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Abstract. Declarative or constraint-based business process and work-
flow notations, in particular DECLARE and Dynamic Condition
Response (DCR) graphs, have received increasing interest in the last
decade as possible means of addressing the challenge of supporting at the
same time flexibility in execution, adaptability and compliance. However,
the definition of concurrent semantics, which is a necessary foundation
for asynchronously executing distributed processes, is not obvious for for-
malisms such as DECLARE and DCR Graphs. This is in stark contrast
to the very successful Petri-net–based process languages, which have an
inherent notion of concurrency. In this paper, we propose a notion of
concurrency for declarative process models, formulated in the context
of DCR graphs, and exploiting the so-called “true concurrency” seman-
tics of Labelled Asynchronous Transition Systems. We demonstrate how
this semantic underpinning of concurrency in DCR Graphs admits asyn-
chronous execution of declarative workflows both conceptually and by
reporting on a prototype implementation of a distributed declarative
workflow engine. Both the theoretical development and the implemen-
tation is supported by an extended example; moreover, the theoretical
development has been verified correct in the Isabelle-HOL interactive
theorem prover.

1 Introduction

The last decade has witnessed a massive revival of business process and workflow
management systems driven by the need to provide more efficient processes and
at the same time guarantee compliance with regulations and equal treatment of
customers. Starting from relatively simple and repetitive business processes, e.g.
for handling invoices, the next step is to digitalise more flexible work processes,
e.g. of knowledge workers [22] that are distributed across different departments.

In many business process management solutions, notably solutions employ-
ing Business Process Model and Notation (BPMN), a distributed process will be
described as a set of pools, where each pool contains a flow graph that explicitly
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describes the flow of control between actions at that particular location. How-
ever, the explicit design time specification of both distribution and control flow
sometimes lead to overly rigid processes; and changes to the distribution and
control flow at run time, i.e. delegation of activities to different locations, repeti-
tion or skipping of activities, is non-trivial to support. Moreover, flow diagrams
describe constraints on the ordering of activities only implicitly. For instance, a
simple business rule stating that a bank customer must provide a budget before
getting approved for a loan can be checked only by verifying that on every path
from the request for a loan to an approval, there is a “receive budget” event.
Depending on the exact process language, the complexity of verifying this simple
rule ranges from challenging to undecidable.

Towards the challenge of accommodating flexibility and compliance, there has
been a renewed and increasing interest in declarative or constraint-based process
notations such as DECLARE [23,24] and Dynamic Condition Response (DCR)
graphs [7,13,16]. In a declarative process notation, a process is described by the
constraints it must fulfill, while the control flow is left implicit. This means that
activities can be carried out in any order and at any location that fulfills the
constraints. It also means that compliance rules and constraints are captured
explicitly in the model. However, so far constraint-based process notations have
only been equipped with sequential semantics allowing only one event to hap-
pen at a time. This is in stark contrast to successful Petri Net-based workflow
specifications, which have an inherent notion of concurrency.

In the present paper we make the following contributions:

1. We provide an overview of the challenges a notion of concurrency must over-
come for an event-based declarative workflow notation.

2. We give a “true concurrency” semantics for DCR graphs by enriching DCR
graphs with a notion of independent events, and prove that the semantics of
a DCR graph in this case gives rise to a labelled asynchronous transition sys-
tem [25,27]. The development, which is quite technical, has been verified to
be correct in the Isabelle-HOL interactive theorem prover[19]; the formalised
development is available online [4].

3. We show how this semantic underpinning of concurrency admits practical
asynchronous execution of declarative workflows. Essentially, this is achieved
by assigning events to location. Thus, we capture asynchronous semantics
for the entire spectrum of distributions, spanning from the fully centralized
workflow where every event is happening at the same location, to the fully
decentralized workflow, where every event is managed at its own location.

4. We demonstrate the practical feasibility of the developed theory by reporting
on a prototype implementation of a distributed declarative workflow engine.
The prototype is accessible online [3].

Related Work. Concurrency and distribution of workflows defined as flow
graphs are well-studied. Declarative modelling and concurrency has been studied
in the context of the Guard Stage Milestone (GSM) model [14] and declaratively
specified (Business) Protocols [8–10,26]. In the GSM model [14], declarative rules
govern the state of Guards, which in turn admits Stages to open and execute.
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The declarative rules reference a global state, which executing a Stage might
change non-atomically. Stages may run concurrently; to prevent errors of atom-
icity, a transactional concistency dicipline based on locks is followed. That is,
stages can be said to be concurrent if they do not have interferring reads and
writes to the global state. Neither (core) DCR graphs nor (core) DECLARE
has explicit notions of data, global state or state update. Writes and reads of
data must be modelled in DCR graphs as events, and interferrence between
such events by relations, i.e. any write event to a data location should explicitly
exclude and include every other event representing access to the same location.
Thus, dependencies between activities are not expressed implicitly as predicates
on a global state, but instead explicitly through relations between activities.

In [8–10,26] protocols are given declaratively as rules governing which actions
must and must not be available in a given state. Like GSM, the steps in the
protocol entail modifying the global state, and the availability of actions in a
particular state is directly expressed as predicates on this state. Unlike GSM,
race conditions are resolved by either ordering the types of updates [8], or by
projecting the global specification onto subsets of its rules in a way that avoids
the problems of non-local state and blindness [10].

The Agent-based approach of [15], while philosophically similar to the present
approach, sidesteps the issue of concurrency. Agents manage or invoke services,
comprised of tasks; tasks are explicitly declared as being in sequence, in parallel,
etc. Before invoking a service, the invoking agent must negotiate the particu-
lars of its usage with the managing agent; this negotiation is specified in part
declaratively. It is left to the implementation of agents and services to ensure
that concurrency issues do not arise.

Concurrency is less well-studied in the setting of pure declarative formalisms
without explicit data and global state, like DECLARE and DCR graphs. We
took tentative steps for DCR graphs in [1]. For DECLARE, [11,12] provide pat-
tern based translations of a subset of DECLARE LTL constraints to Petri Nets
by giving a net for each constraint. These works do not cover the full expressive
power of LTL (in particular, they only cover finitary semantics). In contrast,
DCR Graphs are known to be equivalent to Büchi-automata [5,16,18], and thus
express infinitary liveness conditions and are more expressive than LTL. [20]
offers a fully automatic mapping from Declare to finite state automata to Petri
Nets, but disregard the independence relation in their translation. Finally, [21]
considers declarative, event-based workflow specifications. Local constraints for
each event are derived from a global specification provided in an LTL-like tem-
poral logic. However, the use of the temporal logic makes the setting dependent
on an initial calculation of the local constraints, which only provide the inde-
pendence relation implicitly.

2 Concurrency and Declarative Workflows

In this section, we explain through examples the issues surrounding concurrency
in declarative workflow specifications, and give the main gist of our proposed
solution. Along the way, we will recall the declarative model of DCR graphs.
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2.1 A Mortgage Credit Application Workflow

As our main example, we will use a declarative specification of a workflow from
the financial services industry, specifically the mortgage application process of a
mortgage credit institution. The example is based on an ongoing project with the
Danish mortgage credit institution BRFKredit. For confidentiality reasons, we
are unable to present an actual process of BRFKredit; instead, we have distilled
down the major challenges discovered in that project into the following wholly
fictitious application process.

Mortgage application processes are in practice extremely varied, depending
on the type of mortgage, the neighbourhood, the applicant, and the credit insti-
tution in question. The purpose of the process is to arrive at a point where the
activity Assess loan application can be carried out. This requires in turn:

1. Collecting appropriate documentation,
2. collecting a budget from the applicant, and
3. appraising the property.

In practice, applicants’ budgets tend to be underspecified, so an intern will screen
the budget and request a new one if the submitted one happens to be so.

The caseworker decides if the appraisal can be entirely statistical, i.e., carried
out without physical inspection, but rather based on a statistical model taking
into account location, tax valuation, trade history etc.; or if it requires an on-site
appraisal. On-site appraisals are cursory in nature, and do not require actually
entering the property. For reasons of cost efficiency, one may not do both on-
site and statistical appraisals, not even in the case of an audit. However, if the
neighbourhood is insufficiently uniform, a thorough on-site appraisal is required.
This thorough appraisal requires physical access to the property, so the mobile
consultant performing the appraisal will in this case need to book a time with
the applicant.

Appraisals are occasionally audited as a matter of internal controls; an audit
may entail an on-site appraisal, which may or may not coincide with an ordinary
on-site appraisal. It is customary, however, to consider a statistical appraisal an
acceptable substitute for an on-site appraisal during an audit.

2.2 A DCR Formalisation

This textual description of the application process is inherently declarative: we
have described constraints on the ordering of activities in the process rather
than positing a particular sequencing. Thus, this process is naturally described
by a declarative process model such as DECLARE or DCR graphs. Presently,
we give a DCR graph-based declarative model in Figure 1 on page 76, produced
with the tool available at [3].

DCR models are graphical; activities, also known as “events” are represented
by boxes, labelled by the name of the activity and the role or participant execut-
ing that activity. E.g., the top-right box represents an activity Collect documents
which is carried out by a caseworker. Activities are colored according to their
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Fig. 1. Declarative DCR model of a mortgage application process

state: grey is not currently executable, red text is required, and greyed out is
excluded. Arrows between boxes represent constraints between activities. DCR
graphs define in their most basic form only 4 such constraints: Conditions and
Responses, Inclusions and Exclusions.

Conditions. A condition, drawn as an arrow with a dot at the head, represents
the requirement that the source activity must be executed at least once before
the target activity can be executed. In our model, we see, e.g., that Collect
documents must be executed before Assess loan application can be.

Responses. An activity can be required for the workflow to be considered com-
plete, usually called accepting. Incomplete or “pending” activities are labelled in
red and have an exclamation mark next to them. In the model, the activities Bud-
get screening approve andAssess loan application are initially pending.A response,
represented by an arrow with a dot at the tail, indicates that executing the source
activity imposes the requirement to later do the target activity, that is, executing
the former makes the latter pending. In the model, when an applicant does Submit
budget , this imposes the requirement of a subsequent screening, and so there is a
response from Submit budget to Budget screening approve.

Inclusions and Exclusions. An activity is always in one of two states: it is
either included or excluded. In diagrams, excluded activities are drawn with a
thin gray; regularly drawn activities are included. An excluded activity cannot
execute; it cannot prevent the workflow from being accepting, even if it is pend-
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ing; and it cannot prevent other activities from executing, even if they have
conditions on it. For ease of reading, conditions from excluded activities are also
drawn with a thin gray, to indicate that they currently do not have effect.

An activity may cause other activities to be included or excluded when it
is itself executed. This is indicated diagrammatically with arrows that has “+”
and “%” as heads. In the model, the Irregular neighbourhood activity—which
is an automated activity executed by IT-systems—includes the Make appraisal
appointment , which is initially excluded; this in turn makes On-site appraisal
non-executable until the appointment has been made, by virtue of the condition
from Make appraisal appointment to On-site appraisal . Conversely, the On-site
appraisal and Statistical appraisal activities exclude each other: after doing one,
one may no longer do the other.

The semantics of a DCR model is the set of (finite and infinite) sequences of
activities in which every pending activity is eventually executed. We call such
sequences “traces”. For finite traces, this means that no activity is pending at
the end.

Example 2.1. The model in Figure 1 admits (among infinitely many others), the
following three traces. The first is the “happy path”, the usual and simplest case.
The second is the “happy path” for the less frequent case of an irregular neigh-
borhood. The third is a convoluted special case, with audit and re-submission
of a pre-screened budgets.

1. Collect documents, Submit budget, Statistical appraisal, Budget screening
approve, Assess loan application.

2. Submit budget, Collect documents, Irregular neighbourhood, Budget screening
approve, Make appraisal appointment, On-site appraisal, Assess loan appli-
cation.

3. Collect documents, Submit budget, Statistical appraisal, Irregular neighbour-
hood, Budget screening approve, Appraisal audit, Make appraisal appoint-
ment, Submit budget, On-site appraisal, Budget screening approve, Assess
loan application.

2.3 Concurrency in the Example Workflow

It would appear that certain activities in this workflow could happen concurrently,
whereas others are somehow in conflict. It is clear from the textual specification
that, e.g., the process of submitting and screening the budget is independent from
the appraisal model, and we would expect to be able to execute them concurrently
in practice.

Our DCR model of Figure 1 appears to bear out this observation: there are no
arrows—and so it would seem no constraints—between Submit budget and Bud-
get screening approve on the one hand; and Appraisal audit , On-site appraisal ,
and Statistical appraisal on the other. This insight begets the question: Exactly
when are two activities concurrent? Exactly when will it always be admissible to
swap two activities? These questions have practical relevance: E.g., the mobile
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consultant might be without internet connectivity when he executes the activity
On-site appraisal ; but this is admissible only if it is somehow guaranteed that
only concurrent activities happen simultaneously.

We proceed to examine what is a reasonable notion of concurrency of activ-
ities through a series of examples. We will attempt to obtain a set of principles
to help us later judge what is and is not a good definition of “concurrency”.

Example 2.2. The traces indicated above gives an indication that there is indeed
some form of independence, in that, e.g., in the first trace, the activities Submit
budget on the one hand and Statistical appraisal on the other can be swapped
and we still have an admissible trace. In fact, it is not terribly difficult to prove
that in any admissible trace, we can always swap adjacent activities when one
is among the budget activities and the other is among the appraisal activities,
and the trace we then get is still admissible.

The principle we observe here is that adjacent concurrent activities should
be able to happen in either order.

Example 2.3. A very easy example of activities that cannot be considered con-
current are ones related by a condition. If one requires the other to have happened
previously, clearly they cannot in general happen at the same time. This is the
case for, e.g., Collect documents and Irregular neighbourhood.

The principle we observe here is that concurrent activities cannot enable each
other.

Example 2.4. However, clearly not every two activities can be reasonably
swapped. For instance, the activies On-site appraisal and Statistical appraisal
are specified to be mutually exclusive (in most cases) in the textual specifica-
tion, and in the DCR model each excludes the other. If one happens, the other
cannot, and so they cannot reasonably be considered concurrent: When they
cannot happen one after the other, surely they should not be allowed to happen
simultaneously.

The principle we observe here is that concurrent activities cannot disable
each other.

Example 2.5. A different way activities can be in conflict is if their executions
have mutually incompatible effects on the state of the DCR graph. For instance,
the Appraisal audit includes On-site appraisal , whereas Statistical appraisal
excludes it. Clearly, Appraisal audit and Statistical appraisal cannot be exe-
cuted concurrently: if they were to happen at the same time, what would be the
resulting state of On-site appraisal—included or excluded?

The principle we observe here is that concurrent activities cannot have incom-
patible effects on the state of other activities.

Example 2.6. The examples we have seen so far have one thing in common:
activities that could not be considered concurrent were related by arrows in the
model. Could it be that events not directly related are necessarily concurrent?

No! Consider the events Irregular neighbourhood and On-site appraisal . These
are not directly related: there are no arrows from one to the other. However,
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Irregular neighbourhood includes Make appraisal appointment , which is a condi-
tion for On-site appraisal . Thus executing Irregular neighbourhood prevents the
execution of On-site appraisal . Thus we might observe the ordering first On-site
appraisal followed by Irregular neighbourhood , but never the opposite order. In
the abstract, like for conditions, one of these activities precludes the execution
of the other, and so they cannot be considered concurrent—even though there
is no arrow between them.

The principle we observe here we saw already before: concurrent events can-
not disable each other.

In subsequent sections, we formalise concurrency of DCR activities in terms of
Labelled Asynchronous Transition Systems. We shall see that within the notion
of concurrency embodied in those, the handful of examples we have given above
in fact embody all the ways activities of a DCR graph can be non-concurrent.

3 DCR Graphs

In this Section we define DCR graphs formally. This is a necessary prerequisite
for defining concurrency of DCR graph events (activities) in the next Section.

The formalisation here mirrors a mechanised but somewhat less readable for-
malisation in the proof-assistant Isabelle-HOL [19]; results of the next section are
verified to be correct by Isabelle-HOL. The formalisation is available online [4].

We will need the following notation. For a set E we write P(E) for the power
set of E (i.e. set of all subsets of E) and Pne(E) for the set of all non-empty
subsets of E. For a binary relation →⊆ E × E and a subset ξ ⊆ E of E we
write → ξ and ξ → for the set {e ∈ E | (∃e′ ∈ ξ | e → e′)} and the set
{e ∈ E | (∃e′ ∈ ξ | e′ → e)} respectively. For convenience, we write →e and e→
instead of the tiresome →{e} and {e}→.

In Def. 3.1 below we formally define DCR Graphs.

Definition 3.1 (DCR Graph). A Dynamic Condition Response Graph
(DCR Graph) G is a tuple (E,M,R, L, l), where

(i) E is a set of events (or activities),
(ii) M = (Ex,Re, In) ∈ M(G) is the marking, for M(G) =def P(E) × P(E) ×

P(E) (mnemonics: Executed, Response-required, and Included),
(iii) R = (→•, •→,→+,→%) are the condition, response, include and exclude

relation respectively, with each relation →⊆ E × E.
(iv) L is the set of labels and l : E → L is a labeling function mapping events

to labels.

For the remainder of this paper, when a DCR graph G is clear from the
context, we will assume it has sub-components named as in the above definition;
i.e., we will write simply •→ and understand it to be the response relation of G.

An event of a DCR graph is enabled if it is included and every one of its
conditions were previously executed:
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Definition 3.2. For an event e of a DCR graph G, we say that e is enabled,
written G � e, iff e ∈ In ∧ (In ∩ →•e) ⊆ Ex.

In the following definitions we then define the result of executing an event of a
DCR Graph. Firstly, in Def. 3.3 we define the effect of the execution of the event,
i.e. which event was executed(Δe), which events are being included(ΔI), which
events are being excluded(ΔX) and which events are being made pending(ΔR).
We then in Def. 3.4 define how the effect is applied to the (marking of the)
DCR Graph to yield a new (marking of the) DCR Graph: Δe is added to the
set of executed events, first ΔX are removed from the set of included events and
afterwards ΔI are added to the set of included events (meaning that events that
are both included and excluded in a single step will remain included), finally Δe
is removed from the set of pending responses before ΔR is added to the set of
pending responses (meaning that if an event is a response to itself it will remain
pending after execution). Finally in Def. 3.5 we define how these two operations
are used together to execute an event on a DCR Graph, yielding a new DCR
Graph.

Definition 3.3. The effect of the execution of an event e on a DCR Graph G
is given by effect(G, e) = (Δe,ΔI,ΔX,ΔR) where:

(i) Δe = {e} the singleton set containing the event being executed,
(ii) ΔI = e→+ the events being included by e,
(iii) ΔX = e→% the events being excluded by e,
(iv) ΔR = e•→ the events being made pending by e.

When the DCR Graph G is given from the context we will below write δe for
effect(G, e).

Definition 3.4. The action effect δe = (Δe,ΔI,ΔX,ΔR) on marking
(Ex,Re, In) is:

δe · (Ex,Re, In) =
(
Ex ∪ Δe, (Re \ Δe) ∪ ΔR, (In \ ΔX) ∪ ΔI)

The action of effect δe on a DCR Graph G = (E,M,R, L, l) is then defined as:

δe · (E,M,R, L, l) = (E, δe · M,R, L, l)

Definition 3.5. For a Dynamic Condition Response Graph G and event G � e,
we define the result of executing e as G ⊕ e =def effect(G, e) · G.

Towards defining accepting executions of DCR graphs, we first define the
obligations of a DCR graphs to be its set of included, pending events.

Definition 3.6. Given a DCR graph G = (E,M,R, L, l) with marking M =
(Ex,Re, In), we define the obligations of G to be obl(G) = Re ∩ In.

Having defined when events are enabled for execution, the effect of execut-
ing an event and a notion of obligations for DCR Graphs we define in Def. 3.7
the notion of finite and infinite executions and when they are accepting. Intu-
itively, an execution is accepting if any obligation in any intermediate marking
is eventually executed or excluded.
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Definition 3.7 (DCR Semantics). For a DCR graph G an execution of G
is a (finite or infinite) sequence of tuples {(Gi, ei, G

′
i)}i≤k (for k ∈ N ∪ ω) each

comprising a DCR Graph, an event and another DCR Graph such that G = G0

and for i < k we have G′
i = Gi+1; moreover for i ≤ k we have Gi � ei and

G′
i = Gi ⊕ ei. We say the execution is accepting if for i ≤ k we have for all

e ∈ obl(Gi) there is a j ≥ i with either ej = e or e ∈ obl(G′
j). We denote

by exe(G) respectively acc(G) the sets of all executions respectively all accepting
executions of G. Finally, we say that a DCR graph G′ is reachable from G iff
there exists a finite execution of G ending in G′.

4 Asynchronous Transition Systems and DCR Graphs

With the DCR graphs in place, we proceed to imbue DCR graphs with a notion
of concurrency. For this, we use the classical model of asynchronous transition
systems [27], here extended with labels as in [25]. As mentioned, the develop-
ment has been verified in Isabelle-HOL [19]; the formalisation source is available
online [4].

Once we embed DCR graphs in labelled asynchronous transition systems, we
shall find that the examples of concurrent and non-concurrent activities from
Section 2 actually exemplify independent and non-independent events. More-
over, the examples will turn out to be exhaustive, in the sense that each exam-
ple exemplifies one of the properties necessary for events to be (or not to be)
independent.

We apply the results of the present section in Section 5, when we present
a prototype implementation of a distributed declarative workflow engine. The
correctness of this engine hinges on the notion of independence presented here.

First, we recall the definition of labelled asynchronous transition systems [25].

Definition 4.1 (LATS). A Labelled Asynchronous Transition System is a
tuple A = (S, s0,Ev,Act, l ,→, I) comprising states S, an initial state s0 ∈ S,
events Ev, a labelling function l : Ev → Act assigning labels (actions) to events,
a transition relation →⊆ S×Ev×S, and an irreflexive, symmetric independence
relation I satisfying

1. s
e−→ s′ and s

e−→ s′′ implies s′ = s′′

2. s
e−→ s′ and s′ e′

−→ s′′ and eIe′ implies ∃s′′′ such s
e′
−→ s′′′ and s′′′ e−→ s′′

3. s
e−→ s′ and s

e′
−→ s′′ and eIe′ implies ∃s′′′ such s′ e′

−→ s′′′ and s′′ e−→ s′′′

In words, the first property says simply that the LATS is event-determinate:
an event will take you to one and only one new state. The second says that
independent events do not enable each other. The third that independent events
can be re-ordered. In the context of DCR graphs, the first property is trivially
true, and we have seen an example of the second property holding in Example 2.3,
and of the third in Example 2.2.
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For the remainder of this section, we establish that a DCR graph G gives rise
to a LATS A(G). Along the way, we shall see how the various definitions we set
up to eventually arrive at independence arise from the examples of “obviously
concurrent” and “obviously non-concurrent” behaviours we saw in Section 2.

Towards finding a suitable notion of independence, we first define a notion of
effect-orthogonality for events of a DCR graph. As we shall see, this orthogonality
characterises the situation where the effects of events commute on markings.

Definition 4.2. We say that events e = f of a DCR graph G are effect-
orthogonal iff

1. no event included by e is excluded by f and vice versa, and
2. e requires a response from some g iff f does.

We lift this notion to effects themselves, saying δe, δf of G are orthogonal iff
e, f are.

Here, the first condition says that effect-orthogonal events cannot have
conflicting effects. We saw an example of such conflicts in Example 2.5: the
Appraisal audit includes On-site appraisal , whereas Statistical appraisal excludes
it. The second condition is perhaps less intuitive, saying that if one event makes
the other pending, the other event hides this effect by making itself pending.
A more intuitive, but also more restrictive alternative, would be to require that
neither event has a response on the other.

Proposition 4.3. Let δe, δf be effects of a DCR graph G, and let M be a mark-
ing for G. If e, f are orthogonal then δe · (δf · M) = δf · (δe · M).

Proof (in Isabelle). See [4], Lemma “orthogonal-effect-commute”.

Next, we define that two events are cause-orthogonal. The intention is that
for such event pairs, executing one cannot change the executability of the other.

Definition 4.4. Events e, f of a DCR-graph G are cause-orthogonal iff

1. neither event is a condition for the other,
2. neither event includes or excludes the other, and
3. neither event includes or excludes a condition of the other.

We saw examples of all three conditions previously. Specifically, for (1), we
saw in Example 2.3 that Collect documents is a condition for Irregular neigh-
bourhood , and so these activities cannot be considered non-causal. For (2), we
saw in Example 2.4 how On-site appraisal and Statistical appraisal exclude each
other and thus cannot be cause-orthogonal. For (3), we saw in Example 2.6 how
Irregular neighbourhood included a condition of On-site appraisal , and thus those
two events cannot be cause-orthogonal.

From effect- and cause-orthogonality, we obtain the requisite notion of inde-
pendence. This explains the contents of the examples we have seen so far: activ-
ities that could be considered “concurrent” are independent; those that could
not are not.
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Definition 4.5. Given a DCR graph G, we say that events e, f are independent
if they are both effect- and cause-orthogonal. We write IG for the independence
relation induced by a DCR-graph G.

We must of course prove that our proposed independence relation IG satisfies
the conditions for an independence relation of Definition 4.1.

Theorem 4.6. Let G be a DCR graph. If e, f are independent events of G then
any marking in G satisfies the concurrency properties (1–3) of Definition 4.1.

Proof (in Isabelle). See [4], Theorem “causation-and-orthogonality-entails-
independence”.

And with that, we arrive at a formal definition of concurrency for the declar-
ative workflow model of DCR graphs: Each DCR graph has an associated inde-
pendence relation, and thus an associated LATS, which tells us which activities
(events) can be considered concurrent and which cannot.

Corollary 4.7. Let G be a DCR graph. Then L(G) is a Labelled Asynchronous
Transition System when equipped with independence relation IG. We call this
LATS A(G).

Proof (in Isabelle). See [4], Theorem “DCR-LATS”.

We shall see in Section 5 how Corollary 4.7 and Theorem 4.6 enables a
practical distributed implementation of declarative workflows in general, and in
particular of our mortgage application example. We conclude this section by
noting in Table 1 which events of our running example are in fact independent.

5 A Process Engine for Distributed Declarative
Workflows

The previous sections supply an understanding of DCR graphs as labelled asyn-
chronous transition systems and in particular of independence of DCR graph
events. With that, the door opens to a distributed implementation of a declar-
ative workflow language. We have implemented such a prototype engine; in this
Section, we describe by example the workings of that engine.

The central idea is to exploit the extremely local nature of DCR events in
conjunction with the notion of independence. Because of the locality of DCR
events, we can partition the set of events of a DCR graph into components,
assigning each component to a distinct node in a distributed system. The node
is responsible for executing the particular event, and for notifying other compo-
nents of executions, when such executions requires them to update their state.

However, a node cannot freely execute its events; that would leave us open
to all the mistakes of non-concurrency exemplified in Section 2. We there-
fore employ a locking mechanism to ensure that only concurrent events can be
executed simultaneously.
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Table 1. Independence relation for activites of the model of Figure 1.

We exemplify this by forming a distributed version of our running example.
For ease of presentation, we distribute the workflow over only two nodes: one
for the “Mobile consultant” (presumably his mobile device), and one for the
rest. However, the principles of distribution employed here apply to arbitrarily
fine sub-divisions of DCR graphs, right down to each node hosting only a single
event.

Presently, we obtain the two components in Figure 2. The diagram for each
component represents remote events as dashed boxes. Moreover each component
retains only remote events with which some local event is not independent. For
the “Mobile consultant” component (Figure 2), that means that all events related
to budgets are gone, as is the initial Collect documents. The “other” component
(Figure 2) retains all the “Mobile consultant” events, because every event of the
Mobile consultant is in fact in conflict with some event local to “other”.

The procedure for executing an event, in detail, is as follows. A component
wishing to execute an event e must first request1 and receive locks on all (local
and remote) events that are in conflict (i.e., not independent ) with e (thus, in
particular, on itself). It then queries the state of remote events to determine if
e is currently executable. If it is, it instructs remote events affected by firing e
to change state accordingly. Finally, it releases all locks.

For example, if the “other” component wishes to execute the Assess loan
application event in the DCR graphs of Figures 2 and 2, it will first request and
receive a lock on On-site appraisal ; then query the state of On-site appraisal ;

1 All components request locks in the same fixed order to prevent deadlocks.
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Fig. 2. Component models for the Mobile consultant (left) and for other roles (right).

then find out that that event is not previously executed; and will then release
the lock on On-site appraisal .

Notice that since this procedure is based on independence, it allows concur-
rency in the very concrete sense that the “other” component is free to execute
any of the events Collect documents, Submit budget , and Budget screening approve
without communication with the “Mobile consultant” component, because these
three events are all independent with all the events of the “Mobile consultant”
component. Conversely, any other event requires communication, since these other
events are all in conflict with the some event of the “Mobile consultant” compo-
nent.

Implementation. We have implemented the technique described here in the DCR
Workbench, an existing web-based tool for experimenting with DCR graphs; see,
e.g., [7]. The diagrams in this paper are all output from this prototype.

The prototype allows specifying components by accepting for each activity an
optional indication of a URL at which the event is located. E.g, in the component
model for other roles (Fig 2), the remote activity “On-site appraisal” is given as:

"On-site appraisal"

[ role = "Mobile consultant"

url = "http://localhost:8090/events/On-site%20appraisal" ]

The DCR Workbench then enables starting separate REST services for each
such component model. Each service accesses information about state of remote
events by issuing a GET to URLs derived from the specified one. E.g., in the
other roles component model, “On-site appraisal” is a condition for “Assess loan
application”; accordingly, to execute “Assess loan application”, the REST service
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for that model will query the executed state of “On-site appraisal” by issuing a
GET request to:

http://localhost:8090/events/On-site%20appraisal/executed

Similarly, PUT requests are used to update the state of remote activities; e.g.,
“Irregular neighbourhood” will, when executed, make “Make appraisal appoint-
ment” excluded by issuing an appropriate PUT.The implementation ensures
that before state of remote events is queried or updated, all independent activi-
ties are locked. Please refer to the prototype [3] to experiment with declarative
concurrency first-hand!

6 Conclusion

We have studied concurrency of pure declarative workflow models. This prob-
lem is important, since its solution is a prerequisite for implementing distributed
engines for declaratively specified workflows. Concretely, we investigated reason-
able examples and non-examples of concurrency for the declarative DCR model
by example; we formally added a notion of concurrency between events of DCR
graphs, enriching the standard semantics to a semantics of the classical true
concurrency model of labelled asynchronous transition systems. We backed this
foundational contribution by (a) a formal verification in Isabelle-HOL of the
development [4], and (b) a proof-of-concept implementation of a distributed
declarative workflow engine, available at [3].

6.1 Discussion and Future Work

The present work considers only core DCR Graphs, which can represent only
finite state processes and have no (practical) representation of data, as events
can not be parametrized by data. This consitutes of course a noteworthy gap
between the theory and practice.

The practical commercial use of DCR graphs by Exformatics has succes-
fully employed DCR graphs as a control-flow layer on top of an underlying
database, using database triggers as events signalling changes to data values [6].
Processes dynamically handling multiple instances of business artifacts (e.g. mul-
tiple instances of the budget in our running example) with separate life cycles
were realised by different DCR graphs, one for each data object being processed,
interacting via the underlying database. In this case, the present work would
apply to the individual models for each artifact, but not accross the models.

In [5,7], DCR Graphs have been extended to DCR Graphs with sub-
processes, allowing dynamically created multiple instances of sub processes and
thus enabling analysis of processes as described above. We believe that the
present work on concurrency can be lifted to DCR Graphs with sub-processes.
The increased expressiveness however comes at the cost of making the model
Turing complete [5].
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Regarding data, we are presently working on extending the work on sub-
processes for DCR-graphs [7] to parametric sub-processes: Events which take
data values as input can spawn a new sub-process as a continuation, whose
shape depends on the data inputs (and in particular allows to declaratively
”store” the revieved data in the continuation, as in functional programming
languages). This should be compared to declarative models facilitating data and
state as side-effects on a global state such as [14].

On a different note, given the similarity of DCR graphs and DECLARE, it
is natural to ask whether the presently introduced notion of concurrency and
subsequent distribution of executable models can be transferred to DECLARE.
To this end, it’s important to realise that the present work relies crucially on the
notion of “event state” inherent in DCR graphs. Concurrency and independence
can be framed in terms of which events may or may not update the states of other
events by firing. DECLARE does not come with a similar notion of state, and
so it would appear that the present approach does not apply directly. However,
there is still hope: Looking at the standard relations of DECLARE instead of
LTL in general, it seems plausible that one might define an alternate semantics
either by encoding of DECLARE into DCR Graphs or in terms of some similar
notion of “activity state”; and then apply the approach of the present paper.

Our work with industry suggests that the flexibility of DCR Graphs is sought
for, but the difficulty of presenting and understanding declarative models is a
major obstacle to wider adaptation of declarative methodologies. This often
stems from fairly small models defining sometimes quite complex behaviour. We
believe that the ability to distribute DCR Graphs and understand the inde-
pendence between events is likely to help presenting the models. For instance,
defining independence for DCR graph events as labelled asynchronous transi-
tion systems (lats) opens the door to an encoding of DCR graphs into Petri nets
using the mapping from lats to Petri nets in [25]. In addition to opening up for
the application of the many tools and techniques developed for Petri Nets, it
would give a way of deriving flow diagrams from DCR graphs in a concurrency-
preserving way, which should be compared to the work in [11].

Finally, the concurrent semantics opens up for possible use of partial-order
reduction model checking techniques [2] towards more efficient static analysis of
DCR graphs than the current implementations based on verification on Büchi-
automata [16–18].
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