
Type-Directed Elaboration of Quasiquotations
A High-Level Syntax for Low-Level Reflection

David Raymond Christiansen
IT University of Copenhagen

drc@itu.dk

Abstract
Idris’s reflection features allow Idris metaprograms to manipulate
a representation of Idris’s core language as a datatype, but these
reflected terms were designed for ease of type checking and are
therefore exceedingly verbose and tedious to work with. A sim-
pler notation would make these programs both easier to read and
easier to write. We describe a variation of quasiquotation that uses
the language’s compiler to translate high-level programs with holes
into their corresponding reflected representation, both in pattern-
matching and expression contexts. This provides a notation for re-
flected language that matches the notation used to write programs,
allowing readable metaprograms.

Categories and Subject Descriptors D.3.3 [Software]: Program-
ming Languages

General Terms Languages, Design

Keywords Quasiquotation; proof automation; metaprogramming

1. Introduction
Idris [3] is a programming language with dependent types in the tra-
dition of Agda [16] and Cayenne [1]. An important design goal for
the Idris team is to enable the construction of embedded languages
that can make strong guarantees about the safety of the programs
written in them, rather than requiring users of these embedded lan-
guages to write proofs themselves. If this goal is to succeed, Idris
will require good tools that library authors can use to automate the
construction of proofs.

One such tool is reflection, with which an Idris program can
construct a proof object by inspecting the abstract syntax tree
(AST) of a the goal type and generating an AST for the proof
term. This allows developers of proof automation to write functions
that might otherwise be difficult, because eliminating types through
pattern matching is unsound.

Idris has a well-defined core language, called TT, and all con-
structions in the high-level Idris language are given their semantics
by defining their translation to TT. This translation process is re-
ferred to as elaboration. Terms in TT are exceedingly verbose: ev-
ery binder has a fully explicit type annotation, every name is fully-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IFL ’14, October 01–03, 2014, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3284-2/14/10. . . $15.00.
http://dx.doi.org/10.1145/2746325.2746326

qualified, and there are no implicit arguments. This verbosity dras-
tically simplifies type checking. The intention is that one need only
trust this simple type checker to be able to trust the rest of the sys-
tem.

Because Idris reflection works directly with TT terms, it can
quickly become overwhelming. Furthermore, the correspondence
between high-level Idris terms and their corresponding TT terms
are not always obvious to non-expert users of the language. What
appears to be a simple function application at the level of Idris code
might turn out to have very complicated type-level structure or non-
trivial implicit arguments. In the normal course of programming, it
is good to hide this complexity and allow the user to focus on her
or his programming task, rather than being overwhelmed by minu-
tiae. However, when writing metaprograms using reflection, this
becomes an unfortunate trade-off, because the core language can
be difficult to connect to user-visible terms. This difficulty is espe-
cially unpleasant when using Idris’s error reflection [5], in which
Idris code can be used to rewrite the compiler’s error messages be-
fore they are presented to the user. In fact, it was practical experi-
ence with error reflection that motivated the work described in this
paper.

We augment the high-level Idris language with quasiquotations,
in which the Idris elaborator is invoked to transform high-level
Idris into reflected TT terms using the same translation that pro-
duces TT terms for the type checker. Within quasiquoted terms,
antiquotations allow other reflected terms to be spliced into the
quotation. In a pattern context, antiquotations become patterns to be
matched by the reflected term at the corresponding position. These
quasiquotations allow the best of both worlds: high-level syntax for
the uninteresting parts, with details filled in by type-directed elab-
oration, along with control over the details of term construction
when and if it matters.

Contribution
The contributions of this paper are:

• a novel adaptation of quasiquotations to the context of depen-
dently typed programming with reflection that allows the use
of high-level language syntax to construct and manipulate the
corresponding terms in a core language;

• a description of an implementation technique for these quasiquo-
tations in Idris, as an extension of the type-driven elaboration
described in Brady’s 2013 paper [3]; and

• demonstrations of the utility of these quasiquotations for proof
automation and error message rewriting.

Furthermore, this paper can serve as a demonstration of how to ex-
tend a tactic-based elaborator to support a new high-level language
feature. The relative straightforwardness and orthogonality of the
extension can perhaps be considered an argument in favor of tactic-
based elaboration as a language implementation technique.

2. Motivating Example
To illustrate the difference in verbosity and complexity between
a term in the high-level Idris language and TT, it is sufficient
to compare the natural number 1, expressed in the typical Peano
encoding, in each notation. In the high-level Idris language, it
is represented as S Z, the application of the successor operation
(named S) to zero (named Z). The reflected internal structure that
represents this term is:

App (P (DCon 1 1)
(NS (UN "S") ["Nat", "Prelude"])
(Bind (MN 0 "_t")

(Pi (P (TCon 0 0)
(NS (UN "Nat")

["Nat", "Prelude"])
Erased)

(TType (UVar -1)))
(P (TCon 0 0)

(NS (UN "Nat") ["Nat", "Prelude"])
Erased)))

(P (DCon 0 0)
(NS (UN "Z") ["Nat", "Prelude"])
(P (TCon 0 0)

(NS (UN "Nat") ["Nat", "Prelude"])
Erased))

The outermost constructor App indicates that this is an application
of S to Z. The constructor P introduces a global name, followed by
whether it is a type constructor (TCon), data constructor (DCon),
or pattern-matching operator (Ref). Type and data constructors ad-
ditionally specify their arities, along with a tag. Even this struc-
ture has been somewhat simplified. Some of the type annotations
have been erased at this stage in the compiler, because they can be
re-created later. These types are represented by the Erased con-
structor. Bind introduces a binder; in this example, we only see
Pi, which represents dependent function spaces. Names are repre-
sented by three constructors: UN represents a user-provided name,
MN represents a name generated by the machine, and NS indicates a
name inside an explicit namespace.

Correctly constructing these reflected terms can be tedious. Ad-
ditionally, one must be careful to encode precisely the right details
when pattern-matching on reflected terms. In the above term, the
type annotation on S includes a machine-generated name, because
the constructor’s type Nat -> Nat is a special case of the depen-
dent type (x : Nat) -> Nat. The name x is constructed by the
implementation during elaboration and is not predictable. In other
cases, however, the particular name in a binding may be important.
Other details that most pattern matches should ignore include tag
values and universe level indicators. We expect that the type anno-
tation on the P constructor will typically be irrelevant, though some
metaprograms or proof search procedures may be able use them.

The function isZeroR returns Just True when its argument
is reflection of Z, Just False when its argument is a reflection of
an application of S to any other term, and Nothing when it is any
other term. Such a function might be useful in a proof tactic. Even
this simple function is quite verbose:

isZeroR : TT -> Maybe Bool
isZeroR (P _

(NS (UN "Z") ["Nat", "Prelude"])
_) = Just True

isZeroR (App (P _
(NS (UN "S") ["Nat", "Prelude"])
_)

n) = Just False
isZeroR _ = Nothing

Compare this to its equivalent for non-reflected natural numbers:

isZero : Nat -> Bool
isZero Z = True
isZero (S n) = False

This version can return Bool instead of Maybe Bool because the
type system guarantees that it will never be called with a non-Nat
argument. However, the largest decrease in complexity comes from
using Idris’s high-level notation to define the patterns, rather than a
datatype representing core terms.

In contrast to the somewhat verbose definition above, the
quasiquotation mechanism described by this paper allows a defini-
tion of isZeroR that is much more like the non-reflected version:

isZeroR : TT -> Maybe Bool
isZeroR ‘(Z) = Just True
isZeroR ‘(S ~n) = Just False
isZeroR _ = Nothing

The quotations, indicated by the backquote characters, cause the
elaborator to produce a patterns that are precisely equivalent to
those in the original definition of isZeroR. The antiquotation of n,
indicated by preceding n with a tilde, causes the elaborator to treat
the expression n normally; that is, n becomes an ordinary pattern
variable.

3. Related Work
3.1 A Brief History of Quasiquotation
The notion of quasiquotation was invented by Quine in his 1940
book Mathematical Logic [12, pp. 33–37]. While ordinary quota-
tions allow one to mention a phrase rather than using it, quasiquota-
tions allow these quoted expressions to contain variables that stand
for other expressions, just as mathematical expressions can contain
variables that stand for values. In other words, a specific class of
subexpression is treated as a use within a context that is mentioned.
Quine used Greek letters to represent variables in quasiquotations.

The paradigmatic instance of quasiquotation in programming
languages is that found in the Lisp family. Bawden’s 1999 pa-
per [2] summarizes the history and semantics of the quasiquota-
tion mechanism found in both the Scheme family of languages and
in Common Lisp. In the Lisp family, program code is represented
in a uniform manner, using lists that contain either atomic data,
such as symbols, strings, and numbers, or further lists. In Lisp par-
lance, these structures are referred to as “S-expressions”. Because
S-expressions are simply ordinary data, it makes sense to quote
them, yielding a structure that can easily be manipulated. Addition-
ally, most Lisps have a quasiquotation system, in which specially
marked subexpressions of a quotation are evaluated, with the result
substituted into the quotation. Unlike Quine’s quasiquotation, the
Lisp family of languages allow arbitrary expressions to be inserted
into quasiquotations.

Languages outside of the Lisp family have also used quasiquota-
tion to implement language extension. The Camlp4 system [6] pro-
vides quasiquotation for the OCaml language, among other exten-
sions. In Camlp4, quasiquotations consist of arbitrary strings that
are transformed by a quotation expander to either a string repre-
senting valid concrete syntax or to an abstract syntax tree. These
quotations support antiquotation, which invokes the parser to read
an OCaml expression or pattern inside of the quotation. Template
Haskell’s quasiquotations [9] work on similar principles. Both sys-
tems fully expand all quotations at compile time, and both check
that the generated code is well-typed.

The MetaML family of metaprogramming facilities [15], in-
cluding MetaOCaml[17] and F# [14], implement a style of quota-
tion in which the type of quoted expressions is parameterized over

the type that would be inhabited by the the quoted expression if it
were reified. These features are intended for use in staged computa-
tion. In addition to representing the types of the quoted expressions,
these staging annotations feature static scope, so a quotation that
contains a name contains the version of that name from the scope
in which the quotation was generated.

Scala quasiquotations [13] are very much like Lisp quasiquota-
tions. While their syntax resembles that of strings, this is a con-
sequence of their implementation using Scala’s string interpola-
tors and they are in fact expanded to ASTs at compile time. The
quasiquotations were initially intended to serve as an implementa-
tion technique for Scala macros [4], but they are also useful for both
runtime code generation as well as generating program text. Scala
macros closely resemble Lisp macros, in that they do not intend
to allow arbitrary strings to be used as syntax, but instead imple-
ment transformations from one valid parse tree to another. Unlike
Lisp, Scala programs that contain macros are type checked after
macro expansion, and they are represented by a conventional AST
that macros manipulate. Quasiquotations are a means of construct-
ing and destructuring these trees using the syntax of the high-level
Scala language.

Like Scala, C# is an object-oriented language with a notion of
quotation [11]. In C#, quotation can be applied to an anonymous
function by annotating it with the Expression type, which causes
a datatype representing the function’s AST to be generated instead
of the function itself. However, this feature cannot properly be con-
sidered quasiquotation, as there is no mechanism for escaping the
quotation and inserting a sub-tree that has been generated else-
where.

3.2 Reflection, Proof Automation, and Tactic Languages
The ML language was originally developed as a metalanguage for
the Edinburgh LCF proof assistant [8]. In fact, this is where the
name ML is derived from. An abstract datatype was used to repre-
sent rules of inference in the underlying logic, and ML functions
could then be used to construct these proofs. Higher-order func-
tions could then be used to represent strategies for combining these
functions. ML served as an expressive language for automating the
construction of proofs.

Agda [16] has a notion of reflection, described by van der Walt
and Swierstra. Agda reflection is a form a compile-time metapro-
gramming, where quoted terms are used to construct proof terms
that are then reified and type checked at compile time. These terms
are constructed through direct manipulation of the term AST, which
is a simple untyped lambda calculus. Agda metaprograms can get
access to reflected representations of the type that is expected at
a particular source location as well as its lexical environment, and
they can then use this information to construct a term matching the
expected type. However, users of reflection in Agda must program
with a notation matching the reflected term datatype, rather than
with ordinary Agda syntax.

Coq is perhaps the best-known system that is designed to facil-
itate automating the construction of proofs. Early versions of Coq
required that users extend the built-in collection of tactics using
OCaml. LTac [7] is a domain-specific language for writing new tac-
tics that works at a higher level of abstraction that OCaml. It pro-
vides facilities for pattern matching the syntax of arbitrary terms
from Coq’s term language Gallina, without these terms having been
reduced to applications of constructors. Likewise, it can instantiate
lower-level tactics and tacticals, which may contain Gallina terms,
using portions of syntax extracted from the matched goals. Thus,
LTac pattern matching can be considered a form of quasiquotation.

More recently, Ziliani et al. developed the MTac tactic lan-
guage [19]. Like Agda’s reflection mechanism and unlike LTac,
MTac is implemented in Coq’s term language, rather than being an

external language. However, unlike Agda’s reflection, MTac tactics
use Coq’s type system to classify the terms produced by tactics,
and the type system can therefore catch errors in tactics. Due to
the elimination restrictions and impredicativity of the Prop uni-
verse, one can pattern match over the structure of arbitrary terms in
MTac, rather than just terms in canonical form. MTac required only
minimal extensions to Coq, namely a primitive to run MTac tactics.

4. Reflection in Idris
Idris’s reflection system is very similar to that of Agda. Elements of
a datatype representing terms in a lambda calculus can be generated
from the compiler’s internal representation of TT, after which Idris
programs can manipulate them or use them as input to procedures
that generate new reflected terms. In addition to generating new
terms, Idris allows the generation of tactic scripts through reflec-
tion, by providing a collection of base tactics as a datatype along
with a primitive tactic that allows functions from an environment
and a goal to a reflected tactic to be used as tactics themselves.
Naturally, the tactic that applies an Idris function as a tactic is itself
reflected.

Unlike Agda, the terms that are available through Idris’s re-
flection mechanism are fully annotated with their types. Addition-
ally, they include features of a development calculus in the style
of McBride’s OLEG [10], including special binding forms for holes
and guesses. This representation is more complicated and more ac-
curate than Agda’s, as it maintains typing information.

5. Idris Quasiquotations
TT is a minimalist dependently-typed λ-calculus with inductive-
recursive families of types and operators defined by pattern match-
ing. The full details of TT are available in Brady’s 2013 article [3].

Our quasiquotations extend the Idris− language, which is a
version of Idris in which purely syntactic transformations such as
the translation of do-notation and idiom brackets to their underlying
functions have been performed and user-defined syntax extensions
have been expanded. We extend the expression language with three
new productions:
e, t ::= . . .

| ‘(e) (quasiquotation of e)
| ‘(e : t) (quasiquotation of e with type t)
| ~ e (antiquotation of e)

The parts of a term between a quotation but not within an
antiquotation are said to be quoted. Every antiquotation must have
a corresponding quotation; that is, it is an error if the depth of
nesting of antiquotations exceeds the depth of nesting of quotations.
The quoted regions of a term are elaborated in the same way as
any other Idris expression. However, instead of being used directly,
the elaborated TT terms are first reflected. Antiquoted regions are
elaborated directly into reflected terms, which are inserted as usual.

Names occurring in the quoted portion of a term do not obey
the typical lexical scoping rules of names in Idris. This is because
quoted terms are intended to be used in places other than where
they are constructed, and their reification site may have completely
different bindings for the same names. Therefore, all free names in
the quoted portion are taken to refer to the global scope. Because
antiquotations are ordinary terms, they obey the ordinary scoping
rules of the language.

Idris supports type-driven disambiguation of overloaded names.
This feature is used for everything from literal syntax for number-
and list-like structures to providing consistent naming across re-
lated libraries. This is also used to allow “punning” between some
types and their constructors. For instance, () represents both the
unit type and its constructor in Idris, and (Int, String) can rep-
resent either a pair type or a pair of types. In ordinary Idris pro-

grams, all top-level definitions are required to have type annota-
tions, so type information is available to aid in disambiguation. Be-
cause of this, Idris’s expression language does not include type an-
notations on arbitrary subterms. In quasiquoted terms, however, no
top-level type annotation is available. Thus, the second variant of
quasiquotation above allows an explicit goal type to be provided.
Like quoted terms, it is elaborated in the global environment. Be-
cause the goal type does not occur in the final reflected term and
simply exists as a shorthand to avoid explicitly annotating names,
goal types may not contain antiquotations.

6. Elaboration
The Idris elaborator, described in detail in Brady’s 2013 paper [3],
uses proof tactics to translate desugared Idris to the core type theory
TT. A full presentation of this process is far outside the scope
of this paper; however, enough details are repeated to make the
elaboration of quasiquotes understandable.

6.1 The Elaboration Monad
The Idris elaborator is built on top of a library for manipulating
terms in type theory. This library’s primary interface is a state
monad. The state consists of a current term in a version of TT that
is extended with hole bindings in the style of McBride’s OLEG [10]
as well as metadata that is used to control the elaboration process.
In particular, the elaboration state includes a hole queue, the head
of which is referred to as the focused hole, and a collection of
unsolved unification problems. The hole queue contains exactly
the holes that are in the term. At the beginning of elaboration,
the hole queue contains a single hole, representing the term to be
constructed. As elaboration proceeds, holes are created and solved.
In addition to stateful operations, the elaboration monad supports
errors and error handling.

A number of meta-operations, or tactics, are defined in the
elaboration monad. These tactics resemble the built-in proof tactics
of a system like Coq. Most tactics work relative to the focused
hole. In this paper, we use the following subset of Brady’s [3] meta-
operations:

• CHECK, which type checks a complete term;
• CLAIM, which introduces a new hole with a particular type,

placing it at the rear of the hole queue;
• GET, which binds the proof state to a variable;
• FILL, which adds a guess for the focused hole, solving the

imposed unification constraints;
• NEWPROOF, which obliterates the proof state and establishes a

new goal;
• PUT, which replaces the proof state with a new one;
• SOLVE, which causes a guess to be substituted for its hole;
• TERM, which returns the current term; and
• UNFOCUS, which moves the focused hole to the end of the hole

queue.

As a notational convention, we follow Brady [3] in letting the
notation for names in the meta-language and names in the object
language coincide, deferring to the reader to see which is being
used. Names that occur in both contexts are metalanguage names
referring to coinciding object language names. Additionally, un-
bound variables are taken to be fresh. When operations and their
arguments occur under an arrow (e.g. ~CLAIM ~a), it means that the
operation is repeated on all the arguments in the sequence. This is
similar to mapM in Haskell.

The meta-operations EJ·K and PJ·K, which run relative to a
proof state, elaborate expressions and patterns respectively. These
operations coincide for all Idris− terms except for constants and
variables. Undefined variables cause EJ·K to fail with an error mes-
sage, while undefined variables in PJ·K are treated as pattern vari-
able bindings. Additionally, following EJ·K, unresolved holes or
variables trigger an error, while unresolved names in patterns (that
is, following PJ·K) become pattern variables. Otherwise, construc-
tors with implicit arguments (such as the length argument to the
(::) case of Vect) would not be able to be pattern-matched.

Elaboration is type-directed, in the sense that the elaborator
always has a goal type available and can make decisions based on
this fact. However, sometimes the type will be either unknown or
partially known. In these cases, unification constraints imposed by
the elaboration of the term can cause the type to be solved.

In addition to the meta-operations described by Brady [3], we
define four additional operations:

• ANYTHING, which introduces a hole whose type must be in-
ferred;

• EXTRACTANTIQUOTES, which replaces antiquotations in a
quasiquoted Idris− term with references to fresh names, re-
turning the modified term and the mapping from these fresh
names to their corresponding antiquotation terms;

• REFLECT, which returns a term corresponding to the reflection
of its argument; and

• REFLECTP, which returns a pattern corresponding to the reflec-
tion of its argument.

The operation ANYTHING n can be defined as follows:

ANYTHING n = do CLAIM (n ′ : Type)
CLAIM (n : n ′)

This represents type inference because it hides the fresh name
n ′ that is introduced for the type of n . Thus, the type must
be later solved through unification with other elaborated terms.
EXTRACTANTIQUOTES is a straightforward traversal of an Idris−

term, replacing antiquotations with variables and accumulating a
mapping from these fresh variables to the corresponding replaced
subterms. The names alone are accessed by the operation names .
REFLECT and REFLECTP each take a term and a collection of
names of antiquotations (see Section 6.2) and return a quoted ver-
sion of the term. Antiquotation names, however, are not quoted.
Additionally, REFLECTP inserts universal patterns in certain cases
— see Section 6.4

6.2 Elaborating Quasiquotations
We implement quasiquotations by extending the elaboration pro-
cedures for expressions and patterns: EJ·K and PJ·K respectively.
Elaborating the quoted term proceeds through four steps, each of
which is described in detail below:

1. Replace all antiquotations by fresh variables, keeping track of
the antiquoted terms and their assigned names

2. Elaborate the resulting term in a fresh proof state, to avoid
variable capture

3. Quote the elaborated term:

(a) When not in a pattern, quote the term, leaving antiquotation
variables free

(b) When in a pattern, quote the term with additional universal
patterns

4. Restore local environment and elaborate antiquotations

Replace antiquotations We replace antiquotations with fresh
variables because they will need to be treated differently than the
rest of the term. Additionally, the expected types of the antiquota-
tions must be inferable from the context in which they are found,
because the quotations that will fill them provide no type informa-
tion. Here, variables serve their typical function: they abstract over
the antiquoted subterms, because the term that will be constructed
to fill an antiquotation at run time is unknown at elaboration time.
We remember the association between the antiquoted terms and the
names that they were replaced by so that the result of elaborating
them can later be inserted.

Elaborate in a fresh proof state Quotations can occur in any Idris
expression. However, names that are defined in quotations are re-
solved in the global scope, for reasons discussed in Section 5. Be-
cause the scopes of local variables are propagated using hole con-
texts in the proof state, it is sufficient to elaborate the quoted term
in a fresh state. The replacement of antiquotations with references
to fresh names means that there is no risk of elaborating the con-
tents of the antiquotations too early. However, when the elaborator
reaches these names, it will fail, because they are unknown. To fix
this problem, we first use the ANYTHING meta-operation that was
defined above to introduce holes for both these names and their
types. Because this stage of elaboration occurs in term mode, rather
than pattern mode, the elaboration will fail if the holes containing
types don’t get solved through unification.

Quote the term Quotation is the first step that differs between
terms and patterns. In both cases, the term resulting from elabora-
tion is quoted, with the names that were assigned to antiquotations
left unquoted. However, if the term being elaborated is a pattern,
then some aspects of the term are not quoted faithfully. See Sec-
tion 6.4 for more information.

Elaborate the antiquotations The quoted term from the previous
step is ready to be spliced into the original hole. What remains is
to solve the variables introduced for antiquotations in the previous
step. This is done by first introducing each name as a hole expecting
a quoted term, and then elaborating them straightforwardly into
their respective holes.

6.2.1 Formal Description
This four-step elaboration procedure is described in Brady’s nota-
tion in Figure 1. The individual tactics that correspond to each of
the steps 1–4 above are numbered. Antiquotations are replaced in
the first line of the tactic script, using the previously-described
operation EXTRACTANTIQUOTES (1). Then, the ordinary state
monad operations GET and PUT are used to save and restore the
original proof state. The region (2) bracketed by these operations
corresponds to step 2 above — namely, elaboration of the quoted
term in the global context, which is achieved using a fresh proof
state introduced by NEWPROOF. Initially, the goal of the new proof
is an unbound variable, but this variable is then bound as a hole ex-
pecting a type using the CLAIM meta-operation. The quoted term
is provided with hole bindings for each of the fresh antiquotation
names by the ANYTHING meta-operation. Then, the quoted term
is elaborated into the main hole. If this process is successful, it
will result in the hole T being filled out with a concrete type as
well. The result of elaboration is saved in the variable qt , and then
type checked one final time with CHECK to ensure that no errors
occurred.

After the original proof state is restored with PUT, the actual
quoting must be performed and the antiquotations must be spliced
into the result (3). Each antiquotation name is now established as
a hole of type Term, the datatype representing reflected terms, be-
cause the elaborated form must be a quotation. Now that the holes
for the antiquotations are established, it is possible to insert the

EJ‘(e)K = do (e ′, ~a) ← EXTRACTANTIQUOTES e (1)

st ← GET (2)
NEWPROOF T
CLAIM (T : Type)

~ANYTHING (names ~a)
EJe ′K
qt ← TERM
CHECK qt
PUT st

~CLAIM (names ~a : ~Term) (3a)
r ← REFLECT qt ~a
FILL r
SOLVE

~ELABANTIQUOTE ~a (4)

Figure 1. Elaboration of quasiquotations

reflected term into the initial hole. The operation REFLECT is in-
voked, which quotes the term, leaving references to the antiquota-
tion variables intact as references to the just-introduced holes. This
quoted term is then filled in as a guess, and SOLVE is used to dis-
patch the proof obligation.

Finally, the antiquotations can be elaborated (4). This is done
by focusing on their holes and elaborating the corresponding term
into that hole. In the above script, this is represented by the tactic
ELABANTIQUOTE, which can be defined as follows:

ELABANTIQUOTE (n, t) = do FOCUS n
EJtK

A specific elaboration procedure for antiquotations is not necessary,
because programs with antiquotations outside of quasiquotations
are rejected prior to elaboration.

6.3 Elaborating Goal Types
Elaborating a quasiquotation with an explicit goal type is a straight-
forward extension of the procedure in the previous section. After
introducing a hole for the type of the term that will be elaborated
prior to the actual quotation, the goal type is elaborated into this
hole. Because this is occurring immediately after the establishment
of a fresh proof state, names in the goal type will be resolved in the
global scope, as intended.

The formal procedure is largely identical to that shown in Fig-
ure 1, with only the small addition shown in Figure 2. Thus, the
lines immediately before and immediately after are included to
show where the additions have occurred. This seemingly-simple
change has far-reaching effects, because type information is now
available to the subsequent elaboration of e ′. This type informa-
tion can, for instance, enable implicit arguments to be solved due
to unification constraints induced by the elaboration of t .

6.4 Elaborating Quasiquotation Patterns
Quasiquotations can also be used as patterns. Recall that the oper-
ation PJ·K is a variation of EJ·K that is used on the left-hand side of
definitions in order to elaborate patterns. The primary difference is
that PJ·K does not fail when the elaborated term contains unknown
variables. Instead, it inserts pattern variable bindings for these.

It is tempting, then, to simply use the pattern elaborator in the
recursive elaboration clauses of the quasiquote elaboration pro-
cedures. However, this would not work. REFLECT would simply
quote these new pattern variables, leading to terms that contain ex-
plicitly quoted fresh pattern variables. Pattern elaboration must in-
stead invoke ordinary expression elaboration when generating the

EJ‘(e : t)K = do
...

CLAIM (T : Type)
FOCUS T
EJtK

~ANYTHING (names ~a)
...

Figure 2. Elaborating quasiquotations with goal types

term to be quoted, but then use pattern elaboration for the antiquo-
tations.

For practical reasons, pattern elaboration must use a special-
ized reflection procedure REFLECTP that introduces some uni-
versal patterns in strategic places. These universal patterns serve
two purposes: preventing unnecessary pattern-matching of sub-
terms that are uniquely determined by other subterms, and prevent-
ing elaborator-chosen features such as hidden names from mak-
ing patterns too specific. In Idris, it is especially important to re-
duce the size of the subterms being scrutinized when possible, be-
cause the coverage checker can take significant time when checking
deeply nested patterns. In particular, the constructor for references
to global names contains three subterms:

• whether the name is a function, constructor or type constructor;
• the fully-qualified name; and
• a full type annotation.

The first and last of these subterms are, however, uniquely deter-
mined by the second, and they exist to simplify the type checker.
Thus, when pattern matching, there is no need to check them. Ad-
ditionally, the elaborator will from time to time invent a fresh name
or universe variable. For example, ordinary non-dependent func-
tion types are represented in TT as dependent functions types in
which the bound name is not free in the type on the right hand
side. In these cases, it does not actually matter which name was
chosen, because the name does not appear in the term, and match-
ing against the specific name chosen by the elaborator could mean
that a the pattern ‘(Nat -> Nat) did not match the input term
‘(Nat -> Nat). There is no solid theoretical reason for the se-
lection of these particular heuristics. However, they do work well
in practice, and users who want to control the details of pattern
matching can always override these defaults with an explicit an-
tiquotation.

Figure 3 demonstrates the formal procedure for elaboration of
quasiquotation patterns. This procedure uses two variations on
previously-seen meta-operations: REFLECTP, like REFLECT, is
a traversal of the resulting tree structure that implements step 4
above, and ELABANTIQUOTEP is defined as follows:

ELABANTIQUOTEP (n, t) = do FOCUS n
PJtK

The modifications necessary to elaborate a quasiquotation pattern
with a goal type are identical to the non-pattern case.

6.5 Nested Quasiquotations
While nested quasiquotations are a useful idiom in Lisp macro pro-
gramming, it is unclear to what extent they are useful in the context
of proof automation through reflection. It is not particularly com-
mon to build a complex proof infrastructure around the reflection
datatype itself, as reflection is primarily used to escape the confines
of the type theory. However, in the interest of not introducing ar-

PJ‘(e)K = do (e ′, ~a) ← EXTRACTANTIQUOTES e (1)

st ← GET (2)
NEWPROOF T
CLAIM (T : Type)

~ANYTHING (names ~a)
EJe ′K
qt ← TERM
CHECK qt
PUT st

~CLAIM (names ~a : ~Term) (3b)
r ← REFLECTP qt ~a
FILL r
SOLVE

~ELABANTIQUOTEP ~a (4)

Figure 3. Elaborating quasiquote patterns

bitrary restrictions, the elaboration procedure described in this sec-
tion can be straightforwardly extended to support nested quasiquo-
tations.

Only one modification is needed: the EXTRACTANTIQUOTES
operation needs to keep track of the current quotation level. Cross-
ing a quotation increments the quotation level, and crossing an
antiquotation decrements it. Only antiquotations corresponding to
the outermost quotation, i.e., only antiquotations at quotation level
zero, are extracted. The remainder of the elaboration procedure is
unchanged.

In the real implementation, of course, quasiquote elaboration
with or without goal types and in pattern mode or expression mode
is handled by one code path, with conditionals expressing the four
possibilities. They are presented as four separate procedures here
for reasons of clarity.

7. Examples
This section demonstrates the usefulness of quasiquotations through
a number of examples, showing how the high-level notation of Idris
quasiquotation simplifies their expression and reduces the need for
the user to comprehend all of the details of elaboration.

7.1 Custom Tactics
In Idris, a custom tactic is a function from a proof context and goal
to a reflected tactic expression. Reflected tactics are represented
by the Tactic datatype, which has constructors such as Exact
for solving the goal with some proof term, Refine for applying a
name to solve the goal, leaving holes for the remaining arguments,
and Skip which does nothing, along with tactics such as Seq for
sequential composition and Try to provide a fallback in case of
errors. These tactics correspond to the elaborator tactics described
in Section 6.

The native tactic applyTactic runs a custom tactic in the scope
of the current proof. In other words, its argument should be an
expression of type:

List (TTName, Binder TT) -> TT -> Tactic

This construction allows Idris to be its own metalanguage for pur-
poses of proof automation.

7.1.1 Trivial Goals
When writing proofs, it may be the case that a particular goal
is completely trivial. Either the goal type is one such as () or
the equality type that has only a single constructor, or we have

triv : List (TTName, Binder TT) -> TT -> Tactic
triv ctxt ‘(() : Type) =

Exact ‘(() : ())
triv ctxt ‘((=) {A=~A} {B=~B} ~x ~y) =

Exact ‘(the ((=) {A=~A} {B=~B} ~x ~y) Refl)
triv ((n, b)::ctxt) goal =

if binderTy b == goal
then Exact (P Bound n Erased)
else triv ctxt goal

triv [] _ =
Fail [TextPart "Decidedly nontrivial!"]

Figure 4. A tactic for trivial goals

rewrite_plusSuccRightSucc : TT -> Maybe Tactic
rewrite_plusSuccRightSucc ‘(plus ~n (S ~m)) =

Just (Rewrite ‘(plusSuccRightSucc ~n ~m))
rewrite_plusSuccRightSucc _ = Nothing

rewrite_plusZeroRightNeutral : TT -> Maybe Tactic
rewrite_plusZeroRightNeutral ‘(plus ~n Z) =

Just (Rewrite ‘(sym (plusZeroRightNeutral ~n)))
rewrite_plusZeroRightNeutral _ = Nothing

Figure 5. Rewriters for addition

a premise available with precisely the type that we desire. Idris
already has a built-in tactic to solve these kinds of goals, called
trivial. However, this built-in tactic is not extensible with sup-
port for new trivial types.

Figure 4 demonstrates an implementation of a tactic for solv-
ing trivial goals that uses our newly-introduced quasiquotations.
The first case checks whether the goal is the unit type. The goal
annotation is necessary because of Idris’s defaulting rules, which
prioritize the unit constructor during disambiguation. The second
case checks whether the goal is an identity type. The explicit pro-
vision of both A and B is necessary because Idris uses heteroge-
neous equality, and the elaborator is unable to guess what these
types are. The third case provides for a traversal of the context,
checking whether a proof is already available. Finally, the fourth
case causes an error to be thrown if the proof was not trivial.

7.1.2 Simplifying Arithmetic Expressions
The function plus that implements natural number addition is
defined by recursion on its first argument. This means that cer-
tain equalities that users may consider to be trivial, such as n +
Succ(m) = Succ(n+m), exist as lemmas in the library that must
be explicitly applied. This process is entirely tedious and can be
automated. However, a general-purpose search mechanism that at-
tempted to use the entire standard library to rewrite equalities to
something easily provable would very likely be too slow and frag-
ile to use. This is an excellent use for a custom tactic.

Indeed, a family of such tactics can be defined using a simple
combinator language. In this example, we define rewriters for arith-
metic expressions involving addition, zero, and successor, but the
approach can easily be extended to cover more equalities.

Let a rewriter be a function in TT -> Maybe Tactic. A
rewriter, when passed a goal, should either return a tactic that sim-
plifies the goal or Nothing. Figure 5 demonstrates two rewriters
for addition. The first uses the library proof plusSuccRightSucc,
which expresses the identity n + Succ(m) = Succ(n +m). The
second uses the proof plusZeroRightNeutral, which expresses
that zero is a right-identity of addition. Quasiquotes provide a con-

rewrite_plusSuccRightSucc : TT -> Maybe Tactic
rewrite_plusSuccRightSucc
(App

(App
(P Ref (NS (UN "plus") ["Nat", "Prelude"]) _)
n)

(App
(P (DCon 1 _)

(NS (UN "S") ["Nat", "Prelude"])
_)

m)) =
Just (Rewrite

(App (App (P Ref
(NS (UN "plusSuccRightSucc")

["Nat", "Prelude"])
_)

n)
m))

rewrite_plusSuccRightSucc _ = Nothing

Figure 6. A rewriter, without quasiquotes

venient notation for both pattern-matching the goal terms and con-
structing the proof objects to rewrite with. Without quasiquotes,
the first example would be much longer, as can be seen in Figure 6.

It is important to point out that this is a particularly easy case
to translate. The function is monomorphic, with no implicit argu-
ments to be solved. The types in question are first-order, with no pa-
rameters or indices. In many realistic programs, especially those in
which implicit arguments must be solved, the relationship between
the term to be rewritten and its low-level reflected representation
might be much more difficult to discern.

Returning to the rewriting library, we can define a few simple
combinators:

(<||>) : (TT -> Maybe Tactic) ->
(TT -> Maybe Tactic) ->
TT -> Maybe Tactic

rewrite_eq : (TT -> Maybe Tactic) ->
TT -> Maybe Tactic

rewrite_nat : (TT -> Maybe Tactic) ->
TT -> Maybe Tactic

The (<||>) operator attempts to rewrite using its left-hand rewriter.
If this fails, it will attempt to rewrite with its right-hand operator.
The operators rewrite_eq and rewrite_nat recurse over the
structure of the goal, attempting to apply rewrite rules at each step.
They apply to equality types and natural number expressions, re-
spectively.

It is possible to derive a rewriter for equalities of expressions
involving natural numbers and addition as follows:

rewrite_eq
(rewrite_nat

(rewrite_plusSuccRightSucc <||>
rewrite_plusZeroRightNeutral))

This rewriter can be used in a custom tactic to repeatedly rewrite
until a normal form has been reached.

7.2 Error Reflection
As described in the introduction and in a previous manuscript [5],
Idris’s error reflection allows programmatic rewriting of error
messages. Just as reflection represents TT terms using an Idris
datatype, error reflection represents compiler error messages as
an Idris datatype that contains reflected TT terms. Then, ordi-

nary Idris functions that have been registered as error handlers will
be called with reflected errors. Error handlers must have the type
Err -> Maybe (List ErrorReportPart), where Err is the
type of reflected errors and ErrorReportPart has constructors
for including strings to be printed, terms to be pretty-printed, or
indented nested error messages into the rewritten error messages,
allowing the rewritten errors to use the features of Idris’s display
routines. If an error handler returns Nothing, then it does not
rewrite the error. While this feature is intended to provide domain-
specific errors for embedded domain-specific languages, it can also
be used to improve confusing error messages that result from using
the standard library.

In Idris, an integer literal n is desugared to the high-level Idris
expression fromInteger n, after which the type-driven elabora-
tion process is used to disambiguate the name fromInteger. Un-
like Haskell, fromInteger need not be a member of the type
class Num, and it can have additional implicit arguments. These im-
plicit arguments can be arranged such that the application only type
checks when the integer literal makes sense for the type in ques-
tion. The standard library contains a family Fin : Nat -> Type
such that Fin n contains precisely n elements. The corresponding
fromInteger has an implicit argument that causes the integer to
be converted to a Fin during type checking in such a way that a
failure to construct a Fin triggers a unification error.

This arrangement ensures that only valid integer literals can be
used for Fin. However, the resulting type errors can be difficult to
understand, as they are triggered by code that the user cannot see.
Additionally, they can have different causes: the integer might not
be available at compile time (for instance, fromInteger might be
applied to a lambda-bound variable), the integer might actually be
too big, or the argument to Fin might not be statically known.

An error handler for fromInteger can use quasiquotations to
distinguish between these different classes of errors. The error han-
dler relies on a few helper functions. The first converts an applica-
tion of the Nat version of fromInteger to an actual Nat, because
Idris will not necessarily normalize every term that occurs in an er-
ror, and the presence of a different fromInteger in the error might
confuse users. This can be done by extracting the Integer argu-
ment, converting it to a Nat using Nat’s fromInteger, and then
quoting the resulting Nat manually. This manual quotation can eas-
ily be accomplished with quasiquotations:

quoteNat : Nat -> TT
quoteNat Z = ‘(Z)
quoteNat (S n) = ‘(S ~(quoteNat n))

Recognizing terms that consist of fromInteger applied to a
constant integer requires a mix of quasiquotation and ordinary
pattern matching. The quoted part of the pattern matches the high-
level structure of the term, using the goal type to disambiguate
fromInteger and perform type class resolution. The antiquotation
of the argument ensures that the matched term actually contains a
constant integer, instead of some other expression:

getNat : TT -> TT
getNat ‘(fromInteger ~(TConst (BI c)) : Nat) =

quoteNat (fromInteger c)
getNat tm = tm

The constructor TConst represents primitive constants in TT,
while BI constructs a reflected constant arbitrary-precision inte-
ger from an Idris Integer.

The new error messages should share a common structure: a
header explaining the general context for the error, and an indented
body providing specific details. This commonality is expressed in
a function mkFinIntegerErr that wraps the specific error in this
general header, in Figure 7.

mkFinIntegerErr : TT -> TT ->
List ErrorReportPart ->
Maybe (List ErrorReportPart)

mkFinIntegerErr lit finSize subErr
= Just [TextPart "When using", TermPart lit

, TextPart "as a literal for a"
, TermPart ‘(Fin ~(getNat finSize))
, SubReport subErr
]

Figure 7. Wrapper for Fin literal errors

finHandler : Err -> Maybe (List ErrorReportPart)
finHandler (CantUnify _ tm

‘(IsJust (integerToFin
~(TConst c)
~m))

_ _ _)
= mkFinIntegerErr (TConst c) m

[TermPart (TConst c)
, TextPart "is not strictly less than"
, TermPart (getNat m)
]

finHandler (CantUnify _ tm
‘(IsJust (integerToFin

~(P Bound n t)
~m))

_ _ _)
= mkFinIntegerErr (P Bound n t) m

[TextPart "Could not show that"
, TermPart (P Bound n t)
, TextPart "is less than"
, TermPart (getNat m)
, TextPart "because"
, TermPart (P Bound n t)
, TextPart "is a bound variable"
, TextPart "instead of a constant"
, TermPart ‘(Integer : Type)
]

finHandler (CantUnify _ tm
‘(IsJust (integerToFin

~n ~m))
_ _ _)

= mkFinIntegerErr n m
[TextPart "Could not show that"
, TermPart n
, TextPart "is less than"
, TermPart (getNat m)
]

finHandler _ = Nothing

Figure 8. An error handler for Fin literals

The error handler itself can be seen in Figure 8. The first
case of the error handler matches errors where an actual inte-
ger is available. This means that the provided integer was sim-
ply out of bounds, so it can be reported as such. In this pattern,
the CantUnify constructor represents a unification failure during
elaboration. Its second and third arguments are the terms that could
not unify, where the third argument is the one that resulted from the
user’s code. IsJust is a type family that is only inhabited when
its argument is of the form Just x, and integerToFin is a func-
tion that either converts an Integer to an appropriately bounded
Fin or returns Nothing — it is part of the machinery for statically
ensuring that the integer was legal.

The second case matches an error where the argument is a
bound variable, rather than an actual integer literal. While this will
never result from an integer literal in a program, it could result from
a manual application of fromInteger.

Finally, there is a catch-all case to handle any other failure to
construct a Fin as well as a fall-through to avoid matching other
errors: In the Idris library, this error handler is then associated with
the specific argument of fromInteger that can generate the error,
to restrict its scope and prevent false positives.

This example demonstrates how quasiquotation patterns allow
a fluid transition between matching against the visible syntax of
high-level Idris and the specific details of its representation in
TT. Matching against visible syntax makes it far easier to read
and write error handlers, yet having access to the fine details of
the representation allows full control over the patterns, making it
possible to do things like distinguishing between locally bound
variables and references to the global context.

8. Conclusion and Future Work
This paper introduced a quasiquotation feature in the Idris lan-
guage. These quotations can decrease the verbosity of reflection
and allow the use of the implicit argument resolution mechanisms
and type-driven overloading when constructing reflected terms.
Idris’s type-driven elaboration mechanism [3] was not designed
with quasiquotation in mind. Nevertheless, it needed only a small
amount of new code in order to handle this unforeseen extension,
providing evidence that the approach can scale to new features.

The present implementation of quasiquotation has one major
limitation: the elaboration of some terms in the high-level Idris lan-
guage results in auxiliary definitions, which are then referenced
in the elaborated TT terms. This is because, in TT, all pattern
matching must occur at the top level. As an example, case blocks
and pattern-matching lets are elaborated into top-level functions.
Presently, the quotations of these terms simply refer to names of
definitions that do not exist. Potential solutions to this problem in-
clude rejecting terms with this kind of side effect or tracking the
original syntax that results in auxiliary definitions, so that two quo-
tations of the same high-level term will refer to the same auxiliary
name. Neither potential solution is entirely satisfactory.

Presently, the elaboration of quasiquote patterns introduces a
number of universal patterns in invisible parts of the term where
the user would not be able to predict or control the contents, such
as machine-generated unused names. However, the locations at
which these patterns are inserted is primarily heuristic, and not
motivated by deeper theoretical concerns. Thus, they may match
too many terms. A proper theoretical account of pattern matching
quasiquoted terms would presumably resolve this.

Acknowledgments
I would like to thank Edwin Brady for his assistance with the
Idris implementation and his comments on a previous draft of
this paper. Additionally, I would like to thank my Ph.D. advisor

Peter Sestoft for his comments on drafts of this paper and Eugene
Burmako and Denys Shabalin for correcting my misunderstandings
of Scala’s quasiquotes. The comments and discussion at IFL 2014
were of great value in identifying both technical extensions to
and better presentations of this work, and the feedback from the
anonymous reviewers was detailed and helpful. This work was
funded by the Danish National Advanced Technology Foundation
(Højteknologifonden) grant 017-2010-3.

References
[1] L. Augustsson. Cayenne — a language with dependent types. In

Proceedings of the Third ACM SIGPLAN International Conference on
Functional Programming, ICFP ’98, pages 239–250, New York, NY,
USA, 1998. ACM. .

[2] A. Bawden. Quasiquotation in Lisp. In O. Danvy, editor, Proceedings
of the 1999 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, pages 4–12, 1999.

[3] E. Brady. Idris, a general purpose dependently typed programming
language: Design and implementation. Journal of Functional Pro-
gramming, 23:552–593, 9 2013.

[4] E. Burmako. Scala macros: Let our powers combine!: On how rich
syntax and static types work with metaprogramming. In Proceedings
of the 4th Workshop on Scala, SCALA ’13. ACM, 2013.

[5] D. R. Christiansen. Reflect on your mistakes! Lightweight domain-
specific errors. Unpublished manuscript, 2014.

[6] D. de Rauglaudre. Camlp4 reference manual, 2003. URL http:
//pauillac.inria.fr/camlp4/manual/.

[7] D. Delahaye. A tactic language for the system coq. In Proceedings
of Logic for Programming and Automated Reasoning (LPAR), volume
1955 of Lecture Notes in Computer Science, November 2000.

[8] M. Gordon. From LCF to HOL: a short history. In G. Plotkin,
C. Stirling, and M. Tofte, editors, Proof, Language, and Interaction:
Essays in Honour of Robin Milner, pages 169–186. MIT Press, 2000.

[9] G. Mainland. Why it’s nice to be quoted: Quasiquoting for Haskell.
In Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell
’07, pages 73–82. ACM, 2007.

[10] C. McBride. Dependently Typed Functional Programs and their
Proofs. PhD thesis, University of Edinburgh, 1999.

[11] Microsoft. Expression trees (c# and visual basic), accessed August,
2014. URL http://msdn.microsoft.com/en-us/library/
bb397951.aspx.

[12] W. v. O. Quine. Mathematical Logic. Harvard University Press,
revised edition, 1981.

[13] D. Shabalin, E. Burmako, and M. Odersky. Quasiquotes for Scala.
Technical Report 185242, École polytechnique fédérale de Lausanne,
2013.

[14] D. Syme. Leveraging .NET meta-programming components from
F#: integrated queries and interoperable heterogeneous execution. In
Proceedings of the 2006 workshop on ML, pages 43–54. ACM, 2006.

[15] W. Taha and T. Sheard. Metaml and multi-stage programming with
explicit annotations. Theoretical computer science, 248(1):211–242,
2000.

[16] The Agda Team. The Agda Wiki, accessed 2014. URL http:
//wiki.portal.chalmers.se/agda/.

[17] The MetaOCaml Team. MetaOCaml, accessed 2014. URL http:
//www.cs.rice.edu/~taha/MetaOCaml/.

[18] P. van der Walt and W. Swierstra. Engineering proof by reflection
in Agda. In R. Hinze, editor, Implementation and Application of
Functional Languages, Lecture Notes in Computer Science, pages
157–173. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-41581-
4. .

[19] B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski, and
V. Vafeiadis. Mtac: A monad for typed tactic programming in Coq.
In Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’13, pages 87–100. ACM, 2013.

http://pauillac.inria.fr/camlp4/manual/
http://pauillac.inria.fr/camlp4/manual/
http://msdn.microsoft.com/en-us/library/bb397951.aspx
http://msdn.microsoft.com/en-us/library/bb397951.aspx
http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/
http://www.cs.rice.edu/~taha/MetaOCaml/
http://www.cs.rice.edu/~taha/MetaOCaml/

	Introduction
	Motivating Example
	Related Work
	A Brief History of Quasiquotation
	Reflection, Proof Automation, and Tactic Languages

	Reflection in Idris
	Idris Quasiquotations
	Elaboration
	The Elaboration Monad
	Elaborating Quasiquotations
	Formal Description

	Elaborating Goal Types
	Elaborating Quasiquotation Patterns
	Nested Quasiquotations

	Examples
	Custom Tactics
	Trivial Goals
	Simplifying Arithmetic Expressions

	Error Reflection

	Conclusion and Future Work

