
Safety, Liveness and Run-time Refinement for
Modular Process-Aware Information Systems
with Dynamic Sub Processes(Full version)?

Søren Debois1, Thomas Hildebrandt1, and Tijs Slaats1,2

1 IT University of Copenhagen
debois,hilde,tslaats@itu.dk

2 Exformatics A/S

Abstract. We study modularity, run-time adaptation and refinement
under safety and liveness constraints in event-based process models with
dynamic sub-process instantiation. The study is part of a larger pro-
gramme to provide semantically well-founded technologies for modelling,
implementation and verification of flexible, run-time adaptable process-
aware information systems, moved into practice via the Dynamic Condi-
tion Response (DCR) Graphs notation co-developed with our industrial
partner. Our key contributions are: (1) A formal theory of dynamic sub-
process instantiation for declarative, event-based processes under safety
and liveness constraints, given as the DCR* process language, equipped
with a compositional operational semantics and conservatively extending
the DCR Graphs notation; (2) an expressiveness analysis revealing that
the DCR* process language is Turing-complete, while the fragment cor-
responding to DCR Graphs (without dynamic sub-process instantiation)
characterises exactly the languages that are the union of a regular and an
omega-regular language; (3) a formalisation of run-time refinement and
adaptation by composition for DCR* processes and a proof that such re-
finement is undecidable in general; and finally (4) a decidable and practi-
cally useful sub-class of run-time refinements. Our results are illustrated
by a running example inspired by a recent Electronic Case Management
solution based on DCR Graphs and delivered by our industrial partner.
An online prototype implementation of the DCR* language (including
examples from the paper) and its visualisation as DCR Graphs can be
found at http://tiger.itu.dk:8020/.

1 Introduction

Many software systems today control critical and increasingly complex long-
running processes, often operating in unpredictable contexts. This is particularly
the case for Process-aware Information Systems (PAIS) [33] and Business Pro-
cess Management Systems (BPMS) [2], which constitute the practical context
of the present work. The research in these fields deals with studying systems
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driven by explicit process designs for the enactment and management of busi-
ness processes and human workflows, and the study of formalisms for describing
the process designs has always played a central role. Particularly popular mod-
els tend to specify explicit sequencing of business activities as flow graphs, e.g.,
Petri Nets and Workflow Nets [1], which are the closest formal counterpart to
the industrial standard Business Process Model and Notation (BPMN) [31].

However, an approach to process implementation based on flow graphs im-
plicitly assumes the initial design of a pre-specified process graph, that imple-
ments the believed best practice given the initial required set of business rules
and legal constraints. This is problematic in several ways: Firstly, the explicit
flow graph often imposes more constraints than necessary. Secondly, procedures,
rules and regulations change or the process graph turns out not to be the de-
sired practice anyway. For longer running processes, such as the management of
mortgages of a credit institution, such changes need to be reflected in running
processes. Moreover, while the flow graph may be initially verified to be compli-
ant with the given business rules and legal constraints, only some of the rules
are explicitly represented in decision points, others are implemented implicitly
in the sequencing of actions. Thus, it is typically difficult to determine how a
flow graph should be changed if some of the business rules or legal constraints
not explicitly represented in decision points are changed.

Declarative process languages [3,17] address this deficiency by leaving the
exact sequencing of activities undefined, yet specifying the constraints processes
must respect. This gives a workflow system the maximum flexibility available
under the rules and regulations of the process. In practice, the caseworker or
process engine is empowered to take what is considered the appropriate steps
(e.g. considering resource usage) for the process and situation at hand, subject
only to the constraints expressed in the process model. If the constraint language
is well designed, the constraints can directly represent the business and legal
regulations, making it easy to add or update constraints if the regulations change.
If the constraints are compiled to e.g. an automaton before execution (as in
e.g. [3]), adaptations will only take effect on new instances of the process and
not the running processes. However, run-time adaptations become a possibility
if the constraints are interpreted at run-time. This is the case for the Dynamic
Condition Response (DCR) Graphs notation, introduced in [17,28] and further
co-developed with our industrial partner Exformatics in [18,7,29,19,12].

As we shall see, DCR Graphs represent any behaviour that can be described
as the union of a regular and an ω-regular language. Conversely, it has been
shown that a DCR Graph can be mapped to a Büchi-automaton, and so DCR
Graphs can be analysed by standard automata-based model-checking techniques.

However, a workflow process may involve dynamic creation of an a priori un-
bounded number of new (sub) processes at run-time, as captured by the workflow
patterns for creation of multiple instances in [34]. While it is of course possible
to spawn new processes at run-time in any sensible electronic case management
system, the compound behaviour of old and new processes is not explicitly rep-
resented by the formal model, and thus eludes formal analysis. Hence the central
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motivation for the present paper: We need to formally understand the dynamic
creation of sub-processes, and we need to understand and control its interaction
with run-time adaptation.

Tentative steps towards such an understanding were taken in [12], where we
presented an extension of DCR Graphs to so-called hierarchical DCR Graphs,
supporting dynamic creation of sub-processes. However, the graphical represen-
tation and formalisation of DCR Graphs is hard to manage and reason about
for complex hierarchical processes composed of many parts, in particular when
the different parts are dynamically created. Also, the expressive power of hierar-
chical DCR Graphs was left open in [12], as were the computational complexity
of their refinements.

In the present paper, we contribute the following:

1. a formal theory of dynamic sub-process instantiation in declarative process
models as a conservative extension of DCR Graphs,

2. an expressiveness analysis of the formal theory, revealing that dynamic sub-
processes makes it Turing complete,

3. a notion of run-time adaptation by composition and a notion of refinement,
4. a proof that refinement is in general undecidable for processes with dynamic

sub-processes
5. a practically useful and decidable sub class of run-time refinements defined

as non-invasive adaptations

We illustrate our findings with a running example: a grant application process
of a funding agency, which was recently implemented by our industry partner
Exformatics in a DCR Graph-based commercial solution [10].

Overview of the paper: In Sec. 2 we present the DCR process language
corresponding to the DCR Graphs notation and state its expressiveness, cor-
responding exactly to languages being the union of regular and ω-regular lan-
guages. We then extend the DCR language in Sec. 3 to DCR∗, supporting dy-
namic creation of sub-processes with fresh (local) events and prove that DCR∗

is Turing complete. We address run-time adaptation by composition and refine-
ment in Sec. 4, proving undecidability of refinement in general for DCR∗ and
providing a practically useful, decidable sub-class of refinements referred to as
non-invasive adaptations. Finally, in Sec. 5, we discuss related work and con-
clude. For want of space, most proofs and some examples have been relegated
to the full version of this paper [11]. An online prototype implementation of
the process language (and all examples of the paper), with a mapping to DCR
Graphs, can be found at http://tiger.itu.dk:8020/.

2 Dynamic Condition Response (DCR) Processes

We now introduce the Dynamic Condition Response (DCR) process language.
We shall see later that this language corresponds to the DCR Graph model
[28,17]. Assume fixed universes of events E and labels L; each event e ∈ E has an
associated label `(e) ∈ L. 3 Labels will be used as a (finite) alphabet for defining

3 Unless explicitly stated, in all examples the label of an event is the event.
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the language recognized by a DCR process. A DCR process [M ] T comprises a
marking M and a term T . The syntax of both are given in Fig. 1 below.

T,U ::= f →• e condition

| f ←• e response

| f +← e inclusion

| f %← e exclusion

| T | U parallel

| 0 unit

φ ::= t | f boolean value

Φ ::= (φ, φ, φ) event state

M,N ::= M, e : Φ marking

P,Q ::= [M ] T process

Fig. 1. DCR Processes Syntax.

A term is a parallel composition of constraint and effect relations between events:

1. A condition f →• e imposes the constraint that for event e to happen, the
event f must either previously have happened or currently be excluded.

2. A response f ←• e imposes the effect that when e happens, f becomes
restless and must eventually happen or be excluded.

3. An exclusion f %← e imposes the effect that when e happens, it excludes f .
An excluded event cannot happen; it is ignored as a condition; and it need
not happen if restless, unless it is re-included by the final relation:

4. An inclusion f +← e imposes the effect that when the event e happens, it
re-includes the event f .

All four relations refer to a marking M , a finite map from events to triples of
booleans (h, i, r), referred to as the event state and indicating whether or not
the event previously (h)appened, is currently (i)ncluded, and/or is (r)estless. A
restless event represents an unfulfilled obligation: once it happens, it ceases to
be restless. As commonly done for environments, we write markings as finite
lists of pairs of events and event states, e.g. e1 : Φ1, . . . , ek : Φk but treat them
as maps, writing dom(M) and M(e), and understand M, e : Φ to be undefined
when e ∈ dom(M). The free events fe(T ) of a term T is (for now) simply the set
of events appearing in it. (This changes when we introduce local events in Sec. 3
below.) We require of a process P = [M ] T that fe(T ) ⊆ dom(M), and so define
fe(P ) = dom(M). The alphabet alph(P ) is the set of labels of its free events.

Example 1 (Grant process term). The grant application process implementation
described in [10] involves at a high-level only four events: recv(an application is
received), deadline(the current deadline for the current round has been reached),
round(the application round is (re)opened for applications), and bm(a board
meeting is held). Hereto come three constraints: 1) Applications can only be
received after a round is opened and until the deadline has been reached. 2)
After a round is opened, a board meeting must eventually be held. 3) If a round
is open, and the deadline has not yet been met, a board meeting can not be held
unless at least one application has been received. The events and constraints can
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be modelled by the following term:

T0 = recv %← deadline | recv +← round | bm←• round | recv→• bm

The first constraint is that the event deadline excludes the event recv, repre-
senting that applications can not be received after the deadline. The second
constraint is that the event round includes the event recv, representing that ap-
plications can (again) be received if the round is (re)opened. The third constraint
is that the event bm is a response to the event round, representing that a board
meeting must happen eventually if the round is opened. The last constraint is
that the event recv is a condition for bm, representing that, if the event recv
is included, an application must have been received before the board meeting
can be held. The initial state of the process is then defined by declaring that no
event has happened and no event is restless (i.e. required to happen) and every
event but recv is included. This is represented by the marking:

M0 = round : (f, t, f), deadline : (f, t, f), recv : (f, f, f), bm : (f, t, f) .

Example 2 (Event structures). A labelled prime event structure [38] can be de-
fined as a tuple E = (E,≤,#, `, L) where E is a set of events, ≤ is a partial order
on events defining the causal dependency relation (satisfying an axiom of finite
cause), # is the binary, symmetric and irreflexive conflict relation (satisfying an
axiom of hereditary conflict) and ` is a labelling function assigning every event
to a label. A finite event structure E can be represented as the DCR term

TE =
∏
e<e′

e→• e′ |
∏

e#e′∨e=e′
e %← e′

A state of an event structures is referred to as a configuration, defined as a finite,
downwards closed and conflict free set C ⊆ E of events. Define C# = {e | ∃e′ ∈
C.e#e′}. A configuration for finite event structures can then be represented by
the marking ME defined by ME(e) = (t, f, f) for e ∈ C, ME(e) = (f, f, f) for
e ∈ C# and ME(e) = (f, t, f) for e 6∈ C ∪ C#. The DCR process [ME] TE then
represent a pair of a configuration and an event structure, which indeed will
have the same behaviour as the event structure. An event structure with a set
R ⊆ E of restless events as considered in [37] is then defined in the same way,
except that the events in R will initially be restless in the marking representing
the configuration, i.e. the third component of the event state will be t.

We give semantics to DCR processes incrementally. First, the notion of an event
being enabled and what effects it has. The judgement [M ] T ` e : E, I,R, defined
(for atomic terms, parallel will be dealt with later) in Fig. 2. It should be read:
“in the marking M , the (atomic) term T allows the event e to happen with the
effects of excluding events E, including events I, and making events R restless.”

The first rule says that if f is a condition for e, then e can happen only if (1)
it is itself included, and (2) if f is included, then f previously happened. The
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[M, f : (h, i, ), e : ( , t, )] f →• e ` e : ∅, ∅, ∅ (when i⇒ h)

[M, e : ( , t, )] f ←• e ` e : ∅, ∅, {f}
[M, e : ( , t, )] f +← e ` e : ∅, {f}, ∅
[M, e : ( , t, )] f %← e ` e : {f}, ∅, ∅

[M, e : ( , t, )] 0 ` e : ∅, ∅, ∅
[M, e : ( , t, )] f ′ R f ` e : ∅, ∅, ∅ (when e 6= f)

Fig. 2. Enabling & effects. We write “ ” for “don’t care”, i.e., either true t or false f,
and write R for any of the relations →•,←•, +←,%←.

second rule says that if f is a response to e and e is included, then e can happen
with the effect of making f restless. The third (fourth) rule says that if f is
included (excluded) by e and e is included, then e can happen with the effect of
including (excluding) f . The fifth rule says that the completely unconstrained
process 0, an event e can happen if it is currently included. The last rule says
that a relation allows any included event e to happen without effects when e is
not the relation’s right-hand–side event.

Given enabling and effects of events, we define the action of respectively an
event e and an effect δ = (E, I,R) on a marking M pointwise by the action on
individual event states f : (h, i, r) as follows.

(Event action) e ·
(
f : (h, i, r))

) def
= f :

(
h ∨ (f=e)︸ ︷︷ ︸
happened?

, i, r∧(f 6=e)︸ ︷︷ ︸
restless?

)
(Effect action) δ ·

(
f : (h, i, r)

) def
= f :

(
h, (i ∧ f 6∈E) ∨ f ∈I︸ ︷︷ ︸

included?

, r ∨ f ∈R︸ ︷︷ ︸
restless?

)
That is, for the event action, if f = e, the event is marked “happened” (first
component becomes t) and it ceases to be restless (last component becomes f).
For the effect action, the event only stays included (second component) if f 6∈ E
(it is not excluded) or f ∈ I (it is included). This also means that if an event is
both excluded and included by the effect, inclusion takes precedence. Finally, f
is marked restless (third component) if either it was already restless or it became
restless (f ∈ R). We then define the combined action of an event and effect by
(e : δ) ·M = δ · (e ·M).

With these mechanics in place, we give transition semantics of processes in
Fig. 3 below, where the merge of effects δ1⊕δ2 is simply defined as the pointwise
union: (E1, I1, R1)⊕ (E2, I2, R2) = (E1 ∪ E2, I1 ∪ I2, R1 ∪R2).

We use two forms of transitions: the effect transition [M ] T
e:δ−−→ T ′ says that

[M ] T may exhibit event e with effect δ, in the process updating the term T
to become T ′. (At this stage we will always have T = T ′; we will need updates
only when we extend the calculus in Section 3 below.) The process transition

[M ] T
e−→ [N ] U takes a process to another process, applying the effect of e to

the marking M , and thus only exhibiting the event e. The [intro] rule elevates
an enabled event with an effect to an effect transition. The [par] rule merges
the effects of transitions from the two sides of a parallel; note that markings on
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[M ] T ` e : δ

[M ] T
e:δ−−→ T

[intro]
[M ] T1

e:δ1−−→ T ′1 [M ] T2
e:δ2−−→ T ′2

[M ] T1 | T2
e:δ1⊕δ2−−−−−→ T ′1 | T ′2

[par]

[M ] T
e:δ−−→ T ′

[M ] T
e−→ [e : δ ·M ] T ′

[effect]

Fig. 3. Basic transition semantics.

either side must be the same. The [effect] rule lifts an effect transition to a
process transition by applying the effect to the marking.

Process transitions gives rise to an LTS, which we equip with a notion of
acceptance defined below a run is accepting if every restless event eventually
either happens or is excluded.

Definition 3. A DCR process defines an LTS with states [M ] T and (process)

transitions [M ] T
e−→ [N ] U . A run of [M ] T is a finite or infinite sequence of

transitions [M ] T = [M0] T0
e0−→ · · · . A run is accepting iff for every state

[Mi] Ti, if whenever an event e is restless in Mi, i.e. Mi(e) = ( , , t), then

there exists some j ≥ i s.t. either [Mj ] Tj
e:δ−−→ [Mj+1] Tj+1 or e is excluded

in Mj, i.e. Mj(e) = ( , f, ). A trace of a process [M ] T is a possibly infinite

string s = (si)i∈I s.t. [M ] T has an accepting run [Mi] Ti
ei−→ [Mi+1] Ti+1 with

si = `(ei). The language lang(P ) of a process P is the set of traces of P .

Example 4 (Grant process transitions). As transitions change only marking, not
terms, we show a run by showing changes in the marking. In the table below, rows
indicate changes to the marking as the event on the left happens. Columns “h,i,r”
indicate whether an event is marked (h)appened, (i)ncluded, and/or (r)estless.
The column “Accepts?” indicates whether the current marking is accepting or
not and the final column “Enabled” indicates which events are enabled after
executing the event on the left.

Event round deadline recv bm Accepts? Enabled
happening h i r h i r h i r h i r
(none) f t f f t f f f f f t f t {round, deadline, bm}
round t t t f {round, deadline, recv}
deadline t f f {round, deadline, bm}
bm t f t {round, deadline, bm}
round t t t f {round, deadline, recv}
recv t f {round, deadline, recv, bm}
bm f t {round, deadline, recv, bm}

After the first round event, bm cannot happen because of recv →• bm. When
deadline happens, it excludes recv because of recv %← deadline, and exclusion of
recv voids the condition recv →• bm; so after deadline, bm may again happen.
When round subsequently re-includes recv, bm is again disabled. Acceptance of
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the processes changes throughout. Because of bm←• round, whenever round ex-
ecutes it makes bm restless, preventing the process from accepting until bm later
happens, ceasing to be restless. In our examples, we identify events and labels, so
the above table indicates an accepting trace 〈round, deadline, bm, round, recv, bm〉.

2.1 Expressiveness of DCR processes

In this section we will first show that the DCR process language of Section 2
characterises exactly languages that are the union of a regular and an ω-regular
language. The key idea for proving the result is encoding Büchi automata into
DCR processes (see also [28]).

Given a Büchi automaton B = (Q,Σ, δ, q0, F ) we define a corresponding term

t(B) in Fig. 4 and marking m(B) in Fig. 5. We model each transition δ : p
l−→ q

with an event (p, l, q) labelled l. At any time, only events corresponding to a sin-
gle state p are included; all other events are excluded. To change state, an event
(p, l, q) excludes all events (p, , ) and includes all events (q, , ). Acceptance
is modelled by two restless events f0, f1 which are never enabled. Whenever a
transition out of an accepting state q ∈ F happens, we toggle which of f0, f1 is
included. An accepting run of the Büchi automaton will infinitely toggle f0, f1
and thus be an accepting run of the DCR process; a non-accepting run will leave
either f0 or f1 included and restless infinitely, yielding a non-accepting DCR run.

To toggle which of f0, f1 is included, it is necessary to split each event (p, l, q)
into two copies of (p, l, q, 0) and (p, l, q, 1). Only one copy is included at any time;
a transition out of an accepting state then switches which copy is active using
suitable include an exclude relations. Let’s see how this idea is reflected in Fig. 4.

(1) Firing a transition δ : q
l−→ p out of a non-accepting state q excludes all other

transitions out of that state and includes all transitions out of p in the same

copy i. (2) Firing a transition δ : q
l−→ p out of an accepting state q excludes all

other transitions out of that state, then includes all transitions out of p in the
other copy 1− i; and finally (3) toggles which of f0, f1 is included.

t(B) =
∏

δ:q
l−→p

q 6∈F
i∈{0,1}

( ∏
δ:q

l′−→p′

(q, l′, p′, i) %← (q, l, p, i) |
∏

δ:p
l′−→p′

(p, l′, p′, i) +← (q, l, p, i)
)

(1)

|
∏

δ:q
l−→p

q∈F
i∈{0,1}

( ∏
δ:q

l′−→p′

(q, l′, p′, i) %← (q, l, p, i) |
∏

δ:p
l′−→p′

(
(p, l′, p′, 1− i) +← (q, l, p, i) (2)

| f1−i +← (q, l, p, i) | fi %← (q, l, p, i)
))
| f0 →• f0 | f1 →• f1 (3)

Fig. 4. Term t(B).
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Event Happened Included Restless

f0 f t t
f1 f f t

(q0, l, p, 0) f t f
(q 6= q0, l, p, 0) f f f

(q, l, p, 1) f f f

Fig. 5. Marking m(B).

0start 1

a

b

Fig. 6. Example Büchi automaton.

Example 5. Consider the Büchi automaton B in Fig. 6. Using the above con-
struction, we find the events and transitions in the table below. Numbers refer to
equation numbers of Fig. 4. Relations should be read left-to-top, i.e., the event
on the left sits at the left of the arrow, the event at the top sits at the right.

(0, a, 1, 0) (1, b, 0, 0) (0, a, 1, 1) (1, b, 0, 1) f0 f1
(0, a, 1, 0) →% (1) →+ (2)
(1, b, 0, 0) →% (3) →+ (4) →% (5) →+ (5)
(0, a, 1, 1) →% (1) →+ (2)
(1, b, 0, 1) →+ (4) →% (3) →+ (5) →% (5)

f0
f1

Lemma 6. A Büchi automaton B accepts an infinite string s iff the DCR pro-
cess [m(B)] t(B) does.

Proof. Any run of B is on the form

q0
l0−→ q1

l1−→ q2
l2−→ · · ·

By construction, any run of [m(B)] t(B) is on the form

[m(B) = M0] t(B)
(q0,l0,q1,0)−−−−−−−→ [M1] t(B)

(q1,l1,q2,i1)−−−−−−−→ . . .

Clearly these runs exhibit the same sequence of labels. It remains to show that
either they are both accepting or both non-accepting. Suppose the run of B is
not. Then for some n and i > n we have qi 6∈ F . But then by construction, either
f0 or f1 is restless and included in each Mi+1, and so also the run of [m(B)] t(B)
is not accepting. If instead the run of B is accepting, then there exists a state q
s.t. for all n there exists a j > n with qj = q. But then by construction also the
included and restless states in Mj and Mj+1 are disjoint, and so also the run of
[m(B)] t(B) is accepting. ut

With this Lemma, we can exploit existing results on ω-regular languages to
fully characterise the expressive power of DCR processes.

Proposition 7. The language recognised by a DCR process is the union of a
regular and an ω-regular language.
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Proof (Sketch). By Theorem 10 each DCR process has a language-preserving
encoding into a DCR Graph. But in [30], using an encoding of finite words as
infinite words using τ transitions, the language of DCR Graphs was shown to
be contained in the union of regular and ω-regular languages. ut

Proposition 8. For every language L that is the union of a regular and an
ω-regular language, there exists a DCR process recognising exactly L.

Proof (Proof sketch). For such a language, there exists a finite automaton F
recognising exactly the finite part and a Büchi automaton B recognising ex-
actly the infinite part. We adapt the above construction to one simulating F
and B simultaneously: Replace events (q, l, p, i) with “product-transition” events
((qB , qF ), l, (pB , pF ), i). To model finite acceptance, for every accepting state qF
of the F , we duplicate transition events going into qF yet again, obtaining for
these events ((qB , qF ), l, (pB , pF ), i, j for 0 ≤ j ≤ 1. For j = 0 we add relations
as usual. For j = 1, we add exclude relation to every event. Thus, firing, say
((qB , qF ), l, (pB , pF ), i, 1) when pF is accepting in F excludes every event of the
DCR process, leaving it in a terminated and accepting state.

Using the above propositions we get the promised characterisation.

Theorem 9. A language L is recognised by some DCR process iff L is the union
of a regular and an ω-regular language.

Finally, we note the connection of DCR processes to DCR Graphs [28,36,12].

Theorem 10. There exists a language-preserving bijection between DCR pro-
cesses and finite DCR graphs.

3 DCR∗ Processes: Local events and Reproduction

Below we extend the DCR process language to support dynamic creation of sub
processes. We do this by extending the syntax with local and reproductive events
as shown in Fig. 7, giving rise to the DCR∗ process language.

T,U ::= . . .
| (νe : Φ) T local event
| e{T} reproductive event

Fig. 7. DCR∗ syntax.

The local event (νe : Φ) T
asserts that e with state
Φ is local to the term T .
Here, e is binding in Φ
and T ; for reasons which
will be clear when we de-
fine accepting runs below, we
will follow the Barendregt-
convention and assume that all such local events are distinct. A reproductive
event e{T} creates, whenever the event e happens, a copy of T in parallel
(to maintain the Barendrecht-convention, every local event in the copy is α-
converted to a fresh, but identically labelled event ). 4

4 We assume an infinite number of events in E for each label in L.
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Example 11 (Grant process with reproductive and local events). We now consider
three extra requirements: 1) When an application is received, a committee must
recommend either approval or rejection to the board. 2) The committee might
withdraw an approval, by later rejecting the application, but cannot reverse a re-
jection. 3) The board cannot make a final decision until it has a recommendation
for every received application. We again use events recv and bm for receiving an
application and convening a board meeting. We declare recv to be reproductive
by adding the reproductive event recv{A}, where

A = (νapprove : (f,t, t)) (νreject : (f,t, f))
(
approve %← reject | approve→• bm

)
Because approve and reject are local, each dynamically created sub-process A will
have distinct decision events (all with the labels approve and reject though) that
cannot be constrained further outside the scope. But, approve has a condition
relation to the non-local bm, which means that each distinct approve event will
become a condition for the (global) event bm. The exclude relation from reject
to approve model that it is not possible to approve after a rejection, but nothing
disallows rejection after approval. Both events have initially the local state ”not-
happened” and ”included”. We make the approve event initially restless in its
local state, which will mean that in order for the process to be accepting either
approve must happen or be excluded (because reject happens).

The transition rules for the new constructs are given in Fig. 8. Only terms
and transition rules are extended; markings are the same.

[M, f : Φ] T
e:δ−−→ T ′ f : Φ′ = (e : δ) · (f : Φ) γ = νe if e = f , o.w. γ = e

[M ] (νf : Φ) T
γ:(δ\f)−−−−−→ (νf : Φ′) T ′

[local]

[M ] T
νe:δ−−→ T ′

[M ] T | U νe:δ−−→ T ′ | U
[par-2]

[M ] T ′′
e:δ−−→ T ′ T ∼=α T

′′

[M ] e{T} e:δ−−→ e{T} | T ′
[rep]

[M ] T
νe:δ−−→ T ′

[M ] T
νe−→ [δ ·M ] T ′

[effect-2]

Here δ\f = (E\{f}, I\{f}, R\{f}). We omit the obvious rule symmetric to [Par-2].

Fig. 8. Transition semantics for local and reproductive events.

Rule [local] gives semantics to events happening in the scope of a local
event binder. An effect on the local event is recorded in the marking in the
binder of that event. The event might have effects on non-local events, e.g., in
(νf : M) e +← f , the local f has effects on the non-local e. Thus the effects
are preserved in the conclusion, except that part of the effect which pertain
only to f . Rule [par-2] propagates a local effect through a parallel composition.
It’s possible that the effect δ mentions events in U ; however, it cannot mention
events local to U . So the effects of δ on U are fully expressed in the (eventual)
effect of δ on M . Rule [effect-2] lifts effect transitions with local events to
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process transitions. Finally, the rule [rep] implements reproductive events: If
the guarding event e happening would update the body T to become T ′, then e
can unfold to such a T ′. In DCR∗, the term does change as the process evolves.

To define accepting runs we need to track local restless events across transi-
tions. For this reason we assume the unique local events and maintain this by
α-conversion (denoted by ∼=α) of local events when a reproductive event happens,
i.e., local events duplicated by [rep] are chosen globally fresh.

Definition 12. A run of a DCR∗ process [M ] T is a finite or infinite sequence

[Mi] Ni
λi−→ [Mi+1] Ni+1 with λ = ei or λ = νei. The trace of a run is the

sequence of labels of its events, i.e., the string given by `(λi) where `(νe)
def
= `(e).

A run is accepting if whenever an event e is marked as restless in Mi respectively
a local event νe is marked as restless by its binder in Ti, then there exists some

j ≥ i s.t. either [Mj ] Tj
λi−→ [Mj+1] Tj+1 with λi = e respectively λi = νe; or the

event state of e in Mj respectively Tj has e excluded.

Example 13. A possible transition sequence for the reproductive recv{A} event
defined above in the marking M1 = recv : (f, t, f), bm : (f, t, f) is as follows.

[M1] recv{A} recv−−→ [M2] recv{A} | A1

recv−−→ [M2] recv{A} | A1 | A2 (4)
νapprove1−−−−−−→ [M2] recv{A} |

(
(νapprove1 : ( t , t, f )) (νreject1 : (f, t, f))

(5)

approve1 %← reject1 | approve1 →• bm
)
| A2

νreject2−−−−→ [M2] recv{A} |
(
(νapprove1 : (t, t, f)) (νreject1 : (f, t, f)) (6)

approve1 %← reject1 | approve1 →• bm
)(

(νapprove2 : (f, f , t)) (νreject2 : ( t , t, f))

approve2 %← reject2 | approve2 →• bm
)

bm−−→ [M3] recv{A} | · · · (7)

Here M2 = recv : ( t , t, f), bm : (f, t, f) and M3 = recv : (t, t, f), bm : ( t , t, f).
At (4), the processes A1 and A2 are copies of A where the local events approve

and reject have been α-converted to approve1, approve2 (but still labelled approve)
and reject1, reject2 (but still labelled reject) respectively, following the convention
of unique local events. Moreover, because they have not happened in the local
markings under the binders, bm cannot happen. To see this, observe that by the
[par]-rule, for the whole process to exhibit bm, every part of it must also exhibit
bm. But (νapprove1 : (f, t, t)) . . . approve1 →• bm cannot: the hypothesis of rule
[Local], that bm could happen if approve1 is considered global with marking
(f, t, t), cannot be established.

When a local approvei event happens, its local marking changes to reflect that
the event happened and is no longer restless, as indicated with grey background
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in (5). However, approve1 happening is not enough to enable bm; it is still disabled
by the other copy. Also, the entire process is not in an accepting state, since
approve2 is still restless and included. Once reject happens in the second copy
(6), excluding approve in that copy, bm is enabled and the process is in an
accepting state: of the two local approve events bm is conditional upon, one has
happened (and thus also no longer restless), and the other is excluded (and thus
also no longer required for acceptance).

3.1 Encoding of Minsky machines

We now show that DCR∗ has the full power of Turing machines by reduction
from the Halting Problem for Minsky machines [26].

A Minsky machine m = (R1, R2, P, c) comprises two unbounded registers
R1, R2; a program P , which is a list of pairs of addresses and instructions; and
a program counter c, giving the address of the current instruction. It has the
following instruction set.

inc(i, a) Add 1 to the contents of register i. Proceed to a.

decjz(i, a, b) If register i is zero, proceed to a. Otherwise subtract 1 from
register i and proceed to b.

halt Halt execution (w.l.o.g. assumed to appear exactly once).

We construct, given a Minsky machine m, a term t(m) and a marking m(m).
We model machine instructions as events. To maintain execution order, we model
program addresses explicitly as events a. These events serve only to constrain the
execution of other events; they should not themselves happen, and we prevent
them from doing so with a condition a→• a for each a. By making each instruc-
tion event e conditional on its program point a, a →• e, we ensure that e may
happen only if a is excluded. Thus, the program counter is modelled by always
having all but one a included. To move the program counter from a to b, we
re-include a and exclude b. We define a shorthand insn(e, a, b) for an instruction
event e at program point a proceeding to program point b as follows:

insn(e, a, b) = a→• e | a +← e | b %← e

Now, registers. We model each a : decjz(i, b, c) by two events: one, decjza,
which can happen only when the register is zero, and a second, decjna, which
can happen only when it is not. Then we model increments by making each
increment reproductive, replicating a new copy of decjna for every decrement
instruction a : decjz(i, b, c) in P . The copies produced by a single increment
represents the opportunity for exactly one of these instructions to decrement.
Thus, we make the copies in a single increment exclude each other. To make
sure that decjza cannot happen if the register is non-zero, that is, if no decjna

is present, we make the latter a condition of the former: decjna →• decjza.
Altogether, the term for one increment is constructed by the following function.
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(We write (Ni∈Ixi : M) for (νxi1 : M) . . . (νxin : M) when I = {i1, . . . , in}.)

one(i) =
(

N
a:decjz(i,c,d)

decjna : (f,t, f)
) ∏
a:decjz(i,c,d)

(
insn(decjna, a, d) |

decjna →• decjza |
∏

a′:decjz(i,b′,c′)

decjna
′

%← decjna
)

Adding one to a register i is accomplished by making a new copy of one(i).

inc(a, i, b) = insn(inca, a, b) | inca{one(i)}

We put it all together and define t(m) for a Minsky machine m = (R1, R2, P, c).

t(m) =
∏

a:inc(i,b)∈P

inc(a, i, b) |
∏

a:decjz(i,b,c)∈P

insn(decjza, a, b)

|
∏

a:halt∈P
a→• halt |

∏
a:I∈P

a→• a |
∏
i<R1

one(1) |
∏
i<R2

one(2)

Finally, the marking m(m) is given below. (Recall that c is the program counter.)

c a when a 6= c decjza inca halt
Happened f f f f f

Included f t t t t
Restless f f f f t

Example 14. As an example, let us consider a Minsky machine adding the con-
tents of register 2 to register 1. We’ll consider the machine (0, 1, P, 1), where P
is the program:

1 : decjz(2, 3, 2)
2 : inc(1, 1)
3 : halt

Applying the above construction, we get the following term (split out in a
table for readability).∏

a:inc(i,b)∈P

inc(a, i, b)
∏

a:decjz(i,b,c)∈P

insn(decjza, a, b)

2→• inc2 1→• decjz1
2 %← inc2 1 +← decjz1

1 +← inc2 3 %← decjz1

inc2{0}∏
a:halt∈P

a→• halt
∏
a:I∈P

a→• a
∏
i<R1

one(1)
∏
i<R2

one(2)

3→• halt 1→• 1 0 (νdecjn1 : (f,t, f))
2→• 2 1→• decjn1
3→• 3 1 +← decjn1

2 %← decjn1

decjn1 →• decjz1
decjn1 %← decjn1
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We emphasise that in the column Πi<R2
one(2), all instances of decjn1 are within

the scope of the binder and thus local.

This encodes a Minsky machine as a DCR∗-process:

Theorem 15. A Minsky machine m halts iff [m(m)] t(m) has an accepting run.

Proof. (outline) The proof is based on a bisimulation relation between finite ex-
ecution traces of the Minsky machine m and reachable markings of the encoding
[m(m)] t(m). First we observe that in every reachable marking of [m(m)] t(m)
exactly one of the program address events will be included and exactly one event
is enabled. The bisimulation relation will relate an execution trace of the Minsky
machine ending in address j to a marking in which that event is excluded. Next
we prove that for every pair, the machine can perform an instruction iff the
encoding can execute the corresponding event, and that the form of the process
t(m) is preserved as well as the global marking m(m), except that instruction
events are being recorded as executed (and excluded in the case of decjn) is
preserved by steps. It follows that the restless halt event can be eventually
executed if and only if the machine can execute the halt command.

Example 16. As an example, let us consider a Minsky machine adding the con-
tents of register 2 to register 1. We’ll consider the machine (0, 1, P, 1), where P
is the program:

1 : decjz(2, 3, 2)
2 : inc(1, 1)
3 : halt

Applying the above construction, we get the following term (split out in a
table for readability).∏

a:inc(i,b)∈P

inc(a, i, b)
∏

a:decjz(i,b,c)∈P

insn(decjza, a, b)

2→• inc2 1→• decjz1
2 %← inc2 1 +← decjz1

1 +← inc2 3 %← decjz1

inc2{0}

∏
a:halt∈P

a→• halt
∏
a:I∈P

a→• a
∏
i<R1

one(1)
∏
i<R2

one(2)

3→• halt 1→• 1 0 (νdecjn1 : (f,t, f))
2→• 2 1→• decjn1
3→• 3 1 +← decjn1

2 %← decjn1

decjn1 →• decjz1
decjn1 %← decjn1

We emphasise that in the column Πi<R2
one(2), all instances of decjn1 are within

the scope of the binder and thus local.

15



4 Run-time Adaptations by Composition and Refinement

We now turn to investigating run-time refinement and adaptations of DCR∗

processes by composition. We shall find that, as a consequence of the Turing-
completeness of DCR∗, refinement is in general undecidable. We however identify
and exemplify a practically useful, decidable sub-class of refinements, which we
call non-invasive adaptations.

To define composition of processes, we need to define merge of markings:

(M1, e : m)⊕ (M2, e : m) = (M1 ⊕M2), e : m

(M1, e : m)⊕M2 = (M1 ⊕M2), e : m when e 6∈ dom(M2)

Note that merge on markings is partial, since it is only defined on markings
that agree on their overlap. When the merge of the markings of two processes is
defined, we say that the processes are marking compatible.

Definition 17. Given marking compatible DCR∗ processes [M ] T and [N ] S
their composition is defined as [M ] T ⊕ [N ] S = [M ⊕N ] T | S.

Example 18. Suppose that as the grant process of Example 1 runs, e.g. just
after the round has been opened, a new requirement comes up: For regulatory
reasons, a board meeting must eventually be followed by an audit. We model
this constraint by a new event, audit, which must be a response to bm. As we
are introducing a new event, we must also introduce additional marking. The
following process R1 embodies the adaptation we wish to achieve.

R1 = [bm : (f, t, t), audit(f, t, f)] audit←• bm

Assume the process P = [M1] T1 is the process reached after the first step of

Example 4, i.e. [M0] T1
round−−−→ P . We can then adapt P to include R1 simply by

composing the two processes:

P1 = P ⊕R1 = [M1, audit : (f, t, f)] T1 | audit←• bm

As a second example, suppose further that it is also decreed that during an
audit, no further applications can be received. We adapt P1 with R2 as follows:

R2 = [recv : (f, t, f), audit : (f, t, f), pass : (f, t, f)] recv %← audit | recv +← pass

P2 = P1 ⊕R2

= [M1, audit : (f, t, f), pass : (f, t, f)] T1 | audit←• bm
| recv %← audit | recv +← pass

When we extend the set of requirements by a (run-time) adaptation of P
to P ′, we often want to ensure that the results is a refinement of the existing
requirements, meaning that the old set of requirements is upheld. Informally, the
adapted process does not exhibit behaviour disallowed by P . We cannot simply
formulate refinement by language inclusion lang(P ′) ⊆ lang(P ), since we may
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not only add new constraints, but also new events (and thus new labels), like
audit in the above example. Instead, we define refinement as language inclusion
only w.r.t. the alphabet of P . In doing so we employ the following notation.

Notation. Given a sequence s, write s|Σ for the largest sub-sequence s′ of s s.t.
s′i ∈ Σ; e.g, if s = AABC then s|A,C = AAC.

Definition 19. Given DCR∗ processes P and P ′, we say that P ′ is a refinement
of P iff lang(P ′)|alph(P ) ⊆ lang(P ).

When merging in new constraints P ′ to a process P gives rise to a refinement
we will say P ′ is conservative for P , as defined formally below.

Definition 20. Given marking compatible DCR∗ processes P and Q, we say
that Q is conservative for P iff P ⊕Q is a refinement of P .

Example 21. Continuing the above example, we now see a fundamental distinc-
tion between the adaptation by R1 and R2: the former refines P , whereas the
latter does not refine P1. To see this, observe for R1 that it only makes P2 less
accepting (because of the potential restlessness of the new event audit). For R2,
observe that P1 ⊕R2 has the following accepting execution:

P1 ⊕R2
audit−−−→ bm−−→ audit−−−→

Here audit excludes recv, and so enables bm to execute; bm in turn makes audit
restless, so after a second audit, we have an accepting trace t = 〈audit, bm, audit〉.
However, bm cannot be the first event of a trace of P1, because it is conditional
on the non-executed recv. Formally, we found a counter-example to refinement:

〈audit, bm, audit〉|alph(P1) = 〈bm〉 6∈ lang(P1)

Inspecting the adaptation R2 more closely, one see that the problem comes from
the dynamic exclusion of the recv event, since it not only makes the reception of
applications impossible, but also enables events such as bm that are conditional
on recv. A better way is to block recv by introducing a new condition:

R′2 = [recv : (f, t, f), audit : (f, t, f)] audit{(νpass : (f, t, f)) pass→• recv}

Here, once audit happens, recv is barred from executing until the local event pass
has happened. The corresponding adaptation P2 ⊕R2 is a refinement.

Unfortunately the property of one process being conservative for another is
undecidable:

Theorem 22. It is undecidable whether a DCR∗-process P is conservative for
a DCR∗-process Q.

Proof. Let m be a Minsky machine, and take M = [m(m)] m(t) to be the
encoding of m as a DCR∗ process following Theorem 15. Take P to be the
process P = [] (νe : (f, t, f)) e→• e, with e labelled halt. We show that m is
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terminating iff M is not conservative for P . Clearly lang(P ) = ε, that is, the
only trace of P is the empty trace. By Theorem 15, the encoding M of m has
a trace exhibiting the label halt iff m terminates, so lang(P ⊕M)|alph(P ) has a
non-empty trace iff m terminates. It follows that lang(P ⊕M)|alph(P ) ⊆ lang(P )
iff m does not terminate, and so M is conservative for P iff m does not terminate.

Fortunately, we have identified a large class of practically useful refinements,
which we dub non-invasive adaptations.

Definition 23 (Non-invasive adaptation). Let P1 = [M1] T1 and P2 =
[M2] T2 be processes. We say that P1 non-invasive for P2 iff

1. For every context C(−), such that T1 = C(e →% f) or T1 = C(e →+ f),
either f is bound in C(−) or f 6∈ fe(P2); and

2. For every label l ∈ alph(P1) ∩ alph(P2), no bound event of T1 is labelled l,
and if e ∈ fe(P1) is labelled l, then e ∈ fe(P2).

It’s straightforward to verify that non-invasiveness is decidable, and that R1

and R′2 are non-invasive adaptations for P and P1 respectively, whereas R2 is
not for P1 (because of the exclusion of bm).

Moreover, we can indeed prove that non-invasive adaptations are conserva-
tive, and thus gives rise to refinements.

We define free events and alphabet for DCR∗ processes.

Definition 24. The free events fe(T ) of a term T is defined recursively as fol-
lows.

fe(e R f) = {e, f}
fe(T | U) = fe(T ) ∪ fe(U)

fe(0) = ∅
fe((νe : Φ) T ) = fe(T ) \ {e}

fe(e{T}) = {e} ∪ fe(T )

The free events of a process fe([M ] T ) is simply fe([M ] T ) = dom(M); we main-
tain the requirement that a process [M ] T has fe(T ) ⊆ dom(M). The alphabet
alph(P ) of a process is the set of labels associated with its events, defined recur-
sively as follows.

alph(e R f) = {`(e), `(f)}
alph(T | U) = alph(T ) ∪ alph(U)

alph(0) = ∅
alph((νe : Φ) T ) = {`(e)} ∪ alph(T )

alph(e{T}) = {`(e)} ∪ alph(T )

The following Lemma states that transitions preserve free events and alphabet.
We use λ to range over effect transition actions and γ to range over process
transition actions.
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Lemma 25. Transitions [M ] T
λ−→ T ′ and [M ] T

γ−→ [M ′] T ′ preserve free events
and alphabet, that is fe(M) = fe(M ′), fe(T ) = fe(T ′), alph(T ) = alph(T ′), and
alph(M) = alph(M ′).

Proof. Preservation of free events and alphabet of terms for effect transitions
follows by easy induction on the derivation of the transition. For preservation
for process transitions, observe that by cases on the rules admitting a transition

[M ] T
γ−→ [M ′] T ′, we must have dom(M) = dom(M ′) by definition of the action

operator − ·M ; the desiderata now follows.

The free events of a DCR∗ term fe(T ) is its set of non-bound events; we still
require of a process [M ] T that fe(T ) ⊆ dom(M). The alphabet alph(P ) of a
process P is the set of labels of its free and bound events. First observe that
transitions do not introduce new constraints or effects on free events.

Lemma 26 (Transitions reflect relational sub-terms). If [M ] T
λ−→ T ′ and

T ′ = C ′(e R f), then there exists a context C(−,−) s.t. T = C(e R f) with f
free in C ′ iff it is in C.

Proof. Easy induction on the derivation of the transition.

Next we prove that for processes that are composed of two processes, the mark-
ing can be canonically separated in the three disjoint parts: The events only
occurring in the first process, the events that are shared, and the events only
occurring in the second process.

Definition 27 (Separation of Processes). Let P = [M ] T1 | T2. A separa-
tion of P comprises disjoint markings M1,M2, S such that M = M1 ⊕ S ⊕M2,
that fe(T1) ∩ fe(T2) ⊆ dom(S), and that fe(Ti) \ fe(T3−i) ⊆ dom(Mi).

Lemma 28 (Canonical Separation). Let P1 = [M1] T1 and P2 = [M2] T2
with P1 ⊕ P2 defined. There exists a unique separation N1, N2, S of P1 ⊕ P2

satisfying dom(Ni) = dom(Mi)\dom(M3−i) and dom(S) = dom(M1)∩dom(M2).
We call this separation the canonical separation of P1 ⊕ P2 for P1, P2.

Lemma 29. Let P = [M ] T1 | T2 = P1 ⊕ P2 with Pi = [Mi ⊕ S] Ti. Suppose
M1, S,M2 is the canonical separation of P for P1, P2, and suppose we have a
transition

[M ] T1 | T2
λ−→ T ′ or [M ] T1 | T2

γ−→ [M ′] T ′ .

Then the following holds:

1. For some T ′1, T
′
2 we have T ′ = T ′1 | T ′2.

2. There exists a unique separation M ′1,M
′
2, S
′ of [M ′] T ′ with dom(Mi) =

dom(M ′i) and dom(S) = dom(S′).
3. This separation satisfies alph([Mi ⊕ S] Ti) = alph([M ′i ⊕ S′] T ′i )
4. This separation is canonical of [M ′] T ′ for P ′1 = [M ′1 ⊕ S′] T ′1 and P ′2 =

[S′ ⊕M ′2] T ′2.
5. If P2 non-invasive for P1, then also P ′1 non-invasive for P ′2.
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Proof. Note that only the rules [par] and [par-2] allows term transitions for a
term on the form T1 | T2; part 1 is then immediate by inspection of these rules;
and part 2 and 3 follows from Lemma 25. Part 4 is then immediate from parts
2 and 3. Part 5 follows (1) by Lemma 26 and (2) by parts (2–4) and Lemma 25.

We will need the following auxiliary ordering on markings with identical
domains: Smaller markings have more restless events.

Definition 30. We order states (h, i, r) v (h′, i′, r′) iff h = h′, i = i′ and r′ = t
implies r = t. We order markings M v N point-wise when dom(M) = dom(N).

Lemma 31. If M v N and both [M ] T and [N ] T are processes, then:

1. [M ] T ` e : δ iff [N ] T ` e : δ;

2. [M ] T
λ−→ T ′ iff [N ] T

λ−→ T ′; and

3. For every process transition [M ] T
γ−→ [M ′] T ′, there exists a unique N ′

s.t. [N ] T
γ−→ [N ′] T ′. This N ′ satisfies M ′ v N ′.

Proof. Part 1 is immediate by Definition of “`”. Part 2 then follows by induction
on the derivation of the term transition, using part 1 in the base case [Intro].
Part 3 follows by cases on the process transition rules [Effect] and [Effect-2],
observing that for any M v N and any event or effect x, x ·M v x ·N .

Lemma 32. Both term and process transitions are unique in the following sense:

1. If [M ] T
γ:δ−−→ T ′ and [M ] T

γ:δ′−−→ T ′′ then δ = δ′ and T ′ = T ′′.

2. If P
γ−→ Q and P

γ−→ Q′ then Q = Q′.

Proof. (1) By induction on the derivation of the transition. For the base case,
[intro], by assumption we have

[M ⊕N ] T
e:δ−−→ T and [M ⊕N ′] T e:δ′−−→ T ,

with M ⊕ N = M ⊕ N ′ and [M ] T ` e : δ and [M ] T ` e : δ′. We now find by
cases on T and inspection of the rules in Figure 2 that T = T ′ and δ = δ′.

The cases [par], [par-2], and [rep] cases are straightforward; we exemplify

with [par-2]. Suppose [M ] T | U νe:δ1−−−→ T1 and [M ] T | U νe:δ2−−−→ T2. By [par-2]

we must have T1 = T ′1 | U and T2 = T ′2 | U , and moreover [M ] T
νe:δ1−−−→ T ′1 and

[M ] T
νe:δ2−−−→ T ′2. But then by IH δ1 = δ2 and T ′1 = T ′2 whence T1 = T2.

Finally, [local]. Suppose

[M ] (νf : Φ) T
γ:δ1−−→ T1 and [M ] (νf : Φ) T

γ:δ2−−→ T2 .

By [local] we must have

[M,f : Φ] T
e:δ1−−→ T ′1 and [M,f : Φ] T

e:δ2−−→ T ′2 ,
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with T1 = (νf : Φ1) T ′1 and T2 = (νf : Φ2) T ′2. By IH δ1 = δ2 and T ′1 = T ′2. It
remains to prove that also Φ1 = Φ2. But again by [local] we have f : Φ1 =
(e : δ1) · (f : Φ) = (e : δ2) · (f : Φ) = f : Φ2.

(2) Straightforward by inspection of the rules [effect] and [effect-2] using
part (1) of this Lemma.

Lemma 33 (Weakening). Suppose [M ⊕N ] T
λ−→ T ′. If λ = e : δ and fe(T )∪

{e} is disjoint from dom(N), or λ = νe : δ and fe(T ) is disjoint from dom(N),

then also [M ] T
λ−→ T ′.

Proof. By induction on the derivation of the transition.
For [intro], note that we must have λ = e : δ and for some M ′, N ′ with

M ′ ⊕N ′ = M ⊕N that

[M ⊕N ] T
e:δ−−→ T ′ and [M ′] T ` e : δ

By inspection of the rules for the enabling relation in Figure 2 we find that
dom(M ′) ⊆ fe(T ) ∪ {e} and so dom(M ′) disjoint from dom(N) and so M =

M ′ ⊕M ′′ for some M ′′, whence [M ] T
λ−→ T ′.

For [par] we have for some δ1, δ2 that λ = e : δ1 ⊕ δ2 with

[M ⊕N ] T1
e:δ1−−→ T ′1 and [M ⊕N ] T2

e:δ2−−→ T ′2

and fe(T1 | T2)∪ {e} disjoint from dom(N), so also fe(T1)∪ {e} and fe(T2)∪ {e}
disjoint from dom(N). By IH we find then transitions

[M ] T1
e:δ1−−→ T ′1 and [M ] T2

e:δ2−−→ T ′2

establishing by [par] a transition [M ] T1 | T2
e:δ1⊕δ2−−−−−→ T ′1 | T ′2.

For [local] we are given a transition

[M ⊕N ] (νf : Φ) T
γ(δ\f)−−−−→ (νf : Φ′) T ′ .

such that for some e

[M ⊕N, f : Φ] T
e:δ−−→ T ′ and f : Φ′ = (e : δ) · f : Φ

and either e = f and γ = νe or γ = e. In the former case, we have by assump-
tion fe(T ) = fe((νf : Φ) T ) disjoint from dom(N) and by the bound variable
convention we may assume e = f also not in the domain of dom(N). Hence

fe(T ) ∪ {e = f} also disjoint from N and by IH we have [M,f : Φ] T
e:δ−−→ T ′

which by [local] yields the requisite transition. In the latter case, we have be-
cause γ = e that fe(T ) ∪ {e} = fe(f{Φ}T ) ∪ {e} disjoint from N and again by
IH we find the requisite transition.

Finally, the cases [rep] and [par-2] are straightforward applications of IH,
noting for the former that fe(T ) = fe(e{T}) and for the latter that fe(T ) ⊆
fe(T | U) and so in both cases disjointness with N is preserved as we move to
the hypothesis.
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Lemma 34. If [M ] T
γ:δ−−→ T ′ with δ = (X, I,R) then e ∈ X resp. e ∈ I implies

T = C(f →% e) resp. T = C(f →+ e) with e not bound in C(−).

Proof. Easy induction on the derivation of the transition.

Lemma 35. Let P be non-invasive for Q, and suppose M1, S,M2 is the canon-

ical separation of P ⊕Q = [M1 ⊕ S ⊕M2] T1 | T2. If also [M1 ⊕ S ⊕M2] T1
γ:δ−−→

T ′1 with δ = (X, I,R), then X, I are both disjoint from fe(Q).

Proof. Immediate from the Definition of non-invasiveness and Lemma 34.

Lemma 36. Let P be non-invasive for Q, and suppose M1, S,M2 is the canon-

ical separation of P ⊕ Q for P,Q. If also P ⊕ Q = [M1 ⊕ S ⊕M2] T1 | T2
γ:δ−−→

T ′1 | T ′2 then the following are true.

1. If `(γ) ∈ alph(Q) then for some δ′ we have [S ⊕M2] T2
γ:δ′−−→ T ′2 and (γ : δ) ·

(S ⊕M2) v (γ : δ′) · (S ⊕M2).
2. If `(γ) 6∈ alph(Q) then (γ : δ) · (S ⊕M2) v S ⊕M2.

Proof. We proceed by cases on γ; suppose first γ = νe. If νe is a binder of
T2, we must have `(γ) ∈ alph(Q) and the transition must arise by (the rule
symmetric to) [par-2]. By definition of canonical separation we have fe(T2) dis-

joint from dom(M1) and so by Lemma 33 we find a transition [S ⊕M2] T2
νe:δ−−→

T ′2, altogether establishing (1). If instead νe is a binder of T1, we must have
`(γ) 6∈ alph(Q) lest non-invasiveness be contradicted. In that case we must have
a transition

[M1 ⊕ S ⊕M2] T1
νe:δ−−→ T ′1

by Lemma 35 we find (γ : δ) · (S ⊕M2) v S ⊕M2.
Suppose instead γ = e. In this case the transition must be derived by [par],

and so by Lemma 32 there exists unique δ1, δ2 such that

[M1 ⊕ S ⊕M2] T1
e:δ1−−→ T ′1 and [M1 ⊕ S ⊕M2] T2

e:δ2−−→ T ′2

Suppose for (1) that `(e) ∈ alph(Q). By non-invasiveness and canonicity of sepa-
ration we then have that e 6∈ dom(M1) and that fe(T2) is disjoint from dom(M1),
and so by Lemma 33 we have a transition

[S ⊕M2] T2
e:δ2−−→ T ′2

By Lemma 35 it now follows that (e : δ1 ⊕ δ2) · (S ⊕M2) v (e : δ2) · (S ⊕M2).
Suppose instead for (2) that `(e) 6∈ alph(Q). It follows that e 6∈ fe(T2), and so
δ2 = (∅, ∅, ∅). We now find (γ : δ) · (S ⊕M2) v S ⊕M2 by Lemmas 33 and 35.

Lemma 37. Let P be non-invasive for Q, and suppose M1, S,M2 is the canon-

ical separation of P ⊕ Q for P,Q. If also P ⊕ Q = [M1 ⊕ S ⊕M2] T1 | T2
γ−→

[M ′1 ⊕ S′ ⊕M ′2] T ′1 | T ′2 = R and M ′1, S
′,M ′2 is the canonical separation of R for

[M ′1 ⊕ S′] T ′1 and [S ⊕M ′2] T ′2; then the following are true.
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1. If `(γ) ∈ alph(Q) then [S ⊕M2] T2
γ−→ [N ] T ′2 where S′ ⊕M ′2 v N .

2. If `(γ) 6∈ alph(Q) then S′ ⊕M ′2 v S ⊕M2.

Proof. Immediate from the preceding Lemma and rules [effect] and [effect-2].

Proof (Of Theorem ??). Let M = M1 ⊕ S ⊕M2 be the canonical separation of
P ⊕Q for P,Q, and consider a finite or infinite run of R0 = P ⊕Q = [M ] T1 | T2:

R0
γ0−→ R1

γ1−→ . . .

By induction on i using Lemma 29, we can write each Ri as

Ri = [M i
1 ⊕ Si ⊕M i

2] T i1 | T i2 = ([M i
1 ⊕ Si] T i1)⊕ ([M i

2 ⊕ Si] T i2)

where alph([M i
1 ⊕ Si] T i1) = alph(P ); M i

1, S
i,M i

2 is the canonical separation of Ri
for [M i

1 ⊕ Si] T i1 and [M i
2 ⊕ Si] T i2; alph([Si ⊕M i

2] T i2) = alph(Q); and [M i
1] T i1

is non-invasive for [M i
2] T i2.

We prove by induction that there exists a sequence N i satisfying (a) N0 =
S0 ⊕M0

2 , (b) Si ⊕M i
2 v N i, and (c)

N i+1 = N i when `(γi) 6∈ alph(Q)

[N i] T i2
γi−→ [N i+1] T i+1

2 when `(γi) ∈ alph(Q)

The Theorem then follows. We have immediately N0, obtaining (a). For (b) and
(c), consider some i > 0, and assume first `(γi) 6∈ alph(Q). By Lemma 37, Part
2, we then have Si+1 ⊕Mi+1 v Si ⊕Mi v Ni = Ni+1, obtaining (b) and (c).
Assume instead `(γi) ∈ alph(Q). Then take N i+1 = N where N is given by
Lemma 37, Part 1, immediately obtaining (b) and (c).

Non-invasiveness adaptations admits a large class of practically important
refinements. As illustrated by the adaptations given by R1 and R′2, the permitted
adaptations correspond to dynamically adding an arbitrary new process to the
running process, and adding arbitrary condition and response relations between
events of the composed process. Even though existing events can not be excluded
by new events, it is possible to arbitrarily block events of the original process.

Within the application area of business process modelling, it is a common
change to add such possibility/requirement of taking additional actions inter-
leaved between existing actions. Indeed, the need for a non-invasive, run-time
adaptation showed up in the implementation of the grant application process [10].
After the start of an application round, a forgotten requirement was realised: If
the account number of a grant holder is changed, then the accountant must ver-
ify, that the account belongs to the grant holder before the next payment. The
adaptation was made to the DCR Graph representing the run-time state of the
grant application system without terminating or restarting any systems.
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5 Conclusion, Related and Future Work

We studied the interplay of dynamic process instantiation, run-time adaptation
and refinement in the context of a declarative event-based process language,
generalising our prior work on DCR Graphs co-developed and implemented by
our industrial partner. Specifically, we proved that dynamic process instanti-
ation makes the language Turing-complete, and as a consequence, refinement
undecidable. We then identified a large, decidable and practically useful class of
refinements referred to as non-invasive adaptations. All findings and problems
were illustrated by a running example extracted from a real case.

Related Work. The DCR language is as we have seen closely related to DCR
Graphs [28,36,17], which descend from event structures, and thus have rela-
tions to Petri Nets. Petri Nets have been extended to allow modular definition
(e.g. via shared transitions [25]) and to represent infinite computations and ω-
regular languages (e.g., Büchi Nets [14]). However, Petri nets introduce the in-
tentional construct of places marked with tokens, as opposed to event structures
and DCR∗ processes, which only rely on causal and conflict relations between
events. Variants of event structures with asymmetric conflict relation relates to
the asymmetric exclude relation of DCR processes, including extended bundle
event structures [23,16], dual event structures [22,24], asymmetric event struc-
tures [6], and precursor event structures [15]. Automata based models like Event
automata [32] and local event structures [20] also allow asymmetric conflicts,
but use explicit states and do not express causality and conflicts as relations be-
tween events. Besides the early work on restless events in [37], we are not aware
of other published work generalising event-structures to be able to express live-
ness properties, nor to distinguish between events that may and events that must
eventually be executed. Reproductive events of the DCR∗ process language relate
to replication in process calculi and higher-order Petri nets [21]. We believe to
be the first to combine higher-order features and liveness.

Run-time adaptation has been studied also for Petri nets [35] and process
calculi [5,8,9], but tends to require predefined adaptation points, and often deal
with adaptations via higher-order primitives. In contrast, adaptation in DCR∗ is
dealt with by composition, which due to the declarative nature allow for cross-
cutting adaptations without the need for pre-specified adaptation points.

In the BPM community, the seminal declarative process language is De-
clare [3,4]. As Declare is based on mapping primitives to LTL, which are then
mapped to automata, it necessarily distinguishes between run-time and design-
time. In contrast, in DCR processes, design-time and run-time representation
is literally the same. Declare has a relatively large set of basic constraints, the
formal expressiveness of which is clearly limited by that of LTL, while DCR
processes with only 4 basic constraints offers the full expressiveness of regular
and ω-regular languages. A different approach is [27], which provides a mapping
from Declare to the CLIMB, which allows the use of its reasoning techniques for
support and verification of Declare processes at both design- and run-time.

Imperative process models such as BPMN [31] have supported dynamic sub-
processes for some time now, they are only recently being studied for declarative
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languages [39]. Here, sub-processes do not have independent life cycles, that is,
when a sub-process is spawned, it must run to completion before its super-process
may resume. Interestingly, it is noted in ibid. that extending the model with
sub-processes seems to increase its expressive power; we formally confirm that
supposition here, finding DCR graphs with sub-processes to be Turing complete.

Future work. DCR∗ processes as defined here only interact via shared events.
We are currently working on adding interaction between concurrent events, la-
belled with send and receive labels as found e.g. in the π-calculus, thereby lifting
the results of the present paper to π-like languages. Towards better analysis of
the infinite-state DCR∗ language, we have initiated work on exploiting the idea
of responses and restless events in the domain of behavioural types [13] and run-
time monitoring [28]. The DCR∗ process language would benefit from a closer
investigation of its relation to modular [25] and higher-order Petri Nets [21]. Fi-
nally, time constraints and more general adaptations as initiated in [19,29], e.g.
allowing to remove constraints and events should be further investigated.

Acknowledgments. We thank the anonymous reviewers for helpful comments.
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9. Bravetti, M., Giusto, C.D., Pérez, J.A., Zavattaro, G.: Adaptable processes. Logical
Methods in Computer Science 8(4) (2012)

10. Debois, S., Hildebrandt, T., Marquard, M., Slaats, T.: A case for declara-
tive process modelling: Agile development of a grant application system. In:
EDOCW/AdaptiveCM ’14. pp. 126 – 133. IEEE (September 2014)

25

http://www.win.tue.nl/declare/
http://dx.doi.org/10.1007/978-3-642-27269-1_19
http://dx.doi.org/10.1007/978-3-642-27269-1_19


11. Debois, S., Hildebrandt, T., Slaats, T.: Safety, liveness and run-time refinement
for modular process-aware information systems with dynamic sub processes (full
version) (2015), http://www.itu.dk/~debois/dcrstar-tr.pdf

12. Debois, S., Hildebrandt, T.T., Slaats, T.: Hierarchical declarative modelling with
refinement and sub-processes. In: Business Process Management - 12th Inter-
national Conference, BPM 2014, Haifa, Israel, September 7-11, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8659, pp. 18–33. Springer (2014),
http://dx.doi.org/10.1007/978-3-319-10172-9

13. Debois, S., Hildebrandt, T.T., Slaats, T., Yoshida, N.: Type checking liveness for
collaborative processes with bounded and unbounded recursion. In: FORTE. Lec-
ture Notes in Computer Science, vol. 8461, pp. 1–16. Springer (2014)

14. Esparza, J., Melzer, S.: Model checking LTL using constraint programming. In:
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