
Quicksort, Largest Bucket, and Min-Wise
Hashing with Limited Independence

Mathias Bæk Tejs Knudsen1 ? and Morten Stöckel2 ??

1 University of Copenhagen
knudsen@di.ku.dk

2 IT University of Copenhagen
mstc@itu.dk

Abstract. Randomized algorithms and data structures are often ana-
lyzed under the assumption of access to a perfect source of randomness.
The most fundamental metric used to measure how “random” a hash
function or a random number generator is, is its independence: a se-
quence of random variables is said to be k-independent if every variable
is uniform and every size k subset is independent.
In this paper we consider three classic algorithms under limited inde-
pendence. Besides the theoretical interest in removing the unrealistic
assumption of full independence, the work is motivated by lower inde-
pendence being more practical. We provide new bounds for randomized
quicksort, min-wise hashing and largest bucket size under limited inde-
pendence. Our results can be summarized as follows.
– Randomized quicksort. When pivot elements are computed using a 5-

independent hash function, Karloff and Raghavan, J.ACM’93 showed
O(n logn) expected worst-case running time for a special version of
quicksort. We improve upon this, showing that the same running
time is achieved with only 4-independence.

– Min-wise hashing. For a set A, consider the probability of a partic-
ular element being mapped to the smallest hash value. It is known
that 5-independence implies the optimal probability O(1/n). Broder
et al., STOC’98 showed that 2-independence implies it isO(1/

√
|A|).

We show a matching lower bound as well as new tight bounds for 3-
and 4-independent hash functions.

– Largest bucket. We consider the case where n balls are distributed
to n buckets using a k -independent hash function and analyze the
largest bucket size. Alon et. al, STOC’97 showed that there exists a
2-independent hash function implying a bucket of size Ω(n1/2). We
generalize the bound, providing a k-independent family of functions
that imply size Ω(n1/k).

? Research partly supported by Mikkel Thorup’s Advanced Grant from the Danish
Council for Independent Research under the Sapere Aude programme and the FNU
project AlgoDisc - Discrete Mathematics, Algorithms, and Data Structures.

?? This author is supported by the Danish National Research Foundation under the
Sapere Aude program.

ar
X

iv
:1

50
2.

05
72

9v
1

 [
cs

.D
S]

 1
9

Fe
b

20
15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50528577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

A unifying metric of strength of hash functions and pseudorandom number gen-
erators is the independence of the function. We say that a sequence of random
variables is k-independent if every random variable is uniform and every size
k subset is independent. A question of theoretical interest is, regarding each
algorithmic application, how much independence is required?. With the stan-
dard implementation of a random generator or hash function via a k− degree
polynomial k determines both the space used and the amount of randomness
provided. A typical assumption when performing algorithmic analysis is to just
assume full independence, i.e., that for input size n then the hash function is
n-independent. Besides the interest from a theoretic perspective, the question of
how much independence is required is in fact interesting from a practical per-
spective: hash functions and generators with lower independence are as a rule
of thumb faster in practice than those with higher independence, hence if it
is proven that the algorithmic application needs only k-independence to work,
then it can provide a speedup for an implementation to specifically pick a fast
construction that provides the required k-independence. In this paper we con-
sider three fundamental applications of random hashing, where we provide new
bounds for limited independence.

Min-wise hashing.We consider the commonly used scheme min-wise hash-
ing, which was first introduced by Broder [2] and has several well-founded ap-
plications (see Section 2). Here we study families of hash functions, where a
function h is picked uniformly at random from the family and applied to all
elements of a set A. For any element x ∈ A we say that h is min-wise in-
dependent if Pr(minh(A) = x) = 1/|A| and ε-min-wise if Pr(minh(A) =
x) = (1 + ε)/|A|. For this problem we show new tight bounds for k = 2, 3, 4
of ε = Θ(

√
n), Θ(log n), Θ(log n) respectively and for k = 5 it is folklore that

O(1)-min-wise (ε = O(1)) can be achieved. Since tight bounds for k ≥ 5 exist
(see Section 2) , our contribution closes the problem.

Randomized quicksort. Next we consider a classic sorting algorithm pre-
sented in many randomized algorithms books, e.g. already on page three of
Motwani-Raghavan [12]. The classic analysis of quicksort in Motwani-Raghavan
uses crucially the probability of a particular element being mapped to the small-
est hash value out of all the elements: the expected worst-case running time in
this analysis is O(n log n ·Pr(minh(A) = x)), where A is the set of n elements
to be sorted and x ∈ A. It follows directly from our new tight min-wise bounds
that this analysis cannot be improved further. A special version of randomized
quicksort was showed by Karloff and Raghavan to use expected worst-case time
O(n log n) when the pivot elements are chosen using a 5-independent hash func-
tion [11]. Our main result is a new general bound for the number of comparisons
performed under limited independence, which applies to several settings of quick-
sort, including the setting of Karloff-Raghavan where we show the same running
time using only 4-independence. Furthermore, we show that k = 2 and k = 3 can
imply expected worst-case time Ω

(
n log2 n

)
. An interesting observation is that

our new bounds for k = 4 and k = 2 shows that the classic analysis using min-

1

wise hashing is not tight, as we go below those bounds by a factor log n for k = 4
and a factor

√
n/ log n for k = 2. Our findings imply that a faster 4-independent

hash function can be used to guarantee the optimal running time for randomized
quicksort, which could potentially be of practical interest. Interestingly, our new
bounds on the number of performed comparisons under limited independence
has implications on classic algorithms for binary planar partitions and treaps.
For binary planar partitions our results imply expected partition size O(n log n)
for the classic randomized algorithm for computing binary planar partitions [12,
Page 10] under 4-independence. For randomized treaps [12, Page 201] our new
results imply O(log n) worst-case depth for 4-independence.

Larget bucket size. The last setting we consider is throwing n balls into
n buckets using an k-independent hash function and analyzing the size of the
largest bucket. This can be regarded as a load balancing as the balls can represent
“tasks” and the buckets represent processing units. Our main result is a family
of k-independent hash functions, which when used in this setting implies largest
bucket size Ω(n1/k) with constant probability. This result was previously known
only for k = 2 due to Alon et al. [1] and our result is a generalization of their
bound. As an example of the usefulness of such bucket size bounds, consider the
fundamental data structure; the dictionary. Widely used algorithms books such
as Cormen et al. [7] teaches as the standard method to implement a dictionary
to use an array with chaining. Chaining here simply means that for each key,
corresponding to an entry in the array, we have a linked list (chain) and when a
new key-value pair is inserted, it is inserted at the end of the linked list. Clearly
then, searching for a particular key-value pair takes worst-case time proportional
to the size of the largest chain. Hence, if one is interested in worst-case lookup
time guarantees then the expected largest bucket size formed by the keys in the
dictionary is of great importance.

2 Relation to previous work

We will briefly review related work on the topic of bounding the independence
used as well as mention some of the popular hash function constructions.

The line of research that considers the amount of independence required is
substantial. As examples, Pagh et al. [13] showed that linear probing works with
5-independence. For the case of ε-min-wise hashing (“almost” min-wise-hashing
as used e.g. in [9]) Indyk showed that O(log 1

ε)-independence is sufficient. For
both of the above problems Thorup and Pǎtraşcu [15] showed optimality: They
show existence of explicit families of hash functions that for linear probing is 4-
independent leading to Ω(log n) probes and for ε-min-wise hashing is Ω(log 1

ε)-
independent that implies (2ε)-min-wise hashing. Additionally, they show that the
popular multiply-shift hashing scheme by Dietzfelbinger et al. [8] is not sufficient
for linear probing and ε-min-wise hashing. In terms of lower bounds, it was shown
by Broder et al.[3] that k = 2 implies Pr(minh(A) = x) = 1/

√
|A|. We provide

a matching lower bound and new tight bounds for k = 3, 4. Additionally we
review a folklore O(1/n) upper bound for k = 5. Our lower bound proofs for

2

min-wise hashing (see Table 1) for k = 3, 4 are surprisingly similar to those of
Thorup and Pǎtraşcu for linear probing, in fact we use the same “bad” families
of hash functions but with a different analysis. Further the same families imply
the same multiplicative factors relative to the optimal. Our new tight bounds
together with the bounds for k ≥ 5 due to [9,15] provide the full picture of how
min-wise hashing behaves under limited independence.

Randomized quicksort[12] is well known to sort n elements in expected time
O(n log n) under full independence. Given that pivot elements are picked by hav-
ing n random variables with outcomes 0, . . . , n− 1 and the outcome of variable i
in the sequence determines the ith pivot element, then running time O(n log n)
has been shown[11] for k = 5. We improve this and showO(n log n) time for k = 4
in the same setting. To the knowledge of the authors, it is still an open problem
to analyze the version of randomized quicksort under limited independence as
presented by e.g. Motwani-Raghavan. The analysis of both the randomized bi-
nary planar partition algorithm and the randomized treap in Motwani-Raghavan
is done using the exact same argument as for quicksort, namely using min-wise
hashing which we show cannot be improved further and is not tight. Our new
quicksort bounds directly translates to improvements for these two applications.
The randomized binary planar partition algorithm is hence improved to be of
expected size O(n log2 n) for k = 2 and O(n log n) for k = 4, and the expected
worst case depth of any node in a randomized treap is improved to be O(log2 n)
for k = 2 and O(log n) for k = 4.

As briefly mentioned earlier, our largest bucket size result is related to the
generalization of Alon et al., STOC’97, specifically [1, Theorem 2]. They show
that for a (perfect square) field F then the class H of all linear transformations
between F2 and F has the property that when a hash function is picked uniformly
at random from h ∈ H then an input set of size n exists so that the largest bucket
has size at least

√
n. In terms of upper bounds for largest bucket size, remember

that a family Hu of hash functions that map from U to [n] is universal [4] if for
a h picked uniformly from Hu it holds

∀x 6= y ∈ U : Pr(h(x) = h(y)) ≤ 1/n.

Universal hash functions are known to have expected largest bucket size at most√
n + 1/2, hence essentially tight compared to the bound

√
n lower bound of

Alon et al. On the other end of the spectrum, full independence is known to
give expected largest bucket size Θ(log n/loglogn) due to a standard applica-
tion of Chernoff bounds. This bound was proven to hold for Θ(log n/loglogn)-
independence as well [16]. In Section 7.1 we additionally review a folklore upper
bound coinciding with our new Ω(n1/k) lower bound.

Since the question of how much independence is needed from a practical
perspective often could be rephrased “how fast a hash function can I use and
maintain algorithmic guarantees?” we will briefly recap some used hash functions
and pseudorandom generators. Functions with lower independence are typically
faster in practice than functions with higher. The formalization of this is due to
Siegel’s lower bound [17] where he shows that in the cell probe model, to achieve

3

k-independence and number of probes t < k then you need space k(n/k)1/t.
Since space usage scales with the independence k then for high k the effects
of the memory hierarchy will mean that even if the time is held constant the
practical time will scale with k as cache effects etc. impact the running time.

The most used hashing scheme in practice is, as mentioned, the 2-independent
multiply-shift by Dietzfelbinger et al. [8], which can be twice as fast [19] com-
pared to even the simplest linear transformation x 7→ (ax + b) mod p. For
3-independence we have due to (analysis by) Thorup and Pǎtraşcu the sim-
ple tabulation scheme [14], which can be altered to give 5-universality [20]. For
general k-independent hash functions the standard solution is degree k−1 poly-
nomials, however especially for low k these are known to run slowly, e.g. for
k = 5 then polynomial hashing is 5 times slower than the tabulation based solu-
tion of [20]. Alternatively for high independence the double tabulation scheme
by Thorup[18], which builds on Siegels result [17], can potentially be practical.
On smaller universes Thorup gives explicit and practical parameters for 100-
independence. Also for high independence, the nearly optimal hash function of
Christiani et al.[6] should be practical. For generating k-independent variables
then Christiani and Pagh’s constant time generator [5] performs well - their
method is at an order of magnitude faster than evaluating a polynomial using
fast fourier transform. We note that even though constant time generators as the
above exist, the practical evaluation will actually scale with the independence,
as the memory usage of the methods depend on the independence and so the
effects of the underlying memory hierarchy comes to effect.

Finally, we would like to note that the paradigm of independence has its
limitations in the sense that even though one can prove that k-independence by
itself does not imply certain algorithmic guarantees, it can not be ruled out that
k-independent hash functions exist that do. That is, lower bound proofs typi-
cally construct artificial families to provide counter examples, which in practice
would not come into play. As an example, consider that linear probing needs 5-
independence to work as mentioned above but it has been proven to work with
simple tabulation hashing [14], which only has 3-independence.

3 Our results

With regard to min-wise hashing, we close this version of the problem by pro-
viding new and tight bounds for k = 2, 3, 4. We consider the following setting:
let A bet a set of size n and let H be a k-independent family of hash functions.
We examine the probability of any element x ∈ A receiving the smallest hash
value h(x) out of all elements in A when h ∈ H is picked uniformly at random.
For the case of k = 2, 3, 4-independent families we provide new bounds as shown
in Table 1, which provides a full understanding of the parameter space as a tight
bound of Pr(minh(A) = x) = O(1/n) is known for k ≥ 5 due to Indyk[9]. We
make note that our lower bound proofs, which work by providing explicit “bad”
families of functions, share similarity with Thorup and Pǎtraşcu’s [15, Table 1]
proof of linear probing. In fact, our bad families of functions used are exactly the

4

k = 2 k = 3 k = 4 k ≥ 5

Upper bound O(
√
n/n) O((logn)/n)∗ O((logn)/n)∗ O(1/n)

Lower bound Ω(
√
n/n)∗ Ω((logn)/n)∗ Ω((logn)/n)∗ Ω(1/n)

Table 1. Result overview for min-wise hashing. Results in this paper are marked
with ∗. For a set A of size n and an element x ∈ A the cells correspond the prob-
ability Pr(minh(A) = x) for a hash function h picked uniformly at random from a
k-independent family H.

same, while the analysis is different. Surprisingly, the constructions imply the
same factor relative to optimal as in linear probing, for every examined value of
k.

Next, we consider randomized quicksort under limited independence. In the
same setting as Karloff and Raghavan [11] our main result is that 4-independence
is sufficient for the optimal O(n log n) expected worst-case running time. The
setting is essentially that pivot elements are picked from a sequence of k-
independent random variables that are pre-computed. Our results apply to a
related setting of quicksort as well as to the analysis of binary planar partitions
and randomized treaps. Our results are summarized in Table 2.

k = 2 k = 3 k = 4 k ≥ 5

Upper bound O(n log2 n)∗ O(n log2 n)∗ O(n logn)∗ O(n logn)
Lower bound Ω(n logn) Ω(n logn) Ω(n logn) Ω(n logn)

Table 2. Result overview for randomized quicksort. Results in this paper are marked
with ∗. When our hash function h is picked uniformly from k-independent family H
then the cells in the table denote the expected running time to sort n distinct elements.
The 5-independent upper bound is from Karloff-Raghavan[11].

Finally for the fundamental case of throwing n balls into n buckets. The main
result is a simple k-independent family of functions which when used to throw
the balls imply that with constant probability the largest bucket has Ω(n1/k)
balls. We show the theorem below.

Theorem 1. Consider the setting where n balls are distributed among n buckets
using a random hash function h. For m ≤ n and any k ∈ N such that k < n1/k

and mk ≥ n a k-independent distribution over hash functions exists such that the
largest bucket size is Ω(m) with probability Ω

(
n
mk

)
when h is chosen according

to this distribution.

An implication of Theorem 1 is that we now have the full understanding of
the parameter space for this problem, as it was well known that independence

5

k = O(log n/loglogn) implied Θ(log n/loglogn) balls in the largest bucket. We
summarize with the corollary below.

Corollary 1. Consider the setting where n balls are distributed among n buckets
using a random hash function h. Given an integer k a distribution over hash
functions exists such that if h is chosen according to this distribution then with
L being the size of the largest bucket

(a) if k ≤ n1/k then L = Ω
(
n1/k

)
with probability Ω(1).

(b) if k > n1/k then L = Ω (log n/ log log n) with probability Ω(1).

We note that the result of Theorem 1 is not quite the generalization of the lower
bound of Alon et al. since they show Ω(n1/2) largest bucket size for any linear
transformation while our result provides an explicit worst-case k-independent
scheme to achieve largest bucket size Ω(n1/k). However, as is evident from the
proof in the next section, our scheme is not that artificial: In fact it is “nearly”
standard polynomial hashing, providing hope that the true generalization of
Alon et al. can be shown.

4 Preliminaries

We will introduce some notation and fundamentals used in the paper. For an
integer n we let [n] denote {0, . . . , n − 1}. For an event E we let [E] be the
variable that is 1 if E occurs and 0 otherwise. Unless explicitly stated otherwise,
the log n refers to the base 2 logarithm of n. For a real number x and a non-
negative integer k we define xk as x(x− 1) . . . (x− (k − 1)).

The paper is about application bounds when the independence of the random
variables used is limited. We define independence of a hash function formally
below.

Definition 1. Let h : U 7→ V be a random hash function, k ∈ N and let
u1, . . . , uk be any distinct k elements from U and v1, . . . , vk be any k elements
from V .
Then h is k-independent if it holds that

Pr (h(u1) = v1 ∧ . . . ∧ h(uk) = vk) =
1

|V |k
.

Note that an equivalent definition for a sequence of random variables hold: they
are k-independent if any element is uniformly distributed and every k-tuple of
them is independent.

5 Min-wise hashing

In this section we show the bounds that can be seen in Table 1. As mentioned
earlier, there is a close relationship between the worst case query time of an

6

element in linear probing and min-wise hashing when analysed under the as-
sumption of hash functions with limited independence. Intuitively, long query
time for linear probing is caused by many hash values being “close” to the hash
value of the query element. On the other hand a hash value is likely to be the
minimum if it is “far away” from the other hash values. So intuitvely, min-wise
hashing and linear probing are related by the fact that good guarantees require
a “sharp” concentration on how close to the hash value of the query element the
other hash values are.

5.1 Upper bounds

We show the following theorem which results in the upper bounds shown in
Table 1. Note that the bound for 4-independence follows trivially from the bound
for 3-independence and that the 5-independence bound is folklore but included
for completeness.

Theorem 2. Let X = {x0, x1, . . . , xn} and h : X → (0, 1) be a hash function.
If h is 3-independent

Pr

(
h(x0) < min

i∈{1,...,n}
{h(xi)}

)
= O

(
log(n+ 1)

n+ 1

)
If h is 5-independent

Pr

(
h(x0) < min

i∈{1,...,n}
{h(xi)}

)
= O

(
1

n+ 1

)
Proof. For notational convenience let E denote the event(
h(x0) < mini∈{1,...,n} {h(xi)}

)
. First assume that h is 3-independent. Fix

h(x0) = α ∈ (0, 1). Then h is 2-independent on the remaining keys. Let
Z =

∑n
i=1 [h(x1) ≤ α]. Then under the assumption h(x0) = α:

Pr (E | h(x0) = α) = Pr (Z = 0 | h(x0) = α) ≤ Pr (|Z − EZ| ≥ EZ | h(x0) = α)

Now since h is 2-independent on the remaining keys we see that
Pr (E | h(x0) = α) is upper bounded by (using Fact 6):

Pr (|Z − EZ| ≥ EZ | h(x0) = α) ≤
E
(
(Z − EZ)2

)
(EZ)2

= O
(

1

EZ

)
= O

(
1

nα

)
(1)

Hence:

Pr (E | h(x0) = α) =

∫ 1

0

Pr (E | h(x0) = α) dα

≤ 1

n
+

∫ 1

1/n

O
(

1

nα

)
= O

(
log(n+ 1)

n+ 1

)
(2)

7

This proves the first part of the theorem. Now assume that h is 5-independent
and define Z in the same way as before. In the same manner as we established the
upper bound for Pr (E | h(x0) = α) in (1) we see that it is now upper bounded
by (using Fact 6):

Pr (|Z − EZ| ≥ EZ | h(x0) = α) ≤
E
(
(Z − EZ)4

)
(EZ)4

= O

(
1

(EZ)2

)
= O

(
1

(nα)
2

)

In the same manner as in (2) we now see that

Pr (E) =

∫ 1

0

Pr (E | h(x0) = α) dα ≤ 1

n
+

∫ 1

1/n

O
(

1

(nα)2

)
= O

(
1

n+ 1

)

5.2 Lower bounds

We first show the k = 4 lower bound seen in Table 1. As mentioned earlier, the
argument follows from the same “bad” distrubition as Thorup and Pǎtraşcu[15],
but with a different analysis.

Theorem 3. For any key set X = {x0, x1, . . . , xn} there exists a random hash
function h : X → (0, 1) that is 4-independent such that

Pr (h(x0) < min {h(x1), . . . , h(xn)}) = Ω

(
log(n+ 1)

n+ 1

)
(3)

Proof. We consider the strategy from Thorup and Pǎtraşcu [15, Section 2.3]
where we hash X into [t], where t power of 2 such that t = Θ(n). We use the
strategy to determine the first log t bits of the values of h and let the remaining
bits be chosen independently and uniformly at random. The strategy ensures that
for every ` ∈

[
2
3 log t,

5
6 log t

]
with probability Θ(2`/n) there exists an interval I

of size Θ(2−`) such that h(x0) is uniformly distributed in I and I contains at
least t

2`
· (1 + Ω(1)) keys from X. Furthermore these events are disjoint. From

the definition of the algorithm we see that for every ` ∈
[
2
3 log t,

5
6 log t

]
with

probability Θ(2`/n) there exists an interval I of size Θ(2−`) such that h(x0) is
uniformly distributed in I and I contains no other element than h(x0). Let y be
the maximal value of all of h(x1), . . . , h(xn) which are smaller than h(x0) and 0
if all hash values are greater than h(x0). Then we know that:

E(h(x0)− y) ≥
∑

`∈[23 log t, 56 log t]

Θ

(
2`

n

)
·Θ(2−`) = Θ

(
log n

n

)

8

We know define the hash function h′ : X → (0, 1) by h′(x) = (h(x)− z) mod 1
where z ∈ (0, 1) is chosen uniformly at random. Now fix the choice of h. Then
h′(x0) is smaller than min {h′(x1), . . . , h′(xn)} if z ∈ (y, h(x0)). Hence for this
fixed choice of h:

Pr (h′(x0) < min {h′(x1), . . . , h′(xn)} | h) ≥ h(x0)− y

Therefore

Pr (h′(x0) < min {h′(x1), . . . , h′(xn)}) ≥ E (h(x0)− y)

= Ω

(
log n

n

)
= Ω

(
log(n+ 1)

n+ 1

)
and h satisfies (3)

The lower bound for k = 2 seen in Table 1 is shown in the following theorem,
using a probabilistic mix between distribution strategies as the main ingredient.

Theorem 4. For any key set X = {x0, x1, . . . , xn} there exists a random hash
function h : X → [0, 1) that is 2-independent such that

Pr

(
h(x0) < min

i∈{1,...,n}
{h(xi)}

)
= Ω

(
1√
n

)
Proof. Since we are only interested in proving the asymptotic result, and have
no intentions of optimizing the constant we can wlog. assume that 10

√
n is an

integer that divides n. To shorten notation we let ` = 10
√
n.

We will now consider four different strategies for assigning h, and they will
choose a hash function g : X → [` + 1]. Then we let (Ux)x∈X be a family of
independent random variables uniformly distributed in (0, 1) and define h(x) =
g(x)+Ux

`+1 . The high-level approach is to define distribution strategies such that
some have too high pair-collision probability, some have too low and likewise
for the probability of hashing to the same value as x0. Then we mix over the
strategies with probabilities such that in expectation we get the correct number
of collisions but we maintain and increased probability of x0 hashing to a smaller
value than the rest of the keys. We will now describe the four strategies for
choosing g.

– Strategy S1: g(x0) is uniformly chosen. Then (g(x))x 6=x0 is chosen uniformly
at random such that g(x) 6= g(x0) and for each y 6= g(x0) there are exactly
n
` hash values equal to y.

– Strategy S2: g(x0) is uniformly chosen, and y1 is uniformly chosen such
that y1 6= g(x0). For each x ∈ X\ {x0} we define g(x) = y1.

– Strategy S3: g(x0) is uniformly chosen. Then Z ⊆ X is chosen uniformly
at random such that |Z| =

√
n
5 . We define g(z) = g(x0) for every z ∈ Z.

Then (g(x))x 6=x0,x/∈Z is chosen uniformly at random under the constraint
that g(x) 6= g(x0) and for each y 6= g(x0) there are at most n

` hash values
equal to y.

9

– Strategy S4: y ∈ [`+ 1] is uniformly chosen and g(x) = y for each x ∈ X.

For each of the four strategies we compute the probability that g(x0) = g(x)
and g(x) = g(x′) for each x, x′ ∈ X\ {x0}. Because of symmetry the answer is
independent of the choice of x and x′. This is a trivial exercise and the results
are summarized in table 3.

Strategy PrSi (g(x0) = g(x)) PrSi (g(x) = g(x′))

S1 0
n
`
−1

n−1

(
< 1

`+1

)
S2 0 1

S3
1

5
√
n

≤
n
`
−1

n−1
+

√
n
5

(√
n
5
−1

)
n(n−1)

(
< 1

`+1

)
S4 1 1

Table 3. Strategies for choosing function h and their collision probabilities for
x, x′ ∈ X\ {x0}. The main idea is that there are two strategies with too low prob-
ability and two with too high probability, for both types of collisions. However, we can
mix probabilistically over the strategies to achieve the theorem.

For event E and strategy S let PrS(E) be the probability of E under strat-
egy S. First we define the strategy T1 that chooses strategy S1 with prob-
ability p1 and strategy S2 with probability 1 − p1. We choose p1 such that
PrT1

(g(x) = g(x′)) = 1
`+1 . Then p1 > 1 − 1

`+1 . Likewise we define the strategy
T2 that chooses strategy S3 with probability p2 and strategy S4 with probability
1− p2 such that PrT2 (g(x) = g(x′)) = 1

`+1 . Then p2 > 1− 1
`+1 as well. Then:

PrT1 (g(x) = g(x0)) = 0 <
1

`+ 1
<

2

`
=

1

5
√
n
≤ PrT2 (g(x) = g(x0))

Now we define strategy T ∗ that chooses strategy T1 with probability q and T2
with probability 1− q. We choose q such that PrT2 (g(x) = g(x0)) =

1
`+1 . Then

q ≥ 1−
1

`+1
2
`

≥ 1
2 . Hence T

∗ chooses strategy S1 with probability ≥ 1
2

(
1− 1

`+1

)
=

Ω(1).
The strategy T ∗ implies a 2-independent g, since due to the the mix of

strategies the pairs of keys collide with the correct probability, that is, the same
probability as under full independence. Further, with constant probability g(x0)
is unique. Hence with probability Ω

(
1
`+1

)
= Ω

(
1√
n

)
, g(x0) = 0 and g(x0) is

unique. In this case h(x0) is the minimum of of all h(x), x ∈ X which concludes
the proof.

6 Quicksort

The textbook version of the quicksort algorithm, as explained in [12], is the
following. As input we are given a set of n numbers S = {x0, . . . , xn−1} and we

10

uniformly at random choose a pivot element xi. We then compare each element
in S with xi and determine the sets S1 and S2 which consist of the elements
that are smaller and greater than xi respectively. Then we recursively call the
procedure on S1 and S2 and output the sorted sequence S1 followed by xi and
S2. For this setting there are to the knowledge of the authors no known bounds
under limited independence.

We consider two different settings where our results seen in Table 2 apply.
Setting 1. Firstly, we consider the same setting as in [11]. Let the input again
be S = {x0, . . . , xn−1}. The pivot elements are pre-computed the following way:
let random variables Y1, . . . , Yn be k-independent and each Yi is uniform over
[n]. The ith pivot element is chosen to be xYi

. Note that the sequence of Yi’s
is not always a permutation, hence a “cleanup” phase is necessary afterwards in
order to ensure pivots have been performed on all elements.
Setting 2. The second setting we consider is the following. Let Z = Z1, . . . , Zn
be a sequence of k-independent random variables that are uniform over the
interval (0, 1). Let min(j, Z) denote the index i of the j’th smallest Zi. We
choose pivot element number j to be xmin(j,Z). Note that the sequence Z here
defines a permutation with high probability and so we can simply repeat the
random experiments if any Zi collide.

In this section we show the results of Table 2 in Setting 1. We refer to
Appendix A.1 for proofs for Setting 2 and note that the same bounds apply to
both settings.

Recall, that we can use the results on min-wise hashing to show upper bounds
on the running time. The key to sharpening this analysis is to consider a problem
related to that of min-wise hashing. In Lemma 1 we show that for two sets A,B
satisfying |A| ≤ |B| there are only O(1) pivot elements chosen from A before
the first element is chosen from B. We could use a min-wise type of argument
to show that a single element a ∈ A is chosen as a pivot element before the first
pivot element is chosen from B with probability at most O

(
logn
|B|

)
. However,

this would only gives us an upper bound of O (log n) and not O(1).

Lemma 1. Let h : [n]→ [n] be a 4-independent hash function and let A,B ⊆ [n]
be disjoint sets such that |A| ≤ |B|. Let j ∈ [n] be the smallest value such that
h(j) ∈ B, and j = n if no such j exist. Then let C be the number of i ∈ [j] such
that h(i) ∈ A, i.e.

C = |{i ∈ [n] | h(i) ∈ A, h(0), . . . , h(i− 1) /∈ B}|

Then E (C) = O(1).

Before we prove Lemma 1 we first show how to apply it to guarantee that
quicksort only makes O (n log n) comparisons.

Theorem 5. Consider quicksort in Setting 1 where we sort a set S =
{x0, . . . , xn−1} and pivot elements are chosen using a 4-independent hash func-
tion. For any i the expected number of times xi is compared with another element
xj ∈ S\ {xi} when xj is chosen as a pivot element is O (log n). In particular the
expected running time is O (n log n).

11

Proof. Let π : [n] → [n] be a permutation of [n] such that xπ(0), . . . , xπ(n−1) is
sorted ascendingly. Then π ◦h is a k-independent function as well, and therefore
wlog. we assume that x0, . . . , xn−1 is sorted ascendingly.

Fix i ∈ [n] and let X = {xi+1, . . . , xn−1}. First we will upper bound the ex-
pected number of comparisons xi makes with elements from X when an element
of X is chosen as pivot. We let A` and B` be the sets defined by

A` =
{
xj | j ∈

[
i, i+ 2`−1

)
∩ [n]

}
B` =

{
xj | j ∈

[
i+ 2`−1, i+ 2`

)
∩ [n]

}
For any xj ∈ A`, xj is compared with xi only if it is chosen as a pivot element
before any element of B` is chosen as a pivot element. By Lemma 1 the expected
number of times this happens is O(1) for a fixed ` since |B`| ≥ |A`|. Since A`
is empty when ` > 1 + log n we see that xi is in msexpectation only compared
O (log n) times to the elements of X. We use an analogous argument to count
the number of comparisons between xi and x0, x1, . . . , xi−1 and so we have that
every element makes in expectation O(log n) comparisons. As we have n ele-
ments it follows directly from linearity of expectation that the total number of
comparisons made is in expectation O(n log n). The last minor ingredient is the
running time of the cleanup phase of Setting 1. We show in Lemma 2 that this
uses expected time O(n log n) for k = 2, hence the stated running time of the
theorem follows.

We now show Lemma 1, which was a crucial ingredient in the above proof.

Proof (of Lemma 1). Wlog. assume that |A| = |B| and let m the size of A and
B. Let α = m

n .
For each non-negative integer ` ≥ 0 let C` =

{
i ∈ [n] | i < 2` | h(i) ∈ A

}
. Let

E` be the event that h(j) /∈ B for all j ∈ [n] such that j < 2`. It is now easy
to see that if i ∈ C then for some integer ` ≤ 1 + lg n, i ∈ C` and E`−1 occurs.
Hence:

E(C) ≤
blgnc+1∑
`=0

E (|C`| · [E`−1]) (4)

Now we note that

E (|C`| [E`−1]) ≤ E
((
|C`| − α2`+1

)+)
+ E

(
α2`+1 · [E`−1]

)
(5)

where x+ is defined as max {x, 0}.
First we will bound E

((
|C`| − α2`+1

)+) when α2` ≥ 1. Note that for any
r ∈ N:

Pr
(
(|C`| − α2`+1)+ ≥ r

)
= Pr

(
|C`| − E(|C`|) ≥ α2` + r

)
(6)

≤ E (|C`| − E |C`|)4

(α2` + r)4
(7)

Now consider Facts 6 and 9 which we will use together with (15).

12

Fact 6 Let X =
∑n
i=1Xi where X1, . . . , Xi are k-independent random variables

in [0, 1] for some even constant k ≥ 2. Then

E
(
(X − EX)

k
)
= O

(
(EX) + (EX)

k/2
)

Fact 7 Let r, l ∈ R. It holds that∑
l≥1

1

(r + l)4
≤ 1

r3
.

Proof. We have∑
l≥1

1

(r + l)4
≤
∫ ∞
0

1

(r + x)4
dx =

[
−1

3

1

(r + x)3

]∞
0

≤ 1

r3
.

Note that whether each element i ∈ [n], i < 2k is lies in C` is only dependent on
h(i). Hence |C`| =

∑
i∈[n],i<2k [h(i) ∈ A] is the sum of 4-independent variables

with with values in [0, 1] and hence we can use Fact 6 to give an upper bound
on (15). Combining Facts 6 and 9 and (15) we see that:

E
((
|C`| − α2`+1

)+)
=
∑
r≥1

Pr
(
(|C`| − α2`+1)+ ≥ r

)
≤
∑
r≥1

E (|C`| − E |C`|)4

(α2` + r)4

= O

((
α2`
)2

(α2`)
3

)
= O

(
1

α2`

)
(8)

We we will bound E
(
α2`+1 · [E`−1]

)
(the second term of (14)) in a similar

fashion still assuming that α2` ≥ 1. For each i ∈ [n] such that i < 2`−1 let Zi = 1
if h(i) ∈ B and Zi = 0 otherwise. Let Z be the sum of these 4-independent
variables, then Ek is equivalent to Z = 0. By Fact 6

E ([E`−1]) = Pr (Z = 0) ≤ Pr (|Z − EZ| ≥ EZ) ≤ E(Z − EZ)4

(EZ)4
= O

(
1

(EZ)2

)
Since E(Z) = α

⌈
2`−1

⌉
we see that

α2`+1 · E ([Ek]) = O
(

1

α2`

)
(9)

By combining (8), (9) and (14) we see that for any ` such that α2` ≥ 1:

E (|C`| [E`−1]) ≤ O
(

1

α2`

)
(10)

13

Furthermore, for any ` such that α2` ≤ 1 we trivially get:

E (|C`| [E`−1]) ≤ E (|C`|) ≤ 2`α (11)

To conclude we combine (4), (10) and (11) and finish the proof

E (C) ≤ O

 ∑
`,α2`≥1

1

α2`

+O

 ∑
`,α2`≤1

α2`

 = O(1)

We now show that the cleanup phase as described by Setting 1 takes O(n log n)
for k = 2, which means it makes no difference to asymptotic running time of
quicksort.

Lemma 2. Consider quicksort in Setting 1 where we sort a set S =
{x0, . . . , xn−1} with a 2-independent hash function. The cleanup phase takes
O (n log n) time.

Proof. Assume wlog. that n is a power of 2. For each ` ∈ {0, 1, . . . , lg n} let A`
be the set of dyadic intervals of size 2`, i.e.

A` =
{[
i2`, (i+ 1)2`

)
∩ [n] | i ∈

[
n2−`

]}
For any consecutive list of s elements xi, . . . , xi+s−1 such that none of them are
chosen as pivot elements, there exist a dyadic interval I of size Ω(s) such that
none of xj , j ∈ I are chosen as pivot elements. Hence we only need to consider
the time it takes to sort elements corresponding to dyadic intervals. Let P` be
an upper bound on the probability that no element from

[
0, 2`

)
is chosen as a

pivot element. Then the total running time of the cleanup phase is bounded by:

O

(
lgn∑
`=0

|A`|P`22`
)

= O

(
n

lgn∑
`=0

2`P`

)
(12)

Fix ` and let X =
∑n−1
i=0

[
h(i) ∈

[
0, 2`

)]
. Then by E(X) = 2`, so by Markov’s

inequality

Pr (X = 0) ≤ Pr
(
(X − E(X))2 ≥ (E(X))

2
)

≤
E
(
(X − E(X))2

)
(E(X))2

= O
(

1

E(X)

)
= O

(
2−`
)

Plugging this into (12) shows that the running time is bounded by O (n log n).

Finally we show the new 2-independent bound. The argument follows as the 4-
independent argument, except with 2nd moment bounds instead of 4th moment
bounds.

14

Theorem 8. Consider quicksort in Setting 1 where we sort a set S =
{x0, . . . , xn−1} and pivot elements are chosen using a 2-independent hash func-
tion. For any i the expected number of times xi is compared with another element
xj ∈ S\ {xi} when xj is chosen as a pivot element is O

(
log2 n

)
. In particular

the expected running time is O
(
n log2 n

)
.

Proof. The proof for O(n log2 n) expected running time follows from an anal-
ogous argument as Theorem 5. The main difference being that the analogous
lemma to Lemma 1 yields E(C) = O(log n) instead of E(C) = O(1), which
implies the stated running time. This is due to the fact that as we have 2-
independence we must use the weaker 2nd moment bounds instead of 4th mo-
ment bounds as used e.g. in (7). Since the cleanup phase takes time O(n log n)
time even for k = 2 due to Lemma 2 the stated time holds. Otherwise the proof
follows analogously and we omit the full argument due to repetetiveness.

6.1 Binary planar partitions and randomized treaps

The result for quicksort shown in Theorem 5 has direct implications for two
classic randomized algorithms. Both algorithms are explained in common text
books, e.g. Motwani-Raghavan.

A straightforward analysis of randomized algorithm[12, Page 12] for con-
struction binary planar bipartitions simply uses min-wise hashing to analyze the
expected size of the partition. In the analysis the size of the constructed parti-
tion depends on the probability of the event happening that a line segment u
comes before a line segment v in the random permutation u, . . . , ui, v. Using the
the min-wise probabilities of Table 1 directly we get the same bounds on the
partition size as running times on quicksort using the min-wise analysis. This
analysis is tightened through Theorem 5 for both k = 2 and k = 4.

By an analogous argument, the randomized treap data structure of [12, Page
201] gets using the min-wise bounds expected node depth O(log n) when a treap
is built over a size n set. Under limited independence using the min-wise analysis,
the bounds achieved are then {O(

√
n),O(log2 n),O(log2 n),O(log n)} for k =

{2, 3, 4, 5} respectively. By Theorem 5 we get O(log2 n) for k = 2 and O(log n)
for k = 4.

7 Largest bucket size

We explore the standard case of throwing n balls into n buckets using a random
hash function. We are interested in analyzing the bucket that has the largest
number of balls mapped to it. Particularly, for this problem our main contribu-
tion is an explicit family of hash functions that are k-independent (remember
Definition 1) and where the largest bucket size is Ω

(
n1/k

)
. However we start by

stating the matching upper bound.

15

7.1 Upper bound

We will briefly show the upper bound that matches our lower bound presented
in the next section. We are unaware of literature that includes the upper bound,
but note that it follows from a standard argument and is included for the sake
of completeness.

Lemma 3. Consider the setting where n balls are distributed among n buckets
using a random hash function h. For m = Ω

(
logn

log logn

)
and any k ∈ N such

that k < n1/k then if h is k-independent the largest bucket size is O(m) with
probability at least 1− n

mk .

Proof. Consider random variables B1, . . . , Bn, where Bi denotes the number of
balls that are distributed to bin i. By definition, the largest bucket size ismaxiBi
Since (maxiBi)

k ≤
∑
i(Bi)

k for any threshold t we see that

Pr(max
i
Bi ≥ t) = Pr

(
(max

i
Bi)

k ≥ tk
)
≤ Pr

(∑
i

(Bi)
k ≥ tk

)
.

Since
∑
i(Bi)

k is exactly the number of ordered k-tuples being assigned to the
same bucket we see that E

(∑
i(Bi)

k
)
= nk · 1

nk−1 , because there are exactly nk
ordered k-tuples. Hence we can apply Markov’s inequality

Pr

(∑
i

(Bi)
k ≥ tk

)
≤

E
(∑

i(Bi)
k
)

tk
=
nk

nk
· n
tk
≤ n

tk
.

Since k < n1/k implies k = O
(

logn
log logn

)
we see that k + m = Θ(m). Letting

t = k+m we get the desired upper bound n
mk on the probability that maxiBi ≥

m+ k since (m+ k)k > mk.

7.2 Lower bound

At a high level, our hashing scheme is to divide the buckets into sets of size p and
in each set polynomial hashing is used on the keys that do not “fill” the set. The
crucial point is then to see that for polynomial hashing, the probability that a
particular polynomial hashes a set of keys to the same value can be bounded by
the probability of all coefficients of the polynomial being zero. Having a bound
on this probability, the set size can be picked such that with constant probability
the coefficients of one of the polynomials is zero, resulting in a large bucket.

Proof. (of Theorem 1) Fix n,m, and k. We will give a scheme to randomly choose
a vector x = (x0, . . . , xn−1) ∈ [n]n such that the entries are k-independent.

First we choose some prime p ∈
[
1
4m,

1
2m
]
. This is possible by Bertrand’s

postulate.

16

Let t =
⌊
n
p

⌋
and partition [n] into t+1 disjoint sets S0, S1, . . . , St, such that

|Si| = p when i < t and |St| = n − pt = (n mod p). Note that St is empty if p
divides n.

The scheme is the following:

– First we pick t polynomial hash function h0, h1, . . . , ht−1 : [p] → [p] of de-
gree k, i.e. hi(x) = ai,k−1x

k−1 + . . . + ai,0 mod p where ai,j ∈ [p] is chosen
uniformly at random from [p].

– For each xi we choose which of the events (xi ∈ S0), . . . , (xi ∈ St) are true
such that P (xi ∈ Sj) = |Sj |

n . This is done independently for each xi.
– For each j = 0, . . . , t − 1 we let Yj = {xi | xi ∈ Sj} be the set of all xi

contained in Sj . If |Yj | > p we let Zj ⊆ Yj be a subset with p elements and
Zj = Yj otherwise. We write Zj =

{
x′0, . . . , x

′
r−1
}
and Sj = {s0, . . . , sp−1}.

Then we let x′` = shi(`), ` ∈ [r]. The values for Yj\Zj are chosen uniformly
in Sj and independently.

– For all xi such that (xi ∈ St) we uniformly at random and independently
choose s ∈ St such that xi = s.

This scheme is clearly k-independent. The at most p elements in Yj we distribute
using a k− 1 degree polynomial are distributed k-independently as degree k− 1
polynomials over p are known to be k-independent (see e.g. [10]). The remaining
elements are distributed fully independently.

We can write |Si| =
∑n−1
j=0 [xj ∈ Si] and therefore |Si| is the sum of indepen-

dent variables from {0, 1}. Since E (|Si|) = p = ω(1) a standard Chernoff bound
gives us that

Pr

(
|Si| ≤

(
1− 1

2

)
p

)
≤ e−Ω(p) = o(1) . (13)

For i ∈ [t] let Xi be 1 if Si consists of at least p/2 elements and 0 otherwise.
In other words Xi = [|Si| ≥ p/2]. By (13) we see that E(Xi) = 1 − o(1). Let
X =

∑t−1
i=0Xi. Then E(X) = t(1 − o(1)), so we can apply Markov’s inequality

to obtain

Pr

(
X ≤ 1

2
t

)
= Pr

(
t−X ≥ 1

2
t

)
≤ E(t−X)

1
2 t

= o(1) .

So with probability 1 − o(1) at least half of the sets Si, i ∈ [t] contain at least
p/2 elements. Assume that this happens after we for every xi fix the choice of
Sj such that xi ∈ Sj , i.e. assume X ≥ t/2. Wlog. assume that S0, . . . , Sdt/2e−1
contain at least p/2 elements. For each j ∈ [dt/2e] let Yj be 1 if hj is constant
and 0 otherwise. That is, Yj = [ai,k−1 = . . . = ai,1 = 0]. We note that Yj is 1
with probability 1

pk−1 . Since Y0, . . . , Ydt/2e−1 are independent we see that

Pr
(
Y0 + . . .+ Ydt/2e−1 > 0

)
= 1−

(
1− 1

pk−1

)dt/2e
≥ 1− e−

dt/2e
pk−1 = 1− e−Θ(n/pk)

17

Since p ≤ m we see that e−Θ(n/pk) ≤ e−Θ(n/mk) furthermore n/mk ≤ 1 by
assumption and so e−Θ(n/mk) = 1 − Θ

(
n
mk

)
. This proves that at least one

hi, j ∈ [dt/2e] is constant with probability Ω
(
n
mk

)
. And if that is the case at

least on bucket has size ≥ p/2 = Ω(m). This proves the theorem under the
assumption that X ≥ t/2. Since X ≥ t/2 happens with probability 1− o(1) this
finishes the proof.

Since it is well known that using O(log n/loglogn)-independent hash func-
tion to distribute the balls will imply largest bucket size Ω (log n/ log log n) ,
Corollary 1 provides the full understanding of the largest bucket size.

Proof. (of Corollary 1) Part (a) follows directly from Theorem 1. Part (b) follows
since k > n1/k implies k > log n/ log log n and so we apply the Ω (log n/ log log n)
bound from [16].

References

1. Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez Petrank, and Gábor
Tardos, Is linear hashing good?, Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing (New York, NY, USA), STOC ’97, ACM,
1997, pp. 465–474.

2. Andrei Z. Broder, On the resemblance and containment of documents, In Com-
pression and Complexity of Sequences (SEQUENCES), 1997, pp. 21–29.

3. Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher,
Min-wise independent permutations, Journal of Computer and System Sciences 60
(1998), 327–336.

4. J.Lawrence Carter and Mark N. Wegman, Universal classes of hash functions,
Journal of Computer and System Sciences 18 (1979), no. 2, 143 – 154.

5. T. Christiani and R. Pagh, Generating k-independent variables in constant time,
Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium
on, Oct 2014, pp. 196–205.

6. T. Christiani, R. Pagh, and M. Thorup, From independence to expansion and back
again, Forthcoming, STOC’15, 2015.

7. Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson,
Introduction to algorithms, 2nd ed., McGraw-Hill Higher Education, 2001.

8. Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen,
A reliable randomized algorithm for the closest-pair problem, Journal of Algorithms
25 (1997), no. 1, 19 – 51.

9. Piotr Indyk, A small approximately min-wise independent family of hash functions,
Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms
(Philadelphia, PA, USA), SODA ’99, Society for Industrial and Applied Mathe-
matics, 1999, pp. 454–456.

10. A. Joffe, On a set of almost deterministic k-independent random variables, Ann.
Probab. 2 (1974), no. 1, 161–162.

11. Howard Karloff and Prabhakar Raghavan, Randomized algorithms and pseudoran-
dom numbers, Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing (New York, NY, USA), STOC ’88, ACM, 1988, pp. 310–321.

18

12. Rajeev Motwani and Prabhakar Raghavan, Randomized algorithms, Cambridge
University Press, New York, NY, USA, 1995.

13. Anna Pagh, Rasmus Pagh, and Milan Ruzic, Linear probing with constant inde-
pendence, Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of
Computing (New York, NY, USA), STOC ’07, ACM, 2007, pp. 318–327.

14. Mihai Patrascu and Mikkel Thorup, The power of simple tabulation hashing, Pro-
ceedings of the Forty-third Annual ACM Symposium on Theory of Computing
(New York, NY, USA), STOC ’11, ACM, 2011, pp. 1–10.

15. Mihai Pǎtraşcu and Mikkel Thorup, On the k-independence required by linear prob-
ing and minwise independence, Automata, Languages and Programming (Samson
Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and
PaulG. Spirakis, eds.), Lecture Notes in Computer Science, vol. 6198, Springer
Berlin Heidelberg, 2010, pp. 715–726 (English).

16. Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan, Chernoff-hoeffding
bounds for applications with limited independence, SIAM J. Discret. Math. 8 (1995),
no. 2, 223–250.

17. A. Siegel, On universal classes of extremely random constant-time hash functions,
SIAM J. Comput. 33 (2004), no. 3, 505–543.

18. M. Thorup, Simple tabulation, fast expanders, double tabulation, and high inde-
pendence, Proc. FOCS’13, 2013, pp. 90–99.

19. Mikkel Thorup, Even strongly universal hashing is pretty fast, Proceedings of the
Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia,
PA, USA), SODA ’00, Society for Industrial and Applied Mathematics, 2000,
pp. 496–497.

20. Mikkel Thorup and Yin Zhang, Tabulation based 5-universal hashing and linear
probing, ALENEX’10, 2010, pp. 62–76.

19

A Appendix

A.1 Quicksort in Setting 2

The analog to Lemma 1 that we need in order to prove that quicksort in Setting
2 using a 4-independent hash function runs in expected O (n log n) time is proved
below.

Lemma 4. Let h : X → (0, 1) be a 4-independent hash function and A,B ⊆ X
disjoint sets such that |A| ≤ |B|. Then

E
(∣∣∣∣{a ∈ A | h(a) < min

b∈B
h(b)

}∣∣∣∣) = O (1)

Proof. Wlog assume that |A| = |B| = n. Let Y be defined by

Y =

{
a ∈ A | h(a) < min

b∈B
h(b)

}
.

If a ∈ Y then either h(a) < 1
n or there exists k ∈ N such that h(a) ≤ 2−k+1 and

minb∈B h(b) ≥ 2−k, where we can choose k such that 2−k+1 > 1
n , i.e. 2

k < 2n.
Let Yk be the set of all keys a ∈ A satisfying h(a) ≤ 2−k+1 and let Ek be the

event that minb∈B h(b) ≥ 2−k. Also let 1Ek
denote the indicator variable defined

as being 1 when event Ek occurs and 0 otherwise. Since the expected number of
keys in A hashing below 1

n is 1 we see that:

E(|Y |) ≤ 1 +

blgnc+1∑
k=1

E(|Yk| 1Ek
)

Now note that:

E(|Yk| 1Ek
) ≤ E(|Yk| − 2−k+2n)+ + 2−k+2n · E(1Ek

) (14)

where x+ is defined as max {x, 0}.
First we will bound E(|Yk| − 2−k+2n)+. Note that for any ` ∈ N:

Pr
(
(|Yk| − 2−k+2n)+ ≥ `

)
= Pr

(
|Yk| − E(|Yk|) ≥ 2−k+1n+ `

)
≤ E (|Yk| − E |Yk|)4

(2−k+1n+ `)4
(15)

Remember that we consider a 4-independent hash function h. Next we wish
to upper bound E (|Yk| − E(|Yk|))4 (the numerator of (15)). Consider indicator
variables Xa for all a ∈ A such that Xa = 1 if a ∈ Yk and 0 otherwise. By the
definition of Yk we have |Yk| =

∑
a∈AXa and E(

∑
a∈AXa) = O(2−k+1).

E (|Yk| − E(|Yk|))4 = E

(∑
a∈A

Xa − E(Xa)

)4

= O
(
nE(Xa − E(Xa))

4 + n2E((Xa − E(Xa))
2)2
)

= O
(
E
(∑
a∈A

Xa

)2)
= O((2−kn)2) (16)

20

Consider now the following fact, which we will use to bound a particular type of
sum.

Fact 9 Let r, l ∈ R. It holds that∑
l≥1

1

(r + l)4
≤ 1

r3
.

Proof. We have∑
l≥1

1

(r + l)4
≤
∫ ∞
0

1

(r + x)4
dx =

[
−1

3

1

(r + x)3

]∞
0

≤ 1

r3
.

By application of Fact 9 and using our bound from (16) we can finish the upper
bound on (15):

E(|Yk| − 2−k+2n)+ =
∑
`≥1

Pr
(
(|Yk| − 2−k+2n)+ ≥ `

)

= O

(2−kn)2
∑
`≥1

1

(2−k+1n+ `)4

= O

(
1

2−kn

)
= O

(
2k

n

)
We only need to bound 2−k+2n ·E(1Ek

) (the second term of (14)) in order to
finish the proof. For each b ∈ B let Zb = 1 if h(b) ≤ 2−k and Zb = 0 otherwise.
Then Ek implies that

∑
b∈B Zb = 0. Let Z =

∑
b∈B Zb. Then by an equivalent

argument as used for (16):

E(1Ek
) = Pr (Z = 0) ≤ Pr (|Z − EZ| ≥ EZ) ≤ E(Z − EZ)4

(EZ)4
= O

(
1

(EZ)2

)
Since E(Z) = 2−kn we see that

2−k+2n · E(1Ek
) = O

(
1

2−kn

)
= O

(
2k

n

)
To conclude, we insert our bounds on the two terms of (14), which completes
the proof.

E(|Y |) ≤ 1 +

blgnc+1∑
k=1

E(|Yk| − 2−k+2n)+ + 2−k+2n · E(1Ek
)

= 1 +

blgnc+1∑
k=1

O
(
2k

n

)
= O(1)

21

	Quicksort, Largest Bucket, and Min-Wise Hashing with Limited Independence

