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1 IT University of Copenhagen
rikj@itu.dk

2 University of Copenhagen
most@di.ku.dk

Abstract. 3 We consider the problem of multiplying two U×U matrices
A and C of elements from a field F. We present a new randomized
algorithm that can use the known fast square matrix multiplication
algorithms to perform fewer arithmetic operations than the current state
of the art for output matrices that are sparse.
In particular, let ω be the best known constant such that two dense U×U
matrices can be multiplied with O (Uω) arithmetic operations. Further
denote by N the number of nonzero entries in the input matrices while
Z is the number of nonzero entries of matrix product AC. We present

a new Monte Carlo algorithm that uses Õ
(
U2

(
Z
U

)ω−2
+N

)
arithmetic

operations and outputs the nonzero entries of AC with high probability.
For dense input, i.e., N = U2, if Z is asymptotically larger than U , this
improves over state of the art methods, and it is always at most O (Uω).
For general input density we improve upon state of the art when N is
asymptotically larger than U4−ωZω−5/2.
The algorithm is based on dividing the input into ”balanced” subproblems
which are then compressed and computed. The new subroutine that
computes a matrix product with balanced rows and columns in its output

uses time Õ
(
UZ(ω−1)/2 +N

)
which is better than the current state

of the art for balanced matrices when N is asymptotically larger than
UZω/2−1, which always holds when N = U2.
In the I/O model — where M is the memory size and B is the block size

— our algorithm is the first nontrivial result that exploits cancellations
and sparsity of the output. The I/O complexity of our algorithm is

Õ
(
U2(Z/U)ω−2/(Mω/2−1B) + Z/B +N/B

)
, which is asymptotically

faster than the state of the art unless M is large.

1 Introduction

In this paper we consider computing the matrix product AC of two matrices
A and C in the case where the number of nonzero entries of the output AC is
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sparse. In particular we consider the case where matrix elements are from an
arbitrary field and cancellations can be exploited, i.e., ”Strassen-like” methods
are allowed.

The case of sparse output is well-motivated by real-world applications such as
computation of covariance matrices in statistical analysis. In general, matrix mul-
tiplication is a fundamental operation in computer science and mathematics, due
to the wide range of applications and reductions to it — e.g. computing the deter-
minant and inverse of a matrix, or Gaussian elimination. Matrix multiplication
has also seen lots of use in non-obvious applications such as bioinformatics [18],
computing matchings [15,12] and algebraic reasoning about graphs, e.g. cycle
counting [2,3].

Our main result is a new output-sensitive Monte Carlo algorithm, that given as
input the U ×U matrices A and C computes the nonzero entries of AC with high
probability. For Z the number of nonzero output entries of AC, and N the number

of nonzero entries of A and C, our algorithm uses Õ
(
U2
(
Z
U

)ω−2
+N

)
arithmetic

operations and its I/O complexity, where memory size M and block size B are pa-
rameters in the model, is given by Õ

(
U2(Z/U)ω−2/(Mω/2−1B) + Z/B +N/B

)
.

The algorithm exploits cancellations, both to avoid computing zero entries of
the output and by calling a Strassen-like algorithms.

When the input is dense, i.e., N = U2, the RAM bound is strictly better
than all state of the art methods when Z � U and is never worse than O(Uω).
The I/O bound is strictly better than state of the art unless M is large — see
Section 1.3. We note that the algorithm works over any field, but not over any
semiring.

1.1 Preliminaries

We analyze our algorithms in the standard word-RAM model we assume that the
word size is large enough to fit a field element. We further analyze our algorithms
in the external memory model [1], where we have a disk containing an infinite
number of words and a internal memory that can hold M words. A word can only
be manipulated if it is residing in internal memory and words are transferred to
internal memory in blocks of B words at a time and the number of such block
transfers is called the I/O performance of the algorithm. Here we assume that a
word can hold a field element as well as its position in the matrix.

Let A be a U1 × U3 matrix and C be a U3 × U2 matrix over any field F,
then Ai,j is the entry of A located in the i’th row and j’th column and Ai,∗ will
be used as shorthand for the entire i’th row (A∗,i for column i). The matrix

product is given as (AC)i,j =
∑U3

k=1Ai,kCk,j . We say that a sum of elementary
products cancel if the sum over them equals zero even though there are nonzero
summands. We allow ourselves to use cancellations, i.e., ”Strassen-like” methods,
and our algorithms does not produce output results that are zero. We use log
for the logarithm with base 2 and ln for the natural logarithm and when used
in a context that requires integers, we let log stand for dloge and ln stand
for dlne. Throughout this paper we will use f(n) = Õ (g(n)) as shorthand for
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f(n) = O (g(n) logc g(n)) for any constant c. Here n stands for the input size, in
our context it can always be taken as U . We let sort(n) = O((n/B) logM/B(n/B))
be shorthand for the I/O complexity [1] of sorting n elements. Note that input
layout is irrelevant for our complexities, as sorting the input to a different layout
is hidden in Õ (·), i.e., O(sort(n)) = Õ (n/B). When we use this notation there
is usually at least a binary logarithm hidden in the Õ ()-notation and not only
the logM/B(n/B)-factor of sorting.

We will let f � g denote that f is asymptotically larger than g. Let ω denote
the real number for which the matrix product of two U × U matrices can be
computed in time O(Uω). For a hash function h : [U ]→ [d] we define the binary
projection matrix Ph ∈ {0, 1}U×d by (Ph)i,j = 1 ⇐⇒ j = h(i). Finally we say
that an algorithm has a silent failure to mean that the algorithm finished without
an error, but the output is not correct.

We will use the following easy fact about the number of arithmetic operations
FRAM(U, V,W ), and I/Os FI/O(U, V,W ) needed to multiply a U × V matrix by
a V ×W matrix.

Fact 1 (Folklore) Let ω be the smallest constant such that an algorithm to mul-
tiply two n×n matrices that runs in time O(nω) is known. Let β = min{U, V,W}.

Fast matrix multiplication has FRAM(U, V,W ) = O
(
UVW · βω−3

)
running

time on a RAM, and uses
FI/O(U, V,W ) = O

(
FRAM(U, V,W )/(Mω/2−1B) + (UV + VW + UW )/B

)
I/Os.

Proof. Assume wlog that β divides α = UVW/β. Since β is the smallest di-
mension we can divide the matrices into α/β2 submatrices of size β × β, which
can each be solved in O (βω) operations. The I/O complexity follows from an
equivalent blocking argument [10].

For U, V,W and U ′, V ′,W ′ with UVW = U ′V ′W ′ we have F (U, V,W ) >
F (U ′, V ′,W ′) if min{U, V,W} < min{U ′, V ′,W ′}, i.e., the “closer to square” the
situation is, the faster the fast matrix multiplication algorithm runs, both in
terms of RAM and I/O complexity.

1.2 Our results

We show the following theorem, that provides an output sensitive fast matrix
multiplication algorithm granted that the output is balanced.

Theorem 2. Let A and C be U × U matrices over the field F that contain at
most N nonzero entries and the product AC contains at most Z ≥ U nonzero
entries in total and at most Θ(Z/U) per row and per column. Then there exists
an algorithm for which it holds:

(a) The algorithm uses Õ
(
UZ

ω−1
2 +N

)
time in the RAM model.

(b) The algorithm uses Õ
(
UZ

ω−1
2 /(Mω/2−1B) + Z/B +N/B

)
I/Os
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(c) With probability at least 1− 1/U2 the algorithm outputs the nonzero entries
of AC.

We then show the main theorem, a fast matrix multiplication algorithm that
works on any input and is sensitive to the average number of nonzero entries in
the rows and columns of the output.

Theorem 3. Let A and C be U × U matrices over field F that contain at most
N nonzero entries and the product AC contains at most Z nonzero entries in
total. Then there exists an algorithm for which it holds:

(a) The algorithm uses time Õ
(
U2(Z/U)ω−2 +N

)
time in the RAM model.

(b) The algorithm uses Õ
(
U2(Z/U)ω−2/(Mω/2−1B) + U2/B

)
I/Os

(c) With probability at least 1− 1/U2 the algorithm outputs the nonzero entries
of AC.

The algorithm of Theorem 2 has asymptotically lower running time compared
to that of Theorem 3 for 1 < Z < U2 (for current ω) and for Z = U2 they
both match Õ(Uω). However, the algorithm from Theorem 2 requires balanced
rows and columns and in fact the algorithm from Theorem 3, which works in
the general case, is based on calling it on balanced partitions. For the sake of
simplicity we state and proof Theorem 3 for square inputs only and note that
there is nothing in our arguments prevents the generalization to the rectangular
case. To the knowledge of the authors there are no previously known output-
sensitive I/O-efficient algorithms that exploits cancellations and we outperform
the general dense as well as the optimal sparse algorithm by Pagh-Stöckel unless
M is large. We summarize the results of this section and the closest related
results in Table 1.

Result structure. The paper is split into three parts: the row balanced case,
subdivision into balanced parts, and the balanced case. After a discussion of the
related work in Section 1.3, we consider in Section 2 the case where we have
an upper bound on the number of output entries in each row of the output. In
this case we can compress the computation by reducing the number of columns,
where the magnitude of the reduction is based on the upper bound on the output
entries. Then in Section 3 we make use of the row balanced compression, by
showing that a potentially unbalanced output can be divided into such balanced
cases, which gives Theorem 3. In Section 4 we show that if there is an upper
bound on the number of output entries in both rows and columns, then we can
compress in both directions which yields Theorem 2.

1.3 Related work

Two U×U matrices can trivially be multiplied in O(U3) arithmetic operations by
U2 inner products of length U vectors. The first one to improve upon the O(U3)
barrier was Strassen [17] who for ω = log2 7 showed an O(Uω) algorithm by
exploiting clever cancellations. Since then there has been numerous advances on
ω, e.g. [16,6,20] and most recently ω < 2.3728639 was shown due to Le Gall [8].
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Method word-RAM complexity Notes

General dense O (Uω)

Lingas Õ
(
U2Zω/2−1

)
Requires boolean matrices.

Iwen-Spencer, Le Gall O
(
U2+ε

)
Requires O

(
n0.3

)
nonzeros per column.

Williams-Yu, Pagh Õ
(
U2 + UZ

)
Van Gucht et al. Õ

(
N
√
Z + Z +N

)
This paper, Thm. 2 Õ

(
UZ(ω−1)/2 +N

)
Requires balanced rows and columns.

This paper, Thm. 3 Õ
(
U2(Z/U)ω−2 +N

)
Method I/O complexity Notes

General dense Õ
(
Uω/(Mω/2−1B)

)
Pagh-Stöckel Õ

(
N
√
Z/(B

√
M)

)
Elements from semirings.

This paper, Thm. 2 Õ
(
UZ

ω−1
2 /(Mω/2−1B) + Z/B +N/B

)
Requires balanced rows and columns.

This paper, Thm. 3 Õ
(
U2(Z/U)ω−2/(Mω/2−1B) + U2/B

)
Table 1. Comparison of matrix multiplication algorithms of two U × U in the RAM
and I/O model. N denotes the number of nonzeros in the input matrices, Z the number
of nonzeros in the output matrix and ω is the currently lowest matrix multiplication
exponent.

The closest algorithm in spirit to our general algorithm of Theorem 3 is due to
Williams and Yu [22]. They recursively, using time Õ

(
U2
)
, with high probability

compute all positions of nonzero output entries. After this they compute each
output value in time O(U) for a total number of Õ

(
U2 + UZ

)
operations. This

matches the exact case of Pagh’s compressed matrix multiplication result [13],
which is significantly more involved but also gives a stronger guarantee: given
a parameter b, using time Õ

(
U2 + Ub

)
, it gives the exact answer with high

probability if Z ≤ b, otherwise it outputs a matrix where each entry is close
to AC in terms of the Frobenius norm. Our general algorithm of Theorem 3
improves upon both when Z � U .

In the case of sparse input matrices, Yuster and Zwick [23] showed how to
exploit sparseness of input using an elegant and simple partitioning method.
Their result was extended to be both input and output sensitive by Amossen
and Pagh [4], leading to a time bound of Õ

(
N2/3Z2/3 +N0.862Z0.546

)
based on

current ω. In our (non-input sensitive) case where N = U2 we are strictly better
for all U > 1 and Z > U . We note that the algorithm of Amossen and Pagh is
presented for boolean input and claimed to work over any ring, however both the
result of Yuster-Zwick and Amossen-Pagh do not support cancellations, i.e., their
bounds are in terms of the number of vector pairs of the input that have nonzero
elementary products. The above, as well as Pagh [13] and Williams-Yu [22] were

improved recently by Van Gucht et al. [19] to be Õ
(
Z +N

√
Z +N

)
operations,

stated in the binary case but claimed to work over any field. Compared to this
we use Õ

(
U2(Z/U)ω−2

)
operations by Theorem 3, which for N > U4−ωZω−5/2

improves Van Gucht et al. in the general case. For dense inputs, N = U2, this
threshold on N simplifies to Z > U (ω−2)/(ω−5/2) which holds for all positive
integers Z ≥ 1 and U > 1.
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In the balanced case, Iwen and Spencer [9] showed that if every column of
the output matrix has O(U0.29462) nonzero entries, then the matrix product can
be computed using time O(U2+ε) for constant ε > 0. Recently due to Le Gall
[8] this result now holds for output matrices with columns with at most O(U0.3)
nonzeros. In this case our balanced matrix multiplication algorithm of Theorem 2
uses time Õ

(
U2.19

)
(for ω = 2.3728639), which is asymptotically worse, but our

method applies to general balanced matrices. Compared to Van Gucht et al., in
the balanced case, we improve upon their operation count when N > UZω/2−1.
When N = U2 this always holds since Z ≤ U2.

For boolean input matrices, the output sensitive algorithm of Lingas [11]
runs in time Õ

(
U2Zω/2−1

)
, which we improve on for 1 ≤ Z < U2 by a relative

factor of Z1−ω/2 and match when Z = U2. Additionally our algorithm works
over any field. Lingas however shows a partial derandomization that achieves
the same bound using only O(log2 U) random bits, which is a direction not
pursued in this paper. The general case, i.e., dense input and output without
fast matrix multiplication allowed, multiplying two boolean matrices has time
complexity O

(
U3poly(log log)/ log4 U

)
due to Yu [21], which is an improvement

to Chans time O
(
U3 (log logU)

3
/ log3 U

)
algorithm [5]. Both are essentially

improvements on the four russians trick: 1) divide the matrix into small t × t
blocks 2) pre-compute results of all t× t blocks and store them in a dictionary.
Typically t = O(logU) and the gain is that there are (U/t)2 = U2/ log2 U blocks
instead of U2 cells.

In terms of I/O complexity, an optimal general algorithm was presented by
Hong and Kung [10] that uses O(U3/(B

√
M) I/Os using a blocking argument.

An equivalent blocking argument gives in our case where we are allowed to exploit
cancellations an I/O complexity of O(Uω/(Mω/2−1B)). This is the complexity
of the black box we will invoke on dense subproblems (also stated in Fact 1).
For sparse matrix multiplication in the I/O model over semirings, Pagh and
Stöckel [14] showed a Õ(N

√
Z/(B

√
M) algorithm and a matching lower bound.

To the knowledge of the authors the algorithm presented in this paper is the
first algorithm that exploits cancellations and is output sensitive. Our algorithm
is asymptotically better than the general dense for all 1 ≤ Z < U2 and we
match their complexity for Z = U2. Our new algorithm is asymptotically faster

than Pagh-Stöckel precisely when Z >
(
U4−ωM3/2−ω/2/N

)1/(5/2−ω)
. To simplify,

consider the case of dense input, i.e., N = U2, then our new algorithm is better
unless M much is larger than Z, which is typically assumed to not be the case.

Comparison summary. The general algorithm of Theorem 3 works over any
field and can exploit cancellations (and supports cancellation of terms). In the
RAM model it is never worse than O(Uω) and in the case of dense input, which
is the case that suits our algorithms best, we improve upon state of the art
(Pagh [13] and Williams-Yu [22]) when Z � U . For arbitrary input density we
improve upon state of the art (Van Gucht et al [19] when N � U4−ωZω−5/2. In
the I/O model our algorithm is the first output sensitive algorithm that exploits
cancellations and it outperforms the known semiring algorithms for almost the
entire parameter space.
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2 The row balanced case

Lemma 1. Let A ∈ FU ′×U and C ∈ FU×U be two matrices with U ′ ≤ U . Assume
each row of the U ′ ×U product matrix AC has at most d/5 non-zero entries. For
any natural constant c there is a data structure where

(a) initializing the data structure takes time Õ (nnz(C) + FRAM(U ′, U, d)) on the
RAM and Õ

(
sortM,B(nnz(C)) + FI/O(U ′, U, d)

)
I/Os

(b) the silent failure probability of initialization is at most U−c

(c) the data structure can answer queries for entries of (AC) in time O(log(U2+c))
(d) the data structure can report all (non-zero) entries with O(U ′sort(kU)) I/Os

Proof. We chose a parameter k (number of repetitions) by k = 6 ln(U2+c). The
data structure consists of k independent compressed versions of AC, Gi ∈ FU ′×d.
We choose k independent random (hash) functions hl : [U ]→ [d] where each hl(j)
is chosen independently and uniformly from [d]. Each hl is stored as a table in
the data structure. We compute k compressed matrices Gl = ACPhl

. See also
Algorithm 1. This computation can be achieved by scanning C and changing all
column indexes by applying the hash function. The resulting matrix C ′ with d
columns is multiplied by A using a fast dense method described in Fact 1.

There are U ′U ≤ U2 different queries that are answered using Algorithm 2.
A particular zl = (Gl)i,j is correct if no (other) non-zero entry of AC has been
hashed to the same position of Gl. Because we are hashing only within rows,
there are at most d/5 such non-zero entries. For a random hash function the
probability that a particular one does so is 1/d, so the probability that zl is
correct is at least

(1− 1/d)d/5 ≥ (1/4)1/5 ≥ 3/4 .

Here, the first inequality stems from (1 − 1/d)d approaching e−1 from below
and being ≥ 1/4 for d ≥ 2, and the second by 44 > 35. Now, the probability
of the median (or a majority vote) being false is at most that of the following
Bernoulli experiment: If heads (errors) turn up with probability 1/4 and k trials
are performed, at least k/2 heads show up. By a Chernoff-Hoeffding inequality [7,
Theorem 1.1, page 6] (equation (1.6) with ε = 1) this failure probability is at most
exp(− 1

3
k
2 ) = exp(−k/6) ≤ U−2−c. Hence a union bound over all U2 possible

queries shows that a randomly chosen set of compression matrices leads to a
correct data structure with probability at least 1− U−c.

To report all entries of AC we proceed row by row. We can assume that
all Gl are stored additionally row wise, i.e., first the first row of G1, then the
first row of G2 and so on, after that the second row of each Gl and so on. This
reordering of the data structure does not change the asymptotic running time of
the initialization phase. For row i we copy each entry gi,j′ ∈ Gl as many times
as there is an j ∈ U with hl(j) = j′ and annotate the copy with the index j.
This can be achieved by scanning if the graph of the hash function is sorted
by target element. Then all these copies are sorted mainly by the annotated
index and secondarily by their value. With this, for each j, the entries of the
Gl corresponding to (i, j) are sorted together and a median or majority vote
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can easily be computed. If desired, the zero entries can be filtered out. The I/O
complexity is obviously as claimed.

Input: Matrices A ∈ FU′×U and C ∈ FU×U

Output: k, hash functions h1, . . . , hk : [U ]→ [d],

compressed matrices Gi ∈ FU′×d

1 Set k = k = 6 ln(U2/δ)
2 for l← 1 to k do
3 Create random function hl : [U ]→ [d]

4 Create C′ ∈ FU×d, initialized to 0
5 foreach (i, j) with Ci,j 6= 0 do
6 C′i,hl(j)

+ = Ci,j ; /* C′ = CPhl */

7 Fast Multiply Gi = AC′

Algorithm 1: Initialization Balanced Rows

Input: k, Hash Functions h1, . . . , hk : U → d, i, j
Output: (AC)i,j

1 for l← 1 to k do
2 Set zl = (Gl)i,hl(j)

3 Report Median of zl
Algorithm 2: Query Balanced Rows

3 Subdividing into balanced parts

To make use of Lemma 1 for general matrices, it is important that we can estimate
the number of nonzero elements in the rows of the output:

Fact 4 ([14], Lemma 1) Let A and C be U × U matrices with entries of field
F, N = nnz(A) + nnz(C) and let 0 < ε, δ ≤ 1.
We can compute estimates z1, . . . , zU using O(ε−3N log(U/δ) logU) RAM opera-
tions and Õ(ε−3N/B) I/Os, such that with probability at least 1− δ it holds that
(1− ε) nnz([AC]k∗) ≤ zk ≤ (1 + ε) nnz([AC]k∗) for all 1 ≤ k ≤ U .

With this we can get the following data structure for potentially unbalanced
output matrices.

Lemma 2. Let A,C ∈ FU×U be two square matrices, and let N = nnz(A) +
nnz(C), Z = nnz(AC). For any natural constant c there is a data structure where
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(a) initializing the data structure takes
time Õ (FRAM(U,Z/U,U) +N) = Õ

(
U2(Z/U)ω−2 +N

)
on the RAM

and Õ
(
FI/O(U,Z/U,U)

)
I/Os

(b) the silent failure probability of initialization is at most U−c

(c) the data structure can answer queries for entries of (AC) in time O(log(U2/δ))
(d) the data structure can report all (non-zero) entries with O(Usort(kU) +

sort(U2)) I/Os

Proof. We use Fact 4 to partition the output matrix into blocks of rows, for each
of which we use the data structure of Lemma 1.

Observe that permuting the rows of AC is the same as permuting the rows
of A. We use Fact 4 with ε = .3 and δ = U1+c/2 to estimate the number of
non-zeros in row i of AC as zi. We group the rows accordingly, row i belongs
to group l if U · 2−l−1 < 1.3zi ≤ U · 2−l. We create a table that states for each
original row its group and position in the group (row in the smaller matrix) Hence
with overall probability at least 1− U−c/2, each group l contains xl rows where
the number of non-zeros is between U ·2−l−2 and U ·2−l. At the cost of sorting A
we make these at most logU matrices Al ∈ Fxl×U explicit in sparse format. We
create the overall data structure from smaller ones, one for each Rl = AlC using
Lemma 1 with c′ = c + 1. These data structures have an individual success
probability of at least 1− U−c′ , and because there are at most logU such data
structures, by a union bound, an overall success probability of 1− U−c.

The overall creation cost hinges on the cost for multiplying the smaller
matrices, i.e.,

∑
l FRAM(U, xl, 5U2−l). To bound this, we estimate xl by the upper

bound xl ≤ 4 ·Z ·2l/U which stems from U ·2−l−2 ·xl ≤ Z. For l > log(Z/U) this
bound is bigger than U and we should estimate such xl as U . This implies that
this part of the sum forms a geometric series, and asymptotically it is sufficient
to consider

log(Z/U)∑
l=1

FRAM(U, 4Z · 2l/U, 5U2−l) .

For this sum of fast matrix multiply running times we realize that the product
of the dimensions is always 20UZ, and hence each term is at most that of the
most unbalanced case. Hence we can estimate the overall running time on the
RAM as FRAM(U, 4Z/U, 5U) log(U). The same argument works for the overall
number of I/Os. By observing that the required work on A takes Õ

(
sort(U2)

)
=

Õ
(
FI/O(U,Z/U,U)

)
we get that the I/O performance of initializing is as stated.

To report all output entries, we use the reporting possibility of the smaller
data structures. That output has to be annotated with the original row number
and sorted accordingly. This yields the claimed I/O-bound.

Proof (of Theorem 3). We use the data structure of Lemma 2 with c = 2. To
produce the output RAM efficiently, we perform U2 queries to the data structure
which is Õ

(
U2
)

= Õ
(
U2(Z/U)ω−2

)
. To produce the output I/O efficiently, we

use the procedure of item (d). Because O(Usort(kU) + sort(U2)) = Õ
(
U2/B

)
=

Õ
(
FI/O(U,Z/U,U)

)
by Fact 1 we also get the claimed I/O performance.
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4 The balanced case

If the matrices are square and have d as an upper bounds on the number of
nonzero entries both in columns and row we can hash in both columns and rows.
This is beneficial because we achieve a more balanced setting of the dimensions
when calling the fast matrix multiplication algorithm.

4.1 A data structure for balanced output

Lemma 3. Let A ∈ FU ′×U and C ∈ FU×U be two matrices with U ′ ≤ U . Let
Z = nnz(AC) and N = nnz(A) + nnz(C). Assume each row and each column
of the U ′ × U product matrix AC has at most d/5 entries. Assume further that
Z > Ud/O(1). For any constant c there is a data structure where

(a) initializing the data structure takes time Õ
(
N + FRAM(

√
Ud,U,

√
Ud)

)
=

Õδ
(
UZ

ω−1
2 +N

)
on the RAM and Õ

(
N/B + FI/O(

√
Ud,U,

√
Ud)

)
I/Os

(b) the silent failure probability of initialization is at most 3U−c

(c) the data structure can answer queries for entries of (AC) in time O(log(U2+c))

(d) A batched query for up to 2Z entries can be performed with Õ ((Z)/B) I/Os.

Proof. (Sketch) The construction is as in Lemma 1 (including k = 6 ln(U2+c)),
only that both A and C are compressed using hash functions. The compression
is only down to

√
Ud > d columns and rows. Additionally to collisions within

a row or within a column, now also collision of arbitrary elements are possible.
The failure probability of all three cases can be derived just as in Lemma 1. For
the chosen parameters the sum of the three failure probabilities yields the claim.

To perform a batched query for 2Z entries, the following I/O-efficient algo-
rithm can be used. Observe that all described sorting steps are on the queries or
on compressed matrices and hence operate on O(Z) elements. We first consider
the compressed matrices individually. With a first sorting step (by row), the
queries are annotated by the hashed row. In a second sorting step they are
annotated by column. Now all annotated queries are sorted into the compressed
matrix. For each query, the corresponding entry of the compressed matrix is
extracted and annotated with the query. When this is done for all compressed
matrices, the annotated entries are sorted by the index of query and a median or
majority vote is performed.

4.2 Creating the output as sparse matrix

Unlike in the other settings, here the time to query for all possible entries of the
output matrix might dominate the overall running time. Hence, in this section
we propose an additional algorithm to efficiently extract the entries of AC that
are nonzero, relying on the bulk query possibility of the data structure.
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Lemma 4. Let A,C ∈ FU×U be two matrices. Let Z = nnz(AC) and N =
nnz(A)+nnz(C). Assume each row and each column of the U ×U product matrix
AC has at most d/5 entries. Assume further that Z > Ud/O(1). For any natural
constant c there is an algorithm that

(a) takes time Õ
(
Z +N + FRAM(

√
Ud,U,

√
Ud)

)
on the RAM

and Õ
(

sortM,B(N + Z) + FI/O(
√
Ud,U,

√
Ud)

)
I/Os

(b) the silent failure probability is at most 5U−c

Proof. For each column of AC, we create a perfectly balanced binary tree where
the leafs are the individual entries of the column. An internal node of the tree is
annotated with the information whether there is a nonzero leaf in the subtree.
A simultaneous BFS traversal of all these trees (one for each column) allows
to identify all positions of nonzero entries. The number of elements on the
“wavefront” of the BFS algorithm is at most Z. To advance the wavefront by one
level, a batched query to at most 2Z positions of the tree is sufficient. Finally,
the matrix AC itself is stored in a data structure as in Lemma 3 with failure
probability 3U−c.

Instead of annotating the tree nodes directly, we compute several random dot
products with the leaf-values. More precisely, for each leaf we choose a coefficient
uniformly from {0, 1} ⊂ F. Now, if one leaf has value r 6= 0, then with probability
at least 1/2 the dot product is non-zero: Assume all other coefficients are fixed,
leading to a certain partial sum s; now it is impossible that both s and s+ 1 · r
are zero. If we have (c+ 3) logU many such coefficients, the failure probability is
at most 1/U c+3.

Observe that for one level of the tree and one random choice, the dot products
form a matrix that can be computed as HAC for a {0, 1}-matrix H, and HA can
be computed by sorting A. Observe further that the number of nonzero entries
of the columns and rows of HAC are such that each of these matrices can be
encoded using the data structure of Lemma 3 with failure probability 3U−c−1.

If there is no failure, the algorithm, using the batch queries, achieves the
claimed running times and I/Os.

The probability that there is an encoding error in any of the matrices encoding
the trees is, for sufficiently big U , at most U−c because there are only log(U)(c+
3) log(U) < U/3 such matrices. The probability of a single tree node being
encoded incorrectly is at most 3/U c+3. Because there are U2 logU < U3/3 tree
nodes in total, all trees are correct with probability at least 1− U−c. Hence the
overall failure probability, including that the data structure for the entries of AC
failed, is hence as claimed.

Proof (of Theorem 2). We invoke Lemma 4 with c = 2. Combining the statements

about the RAM running time with Fact 1 and the calculation ZU
√
Z
ω−3

=

UZ
ω−1

2 gives the claimed RAM running time. Doing the same for the I/O bound
and using that Õ (sortM,B(N + Z)) = Õ (N/B + Z/B) gives the claimed I/O
performance.
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