
Features for Exploiting Black-Box Optimization
Problem Structure

Tinus Abell1, Yuri Malitsky2?, and Kevin Tierney1??

1 IT University of Copenhagen, Copenhagen, Denmark
{tmab,kevt}@itu.dk

2 Cork Constraint Computation Centre, Cork, Ireland
y.malitsky@4c.ucc.ie

Abstract. Black-box optimization (BBO) problems arise in numerous
scientific and engineering applications and are characterized by compu-
tationally intensive objective functions, which severely limit the number
of evaluations that can be performed. We present a robust set of features
that analyze the fitness landscape of BBO problems and show how an
algorithm portfolio approach can exploit these general, problem indepen-
dent features and outperform the utilization of any single minimization
search strategy. We test our methodology on data from the GECCO
Workshop on BBO Benchmarking 2012, which contains 21 state-of-the-
art solvers run on 24 well-established functions.

1 Introduction

This paper tackles the challenge of crafting a set of features that can capture the
structure of black-box optimization (BBO) problem fitness landscapes for use
in portfolio algorithms. BBO problems involve the minimization of an objective
function f(x1, . . . , xn), subject to the constraints li ≤ xi ≤ ui, over the variables
xi ∈ R,∀1 ≤ i ≤ n. These types of problems are found throughout the scientific
and engineering fields, but are difficult to solve due to their oftentimes expen-
sive objective functions. This complexity can arise when the objective involves
difficult to compute expressions or that are too complicated to be defined by a
simple mathematical expression. Even though BBO algorithms do not guaran-
tee the discovery of the optimal solution, they are an effective tool for finding
approximate solutions. However, different BBO algorithms vary greatly in per-
formance across a set of problems. Thus, deciding which solver to apply to a
particular problem is a difficult task.

Portfolio algorithms, like Instance Specific Algorithm Configuration (ISAC) [11],
which uses a clustering approach to identify groups of similar instances, provide
a way to automatically choose a solver for a particular instance using offline
learning. However, a set of features that consolidate the relevant attributes of a
BBO instance into a vector is required to use such methods on BBO problems.
The only way to generate these features for BBO problems is by evaluating

? Yuri Malitsky is partially supported by the EU FET grant ICON (project 284715).
?? Kevin Tierney is supported by the Danish Council for Strategic Research as part of

the ENERPLAN project.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50527883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Tinus Abell, Yuri Malitsky, and Kevin Tierney

expensive queries to the black box, which contrasts with most non-black-box
problems, e.g. SAT or the set covering problem, where many features can be
quickly inferred from the problem definition itself.

In this paper, we propose a novel set of features that are fast to compute and
are descriptive enough of the instance structure to allow a portfolio algorithm
like ISAC to accurately cluster and tune for the benchmark. These features
are based on well-known fitness landscape measures and are learned through
sampling the black box. These features allow anybody to take advantage of the
recent advances in the ISAC framework in order to more efficiently solve their
BBO problems. This paper is a short version of [1].

Related work There has been extensive research studying the structure of BBO
problems, and copious measures have been proposed for determining the hard-
ness of local search problems by sampling their fitness landscape [9], such as the
search space diameter, optimal solution density/distribution [6], fitness-distance
correlation (FDC) [10], the correlation length [17, 20], epistasis measures [15],
information analysis [18], modality and neutrality measures [16], and fitness-
distance analysis [14]. Difficulty measures for BBO problems in particular were
studied by [8], which concluded that in the worst case building predictive dif-
ficulty measures for BBO problems is not possible to do in polynomial time3.
Most recently, Watson introduced several cost models for combinatorial land-
scapes in order to try to understand why certain algorithms perform well on
certain landscapes [19].

In [13], the authors identify six “low-level feature classes” to classify BBO
problems into groups. In [4], algorithm selection for BBO problems is considered
with a focus on minimizing the cost of incorrect algorithm selections, unlike our
approach, which minimizes a score based on the penalized expected runtime.
Our approach also differs from online methods [5] and reactive techniques [3]
that attempt to guide algorithms based on information from previously explored
states because ISAC performs all of its work offline.

2 BBO Dataset & Solver Portfolio
We evaluate the effectiveness and robustness of our features on a dataset from the
GECCO 2012 Workshop on Black-Box Optimization Benchmarking (BBOB) [2].
The dataset contains the number of evaluations required to find a particular
objective value within some precision on one of 24 continuous, noise-free, opti-
mization functions from [7] in 6 different dimension settings for 27 solvers. The
solvers are all run on the data 15 times, each time with a different target value
set as the artificial global optimum. Note that the BBOB documentation refers
to each of these target values as an “instance”. To avoid confusion with the in-
stances that ISAC uses to train and test on, we will only refer to BBOB targets.
Removing 7 instances from the dataset for which no solver was able to find a
solution, the dataset consists of 1289 instances.

We use the 21 solvers of the BBOB dataset with full solution data for all
instances. This portfolio consists of a diverse set of continuous optimizers, in-
cluding 10 covariance matrix adaptation (CMA) variants, 8 differential evolution

3 Our results do not contradict this, as we are not predicting the hardness of instances.



Features for Exploiting Black-Box Optimization Problem Structure 3

Problem definition features
1. Solver accuracy
2. Number of dimensions
Hill climbing features
3-4. Average distance between optima (average, std. dev.)
5-6. Distance between best optima and other optima (average, std. dev.)
7. Percent of optima that are the best optimum
Random point features
8-9. Distance to local optimum (average, std. dev.)
10. Fitness-distance correlation (FDC)

Table 1: BBO problem features.

(DE) variants, an ant colony optimization (ACO) algorithm, a genetic algorithm
(GA), and a particle swarm optimization (PSO) algorithm4.

3 Features
Computing features for BBO problems is difficult because evaluating the objec-
tive function of a BBO problem is expensive, and there is scarce information
about a problem instance in its definition, other than the number of dimensions
and the desired solver accuracy. In the absence of any structure in the problem
definition, we have to sample the fitness landscape. However, such sampling is
expensive, and on our dataset performing more than 600 objective evaluations
removes all benefits of using a portfolio approach. We therefore introduce a set
of 10 features that are based on well-studied aspects of search landscapes in
the literature [19]. Our features are drawn from three information sources: the
problem definition, hill climbs, and random points.

Table 1 summarizes our features. The problem definition features contain
the desired accuracy of the continuous variables (Feature 1), and the number of
dimensions that the problem has (Feature 2), which, together, describe the size
of the problem. The hill climbing features are based off of a number of hill climbs
that are initiated from random points and continued until a local optimum or
a fixed number of evaluations is reached. We then calculate the average and
standard deviation of the distance between optima (Features 3 and 4), which
describes the density of optima in the landscape. Using the best optimum found,
we then compute the average and standard deviation of the distance between the
optima and the best optimum (Features 5 and 6), using the nearest to each non-
best optimum for these features if multiple optima qualify as the best. Feature 7
describes what percentage of the optima are equal to the best optimum, giving a
picture of how spread out the optima are throughout the landscape. The random
point features 8 and 9 contain the average and standard deviation of the distance
of each random point to the nearest optimum, which describes the distribution
of local optima around the landscape. Feature 10 computes the fitness-distance
correlation, a measure of how effectively the fitness value at a particular point
can guide the search to a global optimum [10]. In feature 10, we compute an
approximation to the FDC.

4 Numerical Results
In this section we describe the results of using our features, in full and in various
combinations, to train a portfolio solver using the ISAC method on the BBOB

4 Full details about the algorithms are available in [2].



4 Tinus Abell, Yuri Malitsky, and Kevin Tierney

2012 dataset. We measure the performance of each solver using a penalized score
that takes into account the relative performance of each solver on an instance.
We do not directly use the expected running time (ERT) value because the
amount of evaluations can vary greatly between instances, and too much focus
would be placed on instances where a large number of evaluations is required.
The penalized score of solver s on an instance i is given by:

score(s, i) =
PERT (s, i)− best(i)

worst(i)− best(i)
where PERT (s, i) is the penalized ERT defined by

PERT (s, i) =

{
ERT (s, i) if ERT (s, i) <∞
worst(i) · 10 otherwise,

best(i) refers to the lowest ERT score on instance i, and worst(i) refers to the
highest non-infinity ERT score on the instance. The penalized ERT therefore
returns ten times the worst ERT on an instance for solvers that were unable to
find the global optimum. We are forced to use a penalized measure because if a
solver cannot solve a particular instance, it becomes impossible to calculate its
performance over the entire dataset.

4.1 ISAC Results

Table 2 shows the results of training and testing ISAC on the BBOB 2012
dataset. For each entry in the table, we run a 10-fold cross validation using
features from each of the 15 BBOB target values. The scores of each of the
cross-validation folds are accumulated for each instance, and the entries in the
table are the average and standard deviation across all instances in the dataset.
We compare our results against the best single solver (BSS) on the dataset,
MVDE [12], which is the best performing solver across all instances.

We train using several subsets of our features; only feature 1 (F1), only
feature 2 (F2), and only features 1 and 2 (F1,2). We then train using all features
(All), and only landscape features (LSF), i.e., features 3 through 10. All∗ and
LSF∗ include the evaluations necessary to compute the features, whereas all other
entries do not include the feature computation in the results. We used several
different settings of the number of hill climbs and maximum hill climb length
based on our feature robustness experiments in [1]: 10 hill climbs of maximum
length 10, 50 hill climbs of maximum length 20, and 200 hill climbs of maximum
length 400. The closer a score is to 0 (the score of the virtual best solver) the
better the performance of an approach.

Based on results for F1, F2 and F1,2, the easy to compute BBO features
alone are only able to give ISAC some information about the dataset, and that
a landscape analysis is justified. On the other hand, F2 outperforms BSS. In
fact, F2 performs equally well to All and LSF for cluster 100 with 10 hill climbs
of length 10 and for 50 hill climbs of length 20. In addition, F2 significantly
outperforms All on cluster size 50, where it is clear that it overfits the training
data. This is a clear indication that 10 hill climbs of length 10, or 50 hill climbs
of length 20, do not provide enough information to train ISAC to be competitive
with simply using the number of dimensions of a problem.



Features for Exploiting Black-Box Optimization Problem Structure 5

κ
10/10 50/20 200/400

Test Train Test Train Test Train

� σ � σ � σ � σ � σ � σ

50

BSS 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29
F1 2474.63 3×105 2.04 5.08 2474.66 3×105 2.04 5.08 2474.64 3×105 2.04 5.08
F2 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02

F1,2 189.11 6743.81 1.27 4.07 189.10 6743.81 1.27 4.07 189.10 6743.81 1.26 4.07
All 51.32 1801.27 1.21 3.96 96.15 3105.76 0.79 2.94 13.41 452.79 0.82 3.30

All∗ 51.42 1801.33 1.32 4.05 97.15 3110.46 1.82 9.90 95.25 1161.92 83.12 760.37
LSF 1.25 4.01 1.24 4.00 88.18 3137.52 0.82 3.03 0.53 2.73 0.55 2.75

LSF∗ 1.35 4.09 1.34 4.08 89.18 3142.23 1.85 9.93 99.44 1323.68 82.86 760.40

100

BSS 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29 2.23 5.29
F1 2474.63 3×105 2.04 5.08 2474.66 3×105 2.04 5.08 2474.64 3×105 2.04 5.08
F2 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02 1.24 4.02

F1,2 189.11 6743.81 1.27 4.07 189.11 6743.81 1.27 4.07 189.10 6743.81 1.27 4.07
All 1.25 4.02 1.24 4.00 1.25 4.03 1.23 4.00 1.16 3.86 1.12 3.80

All∗ 1.35 4.10 1.34 4.08 2.28 10.21 2.26 10.20 83.46 760.60 83.43 760.34
LSF 1.25 4.02 1.24 4.01 1.22 3.99 1.19 3.93 1.20 3.85 1.15 4.00

LSF∗ 1.35 4.10 1.34 4.09 2.25 10.19 2.22 10.17 97.31 1223.98 83.45 760.34

Table 2: The average and standard deviation of the scores across all instances
for various minimum cluster sizes, numbers of hill climbs and hill climb lengths
for the best single solver and ISAC using various features.

The fact that LSF∗ is able to match the performance of F2 on 10 hill climbs
of length 10 for both cluster size 50 and 100 an important accomplishment. With
so little information learned about the landscape, the fact that ISAC can learn
such an effective model indicates that our features are indeed effective.

Once we move up to 200 hill climbs of length 400, LSF significantly out-
performs F2, and even outperforms All, which suffers from overfitting. In fact,
LSF is able to cut the total score to under a fourth of BSS’s score, and to one
half of F2’s score, indicating that the fitness landscape can indeed be used for
a portfolio. In addition, LSF has a lower standard deviation than BSS. LSF’s
score on the training set of 0.53 and 0.55 on the test set are surprisingly close to
the virtual best solver, which has a score of zero, indicating that ISAC is able to
exploit the landscape features to nearly always choose the best or second best
solver for each instance. On the downside, 200 hill climbs of length 400 requires
too many evaluations to be used in a competitive portfolio, and All∗ needs 50
times the evaluations of BSS.

5 Conclusion and Future Work

We introduced a set of features based on accepted and well-studied properties
and measures of fitness landscapes to categorize BBO problems for use in algo-
rithm portfolios, like ISAC, that can greatly improve the ability of practitioners
to solve BBO problems. We experimentally validated our features within the
ISAC framework, showing that ISAC is able to exploit problem structure learned
during feature computation to choose the fastest solver for an unseen instance.
The success of the features we introduced clearly indicates that selecting algo-
rithms from a portfolio based on the landscape structure is possible. For future
work, we plan to use these features to analyze what types of landscapes fit best



6 Tinus Abell, Yuri Malitsky, and Kevin Tierney

to which solvers, which could influence solver development, allowing solvers to
more specifically target problems they solve well.

References

1. T. Abell, Y. Malitsky, and K. Tierney. Fitness landscape based features for exploit-
ing black-box optimization problem structure. Technical Report TR-2012-163, IT
University of Copenhagen, 2012.

2. A. Auger, N. Hansen, V. Heidrich-Meisner, O. Mersmann, P. Posik, and M. Preuss.
GECCO 2012 Workshop on Black-Box Optimization Benchmarking (BBOB).
http://coco.gforge.inria.fr/doku.php?id=bbob-2012, 2012.

3. R. Battiti and M. Brunato. Reactive search optimization: learning while optimiz-
ing. Handbook of Metaheuristics, pages 543–571, 2010.

4. B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß. Algorithm selection based
on exploratory landscape analysis and cost-sensitive learning. In GECCO’12, pages
313–320, New York, NY, USA, 2012. ACM.

5. J. Boyan and A.W. Moore. Learning evaluation functions to improve optimization
by local search. The Journal of Machine Learning Research, 1:77–112, 2001.

6. C. Brooks and E. Durfee. Using Landscape Theory to Measure Learning Difficulty
for Adaptive Agents. In Alonso, E., et. al., editor, Adaptive Agents and Multi-Agent
Systems, volume 2636 of LNCS, pages 561–561. Springer, 2003.

7. S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization
benchmarking 2010: Presentation of the noisy functions. Technical report, 2009/21,
Research Center PPE, 2010.

8. J. He, C. Reeves, C. Witt, and X. Yao. A note on problem difficulty measures in
black-box optimization: Classification, realizations and predictability. Evolutionary
Computation, 15:435–443, December 2007.

9. H.H. Hoos and T. Stützle. Stochastic Local Search: Foundations & Applications.
Morgan Kaufmann Publishers Inc., 2004.

10. T. Jones and S. Forrest. Fitness Distance Correlation as a Measure of Problem
Difficulty for Genetic Algorithms. In ICGA-95, pages 184–192, 1995.

11. S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. ISAC–Instance-Specific
Algorithm Configuration. In ECAI-10, volume 215 of FAIA, pages 751–756, 2010.

12. V.V. Melo. Benchmarking the multi-view differential evolution on the noiseless
bbob-2012 function testbed. In GECCO’12, pages 183–188. ACM, 2012.

13. O. Mersmann, B. Bischl, H. Trautmann, M. Preuß, C. Weihs, and G. Rudolph.
Exploratory landscape analysis. In GECCO’11, pages 829–836. ACM, 2011.

14. P. Merz and B. Freisleben. Fitness Landscapes, Memetic Algorithms, and Greedy
Operators for Graph Bipartitioning. Evolutionary Computation, 8:61–91, 2000.

15. B. Naudts and L. Kallel. A comparison of predictive measures of problem difficulty
in evolutionary algorithms. IEEE Trans. On Evo. Comp., 4(1):1 – 15, 2000.

16. T. Smith, P. Husbands, P. Layzell, and M. O’Shea. Fitness Landscapes and Evolv-
ability. Evolutionary Computation, 10(1):1–34, 2002.

17. P.F. Stadler and W. Schnabl. The landscape of the traveling salesman problem.
Physics Letters A, 161(4):337 – 344, 1992.

18. V.K. Vassilev, T.C. Fogarty, and J.F. Miller. Information Characteristics and the
Structure of Landscapes. Evolutionary Computation, 8:31–60, March 2000.

19. J. Watson. An Introduction to Fitness Landscape Analysis and Cost Models for
Local Search. In M. Gendreau and J. Potvin, editors, Handbook of Metaheuristics,
volume 146, pages 599–623. Springer, 2010.

20. E. Weinberger. Correlated and uncorrelated fitness landscapes and how to tell the
difference. Biological Cybernetics, 63:325–336, 1990.


