
Type Checking Liveness
for Collaborative Processes

with Bounded and Unbounded Recursion
(Full version)

Søren Debois1, Thomas Hildebrandt1, Tijs Slaats1,2, and Nobuko Yoshida3

1 IT University of Copenhagen {debois,hilde,tslaats}@itu.dk
2 Exformatics A/S

3 Imperial College yoshida@doc.ic.ac.uk

Abstract. We present the first session typing system guaranteeing re-
sponse liveness properties for possibly non-terminating communicating
processes. The types augment the branch and select types of the stan-
dard binary session types with a set of required responses, indicating that
whenever a particular label is selected, a set of other labels, its responses,
must eventually also be selected. We prove that these extended types are
strictly more expressive than standard session types. We provide a type
system for a process calculus similar to a subset of collaborative BPMN
processes with internal (data-based) and external (event-based) branch-
ing, message passing, bounded and unbounded looping. We prove that
this type system is sound, i.e., it guarantees request-response liveness for
dead-lock free processes. We exemplify the use of the calculus and type
system on a concrete example of an infinite state system.

1 Introduction

Session types were originally introduced as typing systems for particular π-
calculi, modelling the interleaved execution of some number of two-party pro-
tocols. A well-typed process is guaranteed freedom from race-conditions as well
as communication compatibility, usually referred to as session fidelity [15,26,24].
Session types have subsequently been the subject of intense study, with much
work on applications, typically to programming languages, e.g., [11,17,14,20].
A number of generalisations of the theory has been proposed, notably to multi-
party session types [16]. Multi-party session types have a close resemblance to
choreographies as found in standards for business process modelling languages
such as BPMN [21] and WS-CDL, and has been argued in theory to be able to
provide typed BPMN processes [8].

Behavioral types usually furnish safety guarantees, notably progress and
lock-freedom [3,1,5,10,25]. In contrast, in this paper we extend binary session
types to allow specification of liveness—the property of a process eventually “do-
ing something good”. Liveness properties are usually verified by model-checking
techniques [6,2,4], requiring a state-space exploration. In the present paper we

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50528035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

show that a fundamental class of liveness properties, so-called request-response
properties, can be dealt with by type rules, that is, without resorting to states-
pace exploration. As a consequence, we can deal statically with infinite state
systems as exemplified below. Also, liveness properties specified in types can be
understood and used as interface specifications and for compositional reasoning.

Fig.A. A Potentially Non-live Shopping Cart BPMN Process

As an example, the above diagram contains two pools: The Buyer and the
ShoppingCart. Only the latter specifies a process, which has two parts: Order-
ing and Delivery. Ordering is a loop that starts with an event-based gateway,
branching according to the message sent by the customer: messages AddItem
and RemoveItem provides an item to be added respectively removed from the
order, whereafter the loop repeats. A Checkout message provides delivery details
of the order, exits the loop, and proceeds to the Delivery phase. This is again a
loop, delivering the ordered items and then sending the invoice.

A buyer who wants to communicate safely with the Shopping Cart, must
follow the protocol described above, and in particular must be able to receive an
unbounded number of items before receiving the invoice. Writing AI,RI,CO,DI,
and SI for the actions “Add Items”, ”Remove Items”, “Checkout”, “Deliver
Items” and “Send Invoice”; we can describe this protocol with a session type:

µt.&{AI.?.t,RI.?.t,CO.?.µt′.⊕ {DI.!.t′,SI.!.end}} .

This session type can be regarded as a behavioral interface, specifying that the
process first expects to receive either an AI (AddItem), RI (RemoveItem) or
a CO (CheckOut) event. The two first events must be followed by a message
(indicated by “?”), which in the implementation provides the item to be added

2

or removed, after which the protocol returns to the initial state. The checkout
event is followed by a message (again indicated by a “?”) after which the protocol
enters a new loop, either sending a DI (DeliverItem) event followed by a message
(indicated by a “!”) and repeating, or sending an SI (SendInvoice) event followed
by a message (the invoice) and ending.

However, standard session types can not specify the very relevant liveness
property, that a CheckOut event is eventually followed by an invoice event. This
is an example of a so-called response property: an action (the request) must be
followed by a particular response. In this paper we conservatively extend binary
session types to specify such response properties, and we show that this extension
is strictly more expressive than standard session types. We do so by annotating
the checkout selection in the type with the required response:

µt.&{AI.?.t,RI.?.t,CO[{SI}].?.µt′.⊕ {DI.!.t′,SI.!.end}} .

Intuitively: “if CO is selected, then subsequently also SI must be selected.”

Fig. B. Live delivery with MI Sub-Process

Determining from the flow graph
alone if this response property is guar-
anteed is in general not possible: Data
values dictate whether the second
loop terminates. However, we can re-
move this data-dependency by replac-
ing the loop with a bounded itera-
tion. In BPMN this can be realised by
a Sequential Multiple Instance Sub-
process, which sequentially executes a
(run-time determined) number of in-
stances of a sub-process. With this, we may re-define Delivery as in Fig. B,
yielding a re-defined Shopping Cart process which has the response property.

In general, we need also be able to check processes where responses are re-
quested within (potentially) infinite loops. The type system we present gives
such guarantees, essentially by collecting all requested responses in a forward
analysis, exploiting that potentially infinite loops can guarantee a particular re-
sponse only if every path through the loop can; and that order (request-response
vs response-request) is in this case irrelevant. We prove that, if the system is
lock free, then the typing system indeed guarantees that all requested responses
are eventually fulfilled. Lock-freedom is needed because, as is well known, col-
laborative processes with interleaved sessions may introduce dependency locks.
Lock-freedom is well-studied for binary session types [3,1,5,10,25], or may al-
ternatively be achieved by resorting to global types [16], the combination with
which we leave for future work.

In summary, our contributions are as follows.

– We extend binary session types with a notion of required response.

– We prove that this extension induces a strictly more expressive language
class than standard session types.

3

– We give a typing system conservatively extending standard binary session
types which gives the further guarantee that a lock-free well-typed process
will, in any execution, provide all its required responses.

– We exemplify the use of these extended types to guarantee both safety and
liveness properties for a non-trivial, infinite state collaborative process, which
exhibits both possibly infinite looping and bounded iteration.

Related work. There is a vast amount of work on verification of collaborative
processes. Most of the work take a model-checking approach, where the system
under verification is represented as a kind of automaton or Petri Nets. An ex-
ample that explicitly addresses collaborative business processes is [23], which
however does not cover liveness properties. The work on Live Sequence Charts
(LSCs) in [6] is a conservative extension of Message Sequence Charts adding
support for distinguishing possible (may) from required (must) behaviour and
thus specification of liveness properties for collaborating processes. LSCs can
be mapped to symbolic timed automata [2] but relies as all model-checking ap-
proaches on abstraction techniques for reducing a large or even infinite state
space to a tractable size. Here the work in [4] is interesting for the fact that the
model-checking can be split on components. The work in [19] allows for model-
checking of ML programs by a translation to higher-order recursion schemes. In-
terestingly, the model-checking problem is reduced to a type-checking problem,
but rely on a technique for generation of a specific type system for the property
of interest. In contrast, our approach is based on a single type system directly
applicable for the process language at hand, where the (less general) liveness and
safety properties of interest are specified as the type to be checked and can also
be used as interface descriptions of processes. The work on fair sub typing in
[22] is the only work on session types addressing liveness we are aware of, which
details a liveness-preserving subtyping-relation for session types. In comparison,
our approach allows the specification of fine-grained request-response liveness
properties—“if something happens, something else must happen”—something
not allowed by [22].

Overview of this paper. In Sec. 2 we define our calculus and give an LTS-
semantics for the calculus. In Sec. 3 we extend binary session types to allow
specification of response liveness properties, give a transition semantics for the
types, and sketch a proof that these extended types induce a strictly larger class
of languages than does standard binary session types. In Sec. 4 we define ex-
actly how our extended session types induce a notion of liveness on processes.
In Sec. 5 we give our extended typing rules for sessions with responses and state
its subject reduction result. In Sec. 6 we prove that the extended typing rules
guarantees liveness for lock-free processes. Finally, in Sec. 7 we conclude.

2 Process Terms and Semantics

Processes communicate only via named communication (session) channels by
synchronizing send and receive actions or synchronizing select and branch events

4

(as in standard session typed π-calculus). The session typing rules presented in
the next session guarantees that there is always at most one active send and
receive action for a given channel. To distinguish dual ends of communication
channels, we employ polarised names [13,26]: If c is a channel name, c+ and c−

are the dual ends of the channel c. We call these polarised channel names, with
“+” and “-” polarities. If k is a polarised channel name, we write k for the dual
polarised channel name, e.g., c+ = c−. The syntax of processes is given below.

Meta-variables:

c channel names
p polarities +,−
k, h polarised channel names (cp)
x data variables
v data values, including natural numbers and true, false
e data expressions, including data variables and values
X,Y process variables

Process syntax:

P ::= k!〈e〉.P | k?(x).P | k!l.P | k?{li.Pi}i∈I | 0 | P |Q
| recX.P | (receX(i).P ;Q) | X[k̃] | if e then P else Q

The first four process constructors are for taking part in a communication.
These are standard for session typed π-calculi, except that for simplicity of
presentation, we only allow data to be sent (see Section 7). The process k!〈e〉.P
sends data v over channel k when e ⇓ v, and proceeds as P . Dually, k?(x).P
receives a data value over channel k and substitutes it for the x binding in P .
A branch process k?{li.Pi}i∈I offers a choice between labels li, proceeding to
Pi if the i’th label is chosen. The process 0 is the standard inactive process
(termination), and P | Q is the parallel composition of processes P and Q.

Recursion comes in two forms: a general, potentially non-terminating recur-
sion recX.P , where X binds in P ; and a primitive recursion, guaranteed to
terminate, with syntax (receX(i).P ;Q). The latter process, when e ⇓ n + 1,
executes P{n/i} and repeats, and when e ⇓ 0, evolves to Q. We assume the
following conventions:

In (receX(i).P ;Q), 0 does not occur in P .

In (receX(i).P ;Q), no process variable but X occurs free in P .

In (receX(i).P ;Q), there is no sub-term recY.Q or (rece Y (i).Q;R) in P .

In (receX(i).P ;Q), there is no sub-term Q | R of P .

These conventions ensure that the process (receX(i).P ;Q) will eventually ter-
minate the loop and execute Q. Process variables X[k̃] mentions the channel
names k̃ active at unfolding time for technical reasons.

We define the free polarised names fn(P) of a process P as usual, with
fn(X[k̃]) = k̃; substitution of process variables from X[k̃]{P/X} = P ; and

5

finally value substitution P{v/x} in the obvious way, e.g., k!〈e〉.P{v/x} =
k!〈e{v/x}〉.(P{v/x}). Variable substitution can never affect channels.

Example 2.1. We now show how to model the example BPMN process given
in the introduction. To illustrate the possibility of type checking infinite state
systems, we use a persistent data object represented by a process DATA(o)
communicating on a session channel o.

DATA(o) = recX. o+?(x). recY. o+?

read. o+!〈x〉. Y [o+]

write. X[o+]

quit. 0

After having received its initial value, this process repeatedly accepts commands
read and write on the session channel o for respectively reading and writing its
value, or the command quit for discarding the data object.

To make examples more readable, we employ the following shorthands. We
write init(o, v).P for o−!〈v〉.P , which initializes the data object; we write free o.P
for o−!quit..P , the process which terminates the data object session; we write
read o(x).P for o−!read. o−?(x).P., the process which loads the value of the data
object o into the process-local variable x; and finally, we write o := e.P for
o−!write.o−!〈e〉.P , the process which sets the value of the data-object o.

The shopping cart process can then be modelled as

P (Q) = DATA(o) | init(o, ε). recX.k

AI. k?(x). read o(y). o := add(y, x). X[ko−]

RI. k?(x). read o(y). o := rem(y, x). X[ko−]

CO. k?(x). read o(y). o := add(y, x). Q

Here k is the session channel shared with the customer and o is the session chan-
nel for communicating with the data object modelling order data. We assume
our expression language has suitable operators “add” and “rem”, adding and
removing items from the order. Finally, the process Q is a stand-in for either the
(non live) delivery part of the BPMN process in Fig. A or the live delivery part
shown in Fig. B. The non-live delivery loop can be represented by the process

D0 = recY. read o(y). if n(y) > 0
then k!DI. k!〈next(y)〉. o := update(y). Y [ko−]
else k!SI. k!〈inv(y)〉. free o.0

where n(y) is the integer expression computing from the order y the number of
items to send, next(y), update(y) and inv(y) are, respectively, the next item(s)
to be sent; an update of the order to mark that these items have indeed been sent;
and the invoice for the order. Note that whether or not this process terminates
is entirely dependent on the data operations.

Using instead bounded iteration, the live delivery becomes:

D = read o(y). (recn(y) Y (i).

k!DI.read o(y). k!〈pickitem(y, i)〉.Y [ko−];

k!SI. read o(y). k!〈inv(y)〉. free o.0)

6

(The second line is the body of the loop; the third line is the continuation.) Here
pickitem(y, i) is the expression extracting the ith item from the order y. ut

Transition Semantics. We give a labelled transition semantics in Fig C. We
assume a total evaluation relation e ⇓ v; note the absence of a structural con-
gruence. Transition labels for processes are on one of the following forms.

λ ::= k!v | k?v | k ⊕ l | k&l | τ | τ : l

We assume τ is neither a channel nor a polarised channel. Define subj(k!v) =
subj(k?v) = subj(k&l) = subj(k⊕ l) = k and subj(τ) = subj(τ : l) = τ , and define
as a technical convenience τ = τ . We use these rules along with symmetric rules

[C-Out]
e ⇓ v

k!〈e〉.P k!v−−→ P
k 6∈ fn(P) [C-In]

k?(x).P
k?v−−→ P{v/x}

k 6∈ fn(P)

[C-Sel]
k!l.P

k⊕l−−→ P
k 6∈ fn(P) [C-Bra]

k?{li.Pi}i∈I
k&li−−−→ Pi

k 6∈ fn(P)

[C-ParL]
P

λ−→ Q

P | P ′ λ−→ Q | P ′
subj(λ) 6∈ fn(P ′)

[C-Com1]
P

k!v−−→ P ′ Q
k?v−−→ Q′

P | Q τ−→ P ′ | Q′
[C-Com2]

P
k⊕l−−→ P ′ Q

k&l−−→ Q′

P | Q τ :l−−→ P ′ | Q′

[C-Rec]
P{recX.P/X} λ−→ Q

recX.P
λ−→ Q

[C-Prec0]
e ⇓ 0 Q

λ−→ R

(receX(i).P ;Q)
λ−→ R

[C-PrecN]
e ⇓ n+ 1 P{n/i}{(recnX(i).P ;Q)/X} λ−→ R

(receX(i).P ;Q)
λ−→ R

[C-CondT]
e ⇓ true P

λ−→ P ′

if e then P else Q
λ−→ P ′

[C-CondF]
e ⇓ false Q

λ−→ Q′

if e then P else Q
λ−→ Q′

Fig. C. Transition semantics for terms

for [C-ParL] and [C-Com1/2]. Compared to standard CCS or π semantics,

7

there are two significant changes: (1) In the [C-ParL], a transition λ of P is
not preserved by parallel composition if the co-channel of the subject of λ is
in P ′; and (2) in prefix rules, the co-name of the subject cannot appear in the
continuation. We impose (1) because if the co-channel of the subject of λ is
in P ′, then P | P ′ does not offer synchronisation on λ to its environment; the
synchronisation is offered only to P ′. E.g., the process P = c+!〈v〉.Q | c−?(x).R

does not have a transition c+!〈v〉.Q | c−?(x).R
c+!v−−−→ Q | c−?(x).R. If it had such

a transition, no environment U able to receive on c− could be put in parallel with
P and form a well-typed process, since both U and c−?(d).R would then contain

the name c− free. The reason for (2) is similar: If a process k!〈e〉.P k!v−−→ P , and
P contains k, again no well-typed environment for that process can contain k.

In recent papers [24,7,25], session types has been presented not with polarised
names, but rather with seemingly disparate names, connected by a new-name
operator, e.g., one writes (νxy)(x!l. | y?{l.0}) to form a session with endpoints
x, y. This latter formulation is—while elegant for reduction semantics—is not
viable for a the present transition semantics. Without the ability to recognise
the two ends c+, c− of a polarised channels as either end of a session, we cannot
express the rules [C-Par] nor [C-Com].

Lemma 2.2. If P
λ−→ Q then subj(λ) 6∈ fn(Q).

Proof. Straightforward induction on the derivation of the transition.

3 Session Types with Responses

In this section, we generalise binary session types to session types with responses.
In addition to providing the standard communication safety properties, these
also allow us to specify response liveness properties.

Compared to standard session types, we do not consider delegation (name
passing). Firstly, as illustrated by our example calculus, the types are already
expressive enough to cover a non-trivial subset of collaborative processes. Sec-
ondly, as we show in the end of the section, session types with responses are
already strictly more expressive than standard session types with respect to the
languages they can express. Thus, as we also address in Sec. 7, admitting del-
egation and answering the open question about how response obligations can
be safely exchanged with the environment, is an interesting direction for future
work which is beyond the scope of the present paper.

We first define request/response liveness in the abstract. In general, we shall
take it to be the property that “a request is eventually followed by a response”.
For now, we will not concern ourselves exactly what “requests” and “responses”
are or what it means for a responds to fulfil a request.

Definition 3.1. A request/response structure is a tuple (A,R, req, res) where A
is a set of actions, R is a set of responses, and req : A→ R and res : A→ R are
maps defining the set of responses requested respectively performed by an action.

8

Notation. Request/response liveness is naturally a property of sequences. We
write ε for the empty string, we let φ, ψ range over finite strings, and we let
α, β, γ range over finite or infinite sequences. We write sequence concatenation
by juxtaposition, i.e., φα.

Definition 3.2. Suppose (A,R, req, res) is a request/response structure and α a
sequence over A. Then the responses res(α) of α is defined by res(α) = ∪{res(a) |
∃ϕ, β. α = ϕaβ}. Moreover, α is live iff α = φaβ =⇒ req(a) ⊆ res(β).

Notation. We shall be specially interested in request/response liveness of se-
quences of transitions. A finite transition sequence of length n is a pair of se-

quences (si)i<n and (ti)i<n−1 s.t. si
ti−→ si+1 for i < n. An infinite transition

sequence is a pair of sequences (si)i∈N and (ti)i∈N s.t. si
ti−→ si+1. A finite or

infinite transition sequence of a state s is finite or infinite transition sequence
with s1 = s. We write (si, ti)i∈N for infinite sequences and ((si, ti)i<n, sn) for
finite sequences, giving the final state explicitly. Slightly abusing notation, we
sometimes write (si, ti)i∈I or even just (si, ti) for a finite or infinite transition
sequence, saying that it is a transition sequence of s1 over I.

Definition 3.3 (LTS with requests/responses). Let (S,L,−→) be an LTS.
When the set of labels L is the set of actions of a request/response structure,
we say that (S,L,−→) is an LTS with requests/responses, and that a transition
sequence of this LTS is live when its underlying sequence of labels is.

Next, syntax of types.

L a countably infinite set of labels
l ranges over L
L ranges over P(L)

S, T ::= &{li[Li].Ti}i∈I | ⊕{li[Li].Ti}i∈I | !.T | ?.T | µt.T | t | end

By convention, the li in each &{li[Li].Ti}i∈I resp. ⊕{li[Li].Ti}i∈I are distinct.
A session type is a (possibly infinite) tree of actions permitted for one partner

of a two-party communication. The type &{li[Li].Ti}i∈I , called branch, is the
type of offering a choice between different continuations. If the partner chooses
the label li, the session proceeds as Ti. Compared to standard session types,
making the choice li also requests a subsequent response on every label mentioned
in the set of labels Li; we formalise this in the notion of responsive trace below.
Dual to branch is select ⊕{li[Li].Ti}i∈I : the type of making a choice between
different continuations. Like branch, making a choice li requests every label in Li
as future responses. The type !.T and ?.T are the types of sending and receiving
data values. As mentioned above, channels cannot be communicated. Also, we
have deliberately omitted types of values (e.g. integers, strings, booleans) being
sent, since this can be trivially added and we want to focus on the behavioural
aspects of the types. Finally, session types with responses include recursive types.
We take the equi-recursive view, identifying a type T and its unfolding into a

9

potentially infinite tree. We define the central notion of duality between types
as the symmetric relation induced coinductively by the following rules.

end ./ end

T ./ T ′

!.T ./ ?.T ′
Ti ./ T

′
i J ⊆ I

&{li[Li].Ti}i∈I ./ ⊕{lj [L′j].T ′j}j∈J
(1)

The first rule says that dual processes agree on when communication ends; the
second that if a process sends a message, its dual must receive; and the third
says that if one process offers a branch, its dual must choose among the offered
choices. However, required responses do not need to match: the two participants
in a session need not agree on the notion of liveness for the collaborative session.

Example 3.4. Recall from Ex. 2.1 the processes DATA(o) encoding data-object
and P (D) encoding the (live) shopping-cart process. The former treats the chan-
nel o as TD = µt.?.µs.&{read.!.s, write.t, quit.end }. The latter treats its channel
k to the buyer as TP = µt.&{AI.?.t, RI.?.t, CO[{SI}].?.µt′.⊕ {DI.!.t′, SI.!.end}}.
To illustrate both responses in unbounded recursion and duality of disparate re-
sponses, note that the P (D) actually treats its data object channel o− according
to the type TE = µt.!.µs.⊕{read.?.s, write[{read}].t, quit.end }, i.e., every write
is eventually followed by a read. However, TD ./ TE : the types TE and TD are
nonetheless dual. ut

Having defined the syntax of session types with responses, we proceed to
give their semantics. The meaning of a session type is the possible sequences
of communication actions it allows, requiring that pending responses eventually
be done. Formally, we equip session types with a labeled transition semantics in
Fig. D. We emphasise that under the equi-recursive view of session types, the

Type transition labels: ρ ::= ! | ? | &l[L] | ⊕l[L]
Type transition label duality: ! ./ ? and &l[L] ./ ⊕l[L′]

[D-Out]
!.T

!−→ T ?.T
?−→ T

[D-In]

[D-Bra]
i ∈ I

&{li[Li].Ti}i∈I
&li[Li]−−−−→ Ti

i ∈ I

⊕{li[Li].Ti}i∈I
⊕li[Li]−−−−→ Ti

[D-Sel]

Fig.D. Transitions of types (1)

transition system of a recursive type T may in general be infinite.
Taking actions A to be the set of labels ranged over by ρ, and recalling that L

is our universe of labels for branch/select, we obtain a request/response structure
(A,P(L), req, res) with the latter two operators defined as follows.

res(!) = res(?) = ∅ res(&l[L]) = res(⊕l[L]) = {l}
req(!) = req(?) = ∅ req(&l[L]) = req(⊕l[L]) = L

10

In the right-hand column, selecting a label l performs the response l; pending
responses L associated with that label are conversely requested. The LTS of
Fig. D is thus one with responses, and we may speak of its transition sequences
being live or not.

Definition 3.5. Let T be a type. We define:

1. The traces tr(T) = {(ρi)i∈I | (Ti, ρi)i∈I transition sequence of T }
2. The responsive traces trR(T) = {α ∈ tr(T) | α live }.

That is, in responsive traces any request is followed by a response.

Definition 3.6. A type T is a standard session type if it requests no responses,
that is, every occurrence of L in it is has L = ∅. Define an operator sel(−) as
follows, lifting it pointwise to sequences.

sel(!.T) = sel(?.T) = ε sel(&l[L]) = sel(⊕l[L]) = l

We then define:

1. The selection traces str(T) = {sel(α) | α ∈ tr(T)}
2. The responsive selection traces strR(T) = {sel(α) | α ∈ trR(T)}.
3. The language of standard session types
T = {α | α ∈ str(T), T is a standard session type}.

4. The language of responsive session types
R = {α | α ∈ strR(T), T is a session type with responses}.

That is, we compare standard session types and session types of responses by
considering the sequences of branch/select labels they admit. This follows recent
work on multi-party session types and automata [8,9].

A fine point: because the sel(−) map is lifted pointwise and maps “no selec-
tion” to the empty string ε, this definition of languages is oblivious to send and
receive. E.g, if φS , ψT are the unique traces of the two types S = !.⊕ l.⊕ l′.end
and T = ⊕l.?.⊕ l′.end, then sel(φS) = sel(ψT) = ll′. We formalise this insight in
the following lemma.

Lemma 3.7. Let T be a standard session type. There exists a session type T ′

with no occurrences of send !.T or receive ?.T s.t. str(T) = str(T ′).

Example 3.8. The type TP of Example 3.4 has (amongst others) the two selec-
tion traces: t = AI CODIDI SI and u = AI CODIDIDI · · · . Of these, only t is
responsive; u is not, since it never selects SI as required by its CO action. That
is, t, u ∈ str(TP) and t ∈ strR(TP), but u 6∈ strR(TP). ut

Lemma 3.9 (Session types with responses are deterministic). (1). If

T
ρ−→ and T

ρ′−→ and sel(ρ) = sel(ρ′) 6= ε, then ρ = ρ′. (2). Consider equally long
finite transition sequences ((Ti, ρi)i<n, Tn) and ((Si, ρ

′
i)i<n, Sn). If T1 = S1 and

for each i < n ρi = ρ′i, then also Ti = Si for each i ≤ n.

11

Proof. (1). Immediate from the convention that each label in a branch or selected
is distinct. (2). By induction on n. The base case is trivial. For n = k + 1
we have by the induction hypothesis Tk = Sk. By convention, each label in a

branch or select is distinct, so there is at most one S with Tk
ρk−→ S. But then

S = Tk+1 = Sk+1. ut

Theorem 3.10. The language of session types with responses R is strictly more
expressive than that of standard session types T ; that is, T ⊂ R.

Proof. The non-strict inclusion is immediate by definition; it remains to prove
it strict. Consider the following session type with responses, T .

T = µt.⊕
{
a[b] : t
b[a] : t

We shall prove that strR(T) 6∈ T . Suppose not; then there exists a session type S
with str(S) = strR(T). Clearly the responsive selection traces strR(T) is the set of
infinite strings over the alphabet {a, b} where both a, b occur infinitely often. It
follows that for all k > 0, the string ak is a prefix of an infinite string in strR(T).
We have assumed str(S) = strR(T), so each ak must also be a prefix of an infinite
string in tr(S). By Lemma 3.7, we may assume S has no occurrences of send or
receive, and so for each k there is a transition sequence ((Ski , ρ

k
i)i<k, S

k
k) with

Sk1 = S and sel(ρki) = a. By induction on k using Lemma 3.9, we find that

ρki = ρk+1
i and Ski = Sk+1

i when i ≤ k. It follows that Sii = Si+1
i

ρi−→ Si+1
i+1 when

i + 1 ≤ k, and so (Sii , ρi)i∈N is an infinite transition sequence with S1
1 = S.

But then (sel(ρi))i∈N = aω ∈ str(S) while clearly not in strR(T), contradicting
strR(T) = str(S). ut

4 Session Typing

Recall the standard type system for session types, presented in Fig. E with the
obvious extension for primitive recursion. In this judgement, Θ takes process
variables to session type environments; in turn, a session typing environment ∆ is
a finite partial map from channel names and polarised channel names to types.
We write ∆,∆′ for the union of ∆ and ∆′, defined when their domains are
disjoint. We say ∆ is completed if ∆(T) = end when defined; it is balanced if
k : T, k : U ∈ ∆ implies T ./ U .

We generalise transitions of types (Fig. D) to session typing environments
in Fig. F, with transitions ranged over by δ as follows; recall that ρ is a type
transition label.

δ ::= τ | τ : l, L | k : ρ

We define subj(k : ρ) = k and subj(τ : l, L) = subj(τ) = τ . We lift sel(−), req(−),
and res(−) to actions δ as follows.

sel(τ) = ε sel(k : ρ) = sel(ρ) sel(τ : l, L) = l
req(τ) = ∅ req(τ : ρ) = req(ρ) req(τ : l, L) = L
res(τ) = ∅ res(k : ρ) = res(ρ) res(k : l, L) = {l}

12

[E-Out]
Θ `std P . ∆, k : T

Θ `std k!〈e〉.P . ∆, k : !.T

Θ `std P . ∆, k : T

Θ `std k?(x).P . ∆, k : ?.T
[E-In]

[E-Bra]
∀i ∈ I : Θ `std Pi . ∆, k : Ti

Θ `std k?{li.Pi}i∈I . ∆, k : &{li[Li].Ti}i∈I

[E-sel]
Θ `std P . ∆, k : Tj

Θ `std k!lj .P . ∆, k : ⊕{li[Li].Ti}i∈I
(j ∈ I)

[E-Par]
Θ `std P1 . ∆1 Θ `std P2 . ∆2

Θ `std P1 | P2 . ∆1,∆2

∆ completed

Θ `std 0 . ∆
[E-Inact]

Θ,X : ∆ `std P . ∆ Θ `std Q . ∆

Θ `std (receX(i).P ;Q) . ∆
[E-RecP]

[E-Rec]
Θ,X : ∆ `std P . ∆

Θ `std recX.P . ∆

dom(∆) = k̃

Θ,X : ∆ `std X[k̃] . ∆
[E-Var]

[E-Cond]
Θ `std P . ∆ Θ `std Q . ∆

Θ `std if e then P else Q . ∆

Fig. E. Standard Session Typing System

The type environment transition is thus an LTS with responses, and we may
speak of its transition sequences being live.

Definition 4.1. We define a binary relation on type transition labels δ and
transition labels λ, written δ ' λ, as follows.

τ ' τ k : &l[L] ' k&l k : ! ' k!v

τ : l, L ' τ : l k : ⊕l[L] ' k ⊕ l k : ? ' k?x

Theorem 4.2. If Γ `std P .∆ and P
λ−→ Q, then there exists δ ' λ s.t. ∆

δ−→ ∆′

and Γ `std Q . ∆′.

The proof is in Appendix A.

Definition 4.3. The typed transition system is the transition system which has

states Γ `std P . ∆ and transitions Γ `std P . ∆
λ,δ−−→ Γ `std P ′ . ∆′ whenever

there exist transitions P
λ−→ P ′ and ∆

δ−→ ∆′ with δ ' λ.

We can now say what it means for a process to be live (relying on the definition
of maximal transition sequences given in Def. 6.5 below).

13

[F-Lift]
T

ρ−→ T ′

k : T
k:ρ−−→ k : T ′

[F-Par]
∆

δ−→ ∆′

∆,∆′′
δ−→ ∆′,∆′′

[F-Com1]
∆1

k:!−→ ∆′1 ∆2
k:?−−→ ∆′2

∆1,∆2
τ−→ ∆′1,∆

′
2

[F-Com2]
∆1

k:⊕l[L]−−−−→ ∆′1 ∆2
k:&l[L′]−−−−−→ ∆′2

∆1,∆2
τ :l,L∪L′−−−−−→ ∆′1,∆

′
2

Fig. F. Transitions of types (2)

Definition 4.4 (Live process). A well-typed process Θ `std P .∆ is live wrt.
Θ,∆ iff for any maximal transition sequence (Pi, λi)i of P there exists a live
type transition sequence (∆i, δi)i of ∆ s.t. ((Pi, ∆i), (λi, δi))i is a typed transition
sequence of Θ `std P . ∆.

Example 4.5. Wrt. the standard session typing system, both of the processes
P (D0) and P (D) of Example 2.1 are typable wrt. the types we postulated for
them in Example 3.4. Specifically, we have · `std P (D0).k : TP , o

+ : TD, o
− : TD

and similarly for P (D). The judgement means that the process P (D) treats k
according to TP and the (two ends of) the data object according to TD and its
syntactic dual TD. The standard session typing system of course does not act on
our liveness annotations, and so does not care that P (D0) is not live.

For the subsequent development, we will need the following lemmas.

Lemma 4.6. If ∆
δ−→ ∆′ then dom(∆) = dom(∆′).

Proof. Straightforward induction on the derivation of the transition. ut

Lemma 4.7. If ∆
δ−→ ∆′ then either:

1. δ = k : ρ and ∆ = ∆′′, k : T and ∆′ = ∆′′, k : T ′ and T
ρ−→ T ′; or

2. δ = τ or δ = τ : l, L and ∆ = ∆′′, k : T, k : S and ∆′ = ∆′′, k : T ′, k : S′

where T
ρ−→ T ′ and S

ρ′−→ S′ and ρ ./ ρ′.

Proof. Straightforward induction on the derivation of the transition. ut

Lemma 4.8. If ∆
δ−→ ∆′ with ∆ balanced and subj(δ) 6∈ dom(∆), then also ∆′

balanced.

14

Proof. By induction on the derivation of the transition.

Case [F-Lift]. Trivial.

Case [F-Par]. Suppose ∆,∆′′ balanced with subj(δ) 6∈ dom(∆,∆′′), and con-
sider k, k ∈ dom(∆′, ∆′′). If both are in dom(∆′′), we are done. If both are in
dom(∆′) then by the Lemma 4.6 they are also in dom(∆). Then, because ∆,∆′′

balanced implies ∆ balanced, we find by the induction hypothesis that also ∆′

balanced, whence (∆′, ∆′′)(k) = ∆′(k) ./ ∆′(k) = (∆′, ∆′′)(k). Finally, suppose
wlog k ∈ dom(∆′) and k ∈ dom(∆′′); we shall see that this is not possible. By
Lemma 4.7 either

∆ = ∆1, k : T
k:ρ−−→ ∆1, k : T ′ = ∆′ with T

ρ−→ T ′, (2)

or

∆ = ∆2, k : T, k : S
δ−→ ∆2, k : T ′, k : S′ = ∆′ with T

ρ−→ T ′ and S
ρ−→ S′.

(3)
We consider these two possibilities in turn. It cannot be true that (2) holds,
because by the assumption subj(δ) 6∈ dom(∆,∆′′) we must have k = subj(δ) 6∈
dom(∆′′), contradicting k ∈ dom(∆′′). If instead (3) holds, then because k ∈
dom(∆′′) then ∆,∆′′ is not defined, contradicting the existence of the transition

∆,∆′′
δ−→ ∆′, ∆′′.

Case [F-Com1]. Suppose ∆1, ∆2
τ−→ ∆′1, ∆

′
2 with ∆1, ∆2 balanced. Using Lem-

ma 4.7, and [F-Com1] we have transitions ∆1 = ∆3, k : S
k:!−→ ∆3, k : S′ = ∆′1

and ∆2 = ∆4, k : T
k:?−−→ ∆4, k : T ′ = ∆′2, with S

!−→ S′ and T
?−→ T ′. It follows

that our original transition is on the form

∆1, ∆2 = ∆3, k : S,∆4, k : T
τ−→ ∆3, k : S′, ∆4, k : T ′ = ∆′1, ∆

′
2.

Because ∆1, ∆2 balanced then also ∆3, ∆4 is, and so ∆′1, ∆
′
2 = ∆3, k : S′, ∆4, k :

T ′ is balanced if S′ ./ T ′. But S
!−→ S′ implies S = !.S′ and T

?−→ T ′ implies
T = ?.T ′. But we have !.S′ = S ./ T = ?.T ′ by ∆1, ∆2 balanced, and so by
definition S′ ./ T ′.

Case [F-Com2]. We have ∆1, ∆2
τ,l:L∪L′−−−−−→ ∆′1, ∆

′
2 with ∆1, ∆2 balanced. By

Lemma 4.7, and [F-Com2] we have transitions ∆1 = ∆3, k : S
k:⊕l[L]−−−−→ ∆3, k :

S′ = ∆′1 and ∆2 = ∆4, k : T
k:&l[L′]−−−−−→ ∆4, k : T ′ = ∆′2 and S

⊕l[L]−−−→ S′ and

T
&l[L′]−−−−→ T ′. Then our original transition is on the form

∆1, ∆2 = ∆3, k : S,∆4, k : T
τ,l:L∪L′−−−−−→ ∆3, k : S′, ∆4, k : T ′ = ∆′1, ∆

′
2.

Because ∆1, ∆2 balanced then also ∆3, ∆4 is, and so ∆′1, ∆
′
2 = ∆3, k : S′, ∆4, k :

T ′ is balanced if S′ ./ T ′. But S
k:⊕l[L]−−−−→ S′ implies S = ⊕{lj [L′j].S′j}j∈J with

l = li and L = Li for some i ∈ J , and S′ = S′i. Similarly T
&l[L]−−−→ T ′ implies

T = {li[L′i].T ′i}i∈I with j ∈ I, l = lj , L
′ = Lj , and T ′ = Tj . Because S ./ T we

may assume J ⊆ I and i = j, whence by definition T ′i ./ S
′
j . ut

15

5 Typing System for Liveness

In this section, we introduce a variant of the standard session-typing system, give
intuition for it, and establish its basic properties, notably subject reduction. In
the next section, we shall prove that this typing system does indeed guarantee
liveness of well-typed processes.

The central judgement will be Γ ;L ` P .∆, with the intended meaning that
“with process variables Γ and pending responses L, the process P conforms to
∆.” We shall see in the next section that a well-typed lock-free P is live and will
eventually perform every response in in L.

In detail, here are the environments used in the typing system, along with
auxiliary operations on them.

1. Session typing environments ∆ defined at the start of Section 4.
2. Response environments L are simply sets of branch/select labels.
3. Process variable environments Γ are finite partial maps from process vari-

ables X to tuples (L,L,∆) or (L,∆). We write these (A, I,∆) for (A)ccu-
mulated selections and request (I)nvariant.
We write Γ + L for the environment satisfying that

(Γ + L)(X) =

{
(A ∪ L, I,∆) whenever Γ (X) = (A, I,∆)
Γ (X) otherwise

We sometimes write Γ + l instead of Γ + {l}.

Our typing system is in Fig. G. The rules [G-Bra]/[G-Sel] types branch/select.
To type k!l.P wrt. k : ⊕l[L′].T , P must do every response in L′. For this we
maintain an environment L of pending responses. In the hypothesis, when typing
P , we add to this the new pending responses L′. But selecting l performs the
response l, so altogether, to support pending responses L in the conclusion, we
must have pending responses L\{l}∪L′ in the hypothesis. Branching is similar.

For finite processes, if only the inactive process can be typed with the empty
request environment, liveness is ensured. Hence in the rule 0, that environment
is required to be empty. For infinite processes there is no point at which we can
insist on having no pending responses. Indeed, much like the contemporary post
doc, a process can be live, meeting its requirements, even though it is always
have some pending responses. Take for instance this process, typeable with the
type used in the proof of Theorem 3.10.

recX.k ⊕ a. k ⊕ b. X[k] . k : µt.⊕
{
a[b] : t
b[a] : t

.

This process has the single transition sequence

P
k⊕a−−−→ k ⊕ b. P k⊕b−−→ P

k⊕a−−−→ · · ·

At each state but the initial one there is a pending response: either b is pending
or a is. Yet the process is live: any response requested in the body of the recursion

16

[G-Out]
Γ ;L ` P . ∆, k : T

Γ ;L ` k!〈e〉.P . ∆, k : !.T

[G-In]
Γ ;L ` P . ∆, k : T

Γ ;L ` k?(x).P . ∆, k : ?.T

[G-Bra]
∀i ∈ I : Γ + li; (L \ li) ∪ Li ` Pi . ∆, k : Ti
Γ ;L ` k?{li.Pi}i∈I . ∆, k : &{li[Li].Ti}i∈I

[G-Sel]
Γ + lj ; (L \ lj) ∪ Lj ` P . ∆, k : Tj
Γ ;L ` k!lj .P . ∆, k : ⊕{li[Li].Ti}i∈I

(j ∈ I)

[G-Par]
Γ ;L1 ` P1 . ∆1 Γ ;L2 ` P2 . ∆2

Γ ;L1 ∪ L2 ` P1 | P2 . ∆1,∆2
[G-Inact]

∆ completed

Γ ; ∅ ` 0 . ∆

[G-Var]
L ⊆ I ⊆ A dom(∆) = k̃

Γ,X : (A, I,∆);L ` X[k̃] . ∆

[G-VarP]
L ⊆ L′ dom(∆) = k̃

Γ,X : (L′,∆);L ` X[k̃] . ∆

[G-RecP]
Γ,X : (L′,∆);L′ ` P . ∆ Γ ;L′ ` Q . ∆ L ⊆ L′

Γ ;L ` (receX(i).P ;Q) . ∆

[G-Rec]
Γ,X : (∅, I,∆); I ` P . ∆ L ⊆ I

Γ ;L ` recX.P . ∆

[G-Cond]
Γ ;L ` P . ∆ Γ ;L ` Q . ∆

Γ ;L ` if e then P else Q . ∆

Fig.G. Typing System

is also discharged in the body, although not necessarily in the proper order. In
general, infinite behaviour arises because of unfolding of recursion, so if the body
of every recursion discharges the requests of that body, even if not in the proper
order, responses are ensured.

For general recursion, [G-Rec] and [G-Var], we need to check that there
exists an invariant, a set of responses, such that the body of a recursion requests
at most that set, and reponds with at least that set. In the process variable
environment Γ we record this response invariant for each variable, along with a
tally of the responses performed since the start of the recursion. That tally is
then updated by the rules [G-Sel]/[G-Bra] for select and branch. The rule for

17

process variable [G-Var] typing then check that the tally includes the invariant,
and that the invariant includes every currently pending response.

This concludes our walk-through of the rules.

Definition 5.1. We define the standard process variable environment std(Γ)
associated with a process variable environment Γ as follows.

std(Γ)(X) =

{
∆ whenever Γ (X) = (A, I,∆)
∆ whenever Γ (X) = (I,∆)

Theorem 5.2. If Γ ;L ` P . ∆ then also std(Γ) `std P . ∆.

Proof. Straightforward induction on the typing derivation, using for [G-Bra]
and [G-Sel] that std(Γ + L) = std(Γ); for [G-Var]/[G-Rec] that std(Γ,X :
(A, I,∆)) = std(Γ), X : ∆; and for [G-VarP]/[G-RecP] that std(Γ,X : (I,∆))
= std(Γ), X : ∆. ut

We proceed to establish basic properties of our typing system, eventually
arriving at subject reduction.

Lemma 5.3. If Γ ;L ` P . ∆ and L′ ⊆ L, then also Γ ;L′ ` P . ∆.

Proof. By induction on the derivation of the typing of P .

Case [G-Inact]. We have Γ ;L ` 0 . ∆. By typing L = ∅ and our desired
property is vacously true.

Case [G-Out]. Immediate from the induction hypothesis.

Case [G-In]. Immediate from the induction hypothesis.

Case [G-Bra]. We have Γ ;L ` x?{li.Pi} . ∆, k : &{li[Li].Ti}i∈I . By typing
we must have for all i ∈ I that Γ + li; (L \ li) ∪ Li ` Pi . ∆, k : Ti. By the
induction hypothesis Γ + li; (L′ \ li) ∪ Li ` Pi . ∆, k : Ti, and we conclude
Γ ;L′ ` k?{li.Pi} . ∆, k : &{li[Li].Ti}i∈I .
Case [G-Sel]. Similar to [G-Bra].

Case [G-Par]. We have Γ ;L ` P1 | P2 . ∆. By typing we have Γ ;Li ` Pi . ∆i

with L = L1 ∪ L2 and ∆ = ∆1, ∆2. Consider a subset L′ ⊆ L1 ∪ L2. By the
induction hypothesis Γ ;Li∩L′ ` Pi .∆i and, noting that (L1∩L′)∪ (L2∩L′) =
(L1 ∪ L2) ∩ L′ = L′, we find Γ ;L′ ` P1 | P2 . ∆

Case [G-VarP]. Immediate from the premise L ⊆ L′.
Case [G-RecP]. Immediate from the premise L ⊆ L′.
Case [G-Var]. Immediate from the premise L ⊆ I.

Case [G-Rec]. Immediate from the premise L ⊆ I.

Case [G-Cond]. Immediate from the induction hypothesis.
ut

Lemma 5.4 (Process variable substitution). Suppose that Γ,X : t;L ` P .
∆ where either t = (A, I,∆′) or t = (I,∆′). Suppose moreover that Γ ; I ` Q.∆′
with X is not free in Q. Then also Γ ;L ` P{Q/X} . ∆

18

Proof. By induction on the typing derivation.

Case [G-Inact]. We have Γ,X : t;L ` 0 . ∆. By typing L = ∅. Observe that
0{Q/X} = 0. Thus, by [G-Inact], we have Γ ;L ` 0{Q/X} . ∆.

Case [G-Out]. Immediate from the induction hypothesis.

Case [G-In]. Immediate from the induction hypothesis.

Case [G-Bra]. By typing, we have

∀i ∈ I : (Γ,X : t) + li; (L \ li) ∪ Li ` Pi . ∆, k : Ti
Γ,X : t;L ` k?{li.Pi}i∈I . ∆, k : &{li[Li].Ti}i∈I

Suppose first t = (A, I,∆′). Then (Γ,X : (A, I,∆′)) + li = (Γ + li), X : (A ∪
li, I,∆

′). But then we may apply the induction hypothesis and [G-Bra] to obtain

Γ + li; (L \ li) ∪ Li ` Pi{Q/X} . ∆, k : Ti
Γ ;L ` k?{li.Pi{Q/X}}i∈I . ∆, k : &{li[Li].Ti}i∈I

. (4)

Suppose instead t = (I,∆′). Then (Γ,X : (I,∆′)) + li = (Γ + li), X : (I,∆′),
and again we may apply the induction hypothesis and [G-Bra] to obtain (4).

Case [G-Sel]. Similar to [G-Bra].

Case [G-Par]. We have Γ,X : t;L ` P1 | P2 . ∆. By typing we find some
L1 ∪ L2 = L and ∆1, ∆2 = ∆ such that Γ,X : t;Li ` Pi . ∆i. By the induction
hypothesis we find Γ ;Li ` Pi{Q/X}.∆i, which in turn yields Γ ;L1∪L2 ` (P1 |
P2){Q/X} . ∆1, ∆2.

Case [G-VarP]. Suppose first X 6= Y ; then by typing we have

L ⊆ L′ dom(∆) = k̃

Γ, Y : (L′, ∆), X : t;L ` Y [k̃] . ∆
,

so by [G-VarP] also

Γ, Y : (L′, ∆);L ` Y [k̃]{Q/X} . ∆ .

If on the other hand X = Y we have by typing

L ⊆ L′ dom(∆) = k̃

Γ,X : (L′, ∆);L ` X[k̃] . ∆
;

and it must be the case that I = L′ and ∆ = ∆′. We have by assumption
Γ ; I ` Q . ∆′, that is Γ ;L′ ` Q . ∆. By Lemma 5.8 also Γ ;L ` Q . ∆, that is,
Γ ;L ` X[k̃]{Q/X} . ∆.

Case [G-RecP]. We have Γ,X : (A, I,∆′);L ` (rece Y (i).P ;R) . ∆. By typing
we have Γ,X : (A, I,∆′), Y : (L′, ∆);L′ ` P .∆ and Γ ;L′ ` R.∆ for some L′ ⊇
L. Using Γ ; I ` Q.∆′, by the induction hypothesis Γ, Y : (L′, ∆);L′ ` P{Q/X}.
∆ and Γ ;L′ ` R{Q/X}.∆ , which in turn yields Γ ;L ` (rece Y (i).P ;R){Q/X}.
∆.

19

Case [G-Var]. Suppose first X 6= Y ; then by typing we have

L ⊆ L′ dom(∆) = k̃

Γ, Y : (A′, I ′, ∆), X : t;L ` Y [k̃] . ∆
,

so by [G-Var] also

Γ, Y : (A′, I ′, ∆);L ` Y [k̃]{Q/X} . ∆ .

If on the other hand X = Y we have by typing

L ⊆ I ⊆ A dom(∆) = k̃

Γ,X : (I, A,∆′);L ` X[k̃] . ∆′
;

where necessarily ∆′ = Delta. We have by assumption Γ ; I ` Q . ∆′. By
Lemma 5.8 also Γ ;L ` Q . ∆′, that is, Γ ;L ` X[k̃]{Q/X} . ∆′.
Case [G-Rec]. We have Γ,X : (A, I,∆′);L ` recY.P . ∆. We find by typ-
ing Γ,X : (A, I,∆′), Y : (A′, I ′, ∆);L ` P . ∆ with L ⊆ I ′, hence by the
induction hypothesis Γ, Y : (A′, I ′, ∆);L ` P{Q/X} . ∆, and so by [G-Rec]
Γ ;L ` (recY.P){Q/X} . ∆.

Case [G-Cond]. Immediate from the induction hypothesis. ut

Lemma 5.5. If Γ ;L ` P . ∆ then also Γ ;L ` P{v/x} . ∆ .

Proof. Straightforward induction. ut

Definition 5.6. We define Γ ≤ Γ ′ iff Γ (X) = (A, I,∆) implies Γ ′(X) =
(A′, I,∆) with A ⊆ A′ and Γ (X) = (I,∆) implies Γ ′(X) = (I,∆).

Lemma 5.7. If Γ ;L ` P . ∆ and Γ ≤ Γ ′ then also Γ ′;L ` P . ∆.

Proof. Straightforward induction. We report the two essential cases.

Case [G-Sel]. We have

Γ + lj ; (L \ lj) ∪ Lj ` P . ∆, k : Tj
Γ ;L ` k!lj .P . ∆, k : ⊕{li[Li].Ti}i∈I

Noting that Γ ≤ Γ ′ implies Γ + lj ≤ Γ ′ + lj we find by IH and [G-Sel]

Γ ′ + lj ; (L \ lj) ∪ Lj ` P . ∆, k : Tj
Γ ′;L ` k!lj .P . ∆, k : ⊕{li[Li].Ti}i∈I

.

Case [G-Rec]. We have

Γ,X : (∅, I,∆); I ` P . ∆ L ⊆ I
Γ ;L ` recX.P . ∆

Noting that Γ,X : (∅, I,∆) ≤ Γ ′, X : (∅, I,∆) we have by IH and [G-Rec]

Γ ′, X : (∅, I,∆); I ` P . ∆ L ⊆ I
Γ ′;L ` recX.P . ∆

.

20

Lemma 5.8. If Γ ;L ` P . ∆ then also Γ + L′;L ` P . ∆.

Proof. Immediate from Lemma 5.7. ut

Lemma 5.9. If Γ ;L ` P . ∆ and ∆(k) 6= end then k ∈ fn(P).

Proof. Straightforward induction. ut

Lemma 5.10. Suppose Γ ;L ` P . ∆, k : T with ∆, k : T balanced, T 6= end,
and k 6∈ fn(P). Then k 6∈ dom(∆).

Proof. Supposed for a contradiction k ∈ dom(∆). Because ∆, k : !.T balanced,
∆(k) 6= end. By Lemma 5.9 we thus have k ∈ fn(P); contradiction. ut

We can now formulate the core lemma which will subsequently be used to
prove subject reduction. For the formulation of the lemma, we will slightly abuse
notation and consider the range of the sel(−) operator as an empty or singleton
set rather than the empty or singleton string as which it was originally defined.

Lemma 5.11. Suppose that Γ ;L ` P .∆ with P
λ−→ Q. Then there exists a type

transition ∆
δ−→ ∆′ with δ ' λ, such that Γ + sel(δ); (L\ res(δ))∪ req(δ) ` Q.∆′.

Moreover, if ∆ balanced, then also ∆′ balanced.

Proof. By induction on the derivation of the transition.

Case [C-Out]. We have k!〈e〉.P k!v−−→ P with k 6∈ P and Γ ;L ` k!〈e〉.P . ∆, k :

!.T . By typing Γ ;L ` P . ∆, k : T . By [F-Lift] we have k : !.T
k:!−→ k : T . By

[F-Par] ∆, k : !.T
k:!−→ ∆, k : T ; Observing that k : ! ' k!v and res(k : !) = sel(k :

!) = req(k : !) = ∅ we have found the requisite type transition.
Now suppose ∆, k : !.T balanced; we must show ∆, k : T balanced. It is

sufficient to show k 6∈ dom(∆). But this follows from Lemma 5.10.

Case [C-In]. We have k?(x).P
k?v−−→ P{v/x} with k 6∈ fn(P) and Γ ;L ` k?(x).P .

∆, k : ?.T . By typing Γ ;L ` P . ∆, k : T . By [F-Lift] and [F-Par], ∆, k :

?.T
k:?−−→ ∆, k : T . By Lemma 5.5 we have Γ ;L ` P{v/x} . ∆, k : T . Observing

that req(k : ?T [L′]) = sel(k : ?T [L′]) = res(k : ?T [L′]) = ∅ and that k : ? ' k?v
we have found the requisite transition and typing. Preservation of balance follows
from Lemma 5.10.

Case [C-Bra]. We have k?{li.Pi}
k&li−−−→ Pi and Γ ;L ` k?{li.Pi}i∈I . ∆, k :

&{li[Li].Ti}i∈I . By typing we have Γ + li; (L \ {li}) ∪ Li ` Pi . ∆, k : Ti. By

[F-Lift] and [F-Par] we have ∆, k : &{li[Li].Ti}i∈I
k:&li[Li]−−−−−−→ ∆, k : Ti. Observ-

ing that req(k : &li[Li]) = Li, sel(k : &li[Li]) = res(k : &li[Li]) = {li} and that
k : ⊕li[Li] ' k&li, we have found the requisite type transition. Preservation of
balance follows from Lemma 5.10.

Case [C-Sel]. We have k!l.P
k⊕li−−−→ P and Γ ;L ` k!li.P . ∆, k : ⊕{li[Li].Ti}i∈I .

By typing Γ + li; (L \ {li}) ∪ Li ` P . ∆, k : Ti. By [F-Lift] and [F-Par] we

have ∆,⊕{li[Li]. Ti}i∈I
k:⊕li[Li]−−−−−−→ ∆,Ti. Observing that req(k : ⊕li[Li]) = Li,

21

sel(k : ⊕li[Li]) = res(k : ⊕li[Li]) = {li} and that k : ⊕li[Li] ' k ⊕ li, we
have found the requisite type transition. Preservation of balance follows from
Lemma 5.10.

Case [C-ParL]. We have P | P ′ λ−→ Q | P ′ with subj(λ) 6∈ fn(P ′) and Γ ;L ` P |
P ′ .∆. By typing we have for some L1∪L2 = L and ∆1∪∆2 that Γ ;L1 ` P .∆1

and Γ ;L2 ` P ′.∆2. By the induction hypothesis, we have a transition ∆1
δ−→ ∆′1

with Γ+sel(δ);L1\res(δ)∪req(δ) ` Q.∆′1 and δ ' λ. By Lemma 5.8 we find also
Γ+sel(δ);L2 ` P ′.∆2. By Lemma 4.6 dom(∆1) = dom(∆′1) so ∆′1, ∆2 is defined,
and hence by [G-Par] we have Γ+sel(δ);L1\res(δ)∪req(δ)∪L2 ` Q | P ′.∆′1, ∆2.
This is not exactly the form we need, but observing that

(L1 ∪ L2) \ res(δ) ∪ req(δ) ⊆ (L1 \ res(δ)) ∪ req(δ) ∪ L2,

we find again by Lemma 5.3 that Γ + sel(δ); (L1 ∪ L2) \ res(δ) ∪ req(δ) ` Q |
P ′ .∆′1, ∆2. By [F-Par] ∆1, ∆2

δ−→ ∆′1, ∆2, and we have found the requisite type
transition.

Now suppose ∆1, ∆2 balanced. By Lemma 4.8 it is sufficient to prove that
subj(δ) 6∈ dom(∆1, ∆2). If subj(δ) = τ this is trivial, so say subj(δ) = k and
suppose for a contradiction k ∈ dom(∆1, ∆2). We must have δ = k : ρ and
because δ ' λ we must have subj(λ) = subj(δ) = k. By Lemma 2.2 k 6∈ fn(Q | P ′).
By Lemma 4.7 we have ∆1 = ∆′′1 , k : S with S 6= end. Because ∆1, ∆2 balanced,
(∆1, ∆2)(k) ./ S and so (∆1, ∆2)(k) 6= end.

Suppose first k ∈ dom(∆1). Then k ∈ dom(∆′′1), so also ∆′′(k) 6= end, and
it follows that ∆′1(k) = ∆′′1(k) 6= end. By Lemma 5.9 k ∈ fn(Q), contradicting
k 6∈ fn(Q | P ′).

Suppose instead k ∈ dom(∆2). Then immediately by Lemma 5.9 k ∈ fn(P ′),
contradicting k 6∈ fn(Q | P ′).
Case [C-Com1]. We have

P1
k!v−−→ P ′1 P2

k?v−−→ P ′2

P1 | P2
τ−→ P ′1 | P ′2

and
Γ ;L1 ` P1 . ∆1 Γ ;L2 ` P2 . ∆2

Γ ;L1 ∪ L2 ` P1 | P2 . ∆1, ∆2

By the induction hypothesis we find ∆i
δi−→ ∆′i s.t. Γ + sel(δi);Li \ res(δi) ∪

req(δi) ` Pi . ∆′i with δ1 ' k!v and δ2 ' k?v. It follows that δ1 = k : ! and
δ2 = k : ? whence res(δ1) = req(δ2) = res(δ2) = req(δ1) = ∅ and sel(δ1) =
sel(δ2) = ε. By Lemma 4.6 ∆′1, ∆

′
2 defined, and so by by [F-Com1] we have

∆1, ∆2
τ−→ ∆′1, ∆

′
2. Noting that τ ' τ and that Γ + sel(δ1)+ sel(δ2) = Γ , we have

the required type transition. Since subj(τ) = τ and so subj(τ) 6∈ dom(∆1, ∆2), it
follows from Lemma 4.8 that ∆′1, ∆

′
2 is balanced when ∆1, ∆2 is.

Case [C-Com2]. We have

P1
k⊕l−−→ P ′1 P2

k&l−−→ P ′2

P1 | P2
τ :l−−→ P ′1 | P ′2

22

and
Γ ;L1 ` P1 . ∆1 Γ ;L2 ` P2 . ∆2

Γ ;L1 ∪ L2 ` P1 | P2 . ∆1, ∆2

By induction we find ∆i
δi−→ ∆′i s.t. Γ + sel(δi);Li \ res(δi) ∪ req(δi) ` Pi .

∆′i with δ1 ' k ⊕ l and δ2 ' k&l. It follows that for some L′1, L
′
2 we have

δ1 = k : ⊕l[L′1] and δ2 = k : &l[L′2], and so req(δ1) = L′1 and req(δ2) = L′2,
res(δ1) = res(δ2) = {l}, and sel(δ1) = sel(δ2) = l. By Lemma 4.6 ∆′1, ∆

′
2 defined,

and so we find a transition ∆1, ∆2
τ :l,L′1∪L

′
2−−−−−−→ ∆′1, ∆

′
2 by [F-Com2]. By [G-Par]

we find Γ + l;L1 \ {l} ∪ L′1 ∪ L2 \ {l} ∪ L′2 ` P ′1 | P ′2 . ∆′1, ∆′2. Noting that
τ : l, L′1 ∪ L′2 ' τ : l and

L1 \ {l} ∪ L′1 ∪ L2 \ {l} ∪ L′2 = (L1 ∪ L2) \ {l} ∪ L′1 ∪ L′2
= (L1 ∪ L2) \ res(τ : l, L′1 ∪ L′2) ∪ req(τ : l, L′1 ∪ L′2),

we have the required type transition. Since subj(τ : l, L′1 ∪ L′2) = τ and so
subj(τ : l, L′1 ∪ L′2) 6∈ dom(∆1, ∆2), it follows from Lemma 4.8 that ∆′1, ∆

′
2 is

balanced when ∆1, ∆2 is.

Case [C-Rec]. We have

P{recX.P/X} λ−→ Q

recX.P
λ−→ Q

and
Γ,X : (∅, I,∆); I ` P . ∆ L ⊆ I

Γ ;L ` recX.P . ∆

It follows by [G-Rec] that also Γ ; I ` recX.P . ∆ and by Lemma 5.8 that
Γ,X : (∅, I,∆);L ` P . ∆. It then follows by Lemma 5.4 that

Γ ;L ` P{recX.P/X} . ∆.

By the induction hypothesis we find a balance-preserving type transition∆
δ−→ ∆′

with δ ' λ and Γ + sel(δ);L \ res(δ) ∪ req(δ) ` Q . ∆′.

Case [C-Prec0]. We have

e ⇓ 0 Q
λ−→ R

(receX(i).P ;Q)
λ−→ R

and
Γ,X : (L′, ∆);L′ ` P . ∆ Γ ;L′ ` Q . ∆ L ⊆ L′

Γ ;L ` (receX(i).P ;Q) . ∆
.

By Lemma 5.8 we have also Γ ;L ` Q . ∆, and so by the induction hypothesis
we find the required balance-preserving type transition.

Case [C-PrecN]. We have

e ⇓ n+ 1 P{n/i}{(recnX(i).P ;Q)/X} λ−→ R

(receX(i).P ;Q)
λ−→ R

23

and again

Γ,X : (L′, ∆);L′ ` P . ∆ Γ ;L′ ` Q . ∆ L ⊆ L′

Γ ;L ` (receX(i).P ;Q) . ∆
.

By [G-RecP] it follows that Γ ;L′ ` (recnX(i).P ;Q) . ∆. By Lemmas 5.5 and
5.3 we have Γ,X : (L′, ∆);L ` P{n/i} . ∆. Finally, by Lemma 5.4 we have

Γ ;L ` P{n/i}{(recnX(i).P ;Q)/X} . ∆,

and the requisite balance-preserving type transition follows by the induction
hypothesis.

Case [C-CondT] and [C-CondF]. We have,

e ⇓ true P
λ−→ P ′

if e then P else Q
λ−→ P ′

and
Γ ;L ` P . ∆ Γ ;L ` Q . ∆

Γ ;L ` if e then P else Q . ∆
,

and the requisite balance-preserving type transition follows from the induction
hypothesis. The other case is the same. ut

Theorem 5.12 (Subject reduction). Suppose that ·;L ` P . ∆ with and

P
λ−→ Q. Then there exists a type transition ∆

δ−→ ∆′ with δ ' λ, such that
·; (L \ res(δ)) ∪ req(δ) ` Q . ∆′. Moreover, if ∆ balanced then also ∆′ balanced.

Proof. Immediate from the Lemma 5.11. ut

Example 5.13. Wrt. the typing system of Figure G, the process P (D) is typable
wrt. the types we postulated for it in Example 3.4. The process P (D0) on the
other hand is not. That is, we have ·; ∅ ` P (D) . k : TP , o

+ : TD, o
− : TD, but

the same does not hold for P (D0). We also exemplify a typing judgment with
non-trivial guaranteed responses. The process D, the order-fulfillment part of
P (D), can in fact be typed

·; {SI} ` D . k : µt′.⊕{DI.!.t′,SI.!.end}, o− : TD

Note the left-most {SI}, indicating intuitively that this process will eventually
select SI in any execution. The process D has this property essentially because
it is implemented by bounded recursion. ut

6 Liveness

We now prove that a lock-free process well-typed under our liveness typing sys-
tem is indeed live as defined in Def. 4.4.

24

Liveness refers to the notion of maximal transition sequences, which is de-
fined below and in turn relies on (weak) fairness. For defining lock-freedom and
fairness, we must track occurrences of prefixes across transitions. This is straight-
forward in the absence of a structural congruence; refer to [12] for a formal
treatment.

Definition 6.1. A prefix M is a process on one of the forms k!〈e〉.P , k?(x).P ,
k?{li.Pi}, or k!l.P . An occurence of a prefix M in a process P is a path in the
abstract syntax tree of P to a subterm on the form M (see [12] for details).

Definition 6.2. An occurrence of a prefix P in M where P
λ−→ Q is preserved by

the latter if M has the same occurrence in Q; executed otherwise. It is enabled
if it is executed by some transition, and top-level if it is not nested in another

prefix. Suppose we have an occurrence of a prefix M in P and a transition P
λ−→

Q. This transition

1. preserves the occurence of M in P if M has the same occurrence in Q, and
2. executes the occurrence of M in P iff it does not preserve it.

The occurrence of M in P is

3. enabled iff P has a transition executing it, and
4. top-level if it is nested inside no other prefix.

Lemma 6.3. Occurrences have the following properties.

1. If an occurrence is enabled, it is also top-level.

2. If P
λ−→ Q preserves a top-level occurrence of a prefix M in P , then that

occurence is also top-level in Q.

3. If P
λ−→ Q then there exists an occurrence of a prefix M in P which is

executed by that transition.

Definition 6.4. An infinite transition sequence s = (Pi, λi)i∈N is fair iff when-

ever a prefix M occurs enabled in Pn then some m ≥ n has Pm
λm−−→ Pm+1

executing that occurence.

Definition 6.5. A transition sequence s is terminated iff it has finite length n
and Pn 6−→. It is maximal iff it is finite and terminated or infinite and fair.

We define lock-freedom in the spirit of [18]; notice that the present definition
strictly generalises fairness.

Definition 6.6. A maximal transition sequence (Pi, λi) is lock-free iff whenever
there is a top-level occurence of a prefix M in Pi, then there exists some j ≥
i s.t. Pj

λj−→ Pj+1 executes that occurrence. A process is lock-free iff all its
transition sequences are.

25

The central liveness result hinges on the following proposition, which links
the typing judgment to the semantics of a process.

Definition 6.7. For a process transition label λ, define sel(λ) by

sel(k!v) = sel(k?v) = sel(τ) = ∅ sel(k&l) = sel(k ⊕ l) = sel(τ : l) = l

Given a trace α we lift sel(−) pointwise, that is, sel(α) = {sel(λ) | α = φλα′}.

Note that δ ' λ implies sel(λ) = sel(δ).

Lemma 6.8. For any transition sequence s of P | Q, there exists transition
sequences p = (Pi, βi)i∈|p| and q = (Qi, δi)i∈|q| and monotone surjective maps
u : |s| → |p| and v : |s| → |q| such that s = (Pu(i)|Qv(i)), αi)i∈|s| and sel(β) ∪
sel(δ) = sel(α).

Proof. We prove the existence of such functions for finite s; the result for infinite
s follows. So suppose s finite and write it s = (Si, αi)|s|. We proceed by induction
on the length of s. First, a bit of notation: when α = α1 . . . αn we define cut(α) =
α1 . . . αn−1. Now, for |s| = 1, the identity functions suffice. Suppose instead

|s| = n + 1, and consider the last transition Sn
αn−−→ Sn+1. By the induction

hypothesis we have transition sequences p, q with labels β, δ and maps u, v such
that Sn = Pu(n) | Qv(n) and sel(β)∪ sel(δ) = sel(cut(α)) etc. Notice that because
u, v surjective and monotone, p, q must have lengths u(n) and v(n), respectively.
We proceed by cases on the derivation of this last transition.

Case [C-ParL]. We must in this case have

Pu(n)
αn−−→ R

Pu(n) | Qv(n)
αn−−→ R | Qv(n) = Sn+1

.

Extend p to p′ by taking Pu(n)+1 = R and βu(n) = αn; and extend u, v by
taking u(n+ 1) = u(n) + 1 and v(n+ 1) = v(n) and we have found the requisite
transition sequences and maps. It is now sufficient to note that

sel(α) = sel(αn) ∪ sel(cut(α))

= sel(βu(n)) ∪ sel(β) ∪ sel(δ)

= sel(β′) ∪ sel(δ) .

Case [C-Com1]. We must have in this case

Pu(n)
k!v−−→ P ′ Qv(n)

k?v−−→ Q′

Pu(n) | Qv(n)
τ=αn−−−−→ P ′ | Q′ = Sn+1

.

Extend p to p′ by taking Pu(n)+1 = P ′ and βu(n) = k!v; and similarly extend q
to q′ by taking Qv(n)+1 = Q′ and δv(n) = k?v. Extending also u, v by u(n+ 1) =

26

u(n)+1 and v(n+1) = v(n)+1 we have found the requisite transition sequences
and maps. It is now sufficient to note that

sel(α) = sel(τ) ∪ sel(cut(α))

= sel(β) ∪ sel(δ)

= sel(k!v) ∪ sel(β′) ∪ sel(k?v) ∪ sel(δ′)

= sel(β′) ∪ sel(δ′) .

ut
Case [C-Com2]. We must have in this case

Pu(n)
k⊕l−−→ P ′ Qv(n)

k&l−−→ Q′

Pu(n) | Qv(n)
τ :l=αn−−−−→ P ′ | Q′ = Sn+1

.

Extend p to p′ by taking Pu(n)+1 = P ′ and βu(n) = k⊕ l; and similarly extend q
to q′ by taking Qv(n)+1 = Q′ and δv(n) = k&l. Extending also u, v by u(n+ 1) =
u(n)+1 and v(n+1) = v(n)+1 we have found the requisite transition sequences
and maps. It is now sufficient to note that

sel(α) = sel(τ : l) ∪ sel(cut(α))

= {l} ∪ sel(β) ∪ sel(δ)

= sel(k ⊕ l) ∪ sel(β) ∪ sel(k&l) ∪ sel(δ)

= sel(β′) ∪ sel(δ′) .

Lemma 6.9. If s is a maximal lock-free transition sequence of P | Q with trace
α, then there exists maximal lock-free transition sequences p, q of P,Q with traces
β, δ, respectively, such that sel(α) = sel(β) ∪ res(δ).

Proof. By Lemma 6.8 we find transition sequences p = (Pi, βi)i∈|p| and q =
(Qi, δi)i∈|q| and maps u, v such that s can be written s = (si, αi)i∈|s| = (Pu(i) |
Qv(i), αi)i∈|s| and sel(α) = sel(β) ∪ sel(δ). It remains to prove that these p, q
are maximal and lock-free. Suppose for a contradiction that p is not; the case
for q is similar. Then either (A) p is maximal but not lock-free, or (B) p is not
maximal.

We consider first (A); p maximal but not lock-free. Then some top-level
occurrence of a prefix M sits in each Pi when i ≥ n for some n. But then for
j ≥ u−1(n) we must have sj = (Pu(n), Qv(n)) contradicting s lock-free.

Consider now (B); p not maximal. Then either (1) p is finite and can be
extended by a transition λ, or (2) p is infinite but not fair.

Suppose (1) that is, p of finite length n and Pn
λ−→. By Lemma 6.3(3) Pn must

have an occurrence of an enabled prefix M . By Lemma 6.3(1) this occurrence
is top-level. But for i ≥ u−1(n), si = (Pu(i) | Qv(i)) and so there is a top-level
occurrence of M in each such si, contradicting P | Q lock-free.

Suppose instead (2), that is, p infinite but not fair. Then there exists a Pn and
an occurrence of an enabled prefix M in Pn s.t. no βj with j ≥ n executes that

27

occurrence. By definition, every Pj
βj−→ Pj+1 then preserves that occurrence. By

Lemma 6.3(1) the occurrence in Pn is top-level, and so by Lemma 6.3(2) it also
is in every Pj . But for j ≥ u−1(n), sj = (Pu(j) | Qv(j)), and so we have found a
top-level occurrence of M in each such sj , contradicting P | Q lock-free. ut

Definition 6.10. A process P is simple for X iff

1. no process variable but X occurs free in P , and
2. 0 is not a sub-term of P , and
3. neither recY.Q nor (rece Y (i).Q;R) is a sub-term of P ,
4. Q | R is not a sub-term of P .

Observe that by convention, in (receX(i).P ;Q), P is simple for X.

Lemma 6.11. If P simple for X and s = (Pi, λi)i is a maximal lock-free tran-

sition sequence of P{Q/X}, then Q
λj−1−−−→ Pj for some j > 1.

Proof. By induction on P .

Case “0”. Impossible: not simple for X.

Case “k!〈e〉.P”. Clearly (Pi+1, λi+1)i is a maximal lock-free transition sequence

of P{ṽ/x̃}. By the induction hypothesis Q
λj−→ Pj for some j > 2.

Case “k?(x).P”. Clearly s′ = (Pi+1, λi+1)i is a maximal lock-free transition se-
quence of P{Q/X}{ṽ/x̃}. Because x bound, it is fresh forQ, so P{ṽ/x̃}{Q/X} =
P{Q/X}{ṽ/x̃} and s′ is a maximal lock-free transition sequence of the latter.

But then by the induction hypothesis Q
λj−→ Pj for some j > 2.

Case “k?{li.Pi}j∈J”. Like k!〈e〉.P . Case “k!l.P”. Like k!〈e〉.P
Case “P | R”. Impossible: not simple for X.

Case “recX.P”. Impossible: not simple for X.

Case “(rece Y (i).P ;R)”. Impossible: not simple for X.

Case “Y [k̃]”. By P simple for X we must have X = Y whence s is a transition

sequence of X{Q/X} = Q; clearly Q
λ1−→ P2.

Case “if e then P else R”. Like k?{li.Pi}j∈J . ut

Lemma 6.12. If s = (Pi, λi)i is a maximal lock-free transition sequence of

(receX(i).P ;Q) then Q
λj−1−−−→ Pj for some j > 1.

Proof. By induction on n. If n = 0 then s is a transition sequence of Q iff it is

of (rec0X(i).P ;Q), so clearly Q
λ1−→ P2. If instead n = m+ 1 observe that

(recm+1X(i).P ;Q)
λ1−→ R iff P{m/i}{(recmX(i).P ;Q)/X} λ1−→ R .

Take s′ to be the same as s except P1 = P{m/i}{(recmX(i).P ;Q)/X}. Note
that s′ is maximal and lock-free. By convention P and so P{m/i} is simple for

X. Then by Lemma 6.12 for some j we have Q
λj−1−−−→ Pj . ut

28

Definition 6.13. When P is a process, we define A(P) inductively as follows.

A(0) = ∅
A(k!〈e〉.P) = A(P)

A(k?(x).P) = A(P)

A(k?{li.Pi}i∈I) =
⋂
i∈I

({li} ∪ A(Pi))

A(k!l.P) = {l} ∪ A(P)

A(P | Q) = A(P) ∪ A(Q)

A(recX.P) = A(P)

A(receX(i).P ;Q) = A(Q)

A(X[k̃]) = ∅
A(if e then P else Q) = A(P) ∩ A(Q)

Proposition 6.14. If s = (Pi, αi)i is a maximal lock-free transition sequence
of P{Q/X} A(P) ⊆ sel(α).

Proof. First, notation: if α is a sequence α1α2 · · · we define shift(α) = α2 · · · .
We proceed by induction on P .

Case “0”. Immediate from A(0) = ∅.
Case “k!〈e〉.P”. Clearly (Pi+1, αi+1)i is a maximal lock-free transition sequence
of P{Q̃/X̃}. By the induction hypothesis A(P) ⊆ sel(shift(α)) = sel(α).

Case “k?(x).P”. Clearly (Pi+1, αi+1)i is a maximal lock-free transition sequence
of P{Q̃/X̃}{v/x} for some v. As x is bound P{Q̃/X̃}{v/x} = P{v/x}{Q̃/X̃}.
Using the induction hypothesis A(P) = A(P{v/x}) ⊆ sel(shift(α)) = res(()α).

Case “k?{li.Pi}i∈I”. Like k!〈e〉.P .

Case “k!l.P”. Like k!〈e〉.P .

Case “P | R”. By Lemma 6.9 there exists traces maximal lock-free transition
sequences p, q of P{Q̃/X̃}, R{Q̃/X̃} with traces β, δ s.t. sel(β)∪ sel(δ) = sel(α).
Using the induction hypothesis we find A(P) ∪ A(R) ⊆ sel(β) ∪ sel(δ) = sel(α).

Case “recY.P”. s is lock-free maximal transition sequence of recY.P{Q̃/X̃}.
Then taking s′ to be the same as s except P1 = P{Q̃/X̃}{recY.(P{Q̃/X̃})/Y }
we have a maximal lock-free transition sequence of the latter, also with trace α.
Using the induction hypothesis A(recX.P) = A(P) ⊆ sel(α).

Case “(rece Y (i).P ;R)”. Again, s is a lock-free maximal transition sequence of

(rece Y (I).P ;R){Q̃/X̃}. By Lemma 6.12 for some j > 1 we have R
λj−1−−−→ Pj ,

and so

R
λj−1−−−→ Pj

λj−→ Pj+1 · · ·

is a lock-free maximal transition sequence of R. By the induction hypothesis,
A((rece Y (i).P ;R)) = A(R) ⊆ sel(shiftj−2(α)) ⊆ sel(α).

Case “Y [k̃]”. Immediate from A(Y [k̃]) = ∅.
Case “if e then P else R”. Like k?{li.Pi}j∈J .

29

Lemma 6.15. Suppose that Γ ;L ` P . ∆. Define mappings M((A, I,∆)) = A
and M((I,∆)) = I, and

M(Γ) =
⋃

X∈dom(Γ)

M(Γ (X)) .

Then L \M(Γ) ⊆ A(P).

Proof. By induction on the derivation of Γ ;L ` P . ∆.

Case [G-Inact]. By typing, L = ∅.
Case [G-Out]. A(k!〈e〉.P) = A(P) ⊇ L \M(Γ), the latter by typing and the
induction hypothesis.

Case [G-In]. Ditto.

Case [G-Bra]. By the induction hypothesis for i ∈ I

(L \ {li}) ∪ Li) \ (M(Γ + li) ⊆ A(Pi) .

Observe that M(Γ + li) = M(Γ) ∪ {li}. We compute:

L \M(Γ) = ∩i∈I(L \M(Γ))

⊆ ∩i∈I({li} ∪ (L \ (M(Γ))))

= ∩i∈I({li} ∪ (L \ (M(Γ) ∪ li)))
= ∩i∈I({li} ∪ ((L \ {li}) \ (M(Γ + li))))

⊆ ∩i∈I({li} ∪ ((L \ {li}) ∪ Li) \ (M(Γ + li)))

⊆ ∩i∈I({li} ∪ A(Pi))

= A(k?{li.Pi}i∈I)

Case [G-Sel]. Similar to [G-Bra].

Case [G-Par]. By typing, we find ∆1, ∆2 and L1, L2 s.t. Γ ;Li ` Pi.∆i. By the
induction hypothesis we then find that Li \M(Γ) ⊆ A(Pi). We now compute:

L \M(Γ) = (L1 ∪ L2) \M(Γ)

= L1 \M(Γ) ∪ L2 \M(Γ)

⊆ A(P1) ∪ A(P2)

= A(P1 | P2)

Case [G-VarP]. We have Γ,X : (L′, ∆);L ` X[k̃] . ∆. By typing L ⊆ L′; by
definition L′ ⊆M(Γ). But then L \M(Γ) = ∅.
Case [G-RecP]. We have Γ ;L ` (receX(i).P ;Q) . ∆. By typing we have Γ `
Q . ∆ and by definition A((receX(i).P ;Q)) = A(Q) ⊇ L \M(Γ), the latter by
the induction hypothesis.

Case [G-Var]. We have Γ,X : (A, I,∆);L ` X . ∆. By definition, we find
A ⊆M(Γ), so by typing L ⊆ I ⊆ A = M(Γ). But then L \M(Γ) = ∅.

30

Case [G-Rec]. We have Γ ;L ` recX.P . ∆. By typing we must have Γ,X :
(∅, I,∆); I ` P . ∆. We compute.

L \M(Γ) ⊆ I \ (M(Γ) ∪ ∅)
= I \M(Γ,X : (∅, I,∆))

⊆ A(P) by IH

Case [G-Cond]. By typing and the induction hypothesis we have L \ Γ (M) ⊆
A(P) and L \ Γ (M) ⊆ A(Q). But then also L \ Γ (M) ⊆ A(P) ∩ A(Q) =
A(if e then P else Q). ut

Proposition 6.16. Suppose · ;L ` P .∆ with P lock-free, and let s = (Pi, αi)i
be a maximal transition sequence of P . Then L ⊆ sel(α).

Proof. Observe that necessarily s lock-free. We compute:

L ⊆ A(P) By Lemma 6.15

⊆ sel(α) By Proposition 6.14

ut

Example 6.17. We saw in Example 5.13 that the process D of Example 2.1 is
typable ·; {SI} ` D . · · · . By Proposition 6.16 above, noting that D is clearly
lock-free, every maximal transition sequence of D must eventually select SI.

Theorem 6.18. Suppose · ;L ` P .∆ with P lock-free. Then P is live for · , ∆.

Proof. Consider a maximal transition sequence (Pi, αi) of P . By Definition 4.4
we must find a live type transition sequence (∆i, δi) of ∆ with ((Pi, ∆i), (αi, δi))
a typed transition sequence of · ` P . ∆.

By induction and Theorem 5.12 there exists a sequence (∆i, Li, δi)i with

· Li ` Pi . ∆i and ∆i
δi−→ ∆i+1 and δi ' αi, and moreover Li+1 = Li \ res(δi) ∪

req(δi). Suppose l ∈ req(δn). Then l ∈ Ln+1. Clearly Pn+1 also lock-free, so
by Proposition 6.14, l ∈ sel(shiftn(α)). That means there exists j > n with
l ∈ sel(αj). But αj ' δj so l ∈ res(δj). ut

Example 6.19. We saw in Example 5.13 that P (D) is typable as ·; ∅ ` P (D).k :
TP , o

+ : TD, o
− : TD. Noting P (D) lock-free, by the above Theorem it is live, and

so will uphold the liveness guarantee in TP : if CO is selected, then eventually
also SI is selected. Or in the intuition of the example: If the buyer performs
“Checkout”, he is guaranteed to subsequently receive an invoice.

7 Conclusion and Future Work

We introduced a conservative generalization of binary session types to session
types with responses, which allows to specify response liveness properties. We
showed that session types with responses are strictly more expressive (wrt. the

31

classes of behaviours they can express) than standard binary session types. We
provided a typing system for a process calculus similar to a non-trivial subset of
collaborative BPMN processes with possibly infinite loops and bounded iteration
and proved that lock-free, well typed processes are live.

We have identified several interesting directions for future work: Firstly, the
present techniques could be lifted to multi-party session types, which guarantees
lock-freedom. Secondly, investigate more general liveness properties. Thirdly,
channel passing is presently omitted for simplicity of presentation and not needed
for our expressiveness result (Theorem 3.10). Introducing it, raises the question of
wether one can delegate the responsibility for doing responses or not? If not, then
channel passing does not affect the liveness properties of a lock-free process, and
so is not really interesting for the present paper. If one could, it must be ensured
that responses are not forever delegated without ever being fulfilled, which is an
interesting challenge for future work. Finally, and more speculatively, we plan
to investigate relations to fair subtyping [22] and Live Sequence Charts [6].

A Subject reduction proof for the standard session
typing system

Lemma A.1 (Process variable substitution). Suppose that Θ,X : ∆′ `std
P . ∆. Suppose moreover that Θ `std Q . ∆′ with X is not free in Q. Then also
Θ `std P{Q/X} . ∆

Proof. By induction on the typing derivation.

Case [G-Inact]. We have Θ,X : ∆′ `std 0 . ∆. By typing ∆ completed, so by
[G-Inact], we have Θ `std 0{Q/X} . ∆.

Case [G-Out]. Immediate from the induction hypothesis.

Case [G-In]. Immediate from the induction hypothesis.

Case [G-Bra]. We have

∀i ∈ I : Θ,X : ∆′ `std Pi . ∆, k : Ti
Θ,X : ∆′ `std k?{li.Pi}i∈I . ∆, k : &{li[Li].Ti}i∈I

By the induction hypothesis and [G-Bra] we have

Θ `std Pi{Q/X} . ∆, k : Ti
Θ `std k?{li.Pi{Q/X}}i∈I . ∆, k : &{li[Li].Ti}i∈I

.

Case [G-Sel]. Similar to [G-Bra].

Case [G-Par]. We have Θ,X : ∆′ `std P1 | P2 . ∆. By typing we find some
∆1, ∆2 = ∆ such that Θ,X : ∆ `std Pi . ∆i. By induction we find Θ `std
Pi{Q/X} . ∆i, which in turn yields Θ `std (P1 | P2){Q/X} . ∆1, ∆2.

Case [G-VarP]. Suppose first X 6= Y ; then we have

dom(∆) = k̃

Θ, Y : ∆,X : ∆′ `std Y [k̃] . ∆
,

32

so by [G-VarP] also

Θ, Y : ∆ `std Y [k̃]{Q/X} . ∆ .

If on the other hand X = Y we have by typing

dom(∆) = k̃

Θ,X : ∆′ `std X[k̃] . ∆
;

and it must be the case that ∆ = ∆′. We have by assumption Θ `std Q . ∆′,
that is Θ `std X[k̃]{Q/X} . ∆.

Case [G-RecP]. We have Θ,X : ∆′ `std (rece Y (i).P ;R).∆. By typing we have
Θ,X : ∆′, Y : ∆ `std P . ∆ and Θ,X : ∆′ `std R . ∆. Using Θ `std Q . ∆′, by
induction Θ, Y : ∆ `std P{Q/X} . ∆ and Θ `std R{Q/X} . ∆ , which in turn
yields Θ `std (rece Y (i).P ;R){Q/X} . ∆.

Case [G-Var]. Suppose first X 6= Y ; then by typing we have

dom(∆) = k̃

Θ, Y : ∆,X : ∆′ `std Y [k̃] . ∆
,

so by [G-Var] also

Θ, Y : ∆ `std Y [k̃]{Q/X} . ∆ .

If on the other hand X = Y we have by typing

dom(∆) = k̃

Θ,X : ∆′ `std X[k̃] . ∆
,

where necessarily ∆ = ∆′, so Θ `std X[k̃]{Q/X} . ∆′.
Case [G-Rec]. We have Θ,X : ∆′ `std recY.P . ∆. We find by typing Θ,X :
∆′, Y : ∆ `std P .∆, hence by the induction hypothesis Θ, Y : ∆′ `std P{Q/X}.
∆, and so by [G-Rec] Θ `std (recY.P){Q/X} . ∆.

Case [G-Cond]. Immediate from the induction hypothesis. ut

Lemma A.2. If Θ `std P . ∆ then also Θ `std P{v/x} . ∆ .

Proof. Straightforward induction. ut

Lemma A.3. If Θ `std P . ∆ and ∆(k) 6= end then k ∈ fn(P).

Proof. Straightforward induction. ut

Lemma A.4. Suppose Θ `std P .∆, k : T with ∆, k : T balanced, T 6= end, and
k 6∈ fn(P). Then k 6∈ dom(∆).

Proof. Supposed for a contradiction k ∈ dom(∆). Because ∆, k : !.T balanced,
∆(k) 6= end. By Lemma A.3 we thus have k ∈ fn(P); contradiction. ut

33

Lemma A.5. Suppose that Θ `std P .∆ with P
λ−→ Q. Then there exists a type

transition ∆
δ−→ ∆′ with δ ' λ, such that Θ `std Q.∆′. Moreover, if ∆ balanced,

then also ∆′ balanced.

Proof. By induction on the derivation of the transition.

Case [C-Out]. We have k!〈e〉.P k!v−−→ P with k 6∈ P andΘ `std k!〈e〉.P.∆, k : !.T .

By typing Θ `std P .∆, k : T . By [F-Lift] we have k : !.T
k:!−→ k : T . By [F-Par]

∆, k : !.T
k:!−→ ∆, k : T . Observing that k : ! ' k!v we have found the requisite

type transition.
Now suppose ∆, k : !.T balanced; we must show ∆, k : T balanced. It is

sufficient to show k 6∈ dom(∆). But this follows from Lemma A.4.

Case [C-In]. We have k?(x).P
k?v−−→ P{v/x} with k 6∈ fn(P) and Θ `std k?(x).P .

∆, k : ?.T . By typing Θ `std P . ∆, k : T . By [F-Lift] and [F-Par], ∆, k :

?.T
k:?−−→ ∆, k : T . By Lemma A.2 we have Θ `std P{v/x} . ∆, k : T . Observing

k : ? ' k?v we have found the requisite transition and typing. Preservation of
balance follows from Lemma A.4.

Case [C-Bra]. We have k?{li.Pi}
k&li−−−→ Pi and Θ `std k?{li.Pi}i∈I . ∆, k :

&{li[Li].Ti}i∈I . By typing we have Θ + li `std Pi . ∆, k : Ti. By [F-Lift] and

[F-Par] we have ∆, k : &{li[Li].Ti}i∈I
k:&li[Li]−−−−−−→ ∆, k : Ti. Observing that k :

⊕li[Li] ' k&li, we have found the requisite type transition. Preservation of
balance follows from Lemma A.4.

Case [C-Sel]. We have k!l.P
k⊕li−−−→ P and Θ `std k!li.P . ∆, k : ⊕{li[Li].Ti}i∈I .

By typing Θ + li `std P . ∆, k : Ti. By [F-Lift] and [F-Par] we have

∆,⊕{li[Li]. Ti}i∈I
k:⊕li[Li]−−−−−−→ ∆,Ti.

Observing that k : ⊕li[Li] ' k ⊕ li, we have found the requisite type transition.
Preservation of balance follows from Lemma A.4.

Case [C-ParL]. We have P | P ′ λ−→ Q | P ′ with subj(λ) 6∈ fn(P ′) and Θ `std P |
P ′ .∆. By typing we have for some L1∪L2 = L and ∆1∪∆2 that Θ1 `std P .∆1

and Θ `std P ′ .∆2. By the induction hypothesis, we have a transition ∆1
δ−→ ∆′1

with Θ `std Q . ∆′1 and δ ' λ. By Lemma 4.6 dom(∆1) = dom(∆′1) so ∆′1, ∆2

is defined, and hence by [G-Par] we have Θ `std Q | P ′ . ∆′1, ∆2 and thus the
requisite transition.

Now suppose ∆1, ∆2 balanced. By Lemma 4.8 it is sufficient to prove that
subj(δ) 6∈ dom(∆1, ∆2). If subj(δ) = τ this is trivial, so say subj(δ) = k and
suppose for a contradiction k ∈ dom(∆1, ∆2). We must have δ = k : ρ and
because δ ' λ we must have subj(λ) = subj(δ) = k. By Lemma 2.2 k 6∈ fn(Q | P ′).
By Lemma 4.7 we have ∆1 = ∆′′1 , k : S with S 6= end. Because ∆1, ∆2 balanced,
(∆1, ∆2)(k) ./ S and so (∆1, ∆2)(k) 6= end.

Suppose first k ∈ dom(∆1). Then k ∈ dom(∆′′1), so also ∆′′(k) 6= end, and
it follows that ∆′1(k) = ∆′′1(k) 6= end. By Lemma 5.9 k ∈ fn(Q), contradicting
k 6∈ fn(Q | P ′).

34

Suppose instead k ∈ dom(∆2). Then immediately by Lemma 5.9 k ∈ fn(P ′),
contradicting k 6∈ fn(Q | P ′).
Case [Com-1]. We have

P1
k!v−−→ P ′1 P2

k?v−−→ P ′2

P1 | P2
τ−→ P ′1 | P ′2

and
Θ `std P1 . ∆1 Θ `std P2 . ∆2

Θ `std P1 | P2 . ∆1, ∆2

By induction we find ∆i
δi−→ ∆′i s.t. Θ `std PI . ∆′i with δ1 ' k!v and δ2 '

k?v. It follows that δ1 = k : ! and δ2 = k : ?. By [F-Com1] we thus have

∆1, ∆2
τ−→ ∆′1, ∆

′
2. Noting that τ ' τ , we have the required type transition.

Since subj(τ) = τ and so subj(τ) 6∈ dom(∆1, ∆2), it follows from Lemma 4.8 that
∆′1, ∆

′
2 is balanced when ∆1, ∆2 is.

Case [C-Com2]. We have

P1
k⊕l−−→ P ′1 P2

k&l−−→ P ′2

P1 | P2
τ :l−−→ P ′1 | P ′2

and
Θ `std P1 . ∆1 Θ `std P2 . ∆2

Θ `std P1 | P2 . ∆1, ∆2

By induction we find ∆i
δi−→ ∆′i s.t. Θ `std Pi.∆′i with δ1 ' k⊕l and δ2 ' k&l. It

follows that δ1 = k : ⊕l[L′1], and so we find a transition ∆1, ∆2
τ :l,L′1∪L

′
2−−−−−−→ ∆′1, ∆

′
2

by [F-Com2]. By [G-Par] we find Θ `std P ′1 | P ′2 . ∆′1, ∆′2. Noting that τ :
l, L′1∪L′2 ' τ : l we have the required type transition. Since subj(τ : l, L′1∪L′2) = τ
and so subj(τ : l, L′1 ∪ L′2) 6∈ dom(∆1, ∆2), it follows from Lemma 4.8 that ∆′1, ∆

′
2

is balanced when ∆1, ∆2 is.

Case [C-Rec]. We have

P{recX.P/X} λ−→ Q

recX.P
λ−→ Q

and
Θ,X : ∆ `std P . ∆

Θ `std recX.P . ∆

It then follows by Lemma A.1 that

Θ `std P{recX.P/X} . ∆,

and so by induction we find the required balance-preserving type transition.

Case [C-Prec0]. We have

e ⇓ 0 Q
λ−→ R

(receX(i).P ;Q)
λ−→ R

35

and
Θ,X : ∆ `std P . ∆ Θ `std R . ∆

Θ `std (receX(i).P ;Q) . ∆
,

and so by the induction hypothesis we find the required balance-preserving type
transition.

Case [C-PrecN]. We have

e ⇓ n+ 1 P{n/i}{(recnX(i).P ;Q)/X} λ−→ R

(receX(i).P ;Q)
λ−→ R

and again
Θ,X : ∆ `std P . ∆ Θ `std Q . ∆

Θ `std (receX(i).P ;Q) . ∆
.

By Lemma A.2 we have Θ,X : (L′, ∆) `std P{n/i} .∆. By Lemma A.1 we have

Θ `std P{n/i}{(recnX(i).P ;Q)/X} . ∆,

and the requisite balance-preserving type transition follows by the induction
hypothesis.

Case [C-CondT] and [C-CondF]. We have

e ⇓ true P
λ−→ P ′

if e then P else Q
λ−→ P ′

and
Θ ` P . ∆ Θ ` Q . ∆

Θ ` if e then P else Q . ∆
,

and the requisite balance-preserving type transition follows from the induction
hypothesis. ut

36

References

1. Bettini, L., M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini and
N. Yoshida, Global progress in dynamically interleaved multiparty sessions, in:
CONCUR, 2008, pp. 418–433.

2. Brill, M., W. Damm, J. Klose, B. Westphal and H. Wittke, Live sequence charts: An
introduction to lines, arrows, and strange boxes in the context of formal verification,
in: SoftSpez Final Report, LNCS 3147 (2004), pp. 374–399.

3. Carbone, M. and S. Debois, A graphical approach to progress for structured com-
munication in web services, in: ICE, 2010, pp. 13–27.

4. Cheung, S.-C., D. Giannakopoulou and J. Kramer, Verification of liveness proper-
ties using compositional reachability analysis, in: ESEC/SIGSOFT FSE, Lecture
Notes in Computer Science 1301 (1997), pp. 227–243.

5. Coppo, M., M. Dezani-Ciancaglini, L. Padovani and N. Yoshida, Inference of global
progress properties for dynamically interleaved multiparty sessions, in: COORDI-
NATION, 2013, pp. 45–59.

6. Damm, W. and D. Harel, Lscs: Breathing life into message sequence charts, Formal
Methods in System Design 19 (2001), pp. 45–80.

7. Dardha, O., E. Giachino and D. Sangiorgi, Session types revisited, in: PPDP, 2012,
pp. 139–150.

8. Deniélou, P.-M. and N. Yoshida, Multiparty session types meet communicating au-
tomata, in: ESOP, 2012, pp. 194–213.

9. Deniélou, P.-M. and N. Yoshida, Multiparty compatibility in communicating au-
tomata: Characterisation and synthesis of global session types, in: ICALP, 2013,
pp. 174–186.

10. Dezani-Ciancaglini, M., U. de’Liguoro and N. Yoshida, On progress for structured
communications, in: TGC, 2007, pp. 257–275.

11. Dezani-Ciancaglini, M., S. Drossopoulou, D. Mostrous and N. Yoshida, Objects and
session types, Inf. Comput. 207 (2009), pp. 595–641.

12. Fossati, L., K. Honda and N. Yoshida, Intensional and extensional characterisation
of global progress in the π-calculus, in: CONCUR, 2012, pp. 287–301.

13. Gay, S. J. and M. Hole, Subtyping for session types in the pi calculus, Acta Inf. 42
(2005), pp. 191–225.

14. Honda, K., A. Mukhamedov, G. Brown, T.-C. Chen and N. Yoshida, Scribbling
interactions with a formal foundation, in: ICDCIT, 2011, pp. 55–75.

15. Honda, K., V. Vasconcelos and M. Kubo, Language primitives and type discipline
for structured communication-based programming, in: ESOP, 1998, pp. 122–138.

16. Honda, K., N. Yoshida and M. Carbone, Multiparty asynchronous session types,
in: POPL, 2008, pp. 273–284.

17. Hu, R., N. Yoshida and K. Honda, Session-based distributed programming in Java,
in: J. Vitek, editor, ECOOP ’08, LNCS 5142, 2008 pp. 516–541.

18. Kobayashi, N., A type system for lock-free processes, I&C 177 (2002), pp. 122 –
159.

19. Kobayashi, N. and C.-H. L. Ong, A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes, in: LICS (2009), pp. 179–188.

20. Mostrous, D. and V. T. Vasconcelos, Session typing for a featherweight Erlang, in:
COORDINATION, 2011, pp. 95–109.

21. Object Management Group BPMN Technical Committee, Business Process Model
and Notation, v2.0, Webpage (2011), http://www.omg.org/spec/BPMN/2.0/PDF.

22. Padovani, L., Fair subtyping for open session types, in: ICALP, 2013, pp. 373–384.

37

http://www.omg.org/spec/BPMN/2.0/PDF

23. Roa, J., O. Chiotti and P. D. Villarreal, A verification method for collaborative
business processes, in: Business Process Management Workshops (1), Lecture Notes
in Business Information Processing 99 (2011), pp. 293–305.

24. Vasconcelos, V., Fundamentals of session types, I&C 217 (2012), pp. 52–70.
25. Vieira, H. T. and V. T. Vasconcelos, Typing progress in communication-centred

systems, in: COORDINATION, 2013, pp. 236–250.
26. Yoshida, N. and V. T. Vasconcelos, Language primitives and type discipline for

structured communication-based programming revisited: Two systems for higher-
order session communication, ENTCS 171 (2007), pp. 73–93.

38

	Type Checking Liveness for Collaborative Processes with Bounded and Unbounded Recursion (Full version)

