
desktop-based tools, web-based tools or cloud-based tools.

 84

Figure 10: Details of Tool Concept

3.3. TSPACE	Reference	Architecture	Design	Process	

A software reference architecture provides valuable guidelines for designing a
concrete architecture. As a reference architecture for each domain has some
unique characteristics and designing the reference architecture for the domain
requires specific considerations, it is important to describe a reference
architecture as comprehensively as possible and in an easy-to-understand way.
It is also important to have a clearly described process that can be used to
design and evaluate the reference architecture for a specific domain [15]. In
this section, we describe the process that leads to TSPACE reference
architecture development, evaluation and implementation. We also discuss
important factors that should be considered at each stage of TSPACE
reference architecture design. A pictorial representation of TSPACE reference
architecture design process is presented in Figure 11. Information produced in
the preceding stages is used as input for the proceeding stages of the process.

3.3.1. TSPACE	Reference	Architecture	Design	Process	Stages	

3.3.1.1. Stage 1 - Identification of TSPACE Concepts and Elements

First step in designing the reference architecture is to identify different
concepts and elements that constitute TSPACE. At this stage, a high-level
analysis of the domain in which the reference architecture is to be used is
required. In Section 3.2, we have discussed basic concepts and elements of
TSPACE for software architecting domain and the relationships between

 85

Figure 11: TSPACE Reference Architecture Design Process

 86

them. As described earlier; Tenants, Tools, Provisioning Infrastructure,
Artifacts, Context and Integration Methods are primary elements for software
architecting TSPACE. Each of the primary elements is further explored in
subsequent stages.

Participants’ Roles: End users, Requirements Analysts and Software
Architects.
Artifact(s) Consumed: N/A
Artifact(s) Produced: High level meta-models for TSPACE concepts and
elements.

3.3.1.2. Stage 2 - Reference Architecture Documentation Approach

The activities that are performed at this stage focus on analyzing architecture
documentation approaches and preliminary analysis of the maturity of the
domain for which the reference architecture is being designed. The analysis of
the documentation approaches determines the most appropriate strategies for
capturing the architecture of the domain for which TSPACE is being
designed. A comprehensive analysis of the software reference architecture
documentation approaches is presented in [15, 16]. Angelov et al. have
described that the reference architecture documentation should cover context,
goals and design dimensions. The context dimension covers the purpose, the
organization(s) who is (are) developing the reference architecture and
maturity stage (e.g. preliminary or classic) of a reference architecture [15].
The goal dimension encompasses business goals and quality attributes as well
as the purpose of defining a reference architecture (e.g. to standardize
concrete architecture or to facilitate design of concrete architecture). The
design dimension elaborates whether the reference architecture is concrete or
abstract and whether the reference architecture has been described using
formal, semiformal or informal approaches. Avgeriou et al. [16] propose that
a reference architecture description should address three main constituents: (a)
description of the approach used to document a reference architecture, (b)
guidelines on instantiation of a reference architecture and (c) evaluation of a
reference architecture corresponding to desired functional requirements and
quality attributes. The outcome of this activity determines the reference
architecture description approach, the level of abstractions to be covered in
reference architecture documentation, the goals of the reference architecture
in terms of its objectives and selection of approaches for evaluation and
instantiation of the reference architecture. Outcome of this activity has impact
on all the proceeding stages of the reference architecture design process.
Reference architecture design dimensions are listed in Table 29.

 87

Table 29: Software Reference Architecture Design Dimensions

Dimension Sub-dimension
Description How is the reference architecture documented?
Context Who defines the reference architecture?

Where will the reference architecture be used?
What is the maturity stage of the domain?

Goal Why is the reference architecture defined?
Design What is described in the reference architecture design?

How is the design described?
How is the design represented?

Evaluation How is the reference architecture evaluated?
Instantiation How is the reference architecture instantiated?

Participants’ Roles: Software Architect.
Artifact(s) Consumed: Architecture documentation templates.
Artifact(s) Produced: Reference architecture documentation approaches,
templates and abstractions at which the architecture is to be documented,
architecture evaluation and architecture initialization/instantiation approaches.

3.3.1.3. Stage 3 - Concepts and Elements Refinements, Structuring
and Relationship Modeling

The activities that are performed at this stage aim at refining the concepts and
elements that are identified in stage one, establishing the hierarchical structure
of TSPACE elements and the relationships among the elements. The core
sources of information for this stage are domain models. As we are focusing
on software architecting TSPACE, architecture description standards such as
IEEE 1471-2000 [47] and ISO/IEC/IEEE 42010:2011 [7] are used for
refinements, structuring and relationship modeling of the concepts. These
models provide a high-level standardized conceptual model of software and
system architecture. IEEE 1471-2000 standard considers the mission that a
system needs to fulfill and the environment that influence system’s
operations, whereas ISO/IEC/IEEE 42010:2011 only considers a system of
interest, its environment and its architecture.

The domain models can provide standardizations for elements, their
hierarchical structures and the relationships among the elements, however
these models needs to be extended in order to cover all the dimensions of
TSPACE including the tools, the processes which governs the provisioning
and usage of the tools, data integration and exchange formats among the tools
and additional functional aspects that are required by TSPACE in a specific
domain. To incorporate ISO/IEC/IEEE 42010:2011 and IEEE 1471-2000 for
software architecting TSPACE, the models need to be extended to incorporate

 88

software architecting tools, processes, integration needs and workspace
specific elements. The details on the extension process and extended models
are discussed in Chapter 5 and Chapter 6. The artifacts that are produced at
this stage, serve as a foundation for detailed requirements analysis and
architecture design of the components that are responsible for tools bundling
and integration of TSPACE.

Participants’ Roles: Business Analyst and Software Architect.
Artifact(s) Consumed: Documentation approaches, documentation templates
and architecture design abstractions.
Artifact(s) Produced: TSPACE conceptual models that consists of concepts
and elements that encompass TSPACE and relationship among the concepts
and models.

3.3.1.4. Stage 4 - Reference Architecture Functional Demarcation

The activities that are performed at this stage deal with demarcation of
functional requirements that are to be taken care by TSPACE and functional
requirements for which TSPACE can rely on the tools (that can be
provisioned by TSPACE). For example, for software architecting TSPACE,
the different activities associated with software architecting, such as
architecture significant requirements documentation, architecture tradeoff
analysis and architecture modeling can be supported by the provisioned tools.
Whereas provisioning of the tools, providing integration among the tools so
that the tools can exchange artifacts and data, and workspace-specific
requirements such as collaboration and awareness support need to be
supported by TSPACE. The artifacts that are produced at this stage provide a
foundation for TSPACE functional requirements and high-level architecture
design with specific focus on the identification of components responsible for
TSPACE features.

Participants’ Roles: Requirements Analyst, Business Analyst and Software
Architect.
Artifact(s) Consumed: Domain models.
Artifact(s) Produced: Documents describing functional demarcation of
TSPACE and encompassing tools.

3.3.1.5. Stage 5 - Identification of Provisioning and Enactment
parameters

At this stage, the focus is on identifying tools bundling, provisioning and
enactment needs and constraints. As one of the primary objectives for
providing software architecting TSPACE is to provide the bundles suite of

 89

tools on demand as part of the workspace, it is critical to determine bundling
and provisioning constraints and parameters. The tools that are used to
perform software architecting activities are of heterogeneous nature. The tools
ranging from simple text-based tools to complex software architecture
documentation, knowledge management and modeling tools are used [88, 89].
The tools that can be provisioned in software architecting TSPACE requires a
bundling mechanism that can enable provisioning of heterogeneous tools (e.g.
desktop-based and web-based). Moreover, for complex scenarios, some
components of a tool may need to access information from components of
another tool, e.g. a decision support tool can be used for different types of the
artifacts and with different types of tools. As a result, the tools bundling
mechanism should be flexible enough to cater such needs. In certain cases,
there can also be some constraints with respect to the underlying virtualized
infrastructure (e.g. IaaS cloud virtual machines) that can host the tools to
enable their operations within acceptable runtime quality parameters (e.g.
performance, scalability, reliability etc.). The activities that are performed at
this stage also take care of identification of such constraints. The artifacts that
are produced in this activity provide guidelines to identify integration needs of
the tools in a TSPACE and guide the reference architecture analysis and
design process.

Participants’ Roles: Software Architect.
Artifact(s) Consumed: TSPACE functional boundaries, required activities and
tasks, and tools enactment/provisioning parameters and constraints.
Artifact(s) Produced: Design time constrains, tools bundling constraints and
tools’ provisioning/enactment parameters.

3.3.1.6. Stage 6 - Identification of Integration Needs

The activities that are performed at this stage focus on identifying integration
needs of the tools that can be provisioned in TSPACE. With reference to
software architecting domain, the integration mechanism should be flexible
enough to accommodate different proprietary and standardized formats as
well as support integration among heterogeneous types of tools (e.g. desktop-
based, web-based and cloud-based tools). The tools that are provisioned in a
TSPACE instance can vary and the integration mechanism should be flexible
enough to adapt to the integration requirements of the provisioned tools. As
the reference architecture is aimed at providing TaaS in a workspace, the
integration mechanism should also support workspace requirements, such as
awareness of the operations that are performed on the artifacts as a result of
the users’ activities [90]. The artifacts that are produced at this stage guide
the reference architecture design and analysis process of integration.

Participants’ Roles: Business Analyst and Software Architect.

 90

Artifact(s) Consumed: Design time constrains and tools bundling constraints.
Artifact(s) Produced: Integration and collaboration models.

3.3.1.7. Stage 7 - Identification of Architecture Quality
Characteristics

TSPACE is aimed at providing a bundled suite of tools following service
model. As a result, its reference architecture needs to incorporate architecture
quality requirements of cloud-enables services based system such as
scalability [91], multi-tenancy [92] and dynamic provisioning [93]. The
activities that are performed at this stage aim to identify important quality
characteristics with reference to the domain in which TSPACE is designed.
For software architecting domain, scalability, multi-tenancy and dynamic
provisioning are important. For another domain such as software testing,
elasticity [94] and reliability [95] can also be important. The artifacts that are
produced as a result of this activity provide a foundation for runtime
architecture quality requirements of TSPACE.

Participants’ Roles: Software Architect.
Artifact(s) Consumed: Collaboration and integration models.
Artifact(s) Produced: TSPACE runtime architecture quality requirements.

3.3.1.8. Stage 8 - Reference Architecture Analysis and Design

The activities that are performed at this stage focus on design and analysis of
TSPACE reference architecture. As TSPACE is an emerging domain and
there are no comprehensive solutions available to describe all the elements of
TSPACE (as discussed in Section 3.2), different strategies are adopted to
design the reference architecture. According to the classification scheme
presented by Angelov et al. [15], the reference architecture should be
classified as if it is a standardization effort or preliminary proposition. For
example, the provisioning part of the reference architecture can be referred as
standardization. Existing cloud-provisioning approaches (that are described in
Chapter 2) need to be adopted and tailored with respect to the specific context
of TSPACE to standardized tools selection, enactment and provisioning. To
structure information and artifacts in TSPACE and to facilitate integration
among the tools, we have proposed the ontologies and architecture constructs
for process-centric integration and semantic integration (to be discussed in
Chapter 5 and Chapter 6). As the tools are to be offered as services in
TSPACE as part of the workspace, we have also proposed architecture
constructs to facilitate workspace specific activities such as awareness of the
operations and collaborative exchange of the artifacts using TSPACE. The

 91

part of the architecture associated with integration and workspace-specific
activities can be classified as a preliminary proposition (according to Angelov
et al.’s classification scheme [15]) as to the best of our knowledge, no
standardized architectures exist to address these challenges in *aaS context.

A reference architecture design should be based on reference models and
architecture styles and patterns [5, 50]. As TSPACE reference architecture
focuses on software architecting, we begin with software architecture
description standardization models (IEEE 1471-2000 [47] and ISO/IEC/IEEE
42010:2011 [7]) as discussed in Section 3.3.1.3. We have leveraged cloud
architecture styles and patterns along with standardized architecture patterns
[5, 50] to design different parts of TSPACE reference architecture and to
achieve design time and runtime qualities in the architecture. While designing
TSPACE reference architecture, we have taken inspiration from the cloud
architecting solutions that have been discussed in Chapter 2. If TSPACE is to
be used for mission-critical and safety-critical tools, then it is also important
to have metrics that can be used to measure runtime quality parameters of the
architecture. Empirical investigation of the reference architectures have
revealed that absence of important views [51] in the reference architecture and
details of the supporting algorithms and formalization to achieve the
functionality of the reference architecture [51] impact its adoption and
applicability. Hence, the reference architecture should encompass all the
important views necessary to describe the reference architecture. For example,
we have taken following steps to address the challenges. We have described
details of the TSPACE formalization and information structuring approaches
using ontologies [48] (to be discussed in Chapter 5). We have elaborated
TSPACE reference architecture requirements (to be discussed in Chapter 4)
and have described details of the reference architecture using logical, process
and deployment views (to be discussed in Chapter 6) of 4+1 view model [51].

Participants’ Roles: Software Architect.
Artifact(s) Consumed: Reference architecture models.
Artifact(s) Produced: TSPACE reference architecture in terms of multiple
views.

3.3.1.9. Stage 9 - Reference Architecture Evaluation

Evaluation of the reference architecture is an important step for analyzing its
feasibility and applicability. Different considerations for reference
architecture evaluation have been proposed [16, 17, 43]. Avgeriou et al. [16]
have proposed to evaluate the reference architecture with the help of scenarios
and prototype implementation of the reference architecture. The use of
scenarios is proposed to have implementation-independent evaluation. The
evaluation scenarios need to be focused on important design time and runtime

 92

qualities of the architecture. The evaluation of the implemented prototype in
terms of implementation decisions such as platform choices, programming
languages etc. is suggested to evaluate implementation capabilities of the
reference architecture. Angelov et al. [17, 43] have argued that
straightforward adoption of architecture evaluation methods such as
Architecture Tradeoff Analysis Methods (ATAM) [13] and Software
Architecture Analysis Methods (SAAM) [12] is not feasible because:
gathering all the stakeholders for the reference architecture is not possible and
generation of concrete scenarios for reference architecture evaluation is not
feasible because components are often abstract. To cater these issues, the
authors [17, 43] have argued that it is important to identify most relevant
architecture requirements with the help of domain experts or domain models
and then prepare scenarios by involving reference architecture users
(stakeholders who are potential users of the reference architecture) in the
evaluation process to generate abstract evaluation scenarios.

Other than above-mentioned challenges, TSPACE reference architecture
evaluation activity has additional complexities. First, TSPACE needs to
provision the tools that are required to perform the different activities and to
provide support for the integration and workspace specific functions in a *aaS
model. Hence, it is important that the evaluation activity should be focused on
the parts of the reference architecture that are embodied by TSPACE
boundaries rather than by the tools to be provisioned. Some of the key quality
characteristics are derived from *aaS domain because of TSPACE reference
architecture focuses on on-demand tools provisioning. Therefore, the
evaluation activity should focus on identifying and analyzing the relevant
quality attributes for the given domain. Finally, to evaluate the tools bundling
and integration approach, the role of prototype becomes more critical in
evaluating the applicability and feasibility of the reference architecture. As a
result, TSPACE prototype plays a critical role for its evaluation and the tools
that are selected for provisioning using the prototype should cover critical
evaluation scenarios. The outcome of evaluation activity can trigger
modification in the artifacts that were generated in previous stages as depicted
in Figure 11.

Participants’ Roles: User, Requirement Analyst, Business Analyst and
Software Architect.
Artifact(s) Consumed: TSPACE Reference Architecture.
Artifact(s) Produced: Evaluation results.

 93

3.3.1.10. Stage 10, 11 and 12 – TSPACE Reference Architecture
Implementation and TSPACE Provisioning

The activities that encompass the last three stages of TSPACE reference
architecture design focus on TSPACE reference architecture implementation.
An important step for implementation of the reference architecture is the
identification and selection of an appropriate IaaS cloud platform that can be
used to host the tools. Specific infrastructure needs of the tools as well the
components of the tools should be considered for selecting the platforms.
Once tools are registered and hosted by the TSPACE, these can be
provisioned for the usage in a TSPACE instance. As discussed earlier, the
implementation can also serve as mean to evaluate the applicability of the
reference architecture.

Participants’ Roles: Developer and Software Architect.
Documents Consumed: TSPACE reference architecture and potential cloud
platforms analysis document.
Documents Produced: Executable TSPACE.

3.3.2. Discussion	

By providing TSPACE reference architecture development process, we have
attempted to identify key elements and important design stages that
encompass TSPACE reference architecture development. The elements that
are described in Section 3.2 provide a foundation for identification of different
subsystems and components of the reference architecture. Multiple stages of
the reference architecture design process identify sources of information and
important design considerations. TSPACE reference architecture that is
elaborated in detail in Chapter 4, Chapter 5 and Chapter 6 covers these stages
and is designed following the design guidelines that have been discussed in
the process. As it is clear from the TSPACE design process framework
diagram (Figure 11), many of the activities of the process are of iterative
nature and these cannot be distinctively segregated. Following is a brief
description of the distribution of the activities over chapters of this
dissertation. Chapter 4 elaborates TSPACE requirements with respect to the
reference architecture elements that are discussed in this chapter and focuses
on software architecting domain models, the nature of tools that can be
provisioned in software architecting TSPACE and a high level overview of
the functional and non-functional requirements. Chapter 4 also briefly covers
requirements aspects of stage 3, 4, 5, 6 and 7. Chapter 5 presents TSPACE
conceptual and information structuring model in terms of TSPACE ontology
and provides details of the activities associated with stage 3, 4, 5 and 6.
Chapter 6 provides details of the reference architecture and covers all
activities of stage 8 and stage 9 and provides an overview of the prototype

 94

implementation encompassing the activities associated with stage 10, 11 and
12.

3.4. Related	Work	

Researchers have attempted to establish standardized activities and
frameworks that can be used for design and documentation of the reference
architecture. The most comprehensive work in this regard is reported by
Angelov et al. [15, 17, 43, 44]. Their work describes the classification
techniques of the reference architecture based upon the maturity of the domain
and how the reference architecture is designed. For mature domains, the aim
of the reference architecture is to provide standardization of the architecture,
whereas, for emerging domains, the purpose is to facilitate the design of
concrete architectures in multiple individual organizations. Some of the
problems that are associated with reference architecture design are missing
design methods, problems with defining non-functional requirements,
problems with selecting appropriate views, absence of software reference
architecture documentation method and absence of software reference
architecture evaluation [44]. In the proposed TSPACE reference architecture
design process, we have explicitly catered all of the above-mentioned
challenges to streamline the reference architecture design process and to have
explicit stages for design and documentation methods, define non-functional
requirements, select appropriate views and evaluation strategies.

Avgeriou [16] suggests representing a reference architecture using multiple
viewpoints of Rational Unified Process (RUP) including logical viewpoint,
deployment viewpoint, implementation viewpoint and data viewpoint.
Avgeriou has emphasized that the reference architecture should be evaluated
using both scenario-based and architecture prototype-based evaluation with
respect to run-time and development qualities [16]. Another work by
Nakagawa et al. [96] has proposed the use of ontologies to identify different
components of the reference architecture. Fernandez et al. [97] have described
the key documentation elements of a software reference architecture. The
documentation elements include technical design, architecture knowledge and
experiences and management documentation. In TSPACE reference
architecture, we have described technical design and architecture knowledge
in details. However, we have not attempted to address the management
documentation (during applications of the reference architecture in different
setting) as it is out of the scope of this dissertation.

 95

3.5. Conclusions	

In this chapter, we have described Reference Architecture Development
process Framework (RADeF) that guides the development of TSPACE
reference architecture. First, we have identified and elaborated the key
elements of TSPACE, and have described the relationship among the
elements. Then we have elaborated each step of the TSPACE reference
architecture design process. We have identified the artifacts that are needed as
a prerequisite of each stage and the artifacts that are produced as the result of
the activities that are performed at each stage. We have also identified the role
of the key stakeholders involved at each stage of TSPACE reference
architecture. It is to be noted that although we have made clear demarcation
among the stages, it can be hard to have a clear demarcation in many cases
because of the highly iterative nature of the design process as indicated in
Figure 11. The process provides the foundation for the TSPACE reference
architecture design activities that are covered in forthcoming chapters of this
dissertation. The process suggests that the TSPACE meta-models play a
significant role in identifying architecture requirements and components of
the reference architecture in a given domain. The documentation approaches
that are adopted for the reference architecture design documentation also play
a vital role for its elaboration and adoption. Last but not the least, evaluation
of the reference architecture is an important activity and should be carefully
conducted by considering the parameters and constraints under which the
reference architecture is expected to be initialized and operated.

 96

 97

Chapter	4. Business	Drivers	and	Requirements	of	TSPACE	

In this chapter, we describe the business drivers and requirements of Tools as
a service workSPACE (TSPACE). Business drivers are presented in terms of
TSPACE value and benefits. TSPACE requirements are presented in terms of
the reference architecture documentation requirements as well as functional
and non-functional (quality) requirements that TSPACE reference architecture
aims to achieve. This analysis allows the potential adopters of the reference
architecture to identify the benefits that can be achieved by having TSPACE.
The requirements also provide a foundation for the detailed analysis and
design of TSPACE reference architecture that is to be presented in
forthcoming chapters of this dissertation.

Parts of this chapter have been presented in [38].

4.1. Introduction	

In this chapter, we provide a detailed description of the business values of
TSPACE and TSPACE reference architecture requirements. We have taken
following steps to achieve this objective. First, we have investigated benefits
that can be achieved by providing TaaS as part of the cloud-enabled
workspace that we are referring as TSPACE. Next, we have briefly discussed
why it is necessary to treat TaaS differently than SaaS. After that, we focus on
the reference architecture documentation requirements of TSPACE and the
multiple levels of abstractions that TSPACE reference architecture needs to
address. In subsequent steps, we provide a detailed analysis of TSPACE
reference architecture’s functional and non-functional (quality) requirements
for software architecting domain. We also briefly indicate what additional
requirements need to be incorporated for the adoption of TSPACE reference
architecture in other engineering domains (however, it is not main focus of
this chapter and the dissertation).

In addition, we describe how the discussion that is being reported in this
chapter is related to the reference architecture design process framework
RADeF (discussed in Chapter 3). With reference to the relevant stages of
RADeF, functional and non-functional requirements and constrains under
which TSPACE reference architecture is to be designed and operated are
elaborated.

 98

4.2. Value	Analysis	and	Benefits	of	TSPACE	

The benefits of cloud computing for addressing software engineering and
development challenges have been reported in the literature [86, 98] and can
facilitate both collocated as well as distributed teams. According to Hashmi et
al. [98], geographical and temporal issues are among the major challenges
faced by distributed teams. Geographical distances result in communication
gaps, ambiguity in domain and product requirements, and challenges in
transferring domain knowledge. Temporal issues result in reduced visibility of
product artifacts and reduced product quality. The authors also discuss the
utilization of cloud-based infrastructure for achieving business and technology
alignment, interoperability and diversification of tools [98]. Maleej [55] has
indicated that on average four to five tools are used to complete a single
software engineering activity. In his position paper on future of software
engineering, Whitehead [87] has emphasized the need to have an integration
support among heterogeneous types of tools (including desktop-based tools
and web-based tools).

The use of tools has been described in [86] along with different lifecycle
phases of software development. In the study [86], the tools have been
clustered into four groups. Each group is aimed at addressing specific
software engineering and development challenges. An effort to optimize
software development tools requires an integrated set of tools. The tools
optimization effort addresses the technical issues related to software
development and highlights the need for software engineering tools to provide
solutions to one specific aspect of software engineering, e.g. software
architecting tools, testing tools or requirements management tools. The
project optimization effort includes the tools that are needed for project
management and governance. The necessity of having optimized software
development and engineering tools signifies the need of an *aaS approach to
solve the engineering and development issues. We assert that the availability
of TaaS can allow organizations and individual engineers to have easy
alignment of processes and tools because there would not be any need to set
up new (or optimize existing) tools and infrastructure for every new project.
Following is the brief overview of what can be achieved by having TaaS in
general and TSPACE in particular.

4.2.1. On-demand	Access	to	the	tools	

Software development consists of multiple phases and each phase requires a
specific set of tools, as the tools used in one phase may not be used much
when a project is in another development phase, especially the tools that are
used in the later development phases. For example, in traditional waterfall and
spiral development process models [99], when a project is in the requirements

 99

engineering phase, the tools required in design and development phases are
not used. Similarly, when a project is in the testing phase, the requirements
engineering and design tools are not used frequently by a large number of
stakeholders. Organizations still need to acquire and maintain the tools for the
whole span of a project. Since a cloud computing utility model can support
the provision and acquisition of tools for a specific time frame and an
organization can have the flexibility of acquiring a specific set of tools at the
point when it is needed [98], it means the organizations can acquire tools
when the tools are to be used. Some development phases may require more
resources, for example, in order to simulate test cases associated with
computing and data-intensive use cases, additional hardware and software
resources are required. These resources are utilized only for a small fraction of
time as compared to the overall system development life cycle. Using the
computing as a utility model, organizations can acquire additional resources
for the resource-hungry activities.

Furthermore, organizations need different tools in accordance with the
requirement of each specific project. Configuring and maintaining a large
variety of tools are resource and time intensive undertakings. When the
projects are not in active stage, the tools and associated infrastructure still
occupy the resources. These constraints may limit an organization’s options to
work in different business and application domains. The availability of TaaS
through a cloud-based infrastructure can help organizations to acquire and
release the desired set of tools according to the specific requirements of
projects and only for the phases when the tools are really needed.

4.2.2. Tools	Alignment	with	Organizational	Processes	

Organizations involved in software engineering and development activities
have to align their software development processes with each other in order to
effectively work on product artifacts [98]. As a consequence, organizations
also require some tools for facilitating the processes management itself.
Software design tools and software testing tools are common examples of
tools that are closely tied with process. For a small sized organization, it is not
cost effective to have a specific set of tools for each project (under
development). If tools are available as TaaS, these can be acquired according
to the process requirement of each single project and can be released
afterwards when these are not needed.

4.2.3. Support	for	Awareness	of	the	Operations	and	Collaboration		

When multiple tools are used to perform different activities on the artifacts
[55], providing support for collaboration and awareness is not trivial.
Especially, when multiple users (or stakeholders) work on the related artifacts.

 100

The magnitude of the complexity increases when multiple sites are involved
in the activities [100]. Studies have shown that implicit information about a
project and the communication that exists between collocated teams is not
available to remote teams [101]. That is why emails, text chats, and instant
messages are used as informal ways to increase awareness [101]. However,
information that is exchanged through emails, texts and instant messages is
detached from the actual artifacts and is not traceable. A number of tools have
been designed to provide visual representation of participants’ actions and
allow them to view each other’s work [101]. The traditional desktop-based
tools require extensive exchange of information with each other for providing
awareness to other software engineering tools because artifacts are scattered at
multiple geographic locations. In case of TaaS hosted in a cloud, whenever
users want to access artifacts, they will have the most updated view without
any additional effort. Tools hosted in a cloud, minimize the burden of data
exchange between sites, hence reducing latency delays. Moreover,
incorporating additional features of awareness of the operations that are
performed on the artifacts in TaaS can help to establish and maintain relations
among the artifacts and collaborative exchange of information because these
have access to the shared data structures provided by a cloud platform
(infrastructure) hosting TaaS.

4.2.4. Working	with	Sensitive	Artifacts	and	Data	

Dealing with sensitive data in certain projects can be a challenging task. There
are certain laws that restrict data movement outside a particular geographic
location. Cloud-based infrastructure can help to address these challenges. For
example, cloud-based design and development tools can have access to the
real data that is of sensitive nature. These tools can deploy system
components handling sensitive data in cloud inside the same geographic
location where data are present to run test cases and collect the resulting
metrics while being accessible from outside that region.

Cloud-based tools can also mitigate the overhead of data movements by
providing access to data that is hosted closer to the tools. Moving a huge
volume of data wastes a lot of time and network bandwidth. Cloud-based
tools can eliminate the need to move the data from all sites of a project and
allow the development an application inside the region where data can be
easily and rapidly accessed.

4.2.5. Access	to	Sensitive	Technology	

Software artifacts developed in a distributed environment may be part of a
very complex system requiring integration with expensive and sensitive
hardware. Replication of expensive and technology sensitive hardware at each

 101

location may not be possible because of cost or the sensitive nature of the
hardware technology. If such hardware resources can be connected with
software development tools on a private cloud, it can allow remote sites to
participate in the development of such a project. Stakeholders in remote areas
can perform their activities from remote locations using tools that are hosted
on a cloud-based infrastructure.

4.2.6. Establishment	of	Knowledge	Ecosystem	

Organizations involved in software development maintain their in-house
knowledge bases for internally sharing knowledge. This knowledge is often
maintained outside the scope of the tools, which are used to perform the actual
activities of software architecture design and development. If knowledge
acquisitions and management infrastructure is provided by a TaaS hosting
platform with integration support with the actual TaaS being used by
organizations, knowledge maintenance and sharing can become convenient
and transparent to the end users.

4.3. TSPACE	Reference	Architecture	Requirements	

This section presents a detailed analysis of the functional and non-functional
requirements of the TSPACE reference architecture. Our research on
TSPACE has been motivated by the need to provide a workspace where all
the required tools can be bundled in a tools suite and provisioned as a service.
The TSPACE purports to enable user(s) to have on-demand provisioning of
tools and semantically integrated artifacts in a Just-in-Time (JIT) fashion.
The functional requirements are the functionalities that should be supported
and the non-functional requirements are the quality attributes that should be
achieved by the design of TSPACE reference architecture. The reported
requirements are based on our work on a TaaS infrastructure [38] and a
review of the literature on important quality characteristics of cloud-based
systems [42]. TSPACE functional and quality requirements (non-functional)
are summarized in Table 31.

4.3.1. Reference	Architecture	Documentation	Requirements	

One of the initial stages of a TSPACE reference architecture development
framework (described in Chapter 3) is to identify the scope of the TSPACE
reference architecture documentation approach and to determine the maturity
of the domain for which the reference architecture is to be designed. Since a
reference architecture provides valuable guidelines for designing a concrete
architecture, it is important to describe a reference architecture as
comprehensively as possible and in an easy-to-understand way. We describe
the proposed reference architecture using a systematic approach that

 102

advocates the use of context, goal and design dimensions of a reference
architecture [15, 16] as described in Chapter 3.

Table 30: TSPACE Reference Architecture Documentation

Dimension Sub-dimension Description
Context Who defines it? It determines the context in which the

reference architecture is designed.
Where will it be
used?

It determines potential usage of the
reference architecture.

What is the
maturity stage of
the domain?

It describes the maturity stage of the
domain for which reference architecture
is being designed.

Goal Why is it defined? It describes the purpose of defining the
reference architecture.

Design What is described? It describes what is described in the
reference architecture.

How is it
described?

It describes how the reference
architecture is described (e.g. using
textual description or UML diagrams).

How is it
represented?

It describes whether the reference
architecture is presented using informal,
formal or semi-formal approaches.

Instantiation How is it
instantiated?

It describes the guidelines for adoption
and instantiation of the reference
architecture.

Evaluation How is it
evaluated?

It describes the steps for the evaluation
of the reference architecture.

The context dimension covers the purpose, development organization and
maturity stage (e.g. preliminary or classic) of a reference architecture [15].
The goal dimension encompasses business goals and quality attributes as well
as the purpose of defining a reference architecture (e.g. to standardize
concrete architecture or to facilitate design of concrete architecture). The
design dimension elaborates whether the reference architecture is concrete or
abstract and whether the reference architecture has been described using
formal, semiformal or informal approaches. The reference architecture also
needs to describe: (a) the approach used to document a reference architecture,
(b) guidelines for instantiation of a reference architecture and (c) evaluation of
a reference architecture corresponding to desired quality attributes [16]. Table
30 describes the reference architecture documentation and description
approach (based on the reference architecture description model presented in
Table 29 in Chapter 3).

 103

4.3.2. Functional	Requirements	

We have identified the functional requirements based on the key features
required by the reference architecture according to different lifecycle phases
of TSPACE These are tools enactment and provisioning, integration of the
tools and semantic integration among the artifacts associated with the tools
after enactment and awareness of the operations that are performed on the
artifacts as a result of the users’ (stakeholders’) activities during the tools’
lifecycle. Following are the functional requirements that have been enhanced
based on our work on TaaS infrastructure requirements [38].

4.3.2.1. FR1 - Enactment and Provisioning of TSPACE

Enactment and provisioning of a TSPACE and associated tools according to
the requirements of different activities of a project is important, and while
provisioning tools, the architectural support should also consider the specific
enactment constraints (e.g. location and resource requirements parameter of
the tools).

4.3.2.2. FR2 - Tools Management

There is a large variety of tools that are used in software engineering in
general and software architecting in particular (e.g. architecture description
tools, architecture knowledge management tools and architecture modeling
tools). Each of these tools can have many different versions (and different
features in each version). Each of the tenants can request a specific set of the
tools as well as specific versions of the desired tools. So, in order to have a
comprehensive support for hosting these tools, TSPACE should be able to
maintain different tools and their versions (along with features that are
supported in each version of the tools). It is evident that maintaining this kind
of complex environment in a cloud increases the complexity of TSPACE
reference architecture.

4.3.2.3. FR3 - Tools Bundling

In order to provide an end-to-end solution covering all the phases of software
development life cycle, the tools hosted on clouds dealing with one phase
should be able to integrate with tools serving preceding and proceeding
development life cycle phases. As each activity of a project uses the artifacts
produced by the preceding activity, there is a need to bundle the tools that can
support different activities of the software architecting lifecycle. There is also
a need to provide compatibility between tools that can be used for similar
architecting activities. This will enable the users (tenant) to select tools of

 104

their own choice, which are more suitable to projects tasks and the activities.
TSPACE reference architecture should have the ability to provision TaaS to
end-users as a bundle of tools to provide a comprehensive suite of tools for
the activities to be undertaken.

4.3.2.4. FR4 - Tools Integration

TSPACE integration needs to facilitate on-demand provisioning of the tools in
a suite. As the tools are to be provisioned as part of a suite of tools, on-
demand provisioned require Just-in-Time integration, so that the tools can
work in combination with other tools. The integration scheme needs to be
compliant with the specific requirements of the domain in which the tools are
to be used. Software architecting, like other software engineering activities, is
carried out according to specific organizational processes. Common software
architecting activities include architecture significant requirements analysis,
scenario elicitation, architecture design analysis, architecture modeling and
architecture evaluation [8]. As discussed earlier, there are different types of
tools that can be used to perform the activities, ranging from simple text-
based tools and web-based tools to more complex architecture modeling tools.
TSPACE reference architecture needs to support two types of integration: (a)
process-centric integration that can facilitate exchange of the artifacts among
the tools according to the process that governs the artifacts’ development and
(b) semantic integration among the tools so that the artifacts that are generated
and maintained by the tools can be related to other artifacts. TSPACE
reference architecture integration needs are depicted in Figure 12.

Figure 12: TSPACE Integration

 105

4.3.2.4.1. Process-centric Integration among the Tools

TSPACE reference architecture should provide support to address the
challenges associated with tools’ alignment with the processes. Software
architecting tools need to be smoothly integrated with each other in order to
support end-to-end activities. One of the key characteristics that distinguishes
TaaS from SaaS is the inherit need of software engineering and development
tools to work as an ecosystem of applications. Maalej et al. [55] has reported
following problems that traditional software integration mechanisms fail to
cater: (a) identification of the changes in artifacts after a task is completed, (b)
retrieving artifacts when they are made available by other stakeholders as a
result of preceding process activities (is often done through manual
approaches) and (c) synchronizing the artifact as they are developed in
collaborative activities. TSPACE reference architecture should provide
support to address the above-mentioned issues.

4.3.2.4.2. Semantic Integration among the Artifacts

Semantic integration among artifacts that are maintained by the tools
constituting a TSPACE after enactment is vital. The TSPACE consists of
multiple tools that may have proprietary formats to store artifacts. TSPACE
reference architecture should support semantic integration among different
types and formats of artifacts associated with the tools that constitute
TSPACE.

4.3.2.5. FR5 - Support for Awareness of the Operations that are
performed on the Artifacts

Awareness of (users’) operations on the artifacts that are carried out during
the lifecycle of a TSPACE using multiple tools is important when multiple
tools are being used to perform the tasks associated with an activity. The tasks
can be performed by the same users or by different users belonging to same
tenant. Multiple artifacts are produced or consumed during the lifecycle of a
specific project for which a suite of TaaS is provisioned by TSPACE. Hence,
there is a need to raise awareness about what actions are performed on the
artifacts, and the reference architecture should support such awareness.

4.3.3. Quality	Requirements	

The quality (i.e. non-functional) requirements of TSPACE are classified into
two categories: (a) runtime qualities that are discernable once a system is
operational [5, 43], referred to TSPACE quality requirements, and (b) design
time qualities that are discernable while a system is being designed, referred

 106

to reference architecture quality requirements. Following are the design time
and runtime quality requirements for a TSPACE.

4.3.3.1. TSPACE Quality Requirements

4.3.3.1.1. QR1 - Automated Provisioning

TSPACE reference architecture needs to support automated provisioning of
TSPACE so that the required tools can be acquired automatically for a project
based on the specified constraints (e.g. constraints on the location of the
tools).

4.3.3.1.2. QR2 - Multi-tenancy

Being a cloud-based platform, a TSPACE needs to be a multi-tenant [102]
platform (with architectural support). Multi-tenancy is defined as a software
system quality that enables it to provide logical isolation between the data of
different tenant and enables a single instance of a software system to have
different configurations as per the requirements of each tenant. Each TSPACE
instance (a bundled suite of tools provisioned for a specific tenant) can have
its own set of tools and rules for awareness of the operations that are
performed on the tools. A particular tenant shall be able to specify and access
all its specified features and configurations.

4.3.3.1.3. QR3 - Scalability

TSPACE shall scale up or down as the number of activities that are performed
using the tools increases or decreases.

4.3.3.2. Reference Architecture Quality Requirements

4.3.3.2.1. QR4 - Flexibility

As the tools in a specific instance of a TSPACE depend upon the activities to
be performed within a project, TSPACE reference architecture shall be
flexible enough to provide semantic integration and awareness support for
different tools.

4.3.3.2.2. QR5 - TSPACE Interoperability

There are large number of commercial and open source tools available that
can support software engineering and software architecting activities. To have

 107

plug and playable support for tools bundling, TSPACE reference architecture
should provide support for the tools to interoperate on the artifacts that are
maintained using standardized or non-standardized formats. Tools
interoperability is important for following reasons. (a) For smooth functioning
of organizations, it is important that the organizations do not have to change
the existing software architecting tools for every new project. If TSPACE
supports interoperability with existing tools, the tools can be used as an
interface to the TSPACE while underlying data structures are maintained in
clouds. It makes it easier to have access to shared artifacts. (b) It may not be
possible to have alternates of every single tool available in clouds as TaaS.
TSPACE interoperability support with other tools makes infrastructure
adoption easier and smooth. TSPACE reference architecture shall provide
semantic integration and awareness (of the operations) support for different
types of artifacts (e.g. knowledge management, textual documentation and
UML modeling tools that are used for software architecting related activities).

4.3.3.2.3. QR6 - Completeness, Feasibility and Applicability

Bass et al. [5] have presented a number of general quality requirements
including completeness, feasibility and applicability. Completeness of
TSPACE reference architecture is important so that it can serve as a guiding
model for designing a specific instance of TSPACE. It should also be feasible
to implement a reference architecture. The applicability quality characteristic
is also important so that a reference architecture can be used to design and
evaluate a concrete architecture of TSPACE.

4.3.3.2.4. QR7 - Modifiability

The tools associated with a TSPACE may come from different vendors. Those
tools can be provisioned using public, private or hybrid deployment models.
Hence, TSPACE reference architecture shall support modifiability for
seamless integration among different modules of a TSPACE with the
provisioned tools that can be provided by different vendors.

Table 31: TSPACE Requirements Summary

 ID Requirement

Fu
nc

tio
na

l
R

eq
ui

re
m

en
ts

 FR1 Provisioning: TSPACE should support provisioning of
TSPACE components and associated tools according to the
requirements of different activities that are to be carried out
using the tools and constraints on tools enactment.

FR2 Tools Repository: TSPACE should provide support for
repository management of different types of tools available for
provisioning.

 108

FR3 Tools Bundling: TSPACE should provide support for tools
bundling according to the required activities.

FR4 Integration: TSPACE should support semantic integration
among the artifacts of different types as a TSPACE instance
consists of multiple tools that can use different formats to store
the artifacts. TSPACE should provide support for process
centric integration (and collaboration) among the tools that are
used to perform process centric activities.

FR5 Support for Awareness of Operations: Multiple artifacts are
produced or consumed during the lifecycle of a specific project
for which a TSPACE is to be instantiated. Hence, TSPACE
should provide support for awareness of the users’ activities
associated with the operations that are performed on the
artifacts using the tools.

Q
ua

lit
y

(N
on

-f
un

ct
io

na
l)

R
eq

ui
re

m
en

ts
 TS

PA
C

E
 Q

ua
lit

y

QR1 Automated Provisioning: TSPACE should support automated
provisioning and bundling of the tools.

QR2 Multi-tenancy: Being a cloud-based platform, TSPACE needs
to be a multi-tenant [102] platform. Each TSPACE instance
shall have its own set of tools and rules for awareness. A
particular tenant shall be able to access all its specified features
and configurations.

QR3 Scalability: TSPACE should scale as the tools that are
provisioned and the number of activities that are performed
using the tools increases.

R
ef

er
en

ce
 A

rc
hi

te
ct

ur
e

Q
ua

lit
y

QR4 Flexibility: As the tools in a specific instance of a TSPACE
depend upon the activities to be performed within a project, the
reference architecture shall be flexible enough to provide
semantic integration and awareness support for different types
of tools (desktop-based, web-based etc.).

QR5 Interoperability: reference architecture shall provide
interoperability, integration and awareness support for different
types of the tools and artifacts (e.g. textual documentation and
UML models).

QR6 Completeness, Feasibility and Applicability: TSPACE
reference architecture shall positively address completeness,
feasibility and applicability. Completeness of the reference
architecture is important so that it can serve as a guiding model
for designing a specific instance of TSPACE. The applicability
quality characteristic is important so that the reference
architecture can be used to design and evaluate a concrete
architecture.

QR7 Modifiability: TSPACE reference architecture shall positively
address modifiability so that it can easily be adopted in
different organizational contexts.

 109

4.4. Conclusions	

The adoption of new ways of provisioning tools in cloud-enabled workspaces
should improve the performance of the organizations and improve the chances
of more smooth operations of the software development projects. Tools as a
Service (TaaS) in cloud-enabled workspaces should reduce tools
infrastructure and maintenance costs and provide easy access to the tools on
demand. Furthermore, TSPACE offers new possibilities for establishing an
ecosystem of tools that are inline with organizations’ software engineering
and development processes.

In this chapter, we have described the business foundation for on-demand
provisioning of TaaS in the context of a cloud-enabled workspace (which is
referred as TSPACE). We have elaborated detailed requirements for TSPACE
reference architecture documentation, its functional requirements and its
quality requirements (quality requirements of TSPACE as well as quality
requirements of TSPACE reference architecture). The work that has been
presented in this chapter aims to facilitate a conceptual design of TSPACE
reference architecture that is described in forthcoming chapters.

 110

 111

Chapter	5. Ontologies	for	Structuring	and	Formalization	
of	TSPACE	

To capture the relationship between different entities constituting Tools as a
service workSPACE (TSPACE) and to incorporate requirements associated
with semantic integration and awareness in TSPACE, as discussed in Chapter
4, formalization of TSPACE concepts is required. This chapter describes an
ontology-based approach to formalize TSPACE and tools selection and
provisioning in TSPACE. The approach consists of a suite of ontologies to
characterize activities, tasks, artifacts, tools’ features and stakeholders’
requirements of the tools, and to support semantic integration among artifacts
in TSPACE. The ontologies provide a structured mechanism to support
semantic integration and to raise awareness (artifacts’ addition, modification
sharing and conflicts) of the stakeholders’ activities corresponding to the
artifacts. This chapter elaborates the details of the developed ontologies, how
the ontologies are instantiated, populated and used during lifecycle of the
tools in TSPACE.

Parts of this chapter have been presented in [49].

5.1. Introduction	

Provisioning of the tools in a TSPACE instance and providing support for the
different activities and tasks during lifecycle of a TSPACE instance is not
trivial. TSPACE can consist of a number of tools that can be used to perform
various activities related to software architecting. To provision the tools for
the end users, TSPACE not only requires facilitation of the selection and
provisioning of the tools but must also provide seamless operations of the
tools in terms of distribution of the activities over various tools and
integration among the artifacts maintained by the tools. Multiple vendors
using different technology paradigms and using different programming
languages can provide the tools to be provisioned by TSPACE. For example,
the majority of the tools that are used for architecture modeling such as
Microsoft Visio [103] and ArgoUML [104] are developed on top of a
desktop-based paradigm. The desktop and cloud-based word processing tools
(e.g. Microsoft Office Suite [105] and Google Docs [106]) and specialized
web-based applications (e.g. PakMe [107]) can be used for architecture
documentation (architecture scenario description, architecture significant
requirements elicitation and architecture design decisions documentation).
Heterogeneous technological paradigms and involvement of multiple vendors
highlight the importance of having a gluing mechanism that facilitates the

 112

selection of the appropriate tools from the pool of available tools and a
seamless integration among the tools. Involvement of the heterogeneous tools
requires a solution that is applicable and extendable for various types of the
tools, irrespective of the technological paradigm and a tool’s vendor.

We have leveraged semantic integration technologies to address the above-
mentioned challenges of hosting and provisioning tools as services. We have
proposed ontologies for TSPACE. The use of ontologies in a specific domain
can provide a powerful mechanism to semantically relate unstructured
information [108]. Ontologies also facilitate communication, integration and
reasoning [108]. Our ontologies-based solution enables the provisioning of
Tools as a Service (TaaS) for performing different activities using appropriate
tools hosted on clouds, without the individual tools focusing on how to relate
the artifacts and data across multiple tools. The users (stakeholders) can
choose a set of tools to perform specific activities using the tools. The
selection of the relevant tools can be based on a number of reasons, including
but not limited to organizational policies, stakeholders’ preferences for the
tools, the tasks and the activities related to the project and that are to be
performed using the tools and process requirements of the projects.
Restricting stakeholders to a specific set of tools is not a viable solution for
performing complex activities. If the projects’ stakeholders have the
flexibility to choose from a set of tools, the provisioning mechanism needs to
provide a flexible way to support tools selection from the set of tools
according to the desired needs as well as to provide inter tool integration, so
that the artifacts that are produced or consumed in one tool can be
related/integrated with the artifacts that are being maintained in other tools.
Moreover, the integration mechanism should also provide support for
additional collaboration and awareness activities among the users who
perform the activities using different tools.

Our proposed ontologies provide solutions to three main lifecycle phases of
the TSPACE. (a) The solution supports selection of the tools that are to be
provisioned as part of the workspace. (b) Once TSPACE is enacted, the
solution provides support for semantic integration among the heterogeneous
artifacts that are produced and maintained using different tools. (c) The
solution provides support for awareness of the activities that are performed by
the stakeholders using different tools. The awareness mechanism
encompasses the activities that are performed on the semantically related
artifacts and any conflicts that can occur as a result of the activities. However,
as software architecting is highly complex domain, our proposed approach
can only partially automate the conflict identification mechanisms by
identifying the potential areas of conflicts. The stakeholders working on the
artifacts using different tools make the final decisions.

 113

The main contributions of the research that is being presented in this chapter
are:

• TSPACE ontologies that can be used to capture concepts of TSPACE
and include Capability Ontology, Tools and Artifacts Ontology,
Change Ontology and Annotation Ontology.

• Identification of the abstract concepts (content elements), relationships
between different types of content elements (CEs) of the TSPACE and
the definition of the rules based on ontologies to raise awareness of the
operations that are performed on the tools (e.g. addition, modification
and deletion) and to provide a foundation for conflict identification.
The identification of the relations among different concepts and
elements of TSPACE is important for a number of reasons. The tools
that can be provisioned as a part of TSPACE can be associated with
complex domains (such as in our case it is software architecting).
There is a need to define abstract concepts and relations, because
discovery of all the concepts and elements of TSPACE and the
complex relations between the concepts and elements at runtime [109]
without a predefined relationship meta-model is not possible. The
abstract CEs and their relations are extended at runtime as the artifacts
are produced and linked to each other in TSPACE. The abstract
relationships also facilitate use of the dynamic rules for information
extraction for awareness and conflict identification.

• Rules and algorithms that are used for tools selection and
identification of the conflicts.

5.2. Solution	Approach	

As described in the introductory part of this dissertation, our research on
TSPACE has been motivated by the need to have easy and on-demand access
to tools required for performing specific activities associated with software
architecting (e.g., architecture documentation and architecture modeling).
Some of the advantages of TSPACE include provisioning of tools for specific
needs of a project, tools alignment to organizational processes, support for
organization-wide collaboration and awareness of the operations that are
performed on the tools, and finally provision to work with decentralized
artifacts using the tools [38]. The key quality requirements of TSPACE
require support for bundling multiple tools together in a suite because
different stakeholders may have different requirements for tools to perform
specific activities. In order to provision TaaS, TSPACE should provide
support for mechanisms through which (a) capabilities (functional and non-
functional characteristics) supported by the tools and required by the
stakeholders can be captured, (b) related artifacts and data elements

 114

maintained among the different tools can be associated with each other and (c)
an awareness mechanism through which notifications of operations and
changes can be propagated across tools provisioned as a part of TSPACE.

As previously stated, a project’s stakeholders usually work with multiple tools
provided by commercial vendors or Open Source communities. These tools
need architectural level support for interoperability so that the artifacts
produced in different formats (texts, diagrams, standardized formats and
proprietary formats) can be integrated with each other. We have proposed to
leverage semantic technologies for tools integration; however, our solution
needs to be complemented by appropriate architecture abstractions for
information discovery from tools. The details of architecture and integration
meta-models are described in Chapter 6. TSPACE also needs to have a set of
rules to support information discovery and awareness.

An ontology is defined as “a formal and explicit specification of a shared
conceptualization” [48] and consists of a shared vocabulary that can be used
to model a specific domain [48]. Ontologies are widely used to define
semantic relationships among data and to maintain knowledge of semantic
relationships. The knowledge is often maintained using a web-based
application such as Semantic Wikis [110]. Annotating digital documents is a
common strategy to adapt digital documents to the Web [111]. Ontologies are
an effective way of modeling, sharing and reusing organizational knowledge
[112]. We have proposed TSPACE ontologies to achieve following
objectives:

• Identify all the concepts that constitute TSPACE to provide TaaS in
general and software architecting TaaS in particular.

• Provide a structure of all the elements constituting TSPACE and
relationships among the elements.

• Provide a mechanism to manage and organize different artifacts that
are produced or consumed by the tools in a TSPACE instance.

• Provide a dynamic information retrieval mechanism that can provide a
backbone for different forms of information extraction. The extracted
information can be used to raise the awareness, provide support to
identify conflicts that can emerge as a result of activities that are
performed using different tools in a TSPACE instance.

In our work, the proposed TSPACE ontology model consists of four
specializations and it is represented with 4-tuple elements:

TspaceOnt = < CapOnt, ArtToolOnt, ChaOnt, AnnOnt>

A brief description of each specialization is as follows:

 115

• Capability Ontology (CapOnt) is used to capture the capability of

individual tools (functional and non-functional features) that can be
provisioned in a TSPACE instance and to capture users requirements
of the functionality from a TSPACE instance. CapOnt is also used to
instantiate the underlying ontology model with respect to the tools that
are provisioned in a TSPACE instance. The tools bundling is achieved
by matching tools’ supported capability with the stakeholders’ (end
users) required capabilities.

• Artifacts and Tools Ontology (ArtToolOnt) is used to establish
relationships among the artifacts, activities, tasks, and the tools that
are used to perform activities and tasks.

• Change Ontology (ChaOnt) complements ArtToolOnt and monitors
and tracks changes on a single content element (CE) in a TSPACE
instance.

• Annotation Ontology (AnnOnt) also complements ArtToolOnt. AnnOnt
acts in context of multiple artifacts. AnnOnt is used to annotate
artifacts that are produced or consumed in a TSPACE instance,
establishes relationships between multiple artifacts, monitor changes
that are performed and analyze impact of changes among the artifacts
(that are triggered as a result of the stakeholders’ activities and
operations on the artifacts).

While ArtToolOnt establishes and manages relationship among the artifacts,
activities and tools, ChaOnt and AnnOnt take care of the activities that are
performed on the artifacts using the tools in a TSPACE instance. Figure 13
shows TSPACE ontology meta-model and the relationships among TSPACE
ontology specializations. Figure 13 shows four specializations of TSPACE
ontologies including Capability (CapOnt), Artifact and Tool (ArtToolOnt),
Change (ChaOnt) and Annotation (AnnOnt) ontology. Association between
ChaOnt and ArtToolOnt indicates that change ontology monitors the
operations that are performed on the artifacts using the tool. AnnOnt uses the
Relation element of the ArtToolOnt to annotate the artifacts. The details of the
ontologies and their constituting elements are described in following sections.

 116

Figure 13: TSPACE Ontologies Relation

The strategy to build ontologies for a specific domain is a critical step. Two
different approaches are used to build ontologies: manual and automated
[113]. The manual approach is based on expert knowledge, whilst the
automated approach is based on information extraction and natural language
processing techniques [113]. The automated ontology generation approach is
used to extract concepts from the data and structure the concepts in
hierarchical order [109], however the automated techniques cannot be used to
identify the complex relations between the concepts associated with a
particular domain. Hence, because of complex nature of the activities
involved in software architecting and the relationship between the artifacts
and different elements of the artifacts, we have to adopt a combination of
manual and semi automated ontology building approaches. We have identified
high-level core concepts and relationships between the concepts with the help
of software architecture documentation domain model. We have also
leveraged our experiences with designing architectures of the software
systems to refine the concepts extracted from domain model. The
specializations of the high-level core ontology concepts are populated using
semi-automated techniques as artifacts are produced in a specific instance of
TSPACE using respective tools. The relationship between the specialization
of a dynamically identified concept or content element (CE) is same as of its
abstract parent with other concepts or CEs. As in this dissertation, we have
focused on software architecting domain, our abstract ontology model is
based on conceptual architecture documentation meta-models IEEE 1471-
2000 [47] and ISO/IEC/IEEE 42010:2011 [7]. We have followed a bottom-up

 117

approach to develop ontologies for the TSPACE. We have analyzed Software
Architecting domain using the conceptual meta-models of architecture
description. We have tailored and extended the conceptual models for
TSPACE by incorporating TSPACE’s specific functional and *aaS model
requirements.

A general TSPACE meta-model is shown in Figure 14. The meta-model
shows concepts and CEs of an abstract TSPACE and selected concepts of its
specialization for the software architecting domain. The meta-model is further
refined while describing TSPACE reference architecture in Chapter 6.
TSPACE meta-model has following main elements:

• The tools that can be provisioned by TSPACE.
• Ontologies that are used for the provisioning of a TSPACE instance

and management of the artifacts during the instance’s lifecycle. The
ontologies are complemented by information discovery and
correspondence rules. These rules are used to raise awareness among
the stakeholders working on related activities and tasks in a TSPACE
instance.

• Different types of artifacts that are generated and maintained by the
tools associated with a specific instance of a TSPACE. The activities
and tasks that are performed by the stakeholders on the artifacts as part
of software architecting process are captures with the help of ChaOnt
and AnnOnt.

The meta-model presented in Figure 14 also shows details of different
elements of TSPACE and relationship among them. Activities and tasks that
can be performed on the artifacts depend upon the number of tools bundled
together in a specific TSPACE instance as per the requirements of software
architecting process. Each activity or task can have multiple artifacts
associated with it that are produced and maintained by the tools. The
relationship between the artifacts and corresponding activities and tasks is
established using APIs of TSPACE while the artifacts are being maintained
inside the tools (to be described in Chapter 6). The activities and tasks are part
of the process. A process can consist of multiple activities and an activity can
consist of multiple tasks.

TSPACE provides semantic integration for two types of artifacts.

• Type 1: The artifacts that are maintained by the tools in proprietary
data structures (for example, using database tables). These artifacts
cannot exist outside the scope of the tools; hence additional measures
are required if these are to be made available outside the tools.

 118

• Type 2: The artifacts that can be exported or imported by the tools as
stand-alone entities.

Type 2 artifacts can be retrieved from the tools and can be stored by TSPACE
as stand-alone entities, whereas Type 1 artifacts can only be accessed via the
APIs of the tools or via plug-ins/add-ins. TSPACE can contain a number of
artifacts that are produced or consumed in a specific TSPACE instance and
may consist of multiple attributes. Each attribute associated with the artifacts
is an atomic entity that cannot be subdivided. The artifacts can be part of
different abstractions. TSPACE meta-model shown in Figure 14 also shows
TSPACE instantiation for software architecting activities. In software
architecting TSPACE, the artifacts are part of different views. The views
correspond to different viewpoints [7]. The detail of hierarchy and different
types of relationship among the artifacts along with details of attributes is
elaborated in Section 5.3.2. As it is visible in Figure 14, an instantiation of a
TSPACE for a specific domain may require additional concepts such as
architecture viewpoints and architecture views as in the case of software
architecting TSPACE. Hence, the proposed TSPACE meta-model provides
flexibility to incorporate additional concepts by supporting dynamic
composition and aggregation of different concepts in a TSPACE.

 119

Figure 14: TSPACE Elements and Relationships Meta-model for Software Architecting

 120

5.3. TSPACE	Ontologies’	Details	

This section describes the details of the proposed TSPACE ontologies and
elaborates the context in which the ontologies can be used. We also describe
the algorithms that are proposed to complement the ontologies and to raise
awareness of the activities and operations that are performed on the artifacts
by the users in a TSPACE instance. An activity may be performed by using
several tools, whose selection depends upon a number of factors including
project and organizational requirements. It is vital to establish semantic
relations between artifacts consumed or created by different tools to support
users performing different tasks associated with an activity using multiple
tools. For example, software architecture design and documentation activity
requires the use of tools to document and design different aspects of the
software architecture such as documentation of architecture design decisions
[5], tradeoffs made during the design, architecture patterns and styles [4] that
are chosen to implement the design decisions and models of the architecture
using different views [10]. It is important to have a consolidated view of
different activities carried out using different tools. The activities, tasks and
artifacts should be linked in a TSPACE instance for establishing and
maintaining relations among them.

Some important aspects of the activities and the processes must be considered
while defining ontologies and annotation. Artifacts and process reuse, and
management should be treated as a process, not as an event [114]. There is
also a need to record and track actions and events throughout a software
engineering process [114]. Process, task and product knowledge are
considered key elements to reuse system design [115]. An ontology to support
artifacts and information (knowledge) discovery should track different
activities performed and should support on demand information discovery
according to desired parameters. Structuring information at different levels of
abstraction using ontology concepts and relationships between them using
ontology annotation is also an important factor to consider [116]. It facilitates
information discovery and analysis. In the following subsections, we describe
in details of 4-tuple elements of TspaceOnt.

5.3.1. Capability	Ontology	(CapOnt)	

The capability ontology captures the capabilities of individual tools and users’
(stakeholders’) requirements of a specific TSPACE instance. Attributes of the
capability ontology are presented in Figure 15. The capability ontology
provides a map between the stakeholders’ requirements of the features
required from a TSPACE instance and the features supported by the tools
available for provisioning by TSPACE. If an exact match cannot be found,
the capability ontology can be used to provide the closest match to the desired

 121

requirements and provision TSPACE accordingly. Capability ontology
corresponding to each tool consists of two constituents. Functional capability
captures activities, tasks and artifact types supported by the tools or required
by the users. Non-functional capability deals with quality requirements and
deployment preferences of the tool. Roots of functional and non-functional
capabilities are associated with TSPACE via a capableOf relationship. The
members of functional and non-functional capabilities are associated with root
elements with the support relationship.

Figure 15: Capability Ontology Structure

Figure 15 shows a meta-structure of the capability ontology. TSPACE
consists of multiple tools that are available for provisioning. Each tool has the
capability to provide a number of features (e.g. support for specific types of
activities and tasks, such as architecture documentation and providing support
for certain types of artifacts such as Unified Modeling Language diagrams)
that is represented as Functional Capability and capable of providing a
number of runtime quality attributes (such as secured access, support for
multi-tenancy and location specific enactment) that is represented as Quality
Capability.

Figure 16 (a), Figure 16 (b) and Figure 16 (c) show capabilities of three
examples of tools used for commonly performed software architecting
activities, i.e. architecture documentation (word processing tools and
spreadsheet), architecture knowledge management tools (PAKME [107]) and
architecture modeling tools (Microsoft Visio). In the diagrams, only some of
the functional and quality capabilities are presented.

 122

Figure 16: Capability Ontology Examples

Individual capabilities of the tools are combined to formulate the aggregated
capability of TSPACE, as shown in Figure 17. The aggregated capability

 123

ontology shows the overall capability of the tools (including the features and
quality characteristics) that can be provisioned in a specific TSPACE
instance. In the diagrams, we have only shown one tool of each kind.
However, there can be multiple tools of the same type that support different
features and can operate under desired runtime quality parameters (non
functional requirement).

Figure 17: Aggregated Capability Ontology

 124

The capability ontology structure presented in Figure 15 can also be used to
seek input of the users required capabilities in a TSPACE instance. Figure 18
shows an example of an end user’s (stakeholder’s) requirement of a TSPACE
instance. The aggregated capability ontology is used to find out the match of
the tools available for provisioning with the required tools using the
corresponding capability ontologies.

Figure 18: Capability Ontology for Tools Selection

The approach for matching stakeholders’ tools requirements with the tools
available for provisioning is described in Algorithm 1. The match is
established by taking intersection of the required capabilities with tools’ (that
are available for provisioning) supported capabilities. Capability ontology can
be used to find tools match for two categories of tools. (a) The tools that are
enacted and provisioned by TSPACE as part of a TSPACE instance on a
public or private IaaS cloud and (b) the tools that are enacted by third party
tool providers and are integrated with a TSPACE instance by providing
support for data integration using a TSPACE semantic model that is based on
the ontologies.

 125

To rank the tools according to their suitability with a desired capability of the
tools, Analytical Hierarchical Process (AHP) [117] is applied as shown in
following formula.

Rank Score of Tooli = 𝑊!
!!! ij * Propertyij

Propertyi represents a set of features or a quality that a Tool i supports. Value
of j ranges from 1 to N representing indexes of the properties set (Propertyi).
Value at index j of Propertyi set is 1 if a feature corresponding to index i is
supported by the tool, otherwise its value is zero. Wi is a set of weights for a
Tool i. Weight value at index i of set Wi can be one of 0, 3, 5, 7 and 9 where
zero indicates not important and nine indicates very important. Tools
providing a closer match have a higher rank score.

Registering the tools with the platform can be a challenging task because of
the possibility to provision a large number of locally enacted and third party
provided tools. Manual registration of the tools with TSPACE may not be
feasible to offer it as a service model, especially when the third-party *aaS
model tools are to be integrated with TSPACE. The capability ontology of
each tool (functional/quality feature set) can be populated manually by
looking into features and quality characteristics that are supported by the tool
or with the help of an automated crawler using term frequency and inverse
document frequency technique (TF/IDF) [109].

Algorithm_ToolsSelection
 matching_Tools_List ! null

i ! TSPACE aggregated ontology
 j ! TSPACE required capability ontology
 for each k ! tool available for provisioning registered in i
 l ! set of functional capability of tool k
 m ! set of functional capability specified in j
 if l ∩ m is not null then
 add k in matching_Tools_List

n ! set of quality capability (non-functional features) of tool k
o ! set of quality capability (non-functional features) specified in j
if n ∩ o is not null then
 add k in matching_Tools_List

 return matching_Tools_List

Algorithm 1: Tools Selection using Capability Ontology

 126

5.3.2. Ontologies	to	manage	Relations	among	Artifacts	and	Relations	
among	Artifacts	and	Tools	(ArtToolOnt)	

The ontologies to manage the tools and the artifacts formally describe the
semantic model of tools and artifacts in a TSPACE by defining possible types
of TSAPCE elements (TE), content elements (CE) and relation elements (RE).
TEs describe the concepts associated with TSPACE, tools that constitute a
TSPACE, and activities and tasks that are performed using tools. CEs
describe the concepts that determine elements of artifacts’ logical structure
with respect to different types of the tools used in a TSPACE instance. REs
describe relationships among TEs and CEs in a logical structure.

Figure 19 represents an abstract description of the TSPACE ontologies and
shows the relationship among the main constituents of TSPACE including
activities, sub tasks within the activities, artifacts that are associated with the
activities, different parts of the artifacts and relationships among the artifacts.
In the diagram, the dark nodes represent TEs and the light nodes represent
CEs. Aggregation Content (AC) and Aggregation Item (AI) are two core
TSPACE elements. AC is root node of the TSPACE ontology. AC defines the
logical structure of the elements of the TSPACE (e.g. architecture design
space) and establishes a relationship between AC and different instances of AI
with a contain property. AC represents a common root of TSPACE that all
instances of TSPACE belong to, whereas AI represents a specific TSPACE
instance. Content Unit (CU) is a representation of a specific process that
encompasses multiple activities that are to be performed within that process,
e.g. software architecture design process or software architecture evaluation
process. Each activity can consists of a number of tasks, and each task can
involve users working on at least one artifact. The artifacts are organized in a
hierarchy according to their specialized type and are linked with the root
artifact element. The artifacts can be related with other artifacts. Each artifact
has at least two elements associated with it: a unique identifier that identifies
an artifact in TSAPCE and contents of the artifact. The artifact contents can
have multiple sub attributes. Description of the contents of the artifacts
includes artifacts contents and structure, e.g. in the case of a textual artifact it
contains its textual contents, and in case of a diagram e.g. UML class
diagrams it can contain ontologies generated from UML or XMI of the
corresponding UML diagram. If the artifact has a metric used for its
description, measurement for the metric and its measurement unit, it can also
be specified using ArtToolOnt. Depending upon the nature of the artifact, the
contents of the artifacts can have additional attributes associated with them.
The relationships that can exist between different elements of TSPACE are

 127

listed in Table 32 and are explained in remainder of this section with the help
of ArtToolOnt in software architecting domain.

The tools that are available for provisioning in TSPACE have capabilities, as
described in Section 5.3.1, and can be based on different paradigms (e.g.
desktop-based stand alone tools, web based tools or the tools built using
service-based principles in which different components of the tools can be
dynamically composed and provisioned). The tools have associated virtual
machines that can be used to provision the tools. Semantic integration among
the artifacts in a TSPACE is also required. Figure 19 shows common concepts
and interaction among the concepts in TSPACE. As per the requirements of a
specific domain, there can be more concepts added in ArtToolOnt. For
example, in software architecting domain, architecture views and architecture
viewpoints are used [5] and Representation Class concept that is shown in
Figure 19 has two specializations including Architecture Views and
Architecture Viewpoints.

The abstract ontologies and the relationship between different elements are
explained with the help of TSAPCE ontology instance for software
architecting domain and are shown in Figure 20. Containment relationship
between different types of elements of TSPACE and the tools that contain the
elements is established via maintainedBy property. Specializations of tools are
represented via specializationOf property. Aggregation and specialization
relationships between TEs enable structuring of content elements in the form
of tree structures. The relationships also enable the establishment of a link
between content elements according to a given criterion. AI maintains a
reference to ContentUnits (CU) of a TSPACE via consistOf property. A CU is
a container for multiple activities that are performed in a TSPACE. An
activity may consist of multiple tasks. In Figure 20, Modeling, Knowledge,
and Requirements and Scenarios are examples of CUs. The relationship of an
activity or a task with CE is captured by the contain property.

 128

Figure 19: TSPACE Abstract Tool and Artifact Ontology

 129

Figure 20: TSPACE Tool and Artifact Ontology Instance Example

Each CE describes a uniquely identifiable resource in a TSPACE instance.
The resources represent elements of TSPACE. These can be extracted from a
specific TSPACE instance and can be reused in other TSPACE instances. In
Figure 19, Artifact, its specializations and its sub-concepts are the examples of
CEs. Figure 20 shows an instance of CEs with references to architecture
design of the TSPACE. In Figure 20, each of the sub-concepts represent
content elements at high level of abstraction with reference to architecture
design of the TSPACE and consists of multiple sub-elements. The
relationships between CU, main concepts and sub-concepts are established
with the contain property. A nested relationship among the main concepts of
the same type is established with the hasPart property. The relationship
between abstract concepts and their specializations is established with
specializationOf property.

The details of relations and specializations of CEs with reference to software
architecture design of the TSPACE are shown in Figure 20. Requirements and
Scenarios contains two primary sub-concepts: quality attributes and

 130

architecture concerns. Quality attributes may have many specializations. The
specialization of a quality attribute is represented via specializationOf
relationship. Nested specializations are also possible and can be represented
via specializationOf relationship. Architecture concerns consist of description,
metrics and metrics’ values. Architecture concerns are framed by architecture
viewpoint and are represented by framedBy relationship. An architecture
framework aggregates architecture viewpoints. The aggregation relationship
of architecture framework with architecture viewpoint and correspondence
rules is represented via isAggregated relationship. Architecture knowledge
contains architecture significant requirements and scenarios, quality attributes,
design decisions, and styles and patterns. Architecture knowledge can be
classified into four specializations: design knowledge, architecture
knowledge, realization knowledge and evolution knowledge. The
specialization is represented as specializationOf property. There can be more
specializations of architecture knowledge, though they are not depicted in the
figures. An architecture is modeled using different views and is a
representation of different viewpoints. This relation is depicted as
representedAs property. Views can be further specialized as process view,
logical view, physical view, deployment view and scenarios, as depicted in
4+1 view model [51]. We only represent the details of scenarios that are
indirectly linked via architecture viewpoints. Every specialized view can be
presented with one or more diagrams, and this relationship is represented via
presentedAs property. A general association is possible among CEs or
different elements of CEs, such as association of architecture styles and
patterns with models and diagrams. This type of general association is
represented by associatedWith property. The high-level relationships of SpaT
ontologies discussed above are listed in Table 32.

Table 32: TSPACE Relations to manage the Tools and Artifacts

Relationship Description
hasPart Relationship between a child and parent content

unit (CU) such that only one of the children CU
of its type can exist.

consistOf Relationship between a parents CU and a child
CU.

contain Containment relationship between parent content
element (CE) and child CE such that parents and
child are at different levels of abstraction.

containedBy Containment relationship between child CE and
parent CE. It is inverse of the contain relation.

specializationOf Specialization of a generalized CE into a
specialized CE.

has Association between an actor (stakeholder) and a

 131

CE.
framedBy Containment relationship between a child CE and

a parent CE such that the parent CE consists of
one or more child CE and the parent CE is not
valid until it has all of its children CEs.

isAssociated Association relationship between two CEs that
are at same level of abstraction.

isAggregated Aggregation (composition) relationship between
two CEs such that the one being aggregated can
exist without the aggregator.

isComposite Composition relationship between two CEs such
that the one being composed cannot exist without
the composer.

presentedAs Diagrammatic or textual representation of a CE
by another CE such that both are of different
forms. E.g., one in textual and other one in
diagrammatic form.

representedAs Representation of one type of CE with another
type of CE with same form. E.g., using textual
description.

attribute An attribute of a CE that represents its property.
For example, if a non-functional requirement asks
for 95% availability, value 95 is an attribute of
the availability requirement.

support A particular view that is supported by the
respective tool e.g. a scenario view or a use case
view.

5.3.3. Change	Ontology	(ChaOnt)	

The change ontology tracks changes in the TSPACE’s content elements (CE)
and relationship between CEs. We extended the change ontology of the
semantic document model reported in [113] for the elements of TSPACE.
Pictorial representation of the root-level change ontology is presented in
Figure 21. The change ontology consists of three main concepts:
AggregationContentChange, AggregationItemChange and
ContentUnitChange corresponding to AggregationContext, AggregationItem
and ContentUnit respectively. Every change creates a new version of the
content element. Both old and new versions of the changed content elements
are stored, and oldVersion and newVersion properties are used to capture the
changes in CEs. The properties are also used to link the old and new versions
of the content elements. The changes in the content elements are determined
by comparing old and new versions of the elements.

 132

In order to capture modifications in a CE, addedUnit and updatedUnit
properties are used. Addition of a new content element in the TSPACE is
captured by addedUnit property. Any change in the contents after first time
addition is captured using updatedUnit property. The changes that emerge in
the structure of the architecture design space are managed by linking instances
of rdf:Graph data structure with the changed content element. The property
hasAllChanges links AggregationContentChanges with
AggregationItemChanges. The property referTo links
AggregationItemChanges to ContentUnitChanges.

Figure 21: TSPACE Change Ontology

	

5.3.4. Annotation	Ontology	(AnnOnt)	

One of the main objectives of our semantic model for TSPACE is to enable
discovery and access to artifacts corresponding to the activity and to reuse of
CEs. In order to enable discovery, access and reuse of artifacts and their
elements in TSPACE, we have developed an annotation ontology that is
presented in Figure 22. We extended the annotation ontology of the semantic
document model reported in [113] for the TSPACE.

Our approach to enabling TaaS leverages annotation ontology, for semantic
integration among artifacts maintained by different type of tools used in a
specific instance of the TSPACE. The annotation ontology supports pulg-ins
and data collection probes. The plug-ins, add-ins and probes discover CEs at
different levels of abstraction with the help of the annotation ontology. By
introducing the annotation ontology, we aim to provide common high-level
concepts in terms of classes and provide methods for adding annotations to
CEs. Both classes and properties can be evolved and extended dynamically at
runtime to support multiple types of tools in the design space. The ontologies
for annotation provide a mechanism to semantically relate data and artifacts.
Considering CEs of TSPACE and tools, we have identified two types of
annotations:

• Context independent annotations corresponding to the content
elements that are independent of the artifacts and the tools.

 133

• Context dependent annotations corresponding to the content units that
are part of artifacts and the tool that is maintaining the artifact.

Figure 22: TSPACE Annotation Ontology

5.3.4.1. Context Independent Annotation

Artifacts and tools ontology discussed in Section 5.3.2 complements the
annotation ontology, which relates context-free annotations to the instances of
content elements. ContentUnitAnnotation and hasAnnotation rules are
introduced in the ontology to bind metadata to content elements. The semantic
document model (SDM) to enhance data and knowledge interoperability for
text documents [113] has identified three categories of context independent
annotations (for annotating the data and tracing the activities that are
performed on the data): standardized metadata, usage metadata and subject
metadata. Standardization depends upon the specific domain in which the
TSPACE is to be used; hence, in this chapter we are only dealing with usage
metadata and subject specific metadata.

The Usage meta-data tracks operations on the artifact’s content elements in
the TSPACE. One of the goals with TSPACE is to provide a customizable and
semantically integrated suite of tools by bundling multiple tools together [38].
To support tools bundling, it is important to capture information about
interaction of stakeholders (users) with artifacts in terms of data and

 134

operations that are performed on the data. To achieve this objective, we have
extended our proposed ontology with a set of concepts and properties. There
are four main concepts and two properties associated with each concept. Main
concepts are Addition, Modification, Sharing, Reuse and TraceLink. The
concepts are associated with the type of interaction, the stakeholder who is
participating in the interaction and the trace links among artifacts and data that
are affected as a result of interaction. Addition concept represents addition of
new artifacts and data associated with the activity (e.g., architecture design
activity). Modification, Reuse and Sharing concepts track information of
interactive activities and applications through which stakeholders are
performing the activities. Every time a stakeholder interacts with a CE
associated with the artifacts, the metadata is added to the CE. With the help of
TraceLink concept, the metadata is used to determine how the CEs are linked
to each other. Each concept has two properties: data and information.
ContentUnitAnnotation also has five properties corresponding to aggregated
information of each concept. Aggregated information is maintained for a
consolidated view of stakeholders’ activities on the artifacts that are being
used as part of an activity (e.g., software architecture design). Figure 22
shows a pictorial representation of annotation ontology and usage metadata.

The subject specific meta-data is an ontological metadata that conceptualizes
the subjects that are described by content elements. It is conceptualization of
knowledge modeled by content elements [113, 118]. It is represented by @*
property associated with content element in the proposed annotation ontology.
The goal of our proposed ontology is to facilitate processing of human
readable artifacts and data through machine with help of plug-ins and probes,
and the proposed semantically integrated TSPACE.

The standardization meta-data is used to describe the identifiable resource.
Vocabularies standards such as Dublin Core [119] and IEEE Learning Object
Metadata (LOM) [120] are designed to describe identifiable resources [113].
The models are well suited for a document with simple structure but are not
fully compliant with artifacts having complex structure. We have selected a
tailored subset of meta-data to make it fit for architecture design workspace.
Following are the elements of the tailored metadata that is incorporated in
annotation ontology.

• @creator refers to creators or authors (stakeholders) of the artifacts.
• @datetime corresponds to creation or modification date and time of the

artifact.
• @format refers to the format or standardization that is used to describe the

artifact. It can contain reference to the standard, for example, an XMI
representation of UML documents. For the artifacts that are maintained by
the tools using proprietary standards or maintained by the tools using

 135

complex data structures, corresponding information is specified against
the format element.

• @representation refers to whether the artifact is represented using textual
description, xml format or binary format.

• @language refers to the language that describes the representation. This
property holds values only if the artifacts are described using natural
language or XML structure. If the artifact is represented in natural
language then an identifier for natural language (e.g., ENG for English) is
specified. If the artifact is represented using XML then mapping between
different elements of the XML structure and contents of the artifacts is
specified.

• @identifier represents the unique identifier of the artifact or data
corresponding to the artifact.

• @PLACEHOLDER[VALUE] represents annotation for a specific portion
of an artifact. PLACEHOLDER represents type of annotation whereas
VALUE represents value of the annotation. E.g. parts of the architecture
significant requirement using @PLACEHOLDER[VALUE] can be
annotated as “Application should be @quality[available] @value[90%] of
a @metricunit[day]”.

5.3.4.2. Context Dependent Annotation

This annotation is a representation of the content elements when these are
parts of a specific TSPACE. The annotation ontology relates the context
dependent annotations to AggregationItem (Figure 19) concept defined by the
TSPACE ontology. We introduced the DesignSpaceAnnotation concept in our
annotation ontology that acts as a metadata binder for AggregationItem
(Figure 22). In order to facilitate binding operations, we introduce two new
concepts in the annotation ontology: (i) SemanticElement to extract the
relationship between sub concepts of AggregationItem according to defined
queries and procedures. (ii) TraceElement to identify dependencies and trace
links between content elements of the TSPACE.

5.4. Use	of	Ontologies	for	Notification	and	Quality	of	Software	
Architecting	Activities	

Annotation ontology along with change ontology also support notifications
for collaborative activities that are being performed using multiple tools in a
TSPACE. The rules use elements of annotation and change ontology to raise
awareness about the activities performed using the tools and to send
notifications across the tools corresponding to actions associated with the
activities. Let x and y be content elements of the artifacts that are produced in
the TSPACE, Relationx,y be a relationship that exists between x and y (e.g.,
Parentx,y represents x is parents of y), <Action>x is an action triggered for x,

 136

and <Select><U>x as selection of a content element to be used in a particular
activity by a user U. Table 33 shows sample notifications rules corresponding
to the addition, modification, conflict identification and sharing of the content
elements. These rules can be implemented using SPARQL [121] queries in
combination with complimentary algorithms.

Table 33: Sample Rules for TSPACE Notifications

Notification Formation
R1: Addition ∀ x,y : <NotifyAddition>y ⟹ Parentx,y ∧

<Addition>x
R2: Modification ∀ x,y : <NotifyUpdate>y ⟹ Parentx,y ∧

<Modification>x
R3: Sharing ∀x : <NotifySharing>x ⟹ <Select><User1>x ∧

<Select><User2>x
R4: Conflict ∀x,y : <NotifyConflict>y ⟹ Parentz,x ∧ Parentz,y ∧

<Modification>x → <Conflict>y

Algorithm 2 is used to fire addition and modification notification, when a
content element of any of the parent of the content element that is under
investigation is modified or additional attributes are added to it.

5.5. Discussion	

The ontologies that have been presented in this chapter are collectively used
to provide semantic integration among the artifacts of different types and
different abstraction levels. In this section, we present a sample scenario that
depicts the process of instantiation of the ontology structure when tools are

Algorithm_Notification (TSPACE lookupContentElement)
 user_notification_List ! null

i ! TSPACE instance aggregated RDF
 for each j ! ancestor of lookupContentElements in i
 if NotificationAddition(j) OR NotificationUpdate(j) is true Then

 User u ! getUser(k)
 append(user_notification_List, u, NotificationType(j))
end if

 end for

 Fire_Notifications(user_notification_List)

Algorithm 2: Tools Selection using Capability Ontology

 137

provisioned by TSPACE. After a specific set of tools is selected and TSPACE
provisions the tools, the baseline for semantic integration is configured using
artifacts and tools ontology (Section 5.3.2). E.g. if an architecture significant
requirements documentation tool, an architecture knowledge management tool
and an architecture modeling tool are provisioned by TSPACE, separate
content units (CU) for each of these tools are created (as depicted in Figure
20). Hence, TSPACE root CU has three child CUs: one for architecture
significant requirements tool, one for knowledge tool and one for modeling
tool. In case multiple tools are provisioned to perform specific activities,
nested CUs are possible. Once the data of the artifacts is posted on TSPACE,
the data is added under the corresponding CU. E.g. data of the artifacts
corresponding to architecture significant requirements tool is added under
architecture significant requirements documentation CU. In this manner, data
inside CU of each tool is populated. Annotation ontologies are used to relate
an artifacts or parts of an artifact that is produced from one tool with artifacts
of other tools. In ontologies, it is reflected as a relation of the artifact managed
within one CU with another artifact in another CU. E.g. if an architecture
significant requirement artifact is related with a design decision corresponding
to that requirement in a knowledge management tool, the relation of the
artifact managed under the requirements CU is established with an artifact
managed under the knowledge CU, and annotations from the annotation
ontologies (Section 5.3.4) are used to establish the nature of the relationship.
The relations to manage artifacts (Table 32) are used by annotation ontology.
The changes on these artifacts that occur as results of the operations that are
performed on the artifacts are recorded and managed with the help of change
ontology (Section 5.3.3). The detail on the ontologies implementation is
elaborated in Chapter 6 using TSPACE reference architecture and a prototype
of the reference architecture.

TSPACE can consist of two types of the tools: (a) the tools that are enacted as
part of TSPACE instance and (b) third-party cloud-based tools that are
available on the cloud and are integrated with TSPACE using its APIs.
Although in this dissertation the research is only focused on providing
semantic integration among the tools that are provisioned by TSPACE, the
proposed ontology model can also be used to integrate externally provisioned
tools with TSPACE.

5.6. Related	Work	

A number of studies have reported adoption of ontology-based approaches to
address specific software engineering challenges. The most comprehensive
study is conducted by Zhao et al., [110], in which authors have presented a
classification of ontologies and semantic web-based approaches proposed for

 138

software engineering domain. Software process ontologies capture activities,
process phases and process models. Knowledge management in design
process, work process and project management, design traces, design
documentation and tools are primary constituents of the software engineering
ontologies [110].

Process ontologies: Ontologies are also used to model features of a specific
application domain [110]. Boskovic et al. [122] have presented an ontology
for configurable business processes following software product line
engineering approaches. Their approach is based on Business Process Family
Models (BPFMs), which consists of problem space (artifacts), mapping
between problem and solution space, and solution space (business process
model template). First step of the approach [122] is to identify the relationship
between features of independent families. In next step, verification and
validation of the relationships between target customers and developers of
different families are performed. It is also verified whether the relations are
specified properly. In next step, appropriate integration choices are made. In
the final step, selected integrated patterns and initial feature models are
transformed into integrated families. Feature models are modeled using
semantic annotations. The proposed approach provides a semantic-based
mechanism to compose service families, but it does not provide integration
among the services with respect to business logic and operations.

Valiente et al. [123] have proposed an ontology-based approach to integrate
software development and information technology service management
processes and corresponding support tools. The proposed approach links the
business (organizational) view to the engineering view with the aim of
integrating business information early in the software development lifecycle.
The integration framework consists of the workflow ontology, based on roles
of the resources taking part in the business activity, the responsibilities of
individual activities and the routes that specify flow of information between
different business activities. This approach is primarily focused on workflow
and information processing but does not deal with issues specific to tool
integration and information consistency, especially when multiple tools
generate information that cannot be transferred among tools and services as it
is handled in a workflow-base system.

Software maintenance process ontologies provide concepts and their
relationships corresponding to the software maintenance and related activities.
Other than activities, this type of ontologies also contains person, procedures
and resources [110]. Most significant work in this regard is by April et al.
[124], in which the authors have presented a formalization of a software
process ontology by combining primary processes that are used to carry out
actual maintenance with support processes (documentation, version

 139

management, verification, validation, review and audits etc.) and
organizational processes (maintenance planning, measurement and analysis,
innovation and deployment, process definition and improvement etc.). Their
main contribution is to provide formalization of the maintenance ontology
presented by Kitchenham [125].

Liao et al. [126] have provided a brief description of ontology to describe
software processes. Two main components of their process ontology are
organizational processes and practices. They have not described the details of
a specific type of process or domain in which their model can be applied.
Their approach is abstract and cannot be adopted into any real application
domain.

Modeling ontologies: Software modeling ontologies model interactions and
relations among architecture concepts, styles and patterns [110]. The most
prominent work in this regard is proposed by Athanasiadis et al. [127], in
which they have propose a technique for object to relational mapping based
upon semantics. Their approach facilitates enterprise application development
using OWL based formal domain specifications. At the core of the proposed
approach is an ontology that maps OWL data type properties onto java entity
classes. Pattern oriented ontologies describe patterns using OWL and RDF
properties [110]. Patterns are defined and OWL concepts and the relation
between concepts and sub concepts is established using properties (e.g.
hasParticipant) [110]. Ameller and Franch [128] have presented an ontology
to describe relationship between architecture view, their framework,
architecture styles, variant of architecture styles and their implementation in
context of a web-based application.

Artifacts’ ontologies: Software artifact ontologies provide a set of concepts
to classify different artifacts according to their format, internal structure and
related concepts such as actors who create the artifacts and projects in which
artifacts are created [110]. The work on artifacts ontologies is limited to
providing support for searching relevant knowledge and reusing it. Antunes et
al. [129] have presented a semantic web based approach to facilitate
developers to search knowledge repository and to suggest knowledge relevant
to a current task that a user is performing. The aim of their approach is to
facilitate reuse of software development knowledge using semantic web.
Happel et al. [130] have also presented a software reuse methodology based
on ontologies. Their work focuses on facilitating reuse libraries by providing
background knowledge. Semantic integration of implicit and explicit metadata
facilitates deriving new facts from the existing knowledge. An object-oriented
ontology provides a relationship among different concepts of object oriented
programming languages and version control ontologies facilitate
formalization of versioning of the software development artifacts [110].

 140

Documentation ontologies: Documentation ontologies provide relationships
between concepts of software documentation. A number of studies have been
reported to formalize software documentation approaches. Witte et al. [131]
have proposed a semantic web-based approach to automatically integrate
source code and source code documentation by populating corresponding
ontologies using code analysis and text mining. Their approach facilitates to
perform maintenance tasks including traceability recovery between code and
documents easily. Zhand et al. [132] have also proposed a traceability
recovery approach based on ontologies. Their approach establishes a
relationship between source code and corresponding source code documents
at semantic level. Although the authors have described the notion of design
patterns in the documentation and their relationship with code, their approach
is limited to simple relationships between design documents describing
different elements of the source code and source code. Decker et al. [108]
have presented an overview of self-organized reuse of software engineering
knowledge using semantic wikis. The authors have given examples from the
requirements engineering domain to show advantages of semantic wikis in
reusable software engineering knowledge.

There are a number of studies reporting use of ontologies for software
architecture documentation. Boer et al. [133] have presented use of ontologies
to visualize architecture design decisions. The authors have presented an
ontology for architecture design decisions named “QuOnt” [134]. The
presented approach establishes a relationship between quality criterion and
quality attribute, and the effect of quality attribute on quality criteria. Effect
can either be positive or negative. Criterion is further subdivided into
subclasses according to specific requirements. They have presented the use of
ontology to visualize architecture design decisions in the domain of software
architecture audits. The rules and constrains to specify relations among
different quality attribute and quality criterion are also presented. Tang et al.
[135] have presented a lightweight ontology to establish a relationship
between different elements of architecture documentation including
requirements, architecture structure, architecture components and architecture
design decisions. Graaf et al. [136, 137] have presented an ontology for
software documentation using a semantic Wiki named ArchiMind. The main
contribution of their approach is the evaluation that shows ontology-based
approach is better, time efficient and more effective than document-based
approach.

The studies on architecture documentation show the significance of using
ontologies to structure and relate concepts involved in software architecture
documentation activities. However, the studies do not address the root cause
of the issue; i.e. how to provide a common place for multiple types of artifacts

 141

maintained by heterogeneous tools that are used to perform activities
associated with software architecting.

Patterns ontology: Pattern ontology provides a catalogues of design,
usability and application patterns [110]. Henninger and Ashokkumar [138]
have described a basic meta-model and ontology to describe the presence of
different elements of a design pattern (context, forces, problems, solutions
etc.), their classifications and the relationship between different
classifications. However, their work does not provide ontologies to assign and
evaluate each property of pattern at atomic level that is measureable and can
be used for further automated analysis and reasoning on software architecture.

Cloud-based software engineering ontologies: Zhou et al. [139] have
presented an approach for reengineering software for cloud-based systems
using ontologies. Ontologies from enterprise application are build using
reverse engineering and model transformation techniques, and a system for
the cloud is reengineered using model transformation techniques. Link
between original enterprise system and transformed system is established
using ontology relations. Once requirements are mapped onto concepts and
relationship between difference concepts is established, inconsistency is
detected by applying inference rules.

Requirements analysis: Kaiya and Saeki have presented an ontology-based
semantic processing approach for requirements analysis [140]. Their work is
based on mapping requirements to domain ontology using transformation
rules. Domain model consists of specialization of concepts and relationships.

Integration ontologies: Brandt et al. [141] have presented a flexible
ontology-based schema for knowledge management and integration platform
to integrate process and product information in a chemical engineering
domain. They have described their ontology in four broad categories: product
area describes the type and version history of electronic sources, storage area
describes location and version of a particular artifact, descriptive area
describes high-level semantics for content and role of the product objects or
artifacts, and process area describes concepts to represent process objects.
Rilling et al. [142] have described a meta-model and ontology to link
documents with source code. Their meta-model captures the relationship
between tools, tasks and the artifacts involved with the tasks. Text mining is
used to build the relationship between the entities. However, their approach
does not provide a detail of the ontology associated with tools, tasks and the
artifacts. It remains vague how the information is structured and how different
types of rules are applied to link document with code.

 142

Besides specialized work on ontologies, there are also studies that have
reported generalized technology ontologies for software development
environments and tools [110]. Wongthongtham et al. [143] have also
presented different dimensions of software engineering ontologies and have
specified properties of the class diagrams and the relationship that can exists
between different elements of the class diagram.

Table 34: Existing architecture design ontologies with respect to TaaS

Software
Engineering

Ontologies

Focus Comparison with
TaaS

Process -Semantic mechanism to compose
service families.
-Workflow information processing.

-TaaS integration,
artifacts relationship
management,
completeness,
consistency is
missing.

Modeling -Objects to rational mapping.
-Relation among patterns and their
variants.

-Integration among
different abstraction
of models is not
considered.

Artifacts Artifacts indexing to facilitate search
and reuse.

-Distributed artifacts
are not considered.

Architecture
Documentation

-Integration between source code
and its documentation.
-Traceability recovery.
-Reusing software engineering
knowledge.
-Visualize architecture design
decision.
-Relationship between quality
criteria and quality attributes.
-Wiki-based architecture
documentation.

-Does not address
root cause of
multiple artifacts
being generated and
consumed using
multiple tools.

Pattern Elements of patterns (intent, context,
design)

-Ontology does not
present patterns
elements so that they
are distinguishable
from other patterns
and can be
measured.

Cloud-based Map requirements onto concepts to N/A

 143

Software
Engineering

determine inconsistencies.

Requirements Requirements consistency,
completeness, ambiguity and
conflicts.

N/A

Integration -Integrate process and product.
-Integrating source code with its
documentation.
-Ontologies for UML class
diagrams.

N/A

5.7. Conclusions	

In this chapter, we have presented an ontology-based framework for
provisioning of the tools in TSPACE. The main contribution of our approach
is development of a suite of ontologies to support tools’ selection and to
provide semantic integration among the tools and artifacts provisioned by
TSPACE. The suite of ontologies enables building of structures of multiple
content elements (CEs) of the TSPACE, and respective annotation and change
ontology. Our approach emphasizes and supports the relations between
content elements of TSPACE. The ontologies are used to identify all the
constituents of TSPACE including CEs, relationships among CEs, attributes
of CEs, labels of the relationships and the tools that constitute a TSPACE
instance. The ontologies are used as a foundation to design a detailed
TSPACE reference architecture that is to be presented in Chapter 6. Although
in this chapter and in the dissertation we have focused on TSPACE
application on software architecting domain, we foresee that the concepts can
be adopted in other engineering disciplines. We also believe that leveraging
formal approaches such as ontologies can facilitate the adoption of cloud-
based tools in other sophisticated domains.

 144

 145

Chapter	6. Reference	Architecture	Models	and	
Components	

The role of Software Architecture (SA) is critical in developing and evolving
a cloud-based workspace for hosting and provisioning TaaS. In this chapter,
we present details of a Reference Architecture (RA) for designing a cloud-
based TaaS workspace (TSPACE) - a platform for hosting and providing
Tools as a Service. The TSPACE reference architecture has been designed by
leveraging well-known architecture design principles and patterns and has
been documented using views-based approach. The reference architecture has
been presented in terms of its context, goals and design elements with respect
to the requirements (as described in Chapter 4), design tactics and different
components of the reference architecture at multiple levels of abstraction. We
also report evaluation of the reference architecture for different functional and
non-functional requirements for hosting and integrating tools using IaaS
cloud. The reference architecture can provide valuable guidance and insights
for designing and implementing concrete software architectures of TSPACE.

Parts of this chapter have been presented in [1, 38, 49, 52].

6.1. Introduction	

Software Engineering (SE) needs to be supported by several tools to perform
different activities such as Requirements Engineering (RE), Software
Architecture (SA) design and testing. Traditionally SE tools (i.e. individual
tools or integrated environments) are either deployed on individual desktops
or provisioned from a centralized server via Web browsers. The desktop and
web-based provisioning of SE tools make it quite difficult (or sometimes
impossible) to easily and freely share tools, data, and artifacts across projects,
teams or organizations. With the increasing adoption of Cloud Computing as a
flexible and reliable technology for acquiring and releasing Information
Communication Technology (ICT) Infrastructure for real and perceived
benefits as reported in [20, 144], several commercial and research efforts are
focused on provisioning of cloud-based or cloud-hosted Tools as a Service
(TaaS) such as cloud-based IDE Cloud9 [145], online diagramming tool
Gliffy [146], and several other efforts reported in [38, 147].

Whilst Cloud Computing provides a viable and flexible technological
infrastructure to provision SE tools, building and leveraging cloud-based
platform for providing tools as a service (TaaS) presents several unique
challenges that need appropriate architectural support [38]. For example, a

 146

user (or a team) should be able to bundle and acquire a diverse set of tools that
can interoperate so that the user(s) working on a SE activity can have access
to different artifacts and data, even those artifacts and data are maintained
within different tools in non-standardized or proprietary formats [38].
Moreover, users also need to be aware of the activities and actions that are
being performed on the data using multiple tools [38]. Provisioning of SE
tools from an Infrastructure as a Service (IaaS) cloud according to specific
project and organizational constraints is also a vital requirement [52]. To
address these challenges, there is a need for a reference architecture of
TSPACE. TSPACE reference architecture is architecture of an aggregated
platform that facilitates activity or task specific tools selection and
provisioning, provides integration among heterogeneous types of the artifacts
managed by the tools in a TSPACE and raises awareness of the stakeholders’
operations that are performed on the artifacts using the provisioned tools.

As discussed in previous chapters, our research effort has been motivated by
the need to provide the key specifications and architectural guidance in terms
of a reference architecture for designing and evaluating a TSPACE for
provisioning software architecting TaaS. A software reference architecture
“maps division of functionality together with data flow between the pieces
onto software elements and data flow between the elements” [5]. A software
reference architecture also provides a standardization and an abstraction of a
concrete software architectures for a specific domain, facilitates the reuse of
design knowledge and reduces the cost of creating new design solutions for
the domain [15].

This chapter deals with architecture components of TSAPCE and presents a
set of key specifications, a design process and a description of TSPACE
reference architecture that can support a modular and highly configurable
TSPACE. Different vendors can provide specific modules of the proposed
TSPACE reference architecture and individual software architecture tools can
be hosted and provisioned using the TSPACE. We foresee that the proposed
reference architecture will make it easier to design new cloud-based
workspaces for TaaS, to analyze and evaluate existing ones as well as
significantly facilitate the software development process of TaaS workspaces.
The description of the TSPACE reference architecture details the
functionalities to be supported, architecture design decisions [148], and
different abstractions and views of the reference architecture. Whilst the
architectural concepts and design decisions presented in this chapter are
generic enough to be applied to design and evaluating a TSPACE for any
other engineering domain, we have focused on software architecting domain.
The main research contributions that are discussed in this chapter are:

 147

• We present a meta-model to characterize TSPACE and to design
concrete architecture for providing TSPACE. We also present a
structure of a set of ontologies that formalize the tools selection, tools
provisioning and semantic integration among the artifacts consumed or
generated by the hosted tools.

• We provide a detailed description of the TSPACE RA by using

multiple levels of abstractions [10] and rationalizing the incorporation
of different modules and components in the RA. The RA is described
in terms of development view, logical view, process view and
deployment view, as recommended by view-based approaches [10].
We also identify different solutions that can be used to implement the
RA.

• We demonstrate the use of well-known design principles and

architectural patterns [148] for designing and reasoning architectures
for TSPACE. The description of the used patterns and their pros and
cons can provide guidance for implementing the RA for different
engineering domains.

The organization of the remainder of the chapter is as follows. Section 6.2
explains TSPACE architecture design and description strategy. Section 6.3
describes TSPACE design tactics. Section 6.4 describes detailed TSPACE
reference architecture design using multiple views. Section 6.5 provides an
overview of prototype implementation of the reference architecture, and
Section 6.6 provides insights on TSPACE reference architecture evaluation.

6.2. Reference	Architecture	Design	and	Description	Strategy	

While designing TSPACE reference architecture, we have addressed reference
architecture documentation and TSPACE functional and quality requirements
(elaborated in Chapter 4). We have leveraged findings from the synthesis of
cloud software architecture solutions (discussed in Chapter 2) for
incorporating *aaS quality characteristics in TSPACE reference architecture.
TSPACE reference architecture also encompasses TSPACE ontologies
(discussed in Chapter 5). Since a reference architecture provides valuable
guidelines for designing a concrete architecture, it is important to describe a
reference architecture as comprehensively as possible and in an easy-to-
understand way. We have described TSPACE reference architecture using a
systematic approach that advocates the use of context, goal and design
dimensions of a reference architecture [15, 16], as discussed in Section 3.3.1.2
in Chapter 4. Table 35 lists different dimensions of the reference architecture
documentation and the proposed TSPACE reference architecture.

 148

Table 35: TSPACE Reference Architecture Documentation

Dimension Sub-dimension TSPACE RA Solution
Context Who defines it? It is defined as a part of a research

project.
Where will it be
used?

It aims to facilitate implementation and
evaluation of a TSPACE for industrial
trials.

What is the
maturity stage of
the domain?

The corresponding architecture domain
is considered as preliminary because to
the best of our knowledge,
comprehensive solutions are not yet
available.

Goal Why is it defined? It aims to facilitate the design of a
concrete TSPACE by providing the
development, logical, process and
deployment views of the RA.

Design What is described? The RA is described in terms of high-
level modules, connectors, details of the
modules in terms of components using
multiple views and design principles of
the RA.

How is it
described?

It is described using textual description
and diagrams.

How is it
represented?

We have shown high-level
representations using semi-formal
approaches with the help of lines and
boxes, and have described details using
UML diagrams.

Instantiation How is it
instantiated?

We have evaluated the instantiation of
the RA by building a prototype.

Evaluation How is it
evaluated?

We have evaluated the RA using
scenarios for functional requirements
and quality parameters, and assessed its
feasibility by having a prototype.

6.3. TSPACE	Reference	Architecture	Design	Tactics	

We have designed TSPACE reference architecture for supporting software
architecting activities such as architecture analysis and design. TSPACE
reference architecture is generic enough to be adopted for supporting
engineering efforts in other domains. We have developed the presented
reference architecture experimentally and iteratively. For designing the

 149

reference architecture, we have followed the functional decomposition and
part-whole principles [5] and several architectural styles. TSPACE reference
architecture consists of four abstraction layers; several components and sub-
components on each layer have been structured based on the part-whole
principle to achieve functional and non-functional requirements.

Functional decomposition and part-whole principles help to achieve a number
of quality characteristics such as modifiability and integratability. Functional
decomposition also makes it easy for practitioners and researchers to
understand different components of the reference architecture and to tailor it
for their specific needs. We have used an ontology-based semantic integration
approach to support flexibility and interoperability. Ontology-based semantic
integration enables the reference architecture to accommodate different types
of artifacts produced or consumed by different tools using standardized or
proprietary formats. We have defined a clear connection between the
interfaces of semantic integration layers. We have also defined explicit
components that manage semantic models of a TSPACE at different levels of
abstraction.

One of the core elements of the proposed reference architecture is a meta-
model to characterize the elements of a TSPACE and the relations among the
elements (Figure 23). Since we intend to concretize the TSPACE reference
architecture for software architecting domain, we have decided to develop
TSPACE meta-model by following and extending the conceptual meta-
models of architecture description provided by IEEE 1471-2000 [47] and
ISO/IEC/IEEE 42010:2011 [7]. The extended TSPACE meta-model is shown
in Figure 23, which is a detailed view of the meta-model that has been briefly
discussed in Section 5.2 in Chapter 5. The meta-model shows an abstract
TSPACE and its specialization of architecting TSPACE (i.e. TSPACE
instance for the tools that are used for software architecting activities). The
proposed meta-model is explained in following paragraphs.

 150

 Figure 23: TSPACE Meta-model

A user (tenant) can associate the required tools with a TSPACE in two ways:
(a) the tools can be provisioned by third party vendors and are integrated with
TSPACE via plug-ins, and (b) the TSPACE enacts the required tools and
hosts them on the virtual machines. As a result, TSPACE consists of two
types of repositories, namely tools repositories and virtual machine
repositories on which tools can be hosted. The hosted tools provide different
types of features and support different types of quality characteristics (e.g.,
scalability and availability). In the meta-model, the features and quality
characteristics of the tools are represented as tools’ capability. The hosted
tools provide support for different types of activities and sub-tasks of those
activities. Each tool can enable a user to work on the required artifacts that
may be in a standard format such as UML models or a tool’s proprietary
format.

 151

As previously stated, a project’s stakeholders usually work with multiple tools
provided by commercial vendors or an Open Source community. These tools
need architectural level support for interoperability so that the artifacts
produced in different formats (texts, diagrams, standardized formats and
proprietary formats) can be integrated with each other. We have proposed to
leverage semantic technologies for tools integration; however, our solution
needs to be complemented by appropriate architecture abstractions for
information discovery from tools. The architecture of a TSPACE also needs to
have a set of rules to support collaboration, awareness of the operations on the
artifacts and information discovery of the related artifacts as a project’s
stakeholders usually perform different activities using multiple tools. The
meta-model in Figure 23 shows a specialization of a TSPACE for the software
architecting tools. As shown in the figure, an instantiation of a TSPACE for a
specific domain may require additional concepts such as architecture
viewpoints and architecture views, as in the case of software architecting
TSPACE. Hence, the TSPACE reference architecture meta-model also
provides flexibility to incorporate additional concepts by supporting dynamic
composition and aggregation of different concepts in a TSPACE. In following
subsections, we describe TSPACE architecture design tactics to address
TSPACE requirements that have been reported in Chapter 4.

6.3.1. Use	of	Ontologies	to	Formalize	TSPACE	

We propose the use of ontologies to formalize TSPACE [49] because
ontologies provide shared conceptualization and vocabulary that can be used
to model a specific domain [48]. Figure 24 and Figure 25 show an aggregated
view of the TSPACE ontologies that have been described in detail in Chapter
5. The TSPACE ontologies consist of four specializations, namely Artifact
Ontology, Capability or Tool Ontology, Annotation Ontology and Change
Ontology. The TSPACE meta-model that is presented in Figure 23 shows an
overall structure of the TSPACE elements whereas the TSPACE ontologies
provide the basis for formalizing the tools selection process, establish the
relationship among the artifacts that are produced or consumed in a TSPACE
instance, and capture the operations that are performed on artifacts. The
presented ontologies are based on the TSPACE meta-model and have been
inspired by the data interoperability semantic model [113].

 152

Figure 24: TSPACE Ontology Meta-model Structure

Different components of TSPACE reference architecture (to be discussed in
Section 6.4) use one or more specialization of TSPACE ontologies that have
been elaborated in detail in Chapter 5. Artifact Ontology consists of multiple
abstractions of TSPACE. Each abstraction can have nested abstraction and
can consist of one or more artifacts. Artifact Ontology also contains the
relationships among abstractions and the contained artifacts. Tool Ontology
captures the functional and non-functional requirements supported by the
tools associated with a TSPACE instance. Tools Ontology can be used to
capture the capability of tools as well as the functionality and quality
characteristics users require from a specific instance of a TSPACE.
Annotation Ontology provides support for annotating the artifacts that are
produced or consumed by the tools constituting a TSPACE. Annotation
Ontology provides support for annotating artifacts for addition, modification
and re-use within the same instance of TSPACE. It also provides support for
manual definition or automatic recovery of trace links between artifacts based
on the relationships supported by Artifact Ontology. This ontology consists of
rules for both annotation and traceability relations. The rules govern valid
annotation and traceability relationship. Finally, Change Ontology keeps track
of the old and new versions of the artifacts in a TSPACE and raises awareness
of the operations that are performed on the artifacts among users by
generating notification according to defined Notification Rules.

 153

Benefits: Our decision to use ontologies at the core of the reference
architecture appropriately formalizes the concepts about a TSPACE. It also
makes the reference architecture flexible and dynamic enough to
accommodate different types of tools.

Challenges: Building ontologies for complex domains is not a trivial
undertaking. The process of building such ontologies requires expertise in
domain knowledge for defining the high-level concepts and relationships
between different artifacts. The meta-model presented in Figure 23 shows
high-level relationships between different concepts and artifacts of a Software
Architecting TSPACE. The meta-model needs to be extended for other
domains in the same manner we have followed for the Software Architecting
TSPACE.

Figure 25: TSPACE Ontology Meta-model Detail

 154

6.3.2. Using	SOA	and	REST	as	TSPACE	Façade	

For designing the façade of the reference architecture, we used Service
Oriented Architecture (SOA) [149] and REST architecture styles [150]. The
tools associated with a TSPACE interact with the reference architecture via its
façade.

Benefits: The use of SOA and REST makes it easy to modify the reference
architecture’s components and supports seamless integration of heterogeneous
tools to be hosted. The tools hosted in a TSPACE can be traditional desktop-
based tools hosted in Virtual Machines (VMs), web-based application enacted
by a platform or cloud-based tools provided by third party vendors and
integrated with the platform. Different technologies are used for implementing
different types of tools and allowing a platform-neutral façade based on SOA
and REST styles paves the way for seamless integration.

Challenges: For certain tools, it may not be possible to write plug-in or
probes to have direct interaction with a platform using SOA or REST
interfaces. In such cases, intermediate glue code components can be required.

6.3.3. Using	Centralized	(Shared)	Repository	Pattern	

We used shared repository pattern [50] to provide a common Global Ontology
Knowledgebase to TSPACE instances for multiple domains. A centralized
ontology repository hosts standard abstract Artifacts Ontology, Annotation
Ontology, Change Ontology and Capability Ontology for different domains.

Benefits: A centralized global ontology repository provides a single point of
access to different ontologies of a TSPACE. It also positively addresses the
modifiability characteristic (QR7) of TSPACE reference architecture.

Challenges: A centralized repository pattern can become a performance
bottleneck if there are multiple instances of a TaaS accessing the repository.
This risk can be mitigated by having replications of the repository and a load
balancer.

6.3.4. Using	Pipes	and	Filters	Pattern	

There can be a number of tools in a specific instance of TSPACE, and the
reference architecture needs to support multiple TSPACE instances. There
needs to be architectural support to handle an increasing amount of data
generated by multiple tools associated with each instance of a TSPACE. That

 155

is why we used pipes and filters pattern [4] in the reference architecture to
meet the performance requirements of the platform.

Benefits: The adoption of the two staged pipes and filter architecture style
provides a queuing mechanism. In the first stage, there is a common queue
pipeline at which data from all the tools belonging to different instances of a
TaaS are received. In the second stage, there are multiple queue pipelines
corresponding to an instance (for a specific tenant) of TSPACE. The input
data are sent to the queue of the corresponding tenant with the help of a
monitoring filter.

Challenges: If the input data streams scale rapidly, having only one
monitoring filter may become a performance bottleneck. Multiple monitoring
components can be attached to the first queue pipeline to address the
scalability issue.

6.3.5. Loosely	Coupled	Layers	

The layered architecture style [4] is widely used to provide loose coupling and
separation of concerns in a system. We used the layered architecture at
multiple levels of abstraction in TSPACE reference architecture.

Benefits: The layered architecture style makes it easy to implement and
evolve different components of the reference architecture independently of
each other, and plug in third party tools.

Challenges: The layered architecture style requires explicit interfaces for
components in each layer via which other layers can utilize its functionality.
This may result in more effort while materializing the reference architecture.
Layered architecture can also have negative impact on performance. However,
the potential negative affects of the layered approach can be mitigated by
incorporating performance improvement techniques for data retrieval (such as
data caching).

6.3.6. Using	Resource	Description	Framework	for	Information	
Extraction	

The requirements associated with semantic integration demand a mechanism
that can be used to extract different types of knowledge and information from
a TSPACE instance to provide support for awareness of the operations that
are performed on the artifacts (users activities) and collaboration between the
users. We have used Resource Description Framework (RDF) [151] to extract
and structure information from TSPACE ontologies and maintain the
information in a query-able manner. Figure 26 (a) and (b) shows different

 156

stages of RDF construction from the annotated data of content elements (CE)
of TSPACE that is sent to a TSPACE instance via its APIs (e.g., via plug-ins,
add-ins and probes on each of the provisioned tool). At the first stage, the
annotated data is used to construct RDF corresponding to artifact ontology for
each tool. At the second stage, tools-specific RDFs are merged together to
generate an aggregated RDF for a TSPACE instance. Being a query able data
structure, RDF enables dynamic definition of information extraction rules.
Centralized repository pattern [50] is used to provide root ontology templates
for all TSPACE instances, as shown in Figure 26(a). Ontology templates are
used as a baseline by each TSPACE instance and are populated according to
specific configurations of the provisioned tools.

Figure 26: Semantic Integration Stages

Benefits: The query able nature of RDF provides an extendable and easily
modifiable approach to define information extraction and collaboration rules
that have been briefly discussed in Chapter 5.

 157

Challenges: Generating RDF for all the data in a TSPACE instance can
become a performance bottleneck when a large amount of semantically
related data is being maintained in a TSPACE instance. To avoid this
bottleneck, an incremental RDF generation approach is adopted. Therefore,
instead of generating an RDF from the ontology structure when the data needs
to be queried, RDF is updated whenever new data is added in the TSPACE
instance, and a query on the data can be run at anytime without the need to
regenerate RDF. (A code snippet of the incremental RDF generation method
is shown in Section 6.5 while describing an overview of the prototype.)

6.3.7. Use	of	SPARQL	for	supporting	Dynamic	Rules	

The requirement QR4 emphasizes the need to support dynamic update of
awareness and collaboration rules. For this purpose we have used SPARQL
[121] based information extraction rules in TSPACE. SPARQL is a query
language for RDF based data structures.

Benefits: Using SPARQL provides flexibility to define rules according to
specific needs of the domain in which TSPACE is to be adopted.

Challenges: Defining rules using SPARQL can be challenging. For this
purpose, a set of reference queries and methods are provided in the prototype
implementation of TSPACE to facilitate incorporation of new rules.

6.3.8. Using	Redundancy	of	Pipes	and	Filters	to	Support	Scalability	

The requirement QR3 identifies the scalability needs of TSPACE as the
number of users and the activities that are performed using the tools grows.
Scalability architecture is shown in Figure 27.

 158

Figure 27: TSPACE Scalability Pattern

Scalability in TSPACE is achieved in three different ways. (i) First, inclusion
of three levels of HashMap-based indexing technique allows us to retrieve
information with constant access time even though the artifacts and CEs grow
exponentially. When a TSAPCE instance services multiple tenants, the first
HashMap returns a reference to ontology map of that specific tenant using
tenant identifier as a key. The second HashMap returns reference to a specific
ontology map, e.g. tool and artifact ontology and third hash map returns a
reference to the specific data element (e.g. an artifact), which needs to be
accessed. As a result, TSPACE provides access to a specific data element in a
constant access time even though the data grows rapidly. Every ontology and
data element in a TSPACE instance has a unique identifier that is used as a key
for the third level hash map. A HashMap structure is shown in Figure 39(b).
(ii) Second, we have incorporated two FIFO (first in first out) queues attached
with the APIs that receive the data from the plug-ins. The first queue is tenant-
independent queue that received data from all the tools. The second set of
queues consists of tenant-specific queues. A monitoring pattern is applied
[152] to monitor and assign the data to corresponding queues. A Monitor
component fetches the data from the first queue and puts it at the tail of the
corresponding tenant-specific queue. The monitoring is performed according
to the monitoring rules that define how to extract tenant information from the
input stream of data. The queues ensure that TSPACE architecture is able to
handle growth of data without impacting TSPACE operations. (iii) Third, we
have introduced a load balancer component in case the first level queue is
replicated. The load balancer fetches the data from the head of the replicated

 159

first level queues and passes it to replicated Monitor components in round
robin manner. The monitoring component then places the data on the tail of
tenant specific queue. The information from the head of tenant-specific queues
is fetched by the corresponding TSPACE tenant’s components instances.

Benefits: Providing scalability points at three different levels guarantees to
provide TSPACE provisioning as *aaS model.

Challenges: Autonomous replication of TSPACE components on cloud can be
challenging. However, incorporating scalability features of underlying IaaS
cloud can easily mitigate this risk.

6.3.9. Using	Location-Specific	Provisioning	to	Satisfy	Location	
Constraints	

The requirement FR1 highlights the importance of TSPACE capability to
provision tools according to specific location constrains on the underlying
IaaS cloud. Location specific provisioning can be achieved by using
enactment APIs (e.g. Amazon Provisioning APIs[21]) of underlying IaaS
cloud provider.

Benefit: Using IaaS’s location-specific enactment features provides an easy
mechanism to guarantee adoption of TSPACE for the projects that involves
working on artifacts and data of sensitive nature.

Challenges: Unavailability of location-specific provisioning features in an
IaaS cloud can pose a challenge. However, more robust solutions for hybrid
cloud provisioning models, e.g. frameworks such as IBM Altocumulus [74]
can be adopted to address this risk.

6.3.10. Multi-tenancy	

Multi-tenancy is an important characteristic of *aaS model [102]. The
proposed reference architecture fulfills the multi-tenancy characteristic to
provide proper isolation of the tools and data of one tenant of a TSPACE
instance from other tenants (QR2).

 160

Figure 28: Multi-tenancy Layers

Figure 28 shows a layered multi-tenancy architecture pattern used in TSPACE
reference architecture. The isolation between the architectural elements has
been provided at three different levels of abstractions. At the first level, the
isolation between the tools of a TSPACE and different components of the
reference architecture is supported. At the second level, the isolation between
the ontology instances and the RDF data stores is provided corresponding to
each instance of a TSPACE. That means there has to be a multi-tenant access
point that can act as a bridge between the plug-ins (probes) of the tools, and
ontologies and the corresponding RDF data stores. Examples of such access
points from the proposed RA are Data Monitor, Tenant Independent DC
Queue and Tenant Specific DC Queues (to be explained in Section 6.4.2.2.1
and Section 6.4.2.4). At the third level, the isolation is provided at Virtual
Machine (VMs) level where the tools that are provisioned by TSPACE
reference architecture are hosted on separate cloud-based virtual machines.

Benefits: Incorporating multi-tenancy in TSPACE allows the reference
architecture to serve multiple tenants and have tenant specific configurations
of collaboration and information discovery mechanisms.

Challenges: Compartmentalization of data stores and components for all
possible scenarios can be challenging. For such cases, more sophisticated
multi-tenancy solutions can be adopted. The WSO2 carbon platform [73] can
be used to provide isolation between components of a TSPACE instance to
complement the architecture design decisions of combining a multi-tenant
access point (to be described in Section 6.4.2.4) with pipes and filters pattern.
The information flow authentication model based on security policy [153] and
role based authorization mechanism [154] can be incorporated to implement

 161

security in multi-tenant access points. The multi-tenant access and indexing
techniques [92] can be used for multi-tenant persistence of ontologies and
corresponding RDF data stores.

6.4. TSPACE	Architecture	Design	and	Decomposition	of	Architecture	
Elements	

We present TSPACE reference architecture at four levels of abstractions. First
we describe the top-level modules; then we decompose those modules into
components and sub-components. There are some components that provide
abstraction of the external systems (e.g. provisioning components) whereas
other components are described in detail as part of the reference architecture.
The legend presented in Figure 29 shows the notations that are used in the
diagrams of the reference architecture.

Figure 29: TSPACE Architecture - First Level Decomposition

 162

6.4.1. First	Level	Decomposition	

According to the functional requirements (Chapter 4), three lifecycle phases
of tools (enactment and provisioning, semantic integration and awareness of
activities and operations on the artifacts) constituting TSPACE are supported
by TSPACE reference architecture. Figure 29 provides an overall
representation of the reference architecture (development view). The modules
at the first level of decomposition are organized following the layered
architecture style [5]. The TSPACE reference architecture conceptually
consists of four modules: (i) Tools Selection and Provisioning Manager, (ii)
Integration Manager, (iii) Collaboration, Awareness and Information
Discovery Manager, and (iv) Tenant (User) Manager and Event Logger.

Tools Selection and Provisioning Manager enables users to select the tools
that are suitable for the activities to be performed. Integration Manager
supports process centric and semantic integration among the tools and the
artifacts that are maintained by the provisioned tools. Awareness and
Information Discovery Manager helps extract the information that can be used
to notify users about different events that are triggered in a TSPACE. The
events are triggered according to the rules defined in an instance of TSPACE
with respect to the corresponding domain in which the reference architecture
is used. Tenant Manager and Event Logger manages the tenants’
authentication and identification. It also logs operations that are performed on
the artifacts using the tools. At the core of the reference architecture, there is
an ontology-based semantic integration model (Section 5.3.2 and Section
6.3.1). All the tools constituting a TSPACE and the relevant artifacts are
annotated using the Annotation Ontology of the semantic integration model
(Section 5.3.4 and Section 6.3.1).

Each module is further divided into multiple components and sub-
components. Each component provides methods that can be invoked by
components in other modules. We have used façade pattern [155] to support
integration among components and modifiability (QR7). The decomposition
at the first level fulfills the functional requirements that have been discussed
in Chapter 4. We have also described the collaboration (using collaboration
diagrams) between the components of each module to show the data exchange
between the components.

6.4.2. Second	and	Third	Level	Decomposition	

The decomposition of Tools Selection and Provisioning Manager is based on
requirements FR1, FR2, FR3 and QR1. FR1, FR2 and FR3 deal with
enactment of TSPACE based on the tools’ needs for the activities of a specific
project and with respect to the location and resource constraints. QR1 deals

 163

with automation of the provisioning process. Decomposition of Integration
Manager is based on providing support for process-centric integration among
the tools (FR4) and semantic integration among heterogeneous artifacts
(FR4), awareness of the users’ operations and activities that are performed on
the artifacts (FR4), interoperability (QR5), modifiability (QR7) and
integration (QR5). Decomposition of Collaboration, Awareness and
Information Discovery Manager provides awareness to users about different
actions performed on the artifacts using different tools constituting a TSPACE
(FR5). Tenant Manager and Event Logger facilitates to incorporate multi-
tenancy features in TSPACE reference architecture (QR2). We have also
considered the interactions among different components to describe the
behavioral model (process view) of the reference architecture and have
presented the collaboration diagrams corresponding to main components of
the RA.

6.4.2.1. Tools Selection and Provisioning

The components constituting this module provide support for tools selection
and provisioning. The high-level views of the architectures from [74-76, 156]
inspire the RA and have been extended for TSPACE by incorporating the
tools selection ontology (Section 5.3.1 of Chapter 5) that formalizes tools’
capability and users’ requirements for tools.

Figure 30: Tools Selection and Provisioning – Logical View

Figure 30 shows decomposition of Tools Selection and Provisioning
Manager. The Graphical User Interfaces (GUIs) provides an interface that
supports users interaction and allows administrators to register tools with an

 164

instance of the RA, allows stakeholders to specify their tools’ requirements
and supports administration activities. The Tools Repository Manager
component maintains a repository of tools that are registered with the system,
the Capability Ontology model of each tool and the VMs that are to be used to
host the tools. For example, the tools versioning management strategy
proposed in [156] can be used to maintain and provision different versions of
tools in a specific instance of a TSPACE. Tool Selector transforms a user’s
tools’ requirements into a relevant ontology and compares it with the
Capability Ontology of all the tools registered by the Tools Repository
Manager to provide the best possible match to the desired tools requirements.
Tools Enactment Preference Manager takes care of the constraints associated
with the enactment of the tools. For example, location constraints require that
all the tools for a specific instance of TSPACE shall be provisioned from a
public or private Infrastructure as a Service (IaaS) clouds hosted in European
Union territory. Cloud Enactment Engine enacts tools on an underlying IaaS
cloud using IaaS Cloud Management APIs. The APIs of the public IaaS cloud
such as Amazon EC2 APIs [157] can be used in case the tools are to be
deployed on a public cloud. If a private or hybrid IaaS is to be deployed, then
a cloud management framework such as IBM Altocumulus Framework [74]
can be used.

Behavioral Model: Figure 31 shows the collaboration between components of
Tools Selection and Provisioning Module. Tools Selector component receives
a TSPACE instantiation request via GUIs. The desired tools are selected using
Tools Selection and Capability Ontologies. Tools Enactment Engine
provisions and enacts tools using IaaS Cloud Management APIs by seeking
input from Tools Enactment Preference Manager, and Tools and Virtual
Machine Template Repositories component.

Figure 31: Tools Selection and Provisioning - Process View

 165

6.4.2.2. Integration support in TSPACE

Integration Manager facilitates integration among the tools in two different
ways: (i) It provides support for semantic integration (FR4) using the
ontologies that have been described in Chapter 5, and (ii) it provides process-
centric integration (FR4) among the tools so that the tools can exchange
artifacts when the tools are provisioned in accordance with a specific process.
Integration Manager is subdivided into two modules: Semantic Integration
Manager and Process-centric Integration Manager. Moreover some tools can
require importing and exporting files, therefore support for simple exchange
of the artifacts is also provided in TSPACE reference architecture with the
help of a wrapper for cloud storage services.

6.4.2.2.1. Semantic Integration Manager

The components that are included in this module support semantic integration
among the artifacts produced or consumed by the tools that constitute a
TSPACE and provide a foundation for artifacts’ traceability (FR4). There is
an ontology-based semantic integration model at the core of this module.

Figure 32 shows the Semantic Integration Manager’s decomposition. Plug-ins
and Probes that are installed on the provisioned tools to provide Semantic
Integration Manager a point of access to the tools. The designed RA can
support the implementation of multiple instances of the TSPACE. The data
sent from Plug-ins and data collection probes are received at a tenant-
independent data collection queue. A Data Monitor component monitors all
received data elements and filters for forwarding to a tenant-specific data
collection queue. The monitoring and filtering rules to identify tenants from
the incoming data stream are maintained by Tenant Identification Rules.

 166

Figure 32: Semantic Integration Manager - Logical View

We have designed a dedicated Transformation Module for each instance of
the TSPACE. This module handles the data sent by Tenant Specific Data
Collection Queues. The Transformation Module is further subdivided into
multiple components. There are two types of ontology knowledge bases in the
RA: the Global Ontology Knowledgebase maintains the tool Capability
Ontology and Artifact Ontology that establishes the relationships among all
the possible concepts (the artifacts and their types) that can exist in a specific
domain. The Local Ontology Knowledgebase maintains the relation between
the concepts for a specific instance of a TSPACE corresponding to the tools
included in the instance. Ontology Builder and RDF Generator populates the
root Artifacts Ontology based on the data inputs from Tenant Specific Data
Collection Queue.

Behavioral Model: Tenant independent and tenant specific data collection
queues collect data that is sent by the plug-ins. The Data Monitor component
monitors the data according to the tenant identification rules and sends the
data to the data collection queue of the corresponding tenant. There is a
separate instance of the Ontology Builder and RDF Generator component for
each tenant. This component fetches the data from the data collection queue of

 167

the corresponding tenant, annotate the data and populate the RDF data store
for each tenant. Figure 33 shows the detailed collaboration between the
components.

Figure 33: Semantic Integration Manager - Process View

6.4.2.2.2. Process-centric Integration Manager

The components that are included in this module provide process-centric
integration among the tools. Figure 34 shows details of the components
constituting Process-centric Integration Manager. Process Engine is core
component of this module. A process can be created and different tools can be
assigned to the process with the help of GUIs and is enacted by Process
Engine. A process consists of multiple nodes that are connected to each other
according to a specific workflow. A tool can be attached with a specific node
along with the tenant who has access to the tool. A tenant can consist of
multiple users. Tenants are assigned to nodes with the help of Access
Manager component. Between every two interacting nodes of the process,
additional services can be attached. These services are used to perform
specific operations on the artifacts when the artifacts are propagated from one
node to another (e.g. compiling the source code into executable files or
encrypting/decrypting of the artifacts).

 168

Figure 34: Process-Centric Integration Manager - Logical View

Figure 34 shows pictorial representation of process-centric integration for
tools that are used for software architecting. The boxes in the figure depict the
activities that are performed by the tools attached to the node, and the circles
represent different nodes of the process. The artifacts that are generated by the
tools attached with a preceding node of the process are used as an input of the
tools that are attached with the proceeding node of the process. Process
Engine provides APIs that can be used to retrieve different kinds of
notifications by the tools. Further detail of the APIs is to be elaborated in
Section 6.4.3 while describing fourth level decomposition of TSPACE
reference architecture.

Behavioral Model: Figure 35 shows the interaction between the components
of Process-centric Integration Manager. Process Engine prepares workflow
script (in form of BPMN XML specification) and tools enactment scripts

 169

based on the process-specific tools enactment parameters that are received by
GUIs. Workflow scripts are passed to Process Workflow Engine, which enacts
the workflow. Tools enactment scripts are passes to Tools Selection and
Provisioning Manager (Section 6.4.2.1) to enact the tools on an underlying
IaaS cloud. Once the tools are enacted, Process Engine assigns the tools and
tenants (group of users which can access the tools) to different nodes of the
workflow.

Figure 35: Process-centric Integration Manager - Process View

6.4.2.2.3. Plain Artifacts Exchange

Simple Storage Manager that is depicted in Figure 36 provides a wrapper
around the storage services of cloud storage providers. Plain storage service
provides an option for the tools to import and export artifacts. This component
is provided to complement semantic and process centric integration.

Figure 36: Simple Storage Wrapper

6.4.2.3. Awareness and Information Discovery Manager

This module provides support to raise awareness about users’ operations on
the artifacts (FR5) and provides support to trace the changes and the sources
of the changes to the artifacts during the lifecycle of a TSPACE (FR5). This
module leverages the RDF data store that is populated by Semantic

 170

Integration Manager and applies information discovery rules for different
types of change and trace notifications.

Figure 37 shows a decomposition of Collaboration and Awareness Manager.
RDF Data Store is at the core of this module. Change Handler and Annotation
Handler respectively manage the structure of the artifacts for changes and
annotate the artifacts using global ontology templates and global ontology
relationships fetched from the Global Ontology Knowledgebase. Annotation
Manager acts as a data-input source for Information Discovery Manager and
Notification Manager. Information Discovery Manager uses predefined
information discovery rules that are stored in the information discovery data
store. Information Extractor uses SPARQL Query Generator to generate
executable SPARQL [121] queries using information discovery rules and
executes the queries on the RDF Data Store that is managed by Annotation
Manager. SPARQL provides a configurable and dynamic mechanism to query
RDF data structures. Information Provider acts as a façade between
Information Discovery Manager and Notification Manager. Notification
Manager generates the change and trace notification for the users using the
tools according to the notification rules. The notification rules primarily
provide a guide for what information needs to be sent to users for trace and
change notification, whether the users have subscribed for pull or push
notification and what criteria and frequency exist for push notifications.

 171

Figure 37: Awareness and Information Discovery Manager - Logical View

Behavioral Model: Figure 38 shows the details of the collaboration between
the components and sub-components of the Collaboration and Awareness
Manager. The Annotation Manager populates the RDF Data Store, which
provides a base for information discovery using the Information Discovery
Rules. The Information Discovery Manager retrieves the information from
RDF Data Store and passes the retrieved information to the Notification
Manager, which uses the Notification Rules to generate notifications for
Tools’ users. The specifications for notifications and information discovery
are based on predefined rules specified at the time of instantiation of a
TSPACE instance.

 172

Figure 38: Collaboration and Awareness Manager - Process View

6.4.2.4. Tenant (and User) Manager and Event Logger

The analysis of the requirement QR2 identifies two dimensions of the multi-
tenancy: (i) tenant specific instantiation of the ontologies and RDF structure
corresponding to the tools provisioned for the tenant and (ii) isolation between
the ontologies and RDF instances of one tenant from other tenants. Figure 39
shows details of components to handle multi-tenancy in TSPACE
architecture.

Figure 39: Multi-tenant Access to Artifacts and Data

 173

Figure 39(a) shows the centralized ontology repositories that are used as a
baseline in each instance of TSPACE (selected set of tools for a tenant), as
described in Section 6.3.3. TSPACE is designed to serve multiple tenants each
having its specific set of provisioned tools. We have used three levels of
nested hash maps for efficient indexing and retrieval of RDFs corresponding
to multiple instances of TSPACE, as shown in Figure 39(b). Interaction
between provisioned tools and TSPACE takes place via TSPACE APIs (e.g.,
via plug-ins and probes that are installed on the hosted tools). When users
belonging to a particular tenant corresponding to a TSPACE instance use the
provisioned tools they sign in on the plug-ins using unique tenant ID and
password. After successful authorization, an access code is returned to the
plug-in that is sent by the plug-in with every API call to TSPACE. The unique
code is used as an identifier of the tool that sends the data. Every data input
request from the provisioned tools corresponding to artifact, annotation or
change ontology that is received by TSPACE is verified by Tenant
Authentication Monitor component. A successful authentication generates a
unique key, which is a key index of the first HashMap of our three-layered
hierarchy of hash maps. This key corresponds to a specific tenant. This key is
used to fetch an object reference (in-memory or persisted object) of TSPACE
instance corresponding to the tenant. The TSPACE instance contains the
second HashMap, which has reference to RDF graphs corresponding to
artifact, annotation and change ontology. The data that is sent by the plug-in
contains information of which ontology it belongs to. That information is used
to fetch reference to the RDF data structures. RDF data structures
corresponding to the artifact, annotation and change ontology grows as the
number of artifacts produced by the tools in a TSPACE instance increases
along with the performed activities. Parsing the whole RDF graph every time
to get to a specific node had been a very inefficient solution. To overcome this
bottleneck, we introduced third level maps corresponding to RDFs of each of
the artifact, annotation and change ontologies. The third level maps contain
the object representing each node of the RDFs (when RDFs are in memory) or
database row identifier (when RDFs are stored in the database). The three
levels of nested HashMaps fetched a unique element of the RDF in constant
time irrespective of the size of RDFs. Having separate instances of TSPACE
internal components for each specific tenant also helps to provide a logical
isolation between the data belonging to different tenants and Tenant
Authenticator and Monitor component secures access to tenant specific data
structures. Each instance of TSAPCE contains ontologies and corresponding
RDFs, information extraction services to support collaboration and awareness,
and persistence elements.

Figure 40 shows a detail of Logger component. Activity Tracker sub-
component observes the changes that are being made in RDFs corresponding
to artifacts, annotation and the change ontology and logs this information in

 174

Log Store. The log information can be used for many purposes, including but
not limited to pricing and billing.

Figure 40: Log Management Component

6.4.3. Fourth	Level	Decomposition	

This section describes the detailed decomposition of the important modules
and components of TSPACE reference architecture. Multiple architecture and
design patterns have been adopted for detailed design. Moreover, high-level
abstractions of the important functions and Application Programmable
Interfaces (APIs) have also been shown. However, only important functions
are presented in the diagrams to void cluttering. The diagrams in this section
are represented using Unified Modeling Language (UML).

6.4.3.1. Decomposition of Tools Selection and Provisioning
Manager

Decomposition of Tools Selection and Provisioning Manager describes details
of how the tools repositories are managed and how tools are selected and
provisioned according to the defined parameters. Figure 41 shows details of
the components and classes encompassing Tools Selection and Provisioning
module. The façade of the modules have <<Service>> stereotype, indicating
that the façade can be implemented as services to provide easy access to client
applications.

 175

Figure 41: Tools Selection and Provisioning - Detailed Design

TSPACE repository consists of Virtual Machine Templates and Elements.
Elements are an abstract representation of Tools and OperationalServices. As
indicated earlier in this chapter, tools are attached to different nodes of the
process whereas operational services are used to perform intermediate
operations when artifacts are exchanged among the tools.

 176

VirtualMachineTemplate is used to host the tools for provisioning. When a
request is received for the enactment of a set of tools, the tools are selected by
ToolSelector by establishing the closest match between the required tools and
the tools that are available for provisioning, as described in Chapter 5.
ToolSelector contains references to the ontologies that are used for tools
selection and provisioning. Once a list of tools is selected for provisioning, the
tools are provisioned in two different ways. (i) If the tools have deployment
scripts associated with them and the tools can be deployed remotely (e.g.
using Apache Ant [158] scripts), then the tools are deployed on virtual
machines and provisioned. (ii) If the tools cannot be deployed remotely, then
a preconfigured Virtual Machine (VM) template with a specific tool installed
on it (e.g. Amazon Machine Images - AMIs) is used to provision the tool. A
pre-configured VM template hosts only one tool. When more than one tool is
required, multiple VM templates that are hosting the tools are instantiated.
ToolsSelectionAndProvisioningManager fetches information from
ToolsSelector and RepositoryManager and calls respective method of
IaaSCloudManagementWrapper to instantiate and deploy the tool on
underlying IaaS cloud. ToolsPrefereneManager takes care of enactment
constraints (location constraints, constraints to choose a specific IaaS cloud to
host the tools, and quality constraints on tool enactment e.g. to launch a
separate instance of tool for every tenant etc.) of the tools.

Other than provisioning of the tools, Tools Selection and Provisioning
Manager also needs to instantiate TSPACE artifacts, annotation and change
ontologies according to a specific set of tools that are provisioned in a
TSPACE instance. TSPACE initialization factory is represented in Figure 42,
which shows a higher level of class hierarchy than is shown in Figure 41.
Different elements of initialization factory are shown in Figure 42. For
example TspaceManager is composed of TspaceInitializer and uses its
methods to launch tools and ontology instances of a TSPACE instance. A
detail of the methods and cardinality between different elements is shown in
the figure.

 177

Figure 42: TSPACE Provisioning - Initialization Factory

6.4.3.2. Decomposition of Integration Manager

The decomposition of Integration Manager shows core elements of TSPACE
integration mechanism and shows how specific tools can be integrated with
TSPACE. The detailed elements are represented in Figure 43. In the figure,
<<TSPACE>> stereotype shows elements of TSPACE whereas <<Tool>>
stereotype shows elements of the tools that interact with TSPACE elements.

 178

Figure 43: Integration Manager – Detailed Design

 179

As TSPACE integration consists of semantic integration and process centric
integration, Figure 43 shows two separate layers corresponding to each type
of integration. SemanticIntegrationManager is at the core of semantic
integration. It is composed of ContentUnit. ContentUnit represents a specific
type of content in TSPACE. For example, in a TSPACE instance hosting three
different tools: one for architecture knowledge management, one for
architecture modeling and one to support decision making, there are three
types of ContentUnit corresponding to each type of tool. A ContentUnit can
be composed of multiple artifacts, which are represented as Artifact in Figure
43. SemanticIntegrationManager has one AnnotationManager and one
NotificationManager associated with it, which exposes their interfaces to
outside tools with their respective façade. These components use annotation
ontology to annotate parts of the code and change ontology to track changes
on the artifacts that are semantically related. The client services to utilize
annotation and notification services can be written in the tools to access
TSPACE respective features, which are represented as AnnotationClient and
NotificationClient in Figure 43 in the tools layer.

The core component of the process integration layer is
ProcessIntegrationManager, which can aggregate more than one process that
is represented as Process in Figure 43. Each Process in turn can aggregate
multiple nodes. The nodes are represented as ProcessNode in the figure. Once
tools and operational services are attached to ProcessNode, these can post and
retrieve artifacts as well as register for push notifications or use pull
notification APIs. Once tools are assigned to a ProcessNode, TSPACE itself
takes care of which tool is part of which process and handles artifacts and
notifications accordingly. Detail of the methods and cardinality between
different elements is shown in Figure 43.

The detail of Simple Storage Manager is shown in Figure 44. In the figure, a
<<Service>> stereotype shows that methods of SimpleStorageWrapper can be
exposed as service interfaces. <<Cloud>> stereotype shows that the elements
are part of a specific cloud service provider. In the figure, the methods with
keyword metamodel in these are used to post and update data associated with
meta-model of the storage files such as file authors, file versions etc., whereas
other methods are used to post, update and delete the files. watchFile()
method allows to register for a notification when a particular file is updated or
deleted.

 180

Figure 44: Simple Storage Manager - Details

6.4.3.3. Decomposition of Collaboration and Awareness Manager

The detail of Collaboration and Awareness Manager is shown in Figure 45.
The elements in the figure that are marked by <<Service>> stereotype
indicate that these elements can be implemented as services.
CollaborationAndAwarenessFactory takes care of initialization of
Collaboration and Awareness Manager by interacting with
NotificationManager, InformationDiscoveryManager and
AnnotationManager. As discussed in Section 6.4.2.3, notification and
information extraction rules are used to fetch the desired information from
ontology RDFs using SPARQL queries. NotificationManager,
InformationDiscoveryManager and AnnotationManager interact with
SparqlQueryExecuter to execute the queries on RDF data stores.

 181

Figure 45: Collaboration and Awareness Manager - Detailed Design

 182

NotificationManager can handle two types of notification: (i)
ChangeNotification, which is triggered when a change is made in
semantically integrated artifacts, and (ii) ConflictNotification, which is
triggered when semantically integrated artifacts may present conflicting
information. AnnotationManager facilitates semantic integration of the
artifacts using annotations. NotificationManager interacts with
InformationDiscoveryManager for SPARQL query execution and
transformation of the extracted information to higher levels of abstractions. A
detail of the methods and cardinality between different elements is shown in
Figure 45.

6.4.3.4. Decomposition of Multi-tenancy and Authentication

The core of TSPACE multi-tenancy in combination with tenant and user
authentication is presented in Figure 46. In the figure, the stereotype
<<Service>> shows the elements that can be exposed as services, and the
stereotype <<IaaSCloudService>> shows external IaaS cloud services that are
used to complement TSPACE components. CommonQueue, TenantQueue and
their corresponding façade present details of the data input streams queues as
described in Section 6.3.4 and Section 6.5.3. Every Tenant can consist of
more than one user. All the users belonging to a specific tenant can access
TSPACE instance of that tenant. Authentication generates a unique
authentication code for the tools that are provisioned via TSPACE. The
authentication code is generated and sent to the tools when a user signs in a
tool or virtual machine that is hosting the tool. The authentication code needs
to be sent with every call to TSPACE APIs. The authentication code is based
on OAuth protocol [159] and is only valid for a specific IP address for which
it is generated. The authentication code is also used by the FilterationRules to
identify the tenant when data is send by the tools to TSPACE.
ScalabilityController (e.g. Amazon cloud watch and elastic load balancer [67-
69]) is an external IaaS monitor that is used to replicate the queues according
to defined parameters. Queues’ façade provides a unified access point when
queues are replicated. The important methods and cardinality between
different elements of Multi-tenancy and Authentication are shown in Figure
46.

 183

Figure 46: Multi-tenancy and Authentication - Detailed Design

6.5. Overview	of	Prototype	Implementations	

We have implemented a prototype of TSPACE reference architecture using
JavaEE technologies. Interfaces of TSPACE prototype have been exposed as
web services (REST and SOAP) using JAX-RS [160] and JAX-WS [161]
service technologies. We have used Apache Jena Framework [162] to
implement the semantic integration in the prototype. Persistence of TSPACE
is handled following principles of Object Oriented Paradigm [163] and Java
Persistence APIs (JPA) have been used to store data objects in an underlying
database that is used for persistence. We have used jBPM core library [164] to

 184

handle process workflow related features in TSPACE prototype. All the core
TSPACE components and services have been deployed in GlassFish version
3.1.2.2 application server [165].

Amazon IaaS cloud [21] has been used to deploy TSPACE prototype and the
tools that are provisioned by TSPACE. TSPACE deployment diagram on
Amazon IaaS cloud is shown in Figure 47. The core components of TSPACE
have been deployed on Amazon EC2 Windows Server 2012 instance [31]
with 8GB of RAM and 2.4 GHz Intel Xeon processor. Amazon Cloud Watch
[69] and Elastic Load Balancer [68] have been attached with the core services
to enable auto scaling. Amazon EC2 instances and Amazon Machine Image
(AMI) templates [31] have been used to host the tools that are provisioned by
TSPACE. Amazon RDS for MySQL [166] have been used for persistence of
the data objects. There is a Java Persistence API (JPA) [167] based wrapper
that acts as bridge between TSPACE components and underlying database.
Having a JPA wrapper also enables to easily replace the underlying database
if TSPACE requires porting on a private or hybrid cloud infrastructures. We
have used object representation of different elements (e.g. TSPACE meta-
model shown in Figure 23 and ontology meta-model shown in Figure 25) of
TSPACE reference architecture as persistence objects and JPA’s object to
relational mapping features are used. We have also used Amazon’s Simple
Storage Service (S3) for storing plain artifacts and data [168].

Figure 47: TSPACE Deployment on Amazon IaaS Cloud

 185

In the following parts of this section, an overview of the GUIs and tools that
are used for the proof of concept in the prototype implementation is provided.
We have also shown code snippets of important methods in Listing 4 at the
end of this chapter.

6.5.1. Administration	User	Interface	

Figure 48 shows the administration Graphical User Interface (GUI) of
TSPACE. The GUI is used to specify tools requirements in a TSPACE
instance and specify notification that the users of the tools need. As indicated
earlier, in TSPACE reference architecture we have focused on software
architecting domain, hence the tools that are used in the prototype for proof of
concept are related to software architecture requirements specification,
architecture knowledge management, architecture analysis, architecture
design and architecture modeling.

Figure 48: TSPACE Administration GUI

 186

The GUI provides support for tools provisioning that is based on semantic
integration as well as process-centric integration (e.g. based on a specific
software architecting process).

Semantically integrated tools can be provisioned in two different ways via
GUI. (a) The desired activities and features can be selected after which
TSPACE provides the closest match of the tools that are available in a
TSPACE and can be provisioned. Once desired activities and features are
selected, a request is sent to TSPACE platform deployed on Amazon cloud by
pressing Find Matching Tools button, as shown in top left of Figure 48.
TSPACE selects the tools that adhere to the tools requirements criteria, as
explained in Chapter 5 and returns the list of tools that are available for
provisioning, as shown in button left of Figure 48. As the figure shows,
PAKME, ArchDesigner, Microsoft Visio and ArgoUML qualify search
criteria corresponding to specified activities and features as shown in the
figure. After selecting the tools and pressing the initialize button, the tools are
provisioned using Amazon EC2 cloud instances, and access information of
the tools is presented. (b) The tools can also be directly selected for
provisioning from the tree shown in bottom left of Figure 48. When the tools
are provisioned, the ontologies are also initialized that are subsequently
populated as the users perform different activities and operations using the
tools. The detail of initialization and provisioning has been described in
Chapter 5, Section 6.4.2.1, Section 6.4.2.2.1 and Section 6.4.3.1.

Process centric tools provisioning can be achieved by opening process
manager from Process Centric Provisioning menu. The details of the tools
provisioning and usage scenarios for both process-centric integration and
semantic integration are described in following subsections.

6.5.2. Process	Centric	Provisioning	and	Integration	

To demonstrate the process-centric tools bundling capabilities of TSPACE, an
example scenario has been elaborated in which an architecture modeling tool
is used to generate code templates from class diagrams, the code templates are
consumed by an IDE to implement business logic in code, and an test instance
is used to deploy the code for testing. Process-centric provisioning GUIs are
opened from Process Centric Provisioning menu of TSPACE administration
GUI that is shown in Figure 48. Figure 49 shows first GUI to create process.
The GUI gives two options: either to create a new process or to select an
existing process to add nodes in the process.

 187

Figure 49: Process Centric Integration - Process Definition GUI

After clicking Create Process button, the create process GUI opens, as shown
in Figure 50. As TSPACE provides an option to define nested processes, the
GUI has fields to select parent process and a particular node of the parent
process with which a nested process it to be created. After entering the name
of the new process and pressing Save button, a new process is created.

Figure 50: Create Process

Once a process is created, the next step is to define nodes in the process. After
selecting the process and pressing the Add Node button at the GUI of Figure
49, the GUI to define new node is opened, which is depicted in Figure 51 and
Figure 52. At each node, a specific tool can be selected and can be attached
with the node. In Figure 51, ArgoUML tool is attached with Development
Node 1. In Figure 52, NetBeans IDE is attached with Development Node 2.
Similarly the tenants can also be attached with the nodes as ITUDev1 tenant is
attached with Development Node 1 and ITUDev2 tenant is attached with
Development Node 2. Similarly, a Testing Node 1 is created.

Figure 51: Process Centric Integration - Design Node

 188

Figure 52: Process Centric Integration - Development Node

Once nodes are created, the next step is to define flow between the nodes. The
GUI shown in Figure 53 provides a mechanism to define the sequence
between the nodes of the process. By selecting a process name from the drop
down menu againt Select Process label and pressing load button, the drop
down menu grid is displayed. By selecting the sources and destination nodes,
the sequence of process can be defined. For example, according to the
sequence that is described in Figure 53, the output of Development Node 1 is
used as input of Development Node 2 and output of Development Node 2 is
used as input of Testing Node 1. As the artifacts flow from sources to
destination, intermediate services can be attached to perform certain
operations on the artifacts. In Figure 53, output of Development Node 2 is
compiled using Java Code Compiler service and output of Java Code
Compiler Service is passed on to Testing Node 1.

Figure 53: Process-Centric Integration - Artifacts' Flow Sequence

Once the sequence of the artifacts’ flow between nodes is defined, by pressing
Save and Enact button, the process is enacted and tools are provisioned.
BPMN XMI [164] file that is generated for the process defined by the GUIs is
used by Process Workflow Engine to enact the process (as described in
Section 6.4.2.2.2). The tools access information if displayed, as shown in

 189

Figure 54. Fetch and Provision Process Centric Tools button on the main
GUI of Figure 48 also displayed tools access information.

Figure 54: Process Centric Integration - Access Information

Figure 55 shows IaaSCloudManagementWrapper method implementation
(described in Section 6.4.3.1) to use provisioning methods of Amazon IaaS
cloud.

Figure 55: Tool Invocation Method Wrapper for Amazon IaaS Cloud

 190

Once tools are enacted and provisioned, these can be accessed either via
virtual machines (for desktop-based tools) or via URIs (for web-based tools).
Figure 56 shows ArgoUML and NetBeans IDE that are provisioned as part of
the process centric tools provisioning and integration for the scenario that has
been described in this section. We have implemented Java-based plug-ins for
ArgoUML and NetBeans IDE to enable them for interaction with TSPACE
core services. Once a user (belonging to a specific tenant that has been
assigned in previous steps) signs in, the platform itself takes care of the
sources and destinations of the artifacts. According to the defined process,
ArgoUML generates code template based on the class diagrams and NetBeans
consumes the code templates for further development. As depicted in Figure
56, the plug-in in ArgoUML shows only the destination because, in the
defined process, there was no input node (tool) for the ArgoUML. The plug-in
in NetBeansIDE, however, shows both sources and destination, as the output
of ArgoUML is to be used as input of NetBeans IDE and the output of
NetBeans IDE, after being compiled by Java Compiler Service, is to be used
as input by Virtual Machine of Test Node 1. Test Node 1 has only the runtime
environment for the code that is generated by NetBeans IDE node and has not
been configured with a specific tool. The Check Status button of the plug-ins
fetches and displays notifications from TSPACE (as discussed in Section
6.4.2.3 and Section 6.4.3.3).

 191

Figure 56: Process Centric Integration - Tools Provisioned and Hosted in VMs

 192

6.5.3. Semantic	Integration	

The tools that are used in the prototype to demonstrate semantic integration
capabilities of TSPACE deal with software architecting artifacts at different
levels of abstraction. We have integrated one architecture knowledge
management tool PAKME [107], a custom implementation of a decision
support tool ArchDesigner, an open source UML modeling tool ArgoUML
[104] and an architecture modeling tool Microsoft Visio [103].

In this section, we demonstrate how artifacts at different levels of abstraction
that are produced and maintained by the tools are semantically integrated
using TSPACE. We demonstrate an example use case in which some
Architecture Significant Requirement (ASR) scenarios are captured (using
ASR tool/module), decisions are made to select specific ASR (using decision
support tool), architecture pattern have been selected to achieve ASR (using
architecture knowledge management tool) in design and architecture patterns
is modeled as detailed architecture design (using architecture design and
modeling tools). Figure 66 in Listing D shows a code snippet of the
authentication key generation mechanism. The authentication key is used for
OAuth [159] authentication and tenant identification in TSPACE.

When a bundled suite of semantically integrated tools is provisioned by using
administration GUI, as shown in Figure 48, TSPACE not only provisions the
tools but also initializes TSPACE ontology structure that provides the
backbone for semantic integration (Section 6.4.2.2 and Chapter 5). As
described in Section 5.3.2 in Chapter 5, a Content Unit (CU) is created for
each type of tool that is provisioned in TSPACE. All the tools-specific content
units are aggregated by a root content unit, which corresponds to one instance
of TSPACE (a specific set of tools bundled together and launched for a
particular tenant). For a set of tools that are used in the prototype, four child
content unites are created: two corresponding to PAKME (one for
requirements and one for architecture knowledge), one corresponding to
ArchDesigner and one corresponding to ArgoUML and Microsoft Visio. The
artifacts that are produced and maintained by the tools are linked with their
respective content unit. For example, the artifacts that are produced by
PAKME are linked under PAKME content unit. A pictorial representation of
this scenario has been depicted in Figure 20 in Chapter 5 and has been
discussed in Section 5.3.2 in Chapter 5. Figure 65 in Listing D shows
important parts of TSPACE initialization service method.

Figure 57 shows Architecture Significant Requirements (ASR) capturing the
GUIs of PAKME tool. The GUIs are modified to incorporate annotation
features of TSPACE, as described in Section 5.3.4 in Chapter 5 and Section
6.4.2.2.1. In Figure 57 two availability requirements and two scalability

 193

requirements are shown. As shown in the figure, respective parts of the
requirements are annotated with quality, value and metric annotation.
Availability scenarios shown in Figure 57(a) and Figure 57(b) have different
metric units but the same value. Scalability scenarios that are depicted in
Figure 57(c) and Figure 57(d) have the same metric unit but different values
of the metrics. When this information is saved in PAKME, the probes
implemented in PAKME send ASR data and annotations to TSPACE. This
information is added under requirements and scenario content unit (Figure 20
in Chapter 5). When TSPACE is initialized and tools are launched, different
types of notifications can be configured as shown with check boxes in Figure
48. Conflict notifications are one of the notifications that can be configured.
By pressing View Conflict Details button, the details of the conflicts can be
viewed, as shown in Figure 58. Some sample notification rules are described
in Table 33 in Chapter 5.

Figure 57: Semantic Integration - PAKME Architecture Significant Requirements GUIs

 194

The conflict notifications that are presented in Figure 58 are generated by
running SPARQL queries and complimentary algorithms, which look for
same quality attributes in ASRs but with either different metric units or
different metric values.

Figure 58: Conflict Notifications

The GUI in Figure 59(a) belongs to PAKME architecture knowledge
management pattern documentation module and Figure 59(b) belongs to a
Visio add-in that is used to relate diagrams in Visio with architecture patterns
documentation in PAKME. When “Load Balancing” knowledge is saved in
PAKME, it is added in TSPACE tools and artifacts ontology under
Knowledge content unit (Figure 20 in Chapter 5). The architecture diagram
generated in Visio is added to TSPACE tools and artifacts ontology under
Modeling content unit (Figure 20 in Chapter 5). As shown in Figure 59(b), the
architecture diagram can be related to “Load Balancing” knowledge via
isAssociated relationship. The relationships are defined in TSPACE as
elaborated in Section 5.3.2 and Table 32 (Chapter 5). Visio Add-in also
receives notifications if information is updated in parent content, which in this
example is “Load Balancing” decision knowledge. Figure 67 in Listing D
shows a code snippet of parts of implementation to add artifacts (and data) in
TSPACE.

 195

Figure 59: Semantic Integration - PAKME GUI and Visio Add-in

ArchDesigner decision support tool that is provisioned by TSPACE can be
used to make decisions. Availability and scalability scenarios shown in Figure
57 have conflicts (as shown in Figure 58), and only one of the availability
scenarios and one of the scalability scenarios can be correct. ArchDesigner
GUI that is shown in Figure 60 can be used to make these decisions. The drop
down menu corresponding to concept label fetches all the data from TSPACE.
In Figure 60, Availability Scenario 1 is selected. Corresponding to Relation
label, value relation is chosen. As indicated earlier, the relationships list is
fetched from TSPACE (has been elaborated in Section 5.3.2 and Table 32).
Once the decision is made, information is saved in TSPACE with value
relation between Availability Scenario 1 and the corresponding decision. The
details of the TSPACE concept for which decision is to be made (which in our
example is Availability Scenario 1) can be fetched from TSPACE by pressing
Fetch Details button.

 196

Figure 60: Semantic Integration - ArchDesigner Design Decisions GUI

An add-in has been added into ArgoUML so that when it is provisioned via
TSPACE, the artifacts that are produced by it can be integrated with TSPACE
semantic integration mechanism. Figure 61 shows integration of a detailed
design of Load Balancer class with Load Balancer pattern via belongs to
relationship. Figure 62 presents a summary of the sample semantic integration
use case that has been discussed in this section. TSPACE CU is a root content
unit (CU) and contains tools specific CUs. The artifacts that are generated and
maintained by corresponding tools are mapped to CUs and relationships
among the artifacts are managed via annotations. The details of the theoretical
foundation have been described in Chapter 5.

 197

Figure 61: Semantic Integration - ArgoUML add-in

Figure 62: Semantic Integration Example Summary

 198

Figure 62 shows a synthesized view of the semantic integration scenario that
has been discussed in this section in terms of the relationship among the
artifacts via TSPACE ontologies. The artifacts in textual formats are directly
transformed into ontologies using TSPACE APIs by the Plug-ins, probes and
Add-ins. The artifacts that correspond to architecture models, i.e. UML
models generated by Visio and ArgoUML are converted into ontologies using
a java-based UML2OWL library [169]. Figure 69 in Listing D shows an
ontology corresponding to LoadBalancer design made in ArgoUML (shown
in Figure 61). Figure 68 in Listing D shows a code snippet of incremental
RDF generation (as discussed in Section 6.3.6) corresponding to TSPACE
ontologies when an artifact (or data) is added or modified in TSPACE. Figure
70 in Listing D shows an abstract XML representation of TSPACE RDF
ontology graph. It is to be noted that, because a large number of artifacts can
be generated in TSPACE, all the ontologies RDFs are stored in Amazon
MySQL RDS database using Apache Jena TDB persistence management
component [170].

6.6. Evaluation	of	the	Reference	Architecture	

An evaluation of a software architecture helps to identify its strong and weak
aspects. As a reference architecture is aimed at serving as a guiding tool for
diversified projects (based on same core idea) in context of multiple
organizations, its evaluation prior to its adoption is of great importance. A
positive evaluation of the reference architecture can facilitate its widespread
adoption.

Multiple architecture evaluation methods have been proposed, including
Software Architecture Analysis Method (SAAM) [12], Architecture Tradeoff
Analysis Methods (ATAM) [13] and Quality-driven Architecture Design and
Analysis Method (QADA) [14]. The choice of method to be used for the
evaluation of a software architecture depends upon the goals of the evaluation
activity and nature of the project. Literature provides some guidelines for the
evaluation of the reference architecture [15-17]. However, to the best of our
knowledge, there is no concrete method available for the evaluation of
software reference architectures [17].

Hence, we have adopted a multi-facet strategy for the evaluation of TSPACE
reference architecture. We have combined a classical reasoning approach with
existing architecture evaluation methods. We have demonstrated feasibility
and applicability of the reference architecture by implementing its prototype.
We have also conducted an architecture evaluation session with experts from
industry. In following subsection, we describe TSPACE reference architecture
evaluation in detail.

 199

6.6.1. Evaluation	for	Completeness	of	TSPACE	Reference	Architecture	

In this section, we present the result of TSPACE reference architecture
evaluation in terms of functional completeness of TSPACE. Use of scenario-
based approaches such as SAAM [12] is a well established method for
evaluation of completeness of an architecture. We have evaluated
completeness of TSPACE reference architecture for functional requirements
(FR1, FR2, FR3, FR4 and FR5) and have used scenario-based evaluation for
non-functional (QR1, QR2, QR3, QR4, QR5, QR6 and QR7). We report the
key reasoning points and outcomes of the evaluation decisions.

Table 36 shows the mapping of initialization and operational phases to high-
level TSPACE components.

Table 36: Phases and Components Mapping

Phases High-level Components
Tools Provisioning Tools Selection and

Provisioning Manager
Semantic and
Process-centric
Integration

Semantic Integration Manager,
Process Integration Manager and
Simple Storage Manager

Awareness and
Collaboration

Collaboration and Awareness
Manager

Table 37 shows the mapping between the lifecycle phases, functional
requirements and corresponding components from decomposed architectural
representations. It is clear from Table 37 that different parts of the reference
architecture provide support for all the phases and corresponding requirements
(Req).

Table 37: Activities, Requirements and Components Mapping

Activities Req.
ID

Detailed Components

Tools
Registration

FR1,
FR2

Tools/Capability Ontology, Tools Repository
Manager.

Tools Selection FR1,
FR2

Tools/Capability Ontology, Tools Selector.

Tools Bundling,
Enactment and
Provisioning

FR3,
QR1

Tools/Capability Ontology, Tools Enactment
Preference Manager, Tools Enactment Engine,
IaaS Cloud Management APIs.

Semantic
Integration

FR4,
QR5

Artifact Ontology, Annotation Ontology, Tenant
Independent and Tenant Dependent Data

 200

Collection Queues, Data Monitor, RDF Data
Store, Ontology Builder and RDF Generator,
Annotation Mapper, Global Ontology
Knowledgebase, Local Ontology
Knowledgebase.

Process-Centric
Integration

FR4 Process Engine, Process Workflow, Access
Manager.

Awareness of
the Operations
and
Collaboration

FR5 Annotation Ontology, Change Ontology,
Information Extractor, SPQRQL Query
Executer, Change Handler, Notification
Manager.

We have presented TSPACE reference architecture in terms of its goals [171],
which are transformed into functional and non-functional requirements, the
TSPACE meta-model and its formalization using ontologies, different
modules and components of the reference architecture at four levels of
abstraction, and collaboration diagrams to show interactions between the
components of the reference architecture. It covers all the important
dimensions for reporting a reference architecture as per [15] and the views of
Rational Unified Process [10]. It also positively addresses the completeness of
the reference architecture (QR6). Our decision to use a layered approach
supports separation of concerns among the components and high degree of
modifiability (QR7). The Global Ontology Knowledgebase provides an
abstract representation of the TSPACE ontologies and is a representation of
the abstract data repository style. It not only achieves indirection in ontologies
but also positively addresses flexibility (QR4) and Integration (QR5). Façade
pattern is used at the interface layer to provide interoperability (QR5) between
the tools and TSPACE reference architecture. Pipes and filter pattern is used
to support scalability for handling ontology construction for multiple
instances of a TSPACE and to support multi-tenancy (QR2) in the ontology-
based semantic integration. The adoption of an ontology-based approach for
tools selection, provisioning, integration, collaboration and awareness enables
the reference architecture to be flexible (QR4), allowing support for
heterogeneous tools and activities in a TSPACE instance. Although security is
not explicitly considered, it is partially addressed with the help of Tenant
Authentication and Monitoring components. Three level hash-map indexing
guarantees faster access to data elements in TSPACE and positively address
scalability (QR3). Having an ontology-based semantic integration approach
facilitates adaptability of the reference architecture for different types of tool,
as after transforming the artifacts into ontologies, the tools handling different
types and abstraction levels of the artifacts can easily be integrated.

 201

6.6.2. Evaluation	of	Feasibility	and	Applicability	

Feasibility and applicability (QR6) of TSPACE reference architecture has
been evaluated by implementing its prototype to provision different types of
software architecting tools as a service, as described in Section 6.5. The tools
that are used in the prototype have been selected based on following criteria.

• The tools that can be used to perform different types of activities
related to software architecting.

• Each of the selected tools deals with artifacts at a different level of
abstraction from other tools.

• When the tools are bundled together, the tools can be used to perform
a set of software architecting activities that cannot be performed by
using one single tool.

The prototype of TSPACE reference architecture has been deployed on
Amazon IaaS cloud [21] and has been configured to use Amazon cloud
resources for the deployment of the tools that are provisioned via TSPACE.
As described in Section 6.5, to support architecture significant requirements
capturing, architecture knowledge management, architecture analysis and
architecture modeling, we have provisioned PAKME, ArchDesigner,
ArgoUML and Microsoft Visio using the prototype. We have also provisioned
NetBeans IDE on a cloud instance to demonstrate a process-centric
integration workflow. TSPACE capabilities for tools provisioning, semantic
integration, process-centric integration and awareness of the operation that are
performed on the artifacts have been demonstrated with the help of a
prototype. Complete detail of the prototype has been described in Section 6.5.

6.6.3. Evaluation	via	Potential	Stakeholders’	Participation	

Architecture Tradeoff Analysis Method (ATAM) [13] supports evaluation for
a wide range of architecture quality attributes. This method can be used to
analyze software design strategies that have been used to incorporate
architecture qualities in a software system’s architecture. It also helps to
identify potential conflicts, sensitivity points and tradeoff points in a software
architecture [5]. While analyzing architecture for identifying sensitivity and
tradeoff points, architecture scenarios (such as in SAAM [12]) are used. We
have used ATAM to evaluate TSPACE reference architecting by conducting
an evaluation session with potential stakeholders.

6.6.3.1. Evaluation Settings

We organized an architecture evaluation session with six software
architects/designers. Although all participants were familiar with software

 202

architecture evaluation methods and techniques, we provided them with an
overview of ATAM and other architecture evaluation methods in a
preliminary session. All the participants of the evaluation session have at least
a university degree (one participant had a bachelor degree, four participants
had masters degree and one participant had a PhD degree) in Software
Engineering/Computer Science. The participants of the evaluation session had
detailed knowledge of design and development of cloud-enabled software
systems. As TSPACE reference architecture deals with different dimensions
of TaaS including both semantic and process-centric integration, the
participants were invited in the evaluation session who could be a good
combination for analysis of all aspects of TSPACE reference architecture.
Expertise of the participants were as follows: two participants had expertise in
designing and developing workflow-based tools and system, two participants
had experience with designing and developing software engineering tools for
distributed software development, and two participants had experience with
design and development of cloud-based and web-based applications. The
experiences and expertise of the participants are summarized in Table 38. All
the participants were given a document describing TSPACE reference
architecture requirements, architecture design decisions and solutions a week
before the evaluation session.

Table 38: Participants’ Software Architecting and Development Expertise

Participant
Identity

Software
Design and

Development
Experience

(Years)

Expertise

P1 11 Workflow-based tools and
Systems

P2 11 Workflow-based tools and
Systems

P3 8 Tools to support distributed
development teams and distributed
systems

P4 5 Tools to support distributed
development teams, SaaS
applications and web applications

P5 5 SaaS applications and web
applications

P6 2 SaaS applications and web
applications

 203

Table 39: Questionnaire Used in Evaluation

ID Description
Q1 To what extent (detail) TSPACE functional requirements cover

drivers for providing software architecting Tools as a Service?
Q1-D What additional requirements do you think should be addressed by

the reference architecture? Please describe in sufficient detail.
Q2 To what extent are quality attributes that are considered for the

quality of TSPACE as well as quality of the reference architecture
relevant to runtime and design time quality of TSPACE?

Q2-D What additional quality attributes do you think should be included?
Please mention the quality attribute name and your rationale i.e.
why you think that it should be included?

Q3-D Are there scenarios/requirements (that are discussed during the
presentation) that you think are not relevant for TSPACE?

Q4 To what extent are the design decisions that are taken to address the
design time and runtime quality of TSPACE architecture relevant to
TSPACE?

Q5-D Please indicate if there are risks, sensitivity points and tradeoff
points that are important for TSPACE but are not considered while
designing the reference architecture. Please identify each risk in a
separate bullet point and indicate your rationale why it should be
considered.

Q6 To what extent are the functional requirements and quality
characteristics addressed in TSPACE reference architecture?

Q6-D Please provide details about which requirements are not addressed
in the reference architecture.

Q7 To what extent the presented reference architecture addresses
challenges that are associated with providing TSPACE in a general
context of TaaS? I.e. For other domain other than software
architecting.

Q7-D Please provide your comments/details if additional dimensions
should be considered in the reference architecture.

In the beginning of the evaluation session, an introduction and context of
TSPACE reference architecture was presented to the participants. After a
particular activity of the evaluation session was conducted, the participants
were given an evaluation form to give feedback on TSPACE reference
architecture corresponding to the evaluation activity. First, the participants
were presented with TSPACE functional and quality requirements and were
asked to provide their feedback on them. Then different design decisions
corresponding to the requirements were described, followed by an exercise of
identifying sensitivity and tradeoff points, and building a utility tree. Finally,
the applicability of TSPACE reference architecture in broader context of TaaS

 204

(not only software architecting tools, rather on applicability of tools in general
that can be used for software design and development activities) was
discussed.

Table 40: Evaluation Scale corresponding to Questions

ID Scale
a Very Low
b Low
c Medium
d High
e Very High

The questions that have been used in the evaluation questionnaire are listed in
Table 39. In the questionnaire, there were two types of questions: (a) the
questions (Q1, Q2, Q4, Q6, Q7) those had a qualitative scale to be chosen for
their answers, (b) and the questions (Q1-D, Q2-D, Q3-D, Q5-D, Q6-D, Q7-D)
those had descriptive answers. Table 40 lists the options of the qualitative
scale for Q1, Q2, Q4, Q6 and Q7.

6.6.3.2. Evaluation Results

Q1 and Q2 aimed to seek input on functional and quality completeness of
TSPACE reference architecture. Q6 aimed to identify to what extent the
solutions that have been proposed in TSPACE reference architecture address
the stated requirements and quality characteristics. Q7 aimed to identify the
relevance of TSPACE reference architecture for the general tools (not only
software architecting tools) that can be used to perform software engineering
activities. The results of the questions (Q1, Q2, Q6 and Q7) are shown in
Table 41. The results show that on average a high value score (corresponding
to the questions) was chosen by the participants.

Table 41: TSPACE Evaluation corresponding to Quality Scale

Participant Questions
Q1 Q2 Q6 Q7

P1 d d e d
P2 d d e c
P3 d d d d
P4 d d d c
P5 d d d d
P6 d e d d

 205

Table 42: Design Decision Ranking

Design Decision Participant
P1 P2 P3 P4 P5 P6

Ranking
TSPACE meta-model d e e e e c
Use of ontologies e d d d d d
Use of SOA (SOAP and REST) d d e d e e
Shared repository templates
(shared repository pattern)

e e e d d e

Tenant neutral queues and tenant
specific queues and filters

d e d d e e

Layered architecture style d e d e e e

Q4 aimed to identify effectiveness of the important design decisions that had
been made during the design of TSPACE reference architecture. During the
evaluation session, some of the key design strategies (that have been
discussed in Section 6.3) were presented to the participants of the evaluation
session, and the participants were asked to rank the design decisions and
strategies according to the scale described in Table 40. The results in Table 42
show that on average all the design decisions were ranked high.

Questions Q1-D and Q2-D were aimed at identifying whether there were
additional functional and quality aspects to be incorporated in TSPACE
reference architecture. The feedback of the session participants has been
incorporated in TSPACE reference architecture. For example, one of the
concerns was to have more details on multi-tenancy, security and integration
features of TSPACE. Fourth level decomposition (Section 6.4.3) has been
added in the reference architecture to provide more details on the important
components of TSPACE reference architecture. There was no concern raised
against Q6-D.

Q5-D aimed at identifying the risks, sensitivity points and tradeoff points [5]
in TSPACE reference architecture. The identified risks and tradeoff points
were mainly related with the performance of TSPACE. A risk that was
identified during the evaluation session was comprehensiveness of the
ontologies to capture artifacts and different types of tools (other than software
architecting tools) in TSPACE. This risk is mitigated in the reference
architecture by providing flexibility to extend the ontologies and having the
possibility of adding new ontology templates if needed (as discussed in
Chapter 5 and Section 6.4). While discussing sensitivity and tradeoff points, it

 206

was determined that Queues (Section 6.3.4 and Section 6.4.2.2.1) and shared
repositories (Section 6.3.3) could become a bottleneck to the performance
when a large number of tenants are to be served by TSPACE. These risks can
be mitigated with the help of scalability features of hosting IaaS cloud (by
replicating queues and repositories and by having automated scalability and
load balancing components as discussed in Section 6.3, Section 6.4 and
Section 6.5). Queues and shared repositories were also identified as tradeoff
points (tradeoff between unified access point and scalability). Tenant-
independent and tenant-specific queues along with the respective façade
(Section 6.4.2.2.1 and Section 6.4.3.4) are needed to provide a single point of
access, and shared ontology repositories are needed to provide a common
ontology knowledgebase.

6.6.3.2.1. Utility Tree for TSPACE Architecture and System
Qualities

During the evaluation session, two utility trees were constructed. Figure 63
shows the utility tree to discuss architecture design qualities of TSPACE
reference architecture (completeness, feasibility, applicability and
modifiability), whereas Figure 64 shows system qualities of TSPACE
reference architecture. Completeness of TSPACE reference architecture is
measured in terms of completeness of functional and quality requirements as
well as completeness of the reference architecture elements (high-level and
detailed components) that achieve functional and quality requirements.

Feasibility of the reference architecture is evaluated in terms of structure and
conceptual integrity as well as by implementation of its prototype.
Applicability of the reference architecture is analyzed by demonstrating
provisioning of different types of tool in TSPACE and by supporting
integration among the artifacts of different levels of abstractions. Moreover,
TSPACE applicability for different types of tools was also analyzed during
the evaluation session. Layered and components-based architecture enable
addition of new components, enhancements in integration approach and
incorporation of different IaaS clouds in TSPACE.

TSPACE system qualities (shown in utility tree of Figure 64) deal with
runtime qualities of TSPACE reference architecture. These include automated
provisioning, multi-tenancy, scalability, security and integration. Although
security is not explicitly discussed while describing TSPACE requirements, it
is considered while designing TSPACE reference architecture to achieve
multi-tenancy. Design decisions to achieve TSPACE system qualities have
been shown in Figure 64. The detail of design decisions has been discussed in
Section 6.3, Section 6.4 and Section 6.6.1.

 207

Figure 63: TSPACE Reference Architecture Quality Utility Tree

 208

Figure 64: TSPACE System Quality Utility Tree

6.7. Related	Work	

Some efforts have been made to report the architecture of cloud-based tools
but none provides a coherent solution covering all the required dimensions.
Calvo et. al propose an architecture for textual information retrieval from
cloud-based collaborative writing tools [172] but their effort is limited to
support automated feedback and process analysis of students’ academic
assignment write-ups. Oliveira and Nakagawa propose a Service-Oriented
Architecture for software testing tools [173]. Their work provides the detail
on architectural requirements and a layered model to map tools onto the
business process but does not cover a complete lifecycle of tools provisioning
and operations. Integration approaches using service and graphical user end
points have been reported in [174, 175]. An extensible architecture description

 209

language (xADL) to support integration among architecture-centric tools is
presented in [176]. Zhao et al. provide a survey of ontologies that have been
proposed for software engineering [110]. We have proposed TSPACE
ontology meta-models for the reference architecture because the reported
software engineering ontologies do not satisfy the specific needs of TSPACE.
There are also commercial offerings of cloud-based tools such as Cloud9 IDE
[145] and a diagramming tool Griffy [146].

In comparison to the discussed existing work in the area, the TSPACE
reference architecture has been designed not only to support on demand tools
provisioning but also to enable bundling of tools based on stakeholders’ needs
and to provide a mechanism to raise awareness of the operations that are
performed on the artifacts as a result of stakeholders’ activities in a bundled
suite of tools. TSPACE reference architecture also supports process centric
integration among the tools and semantic integration (using TSPACE
ontologies) among the artifacts that are consumed or produced during
different activities that are performed using the tools.

6.8. Conclusions	

We have presented and discussed Tools as a service workSPACE (TSPACE)
Reference Architecture (RA), TSPACE meta-model that identifies the RA
elements and relations among the elements, an ontology-based semantic
integration meta-model that provides the backbone of the proposed RA and
different views of the RA at multiple levels of abstractions. The presented
reference architecture introduces a standardized view of a TSPACE and has
the potential to provide a number of benefits to practitioners and researchers.
The reference architecture can provide an increased understanding of the
TSPACE for software architecting domain in particular and other engineering
domains in general. The main aim of the reference architecture is to facilitate
the design of concrete TSPACE systems in various domains. The practitioners
can use the reference architecture to communicate a TSPACE’s requirements
and the main architectural principles in software engineering teams. The
researchers can use the reference architecture for the identification of potential
research areas. Investigation of the application of the existing automated
information retrieval mechanisms in the context of the TSPACE to provide
fully automated semantic integration among different types of artifacts is one
possible direction for future research. There can be a need for extending the
reference architecture meta-model for other domains and analyzing the
reference architecture components for the extended model. In the proposed
reference architecture, we have discussed security implicitly as part of the
multi-tenancy. As a future enhancement, the reference architecture also needs
to be enhanced by considering security as an explicit non-functional

 210

requirement to provide more comprehensive security support in TSPACE
reference architecture.

 211

Listing	D	

Figure 65: Initialize TSPACE - Code

 212

Figure 66: Get Authentication Key (OAuth) - Code

 213

Figure 67: Add Artifact Data and Relationship - Code

 214

Figure 68: Create RDF Incrementally – Code

 215

Figure 69: Load Balancer UML Model Ontology

 216

Figure 70: XML Representation of Abstract TSPACE Ontology RDF

 217

Chapter	7. Lessons	Learned,	Conclusions	and	Directions	
for	Future	Work	

The main objective of the research presented in this dissertation was to design
a reference architecture for providing Tools as a service workSPACE
(TSPACE), that can be used to provision software architecting Tools as a
Service (TaaS). To achieve the research objective, we have performed a
number of research activities. We have investigated the research challenges
associated with architecture design and development of cloud-enabled
software systems. We have analyzed different approaches that have been
proposed for designing and developing software reference architecture and
have adopted a tailored reference architecture design methodology that was
suitable for TSPACE. We have analyzed functional and quality requirements
of TSPACE reference architecture and have provided detailed of the reference
architecture at multiple levels of abstractions. In this chapter, we discuss our
experiences with designing TSPACE reference architecture, our conclusions
and directions for future work.

7.1. Lessons	Learned	

The research activity of designing TSPACE reference architecture has enabled
us to make many important observations, not only in terms of design of the
reference architecture but also the process that has lead to the design. In this
section, we elaborate our experiences and lessons learned related to design of
TSPACE reference architecture.

7.1.1. Adopting	Appropriate	Reference	Architecture	Design	Approach	

The selection of appropriate reference architecture design approaches play a
vital role in the identification of software reference architecture (RA) goals,
RA design strategy, RA representations in terms of reference architecture
views and RA application. Existing literature provides a number of meta-level
reference architecture design approaches [15-17]. Although the reported
approaches identify general elements of the reference architecture design
process, the detailed activities that are needed to explore different dimensions
of reference architecture design are not described. Hence, the design strategy
to be adopted for designing a software reference architecture should guide
identification of reference architecture goals (requirements), identification of
different elements of the reference architecture, the process that guides the
relationships between reference architecture elements and the reference
architecture enactment strategies.

 218

To fill this gap, we have elaborated TSPACE reference architecture design
process in Chapter 3. Other than focusing on reference architecture
description, goal, design and instantiation of the reference architecture,
TSPACE reference architecture design process also focuses on leveraging
domain models (e.g. IEEE 1471-2000 [47] and ISO/IEC/IEEE 42010:2011
[7]) for identification of reference architecture elements and relationships
between the elements, analysis of run time characteristics of the reference
architecture (e.g. provisioning, enactment and *aaS model) and analysis of the
hosting environments (e.g. IaaS Cloud platforms).

7.1.2. Functional	Demarcation	between	the	Reference	Architecture	
and	the	Tools	to	be	provisioned	

TSPACE reference architecture is specific in the way that TSPACE features
are used to complement the functionality that is provided by the provisioned
tools. TSPACE facilitates tools bundling, provisioning and tools operations,
whereas the provisioned tools provide features that are required to perform
different activities. For example, when architecture significant requirements
documentation, architecture knowledge management, architecture analysis
and architecture design tools (as described in Chapter 6) are provisioned by
TSPACE, integration among the tools and awareness of the operations on the
artifacts is supported by TSPACE, whereas activities associated with software
architecting are supported by the features that are implemented in the
provisioned tools. Hence, it is very important to have a clear demarcation
between the functionality of TSPACE and the functionality that is to be
supported by the provisioned tools. The research that is presented in this
dissertation has been focusing on software architecting tools. For adoption of
TSPACE in other engineering domains, some of its functionality may need to
be enhanced to meet the requirements of the respective domain. Functional
demarcation analysis of the respective engineering domain will be required to
analyze and identify the features that TSPACE would require to complement
the tools of that domain.

7.1.3. Impact	of	Standardized	Domain	Models	on	the	Reference	
Architecture	Design	Process	

Availability of standardization models for respective domains impacts the
reference architecture design process. While designing TSPACE reference
architecture for software architecting domain, we have leveraged IEEE 1471-
2000 [47] and ISO/IEC/IEEE 42010:2011 [7] architecture documentation
models that have been used as a baseline for identification of TSPACE
architecture elements and TSPACE meta-model (Section 6.3) design. The
meta-model has been further enhanced by analyzing TSPACE requirements.
Incorporation of a standardized domain model in the reference architecture

 219

design ensures the applicability of reference architecture for a broader range
of tools (as has been demonstrated in Section 6.5). Unavailability of the
standardization models for the respective domain or their disuse during the
reference architecture design can negatively impact the applicability of the
reference architecture.

7.1.4. Selecting	Appropriate	Approach	to	Establish	Relationship	
between	Artifacts	Produced	by	the	Tools	

Establishing a relationship among the artifacts of different abstraction levels
that are maintained by the provisioned tools is a critical characteristic of
TSPACE reference architecture and can play a significant role in TSPACE
reference architecture adoption. Hence, it is important to identify integration
needs for the artifacts of different tools to be provisioned in a cloud-enabled
workspace. As different tools have different formats of the artifacts (e.g. text
documents, standardization formats such as UML, proprietary formats and
database tables used for persistence), there is a need to have appropriate
semantic integration models that can provide semantic integration among
different formats. Our experiences with designing TSPACE architecture and
its implementation for tools used for software architecting have shown that an
ontology-driven semantic integration model (Chapter 5) can provide support
for relating different artifacts with each other even though the artifacts are
maintained by different tools using their proprietary data structures.

7.1.5. Analyzing	Integration	needs	of	TSPACE	Reference	Architecture	

As TSPACE can provision different type of tools, it is important to analyze
integration needs for different types of tools used in a specific domain. As our
research effort has been focusing on providing TSPACE for software
architecting domain, we have focused on three different types of integration.
(a) Semantic integration that facilitates the relation of artifacts of different
abstractions and different formats. (b) Process-centric integration to
incorporate use cases in which the tools provisioned as part of the tools chain
need to exchange information according to project-specific development
processes (e.g. artifacts flow from a design tool in model driven development
to code generation tool, or to manage collaboration in distributed architecture
evaluation processes [177]). In such cases, the semantic integration support
needs to be complemented by a workflow-based process, so that artifacts
among the tools can be exchanged according to defined software development
processes. (c) Support for simple exchange of artifacts among the tools so that
the artifacts can be exported from a tool and can be imported into another tool.

Integration needs for other engineering domains can vary, and TSPACE
adoption in that domain may need to investigate specific integration

 220

requirements of the respective domain. E.g. mechatronics domain [178], in
which software design is tightly integrated with design of mechanical
components, integration models and approaches to integrate software system
design with mechanical system design can be required.

7.1.6. Selection	of	Appropriate	IaaS	Clouds	and	Cloud	Deployment	
Models	

As tools in TSPACE reference architecture are considered as black box, the
tenant-specific constrains on artifacts’ storage location are applied on the tools
and the tools are provisioned on the location that is compliant with the
constraints (in our prototype implementation, we have used Amazon EC2
location-specific provisioning features). However, in more complex use cases,
where location constraints on the artifacts can change during their lifecycle,
Virtual Machines (VMs) hosting the tools might need to be migrated from one
location to another. In such cases, the capability of underlying IaaS to support
VMs migration would play a critical rule. Hence, IaaS cloud selection and
selection of cloud deployment model (e.g. public, private or hybrid) should be
carefully made. A cloud environment that supports the desired features should
be selected.

7.1.7. TSPACE	adoption	for	Quality	Critical	Domains	

In our proposed TSPACE reference architecture, we have considered each of
the provisioned tools as a black box and have not considered the management
of quality characteristics of each individual provisioned tool during its
lifecycle. However, for certain tools that are based on executable artifacts, e.g.
testing tools that are used for performance testing, can require extra
computing, memory or other resources during their life cycle depending on
the tasks to be executed. In such cases, TSPACE needs to incorporate the
metrics and corresponding prediction models so that additional resources can
be acquired according to the resource requirements of the tasks that are being
performed using a specific tool or a set of tools.

7.1.8. A	Hybrid	Approach	for	TSPACE	Reference	Architecture	
Evaluation	

Considering the generic nature of TSPACE reference architecture and a broad
range of potential stakeholders, multiple architecture evaluation techniques
needs to be adopted for evaluating the reference architecture from different
perspectives. As elaborated in Chapter 6, we have evaluated TSPACE
reference architecture using a scenario-based evaluation method (technique)
[12], architecture tradeoff analysis method [13] and a prototype
implementation of the reference architecture. Scenario-based evaluation

 221

approach facilitates the evaluation of the completeness of the reference
architecture with respect to reference architecture objectives and
requirements. Architecture tradeoff analysis method facilitates identification
of strong and weak points of the reference architecture. A prototype is a viable
way to demonstrate feasibility of the reference architecture.

7.2. Conclusions	

The research that has been presented in this dissertation aims at providing a
cloud-enabled workspace that can facilitate on demand provisioning of tools
as a service. In this dissertation, four main research contributions can be
distinguished.

Firstly, this dissertation presents an overview of challenges associated with
software architecting of cloud-enabled systems and the solutions that can be
adopted to address the challenges (Chapter 2). The findings are based upon
the extensive review of the 111 journal papers. We have also considered
multiple commercial solutions to make a comparison between how the cloud
software architecting is addressed by researchers and practitioners. The
findings of the study have been classified into four high-level categories. (a)
Architecture challenges and solutions that have been discussed under
Resource and Service Management category address problems associated with
achieving different functional and quality requirements in cloud-enabled
software systems. (b) Workflow Management category describes synthesis of
architecture challenges and solutions for designing workflow-based systems
on cloud. (c) Service Level Agreement (SLA) Compliance category discusses
solutions to satisfy SLAs on cloud. (d) Energy Awareness category describes
architecture solutions to have energy efficient systems on the cloud. The
findings of the review highlight the importance of identifying important
cloud-specific quality and functional characteristic in cloud-enabled software
systems. The review also reveals that particular IaaS or PaaS cloud may not
be sufficient to meet all the requirements of a specific solution and often a
hybrid of multiple cloud platforms is required.

Secondly, this dissertation presents TSPACE reference architecture design
process (Chapter 3), which is based on existing reference architecture design
guidelines [15-17] and our experience with developing process guidelines for
architecting cloud-based systems [27, 37, 46]. The tailoring of software
reference architecture design process suggests that there is a need to have a
clear demarcation between quality characteristics and functionality to be
supported by TSPACE and functionality to be supported by the provisioned
tools. The process guidelines also suggest that domain models of the
respective domain (e.g. software architecting domain that has been focused in
this dissertation) play a key role in identifying TSPACE elements for the

 222

domain. As in the design of every software system, general architecture styles
and patterns as well as cloud-specific architecture styles and patterns facilitate
TSPACE reference architecture design. Moreover, analysis of the potential
cloud environments that are to be used for TSPACE deployment and hosting
of the tools that are to be provisioned by TSPACE with respect to the tools’
domain (e.g. software architecting tools) is also important.

Thirdly, based on the analysis of TSPACE business paradigm and
requirements, we have proposed an ontology-driven semantic integration
model (Chapter 5). The proposed ontology model facilitates tools selection
and provisioning, provides support for semantic integration among the
artifacts of different levels of abstraction and tracking operations that are
performed on the artifacts by the users using different tools (that are
provisioned by TSPACE). The proposed ontology model consists of artifacts,
annotations and tools ontology to establish the semantic relationship between
different types of artifacts and different parts of the artifacts using
annotations. The proposed ontologies provide a basic foundation for semantic
integration. The ontologies are evolved during the lifecycle of TSPACE as
artifacts are produced and consumed by the tools.

Fourthly, we have provided a detailed TSPACE reference architecture in
terms of multiple TSPACE elements (Chapter 6). The core of TSPACE
reference architecture is TSPACE meta-model that captures abstractions of
different elements of TSPACE reference architecture and describes the
relationship between the elements. These elements are further elaborated
using ontology meta-models (based on the ontology model described in
Chapter 5) and four different levels of architecture abstraction using logical,
process and deployment views of TSPACE reference architecture. TSPACE
architecture is evaluated using scenario based evaluation, Architecture
Tradeoff Analysis Method (ATAM) [13], a prototype of the reference
architecting utilizing Amazon IaaS cloud. Evaluation results demonstrate that
TSPACE functional and quality requirements are positively addressed in
TSPACE reference architecture.

7.3. Threats	to	Validity	of	TSPACE	Reference	Architecture	

We have adopted a number of strategies to address threats to TSPACE
Reference Architecture validity. A comprehensive empirical study conducted
on design and adoption of reference architecture [44] has reported a number
of challenges and threats to reference architecture adoption. The main
problem that has been reported in the study [44] is that the reference
architectures are often too abstract to be transformed into concrete
implementations. To counter this threat, we have presented TSPACE
reference architecture at four different levels of abstraction and fourth level

 223

decomposition of the reference architecture document concrete methods that
can be used in implementation of the reference architecture. Moreover, a
proof of concept implementation of TSPACE reference architecture prototype
also provides insight for the reference architecture adoption. Unavailability of
the important view in reference architecture documentation is also a
commonly occurring problem [44]. We have addressed this issue by
describing reference architecture using multiple logical views, corresponding
process views and a deployment view of TSPACE on Amazon cloud. The
reference architecture views have been complemented using textual
description. We have also provided details on TSPACE ontologies that
facilitate tools selection, provisioning and semantic integration, and have
described details of the important methods in terms of algorithms and
mathematical formulas. Unavailability of the reference architecture design and
evaluation method with a reference architecture has been reported as a major
concern [44]. To address this issue, we have provided extensive details on
TSPACE reference architecture design process and evaluation approach. If the
reference architecture is to be adopted in another domain, TSPACE reference
architecture design process can be followed to fill the gaps in TSPACE
reference architecture for that specific domain (e.g. by adding new
components or more details of the existing components) and reported
TSPACE reference architecture evaluation strategy can be used for the
evaluation of the enhanced architecture.

Selection of architecture solutions that have been used to achieve the
functional and quality characteristics of TSPACE reference architecture can
be a threat to internal validity [80]. This threat has been mitigated by using
well known architecture styles and patterns [50]. The process for designing
TSPACE reference architecture and the reference architecture documentation
approach can be a threat to construct validity [80]. It has been addressed by
following a reference architecture design and documentation approach that is
based on established principles [15-17, 44].

7.4. Directions	for	Future	Work	

A number of research problems for TSPACE and its reference architecture are
open for further research, which we tend to explore during future work. To
facilitate adoption of TSPACE reference architecture in different engineering
domains, a catalogue of architecture patterns and styles for cloud-based
system can significantly improve the process of tailoring and adoption of
TSPACE reference architecture. The semantic integration approach that has
been presented in this dissertation provides a semi-automated mechanism for
integrating artifacts of different types and different levels of abstraction,
where ontologies provide a foundation for semantic integration among the
artifacts. The annotations based on user inputs are used as semantic

 224

integration rules. The process of annotating the artifacts and parts of the
artifacts can be automated by applying advance information retrieval and
machine learning techniques [109].

The presented tailored reference architecture design process satisfies TSPACE
reference architecture design requirements. However, the process needs to be
further explored in a broader context of Tools as a Service (TaaS) in different
domains. In this dissertation, we have focused on the tools (software
architecting related tools) that are not used to perform safety critical or
mission critical tasks. For TSPACE reference architecture adoption in safety
critical and mission critical domains, the reference architecture needs to
incorporate architecture abstraction for different types of system quality
metrics as well as metrics’ data collection methods, e.g. runtime quality
measurement metrics such as performance and reliability [179]. TSPACE
reference architecture also needs to incorporate methods for Service Level
Agreement (SLA) compliance for safety-critical and mission-critical
TSPACE.

In the reported TSPACE reference architecture, we have focused on bundling
tools into a suite of tools and the tools provisioning, whereas individual tools
have been treated as black box. There are two possible research directions for
enhancements to this approach. (a) Only selected features of the tools are
enabled when the tools are bundled in a suite to have more controlled service
and pricing model. For this purpose, feature modeling techniques [180] (that
are used for product line engineering) in combination with Aspect Oriented
Paradigm (AOP) [181] can be adopted in the reference architecture. (b) For
next generation tools, which are implemented using Service Oriented
Architecture (SOA) principles, a tool can be dynamically constructed by
following principle of service composition [182] based on the required
features and activities. TSPACE reference architecture ontologies and
provisioning models, which already provide extensive support for tools
selection and provisioning, can be enhanced by incorporating service
composition methods.

 225

References

[1] M. A. Chauhan, M. Ali Babar, and Q. Z. Sheng, "A Reference

Architecture for a Cloud-Based Tools as a Service Workspace,"
presented at the 2015 IEEE Conference on Service Computing (SCC),
New York, USA, 2015.

[2] M. A. Chauhan, "A reference architecture for providing tools as a
service to support global software development," in Proceedings of the
WICSA 2014 Companion Volume, 2014, p. 16.

[3] P. C. Clements and L. M. Northrop, "Software Architecture: An
Executive Overview," DTIC Document1996.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-oriented software architecture: a system of patterns: John
Wiley & Sons, Inc., 1996.

[5] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice: Addison-Wesley Professional, 2012.

[6] I. Gorton, "Essential Software Architecture," ed: Springer Berlin
Heidelberg, 2011.

[7] "ISO/IEC/IEEE Systems and software engineering -- Architecture
description," ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000), pp. 1-46, 2011.

[8] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P.
America, "A general model of software architecture design derived
from five industrial approaches," Journal of Systems and Software,
vol. 80, pp. 106-126, 1 2007.

[9] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, et
al., "Attribute-Driven Design (ADD), Version 2.0," DTIC
Document2006.

[10] P. Kruchten, The rational unified process: an introduction: Addison-
Wesley Professional, 2004.

[11] P. America, E. Rommes, and H. Obbink, "Multi-view variation
modeling for scenario analysis," in Software Product-Family
Engineering, ed: Springer, 2004, pp. 44-65.

[12] R. Kazman, L. Bass, G. Abowd, and M. Webb, "SAAM: a method for
analyzing the properties of software architectures," in Software
Engineering, 1994. Proceedings. ICSE-16., 16th International
Conference on, 1994, pp. 81-90.

[13] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J.
Carriere, "The architecture tradeoff analysis method," in Engineering
of Complex Computer Systems, 1998. ICECCS '98. Proceedings.
Fourth IEEE International Conference on, 1998, pp. 68-78.

[14] M. Matinlassi, E. Niemelä, and L. Dobrica, "Quality-driven
architecture design and quality analysis method," VTT publication,
vol. 456, p. 128, 2002.

 226

[15] S. Angelov, P. Grefen, and D. Greefhorst, "A framework for analysis
and design of software reference architectures," Information and
Software Technology, vol. 54, pp. 417-431, 2012.

[16] P. Avgeriou, "Describing, instantiating and evaluating a reference
architecture: A case study," Enterprise Architect Journal, p. 24, 2003.

[17] S. Angelov, J. J. Trienekens, and P. Grefen, "Towards a method for
the evaluation of reference architectures: Experiences from a case," in
Software Architecture, ed: Springer, 2008, pp. 225-240.

[18] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, et al., "A view of cloud computing," Commun. ACM, vol.
53, pp. 50-58, 2010.

[19] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, "What's inside
the Cloud? An architectural map of the Cloud landscape," in Software
Engineering Challenges of Cloud Computing, 2009. CLOUD '09.
ICSE Workshop on, 2009, pp. 23-31.

[20] P. Louridas, "Up in the Air: Moving Your Applications to the Cloud,"
Software, IEEE, vol. 27, pp. 6-11, 2010.

[21] "Amazon, http://aws.amazon.com/ [July, 2015]."
[22] "Salesforce,

https://developer.salesforce.com/page/Multi_Tenant_Architecture
[July, 2015]."

[23] R. Buyya, S. Pandey, and C. Vecchiola, "Cloudbus toolkit for market-
oriented cloud computing," in Cloud Computing, ed: Springer, 2009,
pp. 24-44.

[24] P. Lago and T. Jansen, "Creating Environmental Awareness in Service
Oriented Software Engineering Service-Oriented Computing." vol.
6568, E. Maximilien, G. Rossi, S.-T. Yuan, H. Ludwig, and M.
Fantinato, Eds., ed: Springer Berlin Heidelberg, 2011, pp. 181-186.

[25] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, "A
break in the clouds: towards a cloud definition," SIGCOMM Comput.
Commun. Rev., vol. 39, pp. 50-55, 2008.

[26] P. Mell and T. Grance, "The NIST Definition of Cloud Computing,"
NIST, vol. Special Publication 800-145, 2011.

[27] M. A. Babar and M. A. Chauhan, "A tale of migration to cloud
computing for sharing experiences and observations," presented at the
Proceedings of the 2nd International Workshop on Software
Engineering for Cloud Computing, Waikiki, Honolulu, HI, USA,
2011.

[28] F. Baiardi and D. Sgandurra, "Securing a Community Cloud," in
Distributed Computing Systems Workshops (ICDCSW), 2010 IEEE
30th International Conference on, 2010, pp. 32-41.

[29] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville, "Cloud
Migration: A Case Study of Migrating an Enterprise IT System to

 227

IaaS," in Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, 2010, pp. 450-457.

[30] Q. Zhang, L. Cheng, and R. Boutaba, "Cloud computing: state-of-the-
art and research challenges," Journal of Internet Services and
Applications, vol. 1, pp. 7-18, 2010.

[31] "AmazonEC2, http://aws.amazon.com/ec2/ [July, 2015]."
[32] "Amazon Simple Storage Services, http://aws.amazon.com/s3/ [July,

2015]."
[33] "Eucalyptus, http://www.eucalyptus.com/ [July, 2015]."
[34] "OpenNebula, http://opennebula.org/ [July, 2015]."
[35] "Google App Engine, http://code.google.com/appengine/ [July,

2015]."
[36] "Microsoft Azure, http://azure.microsoft.com [July, 2015]."
[37] M. A. Chauhan and M. A. Babar, "Migrating Service-Oriented System

to Cloud Computing: An Experience Report," in Cloud Computing
(CLOUD), 2011 IEEE International Conference on, 2011, pp. 404-
411.

[38] M. A. Chauhan and M. A. Babar, "Cloud infrastructure for providing
tools as a service: quality attributes and potential solutions," presented
at the Proceedings of the WICSA/ECSA 2012 Companion Volume,
Helsinki, Finland, 2012.

[39] B. Kitchenham and S. Charters, "Guidelines for performing
Systematic Literature Reviews in Software Engineering," in Version
vol. 2, ed, 2007, pp. 2007-01.

[40] B. P. Gallagher, "Using the architecture tradeoff analysis methodsm to
evaluate a reference architecture: a case study," DTIC Document2000.

[41] M. A. Chauhan, M. Ali Babar, and B. Benatallah, "Architecting
Cloud-Enabled Systems: A Systematic Survey of Challenges and
Solutions," Under review in Software: Practice and Experience
Journal.

[42] M. A. Chauhan and M. A. Babar, "A Systematic Mapping Study of
Software Architectures for Cloud Based Systems," Technical Report
TR-2014-175, IT University of Copenhagen, 2014.

[43] S. Angelov and P. Grefen, "An e-contracting reference architecture,"
Journal of Systems and Software, vol. 81, pp. 1816-1844, 2008.

[44] S. Angelov, J. Trienekens, and R. Kusters, "Software reference
architectures-exploring their usage and design in practice," in Software
Architecture, ed: Springer, 2013, pp. 17-24.

[45] N. Harrison and P. Avgeriou, "Using Pattern-Based Architecture
Reviews to Detect Quality Attribute Issues - An Exploratory Study,"
in Transactions on Pattern Languages of Programming III. vol. 7840,
J. Noble, R. Johnson, U. Zdun, and E. Wallingford, Eds., ed: Springer
Berlin Heidelberg, 2013, pp. 168-194.

 228

[46] M. A. Chauhan and M. A. Babar, "Towards Process Support for
Migrating Applications to Cloud Computing," in 2012 International
Conference on Cloud and Service Computing, 2012, pp. 80-87.

[47] "IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems," IEEE Std 1471-2000, pp. i-23, 2000.

[48] F. Arvidsson and A. Flycht-Eriksson, "“Ontology I”. Retrieved 23
June 2014.."

[49] M. A. Chauhan, M. Ali Babar, Q.Z. Sheng, "A Reference Architecture
for Tools as a Service Workspace: Meta-model, Ontologies and
Design Elements," Under review in Future Generation Computer
Systems Journal.

[50] P. Avgeriou and U. Zdun, "Architectural patterns revisited–a pattern,"
2005.

[51] P. B. Kruchten, "The 4+1 View Model of architecture," Software,
IEEE, vol. 12, pp. 42-50, 1995.

[52] M. A. Chauhan and M. A. Babar, "Towards a Reference Architecture
to Provision Tools as a Service for Global Software Development," in
Software Architecture (WICSA), 2014 IEEE/IFIP Conference on,
2014, pp. 167-170.

[53] M. A. Chauhan and M. A. Babar, "Towards a Reference Architecture
to Provision Tools as a Service for Global Software Development,"
WICSA 2014, 2014.

[54] J. D. Herbsleb, "Global Software Engineering: The Future of Socio-
technical Coordination," in Future of Software Engineering, 2007.
FOSE '07, 2007, pp. 188-198.

[55] W. Maalej, "Task-First or Context-First? Tool Integration Revisited,"
in Automated Software Engineering, 2009. ASE '09. 24th IEEE/ACM
International Conference on, 2009, pp. 344-355.

[56] H. Zhang and M. Ali Babar, "Systematic reviews in software
engineering: An empirical investigation," Information and Software
Technology, vol. 55, pp. 1341-1354, 2013.

[57] H. Zhang and M. A. Babar, "On searching relevant studies in software
engineering," in Proceedings of the 14th international conference on
evaluation and assessment in software engineering (EASE), 2010.

[58] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
"Lessons from applying the systematic literature review process within
the software engineering domain," Journal of systems and software,
vol. 80, pp. 571-583, 2007.

[59] H. Zhang, M. A. Babar, and P. Tell, "Identifying relevant studies in
software engineering," Information and Software Technology, vol. 53,
pp. 625-637, 2011.

[60] G. W. Noblit and R. D. Hare, "Meta-ethnography: synthesizing
qualitative studies. Newbury Park: Sage, 1988."

 229

[61] D. S. Cruzes and T. Dybå, "Recommended Steps for Thematic
Synthesis in Software Engineering," in Empirical Software
Engineering and Measurement (ESEM), 2011 International
Symposium on, 2011, pp. 275-284.

[62] J. Samuel T. Redwine and W. E. Riddle, "Software technology
maturation," presented at the Proceedings of the 8th international
conference on Software engineering, London, England, 1985.

[63] T. Dybå and T. Dingsøyr, "Strength of evidence in systematic reviews
in software engineering," presented at the Proceedings of the Second
ACM-IEEE international symposium on Empirical software
engineering and measurement, Kaiserslautern, Germany, 2008.

[64] T. Dybå and T. Dingsøyr, "Empirical studies of agile software
development: A systematic review," Information and Software
Technology, vol. 50, pp. 833-859, 8 2008.

[65] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, "How to Enhance
Cloud Architectures to Enable Cross-Federation," in Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on, 2010, pp.
337-345.

[66] F. Perez-Sorrosal, M. Patino-Martinez, R. Jimenez-Peris, and B.
Kemme, "Elastic SI-Cache: consistent and scalable caching in multi-
tier architectures," The VLDB Journal, vol. 20, pp. 841-865, 2011.

[67] "Amazon Auto Scaling, http://aws.amazon.com/autoscaling/ [July,
2015]."

[68] "Amazon Elastic Load Balancing,
http://aws.amazon.com/elasticloadbalancing/ [July, 2015]."

[69] "Amazon Cloud Watch, http://aws.amazon.com/cloudwatch/ [July,
2015]."

[70] "Amazon Simple Workflow Service, http://aws.amazon.com/swf/
[July, 2015]."

[71] "Google App Engine Architecture,
http://web.stanford.edu/class/ee380/Abstracts/081105-slides.pdf [July,
2015]."

[72] K. Roche and J. Douglas, "App Engine Services," in Beginning Java™
Google App Engine, ed: Apress, 2010, pp. 169-195.

[73] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana, D.
Leelaratne, et al., "Multi-tenant SOA Middleware for Cloud
Computing," in 2010 IEEE 3rd International Conference on Cloud
Computing (CLOUD), ed: IEEE, 2010, pp. 458-465.

[74] E. M. Maximilien, A. Ranabahu, R. Engehausen, and L. Anderson,
"IBM altocumulus: a cross-cloud middleware and platform," presented
at the Proceeding of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and applications,
Orlando, Florida, USA, 2009.

 230

[75] L. Shang, S. Petiton, N. Emad, X. Yang, and Z. Wang, "Extending
YML to Be a Middleware for Scientific Cloud Computing," in Cloud
Computing. vol. 5931, M. Jaatun, G. Zhao, and C. Rong, Eds., ed:
Springer Berlin Heidelberg, 2009, pp. 662-667.

[76] S. van der Burg, M. de Jonge, E. Dolstra, and E. Visser, "Software
deployment in a dynamic cloud: From device to service orientation in
a hospital environment," in ICSE Workshop on Software Engineering
Challenges of Cloud Computing, 2009. CLOUD '09, ed: IEEE, 2009,
pp. 61-66.

[77] I. Gorton, L. Yan, and Y. Jian, "Exploring Architecture Options for a
Federated, Cloud-Based System Biology Knowledgebase," in 2010
IEEE Second International Conference on Cloud Computing
Technology and Science (CloudCom), ed: IEEE, 2010, pp. 218-225.

[78] J. Alvares de Oliveira and T. Ledoux, "Self-optimisation of the energy
footprint in service-oriented architectures," presented at the
Proceedings of the 1st Workshop on Green Computing, Bangalore,
India, 2010.

[79] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, "Dynamic
Scaling of Web Applications in a Virtualized Cloud Computing
Environment," in IEEE International Conference on e-Business
Engineering, 2009. ICEBE '09, ed: IEEE, 2009, pp. 281-286.

[80] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in software engineering: an introduction:
Kluwer Academic Publishers, 2000.

[81] A. Nowak, T. Binz, C. Fehling, O. Kopp, F. Leymann, and S. Wagner,
"Pattern-driven green adaptation of process-based applications and
their runtime infrastructure," Computing, vol. 94, pp. 463-487, 2012.

[82] Y.-B. Han, J.-Y. Sun, G.-L. Wang, and H.-F. Li, "A cloud-based bpm
architecture with user-end distribution of non-compute-intensive
activities and sensitive data," Journal of Computer Science and
Technology, vol. 25, pp. 1157-1167, 2010.

[83] H. Flores and S. N. Srirama, "Mobile cloud middleware," Journal of
Systems and Software, vol. 92, pp. 82-94, 2014.

[84] X. Hu, T. H. Chu, H. C. Chan, and V. C. Leung, "Vita: A
crowdsensing-oriented mobile cyber-physical system," Emerging
Topics in Computing, IEEE Transactions on, vol. 1, pp. 148-165,
2013.

[85] L. Gkatzikis and I. Koutsopoulos, "Migrate or not? exploiting dynamic
task migration in mobile cloud computing systems," Wireless
Communications, IEEE, vol. 20, pp. 24-32, 2013.

[86] R. Martignoni, "Global Sourcing of Software Development - A
Review of Tools and Services," in Global Software Engineering, 2009.
ICGSE 2009. Fourth IEEE International Conference on, 2009, pp.
303-308.

 231

[87] J. Whitehead, "Collaboration in Software Engineering: A Roadmap,"
presented at the 2007 Future of Software Engineering, 2007.

[88] Muhammad Ali Babar, Torgeir Dingsøyr, Patricia Lago, and H. v.
Vliet, "Software Architecture Knowledge Management: Theory and
Practice," Springer, 2009.

[89] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-driven
software development: technology, engineering, management: John
Wiley & Sons, 2013.

[90] P. Dourish and V. Bellotti, "Awareness and coordination in shared
workspaces," presented at the Proceedings of the 1992 ACM
conference on Computer-supported cooperative work, Toronto,
Ontario, Canada, 1992.

[91] B. Sodhi and T. V. Prabhakar, "Application architecture considerations
for cloud platforms," in 2011 Third International Conference on
Communication Systems and Networks (COMSNETS), ed: IEEE, 2011,
pp. 1-4.

[92] E. J. Domingo, J. T. Nino, A. L. Lemos, M. L. Lemos, R. C. Palacios,
and J. M. G. BerbiÃÅs, "CLOUDIO: A Cloud Computing-Oriented
Multi-tenant Architecture for Business Information Systems," in 2010
IEEE 3rd International Conference on Cloud Computing (CLOUD),
ed: IEEE, 2010, pp. 532-533.

[93] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya, "The
Aneka platform and QoS-driven resource provisioning for elastic
applications on hybrid Clouds," Future Generation Computer Systems,
vol. 28, pp. 861-870, 2012.

[94] R. Han, M. M. Ghanem, L. Guo, Y. Guo, and M. Osmond, "Enabling
cost-aware and adaptive elasticity of multi-tier cloud applications,"
Future Generation Computer Systems, vol. 32, pp. 82-98, 2014.

[95] I. Brandic, D. Music, and S. Dustdar, "Service mediation and
negotiation bootstrapping as first achievements towards self-adaptable
grid and cloud services," presented at the Proceedings of the 6th
international conference industry session on Grids meets autonomic
computing, Barcelona, Spain, 2009.

[96] E. Y. Nakagawa, E. F. Barbosa, and J. C. Maldonado, "Exploring
ontologies to support the establishment of reference architectures: An
example on software testing," in Software Architecture, 2009 &
European Conference on Software Architecture. WICSA/ECSA 2009.
Joint Working IEEE/IFIP Conference on, 2009, pp. 249-252.

[97] S. Martínez-Fernández, C. Ayala, X. Franch, and H. M. Marques,
"Artifacts of software reference architectures: a case study," in
Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering, 2014, p. 42.

[98] S. I. Hashmi, V. Clerc, M. Razavian, C. Manteli, D. A. Tamburri, P.
Lago, et al., "Using the Cloud to Facilitate Global Software

 232

Development Challenges," in Global Software Engineering Workshop
(ICGSEW), 2011 Sixth IEEE International Conference on, 2011, pp.
70-77.

[99] J. A. Osorio, M. R. Chaudron, and W. Heijstek, "Moving from
waterfall to iterative development: An empirical evaluation of
advantages, disadvantages and risks of RUP," in Software Engineering
and Advanced Applications (SEAA), 2011 37th EUROMICRO
Conference on, 2011, pp. 453-460.

[100] I. Steinmacher, A. P. Chaves, and M. A. Gerosa, "Awareness support
in global software development: a systematic review based on the 3C
collaboration model," presented at the Proceedings of the 16th
international conference on Collaboration and technology, Maastricht,
The Netherlands, 2010.

[101] C. Gutwin, R. Penner, and K. Schneider, "Group awareness in
distributed software development," in Proceedings of the 2004 ACM
conference on Computer supported cooperative work, 2004, pp. 72-81.

[102] C. P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. t
Hart, "Enabling multi-tenancy: An industrial experience report," in
Software Maintenance (ICSM), 2010 IEEE International Conference
on, 2010, pp. 1-8.

[103] "Visio, http://office.microsoft.com/en-001/visio/ [July, 2015]."
[104] "ArgoUML, http://argouml.tigris.org/ [July, 2015]."
[105] "Microsoft Office, http://www.microsoft.com/Office [July, 2015]."
[106] "Google Docs, http://www.docs.google.com [July, 2015]."
[107] M. A. Babar and I. Gorton, "A Tool for Managing Software

Architecture Knowledge," presented at the Proceedings of the Second
Workshop on SHAring and Reusing architectural Knowledge
Architecture, Rationale, and Design Intent, 2007.

[108] B. Decker, E. Ras, J. Rech, B. Klein, and C. Hoecht, "Self-organized
reuse of software engineering knowledge supported by semantic
wikis," in Proceedings of the Workshop on Semantic Web Enabled
Software Engineering (SWESE), 2005.

[109] A. Segev and Q. Z. Sheng, "Bootstrapping ontologies for web
services," Services Computing, IEEE Transactions on, vol. 5, pp. 33-
44, 2012.

[110] Y. Zhao, J. Dong, and T. Peng, "Ontology Classification for Semantic-
Web-Based Software Engineering," Services Computing, IEEE
Transactions on, vol. 2, pp. 303-317, 2009.

[111] V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta,
et al., "Semantic annotation for knowledge management:
Requirements and a survey of the state of the art," Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 4, pp. 14-
28, 1 2006.

 233

[112] J. R. Hilera, Ferna, x, and L. ndez-Sanz, "Developing Domain-
Ontologies to Improve Sofware Engineering Knowledge," in Software
Engineering Advances (ICSEA), 2010 Fifth International Conference
on, 2010, pp. 380-383.

[113] S. Nešić, "Semantic Document Model to Enhance Data and
Knowledge Interoperability," in Web 2.0 & Semantic Web. vol. 6, V.
Devedžić and D. Gaševic, Eds., ed: Springer US, 2009, pp. 135-160.

[114] D. Baxter, J. Gao, K. Case, J. Harding, B. Young, S. Cochrane, et al.,
"A framework to integrate design knowledge reuse and requirements
management in engineering design," Robotics and Computer-
Integrated Manufacturing, vol. 24, pp. 585-593, 8 2008.

[115] D. Baxter, J. Gao, K. Case, J. Harding, B. Young, S. Cochrane, et al.,
"An engineering design knowledge reuse methodology using process
modelling," Research in Engineering Design, vol. 18, pp. 37-48,
2007/05/01 2007.

[116] O. Zimmermann, C. Miksovic, and J. M. Küster, "Reference
architecture, metamodel, and modeling principles for architectural
knowledge management in information technology services," Journal
of Systems and Software, vol. 85, pp. 2014-2033, 9 2012.

[117] F. Zahedi, "The analytic hierarchy process-a survey of the method and
its applications," interfaces, vol. 16, pp. 96-108, 1986.

[118] F. Baader, I. Horrocks, and U. Sattler, "Description Logics," in
Handbook on Ontologies, S. Staab and R. Studer, Eds., ed: Springer
Berlin Heidelberg, 2004, pp. 3-28.

[119] "Dublin Core Metadata Initiative,
http://dublincore.org/documents/abstract-model/ [July, 2015]."

[120] "IEEE Standard for Learning Object Metadata," IEEE Std 1484.12.1-
2002, pp. i-32, 2002.

[121] "SPARQL, http://www.w3.org/TR/sparql11-query/ [July, 2015]."
[122] M. Boškovic, E. Bagheri, G. Grossmann, D. Gaševic, and M.

Stumptner, "Towards integration of semantically enabled service
families in the cloud," WS2, p. 58, 2011.

[123] M.-C. Valiente, E. Garcia-Barriocanal, and M.-A. Sicilia, "Applying
ontology-based models for supporting integrated software
development and it service management processes," Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 42, pp. 61-74, 2012.

[124] A. April, J.-M. Desharnais, and R. R. Dumke, "A Formalism of
Ontology to Support a Software Maintenance Knowledge-based
System," in SEKE, 2006, pp. 331-336.

[125] B. A. Kitchenham, G. H. Travassos, A. von Mayrhauser, F. Niessink,
N. F. Schneidewind, J. Singer, et al., "Towards an ontology of
software maintenance," Journal of Software Maintenance, vol. 11, pp.
365-389, 1999.

 234

[126] L. Liao, Y. Qu, and H. K. Leung, "An Ontology-based Approach to
Express Software Processes."

[127] I. N. Athanasiadis, F. Villa, and A.-E. Rizzoli, "Enabling knowledge-
based software engineering through semantic-object-relational
mappings," in Proceedings of the 3rd International Workshop on
Semantic Web Enabled Software Engineering, 2007.

[128] D. Ameller and X. Franch, "Ontology-Based Architectural Knowledge
Representation: Structural Elements Module," in Advanced
Information Systems Engineering Workshops. vol. 83, C. Salinesi and
O. Pastor, Eds., ed: Springer Berlin Heidelberg, 2011, pp. 296-301.

[129] B. Antunes, P. Gomes, and N. Seco, "SRS: a software reuse system
based on the semantic web," in 3rd International Workshop on
Semantic Web Enabled Software Engineering (SWESE), 2007.

[130] H.-J. Happel, A. Korthaus, S. Seedorf, and P. Tomczyk, "KOntoR: an
ontology-enabled approach to software reuse," in In: Proc. Of The
18Th Int. Conf. On Software Engineering And Knowledge
Engineering, 2006.

[131] R. Witte, Y. Zhang, and J. Rilling, "Empowering software maintainers
with semantic web technologies," in The Semantic Web: Research and
Applications, ed: Springer, 2007, pp. 37-52.

[132] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev, "An ontology-based
approach for traceability recovery," in 3rd International Workshop on
Metamodels, Schemas, Grammars, and Ontologies for Reverse
Engineering (ATEM 2006), Genoa, 2006, pp. 36-43.

[133] R. C. de Boer, P. Lago, A. Telea, and H. Van Vliet, "Ontology-driven
visualization of architectural design decisions," in Software
Architecture, 2009 & European Conference on Software Architecture.
WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference on, 2009,
pp. 51-60.

[134] R. C. de Boer and H. Van Vliet, "QuOnt: an ontology for the reuse of
quality criteria," in Sharing and Reusing Architectural Knowledge,
2009. SHARK '09. ICSE Workshop on, 2009, pp. 57-64.

[135] A. Tang, L. Peng, and H. van Vliet, "Software Architecture
Documentation: The Road Ahead," in Software Architecture (WICSA),
2011 9th Working IEEE/IFIP Conference on, 2011, pp. 252-255.

[136] K. A. de Graaf, P. Liang, A. Tang, W. R. van Hage, and H. van Vliet,
"An exploratory study on ontology engineering for software
architecture documentation," Computers in Industry.

[137] K. A. de Graaf, A. Tang, L. Peng, and H. Van Vliet, "Ontology-based
Software Architecture Documentation," in Software Architecture
(WICSA) and European Conference on Software Architecture (ECSA),
2012 Joint Working IEEE/IFIP Conference on, 2012, pp. 121-130.

[138] S. Henninger and P. Ashokkumar, "An ontology-based metamodel for
software patterns," 2006.

 235

[139] H. Zhou, H. Yang, and A. Hugill, "An Ontology-Based Approach to
Reengineering Enterprise Software for Cloud Computing," in
Computer Software and Applications Conference (COMPSAC), 2010
IEEE 34th Annual, 2010, pp. 383-388.

[140] H. Kaiya and M. Saeki, "Ontology based requirements analysis:
lightweight semantic processing approach," in Quality Software,
2005.(QSIC 2005). Fifth International Conference on, 2005, pp. 223-
230.

[141] S. C. Brandt, J. Morbach, M. Miatidis, M. Theißen, M. Jarke, and W.
Marquardt, "An ontology-based approach to knowledge management
in design processes," Computers & Chemical Engineering, vol. 32, pp.
320-342, 2008.

[142] J. Rilling, Y. Zhang, W. J. Meng, R. Witte, V. Haarslev, and P.
Charland, "A unified ontology-based process model for software
maintenance and comprehension," in Models in Software Engineering,
ed: Springer, 2007, pp. 56-65.

[143] P. Wongthongtham, E. Chang, T. S. Dillon, and I. Sommerville,
"Software Engineering Ontologies and Their Implementation," in
IASTED Conf. on Software Engineering, 2005, pp. 208-213.

[144] R. L. Grossman, "The Case for Cloud Computing," IT Professional,
vol. 11, pp. 23-27, 2009.

[145] "Cloud9 IDE, https://c9.io/ [July, 2015]."
[146] "Griffy, https://www.gliffy.com/ [July, 2015]."
[147] P. Yara, R. Ramachandran, G. Balasubramanian, K. Muthuswamy,

and D. Chandrasekar, "Global Software Development with Cloud
Platforms," in Software Engineering Approaches for Offshore and
Outsourced Development. vol. 35, O. Gotel, M. Joseph, and B. Meyer,
Eds., ed: Springer Berlin Heidelberg, 2009, pp. 81-95.

[148] N. Harrison, P. Avgeriou, and U. Zdun, "Using patterns to capture
architectural decisions," Software, IEEE, vol. 24, pp. 38-45, 2007.

[149] M. N. Huhns and M. P. Singh, "Service-oriented computing: Key
concepts and principles," Internet Computing, IEEE, vol. 9, pp. 75-81,
2005.

[150] R. T. Fielding, "Architectural styles and the design of network-based
software architectures," University of California, Irvine, 2000.

[151] "Resource Description Framework (RDF), http://www.w3.org/RDF/
[July, 2015]."

[152] G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis, A.
Menychtas, and T. Varvarigou, "A Self-adaptive hierarchical
monitoring mechanism for Clouds," Journal of Systems and Software,
vol. 85, pp. 1029-1041, 2012.

[153] A. Almutairi, M. Sarfraz, S. Basalamah, W. Aref, and A. Ghafoor, "A
distributed access control architecture for cloud computing," 2011.

 236

[154] J. Bernal Bernabe, J. M. Marin Perez, J. M. Alcaraz Calero, F. J.
Garcia Clemente, G. Martinez Perez, and A. F. Gomez Skarmeta,
"Semantic-aware multi-tenancy authorization system for cloud
architectures," Future Generation Computer Systems, vol. 32, pp. 154-
167, 2014.

[155] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software: Pearson Education,
1994.

[156] Y. Badr and G. Caplat, "Software-as-a-Service and Versionology:
Towards Innovative Service Differentiation," in 2010 24th IEEE
International Conference on Advanced Information Networking and
Applications (AINA), ed: IEEE, 2010, pp. 237-243.

[157] "Amazon EC2 APIs, http://aws.amazon.com/sdk-for-java/ [July
2015]."

[158] "Apache Ant, http://ant.apache.org/ [July 2015]."
[159] B. Leiba, "Oauth web authorization protocol," IEEE Internet

Computing, pp. 74-77, 2012.
[160] "JAX-RS, http://jax-rs-spec.java.net/ [July, 2015]."
[161] "JAX-WS, https://jax-ws.java.net/ [July, 2015]."
[162] "Apache Jena Framework, https://jena.apache.org/ [July, 2015]."
[163] A. J. Riel, Object-oriented design heuristics vol. 338: Addison-Wesley

Reading, 1996.
[164] "jBPM, http://www.jbpm.org/ [July, 2015]."
[165] "GlassFish, https://glassfish.java.net/downloads/3.1.2.2-final.html

[July, 2015]."
[166] "Amazon MySQL RDS, http://aws.amazon.com/rds/mysql/ [July,

2015]."
[167] "Java Persistence APIs,

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-
140049.html [July, 2015]."

[168] "Amazon, http://aws.amazon.com/s3/ [July, 2015]."
[169] "UML2OWL, http://sourceforge.net/projects/uml2owl/ [July, 2015]."
[170] "Apache Jena Persistence,

https://jena.apache.org/documentation/tdb/index.html [July, 2015]."
[171] P. Clements and L. Bass, "Relating business goals to architecturally

significant requirements for software systems," DTIC Document2010.
[172] R. A. Calvo, S. T. O'Rourke, J. Jones, K. Yacef, and P. Reimann,

"Collaborative Writing Support Tools on the Cloud," Learning
Technologies, IEEE Transactions on, vol. 4, pp. 88-97, 2011.

[173] L. B. R. Oliveira and E. Y. Nakagawa, "A service-oriented reference
architecture for software testing tools," in Software Architecture, ed:
Springer, 2011, pp. 405-421.

[174] R. Wolvers and T. Seceleanu, "Embedded Systems Design Flows:
Integrating Requirements Authoring and Design Tools," in Software

 237

Engineering and Advanced Applications (SEAA), 2013 39th
EUROMICRO Conference on, 2013, pp. 244-251.

[175] M. Biehl, J. De Sosa, M. Torngren, and O. Diaz, "Efficient
Construction of Presentation Integration for Web-Based and Desktop
Development Tools," in Computer Software and Applications
Conference Workshops (COMPSACW), 2013 IEEE 37th Annual,
2013, pp. 697-702.

[176] R. Khare, M. Guntersdorfer, P. Oreizy, N. Medvidovic, and R. N.
Taylor, "xADL: enabling architecture-centric tool integration with
XML," in System Sciences, 2001. Proceedings of the 34th Annual
Hawaii International Conference on, 2001, p. 9.

[177] M. Ali Babar, "A framework for groupware-supported software
architecture evaluation process in global software development,"
Journal of Software: Evolution and Process, vol. 24, pp. 207-229,
2012.

[178] R. Comerford, "Mecha... what?[mechatronics]," Spectrum, IEEE, vol.
31, pp. 46-49, 1994.

[179] S. K. Garg, S. Versteeg, and R. Buyya, "A framework for ranking of
cloud computing services," Future Generation Computer Systems, vol.
29, pp. 1012-1023, 6 2013.

[180] K. Lee, K. C. Kang, and J. Lee, "Concepts and Guidelines of Feature
Modeling for Product Line Software Engineering," presented at the
Proceedings of the 7th International Conference on Software Reuse:
Methods, Techniques, and Tools, 2002.

[181] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, et al., Aspect-oriented programming: Springer, 1997.

[182] J. Rao and X. Su, "A survey of automated web service composition
methods," in Semantic Web Services and Web Process Composition,
ed: Springer, 2005, pp. 43-54.

