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Abstract

In this article we discuss visualisation strategies for multiplex networks. Since
Moreno’s early works on network analysis, visualisation has been one of the
main ways to understand networks thanks to its ability to summarise a com-
plex structure into a single representation highlighting multiple properties of
the data. However, despite the large renewed interest in the analysis of mul-
tiplex networks, no study has proposed specialised visualisation approaches
for this context and traditional methods are typically applied instead. In
this paper we initiate a critical and structured discussion of this topic, and
claim that the development of specific visualisation methods for multiplex
networks will be one of the main drivers pushing current research results
into daily practice.
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1. Introduction

Over the last few years multiplex networks have acquired more and more
prominence as a promising research direction connecting and complementing
many different fields [? ? ? ]. Due to the high level of flexibility of multiplex
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Figure 1: Three typical visualisations of a single network: (a) focus on structure, (b) focus
on metrics, (c¢) augmented visualisation

networks and to a wide range of potential applications the theoretical analysis
of these kinds of networks is advancing fast [? 7 ? ? |, showing that
single-network theory is not sufficient to handle them. However, when it
comes to visualisation traditional schemes are still applied. Our claim is that
shifting from a single-layer to a multiplex perspective also poses new problems
concerning network visualisation and about how to handle the richer data
that multiplex networks convey. This requires new approaches challenging
some of the traditional dogmas of network visualisation.

Generally speaking the visual representation of network data has two
main goals: on the one hand a visual representation can be used as an ex-
ploratory tool to obtain relevant insights about the network structure or
network properties, on the other hand it can be used to report the results
of a pre-existing analysis in an easily accessible way. In both cases network
visualisation involves aspects of information design and geometric represen-
tation [? |. These two goals can be applied to two main aspects, leading
to completely different visualisations: we can either focus on the network
structure or represent some specific network characteristics or metrics.

Among the visualisations focusing on the network structure, graphs and
their application to social networks known as sociograms [? | have seen, so
far, the most widespread adoption. A sociogram representing people working
at the same department of a University and the relation having lunch together
is shown in Figure ??. Sociograms put a lot of emphasis on layout, because
positional differences are the most accurately perceived graphical attribute [?
| and also because some network properties like modular structure and node



centrality may emerge out of a good layout. This is the case in Figure ?7?.
For a detailed survey on graph visualisation see [? ].

While probably the most appealing, the visualisation of the network struc-
ture is not the only way to make sense of a network: sometimes it appears to
be more convenient to rely on more traditional data visualisation techniques,
especially when the network structure does not fit any standard layout or
when the network is too large. We can thus describe a network using num-
bers, either a single value or a distribution, and use traditional visualisations
not specifically developed for graphs. A simple example in this context is
the study of the degree distribution of a network, which is usually illustrated
using a log-log plot (for long tail distributions) or simple histograms like the
one about our example [unch network shown in Figure ?7.

While in this work we focus on the visualisation of the multiplex network
structure?, it is important to mention the role of network metrics in visual
analytics: the two aforementioned options can in fact be merged together,
and sociograms can be enriched with information about metrics. In Figure 77
the same lunch sociogram is again visualised, but now node sizes represent the
node degree. In this way it is possible to communicate information about the
network structure (e.g. the presence of clusters) and information regarding
single nodes (e.g. degree centrality) at the same time.

Following this idea, this article shows how to use analytical measures to
improve the structural visualisation of multiplex networks. However, we will
see that the simple application of the same principle to multiplex networks,
that is, augmenting sociograms with network metrics, does not work as well
as in single networks. On the contrary, we explore the possibility of using
network metrics to reduce, or simplify the multiplex. The underlying idea
is that multiplex networks carry overabundant information and visualising
everything may lead to noise hiding relevant knowledge. But before present-
ing the details we start our discussion from the existing naive visualisations
directly extending single-network approaches.

2. From single networks to multiplexes

When we move into a multiplex network perspective the additional com-
plexity in the added relations makes the choice of an appropriate layout more

2For some examples of visualising network metrics please refer to ?7.
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(a) A single (lunch) network (b) The full AUCS multiplex

Figure 2: One and five layers of complexity

challenging. In the following we are going to explore a real-world multiplex
network containing five different types of relationships existing among em-
ployees of a Computer Science department of a Danish University. The data
set counts 61 nodes connected over five different layers: work, leisure, coau-
thor, lunch and Facebook. More details about the dataset are provided in ?77.
Further in the article we will refer to the dataset as AUCS. In Figure 7?7 we
can see again the lunch layer of the AUCS multiplex network (left) and the
whole network with the four additional kinds of relations (right).
Comparing the two visualisations we can see how the clear structure of
the lunch network becomes more blurred and confused if we take connections
from all the layers into consideration. As an example, we have highlighted
a clearly visible cluster in the left hand side network using a black node
background. The same nodes are also black-marked in the graph with all
the multiplex connections, and we can see that the cluster has been par-
tially attracted towards the center of the figure and some of its peripheral
nodes are now more connected to other nodes outside the cluster. Network
visualisation is already a complex task for single-layer networks when they
count a large number of highly interconnected nodes. When it comes to
multilayer networks the task is even more challenging and even adopting
a 3-dimensional interactive visualisation [? | a multiplex network quickly
becomes incomprehensible as soon as it contains a few dozen nodes.
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Figure 4: Sliced visualisation, same layout

In addition, while the graph in Figure 77 still shows some structural
features, e.g., some denser locations, information about the different layers
is completely lost. Therefore, a more typical way to preserve some of the
multilayer information is to assign a colour to each layer as in Figure ?7.
However, although fancier, this figure does not add much to the flattened
uncoloured case. Even if some denser regions can still be observed it is
almost impossible to understand how those are related to the underlying
multiplex structure. In addition, it is very challenging to focus on a specific
network layer within this chaotic overlapping of edges.

Two alternative visualisations concluding our review of typical approaches
are shown in Figures 7?7 and ?77. Both methods just slice the multiplex into
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Figure 5: Sliced visualisation, independent layouts

its layers. In order to simplify a comparison between the layers, in Figure 77?7
the nodes have been placed using the same layout in each slice®>. However
if different layers contain different connections their internal structure can
become invisible. This is evident e.g. comparing the lunch layer in Figure 77
with the same layer visualised in Figure ?? (fourth slice, blue edges). If we
use a specific layout for every layer as in Figure 77 we can better appreciate
the structure of each layer but we loose the possibility of detecting structures

developing over multiple layers.

3. Augmented multiplex sociograms

In a similar way to what happens for single layer networks, analytical
measures like the ones defined in [? | can be used to increase the information
content of the graphs introduced in the previous section. The next step in our
exploration of visualisation strategies is thus to use some metrics to produce
augmented versions of the multiplex sociograms.

Figure 7?7 shows a coloured multiplex network where every node con-
tains information about its degree (node size) and the degree composition
on the various layers (pie chart). While this may look like an interesting
visualisation it is hard to claim that it provides a clear understanding of the
underlying network structure. The main issue with this visualisation can still
be described as overabundant information: edges overlap with each others
and generate an intricate pattern.

In order to remove this intricacy, we have explored alternative visuali-
sations rearranging the edges in a non-standard way so that overlapping is
prevented. An approach following the idea in [? |, that we call here a ranked

3In this specific case we have computed the common layout on the flattened graph, but
any layer can be used to this aim.
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Figure 6: Our working example augmented with multiplex measures (local degree)



sociogram, abandons the traditional sociogram visualisation — where edges
go from one node to the other — and replaces it with ranking-based posi-
tioning of nodes and edges where the ranking is based on a specific metric.
In a ranked sociogram nodes are plotted according to a chosen metric on a
classical xy plot (Figure 77 ranks them according to their aggregated degree).
Every node has a length on the x axis that is defined by a set of edges con-
necting the vertical position of node a with the vertical position of node b.
All the edges expand only on the vertical axis and show the distance between
the nodes according to the chosen ranking. Every edge is also represented
using a different colour according to its corresponding layer.

This produces a clear perception of how many connections every node has
on every single layer and how far the connected nodes are in terms of the
chosen metric. In Figure ?? the user with the highest degree (U4) is mainly
connected through the work layer, the [unch layer and the Facebook layer
while he/she has no connections on the leisure and on the coauthor layers. Tt
is also interesting to notice how U4 is connected with users with very different
degrees (as indicated by the length of the edges) while this is not happening
on the Facebook layer, spanning a shorter range of contacts. This also gives
an insight on the layers’ assortativity or dissortativity. Another interesting
element that can be noticed studying Figure 7?7 is that between the top 5
users only two (U91 and U79) show a relevant presence on the leisure layer,
which appears to be absent for the three other top users. More details about
the ranked sociogram are available in ?77.

4. Local simplification of multiplex structures

Both the node-augmented visualisation and the ranked sociogram pro-
vide some additional information on the distribution of edges into layers,
but this does not make the underlying structural representation more clear.
For example, in Figure 7?7 we can still see several unorganised edges in the
background.

An opposite way is to use analytical measures to simplify the network
visualisation instead of augmenting it. Going back to Figure 7?7 we can see
that all the layers are entirely included in the visualisation. Here we instead
propose to include only local parts of each layer. For example, assume that
for a specific user only two layers are relevant, e.g., they are the ones used
to reach most of its neighbours, or the only way to reach some of them, or
the ones defining its affiliation to some community. We can then say that
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Figure 7: Ranked sociogram of our working example



locally around that user those layers are relevant and the others are mainly
generating noise. Somewhere else there can be users with a different local
view, for which other layers are relevant and the others represent noise.

Having a way to quantify what relevant means, we can thus remove users
(and their connections) from layers that are not relevant for them and create a
new filtered multiplex providing a combination of the local views of its users.
In practice, we do not ask if two layers should or should not be merged, we
do not try to measure if they are globally similar or not, but we ask these
questions locally, for each pair of nodes, acknowledging that the answer can
change when we focus on different portions of the network.

Acknowledging this aspect we introduce sociograms based on local merg-
ing techniques. Locally merged sociograms maintain the classical look of
sociograms, as well as their intuitive nature, but redefine the edges connect-
ing the nodes. What defines an edge in this filtered sociogram is not the
existence of a relationship between node a and node b (which is more and
more probable as long as we add layers) but the existence of a connection
between nodes playing the same important role for both of them. Focusing
on specific multilayer metrics such as those defined in [? | makes it possible
to visually isolate relevant network structures hidden inside the multiplex
network.

Figure 7?7 shows a local merging sociogram defined according to net-
work /layer relevance with a threshold of 0.6. Relevance [? | computes the
ratio between the number of neighbours of a node on layer d over the total
number of its neighbours on all layers. Defining a local merging sociogram
based on this value corresponds to selecting an edge between two nodes of
the multilayer network only when a specific layer d is more relevant than
the input value for both of them. As an example, the network visualised in
Figure 7?7 shows all the existing edges connecting two nodes on a given layer
that is more relevant than 0.6. It is important to keep in mind that this
kind of visualisation considers the relevance value for the dyad and not for
the single node, therefore the edges are represented only if they belong to a
layer that is relevant for both the nodes of the dyad; this is why we call this
a local merging.

Figure 7?7 introduces a local merging network based on exclusive rele-
vance. Exclusive relevance [? | indicates the fraction of neighbours of a node
that are reachable in one step only through a specific layer d, making that
specific layer essential to ensure the full connectivity of the node. While in a
multilayer network nodes and connections are easily replicated through sev-
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Figure 8: Local merging

eral layers, exclusive relevance measures those connections that are available
only on a specific subset of the layers, e.g., on a single layer. From a node-
level perspective we can assume that within a multilayer network a layer that
shows a high level of exclusive relevance is used by the node in a different
way from the other layers. Nodes might have many reasons to maintain dif-
ferent connections in different layers and to keep them separated. Extracting
the local merging of a network based on the exclusive relevance of its layers
allows us to visualise this aspect focusing on the dyads. As in the previous
example, in Figure 7?7 only the edges belonging to a layer with an exclusive
relevance higher than a given threshold (0.3 in this case) for both the nodes
of the dyads are visualised. The visualised edges are thus only those con-
necting nodes that are both using that specific layer in a different way, in
particular, with connections that are nor replicated in any other layer.

A qualitative description of this phenomenon can contribute to clarify it:
if we look at Figure 7?7 and we examine the small clique on the bottom right
corner containing users U141, U68, U48 and U92 we notice that these users
(1) are tightly connected on the lunch network and (2) can only reach some
of their neighbours through this network. For example, U68 is connected
to U48 and U92 only because they have lunch together. If we check their
connections on the other layers we notice, from the analysis of Figure 7?7, that
they are all connected on the work layer with U4. U4 is also connected to

11
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Figure 9: Evaluation of local merging against a null model.

the four nodes on the lunch layer, even though this is not visible in Figure 7?7
because this layer’s relevance is below the thresholds used in our examples. A
possible interpretation of Figure 7?7 is that U4 is a central hub on the work
layer (this can easily be confirmed looking at Figure ??) and he/she has
lunch with many collaborators, acting as a bridge between different layers.
Nevertheless these collaborators get together only during lunches therefore
their connections with other co-workers of U4 are necessarily happening only
exploiting the lunch network.

To support our claim that local merging techniques based on both rel-
evance and exclusive relevance are able to highlight hidden clusters within
multilayer networks, we need to verify that these clusters are not random
structures emerging as a result of randomly selecting node pairs from the
different layers. More precisely, our hypothesis is that nodes for which a layer
has a high relevance tend to be localized in specific parts of the layer, that is,
they tend to form well-connected groups. In order to verify this hypothesis
we computed the transitivity value of the networks obtained through local
merging (based on both relevance and exclusive relevance) and we compared

12



those with the value obtained from a random model. The random model
is obtained as follows: for each layer and (exclusive) relevance threshold, we
count the number of nodes passing the threshold. However, while in the local
merging model we preserve these nodes (and thus the edges between them),
in the null model we randomly choose the same number of nodes, preserving
the edges among them. If the probability of being connected for a group of
nodes is not dependent on the fact that they all have high values of relevance
for that layer, then we should not be able to observe a difference with the
case where nodes are randomly chosen. To observe this difference, we use
transitivity, or clustering coefficient, which measures the probability that two
nodes that are both connected to a third node are also connected to each
other [? |.

Figure 7?7 shows how the transitivity values are consistently higher in the
measured data than in the random models, supporting our claim. The reason
why in Figure 77 the values of transitivity disappear above some thresholds
depends on the fact that for high thresholds almost all edges are removed,
the network becomes almost empty and it is no longer possible to identify
hidden structures inside it. This is particularly evident when we use exclu-
sive relevance, where it is not so common to observe people who are only
or mainly present in one of the layers: if the filter is too selective we end
up with an empty network, for which transitivity is undefined. Interestingly,
this affects randomly sampled networks more significantly, supporting again
the idea that nodes for which a layer has a high relevance tend to be localized
in specific parts of the layer. The drop in transitivity in Figure ??(a), at rele-
vance .9, can also be explained considering that the corresponding simplified
network is almost (but not completely) empty.

5. Conclusion

Generating effective visualisations of multiplex networks is an important
task in exploratory analyses and reporting. So far, methods developed for
simplex networks have often been adapted to multiplexes, using some addi-
tional information like colours and line types to differentiate layers. However,
a problem with multiplex networks is that they provide more structural in-
formation than simplex networks and different layers may not be similar,
making it impossible to find layouts which are appropriate for all of them.
As a result, even a traditional representation of just nodes and edges may
suffer from too much information condensed in a single diagram.

13



As a way to address this problem, we propose to use network properties
to simplify the multiplex. Different measures can be used, leading to different
meanings of the graphs. By comparing the results with null models we have
seen that real data contains patterns highlighted by these representations
and that are not a result of chance.

It is worth noticing that this approach is not necessarily restricted to
visualisation. As an example, modern clustering approaches for multiplex
networks try to find combinations of layers for which community structures
emerge. While this is an interesting novel direction with respect to simplex
network clustering, it may not make sense to combine two layers altogether.
Some local portions might be correlated enough to be combined, some others
might not.

As a final remark, the discussion presented in this work has only focused
on the single layers composing the multiplex. However, the simplification
measures used in our experiments can also be applied to sets of layers. This
leads to interesting combinatorial problems to be investigated in the future.
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Appendix A. AUCS dataset

The data used in the article was collected at the Department of Computer
Science at Aarhus University among the employees. The population of the
study is 61 employees (out of the total number of 142) who decided to join
the survey, including professors, postdoctoral researchers, PhD students and
administration staff.

For our study, we measured 5 structural variables, namely: current work-
ing relationships, repeated leisure activities, regularly eating lunch together,
co-authorship of a publication, and friendship on Facebook. These variables
cover different types of relations between the actors based on their interac-
tions. All relations are dichotomous which means that they are either present
or absent, without weights.

Measurements of the first three variables (off-line data) were collected
via a questionnaire which had been distributed among the employees on-
line. The measurements are results of individual assessments done by the
actors and therefore the relations were directed, however, we do not intend
to study the aspect of personal perception of the relationships and so we
decided to flatten the data into nondirectional connections. Thus, if an actor
A indicated a tie to actor B, we input an edge into the network even if actor
B did not indicate a tie to actor A. On the top of this, the respondents were
asked to provide their user information for a couple of most widespread online
networks. 77% of the respondents who filled in the questionnaire stated that
they have a Facebook account and provided their username. All respondents
provided answers to all questions which means that our multi-layer network is
complete. Information about the co-authorship relation was obtained from
the on-line DBLP bibliography database without the need to directly ask
the actors. A co-authorship of at least one publication by a pair of actors
resulted in an edge in the network. DBLP gets new data with a delay of
several months and therefore the “current working relationships” network is
quite distinct from it. Moreover, “current working relationships” network
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Work Leisure Coauthor Lunch FB
# of edges 194 88 21 193 124
# of con. comp. 2 1 8 1 1
avg. vertex deg.  6.47 3.74 1.68 6.43 7.75

Table A.1: Basic statistics computed on the sociomatrices of the 5 different relations—
number of edges, number of connected components and average vertex degree

Figure B.10: Metrics

includes other types of interactions than cooperation on papers (e.g. also
cooperation on administrative work).

Friendship relations among all the actors who stated that they have a
Facebook account were retrieved from the site using a custom application.

Finally, in Table ?? we describe some common statistical measures of the
single-layer networks. The Co-authorship network is the smallest and less
connected of all layers, Work and Lunch have the most edges and the highest
average vertex degree can be observed for the Facebook layer.

Appendix B. Visualising Multiplex network metrics

Multiplex networks analysis metrics can be measured on every single layer
or combination of layers. As a consequence every node can behave differently
on different layers, e.g., a user might be highly connected on Facebook and
have almost no followers on Twitter. Parallel coordinates are typical visuali-
sations for multi-dimensional data [? |. Figures 7?7 and ?? use two variations
of a parallel coordinates plot to visualise some of the metrics defined by [? |.
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Multiplex network analysis also introduces the possibility to investigate
the correlation between two pairs of layers belonging to the same network. A
block matrix visualisation can be used to visualise this kind of information.
Figure 7?7 shows the values of the Jaccard network correlation [? | for the
various pairs of layers of the AUCS multilayer network. While in this case
interpretation is straightforward it is still interesting to notice how following
a similar approach it is possible to analyse existing correlations not only
between pairs of layers but also between any pair of sets of layers.

Appendix C. More on the ranked sociogram

A ranked sociogram is able to convey network level information such as
the distribution within the multi-layer structure of a specific metric (in this
case the degree distribution). Figure ?? shows the ranked sociogram of the
degree distribution for two multi-layer networks generated according to an
extended Barabasi-Albert and an Erdos-Renyi model generated using the
framework in [? | and the multinet package!. What can be noted is that in
a single picture we have an overview of a large quantity of information both
about the general multiplex network (degree distribution), about the nodes
behaviour on the various levels (distribution of black and red connections)
and about the assortativity or dissortativity of the networks (length of the
edges).

4https://github.com/magnanim/multiplenetwork
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Figure C.11: Ranked sociogram on generated networks
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