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Abstract. Common folklore in the model transformation community
dictates that most transformation languages are Turing-complete. It is
however seldom that a proof or an explanation is provided on why such
property holds; due to the widely di�erent features and execution models
in these language, it is not immediately obvious what their computational
expressiveness is.
In this paper we present an analysis that clarifies the computational ex-
pressiveness of a large number of model transformation languages. The
analysis confirms the folklore for all model transformation languages, ex-
cept the bidirectional ones. While this excludes many verification tech-
niques from being applied on the languages as a whole, it might be
possible to verify subsets of these languages; this holds especially for
those languages which provide optional termination checking or those
that require the use of exotic constructs to achieve the stated level of
expressiveness.

Keywords: Model transformations, Turing-completeness

1 Introduction

Model transformation [11; 35] is one of the most central techniques employed
in the field of model-driven engineering. A model transformation language al-
lows the programmer to translate elements from one or more source models to
elements in one or more target models, given their formal descriptions or meta-
models. A classical example of such model transformation is the conversion of
object-oriented class models to relational database models[23].

These model transformation languages can be either rule-based, where the
programmer specifies how a subgroup of elements in the source model maps
to the desired target elements, or purely imperative, where the programmer
explicitly iterates through the source model and construct the desired elements
of the target model.

For many of these languages however, it is unclear whether their computa-
tional capabilities [48] matches those of general programming languages, since
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repetition in these model transformation languages can be implicit or bounded.
Knowing the computational expressiveness of a language is important from a
verification point of view since there are a large variety of techniques not appli-
cable on Turing-complete computation systems. This paper presents a systematic
analysis of the computational expressiveness of a wide selection of model trans-
formation languages, and tries to pinpoint the constructs that enables or limits
the level of expression.

1.1 Related Work

To the authors knowledge there has been no overall study on computational
expressiveness of model transformation languages, however there exist several
studies that compare di�erent specific aspects. Gomes, Barroca, and Amaral [17]
compare a variety of languages on their pattern matching capabilities in order
to clarify the performance implications of each system. The work has served as
a source of inspiration for finding interesting model transformation languages to
investigate. A case study by Patzina and Patzina [37] compares di�erent language
features of ATL and SDM, and presents a table with information on whether
these languages support recursion, in-place transformation and other capabili-
ties. While significantly less comprehensive than this study, it supports many of
the points made about the expressiveness of some languages presented in this pa-
per. Finally, smaller comparisons with tables are presented in the related work
sections of many model transformation language implementation papers e.g.,
Varró and Balogh [53] and Syriani and Vangheluwe [45]. These however often fo-
cus on a smaller subset of languages, and are often biased towards highlighting
the novelty of their own languages.

2 Model transformation languages

Model transformation languages can generally be classified into multiple paradigms
according to the underlying techniques they use. High-level imperative languages
such as Xtend [16] and Rascal [25] try to provide features suitable for model-
transformation such as dispatch functions and visitors, in addition to the many
general-purpose constructs such as assignment, branching, and for- and while-
loops. More low-level imperative languages like ATC [14] instead focus on easing
the implementation of execution engines for rules-based languages, and therefore
contain various components that can express core rule-oriented patterns.

Declarative model transformation languages are largely rule-based, and can
be categorised further based on whether they mainly use graph rewriting as a
formalism or not. Graph-based languages represent the source and target models
using graphs—optionally with attributes and/or types—and describe transfor-
mations using sets of conditional graph rewrite rules which specify how sub-
graphs in the source map to subgraphs in the target. In these systems, running
a transformation is equivalent to applying the rewrite rules until the target
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output is produced (or divergence). Some graph-based languages like PRO-
GReS [44], GReAT [3], GrGen.NET [22], Motif [45], VIATRA2 [53], VMTS [33]
and SDM [15], use an explicit control flow where the programmer must imper-
atively specify the order of which the rules apply and when to repeat rule ap-
plications; other languages like AGG [47] and Atom3 [30] instead try to apply
rules as long as applicable and the order of application is often decided by a
combination of user-defined prioritisation of rules called layering and internally
defined matching strategies.

Model-oriented rule-based languages focus on providing a set of declarative
rules to describe a transformation between source and target models, given their
meta-models. The rules in these languages often allows the user to use rich
predicate languages like OCL [55] to constraint the scope of application, can
explicitly call and dependent on application of other rules (even recursively)
and they may allow a part of the transformation to be handled imperatively for
more precision. Examples of these types of languages include ATL [24], ETL [26],
Tefkat [31] and QVT [18].

Finally, bidirectional-languages work similarly to model-oriented languages
except that transformations must be bidirectional. This concretely means that
there should be a way to convert back from the target model to the source model,
which can be made by making rules invertible as in BOTL [8] or using an explicit
propagation mechanism as in BeanBag [56].

3 Computational expessiveness

3.1 Definition of Turing-completeness

The Church-Turing thesis [10] states that any e�ectively computable mathemat-
ical function can be computed by a Turing machine [20]. A system is said to
be Turing-complete if it has the same power of expression as a Turing ma-
chine, or rather that it can compute any function a Turing machine can com-
pute. Known examples of Turing-complete systems include the ⁄-calculus [2] and
term-rewriting systems [41].

While it can be hard to pinpoint what features are su�cient for a program-
ming language to be Turing-complete, there are some minimal criteria that must
be fulfilled. First of all, a programming language must not have any memory
bounds, analogously to extensibility of a tape in Turing-machines, and the lack
of limit for term size in ⁄-calculus; a consequence of which it follows that the
language must also support unbounded repetition such as recursion or iteration.
Secondly, the language must be able to make di�erent decisions on di�erent types
of input similarly to how a Turing machine conditionally moves it head or how a
term-rewriting system can express a set of rules that are only applicable under
certain conditions. Finally, the language must be able to change its current state
and continue computation with a new state, whether by writing on the tape as
the Turing machines, by reduction as in the ⁄-calculus or by replacement as in
term rewriting.
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3.2 General results on graph rewriting

As mentioned in Section 2, graph rewriting is the base formalism for many
declarative model transformation languages; even some model-oriented rule-
based transformation languages use graph rewriting implicitly in their imple-
mentation. Thus in order to understand the computational expressiveness of
such languages, it is important to understand the expressiveness of general graph
rewriting systems and which criteria must be satisfied to decrease or increase the
expressiveness of such system.

Existing research shows that graph rewriting systems can express Turing-
complete computation. An initial hypothesis could be that since term rewriting
systems are similar to graph rewriting systems, they would have the same level
of expressiveness. However, Plump [38; 39] argues that since graph rewriting
systems are richer—possibly having cycles and shared nodes—such proposition
might not be true; this fact is demonstrated by the author by translating a
non-terminating term rewriting systems to a terminating graph rewriting sys-
tems. Instead, Plump proved Turing-equivalence of graph rewriting systems by
encoding the Post correspondence problem.

Post correspondence problem

The Post correspondence problem (PCP) [40] is a decision problem that de-
scribes a system where given a finite sequence of pairs of words

[Èa1, b1Í, · · · , Èan, bnÍ] where n > 1

one has to tell whether there exist a sequence of indices

[i1, · · · , ik] where ij œ [1, n] · j œ [1, k]

the following equality between concatenation of words (strings) hold

ai1 · · · aik = bi1 · · · bik

For example, there exists a solution for the sequence [Èbb, bÍ, Èab, baÍ, Èb, bbÍ]
namely the indices [1, 2, 2, 3], because (bb)(ab)(ab)(b) = bbababb = (b)(ba)(ba)(bb).

Encoding PCP in a computation system is a common way of showing Turing-
equivalence, since finding a solution to an arbitrary instance of PCP is undecid-
able.

Generally, a base requirement for graph rewriting systems to be terminat-
ing is that all the rules contained must either delete nodes or have application
conditions [5; 38]. Any other graph rewriting system is trivially non-terminating
since the same rule can be reapplied ad infinitum.

A common assumption is the field is that many rule-based graph and model
transformation systems are often Turing-complete and can be translated to un-
derlying graph rewriting formalisms [28; 47]. It is important to note that for
model transformation languages, they are only directly translatable to general
graph rewriting systems if they allow intermediate transitions and unbounded
iteration. If a system can only do bounded iteration or bounded recursion, it
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is trivially non-Turing complete since termination is decidable; similarly, if the
rewrite system cannot analyse produced output or create intermediate state then
there are only a finite amount of possible functions that can be expressed and
therefore such system can neither be Turing-complete.

4 Methods of analysis

4.1 Methodology

The key focus of the presented analysis is to identify the computational expres-
siveness of various model transformation languages. The formal way to achieve
that is to investigate whether it is possible to encode PCP or a Turing-complete
system in each of the languages. However, such analysis would be infeasible to
do for the number of investigated language, since that would require manually
setting up and installing each system, learning each language su�ciently to per-
form a complete analysis, and verifying that such analysis is semantically correct.
Furthermore, the failure to show the necessary encoding might not prove that
the language is not Turing-complete and a further analysis of the whole system
is needed to show the converse.

Instead, this paper focuses on performing a literature-based analysis whereby
published articles, language manuals and other related documentation are used
to check whether the stated languages contain combinations of features which
are known to make them Turing-complete. If a formal (or semi-formal) semantics
of the language is provided then that is used as a primary source; in most cases
however, a combination of sources is required to get a complete overview of
the language capabilities. This form of analysis should be su�ciently accurate,
feasible to perform, and should be better reflective of what most ordinary users
would learn when using the analysed model transformation languages.

4.2 Collection and identification process

The actual collection process proceeded as following:

– If a project explicitly mentions that the language is Turing-complete—often
providing a proof—then the result was noted including the example con-
structs used.

– Otherwise, it was investigated whether the language contained the necessary
language constructs required to perform Turing-complete computation.

The constructs required to perform Turing-complete computation di�er ac-
cording to the paradigm of the containing language. For languages with imper-
ative features, analysing the computational expressiveness is simple. If a system
supports creation and substitution of variably-sized data, conditionals and un-
bounded looping (such as while-loops) or recursion, such language is Turing-
complete. If looping or data size is bounded, or it is not possible to branch then
the expressiveness is limited at design time and results in a sub-Turing-complete
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computation model. Note that for visual languages, blocks with internal repeti-
tion and blocks applied on collections are seen as looping constructs, and control
flow that is transferred back to a previous block is seen as recursion.

For rule-based transformation languages with implicit control flow, such anal-
ysis is more subtle. The analysis must consider whether there exists limitations
when describing rules in such system as whether possibly non-terminating rules
are rejected or whether iteration must happen over a bounded collection. Even if
a language does not permit explicit recursion and implicit repetition it can still
be Turing-complete, e.g., if it permits rules that can invoke helper functions on
some substructure or can express su�ciently complex constraints.

5 Analysis of computational expressiveness

5.1 General overview

Table 1 presents a comparison of the languages mentioned in Section 2 with re-
gards to their core paradigm(s) and computational expressiveness. The paradigm
columns tells whether a language contains rule-based constructs, imperative con-
structs or both. The languages with rule-based constructs are further partitioned
into whether or not they are based on graph rewriting and whether they support
specification of bidirectional rules.

Furthermore, the languages are partitioned according to the way they handle
repetition, by whether they use explicit loops like for and while, whether they
support some form of recursion or whether the repetition happens implicitly
where the engine repeats specified rules until finding a fixed-point. Finally, the
table presents whether such language given its features is Turing-complete based
on the concrete analysis presented in Section 5.2.

5.2 Concrete analysis

In this section we will present a concrete analysis of each language justifying
why they are Turing-complete or not.

PROGReS The language supports specification of arbitrary graph rewriting
rules, whose execution is controlled by an imperative language [37; 42; 44]. Since
the imperative control language has an unbounded looping construct loop [49],
it can simulate a general graph rewriting system and is thus Turing-complete.

AGG It is possible to specify arbitrary graph rewriting rules in AGG [43; 46],
including transformation on attributes, and the rules are run by an interpreter-
based engine which only terminates when no rule is further applicable or is
explicitly stopped by the user. Interestingly, the language supports checking
whether a given rule-set results in a terminating program1, but such check is
1 Note that the analysis is semi-decidable: the programs that are accepted are defi-

nitely terminating, but it may also reject terminating programs if it cannot prove
that they satisfy the required constraints
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Paradigm Repetition Turing-complete Notes

Imperative Rule-based Looping Recursion Implicit

Language General Graph-oriented Bidirectional

PROGReS 3 3 3 7 3 3 7 3

AGG 7 3 3 7 7 7 3 3 AG1
GReAT 7 3 3 7 7 3 7 3

GrGen.NET 3 3 3 7 3 3 7 3

Motif 7 3 3 7 3 3 7 3

Atom3 AO1 3 3 7 7 7 3 3

Tefkat 7 3 7 7 7 3 3 3

QVT Relations QR1 3 7 3 7 3 3 3

QVT Operational 3 7 7 7 w 3 7 3

BOTL 7 3 7 3 7 7 w 7

BeanBag 7 3 7 3 w 3 7 ?
VIATRA2 3 3 3 7 3 3 7 3

VMTS VM1 3 3 7 7 3 7 3 VM1, VM2
ATL 3 3 7 7 w AT1 w 3

ETL 3 3 7 7 ET1 ET1 w 3

SDM 3 3 3 7 SD1 SD1 7 3

Xtend 3 7 7 7 3 3 7 3

Rascal 3 RS1 7 7 3 3 7 3

ATC 3 7 7 7 3 3 7 3

w Bounded number of steps
? Status generally unknown
AG1 Optional termination analysis
AO1 Constraints are specified by python statements
QR1 Can call QVT Operational mappings
VM1 Transformation on attributes using XSLT
VM2 Optional termination analysis
AT1 Using global helpers or lazy rules
ET1 Using Epsilon Object Language (EOL)
SD1 By setting up the required control flow and path expressions
RS1 Pattern matching and visitors can simulate rules

Table 1. Expressiveness of model-transformation languages
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optional and not enforced. Therefore, the language is considered Turing-complete
as it corresponds to a general graph rewriting system.

GReAT The language [1; 3] supports blocks that perform rewriting on packets
containing models. These blocks can be connected recursively in such way that
the intermediate output of one block can be fed back to the input of a previous
block, and a rule sequence is only terminating when no further output is pro-
duced. Therefore, the language can simulate a general graph rewriting system
by choosing a general graph structure to be the meta-model of packets, make
blocks perform graph rewriting rules and then use the unbounded iteration for
execution; thus, the language is Turing-complete.

GrGen.NET The language user manual [6] shows an actual implementation of a
Turing-machine. The system works on graphs and supports recursive rules [21],
unbounded looping and general imperative constructs; all these features further
supports the claim of Turing-equivalence.

Motif The language [45] works on graphs and supports unbounded looping (FRule,
SRule), backtracking and recursion (XRule); and therefore the languages can
simulate a general graph rewriting system. Furthermore, it is explicitly men-
tioned that these constructs can be used to make non-terminating programs,
which further strengthens the argument that the language is Turing-complete.

Atom3 The framework works with meta-modelling [52], and it possible for the
user to specify transformations using graph rewriting rules at any level. The sys-
tem is Turing-complete since these specified rules are run by a Graph Rewriting
Processor (GRP) [30; 34] iteratively until no rule is longer applicable, and there-
fore the system can express any general graph rewriting system. The framework
must also necessarily be Turing-complete, since Motif which is Turing-complete
is implemented as a specialised language in the framework. Finally, the frame-
work can execute arbitrary Python statements on attributes and can therefore
also express Turing-complete computation in that way.

Tefkat This rule-based language [31] is based primarily on the second revised
submission report on QVT by DSTC, IBM and CBOP [13] (with a few improve-
ments), which explicitly states that such language is Turing-complete. This is
because rules can specify complex constraints on both the source and target mod-
els, which in combination with unbounded recursion in rules makes it possible
to perform arbitrary calculation.

QVT Relations The language [18] is Turing-complete since it can simulate gen-
eral graph rewriting systems by in-place transformations where relations are
reapplied on the source model until all required constraints are satisfied. Note
that QVT Relations can further call QVT operational code and arbitrary exter-
nal code using the QVT Blackbox mechanism.
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QVT Operational The operational part of QVT [18] is Turing-complete since it is
possible to specify recursive rules [29], in combination with creation of intermedi-
ate data, branching and looping. This makes it similar to many general-purpose
imperative programming languages.

BOTL Model transformations in BOTL [8] are bounded by the number of defined
rules and only applied to a finite set of matches. Therefore, all transformations
are known to be terminating and therefore the language is not Turing-complete.

BeanBag The language [56] supports synchronisation of two models by using
expressions containing various equational constraints, including variable bind-
ing, bounded iteration (forall, exists) and recursion. While various repetition
constructs can be used, they must satisfy a stability property which ensures
there always exists a valid synchronisation for given models. The only way to
make non-terminating programs in the language is by using counter-intuitive
circular equational constraints, and it is stated that most program in practice
always terminate. Since it is unclear whether it is possible to exploit the circu-
lar constraints in an intuitive fashion to perform Turing-complete computation;
without further formal analysis it is unknown if the language is Turing-complete.
The formal analysis is left as future work, but a good place to start would be
using the semantics presented in the main paper [56].

VIATRA2 The language [4; 53] is based on two formalisms: graph transforma-
tion (GT) which allows the user to specify graph rewriting rules and abstract
state machine (ASM) which is a known Turing-complete formalism [7; 19] and
can be used to control the flow of execution. Furthermore, ASM supports an
unbounded iterate instruction which in combination with the general features
of GT makes it able to simulate a general graph rewriting system. Finally, it
should be noted that the language also supports general recursion in pattern
matching and that can be a source of non-termination for ill-formed programs;
however, it is unclear whether recursive patterns can do actual computation and
as such Turing-equivalence is unknown for that part.

VMTS The language [33] supports graph rewriting using a combination of vi-
sual model processors (VMP) and the visual control flow language (VCFL) [32].
VCFL supports unbounded recursion which makes the language a general graph
rewriting system and thus Turing-complete. Additionally, transformations on
attributes are performed using XSLT which is known to be able to perform
Turing-complete computation [36]. Similarly to AGG, the language does how-
ever support optional checking for termination of a transformation.

ATL Ordinary declarative ATL [23; 51] rules cannot be recursive and are applied
only a finitely amount of time by the execution engine [54], and by themselves
they can not perform Turing-complete computation. However, it is possible to
declare lazy rules [50] in ATL which are explicitly and possibly recursively called,
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which in combination with the complex constraints on source and target models
makes the declarative part of ATL Turing-complete in the same way as Tefkat.

In addition it possible to call the imperative helpers from the declarative
rules, which further enables the language to perform Turing-complete compu-
tation. This is because helpers can be recursive [37] and in combination with
the other imperative features (assignment, conditionals) can simulate a general-
purpose programming language. Note that neither the imperative looping con-
struct for nor OCL 2.0 expressions [9] are enough to perform Turing-complete
computation, since they can only iterate through a finite collection of elements.

ETL Like all other languages in the Epsilon framework, the rule-based ETL [26;
27] uses a common core language called the Epsilon Object Language (EOL)
for model transformation. EOL is described as a combination of JavaScript and
EOL and contains all the common imperative language constructs from general-
purpose programming languages like loops (both for and while), branching and
assignment; therefore, the language is Turing-complete.

SDM Story Driven Modelling (SDM) [15] uses graph transformation as an un-
derlying mechanism, where story patterns are used for describing additions and
deletions to models similarly to graph rewriting rules, and a control flow language
with conditional transfer via path expression is used to determine execution of
patterns. The control flow language supports unbounded recursion [12; 37], and
is therefore capable of expressing Turing-complete computation.

Xtend The language [16] is Turing-complete since it is a dialect of Java, which is
a general purpose programming language. Like Java, it supports all commonly
expected constructs for branching, assignment, looping and recursion.

Rascal This is a Turing-complete general purpose programming language [25]
with focus on meta-programming. In addition to all expected imperative lan-
guage constructs, it supports features like generic visitors and pattern directed
functions which can emulate the main ideas of rule-based model transformation
languages; therefore, the language can also simulate a general graph rewriting
system.

ATC As a low-level language [14] for implementing model transformation en-
gines, ATC supports many necessary primitives for model querying, matching,
manipulation and transformation. In addition it contains common imperative
language constructs, including unbounded while loops and therefore the lan-
guage is Turing-complete.

6 Conclusion

This paper presented an analysis on a wide variety of model transformation lan-
guages, confirming that most of these languages are Turing-complete. While such
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property was not always obvious, it was confirmed to hold for all languages in-
vestigated except the bidirectional ones: BOTL and BeanBag. Since the primary
features that enabled Turing-completeness for each language were identified, it
might still be possible to use more advanced verification techniques on programs
that do not use these features. Finally, languages like AGG and VMTS have
optional termination checking that ensures sub-Turing-completeness of specific
programs, and thus further eases the verification of these programs.
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