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1. Introduction 
Evolutionary pressure has driven species of animals to develop efficient 

locomotive behaviors by gradually changing their morphology and locomotive control. 

One of the evolved locomotive strategies includes terrestrial legged locomotion that is 

an efficient method for animals to traverse rough terrain making it an interesting feat to 

apply in robotics. Most conventional optimization strategies used for acquiring 

locomotive control are still inept to generate efficient stable locomotion and may be 

improved by using additional bio-inspired methods. Optimizing legged locomotion in 

robots is a difficult task as efficient legged locomotion is usually dynamically stable. 

Locomotion is considered dynamically stable when an agent’s center of mass (COM) 

is only temporarily above the support area of the legs during locomotion [1].  
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In animals, a nervous system consisting of innate (inborn) and learned 

(acquired) types of behavior regulates locomotion [2]. Through implementing an 

evolutionary algorithm that alters a neural network (NN), this paper shows that 

applying predefined evolving neural networks (ENNs) to simulated and actual robots 

is a promising bio-inspired optimization strategy for the generation of dynamically 

stable locomotion.  

A great diversity of neuroevolutionary strategies have been developed over 

the past two decades [3,4,5,6,7].  Changing the topology and weights of NNs is a 

commonly used strategy also known as Topology and Weight Evolving Artificial 

Neural Networks (TWEANNs) [8]. Based on TWEANNs, optimization strategies like 

NEuroevolution of Augmenting Topologies (NEAT) [9,8] and Evolution of Network 

Symmetry and mOdularity (ENSO) [10] were developed to increase the efficiency of 

TWEANNs. In this paper, no frameworks of other ENNs were used but instead an ENN 

similar to a TWEANN was implemented to control and optimize the locomotion of a 

simulated quadruped. Learning methods that adapt the synapses and weights of the NN  

are not implemented in the ENN of this paper as fixed NNs tend to evolve quicker [11]. 

Although there is evidence suggesting that NEAT and ENSO are more efficient 

strategies to apply compared to regular TWEANNs [9,10], these methods are not used 

as the aim of this paper is to analyze acquisition of efficient locomotion based on 

different initial NN states of the population. Comparative studies comparing the 

effectiveness of the devised ENN with other neuroeolutionary strategies is out of the 

scope of this paper but can be done in future investigations.  

Central Pattern Generators (CPGs) are also often implemented for mimicking 

animal locomotion [12]. In animals, CPGs provide rhythmic activation of muscles and 

do not necessarily require any sensory input to function [13]. Various strategies mimic 

the functionality of CPGs for the acquisition of gaits: Hopf oscillators, [14,15,16,17], 

cyclic genetic algorithms (CGAs) [18], continuous-time recurrent neural networks 

(CTRNNs) [19], compositional pattern producing networks (CPPNs) [20,21], and 

hypercube-based neuroevolution of augmenting topologies (hyperNEAT) [21]. CPGs 

applied to the ENN of this paper are simply defined by neurons that activate and 

deactivate based on an evolvable timer and outputs of the NN. 

The aim of this paper is to apply a several predefined NNs and bio-inspired 

sensors to a simulated quadruped as neuroevolutionary optimization strategies in order 

to evolve efficient locomotive behavior. Three types of predefined NNs (NNs that were 

preprogrammed to have a certain morphology and thereby a distinct neural activation 

pattern) were used to initialize various populations. Bongard [22] has shown that 

initializing populations with behavior of robots that were formerly evolved using a 

simpler physical morphology led to more rapid acquisition of robust locomotive 

behavior compared to evolving the robot behavior of the more complex robot without 

implementing the evolved behaviors of simpler robots. Similar results are expected 

when rough estimations of simple predefined NNs are used to initialize a population.  



2. Methods 
The 3D robot model (Figure 1) was simulated in the robotics platform “Virtual 

Robot Experimentation Platform” (V-REP) [23].  The 3D model of the quadruped is 

based on feline morphology as cat-like quadrupeds are among the fastest animals alive. 

The length of the cat is around 0.5 meters. Spring-like properties were able to arise as 

PID controllers regulate the joint actuation. Notably, two spine joints mimic properties 

of a flexible spine, which is a valuable feature for the high performance locomotion of 

the Cheetah [16,24,25]. The open-source Bullet dynamics physics engine was used to 

simulate the physics of the simulation. Based on feline morphology, the maximum 

allowed angles of all 28 joints ranged from 30 to 180 degrees. Four types of sensors 

were applied to give the simulated quadruped some bio-inspired feedback. These 

sensors include proprioception, tactile feet sensors, an abstraction of the vestibular 

system (the balance organ), and CPGs. 

Unlike feedforward perceptrons [26], the applied NN’s hidden layer is 

recurrent. The applied NN consisted of a variable number of input neurons (depending 

on the sensors used) 150 interneurons in the hidden layer and 96 output neurons 

connected to PID controllers and CPGs (to alter the CPGs timers and thus altering 

activation speed). The equations below (Equation 1-5) explain how each layer in the 

NN is updated. The activation levels of the sensory, inter- and motor neurons are 

defined by Bi, Cj and Dk respectively. Ai and Ek define the sensory input and motor 

output respectively. There are four types of weights for each type of possible 

connection: weights from sensory neurons connected to interneurons (ϕ); weights from 

interneurons connected to interneurons (χ); weights from sensory neurons connected to 

motor neurons (ψ); weights from interneurons connected to motor neurons (ω). αj 

represents the acquired activation levels of the interneurons. If αj passes the value of the 

corresponding threshold level θj, the interneuron is activated. Finally, the decay factor 

δ decreases the acquired activation levels of both interneurons and motor neurons.  In 
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Figure 2. Overview of the artificial neural network. 
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Figure 1. The 3D model of the simulated 

quadruped 



all equations, the operator “:=” represents an update of the left hand side variable with 

the term on the right hand side, as it is performed in each calculation for a new frame.  

- Equation 1: Sensory neurons are always activated by sensory input and the 

output of these sensory neurons is transformed into the activation level (Bi) of the ith 

sensory neuron. Ai is the output value of the sensor connected to the ith sensory neuron. 

- Equation 2: The acquired activation level (αj) of the jth interneuron is based on 

the weights (𝜙𝑗𝑖)  of the connected sensory neurons and the weights (𝜒𝑗𝑙) of other 

connected interneurons. A decay factor, δ, decreases the acquired activation level of 

the neuron over time so that continuously activated neurons limit their maximum 

activation level.  

- Equation 3: The interneurons are activated if the acquired activation level αj 

of the jth interneuron is higher than the threshold 𝜃𝑗.  𝛩  represents the Heaviside step 

function, i.e., 𝐶𝑗 = 0 if 𝛼𝑗 < 𝜃𝑗  and 𝐶𝑗 = 1 otherwise. 

- Equation 4: The activation level of the motor neurons (Dk) is calculated similar 

to the acquired activation level of the interneurons. ψjk represents the weight of the jth 

sensory neuron connected to the kth motor neuron,  ωkj represents the weight of the jth 

interneuron connected to the kth motor neuron. However, motor neurons are, like 

sensory neurons, always active, meaning no threshold function needs to be applied. 

The decay factor, δ, limits the activation levels of the output neurons. 

- Equation 5: The final equation describes how the factor (σk) scales the kth 

motor neuron’s activation level (Dj) to a motor output value (Ek). 
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𝐸𝑘 ∶= 𝐷𝑘 ∗ 𝜎𝑘      (5) 

The evolutionary algorithm alters the NN’s genotype through specific 

mutations and a function mimicking chromosomal crossover [27]. The hereditary 

information of the quadruped’s NN is stored in arrays containing all parameters of the 

NN. Similar to TWEANNs, the mutations altered parameters such as the connections 

of individual neurons, the weights attributed to these connections and the threshold 

values that need to be surpassed before an interneuron is activated. The mutation rate 

is variable depending on one of three types of mutations that can occur to enable both 

large and subtle changes of the NN. The crossover function combines two NNs of two 

individuals in a population by combining their interneurons before mutations occur 

(25% probability). The genome of the quadruped stores the values of each neuron in 

arrays that combine through crossover based on the specified assigned neuron number 

in the array.  A maximum of five crossover events could take place to create a new 

interneuron layer for the offspring. Each neuron’s output is connected to at most 10 

other neurons restricting the network’s topology. This limit is set as most neurons only 

have one or a few axons [27].  



 The population size used was 20 and parents were randomly chosen to 

produce offspring asexually with the potential for crossover. Newly formed individuals 

only replaced other individuals if their fitness was higher to the fitness value of a 

randomly chosen individual of the population. Subsequent generations thus always 

performed equally well or better than the previous ones. The fitness value was measured 

by calculating the distance the quadruped had moved in a forward direction in five 

seconds of simulation time.  

Three predefined morphologies of NNs were used to initialize the population 

of different evolutionary runs. The three predefined morphologies consisted of two 

manually defined and one randomly defined morphology. One of the manually defined 

morphologies produced a behavior where the joints were kept stationary (predefined 

stationary) while the other produced slight movements in eight joints resembling a 

precursor of a two-beat diagonal trot gait (predefined walking). An additional fitness 

function was applied to the simulations running the predefined NNs to speed up the 

evolutionary runs. This additional fitness function reduced overall simulation time by 

resetting the simulation in occurrences of head to floor collisions. Simulation runs for 

type of initial NN population were performed both with enabled and disabled sensory 

input to evaluate the impact of sensors on the effectiveness of the ENN. For each 

experiment, 10 deterministic simulations ran each using a different random seed.  

3. Results 
Differences in the progression of each type of ENN was notable between 

different evolutionary runs (Figure 3). The evolutionary run of the predefined walking 

NNs using sensors developed the best locomotive strategy for the simulated quadruped 

in generation 1000 as its final generation moved significantly further (p < 0.05) than 

the other types of evolutionary runs. The evolution of the population of quadrupeds 

using the predefined stationary NN performed similar with and without using sensors. 

There were slight but significant differences between the evolutionary runs the 

randomly initialized NNs that did and did not use sensors (p < 0.05). No significant 

differences were seen between the predefined stationary NNs using sensors and not 

using sensors. Evolving the best evolved individual from generation 1000 of the 

predefined walking run further for an additional 5000 generations showed better 

performing NNs without any dramatic changes to the phenotype of the behavior [28].  

All simulations initialized with a population of individuals with predefined 

walking NNs evolved locomotive strategies that moved up to three times as far as the 

other evolved NNs. From these evolved behaviors, some evolved a walking motion, 

others included slight jumping movements and the best simulation evolved a crawling 

motion that made the quadruped move by seemingly only using its two forelimbs 

(Figure 4). The ENN also evolved useful strategies when not using sensors although 

the evolutionary progression was generally slower. The predefined stationary NNs did 

not evolve effective locomotion but rather evolved motions wherein the individual rolls 

on its side preventing the head from colliding with the floor. The randomly initialized 



NNs did not evolve any efficient locomotive strategies either as they evolved behaviors 

consisting mostly of falling and rolling forward, and twitching.  

4. Discussion 
From evolving the different initial population states, the predefined walking 

NNs evolved effective locomotion the quickest (Figure 3). All other evolutionary runs 

evolved behaviors in which the locomotive phenotype of the fittest individual consisted 

of either falling or rolling forward. These results suggest that initializing a population 

with individuals displaying slight limb movements, resembling a desired movement, 

greatly accelerates the evolution of the simulated quadrupeds’ NNs. The best 

performing individual did not evolve a legitimate dynamically stable gait as its hind-

legs were not noticeable but were instead dragged across the floor (Figure 4). The 

application of sensors did slightly increase the speed at which desired behaviors in the 

randomly initialized and predefined sensing evolutionary runs.  

Figure 4. The locomotion of the best evolved NN from generation 1000. t represents the time it took (in 

seconds) for the quadruped to get to the particular location. 
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Figure 3: The graph shows the median of the performance of the ENN after 1000 generations. The fitness 

value indicates the average movement of the population of simulated quadrupeds. The six lines represent the 

median value of 10 evolutionary runs with different initial states. The initial states of each run were:  

predefined walking NN using sensors (W+S), predefined walking NN not using sensors (W): predefined 

stationary NN using sensors (S+S), predefined stationary NN without using sensors (S) random NN using 

sensors (R+S) and random NN without using sensors (R). Black error bars represent the 1st and 3rd quartiles 

and the dotted grey error bars represent the minimum and maximum values. 
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The phenotypic change of an increase in fitness did not reveal any drastic 

changes indicating that the evolved phenotypes were rather enhancements of 

resembling previous phenotypes. Although the evolution of randomly initialized NNs 

did not lead to the acquisition of efficient types of locomotion, the average fitness value 

was ever increasing nonetheless. Even after 5000 generations, populations still evolved 

into a better performing population [28]. However, evolving randomly initialized NNs 

with the neuroevolution strategy described in this paper is a lot less efficient than 

evolving predefined walking NNs.  

Despite the limited amount of evolutionary runs and simulation time, 

promising locomotive patterns arose when evolving predefined walking NNs. It may 

be interesting to see what behavior arises when more generations, larger populations or 

island populations are implemented. Moreover, competitive co-evolution [29,30], 

morphological change [22], additional learning algorithms, genetic drift [31], evolving 

the evolvability of agents [32], the application of incremental evolutionary methods 

[33] are a few features that may enhance the performance of the ENN for acquiring 

dynamically stable locomotion. As tendons play a huge role for animals to achieve 

effective locomotion through the reuse of kinetic energy [34] applying abstractions of 

tendons may prove useful.  

The ENN presented in this paper is able to evolve dynamically stable gaits in 

simulated quadrupeds the quickest when the initial population consists of predefined 

NNs. Future research could indicate whether standardized predefined or evolved NNs 

could be used for the rapid acquisition of efficient locomotive behavior in different 

types of simulated and actual robots.   

5. Conclusion 
The designed ENN evolved effective locomotive gaits when predefined 

walking NNs were used in the initial population. The ENN did not evolve particularly 

efficient locomotion when using other initial states and evolved less efficient without 

the implementation of sensors. The results thus indicate that predefining NNs greatly 

increases the speed of the neuroevolutionary optimization processes for the acquisition 

of dynamically stable gaits. Through improving the presented ENN and comparing it 

to other neuroevolution strategies, the ENN discussed in this paper may serve as a 

promising bio-inspired framework for the acquisition of dynamically stable locomotive 

gaits in simulated robots.  
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