
Program Verification using Symbolic Game Semantics

Aleksandar S. Dimovski

Faculty of Information-Communication Tech., FON University, Skopje, 1000, MKD

Abstract

We introduce a new symbolic representation of algorithmic game semantics,
and show how it can be applied for efficient verification of open (incomplete)
programs. The focus is on an Algol-like programming language which contains
the core ingredients of imperative and functional languages, especially on its
second-order recursion-free fragment with infinite data types. We revisit the
regular-language representation of game semantics of this language fragment.
By using symbolic values instead of concrete ones, we generalize the standard
notions of regular-language and automata representations of game semantics
to that of corresponding symbolic representations. In this way programs with
infinite data types, such as integers, can be expressed as finite-state symbolic-
automata although the standard automata representation is infinite-state, i.e.
the standard regular-language representation has infinite summations. More-
over, in this way significant reductions of the state space of game semantics
models are obtained. This enables efficient verification of programs by our pro-
totype tool based on symbolic game models, which is illustrated with several
examples.

Keywords: Algorithmic Game Semantics, Symbolic Automata, Program
Verification, Predicate Abstraction

1. Introduction

Game semantics [1, 2, 19] is a technique for compositional modelling of
programming languages, which gives fully abstract models. This means that the
generated models are both sound and complete with respect to observational
equivalence of programs. In game semantics, types are interpreted by games
(or arenas) between a Player, which represents the term being modelled, and
an Opponent, which represents the environment in which the term is used. The
two participants strictly alternate to make moves, each of which is either a
question (a demand for information) or an answer (a supply of information).
Computations (executions of terms) are interpreted as plays of a game, while
terms are expressed as strategies, i.e. sets of plays, for a game. It has been shown

Email address: aleksandar.dimovski@fon.edu.mk (Aleksandar S. Dimovski)

Preprint submitted to Theoretical Computer Science January 10, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50528214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that game semantics model can be given certain kinds of concrete automata-
theoretic representations [10, 14, 16], and so it can serve as a basis for software
model checking and program analysis. Several features of game semantics make
it very promising for software model checking. The model is very precise and
compositional, i.e. generated inductively on the structure of programs, which
is the key feature for achieving scalability. There is a model for any term-in-
context (program fragment) with undefined identifiers, such as calls to library
functions. However, the main limitation of model checking technique in general
is that it can be applied only if a finite-state model is available. This problem
arises when we want to handle terms with infinite data types.

Regular-language representation of game semantics of second-order recursion
free Idealized Algol with finite data types provides algorithms for automatic ver-
ification of a range of properties, such as observational-equivalence, approxima-
tion, and safety. It has the disadvantage that in the presence of infinite integer
data types the obtained automata become infinite state, i.e. regular-languages
have infinite summations, thus losing their algorithmic properties. Similarly,
large finite data types are likely to make the state-space of the obtained au-
tomata so big that it will be practically infeasible for automatic verification.
For example, let us consider how we can model the successor function of type
N→ N. One characteristic play in the strategy for this function looks like this:

succ : N〈1〉 ⇒ N〈2〉

q O
q P
n O

n + 1 P

The play starts by Opponent (O) asking for the value of output with the question
move q, and Player (P) responds by asking for input. When Opponent provides
an input value n, Player supplies n + 1 as output. The model of the successor
function is given by the following regular language:

∑
n∈N(q

〈2〉 · q〈1〉 · n〈1〉 · (n +
1)〈2〉), which has infinite summation when N is an infinite data type. Note that
moves are tagged with superscripts 〈1〉 and 〈2〉 to distinguish from which type
component, input or output, the move comes.

In this paper we redefine the (standard) regular-language representation [14]
at a more abstract level so that terms with infinite data types can be represented
as finite automata, and so various program properties can be checked over them.
The idea is to transfer attention from the standard form of automata to what we
call symbolic automata. The representation of values constitutes the main differ-
ence between these two formalisms. In symbolic automata, instead of assigning
concrete values to identifiers occurring in terms, they are left as symbols. Oper-
ations involving such identifiers will also be left as symbols. Some of the symbols
will be guarded by boolean expressions, which indicate under which conditions
these symbols can be performed. For example, symbolic representation of the
successor function will be given by the following word: q〈2〉 ·q〈1〉·?Z 〈1〉 ·(Z +1)〈2〉,

2

where a new symbol Z is used to encode the value of the input argument.
This paper represents an extended version of [12]. It is organised as follows.

The language we consider here is introduced in Section 2. Symbolic representa-
tion of algorithmic game semantics is defined in Section 3. Correctness of the
symbolic representation and its suitability for verification of safety properties
are shown in Section 4. In Section 5 we discuss some extensions of the language,
such as arrays, and how they can be represented in the symbolic model. A pro-
totype tool, which implements this translation, as well as some examples are
described in Section 6. In Section 7, we conclude and present some ideas for
future work.

1.1. Related work
By representing game semantic models as symbolic automata, we obtain a

predicate abstraction [17, 7] based method for verification. In [3] it was also
developed a predicate abstraction from game semantics. This was enabled by
extending the models produced using game semantics such that the state (store)
is recorded explicitly in the model by using so-called stateful plays. The state is
then abstracted by a set of predicates giving rise to pa (predicate abstraction)-
plays. However, in our work we achieved predicate abstraction in a more natural
way without changing the game semantic models, and also for terms with infinite
data types.

Symbolic techniques, in which data is not represented explicitly but sym-
bolically, have found a number of applications in theoretical computer science.
Some interesting examples are symbolic execution and verification of programs
[5], symbolic program analysis [6, 4], symbolic operational semantics of process
algebras [18], parameterized verification of data independent systems [21, 22],
etc.

2. The Language

Idealized Algol (IA) [25] is a well studied language which combines call-by-
name λ-calculus with the fundamental imperative features and locally-scoped
variables. In this paper we work with its second-order recursion-free fragment
(IA2 for short).

The data types D are integers and booleans (D ::= int | bool). The base
types B are expressions, commands, and variables (B ::= expD | com | varD).
We consider only first-order function types T (T ::= B | B → T).

Terms are formed by the following grammar:

M ::=x |v |skip |diverge | M opM | M ;M | if M thenM elseM |whileM doM
| M := M |!M | newD x :=v in M | mkvarDMM |λ x .M | MM

where v ranges over constants of type D . Expression constants are infinite inte-
gers and booleans. The standard arithmetic-logic operations op are employed.
We have the usual imperative constructs: sequential composition (;), condi-
tional (if), iteration (while), assignment (:=), de-referencing (!), “do nothing”

3

command skip, and diverge command which causes a program to enter an unre-
sponsive state similar to that caused by an infinite loop. Block-allocated local
variables are introduced by a new construct, which initializes a variable and
makes it local to a given block. The constructor mkvar is used for creating
“bad” variables. We have the standard functional constructs for function defi-
nition and application. Well-typed terms are given by typing judgements of the
form Γ ` M : T , where Γ is a type context consisting of a finite number of
typed free identifiers, i.e. of the form x1 : T1, . . . , xk : Tk . Typing rules of the
language are given in [1, 2].

Language constructs can be also given in a functional form: ; : com → B →
B , if : expbool → B → B → B , while : expbool → com → com, := : varD →
expD → com, ! : varD → expD , mkvarD : (expD → com) → expD → varD . A
term can be presented in either form as is convenient depending on context. For
example, ; (M ,N) ≡ M ; N , if(M ,N1,N2) ≡ if M thenN1 elseN2, etc.

The operational semantics of our language is given for terms Γ ` M : T ,
such that all identifiers in Γ are variables, i.e. Γ = x1 : varD1, . . . , xk : varDk . It
is defined by a big-step reduction relation:

Γ ` M , s =⇒ V , s′

where s, s′ represent the state before and after reduction. The state is a function
assigning data values to the variables in Γ. We denote by V terms in canonical
form defined by V ::= x | v | λ x .M | skip | mkvarDMN . Reduction rules are
standard 1 (see [1, 2] for details). The language is deterministic, so every term
can be reduced to at most one canonical form.

Given a term Γ ` M : com, where all identifiers in Γ are variables, we say
that M terminates in state s, written M , s ⇓, if Γ ` M , s =⇒ skip, s′ for some
state s′. If M is a closed term then we abbreviate the relation M , ∅ ⇓ with
M ⇓. We say that a term Γ ` M : T is an approximate of a term Γ ` N : T ,
denoted by Γ ` M @∼ N , if and only if for all terms-with-hole C [−] : com, such
that ` C [M] : com and ` C [N] : com are well-typed closed terms of type com, if
C [M] ⇓ then C [N] ⇓. If two terms approximate each other they are considered
observationally-equivalent, denoted by Γ ` M ∼= N .

3. Symbolic Game Semantics

We start by introducing a number of syntactic categories necessary for con-
struction of symbolic automata. Let Sym be a countable set of symbolic names,
ranged over by upper case letters X, Y, Z. For any finite W ⊆ Sym, the function
new(W) returns a minimal symbolic name which does not occur in W , and sets
W := W ∪ new(W). A minimal symbolic name not in W is the one which
occurs earliest in a fixed enumeration X1,X2, . . . of all possible symbolic names.

1Note that the diverge command is not reducible.

4

A set of expressions Exp, ranged over by e, is defined as follows:

e ::=a | b
a ::=n | X int | a op a
b ::= tt | ff | X bool | a = a | a ≤ a | ¬b | b ∧ b

where a ranges over arithmetic expressions (AExp), and b over boolean expres-
sions (BExp). We use superscripts to denote the data type of a symbolic name
X . We will often omit to write them, when they are clear from the context.

Let A be an alphabet of letters. We define a symbolic alphabet Asym induced
by A as follows:

Asym = A ∪ {?X , e | X ∈ Sym, e ∈ Exp}
The letters of the form ?X are called input symbols. They generate new symbolic
names, i.e. ?X means letX = new(W) in We use α to range overAsym . Next
we define a guarded alphabet Agu induced by A as the set of pairs of boolean
conditions and symbolic letters, i.e. we have:

Agu = {[b, α〉 | b ∈ BExp, α ∈ Asym}
A guarded letter [b, α〉 means that the symbolic letter α occurs only if the
boolean b evaluates to true, i.e. if (b = tt) then α else ∅. We use β to range
over Agu . We will often write only α for the guarded letter [tt , α〉. A word
[b1, α1〉 · [b2, α2〉 . . . [bn , αn〉 over guarded alphabet Agu can be represented as
a pair [b,w〉, where b = b1 ∧ b2 ∧ . . . ∧ bn is a boolean condition and w =
α1 · α2 . . . αn is a word of symbolic letters.

We now show how IA2 with infinite integers is interpreted by symbolic au-
tomata, which will be denoted by extended regular expressions. For simplicity
the translation is defined for terms in β-normal form. If a term has β-redexes, it
is first reduced to β-normal form syntactically by substitution. In this setting,
arenas in which games are played (types) are represented as guarded alphabets
of moves, plays of a game as words over a guarded alphabet, and strategies
for a game as symbolic automata (symbolic regular languages) over a guarded
alphabet. The symbolic automata and regular languages, denoted by S(R) and
L(R) respectively, are specified using extended regular expressions R. They
are defined inductively over finite guarded alphabets Agu using the following
operations:

∅ ε β R · R′ R∗ R + R′ R ∩ R′

R |A′gu R[R′/w] R〈α〉 R′ o
9Bgu R R ./ R′

where R,R′ ranges over extended regular expressions, Agu ,Bgu over finite guarded
alphabets, β ∈ Agu , α ∈ Asym , A′sym ⊆ Asym and w ∈ Agu∗.

Constants ∅, ε and β denote the languages ∅, {ε} and {β}, respectively.
Concatenation R ·R′, Kleene star R∗, union R + R′ and intersection R ∩R′ are
the standard operations. Restriction R |A′gu replaces all symbolic letters from
A′sym with ε in all words of R, but keeps all boolean conditions. Substitution

5

R[R′/w] is the language of R where all occurrences of the subword w have been
replaced by the words of R′. Given two symbols α ∈ Asym , β ∈ Agu , β〈α〉 is a
new letter obtained by tagging. If a letter is tagged more than once, we write
(β〈α1〉)〈α2〉 = β〈α2,α1〉. We define the alphabet Agu〈α〉 = {β〈α〉 | β ∈ Agu}.
Composition of regular expressions R′ defined over Agu〈1〉 + Bgu〈2〉 and R over
Bgu〈2〉 + Cgu〈3〉 is given as follows:

R′ o
9Bgu〈2〉 R = {w[

[b ∧ b1 ∧ b2 ∧ b′1 ∧ b′2 ∧ α1 = α′1 ∧ α2 = α′2, s 〉〈1〉/
[b1, α1〉〈2〉 · [b2, α2〉〈2〉

] | w ∈ R, [b′1, α
′
1〉〈2〉 · [b, s〉〈1〉 · [b′2, α′2〉〈2〉 ∈ R′}

where R′ is a set of words of form [b′1, α
′
1〉〈2〉 · [b, s〉〈1〉 · [b′2, α′2〉〈2〉, such that

[b′1, α
′
1〉〈2〉, [b′2, α

′
2〉〈2〉 ∈ Bgu〈2〉 and [b, s〉 contains only letters from Agu〈1〉. So

all letters of Bgu〈2〉 are removed from the composition, which is defined over
the alphabet Agu〈1〉 + Cgu〈3〉. The shuffle operation of two regular languages is
defined as L(R) ./ L(R′) =

⋃
w1∈L(R),w2∈L(R′) w1 ./ w2, where w ./ ε = ε ./

w = w and a ·w1 ./ b ·w2 = a · (w1 ./ b ·w2) + b · (a ·w1 ./ w2). It is a standard
result that any extended regular expression obtained from the operations above
denotes a regular language [14, pp. 11–12], which can be recognised by a finite
(symbolic) automaton [20].

Each type T is interpreted by a guarded alphabet of moves Agu
[[T]] induced by

A[[T]]. The alphabet A[[T]] contains two kinds of moves: questions and answers.
They are defined as follows 2.

A[[int]] = {. . . ,−n,−n + 1, . . . ,n,n + 1, . . .} A[[bool]] = {tt ,ff }
A[[expD]] = {q} ∪ A[[D]] A[[com]] = {run, done}
A[[varD]] = {read,write(a), a, ok | a ∈ A[[D]]}
Agu

[[B
〈1〉
1 →...→B

〈k〉
k →B]]

=
∑

1≤i≤k

Agu 〈i〉
[[Bi]]

+Agu
[[B]]

Note that function types are tagged by a superscript (〈i〉) in order to keep
record from which type, i.e. which component of the disjoint union, each move
comes from. The letters in the alphabet A[[T]] represent moves (observable
actions) that a term of type T can perform. For example, in A[[expD]] there
is a question move q to ask for the value of the expression, and values from
A[[D]] to answer the question. For commands, in A[[com]] there is a question
move run to initiate a command, and an answer move done to signal successful
termination of a command. For variables, we have question moves for writing
to the variable, write(a), acknowledged by the answer move ok, and for reading
from the variable, a question move read, and corresponding to it an answer from
A[[D]].

For any (β-normal) term, we define a regular-language which represents its
game semantics, i.e. its set of complete plays. Every complete play represents
the observable effects of a completed computation of the given term. It is given

2Here + denotes a disjoint union of alphabets.

6

[[Γ, x : B 〈x ,1〉
1 → . . .B 〈x ,k〉

k → expD〈x〉 ` x : B 〈1〉
1 → . . .B 〈k〉

k → expD]] =
q · q〈x〉 · (∑

1≤i≤k R〈x ,i〉
Bi

)∗·?X 〈x〉 ·X
[[Γ, x : B 〈x ,1〉

1 → . . .B 〈x ,k〉
k → com〈x〉 ` x : B 〈1〉

1 → . . .B 〈k〉
k → com]] =

run · run〈x〉 · (∑
1≤i≤k R〈x ,i〉

Bi

)∗ · done〈x〉 · done
[[Γ, x : B 〈x ,1〉

1 → . . .B 〈x ,k〉
k → varD〈x〉 ` x : B 〈1〉

1 → . . .B 〈k〉
k → varD]] =(

read · read〈x〉 · (∑
1≤i≤k R〈x ,i〉

Bi

)∗·?Z 〈x〉 · Z)
+(

write(?Z ′) · write(Z ′)〈x〉 · (∑
1≤i≤k R〈x ,i〉

Bi

)∗ · ok〈x〉 · ok)

R〈x ,i〉
expD = q〈x ,i〉 · q〈i〉·?Z 〈i〉 · Z 〈x ,i〉

R〈x ,i〉
com = run〈x ,i〉 · run〈i〉 · done〈i〉 · done〈x ,i〉

R〈x ,i〉
varD =(read〈x ,i〉 · read〈i〉·?Z 〈i〉 · Z 〈x ,i〉)+

(write(?Z ′)〈x ,i〉 · write(Z ′)〈i〉 · ok〈i〉 · ok〈x ,i〉)

Table 1: Free Identifiers

as a guarded word [b,w〉, where the boolean b is also called play condition. As-
sumptions about a play (computation) to be feasible are recorded in the play
condition. For infeasible plays, the play condition is inconsistent (unsatisfiable),
thus no assignment of concrete values to symbolic names exists that makes the
play condition true. So it is desirable for any play to check the consistency
(satisfiability) of its play condition. If the play condition is found to be incon-
sistent, this play is discarded from the final model of the corresponding term.
The regular expression for Γ ` M : T is denoted [[Γ ` M : T]], and it is defined
over the guarded alphabet Agu

[[Γ`T]] defined as:

Agu
[[Γ`T]] =

(∑

x :T ′∈Γ

Agu 〈x〉
[[T ′]]

)
+Agu

[[T]]

Free identifiers x : T ∈ Γ are represented by the copy-cat regular expressions
given in Table 1, which contain all possible behaviours of terms of that type.
They provide the most general closure of an open program term. For example,
x : expD〈x〉 ` x : expD is modelled by the word q · q〈x〉·?X 〈x〉 ·X . Its meaning is
that Opponent starts the play by asking what is the value of this expression with
the move q, and Player responds by playing q〈x〉 (i.e. what is the value of the
non-local expression x). Then Opponent provides the value of x by using a new
symbolic name X , which will be also the value of this expression. Languages
R〈x ,i〉

B in Table 1 contain plays representing evaluation of the i -th argument of
a non-local function x . So when a first-order non-local function is called, it
may evaluate any of its arguments, zero or more times, and then it returns any
allowable answer from its result type.

Note that whenever an input symbol ?X is met in a play, a new symbolic
name is created, which binds all occurrences of X that follow in the play until
a new ?X is met. For example, [[f : expint〈f ,1〉 → expint〈f 〉 ` f : expint〈1〉 →
expint]] = q · q〈f 〉 · (q〈f ,1〉 · q〈1〉·?Z 〈1〉 · Z 〈f ,1〉)∗·?X 〈f 〉 · X is a model for a non-
local function f which may evaluate its argument zero or more times. The

7

[[Γ ` v : expD]] = q · v
[[Γ ` skip : com]] = run · done
[[Γ ` c(M1, . . . ,Mk) : B ′]] = [[Γ ` M1 : B 〈1〉

1]] o
9Agu 〈1〉

[[B1]]
· · ·

· · · [[Γ ` Mk : B 〈k〉
k]] o

9Agu 〈k〉
[[Bk]]

[[c : B 〈1〉
1 × . . .B 〈k〉

k → B ′]]

[[Γ ` MN : T]] = [[Γ ` N : B 〈1〉]] o
9Agu 〈1〉

[[B]]
[[Γ ` M : B 〈1〉 → T]]

[[Γ ` newD x := v inM : B]] =
(
[[Γ, x :varD ` M]] ∩ (γx

v ./ A∗[[Γ`B]]gu)
)|Agu 〈x〉

[[varD]]

γx
v = (read〈x〉 · v 〈x〉)∗ · (write(?Z)〈x〉 · ok〈x〉 · (read〈x〉 · Z 〈x〉)∗)∗

Table 2: Language terms

play corresponding to f which evaluates its argument two times is given as:
q ·q〈f 〉 ·q〈f ,1〉 ·q〈1〉 ·Z 〈1〉1 ·Z 〈f ,1〉

1 ·q〈f ,1〉 ·q〈1〉 ·Z 〈1〉2 ·Z 〈f ,1〉
2 ·X 〈f 〉 ·X , where Z1 and Z2

are two different symbolic names used to denote values of the argument when it
is evaluated the first and the second time, respectively. Note that letters tagged
with f represent the actions of calling and returning from the function, while
letters tagged with f .1 are the actions caused by evaluating the first argument
of f .

In Table 2 terms are interpreted by regular expressions describing their sets
of complete plays. An integer or boolean constant is modeled by a play where
the initial question q is answered by the value of that constant. The only play for
skip responds to run with done. A composite term c(M1, . . . ,Mk) consisting of
a language construct ‘c’ and subterms M1, . . . ,Mk is interpreted by composing
the regular expressions for M1, . . . ,Mk , and a regular expression for ‘c’. The
representation of language constructs ‘c’ is given in Table 3. For example, the
regular expression for any arithmetic-logic operation op asks for values of the
arguments, and after obtaining them by symbolic names Z and Z ′ responds by
performing the operation (ZopZ ′). In the case of branching, if the value of the
first argument given by Z is true then its second argument is run, otherwise if Z
is false then its third argument is run. In the definition for local variables given
in Table 2, a ‘cell’ regular expression γx

v is used to impose the good variable
behaviour on the local variable x . It responds to each write(−) with ok, and
plays the most recently written value in response to read, or if no value has
been written yet then answers the read with the initial value v . Notice that all
symbols used in Tables 1,2,3 are of data type D , except the symbol Z in if and
while constructs, which is of data type bool .

We define an effective alphabet of a regular expression to be the set of all
letters appearing in the language denoted by that regular expression. Then by
inspecting all definitions given in Tables 1,2,3, it is easy to show the following
result.

Proposition 1. For any term Γ ` M : T, the effective alphabet of [[Γ ` M : T]]
is a finite subset of Agu

[[Γ`T]].

Any term Γ ` M : T from IA2 with infinite integers is interpreted by

8

[[op : expD〈1〉
1 × expD〈2〉

2 → expD]] = q · q〈1〉·?Z 〈1〉 · q〈2〉·?Z ′〈2〉 · (Z opZ ′)
[[; : com〈1〉 × com〈2〉 → com]] = run · run〈1〉 · done〈1〉 · run〈2〉 · done〈2〉 · done
[[if : expbool〈1〉 × com〈2〉 × com〈3〉 → com]] = [tt , run〉 · [tt , q〈1〉〉 · [tt , ?Z 〈1〉〉·(

[Z , run〈2〉〉 · [tt , done〈2〉〉+ [¬Z , run〈3〉〉 · [tt , done〈3〉〉) · [tt , done〉
[[while : expbool〈1〉 × com〈2〉 → com]] = [tt , run〉 · [tt , q〈1〉〉 · [tt , ?Z 〈1〉〉·(

[Z , run〈2〉〉 · [tt , done〈2〉〉 · [tt , q〈1〉〉 · [tt , ?Z 〈1〉〉)∗ · [¬Z , done〉
[[:= : varD〈1〉 × expD〈2〉 → com]] = run · q〈2〉·?Z 〈2〉 · write(Z)〈1〉 · ok〈1〉 · done
[[! : varD〈1〉 → expD]] = q · read〈1〉·?Z 〈1〉 · Z

Table 3: Language constructs

extended regular expression without infinite summations defined over finite al-
phabet. So the following is immediate.

Theorem 1. For any IA2 term, the set L[[Γ ` M : T]] is a symbolic regular-
language without infinite summations over finite alphabet. Moreover, a finite
symbolic automata S[[Γ ` M : T]] which recognizes it is effectively constructible.

Proof. The proof is by induction on the structure of Γ ` M : T .
An automaton is a tuple (Q , i , δ,F) where Q is the finite set of states, i ∈ Q

is the initial state, δ is the transition function, and F ⊆ Q is the set of final
states. We now introduce two auxiliary operations. Let A′ = (Q ′, i ′, δ′,F ′) be
an automaton, then A = rename(A′, tag) is defined as:
Q = Q ′ i = i ′ F = F ′

δ = {q1
[b,m〉−→ q2 ∈ δ′ | q1 6= i ′, q2 6∈ F ′}+

{i ′ [b,m〈tag〉〉−→ q | i ′ [b,m〉−→ q ∈ δ′} + {q1
[b,m〈tag〉〉−→ q2 | q1

[b,m〉−→ q2 ∈ δ′, q2 ∈ F ′}
Let A1 = (Q1, i1, δ1,F1) and A2 = (Q2, i2, δ2,F2) be two automata, such

that all transitions going out of i2 and going to a state from F2 are tagged with
tag . Define A = compose(A1,A2, tag) as follows:
Q = Q1 + Q2\{i2,F2} i = i1 F = F1

δ = {q1
[b,m〉−→ q ′1 ∈ δ1 | m 6= n〈tag〉} + {q2

[b,m〉−→ q ′2 ∈ δ2 | m 6= n〈tag〉}+

{q1
[b1∧b2∧m1=m2,ε〉−→ q ′2 | q1

[b1,m
〈tag〉
1 〉−→ q ′1 ∈ δ1, i2

[b2,m
〈tag〉
2 〉−→ q ′2 ∈ δ2,

{m1,m2} are questions} + {q2
[b1∧b2∧m1=m2,ε〉−→ q ′1 | q1

[b1,m
〈tag〉
1 〉−→ q ′1 ∈ δ1,

q2
[b2,m

〈tag〉
2 〉−→ q ′2 ∈ δ2, q ′2 ∈ F2, {m1,m2} are answers}

Let AM , AN , and Ao
9
be automata representing Γ ` M , Γ ` N , and construct

; (see Table 3), respectively. The unique automaton representing Γ ` M ; N is
defined as:

AM ; N = compose(compose(Ao
9
, rename(AM , 1), 1), rename(AN , 2), 2)

The other cases for constructs are similar.
The automaton A = (Q , i , δ,F) for [[Γ ` newD x := v inM]] is constructed

in two stages. First we eliminate x -tagged symbolic letters from the automaton

9

run

done

runf runf,1

q x

f

?X
x q y ?Y

y

done

X=Y, donef,1

X Y, run¹
abort

doneabort
donef,1

Figure 1: The symbolic representation of the strategy for M1.

AM = (QM , iM , δM ,FM), which represents [[Γ, x : varD ` M]], by replacing them
with ε, thus obtaining Aε = (Qε, iε, δε,Fε). We also introduce a new symbolic
name X to keep track of what changes to x are made by each x -tagged move.
Qε = QM iε = iM Fε = FM

δε ={iM [?X=v∧b,m〉−→ q | iM [b,m〉−→ q ∈ δM } +

{q1
[b,m〉−→ q2 | q1

[b,m〉−→ q2 ∈ δM ,m 6∈{write(a)〈x〉, ok〈x〉, read〈x〉, a〈x〉}}
{q1

[?X=a′∧b1∧b2,ε〉−→ q2 | ∃ q .(q1
[b1,write(a′)〈x〉〉−→ q ∈ δM , q

[b2,ok〈x〉〉−→ q2 ∈ δM)}
{q1

[a′=X∧b1∧b2,ε〉−→ q2 | ∃ q .(q1
[b1,read〈x〉〉−→ q ∈ δM , q

[b2,a′〈x〉〉−→ q2 ∈ δM)}
The final automaton is obtained by eliminating ε-letters from Aε. Note that

conditions associated to ε-letters are not removed.
Q = Qε i = iε F = Fε

δ =
({δε\{q1

[b,ε〉−→ q2 | q1, q2 ∈ Qε}
)
+

{q1
[b∧bε,m〉−→ q2 | ∃ q ′ ∈ Qε.(q1

[bε,ε〉∗−→ q ′, q ′
[b,m〉−→ q2)}

We write q1
[bε,ε〉∗−→ q2 if q2 is reachable from q1 by a series of ε-transitions

[b1, ε〉, . . . , [bk , ε〉, where bε = b1 ∧ . . . bk .

Example 1. Consider the term M1:

f : comf ,1 → comf , abort : comabort , x : expintx , y : expinty `
f
(
if (x 6= y) then abort

)
: com

in which f is a non-local procedure, and x , y are non-local expressions.
The strategy for this term represented as a finite symbolic automaton is

shown in Figure 1. The model illustrates only the possible behaviors of this
term: the non-local procedure f may call its argument, zero or more times, then
the term terminates successfully with done. If f calls its argument, arbitrary
values for x and y are read from the environment by using symbols X and Y . If
they are different (X 6= Y), then the abort command is executed. The standard
regular-language representation [14] of M1, where concrete values are employed,
is given in Figure 2. It represents an infinite-state automaton, and so it is not
suitable for automatic verification (model checking). Note that, the values for
non-local expressions x and y can be any possible integer. 2

10

run

done

runf runf,1

q x

f

1
x q y

done

done f,1

runabort

0
x

¼
¼

q y 0
y

1
y

...,-1, 1, ...
y y

...,0, 2, ...
y y¼

¼

doneabort

Figure 2: The standard representation of the strategy for M1.

4. Formal Properties

In [14, pp. 28–32], it was shown the correctness of the standard regular-
language representation for finitary IA2 by showing that it is isomorphic to the
game semantics model [1]. As a corollary, it was obtained that the standard
regular-language representation is fully abstract.

Let [[Γ ` M : T]]CR denotes the set of all complete plays in the strategy for
a term Γ ` M : T from IA2 with infinite integers obtained as in [14], where
concrete values in moves and infinite summations in regular expressions are
used. Suppose that there is a special free identifier abort of type comabort. We
say that a term Γ ` M is safe iff Γ\abort ` M [skip/abort]@∼ M [diverge/abort];
otherwise we say that a term is unsafe. Since the standard regular-language
game semantics is fully abstract, the following result is easy to show (see also
[8]).

Proposition 2. A term Γ ` M is safe iff [[Γ ` M]] does not contain any play
with moves from Aabort

[[com]], which we call unsafe plays.

For example, [[abort : comabort ` skip ; abort : com]] = run · runabort · doneabort ·
done, so this term is unsafe.

Let Eval be the set of evaluations, i.e. the set of total functions from W to
A[[int]] ∪ A[[bool]]. We use ρ to range over Eval . So we have ρ(XD) ∈ A[[D]] for
any evaluation ρ ∈ Eval and XD ∈ W . Given a word of symbolic letters w , let
ρ(w) be a word where every symbolic name is replaced by the corresponding
concrete value as defined by ρ. Given a guarded word [b,w〉, define ρ([b,w〉) =
ρ(w) if ρ(b) = tt ; otherwise ρ([b,w〉) = ∅ if ρ(b) = ff . The concretization
of a symbolic regular-language over a guarded alphabet is defined as follows:
γ L(R) = {ρ[b,w〉 | [b,w〉 ∈ L(R), ρ ∈ Eval}. Let [[Γ ` M : T]]SR = L[[Γ ` M :
T]] be the strategy obtained as in Section 3, where symbols instead of concrete
values are used.

Theorem 2. For any IA2 term

γ [[Γ ` M : T]]SR = [[Γ ` M : T]]CR

11

Proof. By induction on the typing rules. Definitions of constants are the same.
Consider the case of free identifiers.

γ[[x : expD〈x〉 ` x : expD]]SR = γ{q · q〈x〉 ·XD 〈x〉 ·XD}
= {q · q〈x〉 · ρ(XD)〈x〉 · ρ(XD) | ρ : {XD} → A[[D]]}
= {q · q〈x〉 · v 〈x〉 · v | v ∈ A[[D]]} = [[x : expD〈x〉 ` x : expD]]CR

Let us consider the branching construct.
γ[[if : expbool〈1〉 × com〈2〉 × com〈3〉 → com]]SR =

γ{run · q〈1〉 · Z 〈1〉 · ([Z , run〈2〉〉 · done〈2〉 + [¬Z , run〈3〉〉 · done〈3〉
) · done} =

{run · q〈1〉 · ρ(Z)〈1〉 · ([ρ(Z), run〈2〉〉 · done〈2〉 + [¬ρ(Z), run〈3〉〉 · done〈3〉
)

·done | ρ : {Z} → {tt ,ff }} =
{run · q〈1〉 · v 〈1〉 · ((if (v) then run〈2〉 else ∅) · done〈2〉+

(if (¬v) then run〈3〉 else ∅) · done〈3〉
) · done | v ∈ {tt ,ff }} =

{run · (q〈1〉 · tt〈1〉 · run〈2〉 · done〈2〉 + q〈1〉 · ff 〈1〉 · run〈3〉 · done〈3〉
) · done} =

[[if : expbool〈1〉 × com〈2〉 × com〈3〉 → com]]CR

The other cases as well as composition are similar to prove.

As a corollary we obtain the following result.

Theorem 3. [[Γ ` M : T]]SR is safe iff [[Γ ` N : T]]CR is safe.

By Proposition 2 and Theorem 3 it follows that a term is safe if its symbolic
regular-language semantics is safe. Since symbolic automata are finite state, it
follows that we can use model-checking to verify safety of IA2 terms with infinite
data types.

In order to verify safety of a term we need to check whether the symbolic
automaton representing a term contains unsafe plays. We use an external SMT
solver Yices 3 [13] to determine consistency of the play conditions of the dis-
covered unsafe plays. If some play condition is consistent, i.e. there exists an
evaluation ρ that makes the play condition true, the corresponding unsafe play
is feasible and it is reported as a genuine counter-example. By replacing sym-
bolic names in the play with the concrete values as defined by ρ, we will obtain
a concrete genuine counter-example corresponding to an unsafe computation of
the term. If the condition of an unsafe play is found to be inconsistent, then
the play is considered as infeasible, and so discarded from the model.

Given a finite-state symbolic model of a term, we use the following procedure
to check its safety. The breadth-first search algorithm is applied to find the
shortest unsafe play in the model. If its play condition is found to be consistent,
the procedure terminates. Otherwise, the next shortest unsafe play is found and
tested for consistency.

Example 2. The term M1 from Example 1 is abort-unsafe, with the following
counter-example:

run·runf ·runf ,1 ·qx ·X x ·qy ·Y y ·[X 6= Y , runabort〉·doneabort ·donef ,1 ·donef ·done

3http://yices.csl.sri.com

12

[run>?X=0, q
N

?Z
N

done

doneabort

[

?
=

,
>

X<Z
X

X+1 q

Ù

N
?Z

N

[0,r >> un
abort

X Z X³ Ù

[, >X Z X 0 done³ Ù £

Figure 3: The strategy for M2.

The consistency of the play condition is established by instructing Yices to check
the formula:

(define X :: int)
(define Y :: int)
(assert (/ = X Y))

The following satisfiable assignments to symbols are reported: X = 1 and Y =
2, yielding a concrete unsafe play:

run · runf · runf ,1 · qx · 1x · qy · 2y · runabort · doneabort · donef ,1 · donef · done

2

Example 3. Consider the term M2:

N : expintN , abort : comabort ` newint x := 0 in
while (x < N) do x := x + 1;
if (x > 0) then abort : com

The strategy for this term (suitably adapted for readability) is given in
Figure 3. Observe that the term communicates with its environment using non-
local identifiers N and abort. So in the model will only be represented actions
of N and abort. Notice that each time the term (Player) asks for a value of N
with the move qN , the environment (Opponent) provides a new fresh value ?Z
for it. The symbol X is used to keep track of the current value of x . Whenever
a new value for N is provided, the term has three possible options depending
on the current values of Z and X : it can terminate successfully with done; it
can execute abort and terminate; or it can run the assignment x := x + 1 and
ask for a new value of N .

The shortest unsafe play found in the model is:

[X = 0, run〉 · qN · ZN · [X ≥ Z ∧ X > 0, runabort〉 · doneabort · done

But the play condition for it, X = 0 ∧ X ≥ Z ∧ X > 0, is inconsistent. The
next unsafe play is:

[X1 = 0, run〉 · qN · Z1
N · [X1 < Z1 ∧ X2 = X1 + 1, qN 〉 · Z2

N ·
[X2 ≥ Z2 ∧ X2 > 0, runabort〉 · doneabort · done

13

Now Yices reports that the condition for this play is satisfiable, yielding a pos-
sible assignment of concrete values to symbols that makes the condition true:
X1 = 0, Z1 = 1, X2 = 1, Z2 = 0. So it is a genuine counter-example, such that
one corresponding concrete unsafe play is:

run · qN · 1N · qN · 0N · runabort · doneabort · done

This play corresponds to a computation which runs the body of while exactly
once.

Let us modify the M2 term as follows

newint x := 0 in while (x < N) do x := x + 1; if (x > k) then abort

where k > 0 is any positive integer. The model for this modified term is the same
as shown in Figure 3, except that conditions associated with letters runabort

(resp., done) are X ≥ Z ∧ X > k (resp., X ≥ Z ∧ X ≤ k). In this case the
(k +1)-shortest unsafe plays in the model are found to be inconsistent. The first
consistent unsafe play corresponds to executing the body of while (k +1)-times,
and one possible concrete representation of it (as generated by Yices) is:

run · qN · 1N · qN · 2N · . . . · qN · (k + 1)N · qN · 0N · runabort · doneabort · done

2

Note that the procedure described above may diverge for safe terms. As a
simple example, we can consider a slightly modified version of the term M2:

newint x := 0 in while (x < N) do x := x + 1; if (x > x) then abort

It is a safe term, since the guard of ‘if’ statement will always evaluate to false.
However, our procedure will continually report unsafe plays, whose play condi-
tions will be inconsistent (unsatisfiable).

5. Handling arrays

We now extend the language with arrays of length k > 0. They can be
handled in two ways. Firstly, we can introduce arrays of fixed length as syntactic
sugar by using existing term formers. An array x [k], where k is a fixed positive
integer, is represented as a set of k distinct variables x [0], x [1], . . ., x [k − 1],
such that we will use the following abbreviations:

newD x [k] := v in M ≡
newD x [0] := v in
. . .

newD x [k − 1] := v in M
x [E] ≡

if E = 0 then x [0] else
. . .

if E = k − 1 then x [k − 1] else skip (abort)

14

If we want to verify whether array out-of-bounds errors are present in the term,
i.e. there is an attempt to access elements out of the bounds of an array, we
execute abort instead of skip when E ≥ k . This approach for handling arrays is
taken by the standard representation of game semantics [14, 10].

Secondly, since we work with symbols we can have more efficient represen-
tation of arrays with unfixed (arbitrary) length. While in the first approach the
length of an array k must be a concrete positive integer, in the second approach
k can be represented by a symbol with an initial constraint k > 0. We use the
support that Yices provides for arrays by enabling: function definitions, func-
tion updates, and lambda expressions. For each local array x [k] : varD , we can
define in Yices a function symbol X of type int → D as:

(define X :: (→ int D))

The function symbol X can be initialized and updated as follows:

(lambda (index :: int) val)
(update X (index) val)

For example, a local array x [k] : varint initialized to 0 is represented in Yices as:

(define X :: (→ int int))
(assert (= X (lambda (j :: int) 0)))

In this approach, symbolic representation of a non-local array is as follows.

[[Γ, x [k] ` x [E] : varD]] = [[Γ ` E : expint〈1〉]] o
9Agu 〈1〉

[[expint]]
[[Γ, x [k] ` x [−] : varD]]

[[Γ, x [k] ` x [−] : varD]] = (read · q〈1〉·?Z 〈1〉 · [Z < k , read〈x [Z]〉〉·?Z ′〈x [Z]〉 · Z ′)
+(write(?Z ′) · q〈1〉·?Z 〈1〉 · [Z < k ,write(Z ′)〈x [Z]〉〉 · ok〈x [Z]〉 · ok)

(1)
We can see that a new symbolic name Z is used to represent the index of the
array element that needs to be de-referenced or assigned to.

If we also want to check for array out-of-bounds errors, we extend this inter-
pretation by including plays that perform moves associated with abort command
when Z ≥ k . In this case, the symbolic interpretation of arrays will be as follows:

[[Γ, x [k] ` x [−] : varD]] =
(
read · q〈1〉·?Z 〈1〉 · ([Z < k , read〈x [Z]〉〉·?Z ′〈x [Z]〉 · Z ′

+ [Z ≥ k , run〈abort〉〉 · done〈abort〉 · 0)
)

+
(
write(?Z ′) · q〈1〉·?Z 〈1〉 · ([Z < k ,write(Z ′)〈x [Z]〉〉 · ok〈x [Z]〉 · ok

+ [Z ≥ k , run〈abort〉〉 · done〈abort〉 · ok))
(2)

So when we have an array in a term, we can interpret it either by using (1) in
the case that we do not want to verify array out-of-bounds errors, or by using
(2) in the case that we want to check such errors.

The automaton A for [[Γ ` newD x [k] := v inM]], where AM represents
[[Γ, x [k] ` M]], is obtained as follows. We first construct Aε by eliminating x -
tagged moves from AM . Similarly as with local variables, we use a new function

15

[run>?X(j):=0 k>0,Ù q
y

?Z
y

done

doneabort[,r >un
abort

Z k³

[, >Z<k ?X(Z):=3 doneÙ

Figure 4: The symbolic model for M3.

symbol X of type int → D to keep track of what changes to array x are made
by each x -tagged move.

Qε = QM iε = iM Fε = FM

δε ={iM [?X (j):=v∧k>0∧b,m〉−→ q | iM [b,m〉−→ q ∈ δM } +

{q1
[b,m〉−→ q2 |q1

[b,m〉−→ q2 ∈ δM ,m 6∈{write(a)〈x [a′]〉, ok〈x [a′]〉, read〈x [a′]〉, a〈x [a′]〉}}
{q1

[?X (a′):=a∧b1∧b2,ε〉−→ q2 |∃ q .(q1
[b1,write(a)〈x [a

′]〉〉−→ q∈δM , q
[b2,ok〈x [a

′]〉〉−→ q2∈δM)}
{q1

[a=X (a′)∧b1∧b2,ε〉−→ q2 | ∃ q .(q1
[b1,read〈x [a

′]〉〉−→ q ∈ δM , q
[b2,a〈x [a

′]〉〉−→ q2 ∈ δM)}

We use ?X (j) := v to mean that a new function symbol X is defined and
initialized to v for all its arguments, while ?X (a ′) := a means that the current
function symbol X is updated at argument a ′ to a. The final automaton A is
generated by removing ε-letters from Aε, similarly as it was done for the case
of newD in Theorem 1.

Example 4. Consider the term M3:

y : expinty , abort : comabort ` newint x [k] := 0 in x [y] := 3 : com

The symbolic model of this term is given in Figure 4, where the array x is
interpreted by (2). The shortest unsafe play is:

[X (j) := 0 ∧ k > 0, run〉 · qy · Z y · [Z ≥ k , runabort〉 · doneabort · done

Its play condition is satisfiable for the evaluation: k = 1, Z = 1, yielding an
unsafe computation where the value 1 is read from y and the length of the array
x is 1. So this represents a computation in which an array out-of-bounds error
occurs. 2

6. Implementation

We have developed a prototype tool in Java, called Symbolic GameChecker,
which automatically converts an IA2 term with integers into a symbolic automa-
ton which represents its game semantics. The model is then used to verify safety
of the term. Further examples as well as detailed reports of how they execute

16

[run>?X=0, run
f

done

doneabort

[?
=

,

X
X+1 done

f,1 >

[,r >>1 un
abort

X

run
f,1

run
f,2

done
f,2

[, >1 done
f,2

X£

done
f

Figure 5: The symbolic model for the procedural term.

on Symbolic GameChecker are available from:
http://www.dcs.warwick.ac.uk/~aleks/symbolicgc.htm.

Along with the tool we have also implemented in Java our own library of
classes for working with symbolic automata. We could not just reuse some
of the existing libraries for finite-state automata, due to the specific nature
of symbolic automata we use. The symbolic automata generated by the tool is
checked for safety. We use the breadth-first search algorithm to find the shortest
unsafe play in the model. Then an external SMT solver Yices is called to check
consistency of its condition. If the condition is found to be consistent, the unsafe
play is reported; otherwise we search for another unsafe play. If no unsafe play
is discovered or all unsafe plays are found to be inconsistent, then the term
is deemed safe. The tool also uses a simple forward reachability algorithm to
remove all unreachable states of a symbolic automaton.

6.1. A procedural term
Consider the term:

f : comf ,1 → comf ,2 → comf , abort : comabort ` newint x := 0 in
f
(
x := x + 1, if (x > 1) then abort

)
: com

in which f is a non-local procedure.
The symbolic model for this term is given in Figure 5. The non-local pro-

cedure f may call its arguments, zero or more times, in any order, and then
terminates successfully. The shortest counter-example is:

[X = 0, run〉 · runf · runf ,2 · [X > 1, runabort〉 · doneabort · donef ,2 · donef · done

Its play condition (X = 0 ∧ X > 0) is inconsistent, so it is discarded. The next
found counter-example is:

[X1 = 0, run〉 · runf · runf ,1 · [X2 = X1 + 1, donef ,1〉 · runf ,2·
[X2 > 1, runabort〉 · doneabort · donef ,2 · donef · done

17

[run>?I=0 k>0,Ù q
y

?Y
y

[

,re
ad

?P=Y
I<k

>x[I]

Ù

[, >I k done³?P=YÙ

?Z
x[I]

[,r >un
abort

P=Z doneabort
[

,re
ad

P
Z

?I=
I+

1
I<

k

>

¹

x[I
]

Ù

Ù

[, >?I=I+1 I k doneÙ ³

[, >?I=I+1 I kÙ < read
x[I]

[, >P Z ?I=I+1 I k done¹ Ù Ù ³

Figure 6: The symbolic model for the linear search.

Yices finds that the condition for this play (X1 = 0 ∧ X2 = X1 + 1 ∧ X2 > 0) is
also found to be unsatisfiable. The next counter-example is:

[X1 = 0, run〉 · runf · runf ,1 · [X2 = X1 + 1, donef ,1〉 · runf ,1·
[X3 = X2 + 1, donef ,1〉 · runf ,2 · [X3 > 1, runabort〉 · doneabort ·

donef ,2 · donef · done

Its play condition is satisfiable, so it is reported as a genuine counter-example.
It corresponds to a computation where f uses its first argument two times, then
its second argument.

6.2. A linear search term
Let us consider the following implementation of the linear search algorithm.

x [k] : varintx [−], y : expinty , abort : comabort `
newint i := 0 in
newint p := y in
while (i < k) do {

if (x [i] = p) then abort;
i := i + 1; }

: com

The program first remembers the input expression y into a local variable p.
The non-local array x is then searched for an occurrence of the value stored in
p. If the search succeeds, then abort is executed.

The symbolic model for this term is shown in Fig. 6, where for simplicity
array out-of-bounds errors are not taken in the consideration. If the value read
from the environment for y has occurred in x , then an unsafe behaviour of the
term exists. So this term is unsafe, and the following counter-example is found:

[I1 = 0 ∧ k > 0, run〉 qy Y y [P = Y ∧ I1 < k , readx [I1]〉 Z x [I1]

[Z = P , runabort〉 doneabort [I2 = I1 + 1 ∧ I2 ≥ k , done〉

18

n = 2 n = 3
k Time Model Time Model
1 < 1 11 < 1 13
5 1 43 1 61

10 2 83 2 121
15 5 123 6 181

Table 4: Verification of the linear search with finite data

This play corresponds to a term with an array x of size k = 1, where the values
read from x [0] and y are equal.

Overall, the symbolic model for linear search term has 9 states and the total
time needed to generate the model and test its safety is less than 1 sec. We
can compare this approach with the tool in [10], where the standard algorithmic
representation of game semantics based on CSP process algebra [26] for terms
with finite data types is used. We performed experiments for the linear search
term with different sizes of k and all integer types replaced by finite data types.
The types of x , y , and p is intn , i.e. they contain n distinct values {0, . . .n −
1}, and the type of the index i is intk+1, i.e. one more than the size of the
array. Such term was converted into a CSP process which represents its game
semantics, and then the FDR model checker 4 for CSP process algebra was used
to generate its model and test its safety. Experimental results are shown in
Table 4, where we list the execution time in seconds, and the size of the final
model in number of states. The model and the time increase very fast as we
increase the sizes of k and n. We ran FDR and Symbolic GameChecker on a
Machine AMD Phenom II X4 940 with 4GB RAM. The obtained experimental
results confirm efficiency of our symbolic approach.

7. Conclusion

We have shown how to reduce the verification of safety of game-semantics
infinite-state models of IA2 terms with infinite data types to the checking of the
more abstract finite-state symbolic automata. The main feature of symbolic
automata is that data is not represented explicitly in it, but symbolically.

Counter-example guided abstraction refinement procedures (ARP) [8, 9] can
also be used for verification of terms with infinite integers. ARP starts by model-
checking the most abstract version of the concrete program, where all infinite
integer types are abstracted to the coarsest abstraction that contains only one
abstract value. If no counterexample or a genuine one is found, the procedure
terminates. Otherwise, it uses a spurious counterexample to gradually refine
the abstraction for the next iteration. So ARP finds solutions after performing
a few iterations in order to adjust integer identifiers to suitable abstractions.

4http://www.fsel.com/

19

In each iteration, one abstract term is model-checked. If an abstract term
needs larger abstractions, then it is likely to obtain a model with very large
state space, which is difficult (infeasible) to generate and check automatically.
The symbolic approach presented in this paper provides solutions in only one
iteration, by checking symbolic models which are significantly smaller than the
abstract models in ARP. The possibility to handle arrays with arbitrary length
is another important benefit of this approach.

Extensions to nondeterministic [11, 24], concurrent [15, 16], and probabilis-
tic [23] terms can be interesting to consider. In the case of nondeterministic
programs, there exists an algorithmic game semantics model [24] which is fully
abstract with respect to two complementary notions of observational equiva-
lence of programs: the possibility of termination (may-termination) and the
guarantee of termination (must-termination). Apart from containing conver-
gent behaviours of programs, the model also contains divergent behaviours of
programs. So its symbolic representation can be used for efficient verification
of both safety and liveness properties, such as termination of nondeterministic
programs with infinite data types.

Since we consider standard regular-languages to be ultimate meanings of
terms, and their symbolic representations to be stepping stones to those mean-
ings, we can regard two symbolic automata to be equal if their corresponding
concretization induced by γ are the same. This allows to study and perform
transformations of symbolic automata which preserve the equality, and will also
enable us to verify properties such as observational-equivalence and approxima-
tion. We leave this topic for future research.

References

[1] Abramsky, S., McCusker, G. Linearity, sharing and state: a fully abstract
game semantics for Idealized Algol with active expressions. In Electr. Notes
Theor. Comput. Sci. 3, pp. 2–14, (1996).

[2] Abramsky, S., McCusker, G. Game Semantics. In Proceedings of the
1997 Marktoberdorf Summer School: Computational Logic , (1998), 1–56.
Springer.

[3] Bakewell, A., Ghica, D. R. Compositional Predicate Abstraction from
Game Semantics. In: Kowalewski, S., Philippou A. (eds.) TACAS 2009.
LNCS vol. 5505, pp. 62–76. Springer, Heidelberg (2009).

[4] Burgstaller, B., Scholz, B., Blieberger, J. Symbolic Analysis of Imperative
Programming Languages. In: Lightfoot, D.E., Szyperski, C.A. (eds.) JMLC
2006. LNCS vol. 4228, pp. 172–194. Springer, Heidelberg (2009).

[5] Clarke, L.A., Richardson, D.J. Symbolic evaluation methods for program
analysis. In: Muchnick, S.S., Jones, N.D. (eds.), Program Flow Analysis:
Theory and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1981.

20

[6] Dannenberg, R.B., Ernst. G.W. Formal program verification using symbolic
execution. In IEEE Transactions on Software Engineering, 8(1), pp. 43–52,
(1982).

[7] Das, S., Dill, D. L., Park, S. Experience with Predicate Abstraction. In:
Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS vol. 1633, pp. 160–171.
Springer, Heidelberg (1999).

[8] Dimovski, A., Ghica, D. R., Lazić, R. Data-Abstraction Refinement: A
Game Semantic Approach. In: Hankin, C., Siveroni, I. (eds.) SAS 2005.
LNCS vol. 3672, pp. 102–117. Springer, Heidelberg (2005).

[9] Dimovski, A., Ghica, D. R., Lazić, R. A Counterexample-Guided Refine-
ment Tool for Open Procedural Programs. In: Valmari, A. (ed.) SPIN
2006. LNCS vol. 3925, pp. 288–292. Springer, Heidelberg (2006).

[10] Dimovski, A., Lazić, R. Compositional Software Verification Based on
Game Semantics and Process Algebras. In Int. Journal on STTT 9(1),
pp. 37–51, (2007).

[11] Dimovski, A. A Compositional Method for Deciding Equivalence and Ter-
mination of Nondeterministic Programs. In: Mery, D., Merz, S. (eds.) IFM
2010. LNCS vol. 6396, pp. 121–135. Springer, Heidelberg (2010).

[12] Dimovski, A. Symbolic Representation of Algorithmic Game Semantics. In:
Faella, M., Murano, A. (eds.) GandALF 2012. EPTCS vol. 96, pp. 99–112.
Open Publishing Association, (2012).

[13] Dutertre, B., de Moura, L. M. A Fast Linear-Arithmetic Solver for
DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS vol. 4144,
pp. 81–94. Springer, Heidelberg (2006).

[14] Ghica, D. R., McCusker, G. The Regular-Language Semantics of Second-
order Idealized Algol. Theoretical Computer Science 309 (1–3), pp. 469–
502, (2003).

[15] Ghica, D. R., Murawski, A. S: Angelic semantics of fine-grained concur-
rency. In: Walukiewicz, I. (ed.) FoSSaCS 2004. LNCS vol. 2987, pp. 211–
255. Springer, Heidelberg (2004).

[16] Ghica, D. R., Murawski, A. S. Compositional Model Extraction for Higher-
Order Concurrent Programs. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS vol. 3920, pp. 303–317. Springer, Heidelberg (2006).

[17] Graf, S., Saidi, H. Construction of abstract state graphs with PVS. In:
Grumberg, O. (ed.) CAV 1997. LNCS vol. 1254, pp. 72–83. Springer, Hei-
delberg (1997).

[18] Hennessy, M., Lin, H. Symbolic Bisimulations. In Theoretical Computer
Science 138(2), pp. 353–389, (1995).

21

[19] Hyland, J. M. E., and C.-H. L. Ong, On Full Abstraction for PCF: I, II,
and III, In Information and Computation 163(2), (2000), 285–400.

[20] Hopcroft, J. E., Motwani, R., and Ullman, J. D. Introduction to Automata
Theory, Languages and Computation. (Addison Wesley Longman, 2001).

[21] Lazić, R. A Semantic Study of Data Independence with Applications to
Model Checking. D. Phil. Thesis, Oxford University, 1999.

[22] Lazić, R., and Nowak, D. A Unifying Approach to Data-Independence.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS vol. 1887, pp. 581–595.
Springer, Heidelberg (2000).

[23] Murawski, A.S., Ouaknine, J: On Probabilistic Program Equivalence and
Refinement. In Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS vol.
3653, pp. 156–170. Springer, Heidelberg (2005).

[24] Murawski, A: Reachability Games and Game Semantics: Comparing Non-
deterministic Programs. In: Proceedings of LICS 2008. IEEE, pp. 173–183.
IEEE, Los Alamitos (2008).

[25] Reynolds, J. C: The essence of Algol. In: O’Hearn, P.W., Tennent, R.D.
(eds), Algol-like languages. (Birkhaüser, 1997).

[26] Roscoe, W. A: Theory and Practice of Concurrency. Prentice-Hall, 1998.

22

