
Large-Scale Similarity Joins With Guarantees
Rasmus Pagh∗

IT University of Copenhagen, Denmark
pagh@itu.dk

Abstract
The ability to handle noisy or imprecise data is becoming increasingly important in computing. In
the database community the notion of similarity join has been studied extensively, yet existing
solutions have offered weak performance guarantees. Either they are based on deterministic
filtering techniques that often, but not always, succeed in reducing computational costs, or they
are based on randomized techniques that have improved guarantees on computational cost but
come with a probability of not returning the correct result. The aim of this paper is to give
an overview of randomized techniques for high-dimensional similarity search, and discuss recent
advances towards making these techniques more widely applicable by eliminating probability of
error and improving the locality of data access.

1998 ACM Subject Classification H.2.4 Database Management – Systems

Keywords and phrases Similarity join, filtering, locality-sensitive hashing, recall

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.15

Category Invited Talk

If I am not me, then who the hell am I?

(Douglas Quaid (Arnold Schwarzenegger) in Total Recall)

1 Introduction

In their famous book Perceptrons [23] from 1969, Minsky and Papert formulated a simple
indexing problem: “Store a set S of D-dimensional binary vectors, such that for a query
vector q, and a tolerance r, we can quickly answer if there exists a vector in S that differs from
q in at most r positions.” To this day the achievable space/time trade-offs for this indexing
problem remain unknown, and even the best solutions offer only weak performance guarantees
for large r and D compared to the guarantees that are known for exact or 1-dimensional
search (hash tables, B-trees). At the same time “tolerance” in data processing and analysis is
gaining importance, as systems are increasingly dealing with imprecise data such as: different
textual representations of the same object (e.g., in data reconciliation), slightly modified
versions of a string (e.g., in plagiarism detection), or feature vectors whose similarity tells us
about the affinity of two objects (e.g., in recommender systems).

The reporting version of Minsky and Papert’s problem, where the task is to search for all
vectors in S within distance r from q, is usually referred to as the near neighbor problem,
and has been considered as an approach to tolerant indexing for many different spaces and

∗ Supported by the European Research Council under the European Union’s 7th Framework Programme
(FP7/2007-2013) / ERC grant agreement no. 614331.

© Rasmus Pagh;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 15–24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50528381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16 Large-Scale Similarity Joins With Guarantees

metrics. In database settings it will often be the case that there is a set Q of vectors1 for
which we want to find all near neighbors in S. If we let d(q, x) denote the distance between
vectors q and x, the similarity join of Q and S with tolerance r is the set

Q ./r S = {(q, x) ∈ Q× S | d(q, x) ≤ r} .

The term “similarity join” suggests that we join vectors that are similar, defined as having
distance smaller than r. Sometimes it is more natural to work with a measure of similarity
rather than distance, for example cosine or Jaccard similarity. This does not fundamentally
change the problem since for each similarity measure we can define a distance measure that
is a decreasing function of similarity.

Some applications do not specify a fixed search radius r, but rather ask to find the
k closest vectors in S for each q ∈ Q. This variant is referred to as a k-nearest-neighbor
(kNN) similarity join. Here we do not consider kNN similarity joins, but note that there are
asymptotically efficient reductions for answering kNN queries using near neighbor queries [16].

While our focus is on theoretical aspects of computing similarity joins, we note that the
problem (and its kNN variation) is of broad practical importance and has been a subject of
extensive study in recent years in several application-oriented fields:

databases (e.g. [9, 10, 11, 18, 19, 20, 22, 28, 31, 32, 34]),
information retrieval (e.g. [6, 12, 35]), and
knowledge discovery (e.g. [1, 5, 33, 36, 37]).

Scope of this paper. The aim of this paper is to give an overview of the main techniques
used for high-dimensional similarity search, and discuss recent advances towards making
these techniques more widely applicable by eliminating probability of error and improving
the locality of data access.

We focus on randomized techniques that scale well to high-dimensional data. (In low
dimensions there exist efficient indexing methods for similarity search, and these translate
into efficient similarity join methods.) For similarity joins it is generally better to take
advantage of the fact that many queries have to be answered, and avoid creating a standard
index, so we omit discussion of the extensive body of work dealing with indexes for similarity
search.

We refer to the recent book by Augsten and Böhlen [4] for a survey of a broader spectrum
of algorithms for similarity join than we are able to cover here.

2 Techniques for high-dimensional similarity joins

To focus on basic techniques we mainly consider the simple case of D-dimensional binary
vectors and Hamming distances. Also, we assume for simplicity that the binary vectors
are explicitly stored, but binary vectors with Hamming weight much smaller than D could
advantageously be stored using a sparse representation.

2.1 Approximation
Following the seminal papers of Gionis, Har-Peled, Indyk, and Motwani [16, 14] a large
literature has focused on approximate similarity join algorithms that may have false negatives,

1 While the near neighbor problem can be defined for arbitrary spaces we will refer to elements of the
space as “vectors”.

R. Pagh 17

i.e., pairs that have distance at most r but fail to be reported by the algorithm. In this
setting it is of course desirable to achieve the highest possible recall, defined as the fraction
of the join result returned by the algorithm.

The possibility of false negatives should not be confused with over-approximation where
the join result is likely to contain “false positive” pairs at distance up to cr, for some
approximation factor c. False positives can be eliminated by checking the distances of all
pairs, which is relatively cheap if the precision is not too low, i.e., when there is not a large
fraction of such false positives. It has been observed that many real-life data sets have low
intrinsic dimension in the sense that the number of vectors within distance cr is within a
reasonably small factor of the number of vectors within distance r when c is a small constant.

2.2 Candidate set generation
Many approximate similarity join algorithms work by first generating a set of candidate
pairs C ⊆ Q× S. For each (q, x) ∈ C the distance d(q, x) is then either computed exactly or
estimated with sufficient precision to determine whether or not d(q, x) ≤ r. More generally
one can think about a gradual process where a distance estimate is refined for each pair
until it is possible to determine whether d(q, x) ≤ r. Many results on similarity join can
be seen as methods for computing good estimates of distances based on a small amount of
information about vectors. Lower bounds from communication complexity (see e.g. [26] and
its references) tell us that it is in general not possible to efficiently and accurately estimate
distances between two vectors based on a small amount of information about each. But
in many settings even crude estimates can give rise to substantial savings compared to a
naïve solution that computes all distances precisely. For example, the Hamming distance
between vectors q and x always lies between |||q|| − ||x||| and ||q||+ ||x||, where || · || denotes
the Hamming weight, i.e., number of 1s.

Subquadratic algorithms. Ideally, to be able to scale to large set sizes we would like to not
spend time on every pair in Q× S. For simplicity of discussion suppose that |Q| = |S| = n

such that |Q × S| = n2. Of course, if the join result has size close to n2 we cannot hope
to use subquadratic time. But for large n it will normally only be of interest to compute
Q ./r S when |Q ./r S| � n2, so we focus on this case.

Some algorithms achieve subquadratic performance for certain data distributions. For
example Bayardo et al. [6] exploit that cosine similarity of most pairs of vectors (in information
retrieval data sets) is small unless they share high weight features. For data sets where
many pairs do not share such high weight features the processing time can be substantially
subquadratic. Another example comes from association mining in genetic data where
Achlioptas et al. [1], building upon seminal work of Paturi et al. [27], obtained running time
empirically proportional to n3/2.

Curse of dimensionality. To obtain the widest possible applicability we would ideally like
to guarantee subquadratic running time regardless of data distribution. It is commonly
believed that such a general result is not possible due to the curse of dimensionality. Indeed,
no similarity join algorithms with good time bounds in terms of parameters n and D are
known. This means that, unless the general belief is wrong, we need to settle for results
that take some aspect of the data distribution into account. Intuitively, the most difficult
case occurs when all distances are close to r, since it is hard to determine whether or not to
include a pair without computing its distance exactly. Most data sets have a distribution of
distances that is much more well-behaved, at least up to a certain radius rmax above which

ICDT 2015

18 Large-Scale Similarity Joins With Guarantees

the similarity join size explodes. Some of the strongest theoretical results that guarantee
subquadratic performance (e.g. [16, 14]) rest on the assumption that we are considering
r that is not too close to rmax. In other words, there is not a huge number of pairs with
distance slightly above r. Often the ratio rmax/r is thought of as a parameter c that specifies
how well distances need to be approximated to distinguish pairs at distance r from pairs at
distance rmax.

2.3 Locality-sensitive hashing.
Paturi et al. [27] pioneered an approach to candidate set generation that results in subquad-
ratic time for similarity join2 as soon as the above-mentioned approximation ratio c is larger
than 1.

Their technique can be seems as an early instance of locality sensitive hashing (LSH), which
creates a candidate set using a sequence of specially constructed hash functions h1, h2, . . . , ht
chosen from a family of functions where the collision probability Pr [hi(q) = hi(x)] is a
non-increasing function of the distance d(q, x). For each hash function hi, every pair in Q×S
with colliding hash values is included as a candidate pair, i.e.:

C =
t⋃
i=1
{(q, x) ∈ Q× S | hi(q) = hi(x)} . (1)

Computing C can be seen as a sequence of t equi-joins with hash value as join attribute. If
we are not concerned with the possibility of generating a candidate pair more than once,
these joins can be processed independently, and the space required for each join is linear
in the input size. While these joins can of course individually be efficiently computed, the
number of joins needed can be large, so it is not obvious that computing them one by one is
the best solution. Indeed, in Section 4 we give an overview of recent work highlighting how
other approaches can give rise to better temporal locality of memory accesses, resulting in
more efficient algorithms in memory hierarchies.

LSH construction. For binary vectors and Hamming distances, the currently best LSH
construction (from [27, 14]) is remarkably simple. It works by selecting (or sampling) a
random set of bits from the vector, i.e., for some randomly chosen ai ∈ {0, 1}D we have:

hi(x) = x ∧ ai, (2)

where ∧ denotes bitwise conjunction, i.e., the & operator in many programming languages.
The Hamming weight of ai is chosen to ensure “small” collision probability for the large
majority of pairs in Q × S that have distance above cr, for some c. If the aim is to
minimize the total number of vector comparisons plus hash function evaluations the best
choice of ai (for large D) is a random vector with ||ai|| ≈ D ln(n)/(cr). This results in
Pr [hi(q) = hi(x)] < 1/n when d(q, x) > cr, meaning that for each hi there will in expectation
be O (n) candidate pairs that have distance above cr. A common way to think about this
is as a filter that is able to remove all but a few of the up to n2 pairs in Q × S that are
not “close to being in the join result”. If we have d(q, x) = r the same choice of ai yields
Pr [hi(q) = hi(x)] ≈ n−1/c. So for each hash function hi the probability that (q, x) is added

2 In fact, they considered a simplified setting where the task is to find a single pair at distance less than r
in a binary data set that is otherwise random. But their technique extends to the more general setting
of similarity join computation.

R. Pagh 19

to C is quite small. This can addressed by using t > n1/c hash functions, which for an
independent sequence of hash functions reduces the probability that (q, x) 6∈ C (such that
the pair becomes a false negative) to (1− n−1/c)t < 1/e. Further increasing the parameter t
reduces, but does not eliminate, the probability of false negatives.

We note that LSH families for many other distance (and similarity) measures have been
developed. The 2012 Paris Kanellakis Theory And Practice Award went to Andrei Broder,
Moses Charikar, and Piotr Indyk for their contributions to work on locality sensitive hashing
for fundamental measures, e.g. [14, 7, 8, 13]. LSH methods are by definition randomized and
have often been seen as inherently approximate in the sense that they must have a nonzero
false negative probability. However, as we will see in Section 3 there are randomized filtering
techniques that guarantee total recall, i.e., no false negatives. As such, the borderline between
LSH techniques and other filtering technique is blurred, or even meaningless.

2.4 Aggregation
In some cases it is possible to gather information on a set of vectors that allows filtering
of pairs involving any element of the set. One such technique is based on aggregation.
As an example, Valiant [29] showed that if we consider Q′ ⊂ Q and S′ ⊂ S there are
situations in which we can show emptiness of Q′ ./r S′ based only on aggregate vectors
σQ′ =

∑
q∈Q′(2q − 1)s(q) and σS′ =

∑
x∈S′(2x− 1)s(x), where s : {0, 1}D → {−1,+1} is a

random function and the arithmetic is over the integers. We consider the dot product

σQ′ · σS′ =
∑
q∈Q′

∑
x∈S′

(s(q)(2q − 1D)) · (s(x)(2x− 1D)) . (3)

The value of (3) is useful for example if the dot product (2q−1D)·(2x−1D) is close to 0 for
all but at most one pair (q, x) ∈ Q×S. Since (2q− 1D) · (2x− 1D) = D− 2d(q, x) a pair with
small Hamming distance has a contribution to (3) of either close to −D or close to +D. This
means that the presence of a close pair can be detected (with a certain probability of error) by
considering whether |σQ′ · σS′ | is close to 0 or close to D. In a theoretical breakthrough [29],
Valiant showed how to combine this technique with fast matrix multiplication (for computing
all dot products of aggregates) to achieve sub-quadratic running time even in cases where
most distances are very close to r. It remains to be seen if aggregation techniques can yield
algorithms that are good in both theory and practice. Promising experimental work on a
different aggregation technique was carried out by Low and Zheng [21], independently of
Valiant, in the context of indexing.

3 Addressing the issue of false negatives

We now consider ways of eliminating false negatives, or in other words achieving total recall.
As a starting observation, note that the non-zero probability that q and x do not collide
under any hi, as defined in (2), is not due to the fact that each ai is random. Indeed, if
we choose a1, . . . , at as a random permutation of the set of all vectors of Hamming weight
D − r we will be guaranteed that hi(q) = hi(x) for some i, while vectors at distance above
r will have no collisions. We say that such a sequence of vectors is covering for distance r.
The reason that traditional LSH constructions are not covering is that the hash functions
are chosen independently, which inherently means that there will be a probability of error.
Though the example above is extreme — it requires t to be very large — it does show
that suitably correlating the hash functions in the sequence can ensure that all pairs within
distance r are included in the candidate set.

ICDT 2015

20 Large-Scale Similarity Joins With Guarantees

More efficient constructions. Following an early work of Greene et al. [15], Arasu et al. [3]
presented a much more efficient construction of a covering vector sequence. Their first
observation is that if t = r + 1 and we choose a1, . . . , at that are disjoint (ai ∧ aj = 0D for
all i 6= j) and covering all dimensions (

∨
i ai = 1D) then vectors at distance at most r will be

identical in the bits indicated by at least one vector ai, such that hi(q) = hi(x).
While this approach ensures that we generate every pair in Q ./r S as a candidate, it is

not clear how well this sequence of functions is able to filter away pairs at distances larger
than r from the candidate set. Norouzi et al. [24] recently considered, independently of Arasu
et al. [3], the special case where the binary vectors are random. But for general (worst case)
data it could be that all differences between q and x appear in the positions indicated by a1,
in which case there will be hash collisions for all functions except h1. To address this, Arasu
et al. propose to initially apply a random permutation π : {1, . . . , D} → {1, . . . , D} to the
dimensions. Abusing notation we let π(x) denote the vector where π(x)i = xπ(i), so that the
hash functions considered are defined by:

h′i(x) = π(x) ∧ ai . (4)

As a practical consideration it may be advantageous to instead compute π−1(h′(x)) =
x∧π−1(ai), since we can precompute the vectors π−1(ai), and this change preserves collisions.

Analysis. We claim that including the permutation makes Pr [h′i(q) = h′i(x)], where the
probability is over the choice of random permutation, depend only on the Hamming weight
||ai|| and the distance d(q, x). Essentially, h′i(x) is sampling a set of ||ai|| positions from
{1, . . . , D}, without replacement, and we have a collision if none of these positions differ:

Pr [h′i(q) = h′i(x)] =
(
D − d(q, x)
||ai||

)/ (
D

||ai||

)
. (5)

When D is large (and D � d(q, x)) this probability is well approximated by the probability
when sampling with replacement, i.e.,

Pr [h′i(q) = h′i(x)] ≈ (1− d(q, x)/D)||ai|| ≈ exp(−||ai|| d(q, x)/D) . (6)

As can be seen the collision probability decreases exponentially with ||ai||, so increasing the
Hamming weights of a1, . . . , at will increase filtering efficiency. Arasu et al. present a method
for getting a covering sequence a∗1, . . . , a∗t of larger Hamming weight (no longer satisfying
the disjointness condition). We refer to their paper for a precise description, and simply use
h∗1, . . . , h

∗
t to denote the corresponding hash functions. Arasu et al. do not provide a general

analysis, but it appears that the Hamming weight that their method can achieve with t

functions is asymptotically (for large t and r) around D log2(t)/(4r). This corresponds to a
collision probability for each hash function h∗i of roughly:

Pr [h∗i (q) = h∗i (x)] ≈ exp(− log2(t)d(q, x)/(4r)) ≈ t−0.36d(q,x)/r . (7)

The probability that (q, x) is included in the candidate set can be upper bounded by a union
bound over all t functions, as t1−0.36 d(q,x)/r. This means that for d(q, x) > 3r we are likely
not to include (q, x) as a candidate, and the probability that it becomes a candidate decreases
polynomially with t. Just as for standard LSH, the best choice of t balances the cost of false
positives in the candidate set with the cost of identifying candidate pairs more than once.

R. Pagh 21

Discussion of optimality. If we consider (q, x) with d(q, x) = r any covering sequence of vec-
tors needs to ensure a collision, which requires, at least, that the expected number of collisions
is 1. So if we use hash functions h1, . . . , ht then we must have

∑t
i=1 Pr [hi(q) = hi(x) | d(q, x)

= r] ≥ 1. If we assume that there is a non-increasing function of f : R → R such that for
each i, Pr [hi(q) = hi(x) | d(q, x) = cr] = f(c), then:

t ≥ 1/f(1) . (8)

According to (7) the construction of Arasu et al. [3] obtains f(1) ≈ t−0.36, i.e., t ≈ (1/f(1))2.77.
If it is possible to obtain a sequence of hash functions of length close to the lower bound (8) it
will be possible to match the performance of the classical LSH method of Gionis et al. [14]. A
nonconstructive argument by the probabilistic method, using a sequence of randomly chosen
vectors ai, shows that t = O (r log(D)/f(1)) suffices to ensure the existence of a covering
sequence of vectors. However, this fact is of little help since we have no effective way of
constructing such a sequence, or even checking its correctness.

4 Addressing the issue of data locality

An issue with the candidate generation method that we have outlined is that it makes poor
use of the memory hierarchy. If the data set does not fit in internal memory it is likely that
we will need to read every vector from external memory once for each hash function. In
contrast, methods that explicitly consider all pairs of vectors can be implemented with good
data locality by handling subsets of Q and S that fit in fast memory.

Bahmani et al. [5] suggested to use two levels of LSH to compute similarity joins more
efficiently in a distributed setting, where the goal is to distribute the data such that most
computations can be done separately on each node. Roughly, the top-level LSH distributes
the data to nodes such that it is reasonably evenly distributed, and the second-level LSH
improves the filtering to decrease the computational cost.

In a recent paper [25] we take this idea further and analyze the resulting algorithm in
the I/O model (see e.g. [30]), where the aim is to minimize the number of block transfers
between slow and fast memory. Consider a setting where standard LSH-based similarity
joins use nρ hash functions, for a parameter ρ ∈ (0; 1). If n significantly exceeds the number
M of vectors that fit in fast memory, this means that the join algorithm will need to transfer
each element nρ times between fast and slow memory. This is not always better than a naïve
block nested loop join algorithm, which transfers each vector n/M times. Our main finding
is that both of these bounds can be improved for large n, to O ((n/M)ρ poly logn) transfers
of each vector, under a reasonable assumption on the distance distribution (essentially that
the number of pairs in Q× S at distance close to r is not huge).

A recursive similarity join algorithm. The algorithm described in our paper [25] is designed
with ease of analysis in mind, so it may not be fully practical — in particular due to the
poly logn factor. Here we will consider a simple variant that highlights the main idea of [25]
and is potentially useful. The idea is to use a shorter sequence of LSH functions h1, . . . , hL
that is just powerful enough to filter away a constant fraction of the candidate pairs in Q×S.
This step alone will leave many false positives, but it can be applied recursively to each
bucket of each hash function to increase filtering efficiency. We will soon describe the base
case of the recursion, but first state the general case, where C(Q,S) denotes our recursive

ICDT 2015

22 Large-Scale Similarity Joins With Guarantees

function for computing a candidate set. Let V denote the set of possible hash values; then:

C(Q,S) =
L⋃
i=1

⋃
v∈V

C({q ∈ Q | hi(q) = v}, {x ∈ S | hi(x) = v}), (9)

where the sequence of hash functions is chosen randomly and independently. Since a pair
may collide more than once the candidate set should be thought of as a multiset, and the
number of candidates proportional to the size of this multiset. The recursion in (9) effectively
replaces the naïve candidate set Q× S by a multiset of colliding pairs of size:

coll(Q,S) =
L∑
i=1

∑
v∈V
|{q ∈ Q | hi(q) = v} × {x ∈ S | hi(x) = v}| . (10)

We would like to apply (9) when it at least halves the number coll(Q,S) of candidate
pairs compared to |Q× S|. That is, as a base case we take:

C(Q,S) = Q× S if |Q× S| ≤ 2 coll(Q,S) . (11)

Discussion. If we consider the sets Q′ ⊆ Q and S′ ⊆ S in a particular base case, all vectors
will have identical values for a sequence of hash functions. This is in some ways similar to
the common technique of composing several LSH functions to increase filtering efficiency.
The essential difference is that many subproblems can share each hash function, so much of
the work on distributing vectors into subproblems is shared. Since applying the LSH family
to the base case fails to decrease the number of candidate pairs substantially, it must be the
case that the majority of pairs in Q′ × S′ have distance not much above r, so the complexity
of checking candidates can be bounded in terms of the number of pairs that have distance
not much above r.

We outline the main idea in the analysis from our paper [25] as it applies to the simplified
algorithm. If we restrict attention to a particular pair (q, x) ∈ Q× S, the recursion can be
seen as a branching process where the presence of (q, x) in a subproblem may lead to the pair
being repeated in one or more recursive subproblems. The pair is ultimately considered if
and only if it “survives” on some path in the recursion tree, all the way down to a base case
(where all pairs are considered as candidates). We would like to ensure that if d(q, x) ≤ r then
(q, x) survives with certainty (or with good probability, if false negatives can be tolerated),
while if d(q, x) > cr for c > 1 the probability that (q, x) becomes a candidate decreases
rapidly with c. The theory of branching processes (see e.g. [17]) says that this will be the
case if the expected number of recursive calls involving (q, x) is at least 1 for d(q, x) ≤ r and
less than 1 for d(q, x) > cr.

An advantage of a recursive algorithm is that once subproblems are small enough to fit
in fast memory they will produce no further transfers between fast and slow memory. When
solving the base case we may also use a recursive approach by splitting Q × S into four
candidate sets each involving half of Q and S.

We stress that an arbitrary sequence of hash functions can be used, including those
described in Section 3. In this case, the similarity join algorithm will achieve total recall.

5 Conclusion and open problems

We have argued that randomized techniques related to those traditionally used in LSH are
applicable to similarity joins in which false negatives do not occur. It remains to be seen to

R. Pagh 23

what extent such techniques can be extended to other spaces and metrics, such as Euclidean
or Manhattan distances, but non-constructive arguments suggest that at least some nontrivial
results are possible. Even in the case of binary vectors it is an interesting question if the
construction of Arasu et al. [3] can be improved, and in that case how close to the lower
bound (8) it is possible to get.

Finally, recent developments on indexes for approximate similarity search [2] suggest that
it may be possible to further improve LSH-based similarity join algorithms.

Acknowledgement. The author thanks Ninh Pham, Francesco Silvestri, and Matthew Skala
for useful feedback on a preliminary version of this paper.

References
1 Panagiotis Achlioptas, Bernhard Schölkopf, and Karsten Borgwardt. Two-locus association

mapping in subquadratic time. In Proceedings of KDD, pages 726–734. ACM, 2011.
2 Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate

near neighbors. arXiv preprint arXiv:1501.01062, 2015.
3 Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-similarity joins.

In Proceedings of VLDB, pages 918–929, 2006.
4 Nikolaus Augsten and Michael H Böhlen. Similarity joins in relational database systems.

Synthesis Lectures on Data Management, 5(5):1–124, 2013.
5 Bahman Bahmani, Ashish Goel, and Rajendra Shinde. Efficient distributed locality sensit-

ive hashing. In Proceedings of CIKM, pages 2174–2178, 2012.
6 Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs similarity

search. In Proceedings of WWW, pages 131–140, 2007.
7 Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic

clustering of the web. Computer Networks, 29(8-13):1157–1166, 1997.
8 Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceed-

ings of STOC, pages 380–388, 2002.
9 Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A primitive operator for simil-

arity joins in data cleaning. In Proceedings of ICDE, page 5, 2006.
10 Yun Chen and Jignesh M Patel. Efficient evaluation of all-nearest-neighbor queries. In

Proceedings of ICDE, pages 1056–1065. IEEE, 2007.
11 Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk, Rajeev Motwani,

Jeffrey D. Ullman, and Cheng Yang. Finding interesting associations without support
pruning. IEEE Trans. Knowl. Data Eng., 13(1):64–78, 2001.

12 Abhinandan Das, Mayur Datar, Ashutosh Garg, and ShyamSundar Rajaram. Google news
personalization: scalable online collaborative filtering. In Proceedings of WWW, pages
271–280, 2007.

13 Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of SOCG, pages 253–262,
2004.

14 Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions
via hashing. In Proceedings of VLDB, pages 518–529, 1999.

15 Dan Greene, Michal Parnas, and Frances Yao. Multi-index hashing for information retrieval.
In Proceedings of FOCS, pages 722–731. IEEE, 1994.

16 Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: To-
wards removing the curse of dimensionality. Theory of computing, 8(1):321–350, 2012.

17 Theodore E Harris. The theory of branching processes. Courier Dover Publications, 2002.

ICDT 2015

24 Large-Scale Similarity Joins With Guarantees

18 Edwin H Jacox and Hanan Samet. Metric space similarity joins. ACM Transactions on
Database Systems (TODS), 33(2):7, 2008.

19 Yu Jiang, Dong Deng, Jiannan Wang, Guoliang Li, and Jianhua Feng. Efficient parallel
partition-based algorithms for similarity search and join with edit distance constraints. In
Proceedings of Joint EDBT/ICDT Workshops, pages 341–348. ACM, 2013.

20 Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. Pass-join: A partition-based
method for similarity joins. Proceedings of the VLDB Endowment, 5(3):253–264, 2011.

21 Yucheng Low and Alice X Zheng. Fast top-k similarity queries via matrix compression. In
Proceedings of CIKM, pages 2070–2074. ACM, 2012.

22 Jiaheng Lu, Chunbin Lin, Wei Wang, Chen Li, and Haiyong Wang. String similarity
measures and joins with synonyms. In Proceedings of SIGMOD, pages 373–384. ACM,
2013.

23 Marvin L Minsky and Seymour A Papert. Perceptrons - Expanded Edition: An Introduction
to Computational Geometry. MIT press, 1987.

24 Mohammad Norouzi, Ali Punjani, and David J Fleet. Fast search in hamming space with
multi-index hashing. In Proceedings of CVPR, pages 3108–3115. IEEE, 2012.

25 Rasmus Pagh, Ninh Pham, Francesco Silvestri, and Morten Stöckel. I/O-efficient similarity
join in high dimensions. Manuscript, 2015.

26 Rasmus Pagh, Morten Stöckel, and David P. Woodruff. Is min-wise hashing optimal for
summarizing set intersection? In Proceedings of PODS, pages 109–120. ACM, 2014.

27 Ramamohan Paturi, Sanguthevar Rajasekaran, and John Reif. The Light Bulb Problem.
Information and Computation, 117(2):187–192, March 1995.

28 Yasin N Silva, Walid G Aref, and Mohamed H Ali. The similarity join database operator.
In Proceedings of ICDE, pages 892–903. IEEE, 2010.

29 Gregory Valiant. Finding Correlations in Subquadratic Time, with Applications to Learning
Parities and Juntas. In Proceedings of FOCS, pages 11–20. IEEE, October 2012.

30 Jeffrey Scott Vitter. Algorithms and Data Structures for External Memory. Now Publishers
Inc., 2008.

31 Jiannan Wang, Guoliang Li, and Jianhua Fe. Fast-join: An efficient method for fuzzy token
matching based string similarity join. In Proceedings of ICDE, pages 458–469. IEEE, 2011.

32 Jiannan Wang, Guoliang Li, and Jianhua Feng. Can we beat the prefix filtering?: an
adaptive framework for similarity join and search. In Proceedings of SIGMOD, pages 85–
96. ACM, 2012.

33 Ye Wang, Ahmed Metwally, and Srinivasan Parthasarathy. Scalable all-pairs similarity
search in metric spaces. In Proceedings of KDD, pages 829–837, 2013.

34 Chenyi Xia, Hongjun Lu, Beng Chin Ooi, and Jing Hu. Gorder: an efficient method for
knn join processing. In Proceedings of VLDB, pages 756–767. VLDB Endowment, 2004.

35 Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient similarity joins for near
duplicate detection. In Proceedings of WWW, pages 131–140, 2008.

36 Reza Bosagh Zadeh and Ashish Goel. Dimension independent similarity computation. The
Journal of Machine Learning Research, 14(1):1605–1626, 2013.

37 Xiang Zhang, Fei Zou, and Wei Wang. Fastanova: an efficient algorithm for genome-wide
association study. In Proceedings of KDD, pages 821–829. ACM, 2008.

	Introduction
	Techniques for high-dimensional similarity joins
	Approximation
	Candidate set generation
	Locality-sensitive hashing.
	Aggregation

	Addressing the issue of false negatives
	Addressing the issue of data locality
	Conclusion and open problems

