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Abstract

The aim of genetic epidemiology is to understand the effects of genes and environ-

mental factors on human health. In recent years there have been many studies of

association with the goal of studying the role of the genetic component in the risk for

common diseases such as diabetes, cardiovascular disease, cancer, Alzheimer’s, etc.

These studies are usually based on a selection of genetic markers which are geno-

typed for samples of diseased (cases) and healthy (controls) individuals in order to

study the level of association with disease.

This thesis is focused on ”Genomic Profiling” which refers to the identification of

genetic variants at multiple loci for prediction of disease risk. This involves variable

selection and model building. A common strategy for genomic profiling consists in

building a disease prediction model that only contains those genetic markers with a

marginal significant effect on the disease. This marginal approach has an important

limitation, it ignores epistasis. From a statistical point of view, an epistatic effect or

a genetic interaction is present when the combined effect of several genetic markers

on the observed phenotype is not explained by their marginal effects. The main

difficulty in the study of genetic interactions is that usually hundreds or thousands

of genetic markers are analyzed, which makes the analysis of all possible interactions

unfeasible, from a computational point of view. As a consequence of this, most

available methods for epistasis analysis only allow the study of low order interactions,
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second or third order interactions.

In this thesis we present two new methodological approaches to address genomic

profiling in presence of epistasis which allow higher order interactions to be explored

with a reasonable computational cost.

The first method, called AUC-RF, is based on a classification methodology widely

used in the context of automated learning techniques called Random Forest (RF).

The AUC-RF algorithm implements a backward variable selection based on opti-

mizing the ROC curves of the RF. This process provides the set of genetic markers

with the highest predictive value of the disease risk.

The RF provides a ranking of the predictor variables based on some measures of

importance implemented in the method. The two most commonly used impor-

tance measures are the mean decrease accuracy (MDA) and the mean decrease Gini

(MDG). In this thesis we present a study in which we explored the stability and

robustness of these two measures of importance. The results of this study show that

MDA is very unstable and MDG provides more appropriate rankings for the pre-

dictor variables that are actually associated with the response variable. This result

justifies the use of the MDG importance measure in the AUC-RF methodology.

The second proposed method, called Optimal AUC, is based on the concept of

optimal ROC curves. The objective is again obtaining sets of genetic variables with

the highest predictive capability, now through the optimum combination of variables

based on likelihood ratio measures. In this case the proposed algorithm performs a

forward selection of variables that can identify genetic interactions of higher order,

i.e. a large number of variables, and is computationally feasible.

Another prominent issue addressed in this thesis is the simulation of data with simi-

lar properties to real genetic association studies. Simulation studies are very impor-

tant in the development and evaluation of new methods. Power and effectiveness
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can be gauged using datasets from which known results are obtained. Comparison of

results obtained using different techniques is possible as well as an evaluation of the

effectiveness of the methodology by varying simulation parameters. With this pur-

pose we developed a set of R functions to simulate genotyping data and associated

response variable based on risk models.
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Resumen

El objetivo de la epidemioloǵıa genética es comprender los efectos de los genes y

los factores ambientales en la salud humana. En los últimos años se han realizado

muchos estudios de asociación con el propósito de estudiar el papel del componente

genético en el riesgo de enfermedades comunes como la diabetes, enfermedades car-

diovasculares, cáncer, Alzheimer, etc. Estos estudios se basan por lo general en una

selección de marcadores genéticos que se genotipan para muestras de individuos en-

fermos (casos) y sanos (controles) con el fin de estudiar el nivel de asociación con la

enfermedad.

Esta tesis se centra en lo que se denomina ”Genomic Profiling”, que se refiere a

la identificación de múltiples variantes genéticas para predecir el riesgo a la enfer-

medad. Esto implica una selección de variables y la construcción de un modelo.

Una estrategia común consiste en la construcción de un modelo de predicción que

contenga únicamente los marcadores genéticos con un efecto marginal significativo

sobre la enfermedad. Este enfoque marginal tiene una limitación importante, ignora

la epistasis. Desde un punto de vista estad́ıstico, un efecto epistático o una interac-

ción genética aparece cuando el efecto conjunto de varios marcadores genéticos sobre

el fenotipo observado no queda explicado por sus efectos marginales. La principal

dificultad en el estudio de las interacciones genéticas es que generalmente se analizan

cientos o miles de marcadores genéticos, lo que hace inviable el análisis de todas las
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posibles interacciones, desde el punto de vista computacional. Como consecuencia

de ello, la mayoŕıa de los métodos disponibles para el análisis de epistasis sólo per-

miten el estudio de las interacciones de orden inferior, interacciones de segundo o

tercer orden.

En esta tesis presentamos dos aproximaciones metodológicas nuevas para la identi-

ficación de perfiles genéticos en presencia de epistasis que permiten explorar inte-

racciones de alto orden con un coste computacional razonable.

La primera de las metodoloǵıas presentadas, denominada AUC-RF, se basa en un

método de clasificación ampliamente utilizado en el contexto de las técnicas de

aprendizaje automatizado denominado Random Forest (RF). El algoritmo AUC-RF

implementa una selección de variables hacia atrás basada en la optimización de las

curvas ROC del RF que permite identificar conjuntos de marcadores genéticos con

el mayor valor predictivo sobre el riesgo a la enfermedad.

Un RF proporciona una ordenación de las variables predictoras en base a algunas

de las medidas de importancia que el método tiene implementado. Las dos medi-

das más utilizadas son el mean decrease accuracy (MDA) y el mean decrease Gini

(MDG). En esta tesis presentamos un trabajo en el que hemos explorado la esta-

bilidad y la robustez de estas dos medidas de importancia. Los resultados de este

estudio ponen de manifiesto que MDA es muy inestable y que MDG proporciona

unos rankings más adecuados para las variables predictoras que realmente están

asociadas con la variable respuesta. Este resultado justifica que en la metodoloǵıa

AUC-RF utilizamos la medida de importancia MDG.

La segunda metodoloǵıa propuesta, denominada Optimal AUC, se basa en el con-

cepto de curvas ROC óptimas. El objetivo vuelve a ser la obtención de conjuntos

de variables genéticas con la máxima capacidad predictiva, en este caso basándonos

en la combinación óptima de variables en base a medidas de razón de verosimilitud.

En este caso el algoritmo que proponemos realiza una selección de variables hacia
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adelante que permite identificar interacciones genéticas de alto orden, es decir, con

un número elevado de variables, y abordable desde el punto de vista computacional.

Otro aspecto importante que abordamos en esta tesis es la simulación de datos que

cumplan ciertas propiedades similares a datos reales. Los estudios de simulación

tienen mucha importancia en el desarrollo y evaluación de nuevas metodoloǵıas

porque permiten analizar su potencia y efectividad en conjuntos de datos para los

que se conoce cuál debeŕıa ser el resultado correcto a obtener, permiten comparar

los resultados obtenidos con otras técnicas y permiten analizar cómo se ve afectada

la efectividad de la metodoloǵıa al variar los parámetros de simulación. Con este

propósito, hemos desarrollado un conjunto de funciones de R para simular los datos

de genotipos y la variable respuesta asociada en base a modelos de riesgo.
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Resum

L’objectiu de l’epidemiologia genètica és comprendre els efectes dels gens i els factors

ambientals en la salut humana. En els últims anys s’han realitzat molts estudis

d’associació amb el propòsit d’estudiar el paper de la component genètica en el risc

de malalties comunes com la diabetis, malalties cardiovasculars, càncer, Alzheimer,

etc. Aquests estudis es basen en general en una selecció de marcadors genètics que es

genotipen per a mostres d’individus malalts (casos) i sans (controls) amb la finalitat

d’estudiar el nivell d’associació amb la malaltia.

Aquesta tesi es centra en el que es denomina ”Genomic Profiling”, que es refereix

a la identificació de múltiples variants genètiques per predir el risc a la malaltia.

Això implica una selecció de variables i la construcció d’un model. Una estratègia

comuna consisteix en la construcció d’un model de predicció que contingui únicament

els marcadors genètics amb un efecte marginal significatiu sobre la malaltia. Aquest

enfocament marginal té una limitació important, ignora l’epistasi. Des d’un punt de

vista estad́ıstic, un efecte epistàtic o una interacció genètica apareix quan l’efecte

conjunt de diversos marcadors genètics sobre el fenotip observat no queda explicat

pels seus efectes marginals. La principal dificultat en l’estudi de les interaccions

genètiques és que generalment s’analitzen centenars o milers de marcadors genètics,

i això fa inviable l’anàlisi de totes les possibles interaccions, des del punt de vista

computacional. Com a conseqüència d’això, la majoria dels mètodes disponibles
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per a l’anàlisi d’epistasi només permeten l’estudi de les interaccions d’ordre inferior,

interaccions de segon o tercer ordre.

En aquesta tesi presentem dues aproximacions metodològiques per a la identificació

de perfils genètics en presència d’epistasi que permeten explorar interaccions d’ordre

alt amb un cost computacional raonable.

La primera de les metodologies presentades, denominada AUC-RF, es basa en un

mètode de classificació àmpliament utilitzat en el context de les tècniques d’apre-

nentatge automatitzat denominat Random Forest (RF). L’algorisme AUC-RF im-

plementa una selecció de variables cap a enrere basada en l’optimització de les corbes

ROC del RF que permet identificar conjunts de marcadors genètics amb el major

valor predictiu sobre el risc a la malaltia.

Un RF proporciona una ordenació de les variables predictores sobre la base d’algunes

de les mesures d’importància que el mètode té implementades. Les dues mesures més

utilitzades són el mean decrease accuracy (MDA) i el mean decrease Gini (MDG).

En aquesta tesi presentem un treball en el que hem explorat l’estabilitat i la ro-

bustesa d’aquestes dues mesures d’importància. Els resultats d’aquest estudi posen

de manifest que el MDA és molt inestable i que el MDG proporciona uns rànquings

més adequats de les variables predictores que realment estan associades amb la vari-

able resposta. Aquest resultat justifica que a la metodologia AUC-RF utilitzem la

mesura d’importància MDG.

La segona metodologia proposada, denominada Optimal AUC, es basa en el concepte

de corbes ROC òptimes. L’objectiu torna a ser l’obtenció de conjunts de variables

genètiques amb la màxima capacitat predictiva, en aquest cas basant-nos en la

combinació òptima de variables sobre la base de mesures de raó de versemblança.

En aquest cas l’algorisme que proposem realitza una selecció de variables cap a

endavant que permet identificar interaccions genètiques d’ordre alt, és a dir, amb

un nombre elevat de variables, i possible des del punt de vista computacional.
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Un altre aspecte important que abordem en aquesta tesi és la simulació de dades que

compleixin certes propietats similars a dades reals. Els estudis de simulació tenen

molta importància en el desenvolupament i avaluació de noves metodologies perquè

permeten analitzar la seva potència i efectivitat en conjunts de dades pels quals

es coneix quin hauria de ser el resultat correcte a obtenir, permeten comparar els

resultats obtinguts amb altres tècniques i permeten analitzar com es veu afectada

l’efectivitat de la metodologia en variar els paràmetres de simulació. Amb aquest

propòsit, hem desenvolupat un conjunt de funcions d’R per simular les dades de

genotips i la variable resposta associada en base a models de risc.
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Introduction

Common diseases such as cancer, diabetes, Alzheimer’s or cardiovascular disease are

caused by the combination of multiple genetic and environmental factors. Under-

standing the effects of genes and environmental factors on the development of these

complex diseases is a major aim of genetic epidemiology.

In the last few years a large number of association studies have been carried out with

the goal of studying the inherited genetic basis of common diseases. A common study

design for exploring the genetic basis of human diseases is a case-control study where

single nucleotide polymorphisms (SNPs) are genotyped and differences in genotype

frequencies between cases and controls are analyzed. An SNP is a polymorphic single

nucleotide locus in the genome DNA where different variants (alleles) are observed

among the individuals in a population. SNPs are the most simple and common

form of genetic variation among individuals. Throughout the human genome there

are more than 10 million SNPs and the variation in these polymorphic loci would

explain an important part of our individual susceptibility to disease or the different

individual responses to treatments. Most SNPs have two possible alleles denoted by

an uppercase letter (for example ”A” or ”B”) and a lowercase letter (”a” or ”b”).

Usually, the uppercase denotes the ancestral allele or just the most frequent allele in

the population. Since the human genome is diploid, that is, the DNA is duplicated

in each cell of an individual, this yields to three possible genotypes per SNP: ”AA”

1



2 Introduction

Table 1: Genotype codification of a SNP.

Genotype X genotype frequencies

AA 0 pAA

Aa 1 pAa

aa 2 paa

for the common homozygous subjects, ”Aa” for the heterozygous subjects and ”aa”

for the variant homozygous subjects. From a statistical point of view an SNP can

be thought of as a categorical variable X with three different categories that can be

recoded numerically as the number of minor alleles (”a”), that is, zero for ”AA”,

one for ”Aa” and two for ”aa” (Table 1).

The number of genotyped SNPs for each individual varies from hundreds in candi-

date gene studies to above 1 million in genome-wide association studies (GWAS). In

candidate gene studies SNPs are genotyped in a set of genes that are thought to have

some relationship with the disease. Instead, GWAS are designed to cover most of

the human genetic variation by genotyping SNPs across the whole genome without

any prior hypothesis of causality. GWAS are indirect association studies where the

genotyped SNPs act as markers for the nearby region; it is assumed that an associ-

ated SNP will be either a disease-causing variant or will be in linkage disequilibrium

(LD) with an unmeasured disease-causing variant. Linkage disequilibrium (LD) is

a population genetics concept that reflects the non-random association of alleles in

two loci. In other words, LD appears when a particular allele at one locus is found

together with a specific allele at a second locus more often than expected if the two

loci were segregating independently in the population.

So far, many genes and genetic variants associated with disease risk have been identi-

fied. However, these well established variants only explain a small proportion of the

inferred genetic contribution of disease and discovering the rest of genetic variants
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remains a major challenge. The success of genetic association studies depends on

both biological and statistical factors: small size effects of individual variants, non-

additive multi-factor effects and linkage disequilibrium (LD), among others, may

affect the power of the specific study design and the statistical approach chosen for

analysis. The genetic architecture of the disease, controlled by high-penetrant muta-

tions, rare disease-causing variants, common susceptibility alleles or a combination

of these situations, may also play an important role in the success of association

studies.

Though complex diseases are known to be caused by the joint effect of multiple

genetic and environmental factors, the usual practice in genetic association studies

is a marginal analysis where each genetic marker is tested separately for association

with the disease. This marginal strategy is not very powerful since each genetic

variant is expected to have a very small marginal effect, only detectable with very

large sample sizes. Indeed, most associated variants detected up to now in GWAS

have small effect sizes with odds-ratios of disease for the risk allele typically around

1.2 (Wray et al., 2007). Furthermore, this marginal analysis strategy does not

take into account possible interactions between the genetic factors, also known as

epistasis. Genes do not act in isolation but instead their function depends on many

other genes in a network or pathway that interact in a complex way. Thus, ignoring

genetic interactions is an important limitation of the marginal analysis strategy

which can only be viewed as a preliminary step of the gene identification process

(Cantor et al., 2010).

This thesis is the result of my participation in several projects in the Bioinformatics

and Medical Statistic group at the University of Vic - Central University of Cata-

lonia. In collaboration with Dr. Núria Malats (CNIO) we have been involved in

the Spanish Bladder Cancer/EPICURO study, one of the largest studies on bladder

cancer aiming at identifying genetic and environmental factors related to the etiology

and progression of bladder cancer. On the other hand, in collaboration with Dr.



4 Introduction

Enric Bofill and Pere Roura (Consorci Hospitalary de Vic) we have participated in

an Alzheimer’s disease (AD) study focused on the identification of genetic variants

in the reelin pathway associated with a modification of AD risk. In chapter 1 we

introduce the data sets from these two studies, on bladder cancer and Alzheimer

disease, which have motivated different parts of the present thesis.

From a methodological point of view, the goal of this thesis is the development of

new powerful methods for the identification of genetic interactions (epistasis anal-

ysis) or the improvement of existing methodologies. In this work we use the term

genetic interactions or epistasis in a rather wide sense referring to nonlinear joint ef-

fects that are not captured by a model that only considers additive marginal effects.

Several statistical methods have been proposed for epistasis analysis. From exhaus-

tive searches using regression models including interactions (Marchini et al., 2005)

to data-mining methods such as the Multi-Dimensional Reduction Method (Ritchie

et al., 2001), the Model-Based Multi-Dimensional Reduction method (Calle et al.,

2010, 2008), or approaches based on Random Forest (Bureau et al., 2005) and Sup-

port Vector Machine (Wei et al., 2009). An overview on this topic is given by Van

Steen (2012). The methods proposed in this thesis are related to the Random Forest

(chapters 3 and 4) and to the optimal ROC curve (chapter 5).

Before these developments are presented, we describe in chapter 2 some concepts

and strategies for simulating data sets from a case-control genetic study with epis-

tasis. We review two genetic disease risk models for independent genetic markers

and a binary outcome (disease status) and describe how to use these models for

simulating high-order genetic interactions. We also describe how to transform the

binary outcome into a continuous or a time-to-event phenotype. We provide R func-

tions for the proposed simulation strategies. These simulation studies are useful for

exploring the accuracy, power and improvement of the new proposed methods for

epistasis analysis.
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In chapters 3 and 4 we centre on the Random Forest (RF) methodology, a clas-

sification algorithm developed by Leo Breiman (Breiman, 2001) consisting of the

aggregation of multiple classification trees generated from bootstrap samples. Ran-

dom Forest can be used for ranking variables according to a measure of importance

and this ranking can be used for feature selection. In chapter 3 we explore the

stability and robustness of two importance measures provided by RF, mean de-

crease accuracy (MDA) and mean decrease Gini (MDG). In this work we show that

MDA is very unstable and that MDG provides better rankings for causal variants.

This part of the thesis is published in Calle and Urrea (2011). In chapter 4 we

propose a new strategy for variable selection using Random Forest. The proposed

algorithm, namely AUC-RF, computes the Receiver Operating Curve (ROC) as-

sociated to the Random Forest, uses the area-under-the ROC curve (AUC) as the

predictive accuracy of the Random Forest and implements a backward elimination

process for selecting the set of variables with the highest AUC value. The goal of

this chapter is two-fold: establish AUC as a preferable accuracy measure for Ran-

dom Forests compared to the usual classification error rate and to provide a new

selection algorithm based on the AUC. In particular, we show that the use of the

classification error is especially inappropriate when dealing with unbalanced data

sets. The new method is published in the Human Heredity journal (Calle et al.,

2011) and the algorithm is publicly available as an R package, named AUCRF, at

http://cran.r-project.org/web/packages/AUCRF and the package documentation

can be found in appendix B.

Most statistical methods for epistasis analysis are able to scan for second or third

order interactions but, since they are very computationally demanding, they become

unfeasible for exploring higher order interactions when the number of variables to

explore is large, as is usually the case. In chapter 5 we propose a new strategy

for exploring higher order interactions. The method is based on the concept of

the likelihood ratio score and optimal ROC curves and follows a process of forward
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selection to obtain the subset of factors with the highest joint predictive accuracy.

The algorithm, referred to as Optimal AUC, is computationally feasible in a large

variable context.

In summary, the major contributions presented in this thesis are two new methodolo-

gical strategies, the AUC-RF and the Optimal AUC algorithms, for the identification

of genetic variants in association studies in the presence of epistasis. The develop-

ment of these methodologies and the need to assess their accuracy has led to two

also remarkable contributions, an in depth study of the stability of the importance

measures of the Random Forest methodology and a new strategy for simulating

epistasis.



CHAPTER 1

Bladder Cancer and Alzheimer’s Disease Studies

This chapter presents a description of the data sets that have been used and which

have served as motivation for the different sections of this thesis. The first data set

corresponds to the Spanish Bladder Cancer/EPICURO study and the second one

to the Alzheimer’s Disease study.

7
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1.1 The Spanish Bladder Cancer/EPICURO Study

Bladder cancer is the fifth most commonly diagnostic cancer type in Europe. In

Spain about 8.000 new cases are diagnosed each year, and is one of the cancers with

a higher prevalence. It is a chronic disease with a survival rate at five years of 70%,

which requires strict medical lifelong checks and has a considerable impact on the

quality of life of patients. It is one of the cancers with higher health care costs per

patient.

The main causes of risk for bladder cancer are tobacco smoking and certain occupa-

tional exposure to carcinogens. It is known that men have a higher risk of developing

the disease than women and that this risk increases with age.

Several studies also suggest genetic causes that may have some influence on the

susceptibility to bladder cancer, as it has detected an increased risk in patients with

family history of bladder cancer.

The study of genetic factors associated with susceptibility to this cancer has mainly

focused on genes encoding enzymes involved in xenobiotic metabolism (deactivation

and removal mechanism of a type of potentially harmful substances), but other

types of processes are also of interest as the xenobiotic transport, apoptosis (cell

death genetically regulated), cell cycle control, angiogenesis (physiological process

of formation of new blood vessels from preexisting vessels), tumor progression or

inflammation process.

The Spanish Bladder Cancer/EPICURO Study (SBCS) was initiated in 1997 with

the purpose of advancing knowledge of this cancer for improving prevention, prog-

nosis and treatment. Its main objectives are to evaluate the risk of bladder cancer in

relation to environmental and occupational exposures, to evaluate the role of lifestyle

factors in their etiology and to evaluate the effects of genetic susceptibility markers
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on the risk of bladder cancer and their interaction with environmental exposures.

The SBCS is a case-control study conducted in 18 hospitals from 5 areas in Spain

(Asturias, Barcelona metropolitan area, Vallès/Bages, Alicante, and Tenerife). Eli-

gible cases were aged 21-80 years and had newly diagnosed, histologically confirmed

carcinoma of the urinary bladder during 1998-2001. Patients who had a previous

diagnosis of cancer of the lower urinary tract (i.e. bladder,renal pelvis, ureters, or

urethra) were not eligible for the study, as were patients with bladder tumors that

were secondary to other malignancies. Controls were selected from patients admitted

to participating hospitals with diagnoses thought to be unrelated to the exposures

of interest, such as tobacco use. Controls were individually matched to the cases

for age at interview within 5-year categories, sex, ethnic origin, and region. After

having accepted to participate, subjects gave information on their past exposure to

several environmental risk factors and provided blood/saliva as a source of genomic

DNA.

Participants were classified as never smokers if they had smoked fewer than 100

cigarettes in their lifetime and ever smokers otherwise. Ever smokers were further

classified as regular smokers if they had smoked at least 1 cigarette per day for 6

months or longer and occasional smokers otherwise. Current smokers were defined

as those regular smokers who had smoked within a year of the reference date; indi-

viduals who had smoked regularly but who had stopped smoking more than 1 year

before the reference date were defined as former smokers.

In this thesis we use a data set from SBCS consisting of a total of 2299 individuals

(1150 controls and 1149 cases). Four environmental variables (gender, region, age

and smoking status) and 267 genetic variables. Table 1.1 describes the distribution

of individuals with respect to the variables gender, region, age that were used for

matching cases and controls.

Table 1.2 shows the distribution of cases and controls by exposure to smoking, which
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Table 1.1: SBCS. Distribution of individuals with respect to gender,

region, age and exposure to smoking.

Variable Category Cases Controls Total

Gender Male 1004 (87.3%) 1002 (87.2%) 2006 (87.3%)

Female 146 (12.7%) 147 (12.8%) 293 (12.7%)

Age < 55 171 (14.9%) 194 (16.9%) 365 (15.9%)

55-64 240 (20.9%) 280 (24.4%) 520 (22.6%)

65-69 254 (22.1%) 263 (22.9%) 517 (22.5%)

70-74 254 (22.1%) 226 (19.7%) 480 (20.9%)

≥ 75 231 (20.0%) 186 (16.1%) 417 (18.1%)

Region Barcelona 209 (18.2%) 232 (20.2%) 441 (19.2%)

Vallès Occidental/Bages 180 (15.7%) 182 (15.8%) 362 (15.7%)

Alicante 85 ( 7.4%) 82 ( 7.1%) 167 ( 7.3%)

Tenerife 211 (18.3%) 191 (16.6%) 402 (17.5%)

Asturias 465 (40.4%) 462 (40.3%) 927 (40.3%)
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Table 1.2: SCBS. Distribution of cases and controls

by exposure to smoking.

Category Cases Controls

Non-smokers 159 (32.0%) 338 (68.0%)

Occasional smokers 50 (36.2%) 88 (63.8%)

Former smokers 447 (51.1%) 428 (48.9%)

Current smokers 494 (62.6%) 295 (37.4%)

is the main risk factor associated with bladder cancer. We observe a ratio of twice

as many cases than controls among smokers and this ratio is reversed among non-

smokers and former smokers.

The genetic variables corresponds to 267 SNPs genotyped in a total of 106 genes

in the inflammatory pathway. Table 1.3 describes the distribution of SNPs in the

different genes.

1.2 Alzheimer Disease Study

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases,

its prevalence ranges between 20% and 40% in developed countries. The hallmarks

of Alzheimer’s disease is the extracellular accumulation of β-amyloid plaques, hard

and insoluble plaques of protein fragments, and the intracellular accumulation of

neurofibrillary tangles, insoluble twisted fibers found inside the brain’s cells.

We were involved in the AD project ”Genotypes associated with synaptic Neuro-

plasticity in Alzheimer’s disease” in collaboration with Dr. Enric Bofill from the

Neurology Service and Pere Roura (Consorci Hospitalari de Vic). The project,
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Table 1.3: SBCS. Distribution of SNPs in the different genes.

Gene Name SNPs Gene Name SNPs Gene Name SNPs

ABCA1 5 EPHX2 1 IRF3 2

ABCA7 2 EXO1 2 JAK3 3

ABCC4 2 FAS 3 LEPR 4

AKR1C3 10 FASLG 1 LITAF 2

AKT1 1 FCGR2A 1 LTA 2

ALOX12 1 FOS 3 MASP1 8

ALOX15 1 GATA3 6 MBL2 8

ALOX5 5 GDF15 2 MPO 2

APOA2 3 GSK3B 7 MSH2 7

ARHGDIB 2 HFE 3 MX1 5

BCL6 4 ICAM1 4 NBS1 2

BIRC2 1 IFNAR2 1 NCF2 2

BPI 1 IFNG 1 NFKB1 3

CARD15 3 IFNGR1 2 NINJ1 2

CASP3 4 IFNGR2 2 NOS2A 3

CASP8 2 IL10 5 OPRD1 2

CBR1 2 IL10RA 2 PARP4 3

CCL5 2 IL12A 1 PTGS1 1

CCND3 1 IL12B 1 PTGS2 4

CCR2 2 IL13 2 RHOA 1

CCR3 2 IL15 3 SCARB1 5

CCR5 2 IL15RA 4 SELE 1

CD14 1 IL1A 2 SFTPD 2

CD4 1 IL1B 3 SLAMF1 3

CD40 1 IL1RN 2 TFF1 1

CD80 3 IL2 2 TFF3 1

CD81 1 IL3 1 TGFB1 2

CD86 2 IL4 2 TGFBR1 2

CFH 5 IL4R 5 TLR2 3

CRP 2 IL6 1 TLR4 1

CSF1R 2 IL6R 1 TNF 5

CSF2 1 IL7R 2 TNFRSF10A 2

CSF3 2 IL8 1 TNFRSF1A 1

CTLA4 6 IL8RA 1 TNIP1 1

CX3CR1 2 IRF1 1 VCAM1 1

XBP1 2
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funded by the UNNIM - Obra Social (UNNIM grant in health sciences 2011), was

aimed to explore the role of the genetic variability in the Reelin signaling pathway

in Alzheimer’s disease. The Reelin signaling pathway contributes to the formation

of synaptic circuits in the central nervous system and interacts with ApoE protein,

whose ApoE-ε4, allele is the best established genetic risk factor for late-onset AD

(Rice and Curran, 2001; Seshadri et al., 1995). The specific goals of the study were

to analyze any association between the genes involved in the Reelin signaling path-

way with Alzheimer’s disease, identifying genetic risk profiles of SNPs in genes of

the Reelin pathway and to analyze potential interactions between ApoE genotypes

and those SNPs.

With this purpose we used the data from a publicly available GWAS (Genome Wide

Association Study) conducted by Reiman et al. (2007). The dataset corresponds to

a case-control study with 1411 subjects (861 cases and 550 controls) and 502, 627

SNPs genotyped. Since we focus in the Reelin pathway, we extracted 682 SNPs

which lie within 32 genes of the Reelin signaling pathway. Table 1.4 describes the

distribution of SNPs in the different genes. The dataset also provides an indicator

variable of whether the individual is carrying the apolipoprotein variant ApoE-ε4.

The dataset was available for download from http://public.tgen.org/tgen.org/

supplementarydata/neurogenomics/supplementarydata/GAB2.
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Table 1.4: AD. Distribution of SNPs in the diferent genes.

SNPs in SNPs in SNPs in SNPs in

Gene Chm gene promotor Gene Chm gene promotor

ABL1 9 27 0 LRP2 2 43 1

ABL2 1 6 2 PIK3R1 5 8 2

APOE 19 CDK5R1 17

APOER2 1 11 0 CDK5R2 2

APP 21 49 1 TP73 1 4 0

BDNF 11 5 1 AKT1 14 2 1

CAMK2A 5 10 1 PLK2 5 1 0

CASK X PSEN1 14 4 0

CDC42 1 10 2 PSEN2 1 5 1

CDK5 7 4 0 RAC1 7 5 0

CNR1 6 6 2 RELN 7 80 2

DAB1 1 251 1 RHO 3 1 1

EMX2 10 0 1 RHOA 3 0 4

EPHA1 7 1 2 SHIP 2 18 0

FYN 6 36 1 SRC 20 4 0

GSK3B 3 7 0 TAU 17 31 0

ITGA3 17 4 6 TBR1 2 2 4

LDLR 19 4 0 VLDLR 9 5 2



CHAPTER 2

Simulation of genetic risk profiles for binary,

continuous and time-to-event phenotypes

Simulation studies in genetic epidemiology research are essential for evaluating the

accuracy, power and potential improvement of new methodologies for exploring the

genetic component of a disease. In this chapter we review two genetic disease risk

models for independent genetic markers and binary outcome (disease status) and

describe how to use these models for simulating high-order genetic interactions. We

also describe how to transform the binary outcome in a continuous or time-to-event

phenotype. We provide R functions for the proposed methods.

15
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2.1 Introduction

Simulation studies play an important role in genetic epidemiology research. They

are essential for evaluating the accuracy, power and potential improvement of new

methodologies for exploring the genetic component of a disease. The simulation

of such datasets involves two steps, the simulation of the genetic markers and the

simulation of the phenotype. Here we center on the case where the genetic markers

are single nucleotide polymorphisms (SNPs). The simulation of genotypes requires

the specification of allelic and genotype frequencies and possible correlations between

the genetic variables (LD). The simulation of the phenotype, which can be binary,

continuous or a time-to-event variable, requires the specification of a disease risk

model that relates the genotypes with the phenotype.

Though epistasis analysis is one important research topic, most disease risk models

considered in simulation studies assume independence among causal SNPs or, at

best, incorporate second-order interactions by adding the corresponding interaction

terms in the model. Modeling higher order interactions in this parametric way is

complicated. In this chapter, we illustrate these concepts, review two genetic disease

risk models for independent genetic markers and binary outcome (disease status) and

describe how to use these models for simulating high-order genetic interactions. We

also describe how to transform the binary outcome into a continuous or time-to-

event phenotype. In appendix A we provide the R language code of the functions

for the proposed methods.

There exist several sophisticated methods and programs for simulating genotypes

that reproduce the intrinsic architecture of the human genome in a very realistic

manner (Li and Li, 2008; Wright et al., 2007). They provide simulated datasets with

realistic patterns of LD and allele frequencies by resampling from human genome

variation databases, as Hapmap (I.H.C., 2003). This strategy consists on select-
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ing a set of SNPs in an LD block at the Hapmap database and, based on their

genotype information, estimate the haplotypes frequencies and then generate the

individual genotypes by matching randomly pairs of simulated haplotypes. More

sophisticated models and software are available for generating simulated data that

closely resemble real data, such as HAPGEN2 software that simulates haplotypes

by conditioning on a reference set of population haplotypes and an estimate of the

fine-scale recombination rate across the region, so that the simulated data has the

same LD patterns as the reference data, or the simulation program COSI which

implements a coalescent model (Schaffner et al., 2005).

Although these methods are very useful for evaluating the performance of a new

approach in a realistic situation, in initial phases of a new methodological develop-

ment it can be convenient to explore the performance of the new method in a simpler

and more controlled framework. With this aim, in section 2.2 we describe simple

methods for simulating genotypes where the user can control the allele frequencies

and the degree of linkage disequilibrium (LD) between variables. Sections 2.3 to 2.5

are dedicated to the simulation of phenotypes. In section 2.3 we describe two al-

ternative models of genetic disease risk that have been proposed in the literature,

the multiplicative model and the multiplicative odds of risk model (Janssens et al.,

2006; Wray and Goddard, 2010; Wray et al., 2007). In section 2.4 we propose a

strategy for simulating a binary phenotype (disease status) given a specific genetic

profile and a risk model. In these simulations the causal genetic variants may ei-

ther act independently on the risk of disease or have a joint nonlinear interacting

effect. In section 2.5 we show how to transform a simulated binary phenotype into

a continuous or a time-to-event variable. Finally, in section 2.6 we provide some

examples to illustrate the use of a set of R functions that we have developed for this

purpose.
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2.2 Simulation of genotypes

We consider diallelic loci, for instance, Single Nucleotide Polymorphisms (SNPs). As

mentioned in the introduction, we denote by A the wild-type or major allele and by

a the variant or minor allele. Let p denote the frequency of the variant allele a. We

assume that the genotypes are in Hardy-Weinberg equilibrium (HWE), that is, the

genotype frequencies for the three genotypes (AA, Aa, aa) are (1− p)2, 2p(1 − p)

and p2, respectively.

2.2.1 Simulation of independent SNPs

The simulation of independent SNPs can be easily implemented. From a statistical

point of view a SNP is a categorical variable with three different categories that can

be recoded numerically as the number of minor alleles in the locus, that is, zero for

AA, one for Aa and two for aa. The individual genotypes for a SNP in a sample are

generated as i.i.d. realizations of a random variable following a binomial distribution

with size equal to 2 and probability of success equal to p, the frequency of the minor

allele.

2.2.2 Simulation of SNPs in LD blocks

Linkage disequilibrium (LD) is a population genetics concept that reflects the non-

random association of alleles in two loci. In other words, LD appears when a partic-

ular allele at one locus is found together with a specific allele at a second locus more

often than expected if the two loci were segregating independently in the population.

There are different measures to characterize the strength of LD between two loci.

For two diallelic loci with minor alleles a and b and minor allele frequencies pa and
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pb, respectively, the most simple and intuitive measure of LD is D, the difference

between the observed haplotype frequencies and the expected frequencies assuming

independence (D = pAB − pA · pB = pab − pa · pb). A standardized version of D is

given by the correlation coefficient defined as r = D/
√
pA · pa · pB · pb.

As mentioned before, the goal of the following proposal for simulating SNPs in LD

is not to obtain a realistic genetic dataset that mimics the LD structure in the

human genome. Instead, our goal is to simulate genetic data sets of SNPs including

correlations between them in a controlled manner, where the allele frequencies and

the degree of LD between SNPS are specified by the user.

Given a first SNP (SNP1), we can simulate a second SNP (SNP2) with a specified

LD correlation r with SNP1 by sampling from the conditional distributions of the

genotypes of SNP2 given the genotypes of SNP1. These conditional distributions

can be derived from the definition of D assuming HWE, and are given by:

P (BB | AA) = (pA · pB +D)2 / pA
2,

P (Bb | AA) = 2(pA · pB +D)(pA · pb −D) / pA
2,

P (bb | AA) = (pA · pB −D)2 / pA
2,

P (BB | Aa) = (pA + pB +D)(pa · pb −D) / (pA · pa),

P (Bb | Aa) = [(pA + pB +D)(pa · pb +D) + (pA + pB −D)(pa · pb −D)] / (pA · pa),

P (bb | Aa) = (pA + pB −D)(pa · pb +D) / (pA · pa),

P (BB | aa) = (pa · pB −D)2 / pa
2,

P (Bb | aa) = 2(pa + pB −D)(pa · pb +D) / pa
2,

P (bb | aa) = (pa · pb +D)2 / pa
2.

Since D = r
√
pA · pa · pB · pb , the conditional distributions of the genotypes of SNP2
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given the genotypes of SNP1 are determined by the correlation coefficient r and the

allele frequencies.

Thus, a simple method for simulating a set of SNPs that form a haplotype block

of SNPs in LD is to start by simulating a first SNP that is used as a reference and

then generate consecutively the other SNPs in the block according to a specified LD

correlation with the reference SNP and using the above conditional distributions.

This has the limitation that we can only control the correlation of each SNP in the

block with a reference SNP, but not the correlation among the rest of SNPs. In

this sense, it does not perfectly mimic genotype data, but it is a way to introduce

structures of LD in the data that are controlled with just one parameter.

2.3 Multi-locus models of disease risk for a

binary phenotype

Once the genotypes of M SNPs have been generated for a sample of individuals, we

will simulate the phenotype, in this case, a binary phenotype Y denoting diseased

(Y = 1) and non-diseased (Y = 0). We assume that a subset of the total available

SNPs are associated with disease (for simplicity we will call them causal or risk

SNPs) and the rest are not associated with Y (null SNPs). We denote by m the

number of causal SNPs with m ≤M .

The simulation of Y requires the specification of a genetic disease risk model, a

model that describes the individual genetic risk of an individual on the basis of

his/her genotypes at the m genetic causal loci. We describe below two alternative

multi-locus disease models, both multiplicative risk models in different scales. The

first model, referred simply as multiplicative risk model, is multiplicative in the risk

scale while the second, referred as odds of risk model, is multiplicative in the odds
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scale.

For each causal loci i = 1, . . . ,m we denote by ai and Ai the variant and wild-type

alleles, respectively, and pi the frequency of the variant allele. We assume HWE.

For simplicity of explanation we will describe the models under an additive mode

of inheritance for each locus where ri is the relative risk of the heterozygous group

Aiai with respect to the reference group AiAi and r2i is the corresponding relative

risk for the minor homozygous genotypes aiai, that is:

ri = P (Y = 1 | Aiai)/P (Y = 1 | AiAi),

r2i = P (Y = 1 | aiai)/P (Y = 1 | AiAi).

2.3.1 Multiplicative risk model

The multiplicative risk model for independent loci under an additive mode of inher-

itance assumes that each risk allele increases multiplicatively the baseline genetic

risk of disease. Given a genomic profile (G1, . . . , Gm) and Y , the indicator of disease,

the multiplicative model can be expressed as:

P (Y = 1 | G1, . . . , Gm) = g0

m∏
i=1

rXi
i (2.1)

where Xi is the number of risk alleles, 0, 1, or 2, at the ith locus and g0 = P (Y =

1 | G1 = A1A1, . . . , Gm = AmAm) = P (Y = 1 | X1 = · · · = Xm = 0) is the baseline

disease risk, that is, the disease risk of those individuals with no minor allele in the

m loci.

If we assume that the relative risk at each loci is the same, say r, then the multi-

plicative model reduces to

P (Y = 1 | G1, . . . , Gm) = g0 · rX (2.2)
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where X = X1 + · · · + Xm is the total number of minor alleles across the m loci

(Wray et al., 2007).

Under model (2.2) and assuming equal allele frequency p across loci, the prevalence

of the disease (K) and the broad sense heritability (h2) can be explicitly expressed

as a function of the number of loci, m, the minor allele frequency, p, the relative

risk, r, and the baseline risk, g0:

K = P (Y = 1) = g0(1 + p(r − 1))2m (2.3)

and

h2 =
K

(1−K)
· (1 + p(r2 − 1))2m

(1 + p(r − 1))4m
− 1 (2.4)

where the heritability, h2, indicates the fraction of the phenotype variability that can

be attributed to the genetic variation or the proportion of disease cases attributable

to genetic effects (Wray et al., 2007).

Expressions (2.3) and (2.4) can also be used to derive the number of risk loci un-

derlying a complex disease, that is, the number of loci that explains the estimated

prevalence and heritability of a given disease for different values of the risk allele

frequency and the relative risk:

n =
1

2
· ln[h2 + (1− h2)K]− ln(K)

ln[1 + p(r2 − 1)]− 2 ln[1 + p(r − 1)]
. (2.5)

This expression, together with the low relative risk observed in empirical studies,

suggests that most common diseases might be affected by a large number of loci

(Wray et al., 2007).

The multiplicative risk model is intuitive and attractive for its simplicity; however,

it has a major drawback: equations (2.1), (2.2) or (2.3) are not restricted to be in

the plausible range of values of a probability and under some combinations of model
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parameters the probability of disease can take values larger than 1 (Wray et al.,

2010). For this reason, alternative models such as the odds of risk model have been

proposed (Janssens et al., 2006; Wray et al., 2010).

2.3.2 Multiplicative odds of risk model

The multiplicative odds of risk model for independent loci (Janssens et al., 2006;

Wray and Goddard, 2010) assumes a multiplicative model for the likelihood ratios

(LR). In other words, the model assumes that the LR of a genetic profile can be

obtained by multiplying the LRs of the individual genotypes:

LR(G1, . . . , Gm) =
m∏
i=1

LRi (2.6)

where

LR(G1, . . . , Gm) =
P (G1 = g1, . . . , Gm = gm | Y = 1)

P (G1 = g1, . . . , Gm = gm | Y = 0)

and

LRi =
P (Gi = gi | Y = 1)

P (Gi = gi | Y = 0)
, i = 1, . . . ,m.

The odds of disease, P (Y = 1 | G1, . . . , Gm) / [1 − P (Y = 1 | G1, . . . , Gm)], is

obtained by multiplying the prior odds by the likelihood ratio (LR). The prior odds

can be calculated from the prevalence of disease as K/(1 −K). Thus, the odds of

disease is:

odds = prior odds · LR(G1, . . . , Gm) =
K

(1−K)
· LR(G1, . . . , Gm).

Under the multiplicative odds risk model, the odds of disease is given by
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odds =
K

(1−K)
·
m∏
i=1

LRi. (2.7)

On the other hand, the individual risk of disease given a genomic profile can be

expressed in terms of the odds of disease:

P (Y = 1 | G1, . . . , Gm) =
odds

1 + odds
. (2.8)

Unlike the multiplicative model, this expression guarantees that under the odds of

risk model the probability of disease takes values in [0, 1].

The multiplicative odds of risk model is described in Janssens et al. (2006) and

expression (2.6) is further developed in terms of odds-ratios. Here we describe the

model in terms of relative risks.

Table 2.1: Joint probability distribution of genotypes, Gi and the disease

indicator Y where p denotes the frequency of the variant allele A.

G X Y = 1 Y = 0 P (G)

AA 0 p01 p00 f0 = (1− p)2

Aa 1 p11 p10 f1 = 2p(1− p)

aa 2 p21 p20 f2 = p2

(Total) K 1−K 1

The LR at each single loci, LRi = P (Gi = gi | Y = 1) / P (Gi = gi | Y = 0), can be

obtained from the joint probability distribution of genotypes, Gi, and the disease

indicator Y , shown in Table 2.1, where the values in the table can be derived from

the disease model parameters, prevalence, K, risk allele frequency, p, relative risk,



2.4. Simulation of disease status from a genetic profile 25

r, and are given by the following expressions:

p01 = K · f0 / (f0 + r · f1 + r2 · f2),

p11 = p01 · r · f1 / f0,

p21 = p01 · r2 · f2 / f0,

p00 = f0 − p01,

p10 = f1 − p11,

p20 = f2 − p21.

Then, the likelihood ratios at each locus for the three possible genotypes are:

LR(X = 0) =
P (G = AA | Y = 1)

P (G = AA | Y = 0)
=
p01 · (1−K)

p00 ·K
,

LR(X = 1) =
P (G = Aa | Y = 1)

P (G = Aa | Y = 0)
=
p11 · (1−K)

p10 ·K
,

LR(X = 2) =
P (G = aa | Y = 1)

P (G = aa | Y = 0)
=
p21 · (1−K)

p20 ·K
.

2.4 Simulation of disease status from a genetic

profile

Once the genotypes have been generated we proceed with the simulation of the

response variable Y , the indicator of the presence or absence of disease. In sub-

section 2.4.1 we describe how to simulate disease status when the risk SNPs are

independent. Instead, in subsection 2.4.2 we propose a new strategy for simulating

the response variable from a set of interacting SNPs.
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2.4.1 Simulation of disease status from independent SNPs

For each combination of genotypes of the m risk loci, (G1, . . . , Gm), we obtain the

individual risk of disease P (Y = 1 | G1, . . . , Gm) from equation (2.1), if we assume

the multiplicative risk model, or from equation (2.8), if we consider the multiplicative

odds of risk model. For these two models to be valid it is necessary that the m risk

loci are mutually independent. We assume that each risk locus is in a different LD

block but they may be in LD with other non-susceptible loci. Then, as in Janssens

et al. (2006), we generate a value u from a Uniform (0, 1) distribution and if the

individual risk of disease is larger than u we set Y = 1 for this individual and Y = 0,

otherwise. That is, Y = 1 if P (Y = 1|G1, . . . , Gm) > u and Y = 0, otherwise.

2.4.2 Simulation of high-order genetic interactions

associated with disease risk

One of the challenges of genetic association studies is the identification of interactions

between genetic variants that could explain part of the genetic risk that remains

unknown. Many methods have been recently proposed for epistasis analysis and the

performance of these methods should be explored and compared through simulation

studies. Here we propose a simple strategy for simulating high-order interactions.

Note that we use the term interaction in a very broad sense, meaning that the joint

effect of a set of SNPs does not correspond with the aggregation (multiplicatively

or additively) of the individual effects of each SNP.

Given m loci, an interaction of order m associated with disease risk can be simulated

by considering a latent variable L that assigns a value 0, 1 or 2 to each multi-locus

genotype (G1, . . . , Gm) and this value corresponds to the disease risk of the multi-

locus genotype: 0 for low risk, 1 for intermediate risk and 2 for high risk of disease.

We denote by p0, p1 and p2 the proportion of multi-locus genotypes in each risk group



2.4. Simulation of disease status from a genetic profile 27

(below is described how we set these proportions). The values of L, 0, 1 and 2, can

be randomly assigned to the different multi-locus genotypes in order that the joint

multilocus effect does not correspond with the aggregation of the individual effects.

This procedure might be useful if we want to explore the performance of a method

for identifying genetic interactions in the absence of main effects. Alternatively, the

risk groups can be assigned according to some function of the genotypes, for instance,

the score function S =
∑m

i=1Xi that counts the total number of variant alleles for

this genotype. In this case the joint effect will correspond to the accumulation of

individual effects.

The newly generated latent variable L, that takes values 0, 1 and 2, is then treated

as if it was a SNP for generating the phenotype Y following the strategy described

in subsection 4.1. That is, we obtain the individual risk of disease given the latent

variable, P (Y = 1 | L), from equation (2.1) or (2.8), depending on the assumed

disease model, and from this probability we generate Y as described above. This

requires the specification of three model parameters: disease prevalence, relative risk,

r, and frequency, p. Here r is the relative risk of individuals in the intermediate risk

group with respect to the low risk group. In this case the frequency p is not the

risk allele frequency but a parameter that we use to specify the frequency of the 3

risk groups: Given p we define the frequency of the low risk as p0 = (1 − p)2, the

frequency of the intermediate risk group as p1 = 2p(1− p) and the frequency of the

high risk group as p2 = p2 (as if they were the genotype frequencies of a SNP in

HWE).

The disease risk phenotype can also be simulated from a set of J independent in-

teracting blocks of SNPs. For each block of SNPs j = 1, . . . , J , we create a latent

variable Lj, as described previously, and simulate the phenotype given the latent

variables, P (Y = 1 | L1, . . . , LJ), from equation (2.1) or (2.8) according to the

assumed disease model.
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2.5 From binary to continuous or survival data

Following (Gui et al., 2011), we can exploit the procedures and models described in

the previous sections for simulating continuous and time-to-event phenotypes.

Given a set of genetic variables we first generate a binary outcome Y based on a

specified disease risk model. We interpret the generated binary variable not as the

disease status indicator but as an indicator of disease risk: Y = 1 corresponds to

higher risk of disease and Y = 0 to lower risk. We specify two different distributions

for the phenotype of these two groups of risk and generate the phenotype value for

each individual according to its Y risk indicator.

For a continuous phenotype X we will typically assume two normal distributions

X1 = N(µ1, σ1) when Y = 1 and X0 = N(µ0, σ0) with µ1 > µ0 if larger values of

X increase the risk of disease. Of course, alternative distributions are possible.

For a time-to-event phenotype T we will assume the usual distributions for survival

data, for instance, the Weibull distribution. In this case, T1 ∼ Weib(α1, β1) if Y = 1

and T0 ∼ Weib(α0, β0) if Y = 0 with the parameterization Weib(a, b) corresponding

to a hazard function h(t) = b
ab
tb−1 where a is the scale parameter and b the shape

parameter. Assuming the same shape parameter beta for T1 and T2, corresponds

to assuming proportional hazards. In this case, the hazard ratio between the two

groups of individuals is equal to HR = (α1 / α2)
β. This expression is useful for

specifying the parameters of T1 and T2 given the hazard ratio.

In addition to the survival times we also need to sample censoring times for a

censoring variable C that indicates the follow-up time of each individual. We can

assume any positive distribution for C. Typical choices are the uniform distribution,

the exponential distribution and the Weibull distribution.

Then, the observed survival data consists of the pair (T ∗, δ) where T ∗ = min(T,C)
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and δ = 1{T ≤ C} indicates if the data is observed, δ = 1, or right censored, δ = 0.

The proportion of censoring is given by P (T > C) and a pre-specified censoring

proportion can be used to determine the parameters of the distribution of C.

2.6 R functions and Examples

In this section we provide some examples that illustrate the new developed R func-

tions for the different sections of this paper.

2.6.1 Function SNPgenerate

This function generates the genotypes of n individuals for a set of independent

SNPs according to the specified minor allele frequencies (MAF) as described in

section 2.2.1. For example, the syntax for simulating the genotypes of a SNP with

MAF equal to 0.3 for 100 individuals is:

SNPgenerate(n=100, maf=0.3)

The maf argument can be a vector specifying the MAF of several SNP. The length

of maf defines the number of SNPs to be simulated. The following example produces

a data set with four SNPs with specified MAFs:

SNPgenerate(n=100, maf=c(0.2, 0.3, 0.3, 0.4))

The following example generates a data set with 30 SNPs with random MAFs:

SNPgenerate(n=100, maf=runif(30, min=0.1, max=0.5))
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2.6.2 Function LDgenerate

Given a first SNP, this function generates new SNPs with specified MAFs and with

specified LD correlation with the initial SNP as described in section 2.2.2. For

example, the code for simulating a SNP with MAF equal to 0.2 and LD with snp1

equal to 0.9 is:

LDgenerate(x=snp1, r=0.9, maf=0.2)

As in the previous functions, r and maf arguments can be vectors of equal length,

and the length of these vectors determines the number of SNPs that are simulated.

Next example generates a bloc of 11 SNPs in LD with snp1, according to a decreas-

ing LD correlation sequence and random MAFs between 0.2 and 0.4:

LDgenerate(x=snp1, r=seq(from=0.9, to=0.7, length.out=11),

maf=runif(n=11, min=0.2, max=0.4))

2.6.3 Function RiskGenerate

Given a dataset of genotypes for n individuals, this function generates the individual

genetic risk and the disease status as detailed in section 2.4.1 and assuming the

multiplicative odds of risk model. The following sentence generates the individual

disease status from the genotypes in SNPdata with disease prevalence equal to 0.1

and assuming that all the SNPs in SNPdata are causal and have the same relative

risk equal to 2:

status <- RiskGenerate(data=SNPdata, RR=2, p=0.1)

We can specify a subset of SNPs to be causal using the argument data. For example,

we can simulate a dataset where SNP3, SNP10 and SNP14 are causal SNPs:

status <- RiskGenerate(data=SNPdata[,c("SNP3","SNP10","SNP14")], RR=2,

p=0.1)
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In this case, different values of RR may also be specified for each SNP, by specifying

a vector for RR of length equal to the number of SNPs:

status <- RiskGenerate(data=SNPdata[,c("SNP3","SNP10","SNP14")],

RR=c(2,1.5,1.3), p=0.1)

2.6.4 Function SNPInteract

This function simulates disease status from a set of interacting SNPs as described

in section 2.4.2. It requires the specification of the set of interacting SNPs, the

relative risk (RR), the prevalence of the disease (p) and the proportion of individuals

in the high risk group (hrp). The following R instruction will simulate the disease

status associated to an interaction of the SNPs in a data set named SNPdata, with

a relative risk equal to 1.5, a prevalence equal to 0.1, and a proportion of individuals

in the high risk group equal to 0.3:

status <- SNPInteract(data=SNPdata, RR=1.5, p=0.1, hrp=0.3)

If the interacting SNPs are only a subset of all available SNPs, the value in data

argument must be restricted. The following example illustrates the disease status

generated from an interaction among the first four SNPs:

status <- SNPInteract(data=SNPdata[,1:4], RR=1.5, p=0.1, hrp=0.3)

2.6.5 Functions Bin2Cont and Bin2Surv

As described in section 2.5, it is possible to generate a continuous or survival time

variable from a binary response Y . We have implemented two functions for doing

this. For the continuous case, function Bin2Cont transforms the binary variable

Y to a continuous variable using two normal distributions, one for individuals with

Y=0 and the other for individuals with Y=1. The mean and standard deviation of
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the two normal distributions must be specified. In the following example, the means

are equal to 40 and 60 and the standard deviations are equal to 10 in both groups:

Z <- Bin2Cont(Y, mean0=40, sd0=10, mean1=60, sd1=10)

The Bin2Surv function is similar. It transforms the binary variable Y to a time-

to-event variable T assuming two Weibull distributions, one for individuals with

Y = 0 and the other for individuals with Y = 1. The parameters of the Weibull

distribution must be specified. It is required and additional argument, tmax, that

specifies the maximum follow-up time. Censoring times C are simulated according

to a uniform distribution in the interval [0, tmax]. The output of this function is

a data frame with two variables, the observed survival time, T ∗ = min(T,C), and

the observed event indicator, 1{T ≤ C}. Below, there is an example where the

scale parameter of the two groups is equal to 40 (low risk group) and equal to 30

(high risk group) while the shape parameter is equal for the two groups (this last

condition implies proportional hazards between the two groups):

S <- Bin2Surv(Y, tmax=30, shape0=1.3, scale0=40, shape1=1.3, scale1=30)



CHAPTER 3

Stability of Random Forest Importance Measures

Genetic variants are usually ranked and selected according to their p − value ob-

tained from a single-SNP analysis. This approach ignores possible epistasis and

only captures marginal effects. An alternative is to rank the variables according to

Random Forest importance measures, these ranks would incorporate possible non-

linear effects among the variables. Random Forest provides two possible importance

measures, mean decrease accuracy (MDA) and mean decrease Gini (MDG). In this

chapter we explore the stability of these two importance measures. We illustrate

with a real and a simulated example that ranks based on the MDA are unstable

to small perturbations of the dataset while ranks based on the MDG provide more

robust results. The content of this chapter has been published as a letter to the

editor in Briefings in Bioinformatics (Calle and Urrea, 2011).
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3.1 Introduction

Random Forest (Breiman, 2001) is a popular and widely used supervised learn-

ing method consisting a large set of tree-based models (regression or classification

trees). Predictions with Random Forest are obtained by averaging the predictions

of the different trees. In addition, it provides different measures of importance for

each variable. The R package randomForest (Liaw and Wiener, 2002), available

at http://cran.r-project.org, implements this method and provides two differ-

ent importance measures, mean decrease accuracy (MDA) and mean decrease Gini

(MDG), that can be used for ranking variables and for variable selection.

We were exploring the ability and limitations of Random Forest for identifying the

genetic component of susceptibility and prognosis of bladder cancer in the EPI-

CURO/Spanish Bladder Cancer Study (Garćıa-Closas et al., 2005; Guey et al.,

2010), when the Briefings in Bioinformatics journal published the paper Stabil-

ity and aggregation of ranked gene lists by Boulesteix and Slawski (2009), and we

decided to explore the stability of both MDA and MDG rankings in our dataset

using different graphical and numerical descriptive measures proposed in the paper.

The goal of this chapter is to emphasize the importance of exploring ranking stability

when using the importance measures, MDA and MDG, provided by Random Forest.

We show that ranks based on the MDA are unstable to small perturbations of the

dataset and ranks based on the MDG provides more robust results. We illustrate

this with the real data of the Spanish Bladder Cancer Study introduced in Chapter 1

and with a simulated example.



3.2. The Random Forest methodology 35

3.2 The Random Forest methodology

Random Forest performs a bagging (bootstrap aggregation) of tree-based models

(regression and classification trees) and additional modifications that improve its

performance. Bagging is an ensemble technique for reducing the variance of an

estimated prediction function and avoiding overfitting. Random Forest introduces

an additional layer of randomness to bagging by changing the construction of the

tree models. In standard classification and regression trees (CARTs), each node is

split using the best split among all variables and a post-pruning process is made

after tree construction. In Random Forest each tree is fully grown, without pruning,

and at each step of the tree growing process, the best split for each node is chosen

from a random subset of variables. The following scheme describes the Random

Forest algorithm:

• Draw B bootstrap samples from original data.

• For each bootstrap sample grow an unpruned classification or regression tree

Tb by the following steps:

– Select a subsample ofm variables from the whole set of variables available.

– Choose the best split from among the m selected variables.

– Split the node into two nodes.

– For the new nodes, recursively repeat the previous steps until the terminal

nodes containing a single element or a predefined minimum node size is

reached.

• Output the ensemble of the Tb trees, b = 1, . . . , B

The randomForest implementation provides two measures of the importance of

the predictor variables, the mean decrease accuracy (MDA) and mean decrease Gini
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(MDG). MDA quantifies the importance of a variable by measuring the change in

prediction accuracy when the values of the variable are randomly permuted com-

pared to the original observations. MDG is the sum of all decreases in Gini impurity

due to a given variable (when this variable is used to form a split in the Random For-

est), normalized by the number of trees. Most of the papers applying the Random

Forest methodology that we have consulted use the MDA ranking, usually without

any justification of this choice.

3.3 Stability of MDA and MDG rankings

Our data consists of 723 SNPs in the inflammatory pathway, acting as indepen-

dent variables in the Random Forest, and a binary dependent variable indicating

the recurrence of the tumour in the first five years after diagnosis. Our surprise

was the different behaviour in stability displayed by MDA and MDG rankings. In-

deed, while MDG was robust to small perturbations of the data, MDA rankings

behaved completely unstable. In Figure 3.1 and Figure 3.2 we show the scatter-plot

among the original ranking, based on the original dataset, (x-axis) and 100 Jack-

knife rankings (y-axis) where, for each Jackknife sample, 10% of the observations

were randomly selected and removed from the dataset. In Figure 3.1, it is clear that

MDG perturbed and original rankings are correlated and that the stability is more

important in the tail of the original ranking. Instead, in Figure 3.2, one can realize

that, after a small perturbation of the data, any variable, irrespective of its original

MDA ranking, can virtually have any MDA ranking in the perturbed sample.

In addition to the scatter plots, we also explored the average percentage of overlap

in the top-k list between the original rankings and the rankings of the perturbed

datasets as a function of k, for both ranking methods (Figure 3.3). MDG reaches

a stable overlap around 75% for k larger than 25 while MDA maximum coverage is
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Figure 3.1: MDG rank in the original dataset against MDG rank

in the perturbed datasets (10% left out).

around 60% for k approximately equal to 13, but decreasing quickly to only a 50%

as k increases.

Similar results were obtained when we applied the Random Forest algorithm to the

analysis of susceptibility of bladder cancer (the same set of SNPs and a case-control

dependent variable). Again, MDG rankings performed much better in terms of

stability than MDA rankings (data not shown).



38 Chapter 3. Stability of Random Forest Importance Measures

Figure 3.2: MDA rank in the original dataset against MDA rank

in the perturbed datasets (10% left out).

However, as it is also discussed in Boulesteix’s paper, though stability is a neces-

sary property of a good ranking procedure, stability alone does not ensure a good

behaviour of the ranking in the sense that it may not identify the correct variables.

To explore the ability of both ranking measures to capture real known associations,

we performed a small simulation. We simulated a dataset, similar to our bladder

cancer data set, with 1,000 SNPs and a binary dependent variable. Ten SNPs were

associated with the response, following a recessive model with a specified odds-ratio,
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Figure 3.3: Average percentage of overlap between the original ranking

and the ranking in the perturbed datasets (10% left out).

MDG (solid line) and MDA (dashed line)

and the rest were generated at random with different minor allele frequencies.

Table 3.1 and Table 3.2 show, for each of the ten associated SNP, its OR, p-value,

original ranking, and a summary of the perturbed rankings (min, max and quartiles)

for MDG and MDA, respectively. As before, also in this simulated dataset, we

observe much more variability of the MDA ranking than the MDG ranking. Also,
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Table 3.1: MDG ranking results for the 10 associated SNPs.

MDG MDG Jackknife

original rankings summary

SNP OR P-value ranking Min p25 p50 p75 Max

SNP1 3.06 1.06E-05 1 1 1 1 1.25 11

SNP2 2.69 4.25E-05 2 1 2 3 5 25

SNP3 2.54 6.12E-05 3 1 2 3 5 11

SNP4 2.32 0.000115 4 1 3 5 7 29

SNP5 2.16 0.000195 5 1 3 5 8 31

SNP6 1.94 0.000439 6 1 7 10 18 44

SNP7 1.72 0.000570 7 2 4.75 7 10 37

SNP8 1.53 0.001565 15 3 10 14.5 25 90

SNP9 1.31 0.005942 55 9 30 43.5 62.25 263

SNP10 1.22 0.033273 98 17 126.5 223.5 375.8 858

we observe a nice behaviour of the MDG original ranking, capturing the decreasing

association order of the simulated SNPs. Instead, MDA ranking was not able to

capture the order in the association effect.

Finally, Table 3.3 shows, for each SNP, its probability of being in the top-k list, with

k = 10, 20 and 50. MDG picks-up the first 4 SNPS in the top-10 list and the first

7 SNPs in the top-20 list in approximated 90% of cases. MDA is only able to select

SNP1 with this high probability in the top-10 list and the first 3 SNPs in the top-20

list. MDG puts almost always the first 8 SNPs in the top-50 list while MDA only

picks-up the first 4 SNPs in the top-50 list with probability near 1. Neither MDG

nor MDA are able to pick-up SNP9 and SNP10.

In addition to stability problems, there are other aspects that can affect the good
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Table 3.2: MDA ranking results for the 10 associated SNPs.

MDA MDA Jackknife

original rankings summary

SNP OR P-value ranking Min p25 p50 p75 Max

SNP1 3.06 1.06E-05 1 1 1 1 2 26

SNP2 2.69 4.25E-05 5 1 2 5 10 49

SNP3 2.54 6.12E-05 2 1 3 5 10 40

SNP4 2.32 0.000115 16 1 4 8 14 112

SNP5 2.16 0.000195 8 1 7.75 12 22 774

SNP6 1.94 0.000439 3 2 13.75 22.5 62.25 910

SNP7 1.72 0.000570 12 2 10.75 21.5 64 975

SNP8 1.53 0.001565 649 5 28.5 122.5 507.2 988

SNP9 1.31 0.005942 49 11 88.75 270.5 662.5 998

SNP10 1.22 0.033273 738 23 236 445.5 786.8 996

performance of a ranking procedure. Strobl et al. (2007) discuss different aspects,

such as correlation between the predictor variables and the scale or the number of

categories of these predictors, that can induce bias in the Random Forest importance

measures. In absence of these sources of bias, the two specific examples, although

not pretending to be representative of the wide range of possible situations, clearly

illustrate that the stability of rankings is an important issue that should be routinely

explored and that the ranks based on the Mean Decrease Gini provide more robust

results.
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Table 3.3: MDG and MDA rankings. Probabilities of being in the

top-10, -20 or -50 list.

SNP MDG.P10 MDG.P20 MDG.P50 MDA.P10 MDA.P20 MDA.P50

SNP1 0.99 1 1 0.98 0.99 1

SNP2 0.95 0.99 1 0.77 0.94 1

SNP3 0.97 1 1 0.79 0.97 1

SNP4 0.9 0.99 1 0.65 0.83 0.96

SNP5 0.87 0.95 1 0.43 0.72 0.84

SNP6 0.53 0.85 1 0.18 0.42 0.72

SNP7 0.76 0.94 1 0.25 0.49 0.72

SNP8 0.3 0.65 0.96 0.05 0.16 0.37

SNP9 0.01 0.09 0.65 0 0.05 0.17

SNP10 0 0.01 0.06 0 0 0.06



CHAPTER 4

Robust feature selection with Random Forest

In this chapter we propose a new strategy for variable selection using Random

Forest. The proposed algorithm, namely AUC-RF, computes the Receiver Operating

Curve (ROC) associated to the Random Forest, uses the area-under-the ROC curve

(AUC) as the predictive accuracy of the Random Forest and implements a backward

elimination process for selecting the set of variables with the highest AUC value.

The goal of this chapter is two-fold: establish AUC as a preferable accuracy measure

for Random Forests in front of the usual classification error rate and to provide a

new selection algorithm based on the AUC. In particular, we show that the use of

the classification error is especially inappropriate when dealing with unbalanced data

sets. The new AUC-RF procedure for variable selection is illustrated with data from

the Spanish Bladder Cancer/EPICURO Study (described in Chapter 1) and also

with simulated data. The content of this chapter has been published in the Human

Heredity journal (Calle et al., 2011) and the algorithm is publicly available as an

R package, named AUCRF, at http://cran.r-project.org/web/packages/AUCRF

and the package documentation can be found in appendix B.
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4.1 Introduction

Genomic profiling, the use of genetic variants at multiple loci simultaneously for

prediction of disease risk, requires the selection of the set of genetic variants that

best predicts disease status. The goal of this chapter is to provide a new selection

algorithm for genomic profiling.

We propose a new algorithm for genomic profiling based on optimizing the area-

under-the ROC curve (AUC) of the Random Forest. The proposed strategy im-

plements a backward elimination process based on the initial ranking of variables.

We demonstrate the advantage of using the AUC instead of the classification er-

ror as a measure of predictive accuracy of the Random Forest. In particular, we

show that the use of the classification error is especially inappropriate when dealing

with unbalanced datasets. The new procedure for variable selection and prediction,

namely AUC-RF, is illustrated with data from a bladder cancer study and also with

simulated data.

Dı́az-Uriarte and Alvarez de Andrés (2006) proposed a backward elimination method

for obtaining the optimal subset of variables providing the lowest overall classifica-

tion error, implemented in the R package varSelRF (Diaz-Uriarte, 2007). This

method is based on two default strategies of the Random Forest, the most voted

class for prediction and the out-of-bag classification error rate (OOB-ER) for accu-

racy. As mentioned before, for unbalanced data sets, the most voted class strategy

tends to classify almost all individuals in the largest class and the classification er-

ror rate does not distinguish between false positives (FP) and false negatives (FN)

which can give a false impression of accuracy (for instance, in a data set with 80% of

controls and 20% of cases, a method that correctly classifies all controls but classifies

cases randomly will have a classification error rate of only 10%). We prove that the

proposed new algorithm overcomes these limitations.
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In the context of a genetic study, the AUC-RF algorithm can be used for genomic

profiling, that is, for identifying the set of variants with the highest combined pre-

dictive value of individual risk of disease. Our goal was to use this methodology for

exploring the contribution of the inflammation pathway on bladder carcinogenesis

through the Spanish Bladder Cancer Study data. Stratified analysis by tobacco

smoking risk group was also of interest. While the whole sample was approximately

balanced, the stratified samples were strongly unbalanced and, in this case, the use

of Random Forest for variable selection based on the classification error rate was not

satisfactory. This was the motivation of the new proposed strategy for variable se-

lection using Random Forest. A simulation analysis has been conducted to evaluate

the effectiveness of the AUC-RF method for selecting causative SNPs. Balanced and

unbalanced scenarios have been simulated considering different numbers of causal

SNPs, relative risks, minor allele frequencies (MAF) and disease prevalence. Though

RF can be used for both discrete and continuous dependent variables we will ex-

plain the approach for a binary dependent variable representing disease status in

the context of a case-control association study.

4.2 Methods

4.2.1 AUC-RF for feature selection

The AUC-RF algorithm iteratively fits Random Forests and eliminates a proportion

of variables. Denote by D = (Y ;X) the n × (k + 1) matrix corresponding to the

data set of interest where n is the number of individuals, Y is the binary dependent

variable and X = (X1, . . . , Xk) is the n×k matrix containing the predictor variables.

The AUC-RF algorithm is described below:
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1. Iterative process:

First step:

• Denote by X1 the initial set of predictor variables (X1 = X) and by

D1 = (Y ; X1) = D the initial data set.

• Build a Random Forest RF 1 on D1, that is, using all predictor variables

and the response (see subsection Random Forest parameters below)

• Obtain the ranking of the predictor variables using the chosen measure

of importance (see subsection Random Forest importance measures for

details). Denote by r = (r1, . . . , rk) the ranking vector of variables

(X1, . . . , Xk).

• Compute the out-of-bag AUC (OOB-AUC) of the Random Forest RF 1,

namely OOB-AUC1 (see subsection Random Forest prediction and AUC

computation for details).

Subsequent steps. Step j, j > 1:

• Based on the initial ranking r, remove a fraction (by default 20%) of the

less important variables from Xj−1 and denote the resulting matrix of

predictors as Xj.

• Denote by Dj the reduced data set: Dj = (Y ; Xj)

• Build a Random Forest on Dj, namely RF j.

• Compute the OOB-AUC of the Random ForestRF j , namely OOB-AUCj.

Repeat step j until

• the number of remaining variables is less than k0 (by default k0 = 1).
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2. Elimination process representation:

The elimination process is visualized with a curve describing the OOB-AUC

value, OOB-AUCj, of Random Forest RF j (y − axis) as a function of the

number of predictor variables (x− axis).

3. Optimal set of predictors:

The optimal set of predictor variables is the one giving rise to the Random

Forest with the highest OOB-AUC, denoted by OOB-AUCopt. The number of

selected predictors is denoted by Kopt.

4. Predictive accuracy and probability of selection:

The obtained OOB-AUCopt value cannot be considered as the genuine pre-

dictive accuracy of the selected variables on a new data set. It is inflated by

the fact that it is measured on the same training data set that has been used

for the selection process. A correction of this overoptimism is required. Also

of special concern is the robustness of the rankings and, consequently, of the

selected variables (Boulesteix and Slawski, 2009). AUC-RF deals with these

two important issues by performing a repeated cross-validation analysis. The

results of this analysis provide a corrected estimation of the predictive accu-

racy of the selected variables and an estimate of the probability of selection for

each variable (Pepe et al., 2003). For ease of notation we illustrate this process

in the case of a 5-fold-cross-validation process that is repeated 20 times.

• For m = 1, . . . ,M = 20 repeat a 5-fold-cv process consisting of the

following steps:

(a) Divide the original data set into 5 subsets: Dm
1 , . . . , D

m
5 ,

(b) For j = 1, . . . , J = 5

– Perform the AUC-RF feature selection on the learning data set,

Lm,j = D −Dm,j.
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– Let RFm,j
opt denote the optimal Random Forest (after feature elim-

ination) and Sm,jopt the set of selected variables.

– Use RFm,j
opt to predict individuals in the test data set Dm,j (See

Subsection Random Forest prediction and AUC computation).

This provides a vector of probabilities, Predm,j , corresponding

to the proportion of trees yielding Y = 1.

(c) Join the predictions of the 5 cv subsets, (Predm,1, . . . , P redm,5), and

compute the AUC of these predictions, denoted by cv-AUCm.

• Compute the mean cv-AUC = 1
M

∑M=20
m=1 cv-AUCm .

• For each variable Xi, i = 1, . . . , k, we compute its probability of selection

as the proportion of times that it has been selected by the AUC-RF

method:

P (Xi) =
1

M ∗ J

j=5∑
j=1

m=1∑
M=20

1(Xi ∈ Sm,jopt )

4.2.2 Random Forest parameters

AUC-RF uses Random Forest with the default parameters of the R-package ran-

domForest available at http://cran.r-project.org/web/packages/randomForest.

The most relevant specifications are ntree=500 (the number of trees in a for-

est is 500), mtry=
√
n (the number of selected candidate variables in each node

is the squared of the total number of variables) and replace=TRUE, nodesize=1,

maxnodes=NULL, importance=FALSE, norm.votes=TRUE (see the randomForest

documentation for details). These default values can be modified when randomFor-

est function is called.
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4.2.3 Random Forest importance measures

Random Forest, as implemented in the R-package randomForest, provides two dif-

ferent importance measures, mean decrease accuracy (MDA) and mean decrease

Gini (MDG). MDA quantifies the importance of a variable by measuring the change

in prediction accuracy when the values of the variable are randomly permuted com-

pared to the original observations. MDG is the sum of all decreases in Gini impurity

due to a given variable (when this variable is used to form a split in the Random

Forest), normalized by the number of trees. Strobl et al. (Strobl et al., 2008, 2007)

studied different mechanisms that can induce bias in the Random Forest importance

measures and Calle et al. (Calle et al., 2010) explored stability of these measures,

as described in chapter 3. On the one hand, both the MDG and MDA importance

measures may be biased in the case of variables with different scales or in the case

of categorical variables with different numbers of categories (Strobl et al., 2007),

but in the context of SNP data analysis (almost) all variables are three-categorical.

On the other hand, in terms of robustness, the ranks based on the MDA provide

very unstable results (Calle et al., 2010). More research is needed to elucidate the

respective advantages and inconveniences of MDG and MDA in general. However,

in the considered context, our preliminary study has clearly shown that MDA per-

forms consistently and substantially worse than MDG, probably because of its high

instability. We will thus use MDG it in this chapter for both the bladder cancer

analysis and the simulation study.

4.2.4 Random Forest prediction and AUC computation

The individual class prediction using Random Forest is based on what are called

the votes. The principle is that each tree votes for a class and that the predicted

class of an individual is finally the class with more votes. However, the voting
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procedure differs depending whether one wants to compute the so-called Out-Of-

Bag Error Rate (OOB-ER) or rather make predictions for new individuals from a

test data set. If the goal is to compute the OOB-ER, those trees for which an

individual was out-of-bag (i.e. was not used to build the tree) contribute with a

vote to the predictive class for this individual. For dichotomous class prediction

(Y = 0, Y = 1), the votes are two variables (v0, v1), where v0 is the number of

votes for class Y = 0 and v1 is the number of votes for class Y = 1. The total

number v0 + v1 is the number of trees for which the individual was out-of-bag:

approximately a third of the total number of trees when replace=TRUE is used.

The OOB-ER is then defined as the proportion of individuals with predicted class

different from the true class. If the goal is to predict new individuals from a test

data set the procedure is similar but in this case all trees in the RF contribute

with a vote (v0 + v1 = ntree), since the individual was never used to build the

trees. The default prediction procedure is to predict the most voted class and to

provide the OOB-ER. Alternatively, AUC-RF explores the predictive accuracy of

the Random Forest through its ROC curve and the corresponding AUC (area under

the ROC curve) (Pepe, 2003). The AUC-RF procedure computes the AUC based

on out-of-bag predictions, similarly to the OOB-ER, hence the notation OOB-AUC.

Each individual is characterized by the numbers v0 or v1 of trees predicting Y = 0

and Y = 1, respectively. The ROC curve plots sensitivity against 1-specificity and

can be obtained by varying the cutoff, c, in the prediction procedure based on the

votes. The randomForest package allows to specify the cutoff as a vector (1− c, c)

and then predicts an individual as Ŷ = 1 if v0 · c < v1 · (1 − c) . The most voted

class strategy corresponds to c = 0.5. The OOB-AUC can be calculated directly

from the mean rank of the cases, denoted by r1, as AUC = 1
n0

(r1− n1

2
− 1

2
) where n1

and n0 are the number of cases and controls, respectively, and the ranks are based

on the proportion of trees yielding Y = 1, that is, v1/(v0 + v1) (Wray et al., 2010).
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4.3 Application

4.3.1 The Spanish Bladder Cancer/EPICURO Study

Here we center our attention on the analysis of the joint effect of multiple genes in

the inflammation pathway on bladder carcinogenesis for which information on 282

SNPs genotyped in a total of 108 genes in this pathway is available. After excluding

patients with more than 20% missing genotypes, the available sample for analysis

consists of 1150 cases and 1149 controls. The remaining missing genotypes were

imputed using function rfimpute provided in randomForest library. Smoking is

the most important risk factor for bladder cancer and gene×smoking interactions

has been reported (Garćıa-Closas et al., 2005; Samanic et al., 2006). For this reason,

we were interested in performing a stratified analysis by tobacco smoking risk group

(current smokers, former smokers and never smokers).

We use the never smokers group, an unbalanced data set consisting of 426 con-

trols and 209 cases, for illustration of the proposed methodology, AUC-RF, and

for comparison with varSelRF by Diaz-Uriarte. The backward elimination process

performed by varSelRF algorithm is depicted in Figure 4.1. As it was anticipated,

the use of the most voted classification strategy and the OOB-ER provides unsat-

isfactory results in the unbalanced non-smokers data set. The first RF, considering

all variables, results in an OOB-ER = 0.32. Though, in some contexts, a predictive

error of 32% could be acceptable, in this case, this value only reflects the proportion

of cases in the sample, which are almost all incorrectly classified as controls. Indeed,

all 426 controls are predicted as controls (classification error = 0) but only 12 out

of the total 209 cases are classified as cases (classification error =0.94). A simi-

lar behaviour is observed for the subsequent RF built in the backward elimination

process, providing always an OOB-ER around 0.3 and, consequently, an OOB-ER
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curve almost flat which is not useful for identifying the optimal subset of predictors.

In this case, varSelRF feature selection algorithm selects only 3 variables providing

an OOB-ER = 0.31.
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Figure 4.1: varSelRF backward elimination procedure.

The backward elimination process performed by the AUC-RF algorithm using the

MDG importance measure can be visualized in Figure 4.2. The points in the curve

correspond to the OOB-AUC of consecutive RF obtained with the remaining vari-

ables, after the less important variables were removed. The plot is built from the

right (all variables) to the left (one variable). The optimal OOB-AUC is provided
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by the top 43 more important variables, giving an OOB-AUCopt equal to 0.721.

Correction for overfitting was performed with a 5-cv analysis and a cv-AUC = 0.56

was obtained.

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●●
●

●

●

0 50 100 150 200 250

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

number of selected SNPs

O
O

B
 −

 A
U

C

AUC              opt                    = 0.721
K         opt               = 43

|

Figure 4.2: AUC-RF backward elimination procedure.

An important concern of selection methods, especially when they are based on rank-

ings, is the robustness of the rankings and, consequently, of the selected set of SNPs.

It is possible that different sets of variables provide practically the same predictive

accuracy. For this reason, it is very important to provide the list of selected variables

together with a measure of robustness of this selection. The AUC-RF algorithm im-
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plements a repeated cross-validation process that provides the percentage of times

that each variable has been selected. In this data set we repeated 20 times a 5-fold

cv process. Table 4.1 provides the list of the most important SNPs that were se-

lected by AUC-RF at least 70% of the times. We can see that the selection of this

set of 18 SNPs is very robust, with the top two being selected almost every time.

Table 4.1: SCBS. Most important SNPs, MDG index

and probability of selection (P).

NCBI gene reference

sequence (SNP Id) MDG P

abca1.04 3.7387 1

masp1.53 2.6158 0.99

ephx2.04 2.6030 0.96

il10.17 2.1866 0.89

lta.04 2.0868 0.89

fcgr2a.01 2.3368 0.88

ptgs2.05 2.0644 0.85

ccr2.02 1.8030 0.80

csf1r.05 2.0657 0.79

mbl2.12 1.9348 0.78

gdf15.02 1.8225 0.77

alox5.10 1.6049 0.77

tlr2.04 1.7858 0.74

il4r.10 1.6247 0.74

cd86.02 1.6072 0.71

alox5.28 1.7345 0.70
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4.3.2 Alzheimer’s disease Study

The Alzheimer’s disease study was introduced in chapter 1. A total of 682 SNPs in

32 genes of the reelin pathway are analyzed on a total of 1411 individuals (861 cases

and 550 controls). Figures 4.3 to 4.5 show the AUC-RF output for the Alzheimer’s

disease data set including all the individuals and stratifying by APOE-ε4 carriers

and noncarriers. For the case with no stratification, the optimal OOB-AUC is pro-

vided by the top 43 more important variables, giving an OOB-AUCopt equal to

0.629. For APOE-ε4 carriers strata, we obtain 34 variables and a value of 0.703 for

OOB-AUCopt, and also 34 variables and OOB-AUCopt = 0.6528 for APOE-ε4 non-

carriers strata. However, when cross-validation analysis is performed the obtained

cv-AUC values are close to 0.5 in the three cases which means that the SNPs have

no predictive capacity on AD status.

4.3.3 Simulation Study

We performed a simulation study with the goal of investigating the performance

of the proposed AUC-RF method for selecting variables with predictive capacity.

We generated a set of k causal SNPs and 1000 − k non-causal SNPs. We fol-

lowed the strategy described in chapter 3 for simulating the causal SNPs assuming

independence and a multiplicative odds of risk model. All causal SNPs were as-

sumed to be in HWE, to have the same effect size on the response and the same

genotype frequencies. For each causal SNP we fixed the heterozygous relative risk

(RR1) and assumed that the minor homozygous relative risk is RR2 = (RR1)2.

We investigated the role of disease prevalence (p = 0.01, 0.1, 0.2, 0.3), effect size

(RR1 = 1.1, 1.3, 1.5), Minor Allele Frequencies (MAF = 0.1, 0.2, 0.3) on bal-

anced (N0 = number of controls = N1 = number of cases = 2000) and unbalanced

(N0 = 3000 and N1 = 1000) data sets. The number of causal SNPs was k = 10, 50
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Figure 4.3: AUC-RF backward elimination procedure for AD data set.

and, for RR1 = 1.1, we further explored k = 100. This yield a total of 192 scenarios.

For each scenario we generated two data sets, a learning data set (LD) and a test

data set (TD) that was used for validation of the predictive accuracy of the selected

set of SNPs. We performed the AUC-RF feature selection algorithm and kept the

percentage (Pc) of causal SNPs that AUC-RF picks-up and the predictive accuracy

of the selected set of SNPs on the test data set, denoted by test-AUC. This predic-

tive accuracy depends on the ability of the algorithm to identify the causal SNPs

but also on the predictive capacity of the causal SNPs. Thus, we also computed the
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Figure 4.4: AUC-RF backward elimination procedure for

ApoE-ε4 carriers in AD data set.

predictive ability of the causal SNPs as follows: Each individual is assigned a risk

score given by

k∑
j=1

(1{Gj = 1} · logOR1j + 1{Gj = 2} · logOR2j)

where OR1 is the odds-ratio of heterozygous vs major homozygous and OR2 is the

odds-ratio of minor homozygous vs major homozygous. We computed the AUC of

predictions based on the above risk score, denoted by score-AUC. The score-AUC
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Figure 4.5: AUC-RF backward elimination procedure for

ApoE-ε4 noncarriers AD data set.

can be seen as the best empirical predictive accuracy provided by the causal SNPs,

if they were known, and will be used as a reference for interpreting the observed

predictive accuracy of the AUC-RF method. We repeated this process 100 times for

each scenario and averaged the results over the 100 replications.

We summarize the results of the simulation study in terms of the percentage of

selected causal SNPs, denoted by Pc, in Tables 4.2 to 4.4 . The predictive accuracy



4.3. Application 59

of the selected set of SNPs on the test data set, denoted test-AUC, is reported in

Tables 4.5 to 4.7 . The score-AUC is also provided in parenthesis as a reference

value of the maximum predictive accuracy of the causal SNPs. In order to visualize

some of the obtained results, Figures 4.6 and 4.7 show the results for k = 50 and

balanced data set. The percentage, Pc, of causal SNPs that AUC-RF is able to

pick-up is mainly affected by the effect size, followed by the minor allele frequency

and the disease prevalence (Figure 4.6 and Tables 4.2 to 4.4). For RR1 = 1.5,

the percentage Pc is almost 100% in all cases, that is, all causal SNPs are identi-

fied. When RR1 reduces to 1.3 the efficacy remains for MAF = 0.3 and 0.2 but

reduces considerably for MAF = 0.1. For RR1 = 1.1 the percentage of selected

causal SNPs reduces drastically to 30-40% for MAF = 0.3, 10-20% for MAF = 0.2

and it is almost null for MAF = 0.1. A slight effect of the disease prevalence is

observed in some situations: For RR1 = 1.3 and MAF = 0.1 and RR1 = 1.1

and MAF = 0.3, 0.2; the largest the prevalence, the higher the percentage Pc. A

similar behaviour is observed in terms of predictive accuracy of the set of selected

SNPs (Figure 4.7 and Tables 4.5 to 4.7). For RR1 = 1.5, the test-AUC is very

high (around 0.8-0.9) which corresponds to very accurate predictions. Indeed, the

obtained test-AUC after feature selection is very similar to the score-AUC provided

by all causal SNPs (given in parenthesis). The effect of the genotype frequencies is

observed, with MAF = 0.3 giving slightly better results than for MAF = 0.2 and

better than for MAF = 0.1. Instead, the disease prevalence effect is not apparent

in terms of test-AUC. For RR1 = 1.3 the predictive accuracy is around 0.7-0.8 when

MAF = 0.2, 0.3 and around 0.65 when MAF = 0.1. The loss in predictive capacity

(comparing the obtained test-AUC with the score-AUC) is more apparent for low

values of MAF (around 7% when MAF = 0.1). In this case, the effect of disease

prevalence is not apparent. For RR1 = 1.1 the predictive capacity of the selected set

of SNPs is in general very low or non-existent. Note, however, that in this setting

the score-AUC given by all causal SNPs is also very low. Only for k = 100 and

MAF = 0.3 we obtain more acceptable predictive values, around 0.6. This is in
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accordance with Janssens et al. (2007) who say that a genomic profile from a set

of causal SNPs with such a weak marginal effect on the phenotype will require a

larger number of SNPs to jointly get a useful predictive accuracy. Indeed, we can

observe looking at Tables 4.5 to 4.7 that the larger the number k of causal SNPs

the larger the AUC (both score-AUC and test-AUC) in all settings. Instead, this

effect of the number of causal SNPs is not observed in the efficacy of the AUC-RF

method for detecting causal SNPs (Tables 4.2 to 4.4). For instance, in Tables 4.5

when MAF = 0.1, the percentages Pc of identified causal SNPs are larger for k = 10

than for k = 50.

Table 4.2: Percentage of selected causal SNPs (Pc) for RR1 = 1.5.

Balanced data set Unbalanced data set

Prevalence (p) 0.01 0.1 0.2 0.3 0.01 0.1 0.2 0.3

K=10

MAF=0.1 99.1 99.6 99.9 100 99.4 99.8 99.8 100

MAF=0.2 100 100 100 100 100 100 100 100

MAF=0.3 100 100 100 100 100 100 100 100

K=50

MAF=0.1 96.8 94.3 94.3 94.9 98.1 96.1 96.3 97

MAF=0.2 100 99.8 99.4 99.3 100 99.7 99.5 99.3

MAF=0.3 100 100 99.9 99.8 100 99.9 99.7 99.7
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Table 4.3: Percentage of selected causal SNPs (Pc) for RR1 = 1.3.

Balanced data set Unbalanced data set

Prevalence (p) 0.01 0.1 0.2 0.3 0.01 0.1 0.2 0.3

K=10

MAF=0.1 62.6 72 83.8 93.4 74.9 81.4 90.6 96

MAF=0.2 96.8 98.5 99.9 99.9 98 98.4 99.6 99.9

MAF=0.3 99.9 100 100 100 99.5 99.9 100 100

K=50

MAF=0.1 57.3 59.2 64.9 72.1 71.7 72.4 76 83.3

MAF=0.2 94.2 92.9 92.7 94.3 96.5 94.8 94.8 96.5

MAF=0.3 99.3 98.6 98.3 98.3 98.9 97.5 97.7 98.2
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Table 4.4: Percentage of selected causal SNPs (Pc) for RR1 = 1.1.

Balanced data set Unbalanced data set

Prevalence (p) 0.01 0.1 0.2 0.3 0.01 0.1 0.2 0.3

K=10

MAF=0.1 1.9 2.4 4.1 5.8 9.6 11.6 13.8 16.3

MAF=0.2 14.8 18.8 21.8 27.7 31.5 31.6 40.4 50

MAF=0.3 36.8 43.8 50.9 61.7 44.7 51.6 58.3 67.2

K=50

MAF=0.1 2.2 2.4 3.6 5 9.8 11.1 13 17

MAF=0.2 13.4 16.3 20.2 27.3 30 34.1 37.7 45.3

MAF=0.3 34.5 39.7 45.1 53.4 44 46.8 53.7 60.6

K=100

MAF=0.1 2 2.5 3.2 4.4 9.3 10.1 13.1 15.7

MAF=0.2 13.6 15.5 18.5 22.4 29.3 31.9 36.5 40.7

MAF=0.3 33.7 36.2 40.5 47 44.5 46.4 50.4 54.8
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Figure 4.6: Proportion of selected causal SNPs for k = 50 and balanced data sets.
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Figure 4.7: AUC of the selected SNPs for k = 50 and balanced data sets.



4.4. Discussion 67

4.4 Discussion

In this work we proposed a new feature selection strategy consisting of a backward

elimination process for optimization of the Random Forest AUC. The application

of this method to a real bladder cancer study proves that the default RF most

voted class prediction strategy together with the use of the classification error rate

provides unsatisfactory results in unbalanced data sets. However, even for balanced

data sets, the use of the AUC is preferable to the classification error rate because the

error rate is dependent on the case/control rates in the sample which not necessarily

represent the case/control rates in the population. The use of the AUC is especially

appealing after the recent increasing interest on this measure in the molecular and

genetic epidemiology field (Jakobsdottir et al., 2009; Janssens et al., 2006; Kraft

et al., 2009; Lu and Elston, 2008; Lu et al., 2010; Moonesinghe et al., 2010; Pepe

et al., 2004; Wray et al., 2010). The maximum value of the AUC of a genetic risk

predictor model has been related to the heritability and prevalence of the disease.

In the proposed approach the same initial ranking is used for all iterations in the

backward elimination process. Jiang et al. proposed a backward elimination strategy

for variable selection using RF similar to Diaz Uriarte’s method, the main difference

being the recomputation of the ranking of the remaining variables at each step of

the elimination process (Jiang et al., 2004). In our opinion a potential drawback of

this strategy is that it might accentuate the overfitting problem already present in

any elimination process, giving rise to an increase of overfitting.
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CHAPTER 5

Identification of high-order genetic interactions

using the likelihood-ratio score

In this chapter we consider the use of the likelihood ratio score for exploring high-

order interactions. We propose a forward selection method for obtaining sets of

genetic variants (SNPs) with optimal prediction accuracy. The proposed algorithm,

namely Optimal AUC, is computationally feasible for exploring higher order inter-

actions, not only second or third order interactions, in a large number of variables

setting. The new procedure for epistasis identification is illustrated with data from

the Alzheimer Disease Association Study (described in Chapter 1) and also with

simulated data.

69
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5.1 Introduction

Many statistical methods for epistasis analysis have been proposed, from exhaustive

searches using regression models including interactions (Marchini et al., 2005) to

data-mining methods such as the Model-Based Multifactor Dimensionality Reduc-

tion method (Calle et al., 2010) that is an extension of the popular MDR method

(Ritchie et al., 2003) but allows adjusting for marginal effects and confounders. An

overview on this topic is given by Van Steen (2012). These methods are usually

able to scan for second order interactions but, since they are very computationally

demanding, they become infeasible for exploring higher order interactions when the

number of variables to explore is large, as it is usually the case.

In this chapter we propose a new strategy for exploring the joint predictive effect

of a set of genetic or environmental factors, including their possible interactions.

The proposed method, referred to as the ”Optimal AUC algorithm”, is based on

the likelihood ratio score. Given a set of predictors, the likelihood ratio score pro-

vides an optimal prediction of a binary variable in the sense that it provides the

largest discrimination accuracy among all possible risk scores derived from the set

of predictors (McIntosh and Pepe, 2002).

The Optimal AUC algorithm follows a process of forward selection to obtain the

subset of factors with the highest joint predictive accuracy. The algorithm is com-

putationally feasible for exploring higher order interactions, not only second or third

order interactions, in a large number of variables context.
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5.2 Optimal prediction and optimal ROC curve

In this section we address the question of how to combine multiple predictors to

obtain the best possible prediction of disease risk. We focus in case-control genetic

association studies where the outcome of interest is a binary variable Y that informs

of the presence (Y = 1) or absence (Y = 0) of a disease and the predictors are

G = (G1, . . . , Gm), a set of m genetic markers that have been genotyped on each

subject. We assume that the genetic markers are single-nucleotide polymorphisms

(SNP). The observed data is of the form (Y i, Gi
1, . . . , G

i
m), i = 1, . . . , n, where n is

the number of individuals, Y i is disease status for individual i and Gi
k is the genotype

(0, 1 or 2) of individual i for marker k.

Our goal is to predict P (Y i = 1 | Gi
1, . . . , G

i
m), the probability of being diseased

based on the genetic profiles of each individual. A relevant question is how to

choose the best combination of genetic markers in order to optimize the prediction

accuracy. There are several measures of prediction accuracy that can be used. Here

we focus on the area under the receiver operating characteristic curve (ROC curve),

that is denoted by AUC.

The prediction of a dichotomous variable given a set of variables is usually based

on what is known as the risk score. In our setting, the risk score given the genetic

markers is a real valued function S = S(G1, . . . , Gm) so that larger values of S are

associated to higher disease risk. Predictions based on S are of the form:

Ŷ i =

 1 if Si ≥ c

0 if Si < c

where c is a threshold parameter.

For every possible value of c we can define the true positive rate TP (c) as the

probability of a diseased individual to be correctly predicted as diseased, TP (c) =
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P (S > c | Y = 1), and the false positive rate FP (c) as the probability of a non

diseased individuals to be incorrectly predicted as diseased, FP (c) = P (S > c | Y =

0). The ROC curve is used for exploring the prediction accuracy of a score function S

for the different possible cut-offs. It consists of a plot of the true positive rate (y axis)

against the false positive rate (x axis), or, equivalently, sensitivity vs (1−specificity).

More formally, the ROC curve is defined as the set of points {(FP (c), TP (c)), c ∈

(−∞,∞)}. The ROC curve is a monotone increasing function from (0, 0) to (1, 1).

A risk score S with a ROC curve that is closer to (0, 1) represents a very accurate

prediction model.

The area under the ROC curve (AUC) provides a measure of discrimination of

the risk score among diseased and non-diseased individuals. AUC takes values in

the range (0.5, 1), where 1 represents perfect discrimination for some threshold c

while 0.5 indicates that the risk score S has no discrimination capacity. It can be

shown that the AUC is equal to the probability that a diseased individual has a

score larger than a non-diseased: AUC = P [S(Y = 1) > S(Y = 0)]. In Figure 5.1

two ROC curves have been plotted. The black curve has an AUC of 0.9293 that

describes an almost perfect discrimination. The grey curve has an AUC of 0.6899

corresponding to a moderate capacity of discrimination.

The logistic regression model, defined as a linear model for the log-odds of disease,

is the most popular method for combining multiple predictors when the output is a

binary variable:

log (P (Y = 1)/ (1− P (Y = 1))) = β0 + β1G1 + · · ·+ βmGm .

In this model the risk score is the linear part of the model S = β0+β1G1+· · ·+βmGm.

However, the logistic regression is not necessarily the best predictive model. Pepe

(2003) proved that the optimal risk score for predicting a binary variable Y given

G = (G1, . . . , Gm) is the likelihood ratio score:

LR(G) = LR(G1, . . . , Gm) =
P (G1, . . . , Gm | Y = 1)

P (G1, . . . , Gm | Y = 0)
.
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Figure 5.1: Example of ROC curves.

Proposition 1. The likelihood ratio score is the best test for discrimination between

cases and controls based on (G1, . . . , Gm). The ROC curve for LR(G) is uniformly

above any other ROC curves based on (G1, . . . , Gm). Thus, AUCLR ≥ AUCS for

any risk score S based on (G1, . . . , Gm). The ROC curve for the likelihood ratio

score, LR(G), receives the name of optimal ROC curve and AUCopt{G1, . . . , Gm}

denotes the AUC of the optimal ROC curve and is referred to as the optimal AUC.
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Graphical proof

Let’s sketch a graphical proof of the above result, that the ROC curve of the like-

lihood ratio score of a set of variables is always above any other ROC curve based

on the same variables.

In our case, where the predictors are categorical variables with three categories, a

risk score S based on G = (G1, . . . , Gm) is a discrete function with K = 3m different

categories corresponding to the total number of different multilocus genotypes. We

denote by Gk (with an upper index) for k = 1, . . . , K = 3m the different possible

realizations of G. The ROC curve is then obtained by ranking the multilocus geno-

types according to S in decreasing order, S(G(1)) ≥ S(G(2)) ≥ · · · ≥ S(G(K)), where

G(k) denotes the multilocus genotype with rank k for k = 1, . . . , K = 3m, and then

by computing the true positive and false positive rates. For a threshold c such that

S(G(k)) ≥ c ≥ S(G(k+1)) and k = 1, . . . , K = 3m:

 TP (c) = P (S > c | Y = 1) =
∑k

j=1 P (G(j) | Y = 1)

FP (c) = P (S > c | Y = 0) =
∑k

j=1 P (G(j) | Y = 0)

Graphically this means that the ROC curve is built by adding consecutive triangles

with basis P (G(j) | Y = 0) and height P (G(j) | Y = 1) for j = 1, . . . , K = 3m.

The slope of the j-th triangle is P (G(j) | Y = 1)/P (G(j) | Y = 0) which is equal to

LR(G(j)), the likelihood ratio of G(j). When we use the likelihood ratio score,

the multilocus genotypes are ranked according to a decreasing likelihood ratio:

LR(G(1)) ≥ LR(G(2)) ≥ · · · ≥ LR(G(K)). Thus, when we built the ROC curve

of LR we start with the triangle with the largest slope, then the second triangle

with the second largest slope and so on, yielding a concave curve that is always

above any other possible ROC curve based on G.
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Example with two genetic markers

Two genetic markers (SNPs), G1 and G2, define a partition of the sample space

into 9 categories, Gj, j = 1, . . . , 9. The likelihood ratio for each category j can be

estimated as the proportion of cases divided by the proportion of controls in the

category:

L̂R(Gj) =
(
∑n

i=1 1 {(Gi
1, G

i
2) = Gj, Y i = 1}) /n1

(
∑n

i=1 1 {(Gi
1, G

i
2) = Gj, Y i = 0}) /n0

where n1 =
∑n

i=1 1 {Y i = 1} is the number of cases and n0 =
∑n

i=1 1 {Y i = 0} is the

number of controls. The different categories are ordered according to the likelihood

ratio score and the ROC curve is obtained as described before.

To illustrate these concepts we consider a simulated case-control study with 1600

subjects (800 cases and 800 controls) and 1000 SNPs. The first two SNPs (SNP1

and SNP2) in this dataset are associated with the case-control variables through an

interaction effect but without exhibiting marginal main effects. The remainder 998

variables are not associated with the phenotype. The dataset was downloaded from

”Jason Moore Computational Genetics lab” at http://discovery.dartmouth.edu/

epistatic data. We will also use this dataset in the next section to illustrate the

proposed ”Optimal AUC algorithm”.

Table 5.1 provides a summary of the first two SNPs. The first five columns of the

table show each genotype category combination for the two SNPs, the number of

cases and controls and their proportions in each category, the LR (cases and controls

proportions ratio) for each category and their ranking based on the LR. The AUC

calculated for the ROC curve based on LR is 0.865. For illustrative purposes, we also

fitted a logistic lineal model with the two SNPs as predictors and their associated

ROC curve. As expected, no significant terms were detected and the corresponding
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ROC curve based on the regression model has an AUC of 0.49. Finally we also fit-

ted the logistic regression model including the interaction terms for the two SNPs.

In this case we obtained a significant model with the same ROC curve and AUC

obtained for the model based on the LR. The three ROC curves are represented in

Figure 5.2.

Table 5.1: Optimal ROC partition example with two genetic markers.

Proportions LR Ranking

Genotype Cases Controls cases (p1) controls (p0) (p1/p0) LR

G1 = (0, 0) 13 184 0.02 0.23 0.07 9

G2 = (0, 1) 197 82 0.25 0.10 2.40 4

G3 = (0, 2) 67 12 0.08 0.01 5.58 3

G4 = (1, 0) 261 25 0.33 0.03 10.44 1

G5 = (1, 1) 84 284 0.10 0.35 0.30 6

G6 = (1, 2) 52 83 0.06 0.10 0.63 5

G7 = (2, 0) 13 75 0.02 0.09 0.17 7

G8 = (2, 1) 109 16 0.14 0.02 6.81 2

G9 = (2, 2) 4 39 0.00 0.05 0.10 8

Total 800 800

In this example the LR score is clearly better than the logistic regression model

without interaction. However, there is no advantage of using the LR score over

the logistic regression including an interaction since both models provide the same

discrimination accuracy. This is the case not only in this example, in general, the

LR score and the logistic regression with an interaction will provide the same clas-

sification. The advantage of using the LR score over the logistic regression will be
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manifest when dealing with higher-order interactions. In logistic regression the inter-

actions are specified parametrically. A second order interaction is specified through

an additional parameter corresponding to the product of the two interacting vari-

ables. Third order interactions could also be specified parametrically in a logistic

regression model, but this is not feasible for higher order interactions.
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Figure 5.2: Optimal ROC curve and ROC curves based on logistic

regression for data in Table(5.1).
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5.3 Searching for higher-order interactions:

Optimal AUC algorithm

In this section we propose a method, the Optimal AUC algorithm, that uses the

likelihood ratio score and the optimal ROC curve for the identification of subsets of

variables that best predicts disease risk.

Given a set of p genetic markers (SNPs), G1, . . . , Gp, our goal is to identify the

subset of predictors with the highest discrimination accuracy between diseased and

controls. We set m ≤ p, the maximum size of the subsets to be explored.

The proposed algorithm follows a forward selection process where variables are suc-

cessively included in the model according to a prespecified optimization criteria,

that in this case is maximization of the optimal AUC (the AUC of the optimal

ROC curve). Typically, forward selection algorithms start with no variable in the

model and, in the first step, all variables are checked and the one that optimizes the

selection criteria is selected as the first variable in the model. With this strategy

the final model is strongly influenced by the selection of the first variable. This is

not very convenient in contexts like ours where the SNPs have very small marginal

effects. In order to reduce the influence of the first selected variable, we propose to

perform p different forward selection processes, one for each variable G1, . . . , Gp as

the first variable in the model. At the end, we analyze the p resulting models and

select the best one.

The Optimal AUC algorithm consists of the following steps that are briefly described

here. Each step is explained in more detail in the following subsections:
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Optimal AUC algorithm

Step 1: Forward selection process

Given the first SNP, G(1), we select the second SNP, G(2), so that

AUCopt{G(1), G(2)} = max{j=1,...,p}AUCopt{G(1), Gj} .

Given a set of SNPs G(1), . . . , G(k−1), we select G(k) so that

AUCopt{G(1), . . . , G(k−1), G(k)} = max{j=1,...,p}AUCopt{G(1), . . . , G(k−1), Gj}

for k = 2, . . . ,m where m is a fixed value (by default m = 10).

We repeat this process p times, taking each available SNP as the first variable in

the forward selection process: G(1) = Gl for l = 1, . . . , p.

We obtain p models of the form M l = {Gl
(1) = Gl, G

l
(2), . . . , G

l
(m)}, l = 1, . . . , p.

Step 2: Selection of the best model and inference

In this step we select the best among the p models M l, l = 1, . . . , p, that we denote

by M∗ = {G∗(1), G∗(2), . . . , G∗(m)}, and explore its significance.

Step 3: Pruning

Since the size m of the models has been taken arbitrarily, the best model M∗ =

{G∗(1), G∗(2), . . . , G∗(m)}, may contain variables that are not really associated with the

response variable Y and should be removed from the model. This step performs a

pruning process where the last variables in the model are eliminated if they do not

add significant prediction accuracy to the whole model.
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Ye et al. (2011) proposed a forward selection method, called ”forward ROC method”,

for identification of predictive genetic profiles on high-dimensional data including

interactions. Both methods, the ”forward ROC method” and the ”Optimal AUC”

proposed here were developed independently but essentially follow the same strategy:

a forward selection process that maximizes the area under the optimal ROC curve.

However, the implementation of both algorithms is very different and, consequently,

both methods can yield to different models and conclusions. The main differences, as

will be discussed next in more detail, are: the computation of the empirical optimal

AUC, the missing data treatment, the selection of the best m dimensional model

and the pruning process.

5.3.1 Forward selection process

As explained before, the forward selection process performs iteratively the following

variable selection:

Given a set of SNPs G(1), . . . , G(k−1), we select G(k) so that

AUCopt{G(1), . . . , G(k−1), G(k)} = max{j=1,...,p}AUCopt{G(1), . . . , G(k−1), Gj}

for k = 2, . . . ,m

This process requires the computation of the optimal AUC that is defined as the area

under the optimal ROC curve. The optimal ROC curve for k variables G1, . . . , Gk

is given by the likelihood ratio score:

LR(G1, . . . , Gk) =
P (G1, . . . , Gk | Y = 1)

P (G1, . . . , Gk | Y = 0)
.

In general the multivariate distribution of G1, . . . , Gk for cases and controls is un-

known but can be estimated nonparametrically with the empirical frequency. How-

ever, in order to reduce overfitting, we propose the following estimation:
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P̂ (G1 = g1, . . . , Gk = gk|Y = 1) =

∑n
i=1 1 {Gi

1 = g1, . . . , G
i
k = gk, Y

i = 1}∑n
i=1 1 {Y i = 1}

+ δ

and

P̂ (G1 = g1, . . . , Gk = gk|Y = 0) =

∑n
i=1 1 {Gi

1 = g1, . . . , G
i
k = gk, Y

i = 0}∑n
i=1 1 {Y i = 0}

+ δ

where δ is a small value taken by default equal to 0.001. We discuss below the

overfitting problem.

The process stops after the prespecified number m of SNPs have been selected.

We can represent the forward selection process with a plot, that we refer as the

”forward selection curve”, that represents the optimal AUC at each step versus the

number of selected SNPs. Each curve has m dots with coordinates (k, AUCk
opt),

k = 1, . . . ,m where AUCk
opt denotes the optimal AUC of the first k selected SNPs

(G(1), . . . , G(k)).

To illustrate the forward selection process described above we consider again the

example introduced in the previous section: a simulated case-control dataset with

800 cases and 800 controls and 1000 SNPs where the first two SNPs (SNP1 and

SNP2) are associated with the outcome through an epistasis effect but without

marginal main effects. The challenge is how to detect this second order interaction

among all possible second or higher order interactions of the 1000 SNPs.

In Figure 5.3 we provide two plots. Both plots represent the selection process taking

SNP1 as the first SNP. The plot on the left is obtained without overfitting correction

(δ = 0) while for the plot on the right we used the default overfitting correction

(δ = 0.001). The different dots of the selection curves provide the Optimal AUC

in each step of the selection algorithm. In the first step, both plots provide an

optimal AUC around 0.5 which reflects the null discrimination accuracy of SNP1

individually. In the second step of the selection process the algorithm considers all



82 Chapter 5. Identification of high-order genetic interactions using LR score

the SNPs in combination of SNP1 and selects the one giving the largest prediction

accuracy. In this case, the selected SNP was SNP2 which, in combination with SNP1,

provides an optimal AUC of 0.86. The difference of correcting for overfitting or not is

manifest after this second step. In the plot on the left, where no overfitting correction

was applied, the Optimal AUC increases when a new SNP is added to the pair

(SNP1, SNP2). This increase is only apparent since only SNP1 in combination with

SNP2 are associated with the phenotype. When overfitting correction is applied, the

Optimal AUC decreases when new SNPs are added and the two interacting SNPs

can be identified. This example illustrates the need of correcting for overfitting in

the selection process.
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Figure 5.3: a) Forward selection curve with δ = 0 (no overfitting correction) b)

Forward selection curve with δ = 0.001 (with overfitting correction).
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5.3.2 Best model and inference

The selection process described before provides a total of p models (sets of m SNPs),

one for each initial SNP. The selection of the best model will be based on the forward

selection curves. In Figure 5.4 we see two forward selection curves corresponding

to 2 different models. The upper curve (dots are circles) represents the selection

process starting with SNP1 and the other curve (dots are triangles) represents the

selection process for SNP474. It is clear that the preferable model is the one that

achieves larger values. We consider the area under the forward selection curve

as the numerical summary that indicates wether a model achieves large values of

optimal AUC or not. The area under the forward selection curve is obtained as

Wj =
∑m

i=2
1
2
(AUCi

opt + AUCi−1
opt ) for j = 1, . . . , p.

We define the best model as the one with the largest areaWmax = max{W1, . . . ,Wp}.

This criterion is inspired in the optimal AUC interpretation. The curves with largest

areas will be the curves that reach larger values, in this case AUCopt values, and

grow fastest.

For the study of the statistical significance of results we need to obtain the empirical

distribution of Wmax under the null hypothesis of no association. In the absence of an

analytical expression we could obtain the null distribution through a permutational

approach but this would be computational unfeasible for large datasets. Instead,

since Wmax is the largest of a set of p areas Wi we can use the extreme value

distribution. We assume that the areas, Wi, are independent and normal distributed

under the null, Wi ∼ N (µ, σ) , i = 1, . . . , p. In this setting the extreme value

distribution is given by:

P (Wmax ≤ w) =

p∏
i=1

P (Wi ≤ w) =

[
Φ

(
w − µ
σ

)]p

where Φ indicates the standard normal distribution. Then, for a significance level
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Figure 5.4: Forward selection curves for the selection process starting with SNP1

(circles) and for the selection process starting with SNP474 (triangles).

α, the critical value wα is obtained by solving P (Wmax ≤ w) = 1− α and gives

wα = µ+ σΦ−1[(1− α)1/p] .

Thus, the best model is significant at a level α when Wmax > wα.

Parameters µ and α are estimated empirically through a permutational approach.

In the example with two interaction SNPs, the best model is the one starting with
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SNP1 or the one starting with SNP2. Both models achieve the maximum area under

the forward selection curve among all the models, equal to Wmax = 0.7731. The

critical value in this example is wα = 0.6635 for α = 0.05. Thus, the best model is

significant.

5.3.3 Pruning

When the best model is significant, a further step is performed in order to refine the

selected subset of SNPs. This is similar to the pruning process in classification and

regression trees. The goal of this pruning process is to remove those SNPs that do not

increment significantly the W area. To do this we implement a backward elimination

process, we evaluate the SNPs in the reverse order that they were selected and we

remove them if their corresponding area increase is not significant. The pruning

process stops when a first significant SNP is found.

We start testing wether the last SNP, G(m) is significant or not. G(m) was selected as

the SNP providing the maximum increment in the optimal AUC, thus, we test the

significance of this increment by using the extreme value distribution. We assume

that the increments follow a normal distribution and its parameters µ and σ are

obtained through a permutational approach. In the example of Figure 5.4, the

optimal set after pruning is reduced to the pair of interacting SNPs: SNP1, SNP2.

5.3.4 Missing data

An important issue when dealing with multivariate genetic models is how to handle

missing genotypes. At each step of the forward stepwise process, a new SNP is

added to the selected set and a new partition of the dataset is made. After that,

the LR for each strata of the partition are computed. The problem arises with the

classification of the subjects that present a missing value for the added SNP. In this
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situation, we calculate the probability of the subject to belong to the new strata

based on their previous strata and the genotypes frequencies of the new SNP in that

strata. Finally we add the subject in all strata with a weight equal to the probability

of belonging to stratum. The new formulas for LR estimations considering missing

data are

P̂ (g1, . . . , gk|Y = 1) =

∑n
i=1 1 {Y i = 1}

∏k
j=1w(Gi

j = gj)∑n
i=1 1 {Y i = 1}

+ δ

P̂ (g1, . . . , gk|Y = 0) =

∑n
i=1 1 {Y i = 0}

∏k
j=1w(Gi

j = gj)∑n
i=1 1 {Y i = 0}

+ δ

where

w(Gi
j = gj) =


1 if Gi

j = gj

0 if Gi
j 6= gj

P̂
(
Gi
j = gj

)
if Gi

j is missing

and P̂
(
Gi
j = gj

)
is the genotype frequency of gj for the observed individuals.

For instance, given a partition with three SNPs, an individual who has the genetic

profile (0,NA, 1), that is, with a missing value in the second SNP, will contribute

to the genetic profile (0, 0, 1) with a weight of w(Gi
2 = 0) equal to the frequency of

genotype ”0” for SNP2, to the (0, 1, 1) profile with a weight of w(Gi
2 = 1) equal to

the frequency of genotype ”1” for SNP2 and to the genetic profile (0, 2, 1) with a

weight of w(Gi
2 = 2) equal to the frequency of genotype ”2” for SNP2.
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5.4 Results

5.4.1 Simulation results

We conducted a simulation study to determine the power of the optimal AUC al-

gorithm to identify the SNPs involved in high-order interactions. We compared the

results with a marginal approach, the univariate logistic regression model.

We simulated case-control datasets consisting of a binary response variable (disease

status) and 100 SNPs using the R functions described in chapter 2. First, using

function SNPgenerate we obtained the genotypes for 100 independent SNPs. Sec-

ond, using function SNPinteact we generated the response variable assuming a

multiplicative odds of risk model (Section 2.3.2) and a K-th order interaction or

epistatic effect of the K first SNPs for K ∈ {2, 3, 4, 5}. As described in Subsection

2.4.2, this is achieved by randomly assigning the multi-locus genotypes (G1, . . . , GK)

of the causal interacting SNPs to a latent variable L ∈ {0, 1, 2}. We specify the rel-

ative risk of the three categories in L as RR = P (Y = 1|L = 1)/P (Y = 1|L = 0)

and RR2 = P (Y = 1|L = 2)/P (Y = 1|L = 0). We considered two values for the

relative risk, RR = 2 (high risk) and RR = 1.5 (low risk) and two different values

of disease prevalence, 0.1 and 0.02. In total we simulated 16 different scenarios re-

sulting from all combinations of these parameters. We maintained fixed the minor

allele frequency of every SNP at 0.2 and we generated 100 different datasets of size

4000 (2000 cases and 2000 controls) for each scenario.

For each simulated data set we applied the complete Optimal AUC process to build

the optimal subset of SNPs and analyzed their significance. In these simulations

we did not perform the pruning process, instead, we considered subsets of a fixed

number of SNPs equal to K, the number of causal SNPs.
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As mentioned before, we also applied a marginal approach, the univariate logistic

regression model where each SNP is tested separately for association with the dis-

ease. For each SNP we considered four possible models of inheritance (dominant,

recessive, additive and codominant) and take the minimum p-value of the four mod-

els. We set a SNP to be associated with the response when the p-value was smaller

than the significance level (α = 0.05) after adjusting for multiple testing using the

Benjamini and Hochger FDR correction (Benjamini and Hochberg, 1995).

As a measure of performance of both approaches for detecting an interaction of

K-th order we provide NJ , the number of simulated samples (over 100) for which

the methods were able to detect at least J causal SNPs, J ∈ {1, 2, 3, . . . , K}. The

best performance is achieved when NK = 100, meaning that the method was able

to detect all K causal interacting SNPs in all simulated samples. The results are

summarized in tables 5.2 to 5.5, each one corresponding to a different value of K.

Each row corresponds to the different combinations of risk and prevalence param-

eters and each cell provides the value NJ for the Optimal AUC algorithm and for

the marginal logistic regression in parenthesis.

The results prove a clear advantage of the Optimal AUC over the marginal logistic

regression in all the simulated scenarios. For instance, in the first row of Table 5.2,

that summarizes second order interactions, we observe that the Optimal AUC was

able to detect both interacting SNPs 81% of the times while the marginal approach

only detected both SNPs 67% of the times. The advantage of the Optimal AUC

over the univariate approach is more evident as the number K of causal interacting

SNPs increases. In the first row of Table 5.3 (third order interactions), the Optimal

AUC detected the three causal SNPs 87% of the times while the marginal approach

only 27% of the times. For interactions of order 4 and 5 the advantage is even more

extreme. In the first row of Table 5.4, the Optimal AUC detected the 4 interacting

SNPs 88% of the times while the marginal approach only 3% of the times and in

the first row of Table 5.5, the Optimal AUC detected the 5 causal SNPs 96% of



5.4. Results 89

the times while the marginal approach was never able to detect the five SNPs. We

obtained similar results for a prevalence of 0.10 and a prevalence of 0.02, thus, we

can conclude that the prevalence has not an important impact on the performance

of both approaches. Instead, their performance is affected by the risk level. When

the risk is low, we observe an important reduction of the number of causal SNPs

detected. But, even in this case, the Optimal AUC performs much better than the

univariate logistic regression.

Table 5.2: Performance of Optimal AUC algorithm and univariate logistic

regression (in parenthesis) for detecting two interacting causal SNPs.

Scenario Number of detected causal SNPs

Prevalence Risk 1 2

0.1 High 100 (97) 81 (67)

0.02 High 100 (95) 79 (56)

0.1 Low 97 (77) 59 (24)

0.02 Low 89 (81) 42 (14)

Table 5.3: Performance of Optimal AUC algorithm and univariate logistic

regression (in parenthesis) for detecting three interacting causal SNPs.

Scenario Number of detected causal SNPs

Prevalence Risk 1 2 3

0.1 High 100 (97) 98 (72) 87 (27)

0.02 High 100 (98) 99 (73) 87 (31)

0.1 Low 95 (74) 70 (17) 40 (1)

0.02 Low 93 (61) 69 (14) 37 (1)
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Table 5.4: Performance of Optimal AUC algorithm and univariate logistic

regression (in parenthesis) for detecting four interacting causal SNPs.

Scenario Number of detected causal SNPs

Prevalence Risk 1 2 3 4

0.1 High 100 (94) 100 (69) 99 (29) 88 (3)

0.02 High 100 (88) 100 (58) 98 (18) 89 (3)

0.1 Low 85 (54) 64 (16) 39 (1) 9 (0)

0.02 Low 75 (35) 58 (4) 26 (0) 8 (0)

Table 5.5: Performance of Optimal AUC algorithm and univariate logistic

regression (in parenthesis) for detecting five interacting causal SNPs.

Scenario Number of detected causal SNPs

Prevalence Risk 1 2 3 4 5

0.1 High 100 (77) 100 (44) 99 (14) 99 (0) 96 (0)

0.02 High 100 (79) 99 (37) 94 (16) 86 (3) 78 (0)

0.1 Low 69 (27) 51 (6) 29 (0) 16 (0) 3 (0)

0.02 Low 64 (30) 36 (3) 18 (0) 7 (0) 2 (0)

5.4.2 Alzheimer results

In this section we present the results for the Alzheimer disease association study in-

troduced in chapter 1.2. As described there, the data corresponds to a genome-wide

association study conducted by Reiman et al. (2007) with 502, 627 SNPs genotyped

for 1411 subjects of whom 861 were cases and 550 controls. An indicator variable is

also available that reports whether the individual is carrying the apolipoprotein E

(ApoE) ε4 allelic variant, which is the best established genetic risk factor for late-
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onset Alzheimer’s disease (Reiman et al., 2007). Here we focus our analysis on the

Reelin signaling pathway with the goal of identifying genetic risk profiles or inter-

actions in genes within this pathway and to analyze potential interactions between

ApoE genotypes and those SNPs. For this, we identified 32 genes related to the

Reelin pathway and extracted 682 SNPs from Reiman’s database within these genes

(Table 1.4).

We applied the Optimal AUC algorithm for each gene separately. We conducted

a global analysis with all the patients, and a stratified analysis by the ApoE-ε4

indicator. We set the number of SNPs explored in each Optimal AUC process to be

m = 10. Afterwards, pruning was performed for those significant results. Table 5.6

shows the results for the stratified analysis. No significant subsets of SNPs were

detected in the global analysis.

For non carriers of ApoE-ε4 we obtained three significant interactions. The first re-

sult corresponds to a second order interaction between SNPs rs2855563 and rs6426554

in PSEN2 gene. This gene is located on the long arm of chromosome 1 and provides

instructions for making a protein called presenilin 2 that plays a role in processing

amyloid precursor protein. Patients with an inherited form of AD carry mutations

in the presenilin proteins or the amyloid precursor protein. The second significant

finding is also a second order interaction between SNPs rs11030102 and rs11030104

in BDNF gene, located on the short arm of chromosome 11. The protein encoded

by BDNF promotes the survival of neurons by playing a role in their growth, differ-

entiation and maintenance. The BDNF protein helps to regulate synaptic plasticity,

which is the ability of connections between neurons (synapses) to change and adapt

over time in response to experience. The last significant result is the interaction be-

tween SNPs rs2636277 and rs41346745 in ABL2 gene which encodes a non-receptor

tyrosine-protein kinase. In brain, it may regulate neurotransmission by phosphory-

lating proteins at the synapse. ABL2 acts also as a regulator of multiple pathological

signaling cascades during infection.
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Table 5.6: Significant sets of SNPs obtained by Optimal AUC algorithm

from Alzheimer’s disease data set.

ApoE-ε4 Gene SNPs

non carriers PSEN2 rs2855563 rs6426554

BDNF rs11030102 rs11030104

ABL2 rs2636277 rs41346745

carriers RELN rs1705107 rs4727582

rs2245617 rs3905915

rs17310949 rs4727583

For the stratum of ApoE-ε4 carriers, a significant subset of 6 SNPs was detected

in the RELN gene (rs1705107, rs4727582, rs2245617, rs3905915, rs17310949 and

rs4727583). The RELN gene is located on the long arm of chromosome 7 and

encodes a protein called reelin that plays a role in layering of neurons in the cerebral

cortex and cerebellum. Reelin likely plays a role in many brain processes, including

the extension of axons and dendrites, which are specialized outgrowths from nerve

cells that are essential for the transmission of nerve impulses. Reelin may also

regulate synaptic plasticity.

The Optimal AUC algorithm identified possible sets of SNPs that are jointly asso-

ciated with Alzheimer’s disease in interaction with ApoE-ε4. These results should

be confirmed in independent studies.

The information about gene functions in this section was compiled from the Genetics

Home Reference (GHR, 2015), the National Center for Biotechnology Information

(NCBI, 2015) and the UniProt Protein knowledgebase (The UniProt Consortium,

2015).
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M., Serra, C., Carrato, A., Garćıa-Closas, R., Sala, M., Lloreta, J., Tardón, A.,

Rothman, N., and Silverman, D. T. (2006). Smoking and bladder cancer in spain:

effects of tobacco type, timing, environmental tobacco smoke, and gender. Cancer

Epidemiol Biomarkers Prev, 15(7):1348–1354.

Schaffner, S. F., Foo, C., Gabriel, S., Reich, D., Daly, M. J., and Altshuler, D.

(2005). Calibrating a coalescent simulation of human genome sequence variation.

Genome Res, 15(11):1576–1583.

Seshadri, S., Drachman, D. A., and Lippa, C. F. (1995). Apolipoprotein e epsilon 4

allele and the lifetime risk of alzheimer’s disease. what physicians know, and what

they should know. Arch Neurol, 52(11):1074–1079.

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and Zeileis, A. (2008). Con-

ditional variable importance for random forests. BMC Bioinformatics, 9:307.



98 Bibliography

Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T. (2007). Bias in random

forest variable importance measures: illustrations, sources and a solution. BMC

Bioinformatics, 8:25.

The UniProt Consortium (2015). Uniprot: a hub for protein information. Nucleic

Acids Res. 43: D204-D212. Available from http://www.uniprot.org.

Van Steen, K. (2012). Travelling the world of gene-gene interactions. Brief Bioin-

form, 13(1):1–19.

Wei, Z., Wang, K., Qu, H.-Q., Zhang, H., Bradfield, J., Kim, C., Frackleton, E.,

Hou, C., Glessner, J. T., Chiavacci, R., Stanley, C., Monos, D., Grant, S. F. A.,

Polychronakos, C., and Hakonarson, H. (2009). From disease association to risk

assessment: an optimistic view from genome-wide association studies on type 1

diabetes. PLoS Genet, 5(10):e1000678.

Wray, N. R. and Goddard, M. E. (2010). Multi-locus models of genetic risk of

disease. Genome Med, 2(2):10.

Wray, N. R., Goddard, M. E., and Visscher, P. M. (2007). Prediction of individ-

ual genetic risk to disease from genome-wide association studies. Genome Res,

17(10):1520–1528.

Wray, N. R., Yang, J., Goddard, M. E., and Visscher, P. M. (2010). The genetic

interpretation of area under the roc curve in genomic profiling. PLoS Genet,

6(2):e1000864.

Wright, F. A., Huang, H., Guan, X., Gamiel, K., Jeffries, C., Barry, W. T., de

Villena, F. P.-M., Sullivan, P. F., Wilhelmsen, K. C., and Zou, F. (2007). Simu-

lating association studies: a data-based resampling method for candidate regions

or whole genome scans. Bioinformatics, 23(19):2581–2588.

Ye, C., Cui, Y., Wei, C., Elston, R. C., Zhu, J., and Lu, Q. (2011). A non-parametric



Bibliography 99

method for building predictive genetic tests on high-dimensional data. Hum Hered,

71(3):161–170.



100 Bibliography



APPENDIXA

Functions for the simulation of genetic risk

profiles

101



102 Appendix A.



103

SNPgenerate function

Simulation of genotype data on the assumption of independent SNPs.

SNPgenerate <- function(n,maf){

x <- NULL

for(i in 1:length(maf)){

p <- maf[i]

genfreq <- c((1-p)ˆ2,2*p*(1-p),pˆ2)

x[[paste("SNP",i,"_",maf[i],sep="")]] <-

sample(factor(c(0,1,2)), n, replace = TRUE, prob = genfreq)

}

return(as.data.frame(x))

}

LDgenerate function

Simulation of genotype data on the assumption of SNPs in LD.

LDgenerate <- function(x,r,maf=NULL,mafx=NULL){

if(missing(mafx)){

freq <- table(x)

if(length(freq)!=3)

stop("Error in GeneraSNPinLD: x must be 3 levels")

mafx <- 1 - (freq["1"]+2*freq["0"])/(2*sum(freq))

}

if(missing(maf)) maf <- rep(mafx,length(r))

if(length(maf)!=length(r))

stop("r and maf arguments have different lengths")

z <- NULL

for(i in 1:length(r)){

maf2 <- maf[i]

d <- r[i]*sqrt(mafx*(1-mafx)*maf2*(1-maf2))

if(d>0) d <- min( d, min((1-mafx)*maf2,mafx*(1-maf2)) )
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if(d<0) d <- max( d, -mafx*maf2 )

fAA <- (1-mafx)ˆ2

fAa <- 2*(1-mafx)*mafx

faa <- mafxˆ2

fAB <- (1-mafx)*(1-maf2) + d

fAb <- (1-mafx)*maf2 - d

faB <- mafx*(1-maf2) - d

fab <- mafx*maf2 + d

p0.0 <- fABˆ2 / fAA

p1.0 <- 2*fAB*fAb / fAA

p2.0 <- fAbˆ2 / fAA

p0.1 <- 2*fAB*faB / fAa

p1.1 <- (2*fAB*fab + 2*fAb*faB) / fAa

p2.1 <- 2*fAb*fab / fAa

p0.2 <- faBˆ2 / faa

p1.2 <- 2*faB*fab / faa

p2.2 <- fabˆ2 / faa

condProb <- rbind("0"=c(p0.0,p1.0,p2.0), "1"=c(p0.1,p1.1,p2.1),

"2"=c(p0.2,p1.2,p2.2))

colnames(condProb) <- c("0","1","2")

y <- rep(NA,length(x))

ind0 <- !is.na(x) & x==0

y[ind0] <-

sample(c(0,1,2), sum(ind0), replace=TRUE, prob=condProb["0",])

ind1 <- !is.na(x) & x==1

y[ind1] <-

sample(c(0,1,2), sum(ind1), replace=TRUE, prob=condProb["1",])

ind2 <- !is.na(x) & x==2

y[ind2] <-

sample(c(0,1,2), sum(ind2), replace=TRUE, prob=condProb["2",])

aux <- paste("LDx_",r[i],"_SNP",i,"_",maf2,sep="")

z[[aux]] <- factor(y, levels=c(0,1,2))

}

return(as.data.frame(z))

}
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RiskGenerate function

Simulation of disease outcome from multiple independent SNPs.

RiskGenerate <- function(data,RR,p){

LRsnp <- function(x,p,RR1,maf=NULL){

if(missing(maf)){

freq <- table(x)

maf <- 1 - (freq["1"]+2*freq["0"])/(2*sum(freq))

}

RR2 <- RR1ˆ2

g0 <- (1-maf)ˆ2

g1 <- 2*maf*(1-maf)

g2 <- mafˆ2

e <- p*g0/(g0 + RR2*g2 + RR1*g1)

a <- RR2*e*g2/g0

c <- RR1*e*g1/g0

b <- g2 - a

d <- g1 - c

f <- g0 - e

LR0 <- e*(1-p)/(f*p)

LR1 <- c*(1-p)/(d*p)

LR2 <- a*(1-p)/(b*p)

if(LR0<0 | LR1<0 | LR2<0)

stop("Incompatible combination of RR and p")

return(c(LR0=LR0,LR1=LR1,LR2=LR2))

}

if(length(RR)>1){

LRschema <- NULL

for(i in 1:ncol(data))

LRschema <- rbind(LRschema,LRsnp(data[,i],p=p,RR1=RR[i]))

}

else{

LRschema <- t(sapply(data,LRsnp,p=p,RR1=RR))

}
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LR <- NULL

for(i in 1:nrow(LRschema)) LR <- cbind(LR, LRschema[i,data[,i]])

rownames(LR) <- rownames(data)

log.odd <- apply(log(LR),1,sum) + log(p/(1-p))

odd <- exp(log.odd)

prob <- odd/(1+odd)

unif <- runif(length(prob))

y <- ifelse(prob>unif,1,0)

return(y)

}

SNPInteract function

Simulation of disease outcome under a genetic interaction disease model.

SNPInteract <- function(data,RR,p,hrp=NULL){

if(missing(hrp)){

mafData <- sapply(data, function(x){

freq <- table(x)

return(1 - (freq["1"]+2*freq["0"])/(2*sum(freq)))})

lmaf <- mean(mafData)

}

else{

lmaf <- sqrt(hrp)

}

n <- nrow(data)

maf <- lmaf

RR1 <- RR

RR2 <- RR1ˆ2

g0 <- (1-maf)ˆ2

g1 <- 2*maf*(1-maf)

g2 <- mafˆ2

e <- p*g0/(g0 + RR2*g2 + RR1*g1)
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a <- RR2*e*g2/g0

c <- RR1*e*g1/g0

b <- g2 - a

d <- g1 - c

f <- g0 - e

LR0 <- e*(1-p)/(f*p)

LR1 <- c*(1-p)/(d*p)

LR2 <- a*(1-p)/(b*p)

Partition <- function(p1,p2,index=NULL){

if(is.null(index)){

groups <- paste(p2,p1,sep=".")

}

else{

groups <- p2

groups[index] <- paste(p2[index],p1[index],sep=".")

}

x <- as.numeric(factor(groups))

return(x)

}

PartitionVar <- function(data){

if(class(data)=="data.frame"){

partition <- as.numeric(factor(data[,1]))

for(i in 2:ncol(data)) partition <- Partition(data[,i],partition)

}

else{

partition <- as.numeric(factor(data))

}

return(partition)

}

part <- PartitionVar(data)

aux <- factor(part)

aux <- factor(aux,levels=sample(levels(aux)))
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aux <- as.numeric(aux)

oscor <- order(aux)

AA <- round(n*(1-maf)ˆ2,0)

Aa <- round(n*2*(1-maf)*maf,0)

aa <- n-AA-Aa

X <- as.factor(c(rep(0,AA),rep(1,Aa),rep(2,aa)))

X <- X[order(oscor)]

LRschema <- c(LR0,LR1,LR2)

LR <- LRschema[X]

names(LR) <- rownames(data)

log.odd <- log(LR) + log(p/(1-p))

odd <- exp(log.odd)

prob <- odd/(1+odd)

unif <- runif(n)

y <- ifelse(prob>unif,1,0)

return(y)

}

Bin2Cont function

Simulation of continous outcome from binary outcome.

Bin2Cont <- function(y,mean0,sd0,mean1,sd1){

n <- length(y)

n0 <- sum(y==0)

n1 <- sum(y==1)

if(n!=n1+n0) stop("Error in y")

z <- rep(NA,n)

z[y==0] <- rnorm(n0,mean0,sd0)

z[y==1] <- rnorm(n1,mean1,sd1)

return(z)

}
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Bin2Surv function

Simulation of survival time outcome from binary outcome.

Bin2Surv <- function(y,tmax,shape0,scale0,shape1,scale1){

n <- length(y)

n0 <- sum(y==0)

n1 <- sum(y==1)

if(n!=n1+n0) stop("Error in y")

z <- rep(NA,n)

z[y==0] <- rweibull(n0,shape0,scale0)

z[y==1] <- rweibull(n1,shape1,scale1)

tuni <- runif(n,0,tmax)

ind <- z<=tuni

cens <- 1*ind

z[!ind] <- tuni[!ind]

return(data.frame(time=z,cens=cens))

}
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Depends R (>= 2.11.0), randomForest
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Repository CRAN
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2 AUCRF

AUCRF Variable Selection with Random Forest and the Area Under the Curve

Description

AUCRF is an algorithm for variable selection using Random Forest based on optimizing the area-
under-the ROC curve (AUC) of the Random Forest. The proposed strategy implements a backward
elimination process based on the initial ranking of the variables.

Usage

AUCRF(formula, data, k0 = 1, pdel = 0.2, ranking=c("MDG","MDA"), ...)

Arguments

formula an object of class formula: a symbolic description of the model to be fitted. The
details of model specification are given in Details.

data a data frame containing the variables in the model. Dependent variable must be
a binary variable defined as factor and codified as 1 for positives (e.g. cases)
and 0 for negatives (e.g. controls).

k0 number of remaining variables for stopping the backward elimination process.
By default k0=1.

pdel fraction of remaining variables to be removed in each step. By default pdel=0.2.
If pdel=0, only one variable is removed each time.

ranking specifies the importance measure provided by randomForest for ranking the
variables. There are two options MDG (by default) for MeanDecreaseGini and
MDA for MeanDecreaseAccuracy.

... optional parameters to be passed to the randomForest function. If no arguments
are specified, default arguments of randomForest function will be used.

Details

The AUC-RF algorithm is described in detail in Calle et. al.(2011). The following is a summary:

Ranking and AUC of the initial set:
Perform a random forest using all predictor variables and the response, as specified in the formula
argument, and compute the AUC of the random forest. Based on the selected measure of importance
(by default MDG), obtain a ranking of predictors.

Elimination process:
Based on the variables ranking, remove the less important variables (fraction of variables specified
in pdel argument). Perform a new random forest with the remaining variables and compute its
AUC. This step is iterated until the number of remaining variables is less or equal than k0.

Optimal set:
The optimal set of predictive variables is considered the one giving rise to the Random Forest with
the highest OOB-AUCopt. The number of selected predictors is denoted by Kopt
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Value

An object of class AUCRF, which is a list with the following components:

call the original call to AUCRF.

data the data argument.

ranking the ranking of predictors based on the importance measure.

Xopt optimal set of predictors obtained.

OOB-AUCopt AUC obtained for the optimal set of predictors.

Kopt size of the optimal set of predictors obtained.

AUCcurve values of AUC obtained for each set of predictors evaluated in the elimination
process.

RFopt the randomForest adjusted with the optimal set.

References

Calle ML, Urrea V, Boulesteix A-L, Malats N (2011) "AUC-RF: A new strategy for genomic pro-
filing with Random Forest". Human Heredity. (In press)

See Also

OptimalSet, AUCRFcv, randomForest.

Examples

# load the included example dataset. This is a simulated case/control study
# data set with 4000 patients (2000 cases / 2000 controls) and 1000 SNPs,
# where the first 10 SNPs have a direct association with the outcome:
data(exampleData)

# call AUCRF process: (it may take some time)
# fit <- AUCRF(Y~., data=exampleData)

# The result of this example is included for illustration purpose:

data(fit)
summary(fit)
plot(fit)

# Additional randomForest parameters can be included, otherwise default
# parameters of randomForest function will be used:
# fit <- AUCRF(Y~., data=exampleData, ntree=1000, nodesize=20)
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AUCRFcv Repeated cross validation of the AUC-RF process.

Description

Performes a repeated cross validation analysis and computes the probability of selection for each
variable.

Usage

AUCRFcv(x, nCV = 5, M = 20)

Arguments

x an object of class AUCRF.

nCV number of folds in cross validation. By default a 5-fold cross validation is per-
formed.

M number of cross validation repetitions.

Details

The results of this repeated cross validation analysis are (1) a corrected estimation of the predictive
accuracy of the selected variables and (2) an estimate of the probability of selection for each vari-
able.
The AUC-RF algorithm is exhaustively described in Calle et. al.(2011).

Value

The same AUCRF object passed (see AUCRF) as argument but updated with the following components:

cvAUC mean of AUC values in test datasets of the optimal sets of predictors.

Psel probability of selection of each variable as the proportion of times that is selected
by AUC-RF method.

References

Calle ML, Urrea V, Boulesteix A-L, Malats N (2011) "AUC-RF: A new strategy for genomic pro-
filing with Random Forest". Human Heredity. (In press)

See Also

OptimalSet, AUCRF, randomForest.
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Examples

# Next steps take some time

# load included AUCRF result example:
# data(fit)

# call AUCRFcv process:
# fitCV <- AUCRFcv(fit)

# The result of this example is included:

data(fitCV)
summary(fitCV)
plot(fitCV)

OptimalSet AUCRF optimal set selection.

Description

Returns the optimal set of predictive variables selected by the AUC-RF method.

Usage

OptimalSet(object)

Arguments

object an object of class AUCRF as the result of AUCRF or AUCRFcv functions.

Value

A data.frame with the selected variables ordered by the initial ranking, their importance values
(initial ranking) and, if available, the probability of selection value measured by AUCRFcv function.

See Also

AUCRF, AUCRFcv.

Examples

data(fitCV)
OptimalSet(fitCV)
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plot.AUCRF Plot Method for AUCRF

Description

The plot method for AUCRF objects.

Usage

## S3 method for class ’AUCRF’
plot(x, which=c("auc","ranking","psel"), showOpt=TRUE, digits=4,

maxvars=NULL, ...)

Arguments

x an object of class AUCRF as the result of AUCRF or AUCRFcv functions.

which specifies the information to plot. There are three options: (1) "auc" (by default)
to plot the curve of AUCs in the backwards elimination process, (2) "ranking"
to plot the importance measure in initial ranking of each variable, and (3) "psel"
to plot the probability of selection of each variable. The "psel" option is only
available if a cross validation is performed by AUCRFcv function.
For option (1), showOpt and digits arguments can be specified for more details
(see below).
For options (2) and (3), the number of variables to plot and their order preference
can be specified by maxvars and order arguments, respectively (see below).

showOpt (only applied if "auc" option is specified in wich argument). If showOpt=TRUE,
the optimal subset is emphasised in the plot.

digits (only applied if "auc" option is specified in wich argument and showOpt or
showThres are TRUE). Specifies the number of decimal digits for representing
the optimal AUC in the plot.

maxvars (only applied if "ranking" or "psel" options are specified in wich argument).
Number of variables to include in the plot. The specified number of variables
with highest importance measure (initial ranking) will be plotted. If maxvars=NULL
(by default) the selected variables will be plotted.
(For large number of variables, their names can be illegible in the plot)

... other graphical parameters (see par).

Examples

data(fitCV)

# Plotting the AUC in the AUCRF backward elimination process:
plot(fitCV)

# Plotting the probability of selection of the selected variables:
plot(fitCV, wich="psel")
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# Plotting the 20 variables with highest probability of selection:
plot(fitCV, wich="psel", maxvars=20)
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AUCRF font code

AUCRF function

Variable Selection with Random Forest and the Area Under the Curve.

AUCRF <-

function(formula,data,k0=1,pdel=0.2,ranking=c("MDG","MDA"),...){

AUC.randomForest <-

function(rf,clase=1){

r <- rank(rf$votes[,as.character(clase)])

rd <- mean(r[rf$y==clase])

nd <- sum(rf$y==clase)

nnd <- length(rf$y)-nd

return((rd-nd/2-0.5)/nnd)

}

MDGRanking <-

function(formula,data,...){

fitRF <- randomForest(formula,data=data,...)

mdgRanking <- sort(fitRF$importance[,"MeanDecreaseGini"],decreasing=

TRUE)

return(mdgRanking)

}

MDARanking <-

function(formula,data,...){

fitRF <- randomForest(formula,data=data,importance=TRUE,...)

mdaRanking <- sort(fitRF$importance[,"MeanDecreaseAccuracy"],

decreasing=TRUE)

return(mdaRanking)

}
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t <- 0

cl <- match.call()

mf <- match("formula", names(cl), 0L)

y <- eval(eval(cl[[mf]])[[2]],data)

if(!is.factor(y) && length(levels(y))!=2) stop("Outcome must be a

factor with two levels")

if(pdel<0 || pdel>=1) stop("pdel must be in the interval [0,1)")

ranking <- match.arg(ranking)

switch(ranking,

MDG = {ranking <- MDGRanking(formula,data,...); ImpMes <- "MDG

"},

MDA = {ranking <- MDARanking(formula,data,...); ImpMes <- "MDA

"},

stop("Not valid ranking")

)

mf <- match("formula", names(cl), 0L)

yname <- as.character(eval(cl[[mf]])[[2]])

vars <- names(ranking)

AUCcurve <- data.frame()

auxThres <- 0

auxMaxAUC <- 0

k <- length(vars)

while(k>=k0){

fitRF <- randomForest(formula,data=data[,c(yname,vars[1:k])

],...)

getAUC <- AUC.randomForest(fitRF)

if(getAUC>=auxMaxAUC){

auxMaxAUC <- getAUC

auxThres <- auxMaxAUC-t

}

if(getAUC>=auxThres) RFopt <- fitRF

AUCcurve <- rbind(c(k,getAUC),AUCcurve)
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k <- k-as.integer(pdel*k)-1

}

colnames(AUCcurve) <- c("k","AUC")

maxAUC <- max(AUCcurve$AUC)

opthreshold <- maxAUC-t

optimal <- AUCcurve[AUCcurve$AUC>=opthreshold,][1,]

objectList <- list()

objectList$call <- cl

objectList$data <- data

objectList$ranking <- ranking

objectList$Xopt <- names(ranking)[1:(optimal$k)]

objectList$"OOB-AUCopt" <- optimal$AUC

objectList$Kopt <- optimal$k

objectList$AUCcurve <- AUCcurve

objectList$RFopt <- RFopt

objectList$ImpMeasure <- ImpMes

class(objectList) <- "AUCRF"

return(objectList)

}

AUCRFcv function

Repeated cross validation of the AUC-RF process.

AUCRFcv <-

function(x,nCV=5,M=20){

AUC.votes <-

function(votes,y=NULL,clase=1){

if(missing(y) || is.null(y)) y <- votes$y

r <- rank(votes[,as.character(clase)])
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rd <- mean(r[y==clase])

nd <- sum(y==clase)

nnd <- length(y)-nd

return((rd-nd/2-0.5)/nnd)

}

cl <- match.call()

switch(class(x),

"AUCRF" = {

callRF <- x$call

data <- x$data

callRF$data <- as.name("newData")

yname <- as.character(eval(x$call$formula)[[2]])

},

stop("x must be a AUCRF object.")

)

cvAUC <- NULL

varnames <- colnames(data)[colnames(data)!=yname]

nSelect <- rep(0,length(varnames))

names(nSelect) <- varnames

for(m in 1:M){

CV <- list()

mpredict <- NULL

indPermuted <- matrix(c(sample(rownames(data)),rep(NA,nCV-nrow(data)

%%nCV)),ncol=nCV,byrow=TRUE)

for(k in 1:nCV){

indTest <- indPermuted[,k]

indTest <- indTest[!is.na(indTest)]

indTrain <- rownames(data)[!(rownames(data) %in% indTest)]

newData <- data[indTrain,]

kaucRF <- eval(callRF)

mpredict <- rbind(mpredict, predict(kaucRF$RFopt,newdata=data[

indTest,],type="vote"))

nSelect[kaucRF$Xopt] <- nSelect[kaucRF$Xopt]+1



125

}

mvotes <- data.frame(y=data[,yname],mpredict[rownames(data),])

class(mvotes) <- c("votes","data.frame")

colnames(mvotes) <- c("y","0","1")

cvAUC <- c(cvAUC, AUC.votes(mvotes))

}

if(class(x)=="AUCRF")

objectList <- x

else

objectList <- list()

objectList$cvAUC <- mean(cvAUC)

objectList$Psel <- nSelect/(M*nCV)

objectList$callcv <- cl

class(objectList) <- c("AUCRFcv","AUCRF")

return(objectList)

}

OptimalSet function

AUCRF optimal set selection.

OptimalSet <-

function(object){

if(is.null(object$Psel))

out <- data.frame("Name"=object$Xopt,"Importance"=

object$ranking[object$Xopt])

else

out <- data.frame("Name"=object$Xopt,"Importance"=

object$ranking[object$Xopt], "Prob.Selection"=object$Psel[

object$Xopt])
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rownames(out) <- NULL

return(out)

}

summary.AUCRF function

Summary method for AUCRF.

summary.AUCRF <-

function(object,...){

return(object)

}

print.AUCRF function

Print method for AUCRF.

print.AUCRF <-

function(x,...){

cat("\nNumber of selected variables: Kopt=",x$Kopt,"\n")

cat("AUC of selected variables: OOB-AUCopt=",x$"OOB-AUCopt","\n")

if(!is.null(x$cvAUC)) cat("AUC from cross validation:",x$cvAUC,"\n")

cat("Importance Measure:",x$ImpMeasure,"\n")

cat("\n")

if(is.null(x$Psel))

res <- data.frame("Selected Variables"=x$Xopt, Importance=x$ranking

[x$Xopt])

else

res <- data.frame("Selected Variables"=x$Xopt, Importance=

x$ranking[x$Xopt], Prob.Select=x$Psel[x$Xopt])

rownames(res) <- NULL
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print(res)

}

plot.AUCRF function

Plot method for AUCRF.

plot.AUCRF <-

function(x, which=c("auc","ranking","psel") ,showOpt=TRUE, digits=4,

maxvars=NULL, ...){

cl <- match.call()

which <- match.arg(which)

opar <- par("cex", "pch")

on.exit(par(opar))

n <- ifelse(is.null(maxvars),x$Kopt, maxvars)

par(cex = max(1 - 0.1 * n %/% 10, 0.5), pch = 19)

switch(which,

psel={

if(is.null(x$Psel))

cat("No Psel information available. See AUCRFcv help.\n")

else{

imp <- x$Psel[x$Xopt]

imp <- sort(imp,decreasing=T)

if(!is.null(maxvars)) imp <- sort(x$Psel,decreasing=T)[1:

maxvars]

if(is.null(cl$pch)) dotchart(imp[length(imp):1],pch=par("pch")

,...)

else dotchart(imp[length(imp):1],...)

if(is.null(cl$xlab)) title(xlab="Probability of selection")

}

},

ranking={
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imp <- x$ranking[x$Xopt]

if(!is.null(maxvars)) imp <- sort(x$ranking,decreasing=T)[1:maxvars

]

if(is.null(cl$pch)) dotchart(imp[length(imp):1],pch=par("pch"),...)

else dotchart(imp[length(imp):1],...)

if(is.null(cl$xlab)) title(xlab=x$ImpMeasure)

},

auc={

par(opar)

type <- ifelse(is.null(cl$type), "o", eval(cl$type))

pch <- ifelse(is.null(cl$pch), 20, eval(cl$pch))

col <- ifelse(is.null(cl$col), 2, eval(cl$col))

if(is.null(cl$ylim)){

maxAUC <- max(x$AUCcurve$AUC)

minAUC <- min(x$AUCcurve$AUC)

r <- maxAUC-minAUC

ylim <- c(max(0,minAUC-r), min(1,maxAUC+r))

}

else{

ylim <- eval(cl$ylim)

}

ylab <- ifelse(is.null(cl$ylab), "OOB-AUC", eval(cl$ylab))

xlab <- ifelse(is.null(cl$xlab), "Number of selected variables",

eval(cl$xlab))

AUCcurve <- x$AUCcurve

m <- match(c("x","wich","showOpt","digits","maxvars","type", "pch",

"col", "ylim", "ylab", "xlab"), names(cl), 0L)

plotCall <- cl[-m]

plotCall[[1]] <- as.name("plot")

plotCall$x <- as.name("AUCcurve")

plotCall$type <- as.name("type")
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plotCall$pch <- as.name("pch")

plotCall$col <- as.name("col")

plotCall$ylim <- as.name("ylim")

plotCall$ylab <- as.name("ylab")

plotCall$xlab <- as.name("xlab")

eval(plotCall)

if(showOpt){

text(x$Kopt,x$"OOB-AUCopt"+(ylim[2]-ylim[1])/10, paste("OOB-

AUCopt = ",round(x$"OOB-AUCopt",digits)," (Kopt = ",x$Kopt,")

",sep=""), pos=4, cex=0.7, offset=0)

text(x$Kopt,x$"OOB-AUCopt","|", pos=3)

if(!is.null(x$cvAUC))

text(x$Kopt,x$"OOB-AUCopt"+1.5*(ylim[2]-ylim[1])/10, paste("

cvAUC = ",round(x$cvAUC,digits),sep=""), pos=4, cex=0.7,

offset=0)

}

}

)

invisible()

}
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trapz and auc.numeric functions

Computes the AUC measure for ROC curves and scores.

trapz <- function (x, y){

idx = 2:length(x)

return(as.double((x[idx] - x[idx - 1]) %*% (y[idx] + y[idx - 1]))/2)

}

auc.numeric<- function(x,y,clase=1){

r <- rank(x)

rd <- mean(r[y==clase])

nd <- sum(y==clase)

nnd <- length(y)-nd

return((rd-nd/2-0.5)/nnd)

}

ROCpart function

Computes optimal ROC for a partition.

ROCpart <- function(x, y, eps=1, type=c("auc","roc","lr","rs","all")){

type <- match.arg(type)

tab <- table(x,y)

marginTab <- prop.table(tab+eps,margin=2)

LR <- marginTab[,"1"]/marginTab[,"0"]

if(type=="lr") return(LR)

RS <- LR[as.character(x)]

ranko <- order(LR,decreasing=TRUE)

ROC <- apply(marginTab[ranko,],2,cumsum)

ROC <- rbind(c(0,0),ROC)

AUC <- trapz(ROC[,"0"],ROC[,"1"])

switch(type,

auc = out <- AUC,
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roc = out <- ROC,

rs = out <- RS,

all = out <- list(AUC=AUC,ROC=ROC,RS=RS,LR=LR)

)

return(out)

}

Partition and PartitionVar functions

Generates partitions from a variable sets.

Partition <- function(p1,p2,index=NULL){

if(is.null(index)){

groups <- paste(p2,p1,sep=".")

}

else{

groups <- p2

groups[index] <- paste(p2[index],p1[index],sep=".")

}

x <- as.numeric(factor(groups))

return(x)

}

PartitionVar <- function(data){

if(class(data)=="data.frame"){

partition <- as.numeric(factor(data[,1]))

for(i in 2:ncol(data)) partition <- Partition(data[,i],partition)

}

else{

partition <- as.numeric(factor(data))

}

return(partition)

}
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OASaucEval and OASaucTest functions

Computes the optimal AUC measure from a subset.

OASaucEval <- function(data,y,eps){

part <- PartitionVar(data)

LR <- ROCpart(part, y, eps, type="lr")

LR <- LR[as.character(part)]

auc <- auc.numeric(LR,y)

return(auc)

}

OASaucTest <- function(data,y,inbag,oob,eps){

part <- PartitionVar(data)

LR <- ROCpart(part[inbag], y[inbag], eps, type="lr")

LR <- LR[as.character(part[oob])]

LR[is.na(LR)] <- 1

auc <- auc.numeric(LR,y[oob])

return(auc)

}

OASnext, OAStep and OAStepRandom functions

Main Opimal AUC algorithm parts implementations.

OASnext <- function(data,y,part,eps){

allpart <- apply(data,2,Partition,p2=part)

aucs <- apply(allpart,2,ROCpart,y=y,type="auc",eps=eps)

best <- which.max(aucs)

aucmax <- aucs[best]

newvar <- colnames(data)[best]

newpart <- as.numeric(factor(allpart[,best]))

new <- list(part=newpart, auc=aucmax, addvar=newvar)

return(new)
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}

OAStep <- function(var1,data,y,eps,inbag=NULL,maxvars=15){

if(class(data)!="data.frame"){

data <- as.data.frame(data)

}

if(is.null(inbag)){

flag.test <- FALSE

inbag <- 1:nrow(data)

}

else{

flag.test <- TRUE

switch(class(inbag),

"character" = { indnames <- rownames(data)

oob <- indnames[!indnames %in% inbag] },

"integer" = { n <- nrow(data)

oob <- (1:n)[-inbag] },

stop("inbag argument not valid")

)

}

vars <- rep(0,ncol(data))

names(vars) <- colnames(data)

iter <- 1

vars[var1] <- 1

part <- Partition(data[inbag,var1],p2=1,index=NULL)

auc <- ROCpart(part,y[inbag],eps,type="auc")

testauc <- "n/d"

if(flag.test) testauc <- OASaucTest(data[,var1],y,inbag,oob,eps)

while(sum(vars>0)<maxvars){

iter <- iter + 1

newstep <- OASnext(data[inbag,vars==0],y[inbag],part=part,eps)

vars[newstep$addvar] <- iter

part <- newstep$part

auc[iter] <- newstep$auc
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if(flag.test) testauc[iter] <- OASaucTest(data[,vars!=0],y,inbag,

oob,eps)

}

return(list(auc=auc,testauc=testauc,vars=names(sort(vars[vars!=0]))))

}

OAStepRandom <- function(data,y,eps,inbag=NULL,maxvars=15){

if(class(data)!="data.frame"){

data <- as.data.frame(data)

}

if(is.null(inbag)){

flag.test <- FALSE

inbag <- 1:nrow(data)

}

else{

flag.test <- TRUE

switch(class(inbag),

"character" = { indnames <- rownames(data)

oob <- indnames[!indnames %in% inbag] },

"integer" = { n <- nrow(data)

oob <- (1:n)[-inbag] },

stop("inbag argument not valid")

)

}

vars <- rep(0,ncol(data))

names(vars) <- colnames(data)

rvar <- sample(names(vars),1)

part <- as.numeric(data[inbag,rvar])

iter <- 1

auc <- ROCpart(part, y[inbag], eps,"auc")

vars[rvar] <- iter

testauc <- "n/d"

if(flag.test) testauc <- OASaucTest(data[,vars!=0],y,inbag,oob,eps)
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while(sum(vars>0)<maxvars){

iter <- iter + 1

newstep <- OASnext(data[inbag,vars==0],y[inbag],part=part,eps)

vars[newstep$addvar] <- iter

part <- newstep$part

auc[iter] <- newstep$auc

if(flag.test) testauc[iter] <- OASaucTest(data[,vars!=0],y,inbag,

oob,eps)

}

return(list(auc=auc,testauc=testauc,vars=names(sort(vars[vars!=0]))))

}

FRutePurge function

Pruning the optimal subset.

FRutePurge <- function(rutaauc,kperms,Dades,y,inbag,eps,arperm=TRUE,

alpha=0.05,n){

nvars <- length(rutaauc)

rutasnps <- names(rutaauc)

deleting <- TRUE

historia <- NULL

while(deleting & nvars>1){

if(rutaauc[nvars]<rutaauc[nvars-1]){

historia <- cbind(historia,c(nvars,1,0,0))

nvars <- nvars-1

next

}

if(!arperm) return(rutaauc)

auxperm <- NULL

for(i in 1:kperms) auxperm <- cbind(auxperm,sample(Dades[inbag,

rutasnps[nvars]]))

allpart <- apply(auxperm,2,Partition,p2=PartitionVar(Dades[inbag,
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rutasnps[1:(nvars-1)]]))

aucs <- apply(allpart,2,ROCpart,y=y[inbag],type="auc",eps=eps)

permaucrutes <- sapply(aucs,function(a) c(rutaauc[1:(nvars-1)],a))

permars <- apply(permaucrutes,2,trapz,x=c(0:(nvars-1))/(nvars-1))

arthres <- mean(permars) + sd(permars) * qnorm((1-alpha)ˆ(1/n))

rutaar <- trapz(x=c(0:(nvars-1))/(nvars-1),y=rutaauc[1:nvars])

if(rutaar<=arthres){

historia <- cbind(historia,c(nvars,2,mean(permars),sd(permars)))

nvars <- nvars-1

next

}

historia <- cbind(historia,c(nvars,0,mean(permars),sd(permars)))

deleting <- FALSE

}

return(list(rutaauc[1:nvars], historia))

return(rutaauc[1:nvars])

}
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