
I/O-Efficient Similarity Join?

Rasmus Pagh, Ninh Pham, Francesco Silvestri??, and Morten Stöckel? ? ?

IT University of Copenhagen, Denmark

Abstract. We present an I/O-efficient algorithm for computing similarity
joins based on locality-sensitive hashing (LSH). In contrast to the filtering
methods commonly suggested our method has provable sub-quadratic
dependency on the data size. Further, in contrast to straightforward
implementations of known LSH-based algorithms on external memory,
our approach is able to take significant advantage of the available internal
memory: Whereas the time complexity of classical algorithms includes a
factor of Nρ, where ρ is a parameter of the LSH used, the I/O complexity
of our algorithm merely includes a factor (N/M)ρ, where N is the data size
and M is the size of internal memory. Our algorithm is randomized and
outputs the correct result with high probability. It is a simple, recursive,
cache-oblivious procedure, and we believe that it will be useful also in
other computational settings such as parallel computation.

1 Introduction

The ability to handle noisy or imprecise data is becoming increasingly important
in computing. In database settings this kind of capability is often achieved using
similarity join primitives that replace equality predicates with a condition on
similarity. To make this more precise consider a space U and a distance function
d : U × U → R. The similarity join of sets R,S ⊆ U is the following: Given a
radius r, compute the set R ./≤r S = {(x, y) ∈ R×S | d(x, y) ≤ r}. This problem
occurs in numerous applications, such as web deduplication [3, 14], document
clustering [4], data cleaning [2, 6]. As such applications arise in large-scale datasets,
the problem of scaling up similarity join for different metric distances is getting
more important and more challenging.

Many known similarity join techniques (e.g., prefix filtering [2, 6], positional
filtering [14], inverted index-based filtering [3]) are based on filtering techniques
that often, but not always, succeed in reducing computational costs. If we let
N = |R|+ |S| these techniques generally require Ω(N2) comparisons for worst-
case data. Another approach is locality-sensitive hashing (LSH) where candidate
output pairs are generated using collisions of carefully chosen hash functions.
The LSH definition is as follows.

? The research leading to these results has received funding from the European Research
Council under the EU 7th Framework Programme, ERC grant agreement no. 614331.

?? In part supported by University of Padova project CPDA121378 and by MIUR of
Italy project AMANDA while working at the University of Padova.

? ? ? Supported by the Danish National Research Foundation / Sapere Aude program.

ar
X

iv
:1

50
7.

00
55

2v
1

 [
cs

.D
S]

 2
 J

ul
 2

01
5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50528681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Definition 1. Fix a distance function d : U × U → R. For positive reals
r, c, p1, p2, and p1 > p2, c > 1, a family of functions H is (r, cr, p1, p2)-sensitive
if for uniformly chosen h ∈ H and all x, y ∈ U:

– If d(x, y) ≤ r then Pr [h(x) = h(y)] ≥ p1;

– If d(x, y) > cr then Pr [h(x) = h(y)] ≤ p2.

We say that H is monotonic if Pr [h(x) = h(y)] is a non-increasing function of
the distance function d(x, y). We also say that H uses space s if a function h ∈ H
can be stored and evaluated using space s.

LSH is able to break the N2 barrier in cases where for some constant c > 1
the number of pairs in R ./≤cr S is not too large. In other words, there should
not be too many pairs that have distance within a factor c of the threshold, the
reason being that such pairs are likely to become candidates, yet considering
them does not contribute to the output. For notational simplicity, we will talk
about far pairs at distance greater than cr (those that should not be reported),
near pairs at distance at most r (those that should be reported), and c-near
pairs at distance between r and cr (those that should not be reported but affect
the I/O cost).

In this paper we study I/O-efficient similarity join methods based on LSH.
That is, we are interested in minimizing the number of I/O operations where
a block of B points from U is transferred between an external memory and
an internal memory with capacity for M points from U. Our main result is
the first cache-oblivious algorithm for similarity join that has provably sub-
quadratic dependency on the data size N and at the same time inverse polynomial
dependency on M . In essence, where previous methods have an overhead factor
of either N/M or (N/B)ρ we obtain an overhead of (N/M)ρ, where 0 < ρ < 1 is
a parameter of the LSH employed, strictly improving both. We show:

Theorem 1. Consider R,S ⊆ U, let N = |R|+|S|, assume 18 logN+3B ≤M <
N and that there exists a monotonic (r, cr, p1, p2)-sensitive family of functions
with respect to distance measure d, using space B and with p2 < p1 < 1/2.
Let ρ = log p1/ log p2. Then there exists a cache-oblivious randomized algorithm
computing R ./≤r S (wrt. d) with probability 1−O (1/N) using

Õ

(N
M

)ρN
B

+

|R ./
≤r
S|

MB

+

|R ./
≤cr

S|

MB

 I/Os.1

Discussion. We now conjecture that the bound in Theorem 1 is close to the best
possible for the class of “signature based” algorithms that work by generating a
set of LSH values (from a black-box and monotonic family) and checking all pairs
that collide. For simple arguments, we split the I/O complexity of our algorithms

1 The Õ (·)-notation hides polylog(N) factors.

2

in two parts:

T1 = (N/M)ρ
(
N/B + |R ./

≤r
S|/(MB)

)
,

T2 = |R ./
≤cr

S|/(MB).

We now argue that T1 I/Os is necessary. First, notice that we need O (N/B)
I/Os per hash function for transferring data between memories, computing and
writing hash values to disk to find collisions. Second, since each I/O brings at
most B points in order to find collisions with M points residing in the internal
memory, we need N/B I/Os to find collisions of MN pairs. This means that when
p2 ≤M/N , the number of collisions of far pairs is at most MN in expectation
and we need N/B I/Os to detect such far pairs.

Now consider the case where there are Ω
(
N2
)

pairs at distance cr. Then
the collision probability for each pair must be O (M/N) to ensure at most
MN collisions of far pairs due to the monotonicity of LSH family. In turn, this
means that the collision probability for near pairs at distance r must be at most
O ((M/N)ρ). So Ω ((N/M)ρ) repetitions (different hash functions) are needed
before we expect a near pair to collide at least once.

Then, a worst-case data set can be given so that we might need to examine, for
each of the Ω ((N/M)ρ) hash functions, a constant fraction the pairs in R ./≤r S
whose collision probability is constant. For example, this can happen if R and S
include two clusters of close points. One could speculate that some pairs could be
marked as “finished” during computation such that we do not have to compare
their hash values again. However, it seems hard to make this idea work for an
arbitrary distance measure where there may be very little structure to the output
set, hence the O (|R ./≤r S|/(MB)) additional I/Os per repetition is needed.

To argue that the term T2 is needed, consider the case where all pairs in
R ./≤cr S have distance r + ε for a value εsmall enough to make the collision
probability of pair at distance r+ε indistinguishable from the collision probability
of pair at distance r. Then every pair in R ./≤cr S must be brought into the
internal memory to ensure a correct result, which requires T2 I/Os. This holds
for any algorithm enumerating or listing the near pairs. Therefore, there does not
exist an algorithm that beats the quadratic dependency on N for such worst-case
input sets, unless the distribution of the input is known beforehand. A possible
approach to get subquadratic dependency on N in expectation when the number
of reporting pairs is subquadratic is the one that can filter the pairs based on
their distances — currently LSH-based methods are the only way to do this.

Note that when M = N we have T1 = O (N/B) as we would expect, since just
reading the input is optimal. At the other extreme, when B = M = 1 our bound
matches the time complexity of internal memory techniques. When |R ./≤cr S|
are bounded by MN then our algorithm achieves subquadratic dependency on
N/M . Such an assumption is realistic in some real-world datasets as shown in
the experimental evaluation section.

It is worth noting that whereas most methods in the literature focus on a
single (or a few) distance measure, our method works for an arbitrary space and

3

distance measure that allows LSH, e.g., Hamming, Manhattan (`1), Euclidean (`2),
Jaccard, and angular metric distances. A primary technical hurdle in the paper
is that we cannot use any kind of strong concentration bounds on the number
of points having a particular value, since hash values of an LSH family may be
correlated by definition. Another hurdle is duplicate elimination in the output
stemming from pairs having multiple LSH collisions. However, in the context of
I/O-efficient algorithms it is natural to not require the listing of all near pairs
(i.e., pairs with distance not greater than r), but rather we simply require that
the algorithm enumerates all such near pairs. More precisely, the algorithm calls
for each near pair (x, y) a function emit(x, y). This is a natural assumption in
external memory since it reduces the I/O complexity. In addition, it is desired
in many applications where join results are intermediate results pipelined to a
subsequent computation, and are not required to be stored on external memory.
Our upper bound can be easily adapted to list all instances by increasing the
I/O complexities of an unavoidable additive term of Θ (|R ./≤r S|/B) I/Os.

The organization of the paper is as follows. In Section 2, we briefly review
related work. Section 3 describes our algorithms including a warm-up cache-aware
approach and the main results, a cache-oblivious solution, its analysis, and a
randomized approach to remove duplicates. Section 4 shows some experimental
results and Section 5 concludes the paper.

2 Related Work

Because Locality-sensitive hashing (LSH) is a building block of our I/O-efficient
similarity join, we briefly review LSH, the computational I/O model, and some
state-of-the-art similarity join techniques.

Locality-sensitive hashing (LSH). LSH was originally introduced by In-
dyk and Motwani [12] for similarity search problem in high dimensional data.
This technique obtains a sublinear (i.e., O (Nρ)) time complexity by increasing
the gap of collision probability between near points and far points using the LSH
family as defined in Definition 1. Such gap of collision probability is polynomial,
with an exponent of ρ = log p1/ log p2 dependent on c.

It is worth noting that the standard LSHs for metric distances, including
Hamming [12], `1 [7], `2 [1, 7], Jaccard [4] and angular distances [5] are monotonic.
These common LSHs are space-efficient, and use space comparable to that required
to store a point, except the LSH of [1] which requires space No(1). We did not
explicitly require the hash values themselves to be particularly small. However,
using universal hashing we can always map to small bit strings while introducing
no new collisions with high probability. Thus we assume that B hash values fit
in one memory block.

Computational I/O model. We study algorithms for similarity join in the
external memory model, which has been widely adopted in the literature (see, e.g.,
the survey by Vitter [13]). The external memory model consists of an internal
memory of M words and an external memory of unbounded size. The processor
can only access data stored in the internal memory and move data between the

4

two memories in blocks of size B. For simplicity we will here measure block and
memory size in units of points from U, such that a block can contain B points.

The I/O complexity of an algorithm is defined as the number of input/output
blocks moved between the two memories by the algorithm. The cache-aware
approach makes use of the parameter M explicitly to achieve its I/O complexity
whereas the cache-oblivious one [8] does not explicitly use any model parameters.
The latter is a desirable property as it implies optimality on all levels of the
memory hierarchy and does not require parameter tuning when executed on
different physical machines. The cache-oblivious model assumes that the internal
memory is ideal in the sense that it has optimal cache-replacement policy that
can evict the block that is used the farthest in the future, and also that a block
can be placed anywhere in the cache (full associativity).

Similarity join techniques. We review some state-of-the-art of similarity
join techniques most closely related to our work.

– Index-based similarity join. A popular approach is to make use of indexing
techniques to build a data structure for one relation, and then perform queries
using the points of the other relation. The indexes typically perform some
kind of filtering to reduce the number of points that a given query point is
compared to (see, e.g., [6, 3]). Indexing can be space consuming, in particular
for LSH, but in the context of similarity join this is not a big concern since
we have many queries, and thus can afford to construct each hash table
“on the fly”. On the other hand, it is clear that index-based similarity join
techniques will not be able to take significant advantage of internal memory
when N �M . Indeed, the query complexity stated in [9] is O ((N/B)ρ) I/Os.
Thus the I/O complexity of using indexing for similarity join will be high.

– Sorting-based. The indexing technique of [9] can be adapted to compute
similarity joins more efficiently by using the fact that many points are being
looked up in the hash tables. This means that all lookups can be done in
a batched fashion using sorting. This results in a dependency on N that is
Õ
(
(N/B)1+ρ

)
I/Os, where ρ ∈ (0; 1) is a parameter of the LSH family.

– Generic joins. When N is close to M the I/O-complexity can be improved
by using general join operators optimized for this case. It is easy to see that
when N/M is an integer, a nested loop join requires N2/(MB) I/Os. Our
cache-oblivious algorithm will make use of the following result on cache-
oblivious nested loop joins:

Theorem 2. (He and Luo [11]) For an arbitrary join condition, the join
of relations R and S can be computed in O ((|R|+ |S|)/B + (|R||S|)/(MB))
I/Os by a cache-oblivious algorithm. This number of I/Os suffices to generate
the result in memory, but may not suffice to write it to disk.

3 Our Algorithms

In this section we describe our I/O efficient algorithms. We start in Section 3.1 with
a warm-up cache-aware algorithm. It uses an LSH family where the value of the

5

Algorithm ASimJoin(R,S): R,S are the input sets.

1 Associate to each point in S a counter initially set to 0;
2 Repeat L = 1/p′1 times
3 Choose h′i ∈ H′ uniformly at random;
4 Use h′i to partition (in-place) R and S in buckets Rv, Sv of points with the

hash value v;
5 For each hash value v generated in the previous step
6 /* For simplicity we assume that |Rv| ≤ |Sv| */
7 Split Rv and Sv into chunks Ri,v and Si,v of size at most M/2;
8 For every chunk Ri,v of Rv
9 Load in memory Ri,v;

10 For every chunk Si,v of Sv do
11 Load in memory Si,v;
12 Compute Ri,v × Si,v and emit all near pairs. For each far pair,

increment the associated counters by 1;
13 Remove from Si,v and Ri,v all points with the associated counter

larger than 4LM , and write Si,v back to external memory;

14 Write Ri,v back to external memory;

collision probability is set to be a function of the internal memory size. Section 3.2
presents our main result, a recursive and cache-oblivious algorithm which uses
the LSH with a black-box approach and does not make any assumption on the
value of collision probability. Section 3.3 describes the analysis and Section 3.4
shows how to reduce the expected number of times each near pair is emitted.

3.1 Cache-aware algorithm: ASimJoin

We will now describe a simple cache-aware algorithm called ASimJoin, which
achieves the worst case I/O bounds as stated in Theorem 1. ASimJoin relies
on an (r, cr, p′1, p

′
2)-sensitive family H′ of hash functions with the following

properties: p′2 ≤M/N and p′1 ≥ (M/N)ρ, for a suitable value 0 < ρ < 1. Given
an arbitrary monotonic (r, cr, p1, p2)-sensitive family H, the family H′ can be
built by concatenating dlogp2(M/N)e hash functions from H. For simplicity, we
assume that logp2(M/N) is an integer and thus the probabilities p′1, p

′
2 can be

exactly obtained. However, the algorithm and the analysis can be extended to
the general case by increasing the I/O complexity by a factor at most p−11 in the
worst case; in practical scenarios, this factor is a small constant [4, 7, 9].

ASimJoin assumes that each point in R and S is associated with a counter
initially set to 0. This counter can be thought as another dimension of the point
which hash functions and comparisons do not take into account. The algorithm
repeats L = 1/p′1 times the following procedure. A hash function is randomly
drawn from the (r, cr, p′1, p

′
2)-sensitive family, and it is used for partitioning the

sets R and S into buckets of points with the same hash value. We let Rv and Sv
denote the buckets respectively containing points of R and S with the same hash
value v. Then, the algorithm iterates through every hash value and, for each hash

6

value v, it uses a double nested loop for generating all pairs of points in Rv × Sv.
The double nested loop loads consecutive chunks of Rv and Sv of size at most
M/2: the outer loop runs on the smaller set (say Rv), while the inner one runs
on the larger one (say Sv). For each pair (x, y), the algorithm emits near pairs
d(x, y) ≤ r, ignores c-near pairs r < d(x, y) ≤ cr and far pairs d(x, y) > cr, and
increases counters associated with x and y of the far pairs by 1. Every time the
counter of a point exceeds 4LM , the point is removed from the bucket. Chunks
will be moved back in memory when they are no more needed. The following
theorem shows the I/O bounds of the cache-aware approach.

Theorem 3. Consider R,S ⊆ U and let N = |R| + |S| be sufficiently large.
Assume there exists a monotonic (r, cr, p′1, p

′
2)-sensitive family of functions with

respect to distance measure d with p′1 = (M/N)ρ and p′2 = M/N , for a suitable
value 0 < ρ < 1. With probability 1− 1/N , the ASimJoin algorithm enumerates
all near pairs using

Õ

(N
M

)ρN
B

+

|R ./
≤r
S|

MB

+

|R ./
≤cr

S|

MB

 I/Os.

Proof. We first observe that the I/O cost of Steps 3-4, that is of partitioning sets
R and S according to a hash function h′i, is L · sort(N) = Õ ((N/M)ρN/B)2 for
L ≤ (N/M)ρ repetitions.

Consider now the I/O cost of an iteration of the loop in Step 5 for a given
hash value v and suppose that the size of the smaller bucket is smaller than
M/2. Then, the I/O cost is at most (|Rv| + |Sv|)/B. Therefore, the total I/O
cost of the L iterations of Step 5 among all possible hash values where at least
one bucket has size smaller than M/2 is at most LN/B = (N/M)ρN/B I/Os.

Next, we consider the I/O cost of an iteration the loop in Step 5 for a given
hash value v when both buckets Rv and Sv are larger than M/2. In this case
the I/O cost is 2|Rv||Sv|/(BM), from which follows that the amortized cost
of each pair in Rv × Sv is 2/(BM). Therefore the I/O cost of all iterations of
Step 5, when there are no bucket size less than M/2, can be upper bounded by
multiplying the total number of generated pairs for the amortized I/O cost. It is
clear that generated pairs can be partitioned into three groups: near pairs, c-near
pairs and far pairs. We denote with Cn, Ccn and Cf the respective size of each
group.

1. Number of near pairs. By definition, LSH gives a lower bound on the proba-
bility of collision of near pairs. It may happen that the collision probability
of near pairs is 1. Thus, two near points can be in the same hash value in
each one of the L repetitions of Step 2. This means that Cn ≤ L|R ./≤r S|
(note that this is a deterministic worst case bound).

2 We let sort(N) = O
(

(N/B) logM/B(N/B)
)

be shorthand for the I/O complexity

[13] of sorting N points.

7

2. Number of c-near pairs. A pair from R ./≤cr S appears in a bucket with
probability at most p′1 due to monotonicity of our LSH family. Since we
repeat for L = 1/p′1 hash functions, the each c-near pair collide at most
once in expectation. By using the Chernoff bound on 3 logN independent L
repetitions and applying the union bound, we get Ccn ≤ 3 logN |R ./≤cr S|
with probability 1− 1/N .

3. Number of far pairs. For each point x ∈ R ∪ S we throw x away as described
above if it exceeds 4LM collisions with points that are more than distance
cr away. We have that the number of far away collisions examined per point
is at most 4LM , and hence the total number of far pairs is Cf ≤ 4NLM .

Therefore by summing the number of near pairs Cn, c-near pairs Ccn, and far
pairs Cf and multiplying these quantities by the amortized I/O complexity
2/(BM), we get that the I/O cost of all iterations of Step 5, when there are no
buckets of size less than M/2, is(

N

M

)ρ(
8N

B
+

2|R ./≤r S|
BM

)
+

6 logN |R ./≤cr S|
BM

,

with probability at least 1− 1/N . By summing all the previous bounds, we get
the claimed bound with high probability. ut

As already mentioned in the introduction, a near pair (x, y) can be emitted
many times during the algorithm since points x and y can be hashed on the
same value in p(x, y)L rounds of Step 2, where p(x, y) ≥ p′1 denotes the actual
collision probability. A simple approach for avoiding duplicates is the following:
for each near pair found during the i-th iteration of Step 2, the pair is emitted
only if the two points did not collide by all hash functions used in the previous
i− 1 rounds. The check starts from the hash function used in the previous round
and backtracks until a collision is found or there are no more hash functions.
This approach increases the worst case complexity by a negligible constant factor
(e.g, by setting M = B = O (1)). Section 3.4 shows a more efficient randomized
algorithm that reduces the number of replica per near pair to a constant. It also
applies to the cache-oblivious algorithm described in the next section.

3.2 Cache-oblivious algorithm: OSimJoin

The above cache-aware algorithm uses an (r, cr, p′1, p
′
2)-sensitive family of func-

tions, with p′1 ∼ (M/N)ρ and p′2 ∼ M/N , for partitioning the initial sets into
smaller buckets, which are then efficiently processed in the internal memory using
the nested loop algorithm. As soon as the internal memory size M is known,
this family of functions can be constructed by concatenating dlogp2 p

′
2e hash

functions from any given primitive (r, cr, p1, p2)-sensitive family. However, in the
cache-oblivious settings the value of M is not known and such family cannot
be built. Therefore, we propose in this section an algorithm, named OSimJoin
that efficiently computes the similarity join even without knowing the values
of the internal memory size M and the block length B. OSimJoin uses as a

8

Algorithm OSimJoin(R,S, ψ): R,S are the input sets, and ψ is the
recursion depth.

1 If |R| > |S|, then swap (the references to) the sets such that |R| ≤ |S|;
2 If ψ = Ψ or |R| ≤ 1, then compute R ./≤r S using the algorithm of Theorem 2

and return;
3 Pick a random sample S′ of 18∆ points from S (or all points if |S| < 18∆);
4 Compute R′ containing all points of R that have distance smaller than cr to at

least half points in S′;
5 Compute R′ ./≤r S using the algorithm of Theorem 2;
6 Repeat L = 1/p1 times
7 Choose h ∈ H uniformly at random;
8 Use h to partition (in-place) R\R′ and S in buckets Rv, Sv of points with

hash value v;
9 For each v where Rv and Sv are nonempty, recursively call

OSimJoin (Rv, Sv, ψ + 1);

black-box a given monotonic (r, cr, p1, p2)-sensitive family of functions3. The
value of p1 and p2 can be considered constant in practical scenario. As common in
the cache-oblivious settings, we use a recursive approach for splitting the problem
into smaller and smaller subproblems that at some point will fit the internal
memory, although this point is not known in the algorithm. We first give a high
level description of the cache-oblivious algorithm and an intuitive explanation.
We then provide a more detailed description and analysis.

OSimJoin receives in input the two sets R and S of similarity join, and a
parameter ψ denoting the depth in the recursion tree (initially, ψ = 0) that is
used for recognizing the base case. Let |R| ≤ |S|, N = |R| + |S|, and denote
with ∆ = logN and Ψ = dlog1/p2 Ne two global values that are kept invariant in
the recursive levels and computed using the initial input size N . For simplicity
we assume that 1/p1 and 1/p2 are integers, and further assume without loss of
generality that the initial size N is a power of two. Note that, if 1/p1 is not
integer, that the last iteration can be performed with probability 1/p1 − b1/p1c,
such that L ∈ {b1/p1c, d1/p1e} and E [L] = 1/p1.

OSimJoin works as follows. If the problem is currently at recursive level
Ψ = dlog1/p2 Ne or R is empty, the recursion ends and the problem is solved using
the cache-oblivious nested loop described in Theorem 2. Otherwise the following
operations are executed. By exploiting sampling, the algorithm identifies a subset
R′ of R containing (almost) all points that are near or c-near to a constant
fraction of points in S. More specifically, the set R′ is computed by creating a
random sample S′ of S of size 18∆ and then adding to R′ all points in R that have
distance at most cr to at least half points in S′. The join R′ ./≤r S is computed
by using the cache-oblivious nested-loop of Theorem 2 and then points in R′

3 The monotonicity requirement can be relaxed to the following: Pr [h(x) = h(y)] ≥
Pr [h(x′) = h(y′)] for every two pairs (x, y) and (x′, y′) where d(x, y) ≤ r and
d(x′, y′) > r. A monotonic LSH family clearly satisfies this assumption.

9

are removed from R. Subsequently, the algorithm repeats L = 1/p1 times the
following operations: a hash function is extracted from the (r, cr, p1, p2)-sensitive
family and used for partitioning R and S into buckets, denoted with Rv and Sv
with any hash value v; then, the join Rv ./≤r Sv is computed recursively.

The explanation of our approach is the following. By recursively partitioning
input points with hash functions from an (r, cr, p1, p2)-sensitive family, the algo-
rithm decreases the probability of collision between two far points. In particular,
the collision probability of two far points is pi2 at the i-th recursive level. On the
other hand, by repeating the partitioning 1/p1 times in each level, the algorithm
guarantees that a pair of near points is enumerated with constant probability
since the probability that two near points collide is pi1 at the i-th recursive level.
It deserves to be noticed that the collision probability of far and near points
at the recursive level log1/p2(N/M) is Θ (M/N) and Θ ((M/N)ρ), respectively,
which are asymptotically equivalent to the values in the cache-aware algorithm.
In other words, the partitioning of points at this level is equivalent to the one in
the cache-aware algorithm, being the expected number of colliding far points is
M . Finally, we observe that, when a point in R becomes close to many points in
S, it is more efficient to detect and remove it, instead of propagating it down to
the base cases. Indeed, it may happen that the collision probability of these points
is large (close to 1) and the algorithm is not able to split them into subproblems
that fit in memory.

3.3 I/O Complexity and Correctness of OSimJoin

Analysis of I/O Complexity. We will bound the expected number of I/Os
of the algorithm rather than the worst case. This can be converted to a fixed
time bound by a standard technique of restarting the computation when the
expected number of I/Os is exceeded by a factor 2. To succeed with probability
1− 1/N it suffices to do O (logN) restarts to complete within twice the expected
time bound, and the logarithmic factor is absorbed in the Õ-notation. If the
computation does not succeed within this bound we fail to produce an output,
slightly increasing the error probability.

For notional simplicity, in this section we let R and S denote the initial input
sets and let R̃ and S̃ denote the subsets given in input to a particular recursive
subproblem (note that R̃ can be a subset of R but also of S; similarly for S̃).
We also let S̃′ denote the sampling of S̃ in Step 3, and with R̃′ the subset of R̃
computed in Step 4. Lemma 1 says that two properties of the choice of random
sample in Step 3 are almost certain, and the proof relies on Chernoff bounds on
the choice of S̃′. In the remainder of the paper, we assume that Lemma 1 holds
and refer to this event as A holding with probability 1−O (1/N).

Lemma 1. Consider a run of Steps 3 and 4 in a subproblem OSimJoin(R̃, S̃, ψ),
for any level 0 ≤ ψ ≤ Ψ . Then with probability at least 1 − O (1/N) over the
choice of sample S̃′ we have:

|R̃′ ./
≤cr

S̃| > |R̃
′||S̃|
6

, (1)

10

|(R̃\R̃′) ./
>cr

S̃| > 5|R̃\R̃′||S̃|
6

. (2)

Proof. Both claims follow from Chernoff bounds. Let x ∈ R̃ be a point which is
c-near to at most one sixth of the points in S̃, i.e. |x ./≤crS̃| ≤ |S̃|/6. The point

x enters R̃′ if there are at least 9∆ c-near points in S̃′ and this happens with
probability at most 1/N4 since the entries in S̃′ are randomly and independently
chosen from S̃ and there is probability 1/6 that an entry in S̃ is near to x.

Each point of R ∪ S appears in at most in 2
∑i=Ψ−1
i=0 Li < 2LΨ < 2N2

subproblems. Because there are at most N points in R∪S, by an union bound we
get that, in any subproblem OSimJoin(R̃, S̃, ψ), with probability 1− 2N3N−4 =
1− 2N−1 every point in R̃′ has at least |S̃|/6 c-near points in S̃, and thus the
bound in Equation 1 follows. Similarly, we have that all points in R̃\R̃′ are
far from at least 5/6 points of S̃ with probability at least 1 − 2N−1, getting
Equation 2. ut

To analyze the number of I/Os for subproblems of size more than M we bound
the cost in terms of different types of collisions, i.e., pairs in R× S that end up
in the same subproblem of the recursion. We say that (x, y) is in a particular
subproblem OSimJoin(R̃, S̃, ψ) if (x, y) ∈ (R̃ × S̃) ∪ (S̃ × R̃). Observe that a
pair (x, y) is in a subproblem if and only if x and y have colliding hash values on
every step of the call path from the initial invocation of OSimJoin .

Definition 2. Given Q ⊆ R× S let Ci (Q) be the number of times a pair in Q
is in a call to OSimJoin at the i-th level of recursion. We also let Ci,k (Q), with
0 ≤ k ≤ logM denote the number of times a pair in Q is in a call to OSimJoin
at the i-th level of recursion where the smallest input set has size in [2k, 2k+1) if
0 ≤ k < logM , and in [M,+∞) if k = logM . The count is over all pairs and
with multiplicity, so if (x, y) is in several subproblems at the i-th level, all these
are counted.

Next we bound the I/O complexity of OSimJoin in terms of Ci (R ./≤cr S)
and Ci,k (R ./>cr S), for any 0 ≤ i < Ψ . We will later upper bound the expected
size of these quantities in Lemma 3 and then get the claim of Theorem 1.

Lemma 2. Let ` = dlog1/p2(N/M)e and M ≥ 18 logN + 3B. Given that A
holds, the I/O complexity of OSimJoin(R,S, 0) is

Õ

NL`B
+
∑̀
i=0

Ci

(
R ./
≤cr

S

)
MB

+

Ψ−1∑
i=`

logM∑
k=0

Ci,k

(
R ./
>cr

S

)
L

B2k

Proof. To ease the analysis we assume that no more than 1/3 of internal memory
is used to store blocks containing elements of R and S, respectively. Since the
cache-oblivious model assumes an optimal cache replacement policy this cannot
decrease the I/O complexity. Also, internal memory space used for other things

11

than data (input and output buffers, the recursion stack of size at most Ψ) is less
than M/3 by our assumption that M ≥ 18∆+3B = Ω (logN). As a consequence,
we have that the number of I/Os for solving a subproblem OSimJoin (R̃, S̃, ·)
where |R̃| ≤ M/3 and |S̃| ≤ M/3 is O

(
(|R̃|+ |S̃|)/B

)
, including all recursive

calls. This is because there is space M/3 dedicated to both input sets and only
I/Os for reading the input are required. By charging the cost of such subproblems
to the writing of the inputs in the parent problem, we can focus on subproblems
where the largest set (i.e., S̃) has size more than M/3. We notice that the cost of
Steps 3 and 4 is dominated by other costs by our assumption that the set S̃′ fits
in internal memory, which implies that it suffices to scan data once to implement
these steps. This cost is clearly negligible with respect to the remaining steps
and thus we ignore them.

We first provide an upper bound on the I/O complexity required by all
subproblems at a recursive level above `. Let OSimJoin (R̃, S̃, i) be a recursive
call at the i-th recursive level, for 0 ≤ i ≤ `. The I/O cost of the nested loop join

in Step 5 in OSimJoin (R̃, S̃, i) is O
(
|S̃|/B + |R̃′||S̃|/(MB)

)
by Theorem 2.

We can ignore the O
(
|S̃|/B

)
term since it is asymptotically negligible with

respect to the cost of each iteration of Step 6, which is upper bounded later. By
Equation 1, we have that R̃′ ./≤cr S̃ contains more than |R̃′||S̃|/6 collisions, and

thus the cost of Step 5 in OSimJoin(R̃, S̃, i) is O
(
|R̃′ ./≤cr S̃|/(MB)

)
. This

means that we can bound the total I/O cost of all executions of Step 5 at level i of
the recursion with O (Ci (R ./≤cr S) /(MB)) since each near pair (x, y) appears
in Ci((x, y)) subproblems at level i.

The second major part of the I/O complexity is the cost of preparing recursive
calls in OSimJoin(R̃, S̃, i) (i.e., Steps 7-8). In fact, in each iteration of Step 6, the

I/O cost is Õ
(

(|R̃|+ |S̃|)/B
)

, which includes the cost of hashing and of sorting

to form buckets. Since each point of R̃ and S̃ is replicated in L subproblems in
Step 6, we have that each point of the initial sets R and S is replicated Li+1

times at level i. Since the average cost per entry is Õ (1/B), we have that the
total cost for preparing recursive calls at level i is Õ

(
NLi+1/B

)
. By summing

the above terms, we have that the total I/O complexity of all subproblems in
the i-th recursive level is upper bounded by:

Õ

Ci
(
R ./
≤cr

S

)
MB

+
NLi+1

B

 . (3)

We now focus our analysis to bound the I/O complexity required by all
subproblems at a recursive level below `. Let again OSimJoin(R̃, S̃, i) be a
recursive call at the i-th recursive level, for ` ≤ i ≤ Ψ . We observe that (part
of) the cost of a subproblem at level i ≥ ` can be upper bounded by a suitable
function of collisions among far points in OSimJoin (R̃, S̃, i). More specifically,
consider an iteration of Step 6 in a subproblem at level i. Then, the cost for

12

preparing the recursive calls and for performing Step 5 in each subproblem (at
level i+ 1) generated during the iteration, can be upper bounded as

Õ
(

(|R̃\R̃′|+ |S̃|)/B + |(R̃\R̃′) ./≤cr S̃|/(BM)
)

,

since each near pair in (R̃\R̃′) ./≤cr S̃ is found in Step 5 in at most one
subproblem at level i + 1 generated during the iteration. Since we have that
|(R̃\R̃′) ./≤cr S̃| ≤ |R̃\R̃′||S̃|, we easily get that the above bound can be rewritten

as Õ
(
|R̃\R̃′||S̃|/(Bmin{M, |R̃\R̃′|})

)
. We observe that this bound holds even

when i = Ψ − 1: in this case the cost includes all I/Os required for solving the
subproblems at level Ψ called in the iteration and which are solved using the
nested loop in Theorem 2 (see Step 2). By Lemma 1, we have that the above
quantity can be upper bounded with the number of far collisions between R̃ and

S̃, getting Õ
(

(|R̃\R̃′ ./>cr S̃|)/(Bmin{M, |R̃\R̃′|})
)

.

Recall that Ci,k (Q) denotes the number of times a pair in Q is in a call to
OSimJoin at the i-th level of recursion where the smallest input set has size in
[2k, 2k+1) if 0 ≤ k < logM , and in [M,+∞) if k = logM . Then, the total cost
for preparing the recursive calls in Step 7-8 in all subproblems at level i and for
performing Step 5 in all subproblems at level (i+ 1) is:4

Õ

(
logM∑
k=0

Ci,k (R ./>cr S)L

B2k

)
. (4)

The L factor in the above bound follows since far collisions at level i are used for
amortizing the cost of Step 5 for each one of the L iterations of Step 6.

To get the total I/O complexity of the algorithm we sum the I/O complexity
required by each recursive level. We bound the cost of each level as follows: for a
level i < ` we use the bound in Equation 3; for a level i > ` we use the bound in
Equation 4; for level i = `, we use the bound given in Equation 4 to which we
add the first term in Equation 3 since the cost of Step 5 at level ` is not included
in Equation 4 (note that the addition of Equations 3 and 4 gives a weak upper
bound for level `). The lemma follows. ut

We will now analyze the expected sizes of the terms in Lemma 2. Clearly each
pair from R×S is in the top level call, so the number of collisions is |R||S| < N2.
But in lower levels we show that the expected number of times that a pair collides
either decreases or increases geometrically, depending on whether the collision
probability is smaller or larger than p1 (or equivalently, depending on whether
the distance is greater or smaller than the radius r). The lemma follows by
expressing the number of collisions of the pairs at the i-th recursive level as a
Galton-Watson branching process [10].

4 We note that the true input size of a subproblem is |R̃| and not |R̃\R̃′|. However,
the expected value of Ci,k (R ./>cr S) is computed assuming the worst case where
there are no close pairs an thus R̃′ = ∅.

13

Lemma 3. Given that A holds, for each 0 ≤ i ≤ Ψ we have

1. E
[
Ci

(
R ./
>cr

S

)]
≤ |R ./

>cr
S| (p2/p1)i;

2. E
[
Ci

(
R ./
>r,≤cr

S

)]
≤ |R ./

>r,≤cr
S| ;

3. E
[
Ci

(
R ./
≤r
S

)]
≤ |R ./

≤r
S|Li;

4. E
[
Ci,k

(
R ./
>cr

S

)]
≤ N2k+1 (p2/p1)i, for any 0 ≤ k < logM .

Proof. Let x ∈ R and y ∈ S. We are interested in upper bounding the number
of collisions of the pair at the i-th recursive level. We envision the problem as
branching process (more specifically a GaltonWatson process, see e.g. [10]) where
the expected number of children (i.e., recursive calls that preserve a particular
collision) is Pr [h(x) = h(y)] /p1 for random h ∈ H. It is a standard fact from
this theory that the expected population size at generation i (i.e., number of
times (x, y) is in a problem at recursive level i) is (Pr [h(x) = h(y)] /p1)i [10,
Theorem5.1]. If d(x, y) > cr, we have that Pr [h(x) = h(y)] ≤ p2 and each far pair
appears (p2/p1)i times in expectation at level i, from which follows Equation 1.
Moreover, since the probability of collisions is monotonic in the distance, we
have that Pr [h(x) = h(y)] ≤ 1 if d(x, y) ≤ r, and Pr [h(x) = h(y)] ≤ 1/p1 if
r < d(x, y) ≤ cr, from which follow Equations 2 and 3.

In order to get the last bound we observe that each entry of R and S is
replicated Li = p−i1 times at level i. Thus, we have that N2k+1Li is the total
maximum number of far collisions in subproblems at level i where the smallest
input set has size in [2k, 2k+1). Each one of these collisions survives up to
level i with probability pi2, and thus the expected number of these collisions is
N2k+1(p1/p2)i. ut

We are now ready to prove the I/O complexity of OSimJoin as claimed
in Theorem 1. By the linearity of expectation and Lemma 2, we get that the
expected I/O complexity of OSimJoin is

Õ

NL`B
+
∑̀
i=0

E
[
Ci

(
R ./
≤cr

S

)]
MB

+

Ψ−1∑
i=`

logM∑
k=0

E
[
Ci,k

(
R ./
>cr

S

)]
L

B2k

 ,

where ` = dlog1/p2(N/M)e. By noticing Ci,logM (R ./>cr S) ≤ Ci (R ./>cr S) we

have |R ./>cr S| ≤ N2 and Ci (R ./≤cr S) = Ci (R ./≤r S) + Ci (R ./>r,≤cr S),
and by plugging in the bounds on the expected number of collisions given in
Lemma 3, we get the claimed result.

Analysis of Correctness. We now argue that a pair (x, y) with d(x, y) ≤ r is
output with good probability. Let Xi = Ci((x, y)) be the number of subproblems

14

at level i containing (x, y). By applying Galton-Watson branching process, we
get that E [Xi] = (Pr [h(x) = h(y)] /p1)i. If Pr [h(x) = h(y)] /p1 > 1 then in fact
there is positive constant probability that (x, y) survives indefinitely, i.e., does
not go extinct [10]. Since at every branch of the recursion we eventually compare
points that collide under all hash functions on the path from the root call, this
implies that (x, y) is reported with positive constant probability.

In the critical case where Pr [h(x) = h(y)] /p1 = 1 we need to consider the
variance of Xi, which by [10, Theorem 5.1] is equal to iσ2, where σ2 is the
variance of the number of children (hash collisions in recursive calls). If 1/p1
is integer the number of children in our branching process follows a binomial
distribution with mean 1. This implies that σ2 < 1. Also in the case where 1/p1
is not integer it is easy to see that the variance is bounded by 2. That is, we
have Var (Xi) ≤ 2i, which by Chebychev’s inequality means that for some integer
j∗ = 2

√
i+O (1):

∞∑
j=j∗

Pr [Xi ≥ j] ≤
∞∑
j=j∗

Var (Xi) /j
2 ≤ 1/2 .

Since we have E [Xi] =
∑∞
j=1 Pr [Xi ≥ j] = 1 then

∑j∗−1
j=1 Pr [Xi ≥ j] > 1/2,

and since Pr [Xi ≥ j] is non-increasing with j this implies that Pr [Xi ≥ 1] ≥
1/(2j∗) = Ω

(
1/
√
i
)
. Since recursion depth is O (logN) this implies the probabil-

ity that a near pair is found is Ω
(
1/
√

logN
)
. Thus, by repeating O

(
log3/2N

)
times we can make the error probability O

(
1/N3

)
for a particular pair and

O (1/N) for the entire output by applying the union bound.

3.4 Removing duplicates

The definition of LSH requires the probability p(x, y) = Pr [h(x) = h(y)] of two
near points x and y of being hashed on the same value is at least p1. If p(x, y)� p1,
our OSimJoin algorithm can emit (x, y) many times. As an example suppose
that the algorithm ends in one recursive call: then, the pair (x, y) is expected
to be in the same bucket for p(x, y)L iterations of Step 6 and thus it is emitted
p(x, y)L� 1 times in expectation. Moreover, if the pair is not emitted in the first
recursive level, the expected number of emitted pairs increases as (p(x, y)L)i since
the pair (x, y) is contained in (p(x, y)L)i subproblems at the i-th recursive level.
A simple solution requires to store all emitted near pairs on the external memory,
and then using a cache-oblivious sorting algorithm [8] for removing repetitions.

However, this approach requires Õ
(
κ
|R./≤rS|

B

)
I/Os, where κ is the expected

average replication of each emitted pair, which can dominate the complexity of
OSimJoin. A similar issue appears in the cache-aware algorithm ASimJoin as
well: however, a near pair is emitted in this case at most L′ = (N/M)ρ since
there is no recursion and the partitioning of the two input sets is repeated only
L′ times.

If the collision probability Pr [h(x) = h(y)] can be explicitly computed in
O (1) time and no I/Os for each pair (x, y), it is possible to emit each near

15

pair once in expectation without storing near pairs on the external memory. We
note that the collision probability can be computed for many metrics, including
Hamming [12], `1 and `2 [7], Jaccard [4], and angular [5] distances. For the
cache-oblivious algorithm, the approach is the following: for each near pair (x, y)
that is found at the i-th recursive level, with i ≥ 0, the pair is emitted with
probability 1/(p(x, y)L)i and is ignored otherwise. For the cache-aware algorithm,
the idea is the same but a near pair is emitted with probability 1/(p(x, y)L′)
with L′ = (N/M)ρ.

Theorem 4. The above approaches guarantee that each near pair is emitted with
constant probability in ASimJoin and in OSimJoin.

Proof. The claim easily follows for the cache-aware algorithm: indeed the two
points of a near pair (x, y) have the same hash value in p(x, y)L (in expectation)
of the L′ = (N/M)ρ repetitions of Step 2. Therefore, by emitting the pair with
probability 1/(p(x, y)L) we get the claim.

We now focus on the cache-oblivious algorithm, where the claim requires a
more articulated proof. Consider a near pair (x, y). Let Gi and Hi be random
variables denoting respectively the number of subproblems at level i containing
the pair (x, y), and the number of subproblems at level i where (x, y) is not found
by the cache-oblivious nested loop join algorithm in Theorem 2. Let also Ki be a
random variable denoting the actual number of times the pair (x, y) is emitted
at level i. We have: (1) E [Ki|Gi, Hi] = (Gi −Hi)/(p(x, y)L)i since a near pair is
emitted with probability 1/(p(x, y)L)i only in those subproblems where the pair
is found by the join algorithm; (2) E [Gi] = (p(x, y)L)i since a near pair is in the
same bucket with probability p(x, y)i (it follows from the previous analysis based
on standard branching); (3) G0 = 1 since each pair exists at the beginning of the
algorithm; (4) HΨ = 0 since each pair surviving up to the last recursive level is
found by the nested loop join algorithm.

We are interested in upper bounding E
[∑Ψ

i=0Ki

]
. We prove by induction

that

E

[
l∑
i=0

Ki

]
= 1− E [Hl]

(p(x, y)L)l
,

for any 0 ≤ l ≤ Ψ . For l = 0 (i.e., the first call to OSimJoin) the equality is
verified since

E [K0] = E [E [K0|G0, H0]] = E [G0 −H0] = 1− E [H0] ,

since E [G0] = G0 = 1. Consider now a generic level l > 0. Since a pair propagates
in a lower recursive level with probability p(x, y), we have

E [Gl] = E [E [Gl|Hl−1]] = p(x, y)LE [Hl−1] .

16

Thus

E [Kl] = E [E [Kl|Gl, Hl]] = E
[
Gl −Hl

(p(x, y)L)l

]
=

E [H`−1]

(p(x, y)L)l−1
− E [H`]

(p(x, y)L)l

By exploiting the inductive hypothesis, we get

E

[
l∑
i=0

Ki

]
= E [Kl] + E

[
l−1∑
i=0

Ki

]
= 1− E [Hl]

(p(x, y)L)l
.

Since HΨ = 0, we have E
[∑Ψ

i=0Ki

]
= 1 and the claim follows. ut

We observe that the proposed approach is equivalent to use an LSH where
p(x, y) = p1 for each near pair. Finally, we remark that this approach does not
avoid replica of the same near pair when the algorithm is repeated for increasing
the collision probability of near pairs. Thus, the probability of emitting a pair is

at least Ω
(

1/
√
Ψ
)

as shown in the second part of Section 3.3 and O
(

log3/2N
)

repetitions of OSimJoin suffices to find all pairs with high probability (however,

the expected number of replica of a given near pair becomes O
(

log3/2N
)

, even

with the proposed approach).

4 Experiments

As discussed above, we informally argue that our upper bounds are close to the
best possible for the class of “signature based” algorithms. We again split the
I/O complexity of our algorithms in two parts:

T1 = (N/M)ρ
(
N/B + |R ./

≤r
S|/(MB)

)
T2 = |R ./

≤cr
S|/(MB)

and carry out experiments to demonstrate that the first term T1 often dominates
the second term T2 in real datasets. In particular, we depict the cumulative
distribution function (cdf) in log-log scale of all pairwise distances (i.e., `1, `2)
and all pairwise similarities (i.e., Jaccard and cosine) on two commonly used
datasets: Enron Email5 and MNIST6, as shown in Figure 1. Since the Enron
data set does not have a fixed data size per point our considerations consider
a version of the data set where the dimension has been reduced such that each
vector has a fixed size.

5 https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
6 http://yann.lecun.com/exdb/mnist/

17

10
−4

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Jaccard and cosine similarity

(a) Enron email dataset

C
D

F
 o

f p
ai

rw
is

e
si

m
ila

rit
ie

s

Jaccard similarity
Cosine similarity

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

L1 and L2 distance

(b) MNIST dataset

C
D

F
 o

f p
ai

rw
is

e
di

st
an

ce
s

L1 distance
L2 distance

Fig. 1. The cumulative distributions of pairwise similarities and pairwise distances on
samples of 10,000 points from Enron Email and MNIST datasets. We note that values
decrease on the x-axis of Figure 1.a, while they increase in Figure 1.b.

Figure 1.a shows an inverse polynomial relationship with a small exponent m
between similarity threshold s and the number of pairwise similarities greater
than s. The degree of the polynomial is particularly low when s > 0.5. This setting
s > 0.5 is commonly used in many applications for both Jaccard and cosine
similarities [2, 3, 14]. Similarly, Figure 1.b also shows a monomial relationship
between the distance threshold r and the number of pairwise distances smaller
than r. In turn, this means that the number of c-near pairs |R ./≤cr S| is not
much greater than cm|R ./≤r S|. In other words, the second term T2 is often
much smaller than the first term T1.

Finally, for the same data sets and metrics, we used the cache-aware algorithm
with explicit constants and examined the I/Os used compared to a standard
nested loop method (Section 2) and a lower bound on the standard LSH method
(Section 2). We used cache size M = N/1000, which is reasonable for judging
number of cache misses since the size ratio between CPU caches and RAM is
in that order of magnitude. In general this setting allows us to investigate what
happens when the data size is much larger than fast memory. For simplicity
we use B = 1 since all methods contain a multiplicative factor 1/B on the I/O
complexity. The used values of ρ were computed using good LSH families for the
specific metric, given r and c, which are picked according to Figure 1 such that
the number of c-near pairs are only an order of magnitude larger than the number
of near pairs. The I/O complexity used for nested loop join is 2N + N2/MB
(here we assume both sets have size N) and the complexity for the standard LSH
approach is lower bounded by sort

(
N1+ρ

)
. This complexity is a lower bound on

the standard sorting based approaches as it lacks the additional cost that depends
on how the LSH distributes the points. Since M = N/1000 we can bound the
log-factor of the sorting complexity and use sort (N) ≤ 8N since 2N points read
and written twice. The I/O complexity of our approach is stated in Theorem 3.
The computed I/O-values in Figure 2 show that the complexity of our algorithm
is lower on all instances examined. Nested loop suffers from quadratic dependency
on N , while the standard LSH bounds lack the dependency on M . Overall the

18

Data set Metric r cr ρ
|R./

≤r
S|

N

|R ./
≤cr

S|

N
Standard LSH Nested loop ASimJoin

Enron Jaccard 0.5 0.1 0.30 1.8 · 103 16 · 103 > 7.5 · 109 I/Os 8 · 109 I/Os 3.2 · 109 I/Os

Enron Cosine 0.7 0.2 0.51 1.6 · 103 16 · 103 > 212 · 109 I/Os 8 · 109 I/Os 6.6 · 109 I/Os

MNIST L1 3000 6000 0.50 1.8 42 > 29 · 106 I/Os 60 · 106 I/Os 12 · 106 I/Os

Fig. 2. Examples of similarity joins on our data sets. For each join a value of the approx-
imation parameter c has been chosen based on estimates of the distance distribution to
ensure that the number of c-near neighbors was not too much higher than the output
set. The numbers stated are extrapolated from the sample, similarly to Figure 1, and
expressed in join results per point. Corresponding ρ-values have been computed using
standard optimal LSH families for the similarity measures. (We omit the L2 metric for
this reason since there is no clear winner in choice of LSH for this measure. Since we
want to explore the effect of data sets much larger than fast memory, the stated I/Os
are under the assumption of M = N/1000 and B = 1 due to a 1/B factor being present
in all terms. Our new algorithm uses the least I/Os on the examined data.)

computed values points towards that our algorithm is practical on the examined
data sets.

5 Conclusion

In this paper we examine the problem of computing the similarity join of two
relations in an external memory setting. Our new cache-aware algorithm of Sec-
tion 3.1 and cache-oblivious algorithm of Section 3.2 improve upon current state
of the art by around a factor of (M/B)ρ I/Os unless the number of c-near pairs
is huge (more than NM). We believe this is the first cache-oblivious algorithm
for similarity join, and more importantly the first subquadratic algorithm whose
I/O performance improves significantly when the size of internal memory grows.

It would be interesting to investigate if our cache-oblivious approach is also
practical — this might require adjusting parameters such as L. Our I/O bound
is probably not easy to improve significantly, but interesting open problems are
to remove the error probability of the algorithm and to improve the implicit
dependence on dimension in B and M : In this paper we assume for simplicity
that the unit of M and B is number of points, but in general we may get tighter
bounds by taking into account the gap between the space required to store a
point and the space for e.g. hash values. Also, the result in this paper is made
with general spaces in mind and it is an interesting direction to examine if the
dependence on dimension could be made explicit and improved in specific spaces.

References

1. Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In Proceedings of FOCS’06, pages 459–468,
2006.

19

2. Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-similarity
joins. In Proceedings of VLDB’06, pages 918–929, 2006.

3. Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs
similarity search. In Proceedings of WWW’07, pages 131–140, 2007.

4. Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.
Syntactic clustering of the web. Computer Networks, 29(8-13):1157–1166, 1997.

5. Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In
Proceedings of STOC’02, pages 380–388, 2002.

6. Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A primitive operator
for similarity joins in data cleaning. In Proceedings of ICDE’06, page 5, 2006.

7. Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of SOCG’04,
pages 253–262, 2004.

8. Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In Proceedings of FOCS’99, pages 285–297, 1999.

9. Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high
dimensions via hashing. In Proceedings of VLDB’99, pages 518–529, 1999.

10. Theodore E Harris. The theory of branching processes. Courier Dover Publications,
2002.

11. Bingsheng He and Qiong Luo. Cache-oblivious nested-loop joins. In Proceedings of
CIKM’06, pages 718–727, 2006.

12. Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards re-
moving the curse of dimensionality. In Proceedings of STOC’98, pages 604–613,
1998.

13. Jeffrey Scott Vitter. Algorithms and Data Structures for External Memory. Now
Publishers Inc., 2008.

14. Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient similarity joins
for near duplicate detection. In Proceedings of WWW’08, pages 131–140, 2008.

20

