
Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 1

What Does it Mean to Use a Method?
Towards a Practice Theory for Software Engineering

	
Yvonne Dittrich

ydi@itu.dk

+45 7218 5177

IT University of Copenhagen
Rued Langgaards Vej 7

DK-2300 Copenhagen S, Denmark

Abstract
Context: Methods and processes, along with the tools to support them, are at the heart of
Software Engineering as a discipline. However, as we all know, the use of the same method
does not necessarily result in comparable impacts on software projects nor on their outcomes.
What is lacking is an understanding of how methods affect software development.
Objective: The article develops a set of concepts based on the practice-concept in philosophy
of sociology as a base to describe software development as social practice, and develop an
understanding of methods and their application that explains the heterogeneity in the
outcome. Practice here is not understood as opposed to theory, but as a commonly agreed
upon way of acting that is acknowledged by the team.
Method: The article applies concepts from philosophy of sociology and social theory to
describe software development and develops the concepts of method and method usage. The
results and steps in the philosophical argumentation are exemplified using published
empirical research.
Results: The article develops a conceptual base for understanding software development as
social and epistemic practices, and defines methods as practice patterns that need to be related
to, and integrated in, an existing development practice. The application of a method is
conceptualised as a development of practice. This practice is in certain aspects aligned with
the description of the method, but a method always under-defines practice. The implication
for research, industrial software development and teaching are indicated.
Conclusion: The theoretical/philosophical concepts allow the explaining of heterogeneity in
application of software engineering methods in line with empirical research results.

Keywords
Cooperative and Human Aspects of Software Engineering, Software Engineering Method and
Theory

1 Introduction
Methods and processes that rationalize and support the development of quality
software are at the heart of software engineering as a discipline. And the process
models, modelling approaches, architecture patterns and programming techniques,
together with the tools to support them are widely used to improve the practice of
software engineering. It is, however, difficult to pinpoint and quantify effects in

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 2

practice: While effectiveness of specific techniques for isolated tasks (such as the
effectiveness of reading vs. testing for finding bugs, respectively, different reading
strategies) can be measured and compared [1], the comparison of project-level
measurements, based even on a population of similar projects, is still not possible [2].
Qualitative empirical research indicates that software teams balance what is
recommended by the method with the specific technical and organizational
circumstances of the project. Button and Sharrock, for example, report a specific
interpretation of Yourdon development methodology, CASE and C in reaction to the
specific contingencies [5]. They argue that ‘methods are worked at phenomena, that
they are made to work in the circumstances of their deployment and that the details of
that work are part and parcel of the development process’ [5, p. 237, highlighting as in
the original]. Early on, software engineers recognized that tools supporting software
processes need to support exceptions and adaptations to allow developers to react to
situated contingencies [4]. Martin et al. report a software team balancing optimal test
design, computer resources and people, and organizational circumstances when
testing software [6]. In some cases, the applicability of a method depends on how the
business area is organized [7]. The ‘work arounds’ when applying SCRUM have in in
the agile community gotten an own the name even: ‘scrumbut’ [8]. Based on surveys
and interviews, Fitzgerald concludes that only 6% of all practitioners apply a formally
defined method [55].

So what is responsible for the difference between the method as described and the
method in use? Researchers take varying positions. Some argue that software
practitioners are not educated and trained well enough, as e.g., Parnas takes this view
in his debate article on empirical research, which acknowledges the situated rationale
of observed non-compliance with methods and disciplinary norms [9]. In the article
‘The rational Design Process – Why and how to Fake it’ [53], Parnas and Clements
acknowledge the impossibility of following a ‘rational design process.’ The authors,
however, recommend following it as closely as possible and complementing the
documentation with additional information regarding the design decision taken.
A second position is to argue that the methods do not fit the situated contingencies, as
especially authors inspired by Computer Supported Cooperative Work (CSCW)
propose; thus, practitioners need to work around what the method prescribes in order
to get their tasks done [6, 7, 10]. Fitzgerald provides a more comprehensive and
differentiated appraisal of both positions in [54].
A third position proposes that we might need to revise our understanding of methods
and practice. Button and Sharrock, e.g., conclude their discussions with: “If we think
that methods are procedural recipes to follow we might think that all we have to do is
to develop or alight upon the best method for our purposes and our problem will be
solved by cranking the methodological handle. … If instead of thinking of methods as
procedural recipes to be used in the course of development, we think of them as tools
in the organisation of development, then the artful and contingent use of those tools is
as important as the character of the tools themselves” [5, p. 237]. Arguing along a

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 3

similar line, Fitzgerald et al. distinguishes between formalized methods and methods-
in-action, and propose several levels of tailoring and appropriation of methods [56].

This article aims at taking the discussion a step further: It argues that we need to
develop a theoretical base for understanding software development as a social practice
in order to understand how methods and tools are appropriated in everyday software
development. In other words, what is needed is a practice theory of software
engineering. The purpose of such a theory should be to help explain the phenomena
that we observe in empirical research in software engineering. The goal is to be able
to address the question indicated in the title of this article “What does it mean to use a
method?” not only empirically but also based on a set of concepts that allows the
explaining of the observed phenomena.
In their article ‘Theorizing about Software Development Practice,’ Pävärinta and
Smolander [11] propose developing a theory of software development practice based
on empirical research. This current article proposes a specific way to conceptualise
practices, their rationales and their relation to contextual contingencies. The aim is to
encourage the discussion of software engineering method and theory (SEMAT) [52]
that includes a theoretical underpinning of the social side of software engineering.
To develop a practice concept, the current article appropriates concepts from social
theory. I use Schatzki’s concept of integrated practice to describe software
development as shared social practices based on common understandings, rules and
teleoaffective structures [12]. Based on Knorr Cetina’s concept, I argue that software
development is an epistemic practice, one that unfolds its object as the team proceeds
in the development [14]. Based on this foundation and referring to software
engineering discussions of the character of methods, I define methods as practice
patterns, explicitly formulated sets of (tool supported) understandings, rules and
teleoaffective structures that need to be integrated in existing practices.
The genre of this article is thus philosophical argumentation: it develops concepts
based on literature and shows that these concepts can be used to better explain
empirical results. Examples of such argumentations are the articles by Knorr Cetina
[13] and Schmidt [15] that are further discussed below. The quality criteria for
philosophical argumentation are subject to philosophical sub-disciplines and in part
also depending on the philosophical school the argument is contributing to. In the
context of Software engineering, I propose to apply a) rigour of argumentation and b)
relevance of results; for example, the theory should render results of empirical
research as examples of the theoretical concepts and relations rather than idiosyncratic
behaviour. The article requires its reader to adjust to an unusual style of
argumentation. Philosophical texts tend to use longer citations in order to show how
the original author defines a concept before it is adapted and applied in the new
context. These citations are used as inline citations rather than formatted as an own
paragraph.

The article is structured as follows: Section 2 introduces the Software Engineering
discussion on methods and their usage. The discussion leads to an understanding of

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 4

software development as a social practice. Section 3 provides a contextualises the
philosophical approaches used with respect to philosophy of sociology and CSCW.
Section 4 ‘A practice concept for software engineering’ develops the conceptual base;
the concepts of social practice and epistemic practice are presented and software
engineering is described as epistemic practice. Based on these concepts, section 5
‘Methods and method usage’ then addresses the research question regarding the usage
of methods requiring integration in, and adaptation to, an existing practice with its
specific setting and purpose, and further addresses the necessary substantial explicit
adaptation of practice, which extends Schatzki’s or Knorr Cetina’s work. Section 6
‘Practices are constantly maintained and developed’ further explores the continuous
adaptation and maintenance of practice referring to the concept of articulation work
by Strauss. The results are summed up and discussed in section 7, and implications
are proposed for research, industrial practice and teaching. Section 8 summarises the
conclusions.

2 Methods and Practice in Software Engineering
The development and dissemination of methods in order to inform and improve
practice are at the heart of software engineering. Nevertheless, surprisingly few
researchers have discussed the character of methods and how they inform software
development. This section begins with a discussion of methods in software
engineering and then argues for a concept of software development as social practice
in order to inform the development and usage of methods.

2.1 Methods in Software Engineering
In ordinary language, the term ‘method’ describes a systematic way of addressing an
endeavour. For example, Webster’s dictionary defines method as the following

Likewise, SWEBOK defines methods as: “Software engineering methods provide an
organized and systematic approach to developing software for a target computer”
[31]. The ISO24774 defines a meta-model of methods that is meant to provide a
notation for the description and engineering of methods consisting of stages, work
units, work products, producers and actions that allow the description of

method
1: a procedure or process for attaining an object: as
a (1): a systematic procedure, technique, or mode of inquiry employed by or proper to a
particular discipline or art (2): a systematic plan followed in presenting material for
instruction
b (1): a way, technique, or process of or for doing something (2) : a body of skills or
techniques
2: a discipline that deals with the principles and techniques of scientific inquiry
3: a: orderly arrangement, development, or classification: plan b: the habitual practice of
orderliness and regularity
…

Webster’s Dictionary [30]

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 5

recommended life cycles, processes and actions [32]. In other words, methods
comprise both: specification of work products as well as the definition of processes in
which they are included.

Mathiassen [33] presents methods as formalizations – that is, systematic descriptions
of approaches to system development or parts of it. The author proposes the following
characteristics that define a method:

“An area of application: a type of software to be developed using it, a way to
organize the development process;
A perspective consisting of assumptions about the nature of the system,
organizations, the surrounding society and the purpose of the local organization;
Principles for organizing the development process, splitting it into partial tasks;
Techniques of work used in the partial tasks;
Tools used in the application of the technique (diagrams, notations, or computer
support)” [33].

Based on empirical comparison of analysis and design methods, Floyd proposes
extending this list with three additional characteristics:

“Theories: mathematical theories on which, e.g., the notations are based, and
the underlying theory describing what software development is;
Coherence describes whether a method applies a connected set of techniques
and tools or whether they are difficult to relate;
Coverage: Which tasks of the development process are supported” [34].

Of these characteristics, the principles, techniques and tools are by and large covered
by the method meta-model of the ISO 24774. Whereas coherence and coverage might
also be formulated in the meta-modelling language, the area of application,
perspectives and theories are information beyond what can be expressed by describing
life cycles, procedures and activities. These characteristics are of a different nature:
they specify the conditions of application and the goal of applying the method; this
means they provide the information that supports the adaptation of the method in a
specific context.

2.2 Methods and Practice
As discussions of the characteristics of methods are scarce, the relation between
methods as descriptions and the practice that they are meant to inform and improve is
by and large not problematized in software engineering. Mathiassen et al. [37]
observe that experienced practitioners do not refer to the method description in their
day-to-day practice; they also do not follow the method very closely, but competently
select and implement relevant activities and notations. The authors propose that
methods are learning vehicles rather than informing practice.
In line with these findings, Fitzgerald argues for distinguishing formalized methods
and methods-in-action, where the method-in-action describes the structured way of
development that is taking place in practice. He anchors the development and
enactment of a ‘method-in-action’ with the individual developer: “[I]t is suggested
that methodologies are never applied exactly as originally intended. Different

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 6

developers will not interpret and apply the same methodology in the same way; nor
will the same developer apply the same methodology in the same way in different
development situations. Therefore, on any development project, the methodology-in-
action is uniquely enacted or instantiated by the developer” [54].
In the book “Information Systems Development: Method in Action,” Fitzgerald and
his co-authors further develop the notion of adaptation tailoring of methods to develop
a method-in-action [56]. They, however, do not define the notion of practice, nor do
they define methods in a way that allows a description of the interaction between
formalized methods, methods-in-action and practice in a coherent manner. If we want
to understand the relation between software engineering methods and practice, we
need to have an understanding of what constitutes software engineering as a practice.
As Kraft and Nørbjerg argue: “Software practice is social practice” [62].
Practice has been discussed in the philosophy of sociology as a central concept,
constitutive for the establishment and tradition of shared norms and rules. This article
shows how these concepts can be applied to software engineering to explain the
development and application of software engineering methods. To motivate the
choice of Schatzki’s and Knorr-Cetina’s work as a foundation and to provide a
background for the reader to (critically) appraise the following argumentation, the
next section contextualises the chosen approaches in the Philosophy of Sociology.

3 Practice Theories in the Philosophy of Sociology
In philosophy, the notion of practice has been discussed since the time of ancient
Greek philosophy. A historical overview of the development of the practice concept
found Schmidt’s article on ‘The concept of “practice”: What is the point?’ [15].
Schmidt relates the development of the modern practice concept to enlightenment: the
purpose of science is not only the understanding of the (godly) organization of the
universe but also the improvement of human affairs; craft practice therefore becomes
an important object and target for science-based improvements.
This viewpoint is most prominently visible in Kant’s text ‘On the common saying:
this may be true in theory but it does not apply in practice’ [16]. Instead of describing
theory, poesis and practice as being opposite, Kant develops practice and theory as
mutually constitutive. “A collection of rules, even of practical rules is termed a theory
if the rules concerned are envisaged as principles of a fairly general nature, and if they
are abstracted from numerous conditions which, nonetheless, necessarily influence
their practical application. Conversely, not all activities are called practice, but only
those realisations of a particular purpose which are considered to comply with certain
generally conceived principles of procedure” [16, highlighting according to original].
In other words, theory is developed as abstraction over (successful) practices; in turn,
practices use theories as guiding principles and procedures.
Schmidt thus defines practice as ‘normative regulated contingent activity’ [15, p.
437], arguing that the modern concept of practice focuses ‘on the ways in which the
competent actor in his or her action is taking the particular conditions into account
while committed to and guided by the appropriate general principles (‘theory’,
‘rules’)’ [15, p. 436]. Practice in this sense is not the opposite of science or academia.

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 7

Theoretical argumentation and research can be understood as practices in their own
rights, governed by common values and a shared understanding of what is good
research and acceptable academic behaviour.
Even though the change in the perception and appreciation of practice was initiated
earlier, the ‘practice turn in contemporary theory’ [13] is related to the publication and
reception of Wittgenstein’s Philosophical Investigations. Wittgenstein’s late work
develops a practice-based epistemology. Instead of basing the meaning of terms on
their correspondence to the world [17, pp. 392ff], Wittgenstein in his Philosophical
Investigations [18] argues that the meaning of words and utterances is founded in the
way we use terms in our ‘language games.’ Understanding and participation in
language games are based on a common way of living and an enculturation into
patterns of interaction with the outside world and with each other using language. By
anchoring the meaning of utterances in social practice, the Philosophical
Investigations further explain other rule-based social activity referring to the notion of
practice.
Wittgenstein’s Philosophical Investigations have inspired a number of contemporary
schools in social science and philosophy. In his introduction to these schools, Nicolini
talks about practice theories in plural [19]. To base our argumentation in a coherent
and consistent manner, we refer to Schatzki’s ‘Social Practice: A Wittgensteinian
approach to human activity and the social’ [12] as well as Knorr Cetina’s article
‘Objectual Practice’ [14].
Schatzki’s ambition is to develop a foundation for understanding sociality as a ‘nexus
of integrative and dispersed practices’ [12, p. 173]. He writes that his ‘account of
sociality (…) does not claim completeness as an account of social life. In laying out
the basic nature of the social, it instead constitutes a framework through which to
investigate social domains and phenomena and uncover their local details and
complexities.” [12, p. 173] The current article aims at doing exactly this: it
conceptualizes software engineering as a social practice, expanding Schatzki’s
concepts in order to make sense of empirical observations that problematize the status
of methods in software engineering.
The further argumentation below also refers to approaches and findings from
sociology of work such as that found in Strauss’, Gerson and Star’s and Schmidt and
Simone’s work [20, 21, 22], who ground their work in practice concepts compatible
with Schatzki’s concept. Strauss, Gerson and Star relate to American Pragmatism as
their theoretical underpinning. Although there is only a weak explicit link between
Wittgenstein and the founders of American Pragmatism, Dewey, Mead and Peirce
[23], the second generation of American Pragmatists embrace the later work of
Wittgenstein together with other European thinkers [24].
The pragmatic schools on both sides of the Atlantic refer to social practice and
interaction as the underpinning of meaning both in language and in action. Garfinkel,
e.g., the founder of ethnomethodology, refers to Wittgenstein’s Philosophical
Investigations [25], where the founding of social phenomena such as language and
rules in social practice is formulated for the first time. Ethnomethodology aims at

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 8

understanding the social through the methods that a socio-cultural group, an ethne,
deploys in its everyday interaction and collaboration.
The next section develops the central concepts. Based on Schatzki’s concepts,
software development is described as shared social practices based on common
understandings, rules and teleoaffective structures [12]. Knorr Cetina’s work is used
to argue that software development is an epistemic practice that unfolds its object and,
with it, its own practice as the team proceeds in the development [14]. This
foundation is later used to define methods as practice patterns, explicitly formulated
sets of (tool supported) understandings, rules and teleoaffective structures that need to
be integrated in existing practices.

4 A Practice Concept for Software Engineering
This section develops the central concepts as foundation for the following
argumentation. The concepts presented here have the same function that axioms and
proven theories have in a mathematical proof. This is also the reason for the rather
long quotes: Instead of only providing an own interpretation, the original voice of the
author cited is used. The subsection 4.1 presents Schatzki’s notion of practice and
applies it to software engineering. In 4.2, also based on Schatzki’s ‘Social Practice,’
the role of tools, equipment and settings in social practice is developed.
As a starting point for discussing diversity and evolution of software development
practices, e.g., when introducing methods, subsection 4.3 discusses the way Schatzki
conceptualizes change and flexibility of practices. Comparing his concepts to results
of empirical research in software engineering leads to the recognition of the need to
further develop the practice concept to be able to grasp the heterogeneity and diversity
of software development practices. In section 4.4, Knorr Cetina’s notion of epistemic
practice is used to explain the diversity of software engineering practices. As software
engineering is a practice geared towards design and development of a thus-far
unknown piece of software, it, at the same time, unfolds its goal and the practice,
tools and techniques deployed to get there. These concepts then are used to define
methods as practice patterns in section 5.

4.1 Software engineering as social practice
The aim of Schatzki’s book: ‘Social Practices. A Wittgensteinian approach to human
activity and the social’ is to explicate and further develop the notion of practice as a
basis for conceptualizing the social. Practice thus is the central concept Schatzki
discusses. Schatzki defines, based on Wittgenstein, practice as a “… temporally
unfolding and spatially dispersed nexus of doings and sayings. (…) to say that the
doings and sayings forming a nexus is to say that they are linked in certain ways.
Three major avenues of linkage are involved: 1) through understandings, for example,
of what to say and do; (2) through explicit rules, principles, precepts, and instructions;
and (3) through what I will call teleoaffective structures embracing ends, projects,
tasks, purposes, beliefs, emotions, and moods.” [12, p. 89]
Schatzki uses this concept of practice to explain the coming about of everyday
activity that allows us to relate meaningfully to each other and to pursue relevant

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 9

goals in specific contexts: When acting in a certain situation, as part of a certain
practice, what one says and what one does is understood by others in relation to the
commonly shared practice and with respect to the shared goals and purposes of that
practice.
Practice should thus not be confused with ad hoc behaviour, even if the rules and
principles guiding the acting are not expressed explicitly. People sharing a practice
would easily recognize action as ‘making sense’ in the specific context. Ad hoc
behaviour can be seen when exceptions occur that require action to bring the state of
affairs back to normal. Even in such cases, the actions make sense, given the
understanding of underpinning practice. The article ‘When plans do not work out’
[26] analyses a situation that both shows the work of practice and of ad-hoc
behaviour: a project steering group is confronted with a re-scoping of a project,
leading to a subproject having to rework central documents. They develop a future
line of action that allows the project to progress orderly by partly violating the
company wide project model. The exception is formulated in terms of this project
model, making the ‘ad hoc’- behaviour accountable with respect to the organization’s
software development practice, which is supported by the terminology and rules
provided by the project model.
Schatzki distinguishes between dispersed practices and integrated practices. Dispersed
practices are widely shared practices, such as “asking for and giving explanations,
describing, ordering that occur in different sectors of social life” [12, p. 91]. The term
integrative practice is used for “more complex practices found in and constitutive of
particular domains of social life” [12, p. 98]. The author gives business practices,
voting, teaching, celebration, cooking, recreational, industrial, religious and banking
practices as examples [12, p. 98].
Dispersed practices can become part of integrative practices and develop a special
flavour as part of them. As an example, Schatzki cites the specific meaning of orders
in the military; though ordering is a dispersed practice, “when someone enters, say,
military life, the understanding of ordering he has previously acquired becomes
sensitized to the particular way the activity runs on there…” [12, p. 100].
Integrative practices are linked together by: (1) understanding of the actions involved,
including the ‘transfigured forms of the dispersed practices’; ‘(2) explicit rules,
principles, precepts, and instructions; and (3) teleoaffective structures comprising
hierarchies of ends, tasks, projects, beliefs, emotions, moods and the like’ [12, p. 98-
99]. Schatzki defines the notion of teleoaffective structures as ‘hierarchized orders of
ends, purposes, projects, actions, beliefs, and emotions’ [12, p. 100] that are expressed
in the behaviours constituting a practice. ‘Unlike explicit rules, the orders constituting
a teleoaffective structure need not be spelled out and explicitly enjoined in
formulations, although formulation does sometimes occur, especially (but not only) in
learning situations, in the face of nonstandard doings and sayings, and on the
occasions when the flow of reactions suffers … “breakdowns” in continuous absorbed
coping’ [12, p. 99, referring to Dreyfus’ discussion of Heidegger, 27].
Software engineering as social practice falls into the category of integrated practices.
Dispersed practices still exist, but they change character; for example, the practice of

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 10

asking and giving of explanations will also be observed in software engineering, but it
changes character and meaning. An example can be found in the dialogs between
long-term project members and newcomers in the pair programming sessions
analysed by Plonka et al. [58], where the explanations are the base for both
knowledge sharing and improvement of the existing code.
To say that software engineering is a social practice suggests that it consists of
coordinated activities that are connected through a.) shared teleoaffective structures –
here, the intention to design and develop a piece of software, b.) shared
understandings of what it entails to develop software both in general as well as in a
specific domain, and as part of a specific organization and c.) explicit rules and
principles – examples would be company-wide methods and hand books, but also
knowledge about methods, techniques and tools as taught in courses or in tutorials.
An example for the latter can be found in a steering group meeting analysed in [26].
The company wide project model underpins the whole discussion; the rules stipulated
by it are explicitly used as criteria for an acceptable and organizationally accountable
action on a major re-scoping of the project. At the same time, the analysis shows an
implicitly shared understanding that the purpose of the meeting is to allow the
unaffected sub-teams to proceed with their work in a meaningful way.
However, as mentioned above, the notion of social practice here relates not only to
industrial practice. Open source software development can be regarded as a practice
as well. Open source software development is guided by shared understanding of
what it requires to be a member of an open source project, by explicit rules (e.g., in
the form of frequently asked questions), and by sharing teleoaffective, structural
hierarchies of goals and endings that connect individual actions. (See for example the
discussion of requirements in open source software by Scacchi [29].)

4.2 Tools, equipment and settings
As section 2 has shown, methods come with notations, techniques and tools. Schatzki
discusses the relation between practices and tools. Practices help us to make sense not
only of each other’s behaviour but also of both the objects we manipulate and
transform as part of the practices and the tools we use. The jointly enacted software
development practice allows the team not only to understand each other’s actions as
being meaningful, but it also renders terms and tools meaningful. The terms steering
group, sub-project and product owner in Rönkkö’s case [26], cited above, acquire
their meaning based on the shared practice of the observed team. As Schatzki puts it:

“Not only people, but objects (and events) as well acquire meaning within
practices. This occurs, most importantly, whenever objects are used in the
performance of constituent actions. Teaching, for instance, encompasses writing
on blackboards and other surfaces with certain entities, which therewith receive
the meaning: things with which to write. … Like understanding generally, the
understanding of equipment is expressed not only in doings (i.e., uses) but also
in sayings. People give names to equipment and say of them that they have such
and such practical meanings, for instance, that chalk and magic markers are

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 11

things with which to write … An integrative practice, consequently, carries
interwoven understandings of interrelated equipment” [12, p. 113-114].

The set of computer based tools, documents, common repositories, as well as
environments automating builds and tests are examples from software engineering. A
tool like Eclipse is intrinsically connected with software engineering and does not
make sense outside the practice of software engineering. The dependency of the
meaning of equipment on the specific practice it supports becomes more visible when
we consider the way story cards are handled in Scrum. Although other kinds of
practices might seem to have similar equipment (e.g. qualitative analysis of field
material might use similar cards), the specific meaning of story cards in Scrum cannot
be explained without referring to the way a Scrum team uses it to coordinate their
development.
Scrum cards and boards are also examples where not only the meaning of the
individual piece of equipment is dependent on the practice but where the setting in
which the equipment is arranged and the arrangement itself is intrinsically interwoven
with the practice it supports. Interrelated sets of equipment are organized in settings
that are maintained as part of the practice.

“When a practice, as is usually the case, is carried out in specific settings, the
settings are set up to facilitate the efficient and coordinated performance of its
constituent actions. The layouts of the settings, as a result, reflect the
interwoven meanings that the entities used in these actions possess by virtue of
being so used (and talked about). Settings in other words, are often set up as
sites where a given practice or set thereof is to be carried out. When this occurs,
the setups are derived from the understandings, rules and teleoaffective structure
organizing the practice. The disclosure and layout of equipment within practices
also consequently, exhibits normativity, meaning that things are usually so
arranged that they can be easily used in the correct and acceptable ways” [12, p.
114].

The story cards on a Scrum board - their colour, annotations, and their placing - make
sense, given the practices developed and established as part of the team’s common
development [28]. Similarly, the layout of a website of an open source project with
documentation, access to forum lists and bug report software, frequently asked
question, and the software repository can be seen as such a (virtual) setting related to
the practice(s) developed by the open source community. Scacchi has coined the
notion of ‘informalism’ for specific pieces of equipment and settings of open source
projects together with the way an open source project uses them [29]. These
‘informalisms’ can be seen as nexuses of understandings, tools and rules that support
joint software engineering that is not related to an organizational and employment set
up.
The representations, tools and communication channels make sense with respect to
this specific way of organizing software development and derive their meaning from
the shared practices. The examples cited above show that objects in such a setting are
not only tools and equipment: objects and their states serve as well as indicators, such
as the number of open issues, burn down charts, or other measurements. Similar to

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 12

equipment, such objects and indicators gain meaning through the practice. With
Schatzki’s words: “How people talk about and act toward objects is not exhausted by
how they use them. People also observe objects, examine them, measure them, admire
them, draw them, and talk about them in numerous ways that do not pertain to use.
The meanings that objects thereby come to bear are still established within practices
to the extent that the ways of talking and acting in question are components of
practices” [12, p. 114].
The whole purpose of the introduction of new methods and tools into a practice is the
change of this practice. The next section develops how Schatzki conceptualizes
change and relates it to software engineering practice change. This in turn provides
the motivation to include Knorr-Cetina’s concept of epistemic practice in the
conceptual base of the article.

4.3 Flexibility and change
Schatzki emphasizes that practices and the related understanding of behaviour, objects
and equipment are open to new ways of doing things. The normative regulation of
practices through the implicit understandings and explicit rules does not mean that
practices are unambiguously defined:

 “A practice’s organization establishes not only that certain actions are correct
(in certain situations), but also that other actions are acceptable, even if they are
not how one should proceed. … I note that among the acceptable actions (and
live condition orders) constitutive of a practice’s teleoaffective structures are
some that have not yet been carried out (or instantiated). Practices found
possible novelty in that people happen upon new ways of proceeding, and
others deem these ways acceptable, on the background of their participation in
practices and familiarity with teleoaffective structures. The understandings that
organize an integrative practice likewise, though more weakly, open ranges of
acceptable doings and sayings broader than the behavior already performed in
the practice” [12, p. 102].

This flexibility provides not only the base for evolving practices, but also allows
adapting the joint practice to situated contingencies. Software practices can still be
recognized as such by software engineers across different projects and different ways
to organize software engineering. An example would be: an issue tracker with its
usage to report, analyse, triage and correct bugs is well known across many software
organisations as well as in open source communities. The specific way how the triage
results are communicated will differ, however, from organization to organization,
from open source project to open source project. In other words, the specific practices
around bug fixing and with it the usage of an issue tracker will differ, depending on
the local adaptation of the more generic practices and understandings.
To emphasize this diversification of practices with respect to the local contingencies, I
discuss below local practices that have been adapted in specific ways to the individual
organizations, even in specific projects. As practices in the sense developed here do
not exist but in the interlinked doings and sayings constituting it (Schatzki p. 90), one
could argue that integrative practices are always also local practices.

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 13

The different local contingencies though might not be the only factor that explains the
diversity of software engineering practices. The following subsection further explores
the specificities of design and development practices, where the outcome is not fully
defined ex ante. This is very much the case in software engineering. To this end, the
next section introduces the notion of epistemic practice.

4.4 Software engineering as epistemic practice
To understand the heterogeneity of software engineering practices, the introduction of
another concept further developing Schatzki’s notion of practice is necessary.
Schatzki et al. [13] emphasize the foundations of social structures in the regularity of
social practices. In her article, ‘Objectual Practice,’ Knorr Cetina [14] develops
Schatzki’s [12] notion of practice, further emphasising their teleoaffactive dimension.
She describes science and design as epistemic practices. Based on fieldwork on the
development of a particle accelerator, she argues that research ‘seems to be particular
in that the definition of things, the consciousness of problems, etc., is deliberately
looped through objects and the reaction granted by them’ [14, p. 175]. She later
includes design and other knowledge intensive practices in that definition.
Epistemic practices aim at the developing and unfolding of only partially existing and
known objects, characterized by their ‘lack in completeness of being’ [14, p. 181].
“[O]bjects of knowledge in many fields have material instantiations, but they must
simultaneously be conceived of as unfolding structures of absences: as things that
continually ‘explode’ and ‘mutate’ into something else, and that are as much defined
by what they are not (but will, at some point have become) than by what they are”
[14, p. 182]. In other words, epistemic practices are practices underpinning creative
activities that bring something that is not yet there into being.
In her conclusion, Knorr Cetina proposes that ‘Knowledge-centred work shifts back
and forth between performance of ‘packaged’ routine procedures and differentiated
[epistemic] practices’ [14, p. 187]. Defining software engineering as epistemic
practice suggests that software engineering, on the one hand, is based on established
ways of doing design, guided by explicit and implicit understandings of how things
are done and explicit rules concerning methods and techniques, but, on the other hand,
the teleoaffective structure guiding the development is the idea of a piece of software
that does not yet exist. While its object - the software under development - unfolds,
software development as practice unfolds itself, thus completing the developing
understanding of what the goal is of its activities. The creative activity that brings
about the object is itself an object of design as part of this process; in other words, it is
the object of a creative activity itself.
As different software engineering projects have different objects of design and as the
unfolding of the epistemic objects affords a corresponding unfolding of the design and
development practices, software engineering practices, though clearly perceivable as
practices of a similar kind, will also always differ, even in the same company with the
same contextual characteristics. This means that the locality of software engineering
practices is not only due to different settings and different contextual contingencies
but also needs to be attributed to the specificity of its epistemic or design object.

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 14

The central concepts discussed thus far have been based on Schatzki’s concept of
social practice and Knorr Cetina’s concept of epistemic practice. Software
development as social practice according to Schatzki [12] can be understood as a
nexus of doings and sayings that are kept together by common understandings,
common explicit rules and principles, and common teleoaffective structures. It is
supported by a setting and a set of tools and techniques that are rendered meaningful
in the context of this practice. By proposing to regard software development as
epistemic practice [14], the creative side of software development is highlighted: the
teleoaffective structure or objective of software development is to bring a piece of
software into being that is not yet there but needs to be defined, designed and
developed through the practice. This also means that in order to bring this epistemic
object about, the practice itself needs to develop.
To understand how methods nonetheless are useful to support widely heterogeneous
design and development practices, the next section develops a concept of methods
that can then be used to grasp the adaption and adoption of methods in a concrete
practice.

5 Methods and method usage
Based on the conceptual base developed above, this section develops the concepts of
method and method usage in a way that allows us to understand the interaction
between methods and practices. Sub-section 5.1 proposes understanding methods as
practice patterns consisting of explicitly formulated understandings, explicit rules,
explicitly stated teleoaffective structures that need to be adopted and adapted to fit
with the specific epistemic practice. This concept is in line with, and provides a
theoretical underpinning for, previous research results on methods and their use in
software engineering. Subsection 5.2 then further explores how methods inform
practice, referring to Wittgenstein’s Philosophical Investigations. Subsection 5.3
shows how the thus-far developed concepts can be used to explain and develop
empirically observed phenomena around the adaptation and use of methods in
software engineering.

5.1 Methods as practice patterns
In section 2.1, methods were defined as explicit descriptions of approaches to system
development or parts of it. According to the ISO 24774, such descriptions define
stages, work units, work products, producers and actions. According to Mathiassen
[33] and Floyd [34], methods are further defined by the conditions of application and
the goal of applying the method underpinning the notations, work products, processes
and activities. But how can we understand methods based on the conceptual base
developed above, and how can we relate them to social practices based on Schatzki’s
and Knorr Cetina’s terms?
Holding Schatzki’s definition of practice up against the constituting elements of
methods, as defined by Mathiassen [33] and Floyd [34], methods can be defined as
description can be seen as complex related sets of explicitly formulated

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 15

understandings (notations, modelling languages, concepts, area of application,
coverage, the mathematical side of the theories), explicit rules (processes, task
descriptions, techniques etc.), and more or less explicitly stated teleoaffective
structures (principles, perspectives, theories in the sense of what software engineering
is about). Such complex sets of (tool supported) explicitly formulated understandings,
rules and teleoaffective structures can be seen to be similar to the architecture and
design patterns by Gamma et al. [35], respectively, Alexander [36]. They are proven
solutions for specific practical problems. In the following, I call these related sets of
understandings, rules and teleoaffective structures practice patterns.
As with design patterns, the description of a practice pattern is not the usage of the
pattern. In line with Alexander, Gamma et al. claim that a pattern is never used in
exactly the same way. This indicates that the use of a design pattern is not the same as
using a cookie cutter, but requires adoption and adaptation. In other words, it does not
replace design activity but supports it. Likewise, methods understood as practice
patterns need to be adopted and adapted to the situated contingencies of the specific
project. Above, I have argued that software engineering is an epistemic practice [14]
that is geared to bringing about its object. The central rationale for adopting and
adapting a method is therefore whether it helps to bring about the software a project is
meant to develop under the given circumstances.
As with the architecture and design patterns, applying a method or a practice pattern
therefore does not mean doing exactly the same thing as the neighbour project
applying the same method. The participants in the practice of software engineering
embed the practice patterns the method consists of with heed to their knowledge of
this complex and related set of (tool supported) understandings, rules and
teleoaffective structures. The adoption and adaptation of the method is part of the
creative activity that is the dimension of an epistemic practice that evolves that
practice in order to bring the epistemic object into being.
This is in line with, and explains, Fitzgerald’s distinction of ‘formalized methods’ and
‘methods-in-action’ [54]. Practice patterns can be seen as formalized methods,
whereas the adopted and adapted practice pattern then is the method-in-action. In
other words, the philosophical argument developed here provides a theoretical
foundation and explanation to the phenomena Fitzgerald observed. But how do we get
from a formalized method to a method in action? Or – using the terminology
developed here – what does it mean to use a practice pattern? Below I further explore
what it means to embed formalized methods in concrete practices and in that way,
create a method-in-action.

5.2 Embedding Methods in Concrete Practices.
In order to inform software development practices, the methods – understood as
practice patterns – need to be integrated into the practice of the project team that
decides to use the methods. To do so, the participants of the practice need to make
sense of the practice patterns. As was argued in section 4, no explicit formulation –
and that includes the explicit formulation of rules, understandings, or of teleoaffective
structures – has a meaning per se; rather, the participants in a practice make sense of

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 16

them in relation to the established practice. The same needs to hold for methods as
practice patterns: The description of activities, work products, producers, procedures,
and life cycles do not have any meaning per se. They acquire meaning only in relation
to the practice at hand. This implies that the understandings, rules and teleoaffective
structures, together with the objects and tools that exist prior to the usage of a method,
influence the meaning and application of the method understood as practice patterns.
Practice patterns can be understood in line with Wittgenstein’s discussion of explicit
rules. Wittgenstein discusses the issue of rules and rule following at length, as the
understanding of rules underpins the pragmatic theory of language and the discussion
of logic and mathematics in the philosophical investigations. Rules, like signpost, do
not determine what it means to act according to them [18, Philosophical Investigation
(PI) 201]. To develop an understanding of meaning rooted in practice, Wittgenstein
uses the metaphor of a game: the meaning of words is defined by the way we use
them in everyday or ordinary language rather than by a correspondence to some
aspect of the world. These ways of usage are commonly shared ‘ways of doings and
sayings’ [12]. The meaning of explicit rules are similar to the meaning of other words
and sentences, defined by the way they are used and followed in specific language
and behaviour. Accordingly, Wittgenstein states that ‘following a rule is a practice’
[18, PI202]. This means that even if explicit rules influence the behaviour, what it
means to follow them is defined by the community whose practice adopts the rules.
Applied to software engineering, when making sense of the description of principles,
guidelines, processes, work products, tools, techniques, and so on in the context of
their prior existing practices, these descriptions become meaningful. The meaning of
the descriptions though is dependent on the practice embracing them and is a result of
both conscious and unconscious adaptation of the method.
As architectural patterns [36] or design patterns [35], method understood as practice
patterns can be applied again and again without ever doing the same thing twice.
Similar ideas have been voiced earlier, often based on research or experience from
industrial practice.
Based on industrial as well as research experience, Floyd proposes: “We do not apply
predefined methods, but construct them to suit the situation in hand. There is no such
thing as methods per se – what we are invariably concerned with are processes of
situative method development and application. We select methods and adapt them.
What we are ultimately doing in the course of design is developing our own methods”
[38, p. 95]. In the project at hand, the members need to develop a common
understanding of what it means to apply the method; in other words, a local practice
defines what it means to apply the method. Without such a practice, the method is
meaningless. This means that each team defines its method-in-action [54], whether
the team intends to do so or not. Such adoption and adaptation might again change the
explicit description of how software is to be developed, leading to a local version of
the method. Expressed in Wittgenstein’s terms, they develop the rules of the game
while playing [18, PI 83].
Based on an ethnomethodological underpinning, Rönkkö [39] argues in dialogue with
Mathiassen [33] that the application of methods is always an interpretation that relates

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 17

the abstract descriptions, respectively, formalizations to the situation at hand. He
further argues that this interpretation is a continuously ongoing achievement. Through
the action in line with the commonly agreed on interpretation as well as explicit
demarcations of exceptions as such, the agreed upon interpretation underpinning the
common practice is maintained [26].
The next subsection shows that method adaptation as method design has been
observed also in empirical research.

5.3 Empirical evidence for the local adaptation and design of methods-in-use
The local project-specific adaptation of methods normally does not pose a serious
problem. Of course, the designer of the methods might argue that the full potential of
the methods is not deployed. It can become problematic though if different sub-teams
of the same project embed the common methods and tools in different ways. This
seems to happen especially in distributed software development. Damian et al. [40]
report on a case of a team distributed between USA and Canada, using the same
method and tooling. One issue was the use of the Code Versioning System. Whereas
in one locality, the team members relied on the commit comments distributed to the
whole team, the team members in the other locality used extra mails distributed via a
mailing list to highlight changes affecting other members of the team. Damian et al.
attributed the resulting breakdowns to cultural differences. In line with the theoretical
underpinning above, culture can be understood as a connected set of both dispersed
and integrated practices. This is in line with an ethnographical understanding of
culture: “But ethnography isn't just about shared knowledge; rather, it's about the
practices of everyday life, the way those practices are built out of shared knowledge,
plus all the other things that are relevant to the moment.” [59, p. 9, highlighted as in
original] In other words, the local practices embedded and interpreted the tool in
different ways.
In his PhD thesis on “The purposeful adaptation of practice: an empirical study of
distributed software development” [44], Sigfridsson poses that both industrial project
teams and open source development communities discuss and adapt their practices to
address changes in the environment or as problematic recognized aspects of the
current practice. Draxler et al. discuss how teams organize the keeping up-to-date
with developments of their tools, and assign members to take on the tailoring and
adaptation of new features for the whole project [41].
Giuffrida and Dittrich [42, 43] show how student project teams when initiating the
project and on occasions of a breakdown will discuss and introduce new ways of
cooperating and coordinating. Further, successful collaboration, especially in
distributed projects, seems to coincide with the establishment of such explicit
negotiations and agreement on how to do things together.

This section has developed the concept of methods as practice patterns, consisting of
explicitly formulated understandings, explicit rules, explicitly stated teleoaffective
structures that need to be adopted and adapted to fit with the specific and situated
epistemic practice. The empirical research cited indicates that the adoption and

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 18

adaptation of methods, tools, and processes is part of the routine software
development practices. The empirical research cited above indicates that the
adaptation and adoption of methods, processes and tools is a normal part of software
development. This aspect is, however, hardly discussed in the theories of sociology. I
can neither be subsumed under what Schatzki describes as “people happen upon new
ways of proceeding” [12, p. 102]. The reason might be, as Knorr Cetina also states
[14], that sociological theorists are interested in understanding the establishment of
social order before addressing its change. In her article she points to science and
design as epistemic practices that unfold both the object they are about to bring into
being and the practices necessary for this purpose [14]. The next section draws on
findings from the sociology of work to further explore the design of the design
practices.

6 Practices are constantly maintained and developed
In the discourse of sociology of work, the structuration and articulation of the
organization of distributed activities from within have been the subject of discussion
and empirical research. Below, first Strauss’ notion of articulation work [20] and
Gerson’s notion of meta-work [57] are used to further explore the conscious
adaptation of practice; thereafter, empirical research is used to exemplify such
practices of changing practices.

6.1 Articulation work and the practice of changing practices
The organization of distributed work certainly requires planning and management, but
it is also an achievement of the cooperating workers who need to structure and
articulate their individual contribution in such a way that allows their co-workers to
relate to the same. Strauss introduced the notion of articulation work in order to
conceptualize the organization of work from the inside of the joint endeavour. Such
joint projects require not only individual tasks, but an ‘arc of work.’ “Articulation
work amounts to the following. First, the meshing of the often numerous tasks,
clusters of tasks, and segments of the total arc. Second, the meshing of efforts of
various unit-workers (individuals, departments, etc.). Third, the meshing of actors
with their various types of work and implicated tasks.” [20]
With the term articulation work, Strauss [20] refers not only to the establishment and
planning but also to the standardization of cooperation procedures, the articulation of
tasks in order for others to relate to it, and the handling of contingencies that lead to
exceptions from the standard. Based on the development of the concepts and
demonstration using work-studies in hospitals, Strauss discusses – partly as proposals
for future work – that different aspects influence how stable the division of labour is
and with that the character of the articulation work involved. Referring to him, Gerson
[57] distinguishes between: a) situated articulation, the articulation of tasks in order
for others to relate to it and the handling of contingencies that lead to exceptions from
the standard, and b) meta-work, establishment, planning and the standardization of
cooperation procedures.

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 19

6.2 Articulation and meta-work in Software Engineering
The concepts of articulation work and meta-work are widely used in CSCW literature
in the analysis of cooperative practices and the difficulty of supporting them. The
renegotiation of the project plan analysed by Rönkkö et al. [26] provides an example
of local articulation. Giuffrida and Dittrich’s [43] analysis of communication via
social software shows the importance of (successful) meta-work for the establishment
of the coordination procedures and mechanisms in distributed software development.
Situated or local articulation is then used as part of deploying the coordination
mechanism in the specific context and when breakdowns occur.
Sigfridsson’s PhD thesis [44] and the article by Draxler et al. [41] that motivated the
exploration of meta-work both report concrete examples of meta-work practices. Note
that in these cases, established ways of discussing the use of methods and tools, and
the current practices existed. In other words, meta-work in itself is a practice that
depends on common understandings, explicit and implicit rules, and teleoaffective
structures, and is therefore itself subject to meta-work. An example of such meta-
meta-work can be found in Sigfridsson’s PhD thesis [44], where an industrial team
asks a sub team to explore how to embed the new tools that were mandated to support
the distributed work.

Both the conceptual and the empirical argumentations are in line with Knorr Cetina’s
concept of epistemic practice [14]: As the object of software development is unfolded,
so do the practices geared to bring about the software need to unfold. Strauss’
concepts further elaborate both on how practice is coordinated and how it evolves.
With these concepts, the last piece in the theoretical work that the article set out to
achieve is provided. The next section discusses implications for research, practice and
teaching before the conclusion summarises the path of the argumentation and revisits
the discussion on ‘bad methods’ or ‘bad practice’ that motivated the article.

7 Implications for research, practice, and teaching
The article set out to provide a conceptual base to discuss the deployment of methods
that developed around empirical research results, thus challenging the relationship
between methods and their use. In the above sections, we have developed a set of
theoretical-philosophical concepts that allow us to make sense of results of empirical
software engineering research. This section - standing in lieu of a discussion - deals
with the implications of the practice concept for software engineering and its
application to elaborate on what it means to use a method.
7.1 Implications for research
One of the central goals of software engineering research is the development of tools,
techniques and, last but not least, methods to support software engineering practice.
Understanding software engineering as epistemic practice does not challenge this;
however, it results in a different relation between research-based method development
and industrial practice.
Empirically, we can identify two main ways in which methods come about: a) as
abstractions of existing practice in order to communicate useful practice patterns with

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 20

newcomers and fellow practitioners and b) as output of a special practice called
research. Examples of abstractions from practice are the early software process
models and the agile methods. The waterfall model presented and criticised by [45],
Boehm’s spiral model [46] and Lehman’s ‘Laws of Software Evolution’ [47] are
examples of methods as abstractions from practice. Likewise, the agile manifesto
states the legitimation for its propositions and the methods developed and promoted
by its authors: “We are uncovering better ways of developing software by doing it and
helping others do it” as its first sentence [48].
Software engineering research, on the other hand, develops principles, guidelines,
(mathematical) tools and techniques to be applied by software engineers.
Programming language technologies, algorithms, methods for formal specification
and also for architecture documentation are examples of this way of method
development. Although software engineering research and software engineering
practice both are epistemic practices, they, however, are two different practices, each
adhering to its own understandings, rules and teleoaffective structures. This implies
that software engineering researchers developing software engineering methods
cannot use their own practice as paradigmatic for software development practices as
such; rather, they need to actively search to understand the practices they are to
support.
Here, empirical research of software practices becomes a vital input. Empirical
research is not only about the experimentation with new methods in more or less
controlled (quasi) experiments, but it is also about exploring the changing conditions
under which software development takes place and providing knowledge to support
the development and use of methods as practice patterns in industrial practices. The
goal of this empirical research is, however, not to blindly appraise a practice which
might or might not be problematic, but to understand the rationale of the observed
practices in order to understand in which contexts the methods are to be applied, in
which practices the practice patterns need to be instantiated and how these contexts
influence the applicability of the practice patterns proposed.
Divergence from what method developers and research community recommend and
diversity of practices should not by default be regarded as a problem but as source of
understanding the rationalities of practice that then can inform method development
and appropriation. Based on empirical research and an interview study, Unphon and
Dittrich [49] propose that software engineering practices, which researchers may
consider to be problematic, might be kept for good reasons. The interviewed software
architects and lead-developers found it problematic to rely on software architecture
documents: the access of developers to the written architecture would replace face-to-
face meetings, thus cutting the software architects from an important source of
information about problematic aspects of the current architecture. Proposing different
documentation techniques would not help this problem. Together with the tools and
techniques, new social protocols needed to be established to support the architect. The
only architect who maintained a wiki documenting the architecture reported the
necessity of daily checking the wiki and the commit notifications in order to keep up-
to-date with the changes to the structure of the software. These results provide an

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 21

indication that in the development of software architecture documentation tools
important practice requirements were not addressed.
It is not a co-incidence that the majority of the empirical research cited in this article
is using qualitative research and is often inspired by ethnography. Ethnographic
studies aim at understanding practice from a member’s point of view [60]. The focus
on how things are worked out rather than on the shortcomings of practice allows
understanding the rationalities of practice.
Understanding the rationalities of practice is important to understand how new
technologies, business models and innovations in the use context are accommodated
and change of the contexts in which methods are used and to which they need to be
adopted. As new techniques and new forms of using and deploying software arise, the
teleoaffective structures, the tools and with these, the rules and understandings evolve.
An example here is the development of software products like ERP systems, which
substantially differs from software practices in contract development: whereas
contract development aims at delivering a more or less specified piece of software,
software products are supposed to be used by many customers over a long time and
need to evolve constantly to support the development in the market [50]. This in turn
impacts the development processes, the architectural practices and the way the
software development relates to the users and customers. By focusing on the project
as the way software development takes place, the challenges of software product
development have only recently been addressed in research [64]. Similarly, the
current focus on continuous software engineering [63] and the DevOps development
model [65] in industry is announcing a change that so far is mainly discussed in
conferences and journals close to industry.
However, empirical research can provide more than a better understanding of the
rationales behind different practices. It also can inform the adaptation and
development of methods, tools and techniques. To this end, empirical research aiming
at the understanding of rationales of practice can be combined with action research
[60]. It thus can help not only to design and devise methods that are more useful, but
also to develop knowledge to support the adaptation of practices and the integration of
methods. That way empirical research can contribute to develop orientational
knowledge that allows ‘designing design’ [38].

7.2 Implications for industrial practice
Although the empirical research of industrial software development cited above
shows that software teams consciously work with the adaptation of practices, many
software engineering practitioners still refer to methods as if they were programs to
run on a computer; practitioners also see the adaptation of methods as a problematic
practice. Here, the argumentation presented in this article proposes a different
understanding of how methods inform practices. Methods are devised to address
certain problems and support specific goals. In order to get the best out of methods,
the integration of methods in the existing practice needs to be carefully deliberated
and prepared: Do the proposed patterns of notations, guidelines, principles and rules,
as well as the goals proposed by a method fit with the problem at hand? How will the

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 22

adoption of a method change the existing practice of the team? What aspects of the
current practice need adjustment to harvest the intended benefits? And – when the
method has been in use for a while – how does it work and what else is needed to
support the team considering the new practices?
The adoption of methods should be monitored in order not only to understand whether
the intended goals are actually achieved but also to understand and be able to act on
the challenges the new practices create for the team, as well as to catch and address
negative impacts of the adoption of the method.
The above can best be achieved when maintenance and evolution of practices are part
of everyday software development, both on a team level and – if applicable – on a
company level. The empirical research cited above indicates that this is already the
case in many software development teams. Such practices should be encouraged and
appreciated by management. Introducing it on the project level can take the form of
regular reflective meetings similar to those the retrospectives recommended for Scrum
[49]. On a company level, many big software providers have teams that work with
methods, processes and tool support and advise the software teams. The role of these
teams, however, should be both to encourage individual teams to adapt centrally
decided methods and to gather feedback from the local development in order to
improve central methods, processes and tools.

7.3 Implications for teaching
When teaching software engineering, we need to teach methods as practice patterns.
This means that, parallel to design patterns, the presentation of methods needs to
explicitly address the purpose of the method. There is a need to discuss not only how
notations, principles and guidelines, but also how tools are relevant to achieve this
goal. There is also a need to discuss the implications of the usage of this method; e.g.,
many formal mathematical methods implicitly take a waterfall process for granted.
Finally, advantages and disadvantages of applying the method proposed need to be
discussed.
Many of us have already tried to implement this kind of reflective teaching. It is,
however, not the easiest way for students to learn. They need to acquire the skills to
implement the central disciplines, adapt the textbook method(s) to a case and reflect
on the choices that are part of this process. The effort might though be worth it: in this
way, we provide our students – and future practitioners – with knowledge that not
only allows them to apply the method, but also to adjust and develop their practices to
address software development for innovative products, thereby changing social and
technical contexts.

8 Conclusions
The article set out to answer the question ‘What does it mean to use a method?’. The
answer can be summarized as follows: To anchor the discussion of software
development as a social practice in a sound philosophical argumentation, I have used
Schatzki’s concept of integrated practice to describe software development as shared
social practices based on common understandings, rules and teleoaffective structures.

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 23

Based on Knorr Cetina’s concept, it was argued that software development is an
epistemic practice, one that unfolds its object and its own practice as the team
proceeds in the development. This foundation then was used to define methods as
practice patterns, explicitly formulated sets of (tool supported) understandings, rules
and teleoaffective structures that need to be integrated into existing practices.
Referring once again to Wittgenstein’s notion of rule following, the relation between
explicit formulations of methods and the heterogeneity of method deployment is
further explored. To better understand these processes, Strauss’ concepts of
articulation work and meta-work have been used. Articulation and meta-work are
normal parts of software development practices that also comprise the integration of
new methods and tools.
Following Knorr Cetina, I argued that the unfolding of practice that is motivated by
the unfolding of the epistemic object is part of the creative activity leading to a new
piece of software. As much as the resulting practice depends on the previously
existing practice, on the goal of the development and the anticipated contribution of
the method, it also depends on the descriptions of understandings, rules and
teleoaffective structures of which the method consists.
Throughout the argumentation, empirical research was cited to illustrate the
theoretical concepts and to ensure that the developed concepts would allow making
sense of observed practices. Moreover, based on the theoretical foundation, the
empirical findings no longer appear to be idiosyncratic behaviour, but rather as
examples of unfolding of epistemic practices guided by the goal to bring about a piece
of software.
Looking back to the beginning, the article does not take sides on the argument
whether the seemingly lacking implementation of methods is due to the methods or
due to the (incompetence of the) practice [10]; rather, the article explains the observed
heterogeneity and the differences between ‘formalized methods’ and ‘methods-in-
action’ [54]. How to address the divergence between methods and practice depends
on whether the method to be deployed is helping to bring about, and unfold, the
understanding and implementation of the software to be developed. In other words, it
depends on how practitioners, based on their previous experience and existing
practice, are able to make sense of the method at hand, and it also depends on whether
the method to be integrated actually fits with the situated contingencies of the practice
it should support.
Whereas the first two of these potential causes can be addressed with better education
– both about the intention and rational of the method and about the usage of the
notations, guidelines and tools – the latter points to the need to better understand the
software development practices and their rationalities in order to devise better
methods.
In line with these results, it is argued that there is a need to integrate method
development and empirical research of industrial software development practices.
With respect to industrial practice, I recommend organisational acknowledgment and
support of reflective practices similar to retrospectives in agile development geared
towards maintaining and evolving practices. Further, it is argued that methods should

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 24

be taught as practice patterns, including explicit discussions of the rationalities,
conditions and implications of applying a method.
The intention of the article, however, is not to define software engineering as practice
and method as practice patterns once and for all. It is rather intended as an initiation
of a discussion of software engineering methods and theory [52], one that includes a
theoretical conceptualization of the social side of software engineering.

Acknowledgements
Thanks to the PhD students who challenged me to explicate my understanding of
practices and how methods influence practices. Further, thanks to all the colleagues
who have discussed Wittgenstein and the practice concepts with me.

References

[1] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sørumgård,
M. V. Zelkowitz, The empirical investigation of perspective-based reading.
Empirical Software Engineering, 1(1996), 133-164.

[2] C. Johansson, P. Hall, M. Coquard, “Talk to paula and peter—They are
experienced.” The experience engine in a nutshell. In Learning Software
Organizations. Springer Berlin Heidelberg 2000, pp. 171-185.

[3] M. Jørgensen, B. Boehm, S. Rifkin. Software Development Effort Estimation:
Formal Models or Expert Judgment?. IEEE Softw. 26 (2009) 14-19.
DOI=10.1109/MS.2009.47

[4] P. Mi, W. Scacchi, Modelling Articulation Work in Software Engineering
Processes. Proceeding of the 1st International Conference on the Software
Process 1991, pp. 188– 201.

[5] G. Button, W. Sharrock, Occasioned Practices in the Work of Software
Engineers. In M. Jirotka and J. Goguen (eds.): Requirements Engineering:
Social and Technical Issues. London: Academic Press 1994, pp. 217–240.

[6] D. Martin, J. Rooksby, M. Rouncefield, I. Sommerville, 'Good' Organisational
Reasons for 'Bad' Software Testing: An Ethnographic Study of Testing in a
Small Software Company. ICSE 2007. 29th International Conference on
Software Engineering, IEEE, pp. 602-611.

[7] K. Rönkkö, B. Kilander, M. Hellman, Y. Dittrich, Personas is not Applicable:
Local Remedies Interpreted in a Wider Context. Proceedings of the
Participatory Design Conference PDC, Toronto, Juli 27 – 31, ACM 2004, pp.
112 – 120.

[8] Scrum-But (http://agileatlas.org/articles/item/fractional-scrum-or-scrum-but)
[9] D.L. Parnas, B. Curtis, Point/counterpoint. Software, IEEE, 26(2009), 56-59.
[10] K. Rönkkö, O. Lindeberg, Y. Dittrich, Bad Practice or Bad Methods: Are

Software Engineering and Ethnographic Discourses Incompatible?.
Proceedings of The International Symposium on Empirical Software
Engineering, 3–4 October 2002, Nara, Japan, pp. 204–210.

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 25

[11] T. Päivärinta, K. Smolander, Theorizing about Software Development
Practices, Sci. Comput. Program. (2015),
http://dx.doi.org/10.1016/j.scico.2014.11.012

[12] T.R. Schatzki, Social practices: A Wittgensteinian approach to human activity
and the social. Cambridge University Press 1996.

[13] T. R. Schatzki, K. Knorr Cetina, E. von Savigny (eds.), The practice turn in
contemporary theory. London: Routledge 2001.

[14] K. Knorr Cetina, Objectual practice. In: The practice turn in contemporary
theory, T. Schatzki, K. Knorr Cetina, and E. von Savigny (eds.), London:
Routledge 2001, pp. 175-188.

[15] K. Schmidt, The Concept of ‘Practice’: What’s the Point?. In COOP 2014-
Proceedings of the 11th International Conference on the Design of
Cooperative Systems, 27-30 May 2014, Nice (France), Springer International
Publishing, pp. 427-444.

[16] I. Kant, On the Common Saying: ‘This May be True in Theory, but it does not
Apply in Practice’. In: I. Kant, Political Writings. Cambridge University Press
1970, 1991, pp. 61-92.

[17] W. Stegmüller, Hauptströmungen der Gegenwartsphilosophie. Vol.1. Stuttgart
1978.

[18] L. Wittgenstein, Philosophical Investigations. The German text, with an
English translation by G.E.M. Anscombe, P.M.S. Hacker and Joachim
Schulte. Revised 4th edition by P.M.S. Hacker and Joachim Schulte. Wileay
Blackwell 2009.

[19] D. Nicolini, Practice theory, work, and organization: an introduction. Oxford
University Press, Oxford 2012.

[20] A.L. Strauss, Work and the division of labor. Sociol Q, 26(1985) 1–19
[21] E.M. Gerson, S.L. Star, Analyzing due process in the workplace. ACM Trans

Office Inf Syst, 4(1986) 257–270
[22] K. Schmidt, C. Simone, Coordination mechanisms: Towards a conceptual

foundation of cscw systems design, Computer Supported Cooperative Work
(CSCW) 5 (1996) 155–200.

[23] J. Nubiola, Scholarship on the relations between Ludwig Wittgenstein and
Charles S. Peirce. Proceedings of the III Symposium on History of Logic 1996.
Berlin: Walter de Gruyter GmbH and Co.

[24] T.J. Barnes, American pragmatism: towards a geographical introduction.
Geoforum, 39(2008) 1542-1554.

[25] H. Garfinkel, Studies in Ethnomethodology. Englewood Cliffs, NJ: Prentice-
Hall, 1967.

[26] K. Rönkkö, Y. Dittrich, D. Randall, When plans do not work out: How plans
are used in software development projects. Computer Supported Cooperative
Work (CSCW), 14(2005), 433-468.

[27] Dreyfus H. (1991). Being-in-the-World: a commentary on Heidegger’s Being
and Time, Division I. Cambridge, Mass., MIT Press, 1991.

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 26

[28] H. Sharp, H. Robinson, M. Petre, The role of physical artefacts in agile
software development: Two complementary perspectives. Interacting with
Computers, 21(2009) 108-116.

[29] W. Scacchi, Understanding the requirements for developing open source
software systems. In Software, IEE Proceedings-, 149 (2002) 24-39.

[30] http://www.merriam-webster.com/dictionary/method
[31] IEEE Computer Society, 2004. Guide to the Software Engineering Body of

Knowledge (SWEBOK). Version 3,
http://www.computer.org/portal/web/swebok/home. Last accessed November
3rd, 2013.

[32] B. Henderson-Sellers, C. Gonzalez-Perez, Standardizing methodology
metamodelling and notation: an ISO exemplar. R. Kaschek, C. Kop, C.
Steinberger, G. Fliedl (eds.), In Proceedings of UNISCON 2008, , Springer,
Berlin/Heidelberg, pp. 1-12.

[33] L. Mathiassen, System Development and System Development Method. PhD
thesis, Oslo University 1981. (In Danish)

[34] C. Floyd, A comparative evaluation of system development methods. In: T.W.
Olle, H.G. Sol, A.A. Verrijn-Stuart (eds.), Proc. of the IFIP WG 8.1 working
conference on Information systems design methodologies: improving the
practice, 1979, pp. 19-54.

[35] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of
reusable object-oriented software. Pearson Education 1994.

[36] C. Alexander, The timeless way of building (Vol. 1). Oxford University Press
1979.

[37] L. Mathiassen, A. Munk-Madsen, P.A. Nielsen, J. Stage, Method Engineering:
Who’s the Customer? In Method Engineering. Springer US 1996 pp. 232-245.

[38] C. Floyd, Software Development as Reality Construction, in: C. Floyd, H.
Züllighoven, R. Budde, R. Keil-Slawik, eds., Software Development and
Reality Construction, (Springer Verlag, Berlin, 1992).

[39] K. Rönkkö, Making Methods Work in Software Engineering: Method
Deployment – as a social Achievement, Blekinge Institute of Technology,
School of Engineering, Doctoral Dissertation Series No. 2005:04.

[40] D. Damian, L. Izquierdo, J. Singer, I. Kwan, Awareness in the wild: Why
communication breakdowns occur. In International Conference on Global
Software Engineering (ICGSE) 2007.

[41] S. Draxler, G. Stevens, A. Boden, Keeping the development environment up to
date-A Study of the Situated Practices of Appropriating the Eclipse IDE. IEEE
Transaction on Software Engineering, 40 (2014) 1061-1074

[42] R. Giuffrida, Y. Dittrich, How social software supports cooperative practices
in a globally distributed software project. Proceedings of the 7th International
Workshop on Cooperative and Human Aspects of Software Engineering,
2014, pp. 24-31.

[43] R. Giuffrida, Y. Dittrich, A conceptual framework to study the role of
communication through social software for coordination in globally-

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 27

distributed software teams. Information and Software Technology, 63 (2015)
10-30.

[44] A. Sigfridsson, The purposeful adaptation of practice: an empirical study of
distributed software development. PhD Thesis. University of Limerick 2010.

[45] W. W. Royce, Managing the Development of Large Software Systems In:
Proceedings of IEEE WESCON, 1970, pp. 1-9.

[46] B.W. Boehm, A Spiral Model of Software Development and Enhancement,
IEEE Computer, 21 (1980) 61–72.

[47] M. Lehman, Programs, Life Cycles, and Laws of Software Evolution,
Proceedings of the IEEE, 68 (1980) 1060–1076.

[48] The Agile manifesto: Agile Alliance web-site http://www.agilealliance.com
[49] H. Unphon, Y. Dittrich, Architecture Awareness in Industrial Software

Development, The Journal of Systems and Software 83 (2010) 2211–2226.
[50] Y. Dittrich, Software engineering beyond the project–Sustaining software

ecosystems. Information and Software Technology, 56 (2014) 1436-1456.
[51] K. Schwaber, Agile Project Management with SCRUM. Microsoft Press 2004.
[52] Software Engineering Method and Theory, SEMAT, http://semat.org/.
[53] D.L. Parnas, P.C. Clements, A rational design process: How and why to fake

it. Software Engineering, IEEE Transactions on, 1986 (2), 251-257.
[54] B. Fitzgerald, Formalized systems development methodologies: a critical

perspective. Information systems journal 6.1 (1996): 3-23.
[55] B. Fitzgerald, An empirical investigation into the adoption of systems

development methodologies, Information and Management, 34, pp. 317-328,
1998.

[56] B. Fitzgerald, N.L. Russo, E. Stolterman, Information systems development:
methods in action. McGraw-Hill Education 2002.

[57] E. M. Gerson, Reach, bracket, and the limits of rationalized coordination:
Some challenges for CSCW. In M. S. Ackerman & C. A. Halverson & T.
Erickson & W. A. Kellogg (Eds.), Resources, Co-Evolution and Artifacts.
London, UK: Springer 2008, pp.193-220.

[58] L. Plonka, H. Sharp, J. Van der Linden, Y. Dittrich, Knowledge transfer in
pair programming: An in-depth analysis. International Journal of Human-
Computer Studies, 73(2015), 66-78.

[59] M. H. Agar, The professional stranger: An informal introduction to
ethnography. San Diego, CA: Academic Press, 1996.

[60] Y. Dittrich, K. Rönkkö, J. Eriksson, C. Hansson, & O. Lindeberg, Cooperative
method development. Empirical Software Engineering, 13 (2008), 231-260.

[61] H. Sharp, Y. Dittrich, C. de Souza, The Role of Ethnographic studies in
Empirical Software Engineering. Work in Progress.

[62] J. Nørbjerg, & P. Kraft, Software Practice Is Social Practice. In: Y. Dittrich, C.
Floyd, R. Klischewski (eds) Social Thinking-Software Practice, MIT Press
2002, pp. 205-222.

[63] J. Bosch (ed.) Continuous Software Engineering. Springer International
Publishing AG, 2014.

Information and Software Technology: Accepted Manuscript “in Print” version see	
http://www.sciencedirect.com/science/article/pii/S095058491500124X

	 	 28

[64] G. K. Hanssen, C. F. Alves, J. Bosch (eds.) Special issue on Understanding
software ecosystems. Information and Software Technology, 56 (2014), 1421
ff.

[65] L. Bass, I. Weber, L. Zhu, DevOps: A Software Architect's Perspective.
Addison-Wesley Professional, 2015.

