
International Journal of Asian Language Processing 23(2):127-159 127

A Structural Query System for Han Characters
Matthew Skala

Theoretical Computer Science Group, IT University of Copenhagen,
Rued Langgaards Vej, 2300 København S, Denmark.

mskala@ansuz.sooke.bc.ca

Abstract

The IDSgrep structural query system for Han character dictionaries is presented. This dictio-
nary search system represents the spatial structure of Han characters using Extended Ideo-
graphic Description Sequences (EIDSes), a data model and syntax based on the Unicode IDS
concept. It includes a query language for EIDS databases, with a freely available implemen-
tation and format translation from popular third-party IDS and XML character databases.
The system is designed to suit the needs of font developers and foreign language learners.
The search algorithm includes a bit vector index inspired by Bloom filters to support faster
query operations. Experimental results are presented, evaluating the effect of the indexing on
query performance.

Keywords

Han script, character description, font, radical, grep, tree matching

1. Introduction
Han script carries semantic information at a level finer than single characters. If we write
the Japanese word yuki (``snow'') phonetically as ゆき, it has no obvious morphology. If we
write it with the Han character雪, then we can compare it to雲 (kumo, ``cloud'');電 (inazuma,
``lightning''); and 霊 (rei, ``spirit''). These characters have something in common: they each
consist of 雨 above something. Computational study of what they have in common requires
a computational way of describing it.
In this paper we describe the IDSgrep structural query system. IDSgrep answers questions

about Han characters and their spatial structures by searching for matching patterns in dictio-
nary databases, using a query language designed for the purpose. The data model covers the
entire structure of characters, not only their general layout, and the query language permits
description of arbitrarily complex Boolean criteria. These novel features allow IDSgrep to
answer queries that previous systems could not.
Systematic efforts to describe and analyze the structure of Han characters date back as far as

the Second Century (Creamer 1989). Creamer describes Shuowen Jiezi, a very early Chinese
dictionary, which divided its character set into 540 headings, most corresponding to semantic
components (radicals) that might appear in the characters. The 雨 component in our exam-
ple of 雪 is one such. Details like the list of radicals, and the process of choosing a single
component as the index radical for each character, have varied over time and with the differ-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50528602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

128 Matthew Skala

ing purposes for which dictionaries have been compiled. But that general scheme remained
the standard for hardcopy dictionaries of Han characters until the Twentieth Century. A user
looking up an unknown character would start by identifying the radical. They would then
search the section corresponding to that radical, which might be further organized by total
number of strokes in the character.
Radicals in such dictionaries usually correlate with semantics, but serve primarily as index

keys. The constraints of the dictionaries require choosing exactly one radical from the list as
the index key for each character. Sub-character semantics requires more than just answering
the question ``Are these two characters indexed by the same radical?''; the other components,
and their spatial relationships, are of interest. Dictionary lookups also benefit from more
detailed descriptions of spatial structure, as the desire for radicals to reflect semantics forces
compromise of their use as purely visual descriptions.
The most recent hardcopy dictionaries, especially those aimed at foreign language learners,

use more detailed and visual structural descriptions. For instance, the SKIP method (Halpern
2013) uses an easily-memorized numerical description defined by the visual appearance, not
the semantics, of the character. A user can identify the dictionary head for 明 as ``1--4--4'',
meaning ``divided into left and right parts, with four strokes on the left and four on the right'',
and find the character in the dictionary without needing to know which side means ``moon'',
nor which component is the radical.
WWWJDIC (Breen 2014b) is one of the best-known computerized dictionaries. As a Web-

based resource it is constantly updated, and it offers queries by traditional radical and stroke
count; by SKIP code; and several other classification schemes. Its interactive searches are
especially convenient for users who do not know the Han character set well. In multi-radical
mode, the user chooses one component at a time, from a list that is roughly the few hundred
radicals of traditional dictionaries. Any components that occur in the character may be used;
there is no requirement to identify the single official radical of the character. A dynamically-
updated list shows all characters in the database that contain all (by simple Boolean AND) of
the chosen components. Handwriting recognitionmode offers a similar interactive search pro-
cess, updating the list as the user writes the first few strokes of the character. It depends on the
user having enough knowledge of the writing system to guess the stroke order. These searches
allow for more flexibility than traditional radical search, but still cannot answer queries with
precisely specified geometric constraints.
IDSgrep, the subject of the current work, originated as an internal development tool for the

Tsukurimashou Project's Japanese-language parametric font family (Skala 2014b). Tsukuri-
mashou represents characters as programming language subroutines, with the structure of the
code echoing the visual, not semantic, organization of the characters. For instance, the code
for明 invokes subroutines for日 and月 and a subroutine that abstracts the operation of plac-
ing components in a left-right configuration. When writing new character definitions, the
developer must be able to find other characters with similar structures that could share code.
Queries like ``which other characters, if any, have the same right-hand side as this one?''

are not easy to answer with other dictionaries. Native experts, if available at all, can also only
help to a point. Negative search results are of interest, and a human expert can at best say ``I
can't think of a character fitting this description.'' To be sure there exists no character fitting
a given description we need a precise semantics of character descriptions, a database we can
trust to contain all characters of interest, and a tool for querying the database. IDSgrep is the
query tool; it defines at least a syntax for the descriptions; and it can make use of existing
databases that are complete enough to be useful.

A Structural Query System for Han Characters 129

Much current work in computational linguistics and natural language processing can benefit
from this new resource. For instance, Chu et al. (2013) enhance Chinese-Japanese machine
translation by making use of the similarities between the Simplified Chinese, Traditional Chi-
nese, and Japanese character sets. As they describe, visual similarity is one of the clues that
indicates possible semantic equivalency. However, all their sources, and their completed
mapping tables, stop at the level of whole characters. The linguistic processes leading ear-
ly characters to develop similarly or differently in different languages actually take place at
the level of character components. These authors demonstrate an improvement in machine
translation by exploiting knowledge of similar characters. It is a research question worth ask-
ing, whether a machine translation system informed directly by components could show even
greater improvement. IDSgrep can support that research.
Hao and Zhu (2013) study conversion between Simplified and Traditional Chinese text. As

in the Chinese-Japanese translation work, they are limited by the nature of their data sources
to consideration of whole characters. Although ``this component usually simplifies to that
component, in any character'' is a typical description of the linguistic processes underlying
simplification, it cannot be conveniently represented as a single rule at the whole-character
level. IDSgrep's data model provides a way to describe such rules, and its search capability
supports their discovery and implementation.
Liu et al. (2011) study mistakes made by students in written Chinese, in particular the sub-

stitution of incorrect characters that may be visually or phonologically similar to the correct
characters. As they write, there are ``no obvious ways to determine algorithmically whether
two Chinese characters are visually similar yet.'' They survey several possibilities, and choose
Cangjie codes. They are forced to extend the codes ``with the help of computer programs and
subjective judgments'' to cover their full problem domain, a process they describe as ``labor-
intensive''. Shared structures in Cangjie must be detected by plain substring search, and that
does not always correctly detect all shared structures. IDSgrep offers a better compromise.
With it, work like that of Liu et al. (2011) can focus primarily on determining which shared
structures are or are not relevant to student mistakes, rather than spending intensive labor on
imperfectly describing the shared structures in the first place.
The main contributions of the present work are:
• a data model and query language for the spatial structure of Han characters;
• algorithmic techniques for efficient implementation of the query language; and
• experimental evaluation of a practical implementation.

The software is freely available from the Tsukurimashou Project's Web site on Sourceforge
Japan (Skala 2014c). In its original form, studied here, IDSgrep is a command-line utility.
Third-party users have adapted it to other environments, such as an experimental Web inter-
face (Fasih 2015).

1.1. Character description languages
Computer typesetting projects for Han-script languages have long used descriptions of the
character glyphs in terms of smaller components, with varying degrees of complexity and
formal specification in how those components may be combined. Some work in this area has
focused on theMETAFONT system (Knuth 1986), in which glyphs to be typeset are described
using a fully powered computer programming language and components and combining oper-
ations can be invoked as subroutines. Many authors haveworked onMETAFONT-relatedHan
script projects over the course of more than three decades, with the Tsukurimashou Project
that gave birth to IDSgrep as one of the most recent contributions (Mei 1980; Hobby and

130 Matthew Skala

Guoan 1984; Hosek 1989; Yiu and Wong 2003; Laguna 2005; Skala 2014b). The Wadalab
font project (Tanaka et al. 1995) implemented similar concepts using LISP instead of META-
FONT, and was one of the most successful projects of its kind; fonts it generated are in wide
use in the free software community to this day. Any such project implicitly extends the pro-
gramming language used into a language for describing Han characters, but most do not treat
the descriptions as separate entities from the software code. HanGlyph (Yiu and Wong 2003)
is one exception: it defines a formal syntax for a description language that is translated by
separate and character-independent software.
Several projects use XML rather than a programming language to describe characters, and

these projects often emphasize dictionary and database applications instead of primarily font
creation. Font creation may nonetheless be included as one intended application of the da-
ta. Such projects include Structural Character Modeling Language (SCML) (Peebles 2007),
Character Description Language (CDL) (Wu and Zheng 2009), GlyphWiki (Kamichi 2014),
and KanjiVG (Apel 2014). Here the focus is often on providing high-quality data in a conve-
nient form for application development, with such details as user interface and query language
left to the application developers to determine. Although IDSgrep does not query XML di-
rectly, it is one such query application. The possibility of using the popular XML databases,
and KanjiVG in particular, was one factor motivating its design.
The Prolog-based Han character description and query system described by Dürst (1996)

may be the closest previous work to IDSgrep's Prolog-inspired data model. It was a proof
of concept designed to illustrate the general power of Prolog for internationalization, not de-
signed and not easily able to be scaled to complete dictionaries.

1.2. Tree searching
The general problem of searching for a pattern in a large input is one of the most thoroughly
studied in computer science. Searching utilities like GNU grep (Free Software Foundation
2014) are widely used. At least among expert users, grep-like regular expression search is
regarded as the standard for flexible text searching and is expected as a feature of text editors,
database software, and programming languages or libraries. Considered as a general-purpose
searching utility, IDSgrep does something much like regular expression matching on tree
structures. Regular expression matching generalized to trees, and other kinds of tree pat-
tern matching, have been studied both as abstract problems (Polách 2011) and with specific
application to searching parse trees in computational linguistics applications (Lai and Bird
2010; Choi 2011). The Tregex utility (Levy and Andrew 2006) is a popular implementation
in the computational linguistics domain, used for comparison in the experimental section of
the present work.
Although the system can process other kinds of queries too, many important IDSgrep queries

take the form of an example tree with some parts left as match-anythingwildcards. Thematch-
ing operation on such a query is equivalent to the unification operation on terms in logic pro-
gramming languages like Prolog (Clocksin and Mellish 1987), and algorithmic techniques
applicable to unification are of interest for IDSgrep and IDSgrep-like tree matching.
Unification can also be defined in a lattice of types, and one well-known technique for

unification in type lattices represents the types as bit vectors with bitwise AND and zero-
testing to represent the unification operation (Aït-Kaci et al. 1989). The bit vector approach
to type unification has been extended to generalize the zero value, which permits the use
of shorter vectors and thus faster processing (Skala et al. 2010). Permitting approximate
results via the Bloom filter concept (Bloom 1970; Skala and Penn 2011) allows further speed

A Structural Query System for Han Characters 131

improvement. The present work applies similar ideas to speed improvement for treematching.
The work of Kaneta et al. (2012) on unordered pseudo-tree matching with bit vectors is also
of interest; it considers a very different tree-matching problem, but it uses some similar bit-
vector techniques, and has a strong theoretical analysis.

2. The EIDS data model and syntax
Unicode defines a simple grammar for describing Han characters as strings called Ideographic
Description Sequences (IDSes) (Unicode Consortium 2011). An IDS is one of the following:

• a single character chosen from a set that includes the Unicode-encoded Han characters,
strokes for building up Han characters, and radicals or components that may occur in
Han characters;

• one of the prefix binary operators ⿰⿱⿴⿵⿶⿷⿸⿹⿺⿻ followed by two more ID-
Ses, defined recursively; or

• one of the prefix ternary operators⿲⿳ followed by three IDSes, defined recursively.
The binary and ternary operators are special characters defined for this purpose, with code

points in the range U+2FF0 to U+2FFB. Example Unicode IDSes include ``⿰日月'' for
``明''; ``⿰言⿱五口'' for ``語''; and ``⿴囗⿱⿰木山丁'' for an unencoded nonsense charac-
ter. These are shown in Figure 1. Note that Japanese character forms are used in the examples
in this paper; for most characters these resemble the Traditional Chinese forms, but there are
also many characters for which the Japanese form is closer to the Simplified Chinese form.

᫂Ѝ䴱᪥᭶

䴱
᪥ ᭶

ㄒЍ䴱ゝ䴲ཱྀ

䴱
ゝ 䴲
 ཱྀ

䴵ᅀ䴲䴱ᮌᒣ

䴵
ᅀ 䴲
䴱

ᮌ ᒣ

Figure 1: Sample Unicode IDSes and their associated trees.

IDSgrep describes characters using Extended Ideographic Description Sequences (EID-
Ses), which are strings of Unicode characters expressing abstract data structures called EIDS
trees (Skala 2014a). An EIDS tree is a tree data structure with the following properties.

• Each node has a functor, which is a nonempty string of Unicode characters.
• Each nodemay optionally have a head, which if present is a nonempty string of Unicode
characters.

• Each node has a sequence of between zero and three children, which are EIDS trees
defined recursively.

The number of children of a node is called its arity. Functors, and heads where present,
usually consist of single characters, but that is not a requirement.

132 Matthew Skala

The most explicit EIDS character string for a given EIDS tree consists of the head of the
root, if any; the functor of the root; and then the EIDSes for all the root's children, recursively.
Heads and functors are marked as such, and the arity of the node is indicated, by enclosing
the strings in specific delimiting characters. ASCII angle brackets <> indicate a head. Paren-
theses (), dots .., square brackets [], and curly braces {} are used for functors with arity
zero, one, two, and three respectively. For instance, an EIDS in this explicit syntax might
be written ``[pq].x.<head of a>(a)(b)''. That starts with the functor of the root, which
is ``pq'', enclosed in square brackets to show that the root has two children. The first child
is ``.x.<head of a>(a)''. Dots around the functor ``x'' indicate that this child is a unary
node, with one child of its own. That child is ``<head of a>(a)'', a nullary (leaf) node with a
head attached. On the other side of the root, the second child is the headless leaf ``(b)''. The
associated EIDS tree is shown in Figure 2.

[pq].x.<head of a>(a)(b)

[pq]

.x.
(b)

<head of a>(a)

Figure 2: A sample EIDS and its EIDS tree.

The syntax includes several additional features designed both to make it easier to use and
to allow valid Unicode IDSes to be valid IDSgrep EIDSes. The fully bracketed form would
rarely be used in practice. First, all the Unicode IDS operator characters such as ⿱ and ⿰,
and some special characters used in IDSgrep pattern matching, are considered to have implicit
brackets of the appropriate type when they occur where an opening bracket would otherwise
appear. These are called sugary implicit brackets (from the term ``syntactic sugar'' (Landin
1964)). For instance, ``⿰(a)(b)'' expresses the same EIDS tree as ``[⿰](a)(b)''.
If a character does not have a special function in the syntax, then by default the character

is considered to have implicit <> head brackets and also be followed by ``(;)'', a syrupy
implicit semicolon. Han characters and their components fall into this category. Thus a single
character like ``語'' is a valid EIDS as well as a valid Unicode IDS, and parsing it produces
the same EIDS tree as the explicitly bracketed ``<語>(;)''.
A few other syntax rules exist, covering issues like backslash escapes and ASCII abbrevia-

tions used to make typing easier. These points are beyond the scope of the current discussion,
but described in the IDSgrep documentation (Skala 2014a). One remaining rule significan-
t to the current work comes about because neither a head nor a functor may be empty. If
the closing bracket that would otherwise end a bracketed string occurs immediately after the
opening bracket, then it does not end the string but becomes the first character of the string.
The important, and motivating, consequence of this rule is that ``...'' is valid syntax for the
functor of a unary node consisting of a single ASCII period. That is the ``match anywhere''
query operator.
A Unicode IDS maps naturally to the EIDS tree formed by parsing it as an EIDS. The IDS

operators like ⿸ and ⿳ become the functors of binary and ternary nodes in the tree under
the sugary-bracket rule. The Han characters, strokes, and components become the heads of

A Structural Query System for Han Characters 133

leaf nodes, with semicolons as their functors, under the syrupy-semicolon rule. However, it
is also possible to insert heads at other levels of the tree just by inserting each head in ASCII
angle brackets at the appropriate point in the Unicode IDS. For instance, a dictionary entry
for the character 語 might look like ``<語>⿰言<吾>⿱五口'': the internal nodes are marked
with the characters that represent the subtrees at those locations even though they are also
broken down further. If a subtree happened not to be an encoded character in itself, it could
be left anonymous with no head. A search for this dictionary entry could use the complete
low-level decomposition, or match a subtree or the entire entry by matching the appropriate
head. The EIDS tree is shown in Figure 3.

<ギ>䴱ヮ<煉>䴲虫旅

<ギ>[䴱]

<ヮ>(;) <煉>[䴲]

<虫>(;) <旅>(;)

Figure 3: The EIDS tree for the dictionary entry <語>⿰言<吾>⿱五口. Note the implicit
brackets and semicolons.

3. The IDSgrep query language
To offer search functions on a database of character descriptions, we need a way for users
to describe the search criteria. IDSgrep implements a query language capable of express-
ing a wide variety of criteria on the structures of characters. The IDSgrep query language
was inspired by Unix regular expressions; it is intended to provide a similar combination of
simplicity and expressive power. But because of the context-free non-regular nature of EI-
DS syntax, regular expressions as such would not be appropriate. IDSgrep's query language
is based instead on matching trees against templates that may contain wildcards and other
special matching operators.

3.1. Query language definition
We will define a function match(N,H), where N and H are EIDS trees called the needle
and haystack respectively. This function returns a truth value, T if the trees are considered to
match and F otherwise, according to the following rules.

• If N and H both have heads, then match(N,H) = T if and only if those heads are
identical. No other rules are applied.

• IfN andH do not both have heads, but the functor and arity ofN are in the set of match-
ing operators {(?), ..., .*., .!., [&], [|], .=., .@., ./., .#.} then match(N,H) is
determined by rules specific to the operator, as described below. Note that arities are
indicated by the brackets around the operators, and ... is one of the operators, not an
indication of omitted items.

• Otherwise,match(N,H) = T if and only ifN andH have identical functors and arities
and match(Ni,Hi) = T recursively for each pair (Ni,Hi) of corresponding children

134 Matthew Skala

of N and H .
The nullary question mark (?) is a match-everything wildcard: match((?),H) = T for

all H . Three dots (syntax for a unary functor containing a single dot) match anywhere:
match(...N,H) = T if some subtree ofH (possibly all ofH) is matched byN . The asterisk
allows reordering of children at the top level: match(.*.N,H) = T if and only if there is
some permutation of the children of N that would matchH .
The basic Boolean operations of NOT, AND, and OR are available through .!., [&],

and [|] respectively. We have match(.!.N,H) = T if and only if match(N,H) = F;
match([&]MN,H) = T if and only if match(M,H) = T and match(N,H) = T; and
match([|]MN,H) = T if and only if match(M,H) = T or match(N,H) = T.
The equals sign performs literal matching of functors that would otherwise be interpreted as

special. If N andH both have heads, then match(.=.N,H) = T if and only if the heads are
identical. Otherwise, match(.=.N,H) = T if and only if N and H have identical functors,
identical arities, and match(Ni, Hi) = T is true for their corresponding children. Those are
the same rules as for tree matching without .=., except that any special matching behavior of
the functor of N is ignored. This operator is seldom needed for Han character databases, but
included to allow the use of IDSgrep on other kinds of data.
The at-sign does rearranged matching for operations governed by an associative law. Con-

sider the case of three character components side by side, as in the character側. This structure
could be represented as ⿰⿰亻貝刂, ⿰亻⿰貝刂, or ⿲亻貝刂, as shown in Figure 4. A
query written to match one of these could miss the others.

䴱䴱ை㈅ฤ

䴱
䴱

ை ㈅

ฤ

䴱ை䴱㈅ฤ

䴱
ை 䴱
㈅ ฤ

䴳ை㈅ฤ

䴳
ை ㈅ ฤ

Figure 4: Multiple representations of side-by-side components.

Kawabata (2012) proposes normalizing all IDSes into a canonical form (which in this case
would be ⿰亻⿰貝刂) to make matching easier. That is fine if we have complete control of
the input data, and we are sure we will always want to match all alternatives in this kind of
case. But in some applications, such as describing the structure of code in the Tsukurimashou
Project, there may be meaningful differences between the tree structures of Figure 4, such that
we might sometimes want a query to match one and not the others. If the EIDS trees are used
to represent semantic information, then the different trees may reflect different analyses of the
semantic value of側. Thus, rather than imposing a normalization requirement on the database,
IDSgrep implements a special operator for associative matching. If associative matching is
desired, the user can invoke this operator.
Evaluation of match(.@.N,H) starts from the roots of N andH and descends recursively

through all childrenwhose functors and aritiesmatch those of the root. The remaining subtrees

A Structural Query System for Han Characters 135

below the matching nodes are treated as children of notional nodes with unlimited arity; and
then those nodes are compared literally as with the .=. operator (functor and aritymust match,
and all corresponding children). Thus @⿰⿰AB⿰CD will match all five cases of A, B, C, and
D combined in that order by three⿰ nodes. This matching operator does not convert ternary
to binary IDS operators, as the normalization approach would.
The remaining special matching operators provide escape from IDSgrep to other pattern

matching systems. Slash invokes the PCRE library to perform Perl-compatible regular expres-
sion matching (Hazel 2014). This operator is included to support use of IDSgrep on expanded
dictionaries that combine structural information with pronunciation and word definitions. Fi-
nally, the hash operator is for invoking user-defined matching predicates. In IDSgrep version
0.5.1 the user-defined predicates test characters against the coverage of font files; they are not
described further here.

3.2. Examples
In typical use, the IDSgrep utility's main input is a dictionary containing the decompositions
of characters, with each tree having a head at the root level containing the character being
decomposed, and then some decomposition below that. For instance, the IDSgrep dictionary
derived from KanjiVG includes the entry <結>⿰糸<吉>⿱士口. The utility accepts a query
from the user and displays all dictionary entries that match the query.
The simplest kind of query is a single character like 結. Under the parsing rules, that is

translated to a tree consisting of a single nullary (leaf) node with結 as its head and semicolon
as its functor, as if the query had been the explicitly-bracketed <結>(;). Since all the dic-
tionary entries have heads, matching proceeds by simply comparing heads for identity; the
search will return <結>⿰糸<吉>⿱士口 and any other entries that have heads identical to結.
Used this way, IDSgrep performs a simple lookup function. Figure 5 shows the head-to-head
matching in this example. Because both the needle and the haystack have heads, the match
result is determined solely by testing for the heads to be equal.

<14>䴱㋵<燐>䴲廂旅

<14>[䴱]

<㋵>(;) <燐>[䴲]

<廂>(;) <旅>(;)

14

<14>(;)

Figure 5: Basic head-to-head matching.

A more complicated query might specify the complete structure of the character. For in-
stance,⿰糸⿱士口 (note no heads on the non-leaf nodes) will match <結>⿰糸<吉>⿱士口
by recursive matching of subtrees. In this way IDSgrep might serve to augment an input
method: a user might know the pronunciation or other information needed to type糸,士, and
口, without knowing how to type 結. Figure 6 shows this query. At the root, because the
needle and haystack do not both have heads, matching tests for the functors ⿰ and arities to
be equal, then proceeds recursively through the subtrees. The left subtrees are identical and

136 Matthew Skala

match by the head-to-head rule, and the right subtrees (<吉>⿱士口 and ⿱士口) match by
recursively examining their structure.

<14>䴱㋵<燐>䴲廂旅

<14>[䴱]

<㋵>(;) <燐>[䴲]

<廂>(;) <旅>(;)

䴱㋵䴲廂旅

[䴱]

<㋵>(;) [䴲]

<廂>(;) <旅>(;)

Figure 6: Matching subtrees recursively.

In those examples a single dictionary entry was more or less completely specified by the
query. But the greater flexibility of IDSgrep's query language appears in cases where the
query specifies only partial information, and may match many entries. For instance, the query
...士matches all characters that contain士 anywhere, with 70 hits in the KanjiVG database.
The query &...士...口 matches all characters containing both 士 and 口, with 25 hits in
KanjiVG. These searches mimic the multi-radical search of many computerized character
dictionaries.
IDSgrep can go a step further yet by capturing spatial information in the query. For instance,

⿰?...士matches characters that contain士 as or within the right side (not just anywhere; 31
hits in KanjiVG), using the wildcard operator on the left; this query is illustrated in Figure 7.
At the top level, the needle root [⿰] matches the root of the haystack (by functor and arity)
and triggers recursive examination of the subtrees. The left child of the needle is (?), which
matches unconditionally. On the right, the match-anywhere operator ... allows its single
child to match anywhere within the haystack's right subtree <吉>⿱士口. The child of the
match-anywhere operator is士, which matches within <吉>⿱士口 at the second level. Note
that the match-anywhere operator is restricted by its application inside the right child of [⿰]:
this query would not match the dictionary entry <頡>⿰<吉>⿱士口頁, which contains士 but
does not contain it within the right child of the root. Query restrictions of this kind are not
available in systems that treat the character as an undifferentiated bag of components.
The query ⿰?⿱士口 matches characters that contain ⿱士口 as the right side (6 hits in

KanjiVG). That query might come from a language learner who is unsure about 糸 but rec-
ognizes and can type the other components in結. A handwriting recognition query would be
difficult here because糸 comes first in the stroke order, requiring the user to write it correctly
before starting to specify the known components.
Boolean operations allow for fine-tuning of query results. For instance, the available databas-

es often analyze components like貝 as composites having八 at the bottom. Such a description
of the visual layout may not always give useful insight into the semantic value of the larger
component. A user interested in 八 but not when it occurs inside components like 貝 might
use the query &...八!...⿱?八. To match that query, each dictionary entry would have to
match ...八 (therefore containing 八 somewhere), but not match ...⿱?八. Anything con-
taining 八 as the right (lower) child of [⿱], for instance because it contains 貝, would be

A Structural Query System for Han Characters 137

<14>䴱㋵<燐>䴲廂旅

<14>[䴱]

<㋵>(;) <燐>[䴲]

<廂>(;) <旅>(;)

䴱?...廂

[䴱]

(?)
...

<廂>(;)

Figure 7: Matching with wildcard operators.

excluded, as in the negative example of Figure 8. In that example, the overall match fails
because !...⿱?八 fails, which in turn is because ...⿱?八 succeeds. The successful match
in the left subtree of [&] does not affect the result.

<ね>䴱ヮ<ヴ>䴲䴱彿彿<ッ>䴲¥秒

<ね>[䴱]

<ヮ>(;) <ヴ>[䴲]

[䴱] <ッ>[䴲]

<彿>(;)<彿>(;) <¥>(;)<秒>(;)

&...秒!...䴲?秒

[&]

...

<秒>(;)

.!.

...

[䴲]

(?) <秒>(;)

Figure 8: Use of Boolean operators (failed match).

4. Implementing the query language
A straightforward implementation of the IDSgrep command-line utility would parse every
EIDS tree in its input and then match the trees against the user-specified matching pattern by
recursive descent. Figure 9 shows the organization of such a system. The current version of
IDSgrep is somewhat more complicated, but this basic design underlies the enhancements to
be described later.
Dictionaries come from third-party sources in a variety of formats. For instance, Kan-

jiVG (Apel 2014) is a collection of XML files describing the control-point coordinates for
drawing the strokes of each character. As illustrated at the top left of Figure 9, this data must
be converted to IDSgrep's EIDS format for use with the search utility. The conversion process
will vary depending on the original format. The IDSgrep build system includes Perl scripts to
automate such conversions from several popular Han character databases, and it is expected
that users with data in other formats will find it reasonably easy to do similar conversion-

138 Matthew Skala

3rd party
dictionary

EIDS
file

per dictionary

tree match

per entry

user query

per query

Figure 9: Answering queries with tree matching.

s on their own data. The EIDS file is generated once for each dictionary, during software
installation; it does not need to be re-converted during use of the system.
The command-line utility starts its work when the user enters a query. Like the Unix grep

utility that inspired it, the IDSgrep utility accepts a single query on its command line, displays
the query's results, and then terminates.
Per-query processing is shown at the right of Figure 9. At its simplest, this processing

consists only of parsing the user's query into an internal representation of the corresponding
EIDS tree. Then the command-line utility starts parsing one or more EIDS files as its main
input, specified by command-line options or a default configuration. For each EIDS tree in
the input, it tests whether the input tree matches the query tree, according to the matching rules
of the previous section. Formally, this is an evaluation of the match(N,H) function defined
in Section 3, where the needleN is the user's query and the haystackH iterates through every
tree in the database. Any trees for which match returns T are displayed as query results.
Early versions of IDSgrep used a design like this one, matching the query against every

tree in the database by recursive descent. In typical real-life cases, it gives reasonable perfor-
mance, typically a few seconds to answer a query on a desktop PC with a large dictionary.
That is as fast as one human user can type queries on a command line. However, the worst-
case performance of the recursive tree match with a complicated query is potentially very bad
(at least exponential-time) because it may recurse with a large branching factor. Even with
realistic non-worst-case queries, applications like Web services, computational linguistics re-
search, and resource-constrained smart phone dictionaries may require better performance.
The straightforward recursive descent approach may be unacceptably slow for two reasons:

the command-line utility runs the full tree match operation on every dictionary entry for every
query, and the tree match operation is itself slow. In the following subsections we describe
algorithmic enhancements in the current IDSgrep implementation, which address both those
points. The current implementation performs fewer full tree matches, by attempting to guess
their results using cheaper analysis of precomputed index data. If IDSgrep can prove what the
result of the tree match would be, it can skip actually performing the full recursive test. That
technique is called match filtering, and described in Subsections 4.1 through 4.3. When it is
necessary to perform a tree match test after all, IDSgrep also attempts to make the matching

A Structural Query System for Han Characters 139

operation faster, using dynamic programming in the form of memoization. Memoization re-
duces the superpolynomial worst-case time bound to O(n3) per tree match, subject to some
limitations. That technique is described in Subsection 4.4.
Figure 10 illustrates the design of the full IDSgrep system, with the details that were omitted

from Figure 9.

4.1. Match filtering
The events described in the boxes labeled ``per entry'' in Figures 9 and 10 occur tens or hun-
dreds of thousands of times for every query. Operations in the ``per query'' and ``per dictio-
nary'' boxes are performed much less often. Even if achieving a small reduction (microsec-
onds) in the average per-entry processing time requires a relatively large amount of additional
work (milliseconds) in per-query setup, it will still improve the user-visible performance of
the system. The per-dictionary preprocessing is not visible to the user in normal operation at
all, and effectively comes for free. To a first-order approximation, the per-entry processing
time is all that matters to performance.
It makes sense, then, that to improve the performance of the system we should address

the slowest thing in the ``per entry'' box. That is the tree match operation, which computes
match(N,H) for a search pattern N and dictionary entry H by an expensive recursive algo-
rithm. Match filtering attempts to reduce the expense of computing match(N,H) by com-
puting it on fewer values of H . We hope that the time saved by the avoided calls to match
will more than compensate for whatever additional work may be required to recognize the
ruled-out entries. This general approach is the foundation of the well-known Bloom filtering
technique (Bloom 1970).
Let E be the set of all EIDS trees, let F and V be sets called the filters and the vectors

respectively, and define functions filt : E → F , vec : E → V , and check : F × V → {T,F}
such that for all N,H ∈ E , this property holds:

match(N,H) = T ⇒ check(filt(N), vec(H)) = T . (1)

We precompute and store, per dictionary, the values of vec(H) for eachH in the dictionary.
These go in a separate file stored with the dictionary and labeled ``bit vector file'' in Figure 10.
To answer a user queryN , we compute filt(N), once per query; then check(filt(N), vec(H)),
for every query and every entry. When check(filt(N), vec(H)) = F, we can skip to the next
entry. The property (1) guarantees that in such a case, we know match(N,H) = F without
calculating it explicitly. Only when check(filt(N), vec(H)) = T do we invoke the more
complicated algorithm to compute match(N,H), and return H as a match to N should that
return T. The computation of check is time-critical because it happens for every dictionary
entry and every query; the other steps occur in preprocessing, many fewer times.
If (1) holds, then the algorithm is correct in the sense of returning the same set of match

results that we would get without filtering. Such filtering schemes clearly exist; having check
return T unconditionally is a trivial example. However, for filtering to be of benefit, the
following properties (paraphrased from the IDSgrep user manual (Skala 2014a)) are desirable.
Note that unlike (1), which must be absolutely true, it is acceptable for these properties to
hold only on average in common cases. When they fail, the system becomes less efficient but
remains correct.

• Although vecmay be expensive to compute, the elements of V it produces as output are
small enough that we can afford to store them for all dictionary entries.

• Although filtmay be expensive to compute in comparison to check, it is still fast enough

140 Matthew Skala

3rd party
dictionary

EIDS
file

bit
vector
file

per dictionary

101010

λ

101010

BDD

101010

tree matchmemo.

per entry

user query

λ filter
(101010, 2)

BDD filter

per query

Figure 10: IDSgrep processing with algorithmic enhancements.

A Structural Query System for Han Characters 141

that we can reasonably afford to compute it once for each user-initiated query (each
value of N).

• The check function is very fast.
• The converse of (1) is usually true, on the distribution of search patterns and dictionary
entries we expect to see in practice.

IDSgrep uses two layers of match filtering, which share their definition of vec but differ
in their definitions of filt and check. As shown in Figure 10, EIDS trees from the dictionary
are joined with their vectors from the bit vector file as they pass through the filtering layers.
If the lambda filter proves that a bit vector will not match, then the entry is discarded with-
out further processing, as symbolized by the arrow curling off to the side. Any vectors that
pass the lambda filter test are checked by the BDD filter, with another opportunity for them
to be discarded. Only those entries whose bit vectors survive both filters pass to the EIDS
syntax parser and recursive-descent tree match. The tree match is by far the most expensive
single operation in per-query processing, so skipping it as many times as possible makes a
real difference in overall performance.

4.2. Bit vectors and lambda filters
Classical Bloom filtering is a match filtering schememuch as described here, applied to subset
membership tests. It is desired to quickly test whether objects may be elements of some set
that was fixed in advance, without the cost of storing and searching the entire set. The Bloom
filter applies a small constant number of hash functions to an input object and uses them as
indices into an array of bits. Each bit is set to 1 if and only if any of the hashes applied to
any of the objects in the set would produce that hash value. When testing an unknown object,
we check all its corresponding bits and return it as a possible match if and only if they are
all 1. The scheme may produce some false positives (possible matches that were not in the
set) but no false negatives. Any object that is in the set will necessarily return the ``possible
match'' result. For any other object, we are checking multiple bits that are effectively chosen
at random. As long as the array is large enough to contain a significant fraction of zero bits,
it is reasonably likely that at least one of the bits checked will be zero and we can return
``definitely no match''. The desired properties hold of recognizing all objects in the set, and
not too many others. Bloom (1970) gives a detailed analysis, which has become well-known.
It is also well-known that some algebraic operations can be applied to Bloom filters with

useful results: for instance, the bitwise AND of two Bloom filter bit arrays is a Bloom fil-
ter that recognizes the intersection of the sets they recognize. Guo et al. (2010) give a good
summary of results on algebraic combinations of standard Bloom filters, in the context of
introducing an enhanced version of their own. IDSgrep uses this algebraic view of Bloom
filters to create a filter calculus in which the filter approximating a complicated EIDS-match
query is calculated from filters that approximate matching its subtrees. The notion of gener-
alized zero (Skala et al. 2010) detected by counting bits and testing against a threshold is also
applied.
Let V , the set of vectors for match filtering, be {0, 1}128; that is, the set of 128-bit binary

vectors. Let F , the set of possible filters, be V × Z; each filter is a pair (m,λ) of a vector
m from V (called the mask) and an integer λ. We call filters of this type lambda filters. Let
check((m,λ), v) = T if and only if strictly more than λ bits are 1 in the bitwise AND ofm and
v. Where these filters come from (the function filt) will be discussed later. For now, note that
we can create a match-everything filter by setting λ = −1, regardless of the vectors m and
v. Therefore with an appropriate definition of filt these definitions are capable of describing

142 Matthew Skala

a filtering scheme that is at least correct if not highly efficient.
The function vec : E → V , which associates a 128-bit vector with an EIDS tree, is defined

as follows. Let T be the input tree. The 128-bit result is divided into four 32-bit words; call
them v1, v2, v3, v4. A hash function chooses three distinct bits in v1 to be set to 1, depending
on the head of T , or three bits representing the hash of the empty string if there is no head.
These bits must be distinct; it is a uniform choice among the 4960 combinations of three out
of 32 bits. Then another hash function sets three more bits (distinct from each other but not
necessarily from the three representing the head) depending on the arity and functor of T .
Thus, v1 will contain between three and six 1 bits.
If we are looking for trees that exactly match a specific head at the root, we can say with

certainty that any tree having the desired head will have three specific bits in its vector equal to
1, namely the three bits corresponding to the hash of the head. A filter (m, 2)withm selecting
exactly those three bits will match all such trees. It will not match many others, because with
only at most six bits of 32 set, the chances are good that at least one of the three bits chosen
from v1 will be 0 for any tree that does not have the desired head. This filter foreshadows the
more complicated filters we will use to approximate the full EIDS match operation.
In the case of a nullary tree, the calculation of vec(T) stops at this point, leaving v2 = v3 =

v4 = 0. For higher arities, we set bits to 1 in the other three words of the vector. The head,
functor, and arity of the first child of the root are hashed to choose two sets of three bits in v2.
Similarly, the last child of the root sets two sets of three bits in v3. All other nodes below the
root, including the middle child of a ternary root and all lower-level descendants, hash into
v4.
Figure 11 illustrates the bit vector calculation for a dictionary entry, with values in hexadec-

imal and binary notation as indicated by the subscripts. Words in the vector, and bits in the
words, are indexed in one-based little-endian order; the least significant bit of the vector is bit
1 of v1. Each node in the tree selects three bits with its head (or lack of a head) and three bits
with its functor/arity pair, as shown by the indices on the dashed arrows; these bits are set to
1 in a word selected by the location of the node in the tree. All three of the nullary nodes with
semicolon functors select the bit combination 7, 13, 25 in their respective words. In the case
of a unary root (rare in Han character dictionary entries, but they occur in search patterns),
the single child would set bits to 1 in both v2 and v3. Both of the two grandchildren of the
root select v4, so it ends up with a greater density of 1 bits than the other words.
Wementioned that using hashing to choose three bits in the first 32-bit word of a filter mask,

and requiring all three to be 1, gives a filter for the query that matches that head. Lambda
filters are constructed the same way for matching the state of having no head at the root,
and for matching a functor/arity pair. Starting from these atomic lambda filters, the filter
calculus for lambda filters combines them to produce lambda filters that approximate more
complicated queries.
Given two lambda filters, we can construct a new lambda filter guaranteed to match if at

least one of them matches. For instance, if at least one of the eight-bit filters (10011000, 2)
and (00000111, 2) matches, then (10011111, 2) also matches. The new filter is found by
taking the bitwise OR of the masks, and the minimum of the λ values. Some precision is
lost, because (10011111, 2) will also match in some cases where neither of the original filters
would match. This is the Boolean OR operation in the filter calculus of lambda filters. The
IDSgrep implementation also includes an optimization for the case where the two λ values
are not equal. In that case we can show that it is possible to remove bits from the mask of
the filter with greater λ before combining them, to achieve a slightly more precise filter as

A Structural Query System for Han Characters 143

05A0 B040 2090 0420 03C0 1040 8800 540116 = vec(<ギ>䴱ヮ<煉>䴲虫旅)

v1 = 8800 540116

= 1000 1000 0000 0000 0101 0100 0000 0001 2

v2 = 03C0 104016

= 0000 0011 1100 0000 0001 0000 0100 0000 2

v3 = 2090 042016

= 0010 0000 1001 0000 0000 0100 0010 0000 2

v4 = 05A0 B04016

= 0000 0101 1010 0000 1011 0000 0100 0000 2

<ギ>[䴱]

<ヮ>(;) <煉>[䴲]

<虫>(;) <旅>(;)

1, 15, 28

11, 13, 32

23, 24, 26

7, 13, 25

6, 11, 28

6, 25, 30

15, 16, 22

7, 13, 25

16, 24, 27

7, 13, 25

Figure 11: Calculating the vec function.

the result of the OR while preserving correctness. A similar operation is defined for Boolean
AND on lambda filters.
One more filter calculus operation is necessary to do basic EIDS matching: computing a

lambda filter for matching a child, given that we have a lambda filter for matching at the root.
This operation makes use of the word structure of the vec function. If the lambda filter based
at the root has a mask that checks certain bits in v1, then a filter for the same tree pattern
in the first child should check the same bits in v2. More than one bit in the root filter may
correspond to the same bit in the child filter. For instance, a filter that would require 1 bits at
equivalent positions in v2 and v4 when checking for a pattern at the root, can only look at that
bit position in v4 once, when checking for the same pattern in a child of the root. The value of
λ must then be reduced accordingly. IDSgrep's implementation of the child-matching filter
calculus operation computes the worst-case number of such collisions and subtracts it from
λ, as well as performing the necessary rearrangement of bits in the filter mask.
These operations suffice to implement lambda filters for the basic_match function. Recall

that basic_match(N,H) = T if and only if either N andH both have heads and those heads
are identical, or N and H do not both have heads but they have the same functor and arity
and all corresponding children match recursively. This defines EIDS matching without spe-
cial matching operators; and each operation in that logical statement corresponds to a filter
calculus operation. Starting with the atomic lambda filters for matching heads, head absence,
and functor/arity, we can use OR, AND, and the ``match child'' transformation to calculate a
lambda filter filt(N) with the desired property that check(filt(N), vec(H)) = T wheneverN
andH match under basic matching, and not often otherwise.
It takes a little more work to handle the special matching operators of IDSgrep. When

calculating a filter for a query, IDSgrep follows the same logic as in the definition of thematch
function: check whether the functor and arity of the root of the query EIDS tree describe a
special matching operator, follow rules specific to the operator if one is recognized, and apply
basic matching otherwise.
The Boolean OR and AND operations [|] and [&] are handled by straightforward appli-

cation of the OR and AND rules already defined by the filter calculus. The Boolean NOT

144 Matthew Skala

operator .!. is more difficult. Any case of a filter matching might be a false positive for
which the full query would not match, and would become a forbidden false negative if we
attempted to invert it. Therefore, if we attempt to evaluate the .!. operator in pure filter cal-
culus where given a filter for a query x we must find a filter for .!.x, the only correct result
will be a match-everything filter, regardless of x. IDSgrep processes the .!. operator by tem-
porarily breaking out of the filter calculus to apply Boolean algebra to the underlying EIDS
matching queries, which contain more useful information than their lambda filters. It applies
double negation (NOT NOT x equivalent to x), de Morgan's theorem (NOT (xOR y) equiva-
lent to (NOT x) AND (NOT y)), and recognizes the special cases of the match-everything and
match-nothing queries (?) and .!.(?). Only if the negation cannot be removed or postponed
by algebra does IDSgrep resort to returning the match-everything filter.
Only a few other special operators are handled by the lambda filtering scheme. The filter

for the literal-match operator .=. is just the filter for its child under basic matching, ignoring
any special meaning of the child's functor and echoing the definition of .=.. The unordered-
match operator .*. is expanded into an equivalent construction using Boolean OR on all
permutations of children, before calculating the lambda filter on the expansion. Similarly,
the match-anywhere operator ... is expanded into an equivalent OR of four queries: one
each for matching at the root, first child, last child, and all other descendants. These cases
correspond neatly to the four 32-bit words in the bit vector.
One can imagine a similar expansion of an associative query using .@. into an equivalent

query without .@., but such a construction would suffer from a combinatorial explosion, con-
taining one subquery for each way of parenthesizing the original, all combined with Boolean
OR. IDSgrep avoids this possibility by just using the match-everything filter for .@. queries,
giving behavior that is at least correct and not significantly worse than no filtering at all. Sim-
ilarly, the user-predicate and regular-expression matching operators, which escape to other
matching functions that defy algebraic analysis, are always assigned match-everything lamb-
da filters.
By applying these rules, IDSgrep can calculate a lambda filter for any query, having the

desired properties of no false negatives and reasonably few false positives. That is the first
layer of filtering, used to avoid both explicit calculation of the match function and evaluation
of the somewhat more expensive second layer of filtering, which is described next.

4.3. BDD filters
The precision of lambda filtering is limited by the implicit requirement of the filter calculus
that the result of an operation on lambda filters must itself be a lambda filter. IDSgrep's BDD
filters attempt to retain more precision, by using a more powerful formalism for expressing
the filters. They are named for the binary decision diagram (BDD), which is a well-known
data structure for representing Boolean functions of bit vectors. The data structure is well de-
scribed in standard references (Knuth 2009) and we do not explain its inner workings beyond
IDSgrep's perspective. IDSgrep uses a third-party open-source BDD library named BuD-
Dy (Lind-Nielsen 2014) as a black box implementation of BDDs.
BuDDy provides Boolean functions as objects for the software to manipulate. These objects

support simple operations like ``compute the function that is the Boolean OR of these two
functions''. They also support much more complicated functions, like ``count the number of
distinct input vectors on which this function is true''. Some of these operations are NP-hard
and cannot be performed in reasonable time in the worst case; but the algorithms and the
implementation include many optimizations for the cases expected in practice.

A Structural Query System for Han Characters 145

IDSgrep applies BDDs directly to the match filtering problem. Let V , the set of vectors for
match filtering, be {0, 1}128, the 128-bit binary vectors just as in lambda filtering. Similarly,
let vec be the same function used in the lambda filtering of the previous section. BDD filtering
operates on the same vectors. It differs in the definition of F , the set of filters: here, F is
the set of all monotonic Boolean functions on 128-bit binary vectors. Monotonic Boolean
functions of binary vectors are those where, if the function's value for a given input is true,
changing a 0 bit in the input to a 1 can never cause the function's value to change to false. This
requirement limits the complexity of the functions somewhat, but F remains a huge set, and
we will later apply a further constraint on the complexity of the functions that will actually be
used. Elements of F are represented by binary decision diagrams, and the check function on
a BDD and a vector simply evaluates the function that the BDD represents, using the vector
as input.
The calculus of BDD filters starts with atomic filters and applies operations to create filters

for arbitrary EIDS matching queries, much like the calculus of lambda filters. Just as with
lambda filters, when a query has a given head at the root, there are three bits in the first word of
its vector that must be 1. It is easy to create a BDD for the function true if and only if all those
bits are 1, and that is the atomic BDD filter for matching that head value. So far, it represents
the same function that the equivalent lambda filter would represent. Similar atomic BDDs are
easy to define for matching the absence of a head at the root, and any given functor/arity pair.
Boolean OR and AND use the relevant BDD operations directly. Here is the first significant

difference from lambda filtering. The lambda filter for the OR of two lambda filters may also
match on some vectors that would not have been matched by either input, representing a loss
of precision. The OR of two BDDs instead represents exactly the function that is true if and
only if at least one of the input functions is true. The BDD for AND is, similarly, an exact
representation of that operation. There is no loss of precision in these simplest BDD filter
calculus operations.
Matching a child may involve some loss of precision because of bit collisions, just as in the

case of lambda filters. The definition of the child-matching transformation on BDD filters is
also somewhat more complicated. But as with lambda filters, it is possible given a BDD filter
for matching a pattern at the root, to compute a BDD filter that examines a rearranged subset
of the vector bits to match the same pattern as a specified child of the root.
Applying these operations to the atomic filters, as in lambda filtering, gives BDD filters

for basic EIDS matching. Filters for special matching operators are also constructed using
similar techniques to those used for lambda filtering. Boolean OR and AND, and the lit-
eral match operator .=., are straightforward. Boolean NOT is handled by examining the
underlying EIDS-match queries and applying Boolean algebra, as in lambda filtering, with a
match-everything BDD filter used as a fallback where necessary.
Unordered match .*. is expanded into a Boolean OR of the matched permutations, and

match-anywhere ... into an OR of four expressions for matching at the root, as first child, as
last child, or as any other descendant. Finally, the .@., ./., and .#. operators are assigned
match-everything BDD filters, as in the lambda filtering case.
One significant issue remains: the complexity of the calculated BDD filters. The BuDDy

library is quite efficient, containingmost of the usual optimizations expected of a BDD library.
But even with good constants, any BDD library must repeatedly solve NP-hard problems to
maintain the data structure, and there is a potential for both time and space requirements to
become exponential. We could imagine a pathological query that would cause IDSgrep to
spend so much time in the per-query preprocessing as to outweigh any possible advantage in

146 Matthew Skala

the per-entry scanning.
IDSgrep addresses that concern by enforcing a constraint on the complexity of any BDD

returned by filter calculus operations. Recall that adding false positives to a filter will never
cause incorrect results from the overall filtering and matching algorithm; it will only reduce
efficiency by requiring more full EIDS tree matches. We can always change a BDD filter to
one that returns the possible-match result on more vectors, as long as we do not cause it to
stop returning possible-match on any vectors for which it already does so. Furthermore, the
BuDDy library can provide an estimate of the cost of a BDD in time and space, in the form
of a count of the nodes in an internal data structure.
With these facts in mind, IDSgrep has a simple way of avoiding excessive resource con-

sumption in BDD filter calculus operations: after each operation, it checks whether the result
is too complicated, and if so, it applies an existential quantification operation to the BDD.
That has the effect of reducing the complexity of the internal representation, possibly losing
some precision, without rendering the filtering result incorrect. By applying existential quan-
tification whenever necessary (which is rarely, in practice), IDSgrep enforces an upper limit
on the complexity of the BDD filter and prevents the per-query preprocessing from running
out of control.

4.4. Match memoization
Straightforward recursive descent evaluation of the IDSgrep matching function takes expo-
nential time in theworst case. The definition ofmatch recursesmore than once into its children
in the cases of the ... operator (each subtree of the haystack against the needle) and the .*.
operator (the haystack against as many as six permutations of the needle). A matching pattern
with many nested instances of these may take a very long time to evaluate.
However, the straightforward recursive descent algorithm lends itself to dynamic program-

ming via memoization. The needle and haystack each contain a linear number of subtrees,
and each pair of subtrees deterministically does or does not match. We can store and re-use
the result of match(N,H) for each pair (N,H) in a table of size O(n2).
Computing the match function given the table entries for all subtrees of its arguments is a

linear-time operation in the worst case implemented within IDSgrep, which is the .@. oper-
ator; that operator potentially requires comparing node lists of linear length. IDSgrep stores
strings using a hashed symbol table for constant-time equality tests on strings, so .@. can be
implemented inO(n) time, plus recursion into the subtrees. The other operators are constant-
time after recursion is paid for. MultiplyingO(n2) subproblems withO(n) time per subprob-
lem gives O(n3) time overall. This analysis excludes the ./. regular-expression matching
operator. That operator connects IDSgrep to the external PCRE library, which does not offer
time guarantees; but O(n2) remains as a bound on the number of calls IDSgrep makes to
PCRE.
In the practical implementation, on commonly-occurring queries, match memoization is

rarely beneficial. Users seldom construct queries with more than one or two instances of
... or .*., rarely nesting them even then. The additional constant factors associated with
hashing before and after each node-to-node matching test, increased memory working set
size resulting from random accesses to the hash table, and so on, are considerable. But to
guard against pathological or malicious queries, the IDSgrep utility implements memoization
conditional on the matching pattern. When the matching pattern includes more than two
instances of ... or .*., IDSgrep will memoize match, giving a O(n3) time bound while still
avoiding the overhead of maintaining the hash table in the usual case of simpler queries.

A Structural Query System for Han Characters 147

5. Experimental evaluation
This section presents experimental evaluation of IDSgrep version 0.5.1, with BuDDy 2.4
and dictionaries from CJKVI as supplied by the IDSgrep distribution; CHISE-IDS 0.25; the
September 1, 2013 released version of KanjiVG; and Tsukurimashou 0.8. Speed results are
user CPU time on a MacBook Pro equipped with a 2.3GHz Intel iCore i7 CPU and 8G of
RAM. The operating system was Mac OS X 10.9.5.

5.1. Match filtering
The main experimental question of interest here was how the algorithmic enhancements (both
kinds of match filtering, and match memoization) affect query speed. The speed test queries
were chosen to be similar to those users typically make in practice, and to exercise the relevant
features of the query language. There was an emphasis on queries involving wildcards and
Boolean logic, which are more challenging to search algorithms. Some queries returning no
hits, and some returning large numbers of hits, were tested. However, artificial pathological
cases that users would not be expected to create in actual use were not included in the main
speed evaluation.
We started with the 160 Grade Two Jōyō Kanji characters as taught in the Japanese school

system, and found their entries in the CJKVI Japanese-language character structure dictio-
nary generated by the IDSgrep installer. That dictionary excludes characters with no break-
down into smaller components, according to its own rules for determining what qualifies
as an atomic component; other dictionaries do have entries for some of the characters that
CJKVI excludes. For 144 of the Grade Two characters, CJKVI provided an entry; and for
each of those we removed all heads from the EIDS tree except at the leaves, to create a tree
that might be further modified to form a test query. For instance, from the dictionary entry
【数】⿰<娄>⿱米女攵, removing the non-leaf heads gave⿰⿱米女攵.
The test query set contained 1642 queries and was constructed as follows:
• All 160 Grade Two kanji as single characters for head-to-head matching.
• Match-anywhere applied to each of the 160 Grade Two kanji.
• The 144 dictionary entries with heads removed.
• The 144 headless dictionary queries with each leaf in turn replaced by the wildcard
(?). For instance, ⿰⿱米女攵 generated ⿰⿱?女攵, ⿰⿱米?攵, and ⿰⿱米女?.
This process created 536 queries, reduced to 524 by removing duplicates.

• Unordered-match applied to the root of each of the 144 headless dictionary entries, for
instance *⿰⿱米女攵 from⿰⿱米女攵.

• For all headless dictionary entries that included the necessary structure for associative
match to bemeaningful, such as⿰日⿱⿱十一寸, the same tree with associative match
inserted, such as ⿰日@⿱⿱十一寸. There were 53 of these, including three where it
was possible to apply @ to two different associative structures in the same tree.

• For all headless dictionary entries with binary roots, the same tree with the root replaced
by the Boolean OR operator, for instance |口儿 from⿱口儿. There were 137 of these.
The seven headless dictionary entries without binary roots all had⿳ as root functor.

• For each x chosen from among the 160 Grade Two kanji, the queries &...x...日
and &...x!...日. That makes 320 queries, intended to test Boolean AND and NOT
with match-anywhere in usage patterns similar to multi-radical search; since日 occurs
within some of the Grade Two kanji, some of these queries will necessarily return no
results.

The literal-match, regular-expression, and user-defined predicate operators, which exist for

148 Matthew Skala

special purposes not directly relevant to structural query of Han characters, were excluded
from the test query list.
Four dictionaries of character decompositionswere used for the speed test: CJKVI (Japanese

version, supplied in the IDSgrep 0.5.1 package) with 74361 entries totaling 4461882 bytes;
CHISE IDS version 0.25, with 133606 entries totaling 5555303 bytes; the KanjiVG release
of September 1, 2013, with 6666 entries totaling 175257 bytes; and Tsukurimashou 0.8, with
2655 entries totaling 106021 bytes. This makes a total of 217288 dictionary entries. Although
CHISE IDS supplies more than half the entries, the other dictionaries often use different struc-
tural descriptions of frequently-occurring characters and components, and so they add some
diversity in the trees to be searched.
The IDSgrep 0.5.1 installer is also capable of building a dictionary from the EDICT2 file (Breen

2014a), but that was not included in the present experiment because it is a dictionary of word
meanings and pronunciations, intended to be searched primarily with PCRE. Since it contains
many large entries that would tend to be skipped by the test queries aimed at single characters,
its inclusion in the timing results would tend to overstate the advantages of bit filtering in the
character dictionary applications studied here.
Table 1 summarizes the test queries, test dictionaries, and numbers of hits returned (final

tree matches, which are the same regardless of filtering). The mean number of hits per query
was 101.72. The top three queries by number of hits were ...心, &...心!...日, and ...止,
returning 5353, 5152, and 4074 hits respectively. There were 67 queries that returned no
hits, and 560 that returned one hit each. Note that the total hit counts for Boolean AND and
match-anywhere queries are the same because of the design of the test query set. Each match-
anywhere test query corresponds to a pair of Boolean AND test queries. Their results are
disjoint and when unified are the same hits returned by the match-anywhere query.

queries CJKVI-J CHISE KanjiVG Tsuku. TOTAL
dictionary size 74361 133606 6666 2655 217288
Grade Two kanji 160 144 123 160 320 747
match-anywhere Gr. 2 160 28757 37394 1903 634 68688
headless entries 144 152 67 18 16 253
wildcard leaves 524 16237 9998 1212 357 27804
unordered match 144 157 67 18 16 258
associative match 53 54 9 0 2 65
Boolean OR 137 145 31 129 213 518
Boolean AND 320 28757 37394 1903 634 68688
TOTAL 1642 74403 85083 5343 2192 167021

Table 1: Test queries, test dictionaries, and tree-match hit counts.

We ran 20 loops of the 1642 test queries against the 217288 entries of the test dictionaries
in each of four treatments: the default configuration with both filters; each filter alone; and
no match filtering. Filtering treatments were selected using IDSgrep's built-in command-line
options, and times were collected using its statistics option. The resulting hit counts are in
Table 2. Percentages refer to the input of each filtering or matching layer; for instance, when
both filters were used the 30980198 BDD hits per loop represented 19.8% of the 156617732
trees that had already passed the lambda filter. All the results shown are per loop of 1642 ×
217288 = 356786896 matching tests. Because the filtering and tree match algorithms are
deterministic, the filter hit counts are the same for all loops of each condition.

A Structural Query System for Han Characters 149

filters λ hits BDD hits tree hits
both 156617732 (43.9%) 30980198 (19.8%) 167021 (0.54%)
BDD 30980206 (8.7%) 167021 (0.54%)
λ 156617732 (43.9%) 167021 (0.11%)
none 167021 (0.05%)

Table 2: Hit count results for the filtering layers.

Timing results are in Table 3. These are means and sample standard deviations in seconds
for the same 20 loops, measured in user CPU seconds using the MacOS getrusage sys-
tem call. The columns marked ``overall'' represent the entire user-visible query time, which
includes both per-query preprocessing and per-entry matching and filtering. Because users
always execute complete queries consisting of both preprocessing and search, that is the most
useful measurement of query performance.

overall preprocessing
filters mean st. dev. mean st. dev
both 110.46 0.62 1.8377 0.0315
BDD 118.81 1.24 1.8333 0.0410
λ 321.29 1.78 0.0170 0.0007
none 583.72 2.42 0.0062 0.0005

Table 3: Timing results for the filtering layers (seconds).

However, for the sake of better understanding the algorithm's performance, per-query pre-
processing time is also measured separately. Those figures include creating the filters, parsing
the query string into an internal tree structure, and a few miscellaneous tasks performed once
per query, such as allocating memory.
The design of the software does not allow for creating a BDD filter without at least partially

creating a lambda filter, because those two operations are done simultaneously, sharing much
of their code. Only the BDD creation can be removed entirely by appropriate compile-time
options. As a result, the preprocessing times for the ``BDD only'' experimental condition also
include whatever lambda filter preprocessing could not be disabled at run time. The ``lambda
only'' results were measured on a separately-compiled IDSgrep binary with no BDD support
at all. It is clear from those measurements that the preprocessing time for lambda filtering
alone is so much less than for BDD filtering as to be negligible when they are combined.
The ``no filtering'' condition also has nonzero preprocessing time, because of the parsing and
memory allocation common to all configurations.
The times for the ``both'' and ``BDD'' conditions seem close enough for a statistical test to

be appropriate. One-factor ANOVA is the obvious choice. The four treatments are consid-
ered as a single factor because of the close interaction between the BDD and lambda filters
when both are used. That is properly a single treatment, not two treatments independently
applied. The data (especially for preprocessing time) violate the necessary assumption of
homoscedasticity, with standard deviations varying greatly between the different treatments.
Since the standard deviations increase with the means, a logarithmic transformation is ap-
propriate. Sample means and standard deviations for the base-10 logarithms of the timing
measurements are shown in Table 4.

150 Matthew Skala

overall preprocessing
filters mean st. dev. mean st. dev
both 2.0432 0.0024 0.2642 0.0073
BDD 2.0748 0.0045 0.2631 0.0096
λ 2.5069 0.0024 -1.7696 0.0173
none 2.7662 0.0018 -2.2107 0.0324

Table 4: Transformed timing results (log10 of seconds).

Applying one-way ANOVA to the transformed timing data for overall query time gives
F (3, 76) > 2.7 × 105, p < 0.0001, so we reject the null hypothesis that the mean over-
all times are the same for the four filtering treatments. The Tukey HSD (Honestly Signif-
icant Difference) test applied to the pairwise differences in transformed overall time gives
HSD(0.01) = 0.0058, less than any of the pairwise differences in sample means, so all the
differences are statistically significant with p < 0.01.
On the transformed processing times, one-way ANOVA gives F (3, 76) > 9.2 × 104,

p < 0.0001, sowe reject the null hypothesis that themean preprocessing times are the same for
the four filtering treatments. The Tukey HSD test applied to these pairwise differences gives
HSD(0.01) = 0.0039, less than any of the pairwise differences except between the ``both''
and ``BDD'' treatments, so all the pairwise differences except that pair are statistically signif-
icant with p < 0.01. The difference in preprocessing time between ``both'' and ``BDD'' also
is not significant at the 95% or 90% levels (HSD(0.05) = 0.0032, HSD(0.10) = 0.0028).

5.2. Memoization
To check the effects ofmemoization, we compiled amodified version of the IDSgrep command-
line utility in which the test for whether to use memoization was disabled. The configuration
was otherwise default; in particular, both layers of bit vector filtering were active. We then
ran queries against the combined test dictionaries for the character component 寺 nested in-
side k match-anywhere operators, for k from 1 to 10. These queries each return the same set
of 261 results, but would be expected to become slower as k increases.
Table 5 and Figure 12 show the time in seconds per query for each value of k, with sample

mean and standard deviation for 100 trials. Also shown in the figure is a linear function fit by
least squares to the default-configuration query times, and an exponential function fit to the
no-memoization times. The exponential function was found by least squares fitting a line to
the logarithms of the data, to avoid overemphasis on the larger numbers.

5.3. Bit vector generation
Although the cost of creating the bit vectors for IDSgrep is not directly visible to dictionary
users, it may be of interest in evaluating the algorithm. Table 6 shows the time required
to generate bit vectors for each of the test dictionaries, in units of user CPU seconds with
sample mean and standard deviation over a sample of 20 trials. Other tasks included in the
software installation process but not properly part of the IDSgrep system, such as decom-
pressing archived data, compiling C source code, and converting foreign formats into EIDS,
are excluded from these results.

A Structural Query System for Han Characters 151

 0.1

 1

 10

 100

 0 2 4 6 8 10

m
ea

n
se

ar
ch

 ti
m

e
in

 s
ec

on
ds

number of nested match-anywhere operators

default configuration
no memoization

linear fit to default
exponential fit to no-memo

Figure 12: Query times for nested match-anywhere with and without memoization.

5.4. Comparison to other software
Because IDSgrep is currently the unique implementation of its own query language, there is
nothing else quite like it that could serve as the perfect benchmark for comparison. Examining
the effect of bit vector indexing was the main goal of our evaluation, and for that it suffices to
compare IDSgrep using bit vectors against IDSgrep not using bit vectors. But to place IDS-
grep in perspective with other software, we used the following criteria to select comparable
systems to test against. Software packages compared to IDSgrep should be:

1. software packages;
2. capable of searching for, not only describing, Han characters;
3. capable of at least one kind of structural query more sophisticated than just looking up

an exact match to a single character;
4. available to the general public;
5. suitable for automated performance testing;
6. typical of the systems that users choose in actual practice;
7. the best implementations available; and
8. collectively representative of the range of systems in use.
We found two systems that met all the criteria: GNU grep (Free Software Foundation 2014)

and Tregex (Levy and Andrew 2006).
GNU grep is a popular version of the standard command-line grep utility. Its basic function

is to take a text file as input and pass through to the output all lines that match a query pattern-
--much as IDSgrep does for EIDS trees. EIDS dictionary files are easily converted into a
form with exactly one tree on each line, so that grep's line-based matching will correspond

152 Matthew Skala

default config no memoization
k mean st. dev. mean st. dev
1 0.191 0.003 0.193 0.002
2 0.302 0.003 0.308 0.004
3 0.678 0.004 0.576 0.008
4 0.955 0.021 1.099 0.014
5 1.220 0.019 2.068 0.030
6 1.513 0.026 3.719 0.051
7 1.779 0.037 6.398 0.070
8 2.040 0.039 10.697 0.123
9 2.354 0.039 17.007 0.235
10 2.618 0.050 26.285 0.273

Table 5: Query times for nested match-anywhere with and without memoization.

dictionary entries bytes mean st. dev
CJKVI-J 74361 4461882 0.1748 0.0027
CHISE 133606 5555303 0.2144 0.0026
KanjiVG 6666 175257 0.0088 0.0007
Tsukurimashou 2655 106021 0.0056 0.0006
TOTAL 217288 10298463 0.4036

Table 6: Time cost of bit vector generation (seconds).

to matching of EIDS trees. The query patterns for grep are usually described as regular ex-
pressions, and regular expressions as such cannot be used to recognize non-regular languages
(the language of balanced parentheses being the classical example). EIDS and Unicode IDS,
as context-free non-regular languages, are not well suited to sophisticated queries with grep.
However, GNU grep, like many recent implementations of grep, supports back-references
and other extensions of regular expression syntax that allow it to recognize a limited class
of non-regular languages. As one of its authors describes in an electronic mailing list post-
ing (Haertel 2010), it is a heavily optimized implementation of standard DFA-based string
search techniques.
Many users seeking functionality similar to that of IDSgrep would reach for GNU grep in

particular. Many more would use something similar to GNU grep, such as another imple-
mentation of Unix grep, or the regular expression search built into a text editor. The CHISE
project (Morioka 2014), in particular, offers integration with XEmacs (Wing et al. 2014) for
grep-like regular expression and substring search. As such, GNU grep is a good candidate for
comparison to IDSgrep. It can be, and actually is in practice, used to serve many of the same
needs as IDSgrep, and it is amenable to automated performance testing.
Not all IDSgrep queries can reasonably be translated into grep-like string search queries,

but two important kinds of IDSgrep queries easily can be. Looking up a single character with
a query like 語, which should return exactly those dictionary entries that have that character
as head, is one. Looking for a single component anywhere in the entry with a query like
...言 is the other. We can translate these two queries into GNU grep queries【語】 and言
respectively. In IDSgrep's default databases (after some processing to normalize the format),
each entry is one text line, lenticular brackets (synonymouswithASCII angle brackets in EIDS

A Structural Query System for Han Characters 153

syntax) occur only in entry heads, and characters like言 do not occur in unusual contexts. As
a result these GNU grep queries return the same entries as the original IDSgrep queries despite
not having technically identical semantics. Simple Boolean queries involving AND and NOT
operations can also be performed easily with grep, by passing the output of one grep instance
through another.
In our test query set, 640 queries are thus of a form that can easily be processed with GNU

grep. We ran 20 loops of those 640 queries against the combined test databases, using IDS-
grep in its default configuration, IDSgrep with bit vector filtering turned off (for a possibly
fairer comparison to grep, which uses no pre-computed index), and GNU grep version 2.20
in its ``fast'' mode (fgrep), which does simple string matching without the more sophisticated
features of extended regular expressions. The timing results in user CPU seconds, with means
and standard deviations over the sample of 20 loops, are shown in Table 7.

search software mean std. dev.
IDSgrep (default) 94.50 0.28
IDSgrep (no filtering) 262.45 0.20
GNU grep 5.48 0.03

Table 7: Timing comparison between IDSgrep and GNU grep (seconds).

The crucial disadvantage of GNU grep is that it cannot do the complicated subtree-matching
queries for which IDSgrep is intended. Stanford Tregex (Levy and Andrew 2006) is a more
powerful tree-matching program originating in the computational linguistics community, and
one of the nearest pre-existing equivalents to IDSgrep in terms of expressive power and ap-
plication domain. It is intended for use with parse trees of sentences in databases like the
Penn Treebank (Marcus et al. 1993), and it supports a query language based on describing
constraints between nodes. The available constraints are chosen based on the community's
experience with what kinds of queries users wish to make on parse trees. In general, Tregex
has more emphasis on longer-scale ancestry and predecessor/successor relationships, and less
emphasis on fixed-arity nodes and the sequence of children, compared to IDSgrep. Tregex,
like GNU grep, is a popular implementation that many users would naturally choose in sit-
uations where IDSgrep might be applicable. Tregex is also typical of a larger class of tree
matching software packages.
To make EIDS trees searchable with Tregex, it was necessary to translate the trees into the

syntax used by tree bank files, which expresses variable-arity trees using nested parentheses
and alphanumeric labels. We used a Perl script to do this translation, using identifier names
that encoded the EIDS tree node information (arities, heads, and functors) into alphanumeric
strings. For example, the EIDS <明>⿰日月 was translated to the tree bank-style tree (R
(C2FF0 H660E (A3B H65E5) (A3B H6708))). That can be read as a root R with one child,
which in turn is binary with functor U+2FF0 (⿰) and head U+660E (明). The next two
children in the tree bank-style tree are both nullary with functor U+003B (semicolon, which
is implicit in the EIDS syntax), and heads U+65E5 (日) and U+6708 (月) respectively.
With the trees encoded into tree bank syntax, almost all of our test query set could be trans-

lated into Tregex queries by recursively expressing the match condition at each node in Tregex
terms. Only the associative-match queries were omitted. To exactly match the semantics of
IDSgrep's associative-match operator would involve many additional Tregex constraints to
exclude exotic cases. It is not clear how to perform a fair comparison between the two sys-
tems on such queries. Writing a query with exactly identical semantics to IDSgrep would

154 Matthew Skala

seem to penalize Tregex by making it do a great deal of superfluous computation, but tuning
the queries closely to the data would render the comparison meaningless on general data.
We ran 20 loops of all test queries except the 53 associative-match queries against the com-

bined test dictionaries, using IDSgrep in its default configuration, IDSgrep with match filter-
ing turned off, and Tregex. We used Tregex version 3.4.1, with the Sun Mac JDK 8, update
20. The timing results (measured in seconds, with the means and sample standard deviations
over the 20 loops) are in Table 8.

search software mean std. dev.
IDSgrep (default) 102.42 0.35
IDSgrep (no filtering) 568.52 1.27
Tregex 8430.66 69.29

Table 8: Timing comparison between IDSgrep and Tregex (seconds).

5.5. Discussion
Table 1 illustrates the differences between the four test dictionaries. On the 160 single-
character searches, the CHISE and CJKVI-J dictionaries each return fewer than 160 results,
because these dictionaries only contain entries for characters when they have nontrivial de-
compositions. The KanjiVG dictionary, however, derives from a data source primarily con-
cerned with the strokes rather than the component breakdown. It includes an entry for every
character in its scope even where the decomposition is trivial. Tsukurimashou includes t-
wo entries (giving decomposition and source code information in separate entries) for every
character.
Bearing in mind that our test queries are derived from CJKVI-J entries, the headless-entry

and unordered-match queries return only a few results in the other databases because of dif-
ferences in how the dictionaries break down the same characters. That effect shows up more
strongly with the associative-match queries. The 53 associative queries return 54 results from
CJKVI-J despite its canonicalization intended to make associative matching unnecessary, be-
cause it contains separate entries for U+66F8 and U+2F8CC, both of which look like書 and
have the same decomposition. Even with associative matching, only a few of the queries in
this class return results from the other databases, because of differing breakdowns. Finally,
note the similarity in all databases (nearly identical match counts) between the headless-entry
and unordered-match queries. It appears to be a property of the Han character set that there
are very few pairs of characters differing only by a reordering of subtrees at the root level (for
instance, swapping the left and right of a left-right character).
The timing and filter hit results in Tables 2 and 3 show the effect of filtering. Lambda

filtering eliminates a little over half of the tree tests given the distribution of queries and
dictionary data we used. With tree tests accounting for most of the running time, lambda
filtering gives a factor of approximately 1.8 speed-up overall. BDD filtering eliminates 91.3%
of the tree tests and gives a factor of approximately 4.9 speed-up.
However, there is little additional benefit to using both filters at once. Although we found

the difference in overall time to be statistically significant, the sample mean running time for
both filters together is just 7.1% faster than for BDD filtering alone. Note that the difference
in raw number of BDD hits per loop is only eight hits, on a total of almost 31 million. Any tree
match avoided by the lambda filter would almost certainly be eliminated by the BDD filter
anyway. The speed benefit from the lambda filter in this configuration can be attributed to

A Structural Query System for Han Characters 155

avoiding the BDD checks themselves. Both filter implementations exist in the current version
of IDSgrep because of the history of its development, but a new implementation might omit
the lambda filters without any important loss of speed. On the other hand, because it does
not require an external BDD library, the lambda filter implementation may still be useful in
installations where the external dependency is undesirable. Its much smaller preprocessing
time could also be of benefit if the dictionaries were very small.
The correlation between the filters can be understood by considering how they share their

vector definitions. We can imagine an ideal exact filtering function of bit vectors that returns
true exactly on those bit vectors, and only those, which could possibly be associated with
matching trees. Such a function would extract all possible information from the bit vectors
and give the best possible filtering given our vector-creating function. The lambda filtering
function is a coarse one-sided approximation of the ideal filtering function, but the BDD filter
as implemented almost perfectly approximates the ideal. It gives false positives relative to the
ideal filtering function only in the relatively rare cases where implementation compromises
force a loss of precision. To see a tree check eliminated by the lambda filter and not the BDD
filter, the tree check would first have to be among the roughly 56% of non-hits that the lambda
filter is able to eliminate at all. But it would also have to be in the very small set of hits that
differ between the implementation of BDD filters and the hypothetical ideal bit-vector filter.
As long as the definition of the vectors remains the same, not much improvement in filtering
is possible.
The preprocessing time results show that with dictionaries of the size used in this exper-

iment, per-query preprocessing is not an important part of the overall query cost. It is less
than 2% of the overall search time in the case of using both filters, even less in the other treat-
ments. The cost of per-query preprocessing would only have an important effect on overall
query time when searching much smaller dictionaries. Preprocessing for lambda filters is also
insignificant compared to preprocessing for BDD filters.
Per-dictionary preprocessing times are not directly relevant to the user experience, but at

less than half a second for all dictionaries combined, these times seem reasonable and should
present no impediment to frequent dictionary updates. Dividing the no-filtering query loop
time of 583.72 seconds by 1642 queries per loop gives a mean per-query time of 0.355 sec-
onds, which can be compared to the bit vector generation time of 0.403 seconds. Both those
numbers are for processing the entire dictionary set once. We can say that generating the bit
vectors for dictionary entries is only slightly slower than doing unfiltered searches on them.
Tree-match memoization is not expected to make much difference to practical applications,

but the experimental results on it illustrate the asymptotic behavior of the algorithm. Applying
increasing numbers of nested match-anywhere operators slows down the matching linearly
in the default configuration (with memoization on demand). Despite the worst-case bound
of O(n3) for the algorithm, the case tested in our experiment involves checking a linearly-
increasing query against a database that does not change, with constant-time tests for each
pair of nodes. Then Θ(n) performance is what we might expect. With memoization, the
matching time increases exponentially, also as we would expect from theory, although as
seen in Figure 12, the fit there is less close.
GNU grep and Tregex are typical of what someone without IDSgrep might use for similar

purposes. The CHISE project (Morioka 2014), in particular, offers an online grep-like sub-
string search of its IDS database, as well as editor plugins to support local regular expression
search on the same data. For the simple match-anywhere and head-to-head single character
queries we tested, GNU grep is unquestionably much faster than IDSgrep, by a factor of 47.9

156 Matthew Skala

(in sample mean user CPU time per loop) compared to IDSgrep without filtering, or 17.2
with filtering. The comparison without filtering may be more fair because GNU grep does
not benefit from a precomputed index. On the other hand, IDSgrep is not really intended for
this kind of query; its goal is to answer detailed structural queries which GNU grep cannot do
at all. It remains that IDSgrep might benefit from switching to a faster string search algorithm
from its current filtered tree match, when it can detect that a query is of a simple form that
could be answered by string search.
Tregex is roughly comparable to IDSgrep for more advanced structural queries. Both are

specialized to their application domains, and they have different application domains, so they
are not perfectly comparable. In our comparison, covering almost all of our original query
speed test set, IDSgrep was found to be 82.3 times as fast as Tregex if allowed to use its
precomputed bit vector indices, or 14.8 times as fast without them. Factors contributing to
the speed difference may include:

• a basic speed difference between IDSgrep's compiled C code and Tregex's Java;
• differences between our test databases and the kind of data Tregex more commonly
uses; and

• the fact that Tregex solves a harder problem.
Although our test queries did not use this feature directly, the Tregex query language allows
binding named variables to nodes in the tree and applying Boolean constraints to them. It is
not difficult to prove that this feature makes Tregex's matching problem NP-hard, in contrast
to IDSgrep's matching problem, which has a O(n3) time bound.
To summarize the comparison between programs, it would be reasonable to say that GNU

grep is designed for speed in preference to expressive power; Tregex is designed for expressive
power in preference to speed; and IDSgrep falls somewhere in between.

6. Conclusions and future work
We have described the IDSgrep structural query system for Han character dictionaries: its
data model, query language, and details of the algorithms it uses, with experimental results.
IDSgrep was first developed to support Japanese-language font development in the Tsukuri-

mashou Project. The user base in that application is small and highly trained. But the concept
of structural queries on Han characters is of potential interest to other dictionary users, in-
cluding many who are not computer scientists. It is an open question to what extent language
learners and other dictionary users may find IDSgrep useful. A study comparing the expe-
rience of human users when using various dictionary systems including IDSgrep would be
of interest. Use of this new resource to support computational linguistics research on Han
character sets is also a direction for future study.
The algorithmic ideas in IDSgrep have more general application. In particular, BDD filter-

ing of Bloom-style bit vectors is novel, at least to the computational linguistics domain, and
may be a useful extension to existing bit vector techniques for parsing of unification-based
grammars. Application of the filtering technique to problems beyond character dictionaries
is another possible direction for future work.

References
Aït-Kaci, H., Boyer, R. S., Lincoln, P. and Nasr, R., 1989, Efficient implementation of lattice
operations, ACM Transactions on Programming Languages and Systems, vol. 11, no. 1, pp.
115--146.

Apel, U., 2014, KanjiVG. Retrieved April 21, 2014 from http://kanjivg.tagaini.net/.

A Structural Query System for Han Characters 157

Bloom, B. H., 1970, Space/time trade-offs in hash coding with allowable errors, Communi-
cations of the ACM, vol. 13, no. 7, pp. 422--426.

Breen, J., 2014a, The EDICT dictionary file. Retrieved April 21, 2014 from http://www.
csse.monash.edu.au/~jwb/edict.html.

Breen, J., 2014b, WWWJDIC: Online Japanese Dictionary Service. Retrieved April 21, 2014
from http://www.csse.monash.edu.au/~jwb/cgi-bin/wwwjdic.cgi.

Choi, Y. S., 2011, Tree pattern expression for extracting information from syntactically parsed
text corpora, Data Mining and Knowledge Discovery, vol. 22, no. 1-2, pp. 211--231.

Chu, C., Nakazawa, T., Kawahara, D. and Kurohashi, S., 2013, Chinese-Japanese machine
translation exploiting Chinese characters, ACM Transactions on Asian Language Informa-
tion Processing, vol. 12, no. 4, pp. 16:1--16:25.

Clocksin, W. F. and Mellish, C. S., 1987, Programming in Prolog, Springer.
Creamer, T. B. I., 1989, Shuowen Jiezi and textual criticism in China, International Journal
of Lexicography, vol. 2, no. 3, pp. 176--187.

Dürst, M. J., 1996, Prolog for structured character description and font design, Journal of
Logic Programming, vol. 26, no. 2, pp. 133--146.

Fasih, A., 2015, IDSgrep on the Web. Retrieved February 11, 2015 from http://fasiha.
github.io/idsgrep-emscripten/.

Free Software Foundation, 2014, GNU Grep 2.18. Retrieved April 21, 2014 from http:
//www.gnu.org/software/grep/manual/grep.html.

Guo, D., Wu, J., Chen, H., Yuan, Y. and Luo, X., 2010, The dynamic Bloom filters, IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 1, pp. 120--133.

Haertel, M., 2010, why GNU grep is fast. Mailing list posting. Retrieved April 21, 2014
from http://lists.freebsd.org/pipermail/freebsd-current/2010-August/
019310.html.

Halpern, J., editor, 2013, The Kodansha Kanji Learner's Dictionary: Revised and Expanded,
Kodansha.

Hao, T. and Zhu, C., 2013, Toward a professional platform for Chinese character conversion,
ACMTransactions on Asian Language Information Processing, vol. 12, no. 1, pp. 1:1--1:22.

Hazel, P., 2014, Pcre---Perl compatible regular expressions. Retrieved April 21, 2014 from
http://www.pcre.org/.

Hobby, J. D. and Guoan, G., 1984, A Chinese meta-font, TUGboat, vol. 5, no. 2, pp. 119--136.
Hosek, D., 1989, Design of Oriental characters with metafont, TUGboat, vol. 10, no. 4, pp.
499--502.

Kamichi, K., 2014, GlyphWiki. Retrieved April 21, 2014 from http://en.glyphwiki.
org/wiki/GlyphWiki:MainPage.

Kaneta, Y., Arimura, H. and Raman, R., 2012, Faster bit-parallel algorithms for unordered
pseudo-tree matching and tree homeomorphism, Journal of Discrete Algorithms, vol. 14,
no. 0, pp. 119--135.

Kawabata, T., 2012, Normalization of ideographic description sequence, in 36th Internation-
alization and Unicode Conference (IUC36), Santa Clara, California, USA, October 22--24,
2012. Conference without published proceedings.

Knuth, D. E., 1986, The Metafont Book, Addison-Wesley.
Knuth, D. E., 2009, The Art of Computer Programming, vol. 4, pre-fascicle 1B, Addison-
Wesley.

Laguna, J. R., 2005, Hóng-Zì: A Chinese metafont, TUGboat, vol. 26, no. 2, pp. 125--128.
Lai, C. and Bird, S., 2010, Querying linguistic trees, Journal of Logic, Language and Infor-

158 Matthew Skala

mation, vol. 19, no. 1, pp. 53--73.
Landin, P. J., 1964, The mechanical evaluation of expressions, The Computer Journal, vol. 6,
no. 4, pp. 308--320.

Levy, R. and Andrew, G., 2006, Tregex and tsurgeon: Tools for querying and manipulating
tree data structures, in Calzolari, N., Choukri, K., Gangemi, A., Maegaard, B., Mariani, J.,
Odijk, J. and Tapias, D., editors, 5th International Conference on Language Resources and
Evaluation (LREC 2006), Genoa, Italy, 22--28 May 2006.

Lind-Nielsen, J., 2014, BuDDy: A BDD package. Retrieved April 21, 2014 from http:
//buddy.sourceforge.net/manual/main.html.

Liu, C.-L., Lai, M.-H., Tien, K.-W., Chuang, Y.-H., Wu, S.-H. and Lee, C.-Y., 2011, Visually
and phonologically similar characters in incorrect Chinese words: Analyses, identification,
and applications, ACM Transactions on Asian Language Information Processing, vol. 10,
no. 2, pp. 10:1--10:39.

Marcus, M. P., Marcinkiewicz, M. A. and Santorini, B., 1993, Building a large annotated
corpus of English: The Penn Treebank, Computational Linguistics, vol. 19, no. 2, pp. 313-
-330.

Mei, T. Y., 1980, LCCD, a language for Chinese character design, Report STAN-CS-80-824,
Stanford University, Department of Computer Science.

Morioka, T., 2014, CHISE project. Retrieved April 21, 2014 from http://www.chise.
org/.

Peebles, D. G., 2007, Scml: A structural representation for Chinese characters, Tech. Rep.
TR2007--592, Dartmouth College.

Polách, R., 2011, Tree Pattern Matching and Tree Expressions, Master's thesis, Czech Tech-
nical University in Prague.

Skala, M., 2014a, IDSgrep, version 0.5.1. Retrieved April 21, 2014 from http://
tsukurimashou.sourceforge.jp/idsgrep.pdf.

Skala, M., 2014b, Tsukurimashou: a Japanese-language font meta-family, TUGboat, vol. 34,
no. 3, pp. 269--278.

Skala, M., 2014c, Tsukurimashou Font Family and IDSgrep. Retrieved April 21, 2014 from
http://tsukurimashou.sourceforge.jp/.

Skala, M., Krakovna, V., Kramár, J. and Penn, G., 2010, A generalized-zero-preserving
method for compact encoding of concept lattices, in Hajic, J., Carberry, S. and Clark, S.,
editors, 48th Annual Meeting of the Association for Computational Linguistics (ACL 2010),
Uppsala, Sweden, July 11--16, 2010, pp. 1512--1521, Association for Computational Lin-
guistics.

Skala, M. and Penn, G., 2011, Approximate bit vectors for fast unification, in Kanazawa, M.,
Kornai, A., Kracht, M. and Seki, H., editors, The Mathematics of Language: 12th Biennial
Conference (MOL 12), Nara, Japan, September 6--8, 2011, vol. 6878 of Lecture Notes in
Artificial Intelligence, pp. 158--173, Springer.

Tanaka, T., Iwasaki, H., Nagahashi, K. and Wada, E., 1995, Making kanji skeleton fonts
through compositing parts [Japanese], Transactions of the Information Processing Society
of Japan, vol. 36, no. 9, pp. 2122--2131.

Unicode Consortium, 2011, Ideographic description characters, in The Unicode Standard,
Version 6.0.0, section 12.2, The Unicode Consortium, Mountain View, USA.

Wing, B. et al., 2014, XEmacs: The next generation of Emacs. Retrieved April 21, 2014 from
http://www.xemacs.org/.

Wu, S. and Zheng, S., 2009, A structure character modeling for Chinese character glyph de-

A Structural Query System for Han Characters 159

scription, in Mahmoud, S. S., Jusoff, K. and Li, K., editors, 2009 International Conference
on Electronic Computer Technology, Macau, China, February 20--22, 2009, pp. 245--248,
IEEE Computer Society.

Yiu, C. L. K. and Wong, W., 2003, Chinese character synthesis using Metapost, TUGboat,
vol. 24, no. 1, pp. 85--93.

