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a la UVic-UCC tot el suport rebut en forma d’ajudes, des de l’ajut predoctoral que ha
permès que pugués tirar endavant aquest projecte, fins a les diferents ajudes de mobilitat
que he obtingut.

Aquest projecte de tesi no seria el mateix sense les diferents estades que he realitzat, és
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Abstract

Neurodegenerative diseases are a group of disorders that affect the brain. These diseases
are related with changes in the brain that lead to loss of brain structure or loss of neurons,
including the dead of some neurons. Alzheimer’s disease (AD) is one of the most well-
known neurodegenerative diseases. Nowadays there is no cure for this disease. However,
there are some medicaments that may delay the symptoms if they are used during the first
stages of the disease, otherwise they have no effect. Therefore early diagnose is presented
as a key factor.

This PhD thesis works different aspects related with neuroscience, in order to develop new
methods for the early diagnose of AD. Different aspects have been investigated, such as
signal preprocessing, feature extraction, feature selection and its classification.

The present document starts with an introduction of the general framework of the the-
sis. This introduction is detailed before the description of the preformed work. In this
introduction, first Electroencephalography (EEG) is explained. Then, AD is presented by
detailing all the available information about this disease. Finally, the main changes that
AD causes on EEG data are described.

Preprocessing applied to the data is presented after the introduction. First, an explanation
about the main interference signals known as artifacts is done. Once artifacts are described,
then a new signal processing method is defined in order to eliminate them. The proposed
method is applied to simulated EEG signals which contain artifacts and different levels
of SNR. Once the cleaning method is applied, cleaned data is compared with simulated
clean data in order to evaluate the improvement of the data. Initially this preprocessing
is only applied to simulated data.

After preprocessing, feature extraction is explained in two different chapters. First a new
approach for EEG data modeling is presented. In this approach different measures are
used to parametrize the changes that AD causes to EEG data. However, this approach
presents an important change. Until now EEG analysis have been performed on pre-
establish frequency bands. The described approach analyzes all existing frequency ranges
between 1 and 30 Hz, distinguishing better AD patients and healthy subjects. During
this analysis, it is discovered that AD patients present a change of synchrony that has
been lightly studied in the literature. This change points out that there is an increase
of synchrony in low frequencies for AD patients, whereas it has been always presented
the decrease of synchrony existing in the higher frequencies. To this discovery is devoted
the second chapter of feature extraction, where the two changes of synchrony are used
together helping to differentiate AD patients and healthy subjects.

Chapter devoted to feature selection presents a new method to select the most suitable
parameters computed on the data, and then, use them together in order to improve classifi-



cation. A new method is proposed which selects different characteristics with the objective
of avoiding redundant information of the data. Detailed methodology for feature selection
presents some overfitting when used. Therefore, once this methodology is described, next
chapter is devoted to use some cross-validation techniques in order to adjust obtained
results.

Last chapter of the document is devoted to jointly use all previous methods presented.
These methods are applied to perform early diagnose of AD. This diagnose is performed
by doing the preprocessing, the feature extraction and its classification.



Resum

Les malalties neurodegeneratives són un conjunt de malalties que afecten al cervell. A-
questes malalties estan relacionades amb la pèrdua progressiva de l’estructura o la funció
de les neurones, incloent-hi la mort d’aquestes. La malaltia de l’Alzheimer és una de
les malalties neurodegeneratives més comunes. Actualment, no es coneix cap cura per a
l’Alzheimer, però es creu que hi ha un grup de medicaments que el que fan és retardar-ne
els principals śımptomes. Aquests s’han de prendre en les primeres fases de la malaltia ja
que sinó no tenen efecte. Per tant, el diagnòstic precoç de la malaltia de l’Alzheimer és
un factor clau.

En aquesta tesis doctoral s’han estudiat diferents aspectes relacionats amb la neurociència
per investigar diferents eines que permetin realitzar un diagnòstic precoç de la malaltia en
qüestió. Per fer-ho, s’han treballat diferents aspectes com el preprocessament de dades,
l’extracció de caracteŕıstiques, la selecció de caracteŕıstiques i la seva posterior classificació.

En el present document, abans de descriure el treball realitzat, es presenta una introducció
on s’explica els principals conceptes que defineixen el marc de la tesi. Primerament es
fa una descripció de la tècnica d’enregistrament coneguda com a electroencefalograma
(EEG). Posteriorment es presenta la malaltia de l’Alzheimer explicant la informació que
es té d’aquesta fins a l’actualitat. Finalment, es presenten els principals canvis que la
malaltia de l’Alzheimer produeix als enregistraments EEG dels pacients.

El preprocessament es presenta en el caṕıtol següent a la introducció. En primer lloc es
presenten els principals senyals no desitjats que afecten als enregistraments EEG. Aquests
són coneguts com artefactes i són causats principalment pels músculs de la cara i del crani.
Un cop s’ha presentat els artefactes es proposa un nou mètode per eliminar aquests senyals.
El mètode de neteja proposat s’aplica a dades EEG simulades que contenen artefactes i
diferents nivells de soroll, i un cop s’han aplicat el procediment de neteja es comparen els
resultats amb dades EEG que no tenen artefactes. Amb aquest mètode es comprova quina
millora presenten els senyals netejats. Inicialment es realitza només l’estudi sobre dades
simulades.

Un cop s’ha treballat en el preprocessament es procedeix a treballar en l’extracció de
caracteŕıstiques. A aquest tema se li dediquen tres caṕıtols diferents. Per començar es
presenta una nova aproximació per modelitzar les dades EEG utilitzant diferents mesures
que modelen els canvis que presenten els pacients amb la malaltia de l’Alzheimer. Fins al
moment els anàlisis EEG s’han limitat a estudiar l’activitat existent en diferents bandes
de freqüències preestablertes. En aquesta primera aproximació, en comptes d’estudiar
l’activitat EEG en aquestes bandes, s’estudia en totes les bandes existents entre 1 i 30 Hz,
aconseguint millors valors en la classificació de subjectes sans i pacients amb la malaltia de
l’Alzheimer. Durant aquest anàlisis es descobreix que els pacients amb aquesta malaltia



presenten un canvi en les dades que ha sigut poc estudiat en la literatura. Aquest canvi
és que hi ha un augment de sincronia en les baixes freqüències quan sempre s’ha presentat
que hi ha un decrement en les altes freqüències. A aquest descobriment se li dedica el
segon caṕıtol de l’extracció de caracteŕıstiques, en aquest, els dos canvis de sincronia són
utilitzats conjuntament, la qual cosa ajuda a distingir millor entre pacients i subjectes
sans.

En el caṕıtol dedicat a la selecció de caracteŕıstiques es presenta un nou mètode per se-
leccionar els millors paràmetres que s’han extret de les dades i fer-los servir conjuntament
per millorar la classificació de subjectes sans i pacients amb Alzheimer. Aquest mètode
selecciona les caracteŕıstiques amb l’objectiu que hi hagi la mı́nima informació redundant
en les caracteŕıstiques seleccionades. La metodologia presentada per la selecció de carac-
teŕıstiques presenta un cert nivell de sobreentrenament del sistema, és per això que, un cop
s’ha presentat aquesta, es dedica un caṕıtol sencer a utilitzar diferents eines de validació
creuada per acabar d’ajustar els resultats obtinguts.

Finalment, un cop s’han presentat els diferents passos que es segueixen en la neurociència,
s’apliquen tots conjuntament per realitzar el diagnosis d’una base de dades que conté
subjectes sans i pacients amb la malaltia de l’Alzheimer. El que es realitza és, doncs,
el diagnosi de si un pacient pateix aquesta malaltia o no, realitzant tot el procés, el
preprocessament, l’extracció de caracteŕıstiques i la posterior classificació.
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Chapter 1

Introduction

Human brain contains about of 1010 neurons (Nunez & Srinivasan, 2006). Nonetheless,
what makes unique this organ it is not its high number of cells but the facility to interact
between them. It is well-known that the human brain controls the activity of the body.
However, its study using neuroimaging techniques has represented a great advance for
science.

Different approximations have been used to study the human brain. Indirect approx-
imations of neuropsychology in s.XIX were based on the study of pathological human
brains, aiming to understand the role of the zone that presented some dysfunction. These
techniques were supplanted by non-invasive imaging during the s.XX. We could cite for
instance electroencephalography (EEG), functional Magnetic Resonance Imaging (fMRI)
or Positron Emission Tomography (PET). Even though these methods have improved the
knowledge of the brain, many aspects are still to be explored. Nowadays the uses of these
techniques have been proved useful to diagnose some diseases, such as neurodegenerative
diseases.

Neurodegenerative disorders are a group of disorders that affect the brain. They are
related with changes in the brain that leads to loss of brain structure or loss of neurons,
including the death of some neurons. The most well-known diseases of this group are
Parkinson’s disease, AD and Huntington’s disease.

AD is the most prevalent neurodegenerative disease. Nowadays there is no cure for this
pathology. However, there are some treatments that may delay the symptoms if they are
provided in the first stages of the disease. Therefore an early diagnosis of AD is a key
issue for patients suffering from this disorder. Early diagnosis of AD is a difficult task
because sometimes symptoms of the disease are confused with normal ageing effects. For
this purpose, EEG has been presented as a useful technique that may facilitate the early
diagnosis of AD.

EEG is one of the most used imaging methods to study the brain activity. Its economic
price and its simplicity to be used in comparison with other methods make it a suitable
choice for hospitals and research centers. EEG records the brain signals using electrodes
attached to the scalp. EEG recordings of patients suffering from AD present some char-
acteristic changes that can be used as biomarkers of the pathology.

This thesis will investigate the early diagnosis of AD using EEG.

1
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1.1 Thesis Outline

The typical steps used in neuroscience for the diagnosis of brain pathologies using EEG are
presented in Figure 1.1. We followed this approach for our investigations. First step is the
collection of the physiological data using EEG amplifiers. Next step is preprocessing, this
step includes the preparation of the data to be analyzed, either by selecting the optimal
part of the recording to be analyzed or by applying some methods to improve the quality of
the recorded data. The feature extraction step is applied after the preprocessing. At this
point, data is modeled in order to extract relevant information. This relevant information
is characterized using features, which describe the EEG signals. These features are used
later for classification. For instance, in the feature selection step (also called dimensionality
reduction), if a large number of features have been extracted, usually the most powerful
features for the classification step are selected. Finally, the last step is classification which
is usually done using supervised classifiers. In some cases the step of feature selection
can be avoided, in this case the performance of extracted features is evaluated during the
classification step.

The organization of this document follows the same organization as the above mentioned
typical steps. The organization of the document can be summarized as follows:

• Chapter 2: a review of the principals concepts is presented in this chapter. First
we describe EEG, the investigated recording method. Then the essential points of
AD are described. At the final part of this chapter, the main scientific reports that
perform early diagnosis of AD using EEG are detailed, showing the main effects that
AD cause on EEG signals.

• Chapter 3: a new technique for the preprocessing step is explained in this chapter.
This new technique is based in a multivariate decomposition. Therefore, the decom-
position and its extension for multivariate data sets are introduced first. Then the
preprocessing technique is defined and used in simulated signals.

• Chapter 4: this chapter presents the feature extraction that is performed on EEG
signals to identify biomarkers of AD. This parametrization is based on the main
effects that AD cause on EEG signals detailed in Chapter 2. Moreover, a new
frequency subband decomposition approach is presented, exploring all possible fre-
quency ranges between 1 and 30 Hz instead of using the traditional EEG frequency
bands δ, θ, α and β.

• Chapter 5: in this chapter we characterize the specificities of our feature extraction
approach. The new frequency approach used in Chapter 4 present some changes
that have not been highlighted in the literature. This chapter studies these changes
and introduces a ratio that aims to increase the differences between AD patients and
healthy subjects.

• Chapter 6: this chapter is devoted to feature selection. With that aim, a new feature
selection method is described to be used together with features defined in Chapter 4.
Finally the evolution by using selected features is presented.

• Chapter 7: Described methodology on Chapter 6 shows that when more features are
used, there is an important improvement of the obtained classification rate. However,
due to the methodology used and the small size of the data bases, results have some
particularities for each data base. This chapter describes the generalization of the
results using cross-validation, which is a well-known machine learning approach.
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Figure 1.1: Typical steps used in neuroscience for the diagnosis of brain pathologies using
EEG.

• Chapter 8: Previous chapters presented the different steps of the signal processing
approach independently. Preprocessing is performed on simulated signals and the
early diagnosis of AD is tested on EEG signals in which the preprocessing was done
manually. This final chapter is a joint study of all the steps described in this work, by
doing the preprocessing to real EEG signals and then applying the used methodology
for the early diagnosis of AD.

• Chapter 9: this final chapter brings all the conclusions from the present work to-
gether, describing the new questions that have arisen from this study, and suggesting
new research lines which could be addressed in future works.

1.2 Objectives of this Work

The main objective of this thesis is to present new signal processing and machine learning
methods for EEG, that are used for the early diagnosis of AD. The main idea is to use
existing methods from the signals processing field, and develop new ones, to analyze differ-
ent EEG data sets. An important part of this work also includes the extraction of relevant
features from EEG signals and its selection, which is related with the machine learning
field. All main steps used in EEG data analysis are explored, from the preprocessing to
classification. The main objectives of this work can be summarized as:

• Extract valuable biomarker from EEG signals to help in the early diagnosis of AD.

• Preprocessing is presented as a key issue when EEG signals are used due to the
presence of undesired signals. Another objective of this work is to present a new
technique for the preprocessing of EEG signals.

• Present a new frequency approach that may increase the ratio at which AD patients
are recognized in comparison with healthy subjects.

• Define a feature selection technique that uses the parameters computed in the EEG
signals and that facilitates the classification of patients against healthy subjects.

• Last objective is to perform a join study of all the methods presented in this work,
combining all the different steps.
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1.3 List of Publications

The work presented in this thesis has been partially published in (or to be publish in)
different journals or conference proceedings. The list of these publications is provided
below. Publications concerning the work presented in this document are presented in
Section 1.3.1. Other publications presented during the time that this PhD was performed
are also presented in Section 1.3.2.

1.3.1 List of publications related with this thesis

In this section the list of publications which are strictly related with the studies presented
in this document.

Journals

Gallego-Jutglà, E., Solé-Casals, J., Vialatte, F. B., Elgendi, M., Cichocki, A., &
Dauwels, J. 2014. A hybrid feature selection approach for the early diagnosis of
Alzheimer’s disease. Journal of Neural Engineering, 12(1).

Available online at: http://iopscience.iop.org/1741-2552/12/1/016018/

Gallego-Jutglà, E., Solé-Casals, J., Vialatte, F. B., Dauwels, J., & Cichocki, A. 2014.
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Book chapters
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proach. Pages 192-199 of: Drugman, T., & Dutoit, T. (eds). Advances in Nonlinear
Speech Processing. Lecture Notes in Computer Science, vol. 7911. Springer Berlin
Heidelberg.

Proceedings of peer-reviewed international conferences

Gallego-Jutglà, E., Al-Baddai, S., Al-Subari, K., Tomé, A. M., Lang, E. W., & Solé-
Casals, J. 2015. Face recognition by Fast and Stable Bi-dimensional Empirical Mode
decomposition. BIOSIGNALS 2015 - Proceedings of the International Conference
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disease using synchrony measures. Pages 167 -170 of: Frontiers in Artificial Intelli-
gence and Applications,vol. 256.

Gallego-Jutglà, E., Lopez-de-Ipiña, K., Mart́ı-Puig, P., & Solé-Casals, J. 2013.
Empirical mode decomposition-based face recognition system. Pages 445-450 of:
BIOSIGNALS 2013 - Proceedings of the International Conference on Bio-Inspired
Systems and Signal Processing.
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Gallego-Jutglà, E., Rutkowski, T. M., Cichocki, A., & Solé-Casals, J. 2012. EEG
signal analysis via a cleaning procedure based on multivariate empirical mode de-
composition. Pages 670-676 of: IJCCI 2012 - Proceedings of the 4th International
Joint Conference on Computational Intelligence.
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1.3.2 Other publications

This section presents the list of other publications in which the author of this document
has contributed during his PhD.
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Chapter 2

Literature Review

Studying the early diagnosis of AD using EEG encompasses different fields of knowledge.
Therefore, this section explores previous works in these fields dividing them into three
main parts. First, the EEG recording technique is described in Section 2.1. Then in
Section 2.2, AD is described, presenting the existing knowledge of this disease. Finally,
the third and final section examines the most relevant studies which specifically focus on
early diagnosis of AD using EEG, presenting the main changes that AD causes on EEG
signals and how this can be parametrized with different measures.

2.1 Electroencephalogram

EEG was discovered in 1924 by a German scientist, Hans Berger. Since then, this recording
technique has been one of the most used tools to study the brain activity and diagnose
various neurological disorders. EEG has been largely used for its intrinsic simplicity and
low cost compared to other recording techniques such as fMRI or PET.

EEG is the recording of the electrical fields generated in the brain. These electrical
fields are generated by groups of pyramidal cells of neurons oriented perpendicularly to
the surface of the head. Neurons generate ionic current flows. A group of neurons can
be modeled as a microdipole when they produce synchronized electric fields (Kropotov,
2009). EEG records the electrical activity generated by different microdipoles located in
the surface cortex. Approximately a group of 106 neurons orientated in the same direction
with synchronized activity is enough to generate an electric filed which can be observable
from the scalp (Nunez & Srinivasan, 2006). However, EEG is a complex combination of
rhythms, recording the activity created in different parts of the brain at the same time.
EEG is present from before birth (actually, non-natal brain electrical activity has also
been recorded with other recording techniques) until brain death. This brain activity is
related with every simple action that the human body performs, such as moving an arm
or focusing the attention. The study of the brain activity has supposed an improvement
of the knowledge of the brain.

Initially, studies using EEG extracted conclusions by visual interpretation and manual
measurements of the EEG traces. Hence, the results were unreliable. Thanks to progresses
in computerized data processing, it became possible for the EEG signal to be analyzed

7
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digitally with parametric and nonparametric methods. Progressive developments in elec-
trical engineering and the fascination with the human brain have attracted researchers
from different scientific fields to investigate EEG recordings. Nowadays there is at least
four reasons that explain why this technique is highly being used (Kropotov, 2009):

i. EEG provides a high temporal resolution which in principles cannot be achieved
by other neuroimaging techniques. EEG provides a resolution of few milliseconds,
whereas PET and fMRI are limited to a few seconds.

ii. The knowledge of the mechanism that generates spontaneous EEG activity has in-
creased.

iii. EEG recording systems are cheaper than the multimillion fMRI and PET scans.

iv. New methods have emerged recently for the EEG analysis such as Blind Source
Separation (BSS), or time-frequency analysis like wavelet analysis.

For these reasons, EEG has been presented as a helpful tool in clinical neuroscience. In
particular, the low cost of an EEG recording system is the point that has extended its
wide use. Consequently, several research centers and hospitals currently have their own
EEG recording system. Nowadays, EEG has been used in many different applications in
clinical neuroscience. Some of these applications are (Elgendi et al., 2014):

• Monitoring alertness, coma and brain death (Wijdicks, 1995).

• Detecting neurodegenerative disease such as AD (Dauwels et al., 2010b; Vialatte
et al., 2009c).

• Investigating sleep disorders (Benca et al., 1999) and epilepsy (Le Van Quyen et al.,
2001a).

• Measuring the depth of anesthesia (Rampil, 1998).

• Testing drug effects (Blume, 2006)

• Serious games for e-learning and medical applications (Wang et al., 2010).

Even though EEG has been largely used in the clinical neuroscience field, other domains
have also benefit of the use of EEG. For example EEG has also been used in the Brain
Computer Interface (BCI) field to communicate the human brain with a machine. Different
applications can be derived from BCI systems, such as controlling video games (van Vliet
et al., 2012) or controlling a machine (Graimann et al., 2011). Other applications related
with entertainment have been given to EEG such as the shippo (Neurowear, 2014b) or
the necomimi (Neurowear, 2014a) projects, in which an EEG sensor is allegedly used to
evaluate the mood of the subject, and move a tail or cat’s ears depending on it.

2.1.1 EEG recordings

EEG is recorded though different sensors placed on the scalp. Sensors are disk of 5 mm,
generally constructed from Ag/AgCL (Silver/Silver chloride). For the EEG recordings
different electrode placement systems have been proposed (10-20 system, Maudsley system,
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(a) (b)

Figure 2.1: Placement of recording electrodes according to 10-20 system. (Schalk &
Mellinger, 2010)

10-10 system). Nowadays the most commonly used is the 10-20 system. The International
10-20 system of electrodes placement presents an uniform coverage of the entire scalp
(Fisch, 1999). This system is based on an iterative subdivision of arcs on the scalp starting
from craniometric reference points: Nasion (Ns), Inion (In), Left (PAL) and Right (PAR)
pre-auricular points (Schalk & Mellinger, 2010). The standard set of electrodes is detailed
in Figure 2.1, presenting the location of 21 recording electrodes. The 10 and 20 indicate
that the distance between adjacent electrodes is either 10% or 20% of a specified distance
measured using specific anatomical landmarks, e.g. the total distance between the front
and back or left and right of the head. Electrodes are numerated with a letter and
a subscript. The letter specifies the anatomical area where the electrode corresponds:
prefrontal or frontopolar (Fp), frontal (F), central (C), parietal (P), occipital (O), temporal
(T) and auricular (A). The subscript is either the letter z, indicating zero or midline
placement, or a number indicating lateral placement. Electrodes with even numbers are
placed on the right side of the head, while odd numbers correspond to the left side. Number
increase with increasing distance from the anterior posterior midline of the head (Fisch,
1999).

Once the electrodes are placed, different montages can be used for the recording of brain
electrical potentials. EEG can be recorded using referential or bipolar montages. In
referential montages, the voltage differences between all electrodes and a common elec-
trode (reference) are recorded. In bipolar montages, however, instead of using a reference
electrode, the voltage difference between two designated electrodes is recorded (i.e., each
electrode pair is considered as a channel). A major disadvantage of the referential montage
is that there is no single reference electrode optimal for all situations since no reference is
truly inactive. Bipolar montages reduce the effects of common noise/artifacts and elimi-
nate the influence of contaminated references (Fisch, 1999).

2.1.2 EEG rhythms

EEG is highly sensitive of subject’s state and therefore EEG rhythms change depending
on the subject task. However, historically five major types of continuous rhythmic EEG
activities are recognized in the recordings. They are divided in different frequency bands.
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The typical EEG frequency rhythms and their respective frequency bands are (Kropotov,
2009):

• δ rhythms, found in the frequency band of 1 to 4 Hz (δ band).

• θ rhythms, found in the frequency band of 4 to 8 Hz (θ band).

• α rhythms, found in the frequency band of 8 to 13 Hz (α band).

• β rhythms, found in the frequency band of 13 to 30 Hz (β band).

• γ rhythms, found in the frequency band of 30 to 100 Hz (γ band).

A description of these EEG rhythms is presented below.

δ rhythms

δ rhythms are the slowest of all the existing rhythms. However, they present the higher
amplitude of all. These rhythms are visible when the subject is sleeping. The higher value
is presented when the subject is in a deep sleep.

θ rhythms

θ rhythms are associated with drowsiness, childhood, adolescence and young adulthood.
These are also found during problem solving, for example mathematical problems such as
adding or subtracting. It is located in the prefrontal part of the cortex.

α rhythms

α rhythms are associated with relaxed states. It was the first which was discovered, because
it is observable in almost all the population. It present different locations in the cortex,
but is clearly visible on the occipital areas, with higher amplitude than the other rhythms.
Different α rhythms are found in the human cortex: μ rhythm, α occipital rhythm and α
parietal rhythm.

μ rhythms are rhythms that have been wide used in the implementation of BCI systems.
They have this name due to the similarity that these rhythms present with the μ letter
(with sharp negative peaks). Figure 2.2 presents an example of recording were it can be
checked in electrodes C3 and C4. As it is shown in this figure, these rhythms presents some
periods of activity with other of inactivity. They are found in the frequency range close
to 10 Hz. The change of activity is a well-known phenomenon due to the synchronization
of the groups of neurons in the motor cortex area. These groups of neurons are the ones
that control the movement of arms and legs. When limbs are inactive, the μ rhythm
presents activity, whereas when a subject moves his limbs the rhythm presents a decrease
of amplitude, which is known as desynchronization. It has also been shown that this
phenomenon is present not only when a subject physicality does an action, it also happens
when a subject thinks about performing the same action. This property allows BCI
systems to detect motor imagination (Schalk & Mellinger, 2010; Graimann et al., 2011).
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Figure 2.2: Example of EEG recording presenting the μ rhythm in electrodes C3 and
C4. Two maps of potentials are taken at the moment indicated by black vertical line,
illustrating that these rhythms are generated on the motor cortex area. (Kropotov, 2009)

Another example of α rhythms is the α occipital rhythms. These rhythms are visible at
occipital electrodes O1 and O2. They have an amplitude higher than other rhythms as
presented in Figure 2.3. These rhythms enhance their amplitude when the subject keeps
his eyes closed, and they reduce the amplitude when the subject keeps his eyes opened.
They decrease in response to visual stimuli.

The last of the α rhythms are found in the parietal area, with the maximum at the sensor
Pz. These rhythms can be enhanced when the subject closes his eyes. However, this fact
does not happen for all the population, because some subjects present a decrease of these
rhythms when they close their eyes. The functional properties of the parietal rhythm are
not fully understood.

β rhythms

β rhythms present low amplitude with multiple and varying frequencies, observable at
different locations in the cortex. They are often associated with active, busy or anxious
thinking and active concentration. There are different types of β rhythms, such as β
Rolandic rhythms and β frontal rhythms.

β Rolandic rhythms are observed as spontaneous activity recorded on electrodes located
close to the sensorimotor area (C3,Cz and C4). Usually present activity around the 20 Hz.
β Rolandic rhythms are related with the intentionality of perform a movement, presenting
desynchronization even before than the μ rhythm.
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Figure 2.3: Example of EEG recording presenting an α occipital rhythm in electrodes
O1 and O2. Vertical lines present the time instant at which the maps of potentials have
been computed. These maps show a clear occipital location of the presented rhythms.
(Kropotov, 2009)

Another type of β rhythms are β frontal rhythms. They appear during cognitive tasks
related with decision making. The maximum activity is found in sensors F3, Fz and F4.

γ rhythms

Initially, γ rhythms were not studied, since old EEG recording systems could not record
signals above 25 Hz. Until digital recordings systems were used, these rhythms were not
known. One of the first articles describing these rhythms appeared in 1964.

γ rhythms appear to be involved in higher mental activity, including perception, problem
solving, fear, and consciousness.

2.2 Alzheimer’s Disease

AD is a neurodegenerative disease and the most prevalent form of age-related dementia in
the modern society. With increasing life expectancy, dementia is a growing socioeconomic
and medical problem. AD is positioned to become the scourge of this century, bringing
with it enormous social and personal costs (Scinto & Daffner, 2000). This disease was first
discovered more than 100 years ago, but research into its symptoms, causes, risk factors
and treatment has gained momentum only in the last 40 years. Even though relevant
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aspects of AD have been revealed, much is yet to be discovered about the changes that
AD causes on patients (Alzheimer’s Association, 2014).

AD causes damage of neurons in the brain. Damaged neurons no longer function normally
and may die. Dead neurons cannot be replaced once lost (Scinto & Daffner, 2000). Over
time, the brain shrinks dramatically, affecting nearly all its functions. AD affects patients
in different ways, changing the rate of progression for each subject (Weiner et al., 2013).
The most initial symptom is a gradually worsening ability to remember new informa-
tion. This occurs because the first neurons to malfunction and die are usually neurons in
brain regions involved in forming new memories. As neurons in other parts of the brain
malfunction and die, individuals experience other difficulties. The following are common
symptoms of AD (Alzheimer’s Association, 2014):

• Memory loss that interferes in daily life.

• Difficulties solving problems.

• Results difficult to complete familiar tasks at home, at work, or at leisure.

• Decreased or poor judgment.

• Difficulties to remember new words either speaking or writing.

• Confusion with time or place.

• Loss of the ability to retrace steps and misplacing things.

• Changes in mood and personality, including apathy and depression.

• Withdrawal from work or social activities.

AD is officially listed as the sixth leading cause of death in the United States. It is the
fifth leading cause of death for people of 65 years and older (Murphy et al., 2010).

Many factors have been linked to the incidence of AD, including age, gender (females are
more likely to be affected), genetic factors, head injury, and Downs syndrome (Scinto &
Daffner, 2000). However, experts believe that AD is rather caused by multiple factors
than by a single cause. The major risk factors are (Alzheimer’s Association, 2014):

• Age:

An advanced age is the greatest risk factor for AD. Even though age is the greatest
risk, is not sufficient to cause the disease.

• Family history:

Individuals with a familiar suffering AD are more likely to later develop AD.

• APOE ε4 gene:

Research studies estimate that between 40% and 65% of people diagnosed with AD
have one or two copies of the APOE ε4 gene (Saunders et al., 1993).

• Mild cognitive impairment (MCI):

Patients suffering from MCI are more likely to develop AD and other dementia than
people without MCI. However, not all patients suffering from MCI latter develop
AD. Therefore this is a key stage for studding AD.
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• Cardiovascular disease risk factor:

It is suggested that the health of the brain is related with the heath of the heart and
blood vessels. A good blood pleasure ensures that the brain receives the oxygen and
nutrient necessary for its normally function.

• Social and cognitive engagement:

Some studies suggest that remaining mentally and socially active may reduce the
risk of AD and other dementia. The exact mechanism underlying this situation is
unknown (Wang et al., 2012).

• Education:

People with fewer years of formal education are at higher risk for AD and other
dementia, than those with more year or formal education (Kukull et al., 2002).

• Traumatic brain injury:

Moderate and sever traumatic brain injuries increase the risk of developing AD.

AD does not present the same evolution in all the patients. The course of the disease
depends in part on the age of the pathology declaration and on the health conditions of a
person, related with the risk factors presented above.

Brain changes that are believed to contribute to the development of AD are the accu-
mulation of β-amyloid (Aβ) plaques and neurofibrillary tangles composed of tau amyloid
fibrils (Weiner et al., 2013). The accumulation of the protein Aβ plaques is produced
outside neurons, interfering with the communication between neurons, which happens in
the synapses, and contributes to cell death. The accumulation of tau tangles is produced
inside neurons. Tau tangles block the transport of nutrients to the neuron, and it is be-
lieved to also contribute to cell death (Alzheimer’s Association, 2014). Currently no cure
exists for Alzheimers, but administering certain medications in the early stages may delay
the onset of symptoms (Dauwels et al., 2010b; Alzheimer’s Association, 2014).

Brain changes due to AD may begin 20 years before symptoms appear. At the begin-
ning patients are able to function normally despite these brain changes. Afterwards the
brain can no longer compensate the neuronal damage that has occurred. In this stage,
patients start to show subtle decline in cognitive functions. Later, the damage due to
the death of neurons is so significant that the patients start to present obvious cognitive
decline. Later basic functions are impaired (Alzheimer’s Association, 2014). Evolution of
the disease is presented in Figure 2.4. The initial accumulation of Aβ plaques and tau
tangles starts in the hippocampus, the part of the brain where memories are first formed
(Figure 2.4(a)). Then more regions of the brain are affected by the accumulation of Aβ
plaques and tau tangles, compromising other brain functions and presenting the different
stages of the disease. At the next stage, the region of the brain where language is process
is affected, compromising the ability of the patient to speak (Figure 2.4(b)). Next, the
disease affects the frontal part of the brain, the regions were reasoning and planning is
performed. Gradually, the person starts to lose the ability to solve problems and make
plans. Then the accumulation of plaques and tangles affects the part of the brain where
emotions are regulated. In this step the patient loose their control over moods and feelings.
In advanced Alzheimer’s disease, most of the cortex is seriously damaged (Figure 2.4(c)).
Individuals lose their ability to communicate, to recognize family and loved ones and to
care for themselves (Alzheimer’s Association, 2014).
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(a) MCI stage (b) Mild AD and Moderate AD stages

(c) Severe AD stage

Figure 2.4: Evolution of AD in the brain. Plaques and tangles (shown in the blue-
shaded areas) tend to spread through the cortex in a predictable pattern as AD progresses.
(Alzheimer’s Disease Association, 2014)

The presented progression of AD in the human brain is classified into four stages. The
first, or preclinical, stage is MCI. MCI patients usually present some memory impairment,
but retain their abilities in other cognitive domains and functional activities (Petersen
et al., 2009; Weiner et al., 2013). Some MCI patients (between 6% and 25%) later develop
AD. The next steps are characterized by growing cognitive deficits. The second and third
stages are known as Mild AD and Moderate AD, while the last stage is known as Severe
AD, entailing complete dependence on caregivers (Alzheimer’s Association, 2014). MCI
and Mild AD are key stages, an early diagnosis of AD in these stage may confer several
benefits (Dauwels et al., 2010b). To date, a definitive diagnosis of AD can only be made
by postmortem analysis of the brain of a patient with dementia. A clinical diagnosis
of AD is based on medical records, physical and neurological examination, laboratory
tests, neuroimaging, and neuropsychological evaluation such as Mini-Mental State Exam
(MMSE). The information of family members or close persons is used also as input. Even
though the diagnosis of AD is done by combining all the existing information, it still hard
to diagnose this disease because symptoms are often dismissed as normal consequences
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of aging (Scinto & Daffner, 2000; Alzheimer’s Association, 2014). While AD is a major
public health problem, it also has a very private face that causes tremendous suffering
to families. For the elderly, it is one of the most dreaded afflictions that threatens to
rob them of their independence and dignity at the end of life (Scinto & Daffner, 2000;
Alzheimer’s Association, 2014).

2.3 Early diagnosis of Alzheimer’s Disease using EEG

Previous sections presented two different topics. Section 2.1 presented the recording tech-
nique known as EEG and Section 2.2 showed the present information known about AD.
This section describes the state of the art of using EEG as an early diagnosis tool to
diagnose AD.

As presented in Section 2.2, AD diagnosis is performed using a combination of different
tests. On the other hand, an early diagnosis may benefit the patient in different ways, such
as facilitating to face the disease by giving time to inform themselves about the disease,
taking economical depositions to plan for the future needs or given the patient time to take
symptoms-delaying medications which are only effective in the first stages of the disease
(Dauwels et al., 2010b). Studies of early diagnosis of AD using EEG aim to help medical
doctors to diagnose subject suffering from AD. It could be used as extra information in
combination with laboratory tests and physical and neurological examination.

In recent years research groups had focused on the early diagnosis of AD using EEG
(Dauwels et al., 2010b; Vecchio et al., 2013). There are several arguments supporting
this research direction. One reason is that AD is a cortical dementia, consequently the
damages induced are directly reflected in the EEG recordings (Jeong, 2004; Dauwels et al.,
2010b). Another reason is that the recording procedure used can be easily implemented
in all clinical environments (Vecchio et al., 2013). Usually when recording cortical EEG
rhythms for AD diagnosis, subjects are in resting state with eyes closed. This recording
procedure is used because some benefits are presented for the elder patients. As there is no
required stimulation device and there is no task to perform, subjects are less fatigued and
anxious to perform the task. Furthermore, resting state EEG rhythms can be recorded in
highly comparable experimental conditions for all the subjects, being either MCI or Mild
AD patients and healthy subjects (Babiloni et al., 2011; Vecchio et al., 2013).

Three different major effects had been presented that AD causes on EEG data. Slowing
of EEG in AD patients, enhanced complexity of the EEG signals and perturbations in
the EEG synchrony (Jeong, 2004; Dauwels et al., 2010b; Babiloni et al., 2011; Vecchio
et al., 2013). Even though these effects have been repeatedly reported in the literature,
it may be not easily detectable due to the high variability presented among AD patients.
Therefore, any of these effects can be used alone to facilitate a reliably early diagnosis of
AD (Dauwels et al., 2010b). Results obtained in the literature for each of the effects are
presented below.

2.3.1 Slowing of EEG in AD patients

EEG recordings during eyes closed periods typically change across physiological aging
by decreasing the power in the α band. This effect is also present when comparing AD
patients (either MCI or Mild AD patients) and healthy subjects.
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Figure 2.5: Power spectra comparison between a Mild AD patient and a healthy subject.
Results presented for the electrode Fz.

Studies analyzing EEG data of AD patients have presented that there is a decrease in the
power presented in the α and β bands corresponding with an increase of the power in δ
and θ bands for AD patients when compared with healthy subjects (Bennys et al., 2001;
Jeong, 2004; Czigler et al., 2008; Vialatte et al., 2009c). During the process of developing
AD, it is generally thought that the power decrease in β band and the power increase in θ

are the earliest changes. These changes are later followed by a decrease in the α activity.
Changes in the δ band are produced later, during the course of the disease (Jeong, 2004).

Usually to facilitate the comparison of power in the frequency domain the Fourier trans-
form is applied. A comparison between the power spectra of an AD patient and a healthy
subject is presented in Figure 2.5. This figure illustrates the clear difference existing be-
tween the power spectra of a healthy subject (red in the figure), in comparison with the
power spectra of an AD patient (blue in the figure). In this figure the differences between
the two power spectra are clearly presented. Healthy subject has a peak of power between
9 and 10 Hz (the α band), whereas the AD patient has different peaks of power below 8
Hz, standing for the δ an θ band, being the δ band that present the higher values of power
spectra. Studies have mainly used the differences of power in the different frequency bands
(δ, θ, α and β bands) to differentiate how AD patients and healthy subjects are classified
(van der Hiele et al., 2007; Baker et al., 2008; Moretti et al., 2009).

2.3.2 Perturbations in the EEG synchrony

One of the most important features of the brain is not the high number of neurons that it
contains but the abundant connectivity between these. This high connectivity is reflected
in synchronous activity, as neurons in anatomically connected structures tend to fire syn-
chronously. EEG data show this synchronicity by repeated bursts at different frequencies
(Kropotov, 2009).
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Figure 2.6: Synchrony comparison in EEG recordings from an AD patient and a healthy
subject. Recordings have been filtered in the α band. Higher synchrony is presented for
the healthy subject.

Changes in the synchrony of AD patients have also been investigated. Results presented
from the study of synchrony activity in AD patients show that synchrony in different
channels of an EEG recording seems to be lower for AD patients than for healthy subjects.
(Jeong, 2004; Dauwels et al., 2010b; Babiloni et al., 2011; Vecchio et al., 2013).

In order to explain the differences of synchrony in an EEG recording Figure 2.6 shows
the comparison between the recording of an AD patient (illustrated in Figure 2.6(a))
and a healthy subject (Figure 2.6(b)). For displaying purpose and aiming to facilitate
the comparison between recordings, signals have been filtered with a band pass filter in
the frequency range of 8 - 13 Hz (α band). Recording of the healthy subject has higher
synchrony due to the higher number or bursts that it present. Furthermore, these are
longer in time than the ones shown in the recording of the AD patient. Especially frontal
electrodes Fp1, Fp2, F7, F3, Fz, F4 and F8 present a common activity that stars in second
2 and last until second 3.5 showing this higher synchrony. Moreover other periods of long
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synchrony activity are displayed in the recording of healthy subject when compared with
the recording of the AD patient.

A large variety of measures have been used in the scientific literature in order to compute
the synchrony of EEG recordings. Some typical measures are Coherence, Granger Mea-
sures, state space based synchrony measures, Phase Synchrony (PS) and stochastic event
synchrony among others. All these measures seek to quantify the relationships between
two or more signals.

Coherence is a well-known measure that have been used to estimate the functional con-
nectivity between areas (Locatelli et al., 1998; Adler et al., 2003). Coherence estimates
the relationship between two time series in the frequency domain. However, Coherence
does not estimate the directionality of the information and it has to be computed between
pairs of signals. An extension for multivariate signals is Granger measures (Kaminski &
Blinowska, 1991; Babiloni et al., 2009a), which also allow to investigate the causality of
interactions.

Previous measures are based on using the amplitude of the signals. However, other mea-
sures have been used for the early diagnosis of AD studying the differences in the phase
of the signals. Phases between two signals may be related even if its amplitudes present
no relation. An example of these measures are PS (Dauwels et al., 2009a; Knyazeva et al.,
2010), phase lag index (Tóth et al., 2014) or imaginary coherence (Hsiao et al., 2013),
which work for pairs of univariate signals. A measure used to compute the differences
of phase between multivariate signals is global field synchronization (Koenig et al., 2005;
Park et al., 2008).

Another type of synchrony measures that has been used can be referred to as state space
based synchrony measures. This type of measures compute the synchronization in base of
trajectory of the proposed signals in a state space. Signals are considered synchronous if
the trajectories remain close to each other (Dauwels et al., 2010b). Examples of state space
based synchrony used to evaluate the differences of synchrony in AD patients are synchro-
nization likehood (Stam et al., 2005; Babiloni et al., 2006; Czigler et al., 2008), Omega
Complexity (OC) (Bhattacharya, 2000; Czigler et al., 2008) or S-estimator (Knyazeva
et al., 2013; Yi et al., 2014).

An entirely different approach was presented recently, stochastic event synchrony (Dauwels
et al., 2009b,c). This new approach characterizes the interaction between spikes and tran-
sient oscillatory components. To compute stochastic event synchrony first the bumps are
extracted using bump modeling (Vialatte et al., 2009a,b). Each bump is considered as an
event on the time-frequency plane, and then the geometry between the extracted bumps
is modeled aiming to evaluate the synchrony between signals. Even though promising
results have been obtained using this approach for the early diagnosis of AD (Dauwels
et al., 2009a), the high complexity of this measure and its number of parameters to cali-
brate make it an avoidable choice if the other measures are useful with the existing data.

Numerous studies have used the above presented measures and others, presenting that
EEG synchrony for AD patients obtain a decreased value when compared with synchrony
of healthy subjects. These EEG changes may reflect an abnormal synchronization of
pyramidal neurons and a functional disconnection among cortical areas along AD process
(Jeong, 2004; Babiloni et al., 2009b, 2011; Vecchio et al., 2013). However, there is no
consensus regarding which of the measures is more effective to parametrize this functional
disconnection for diagnosing AD. Studies usually only use a few measures or only one in
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one specific data set, therefore it is difficult to compare between studies (Dauwels et al.,
2010b). Another shortcoming of these studies is that usually the data set has small number
of subjects, and in some of the studies no cross-validation is done between computed values.
Therefore, in some of the studies some overfitting may compromise the results.

In order to overcome the shortcoming of selecting the most appropriate measures, a study
was presented recently comparing the use of different measures in a data set (Dauwels
et al., 2010a). In this study a total of 29 measures are used to differentiate AD patients
of healthy subjects. The main result presented in this article is that similarity is found
between some of the 29 measures, which lead to the hypothesis that the same information
is presented for different measures. Therefore, only a small group of measures may be used
to distinguish between AD patients and healthy subjects without redundant information.

2.3.3 Enhanced complexity of the EEG signals

Nonlinear dynamical analysis (NDA) of the EEG has revealed a decreased complexity
of EEG patterns and reduced functional connections in AD (Jeong, 2004). NDA has
offered valuable information on cortical dynamics when applied to EEG, due to the high
complexity of biological signals (Jeong, 2004).

To quantify the EEG complexity different measures have been used, such as different types
of entropy, or the Lempel-Ziv complexity. Entropy is a measure of the uncertainty of a
random variable (Cover & Thomas, 2006). For the early diagnosis of AD using complexity
measures, different types of entropy have been used, such as approximate entropy (Abásolo
et al., 2005), spectral entropy (Abásolo et al., 2006) or tsallis entropy (Zhao et al., 2007).
On the other hand, the Lempel-Ziv complexity (Lempel & Ziv, 1976) has also been used
for the early diagnosis of AD (Hornero et al., 2009). According to these studies, EEG of
AD patients display lower values of complexity (therefore is more regular), than values
obtained for the healthy subjects. This difference can be used to distinguish between AD
patients and healthy subjects.

Results presented in Dauwels et al. (2011) evaluate the use of complexity measures together
with the effect of slowing of EEG (presented in Section 2.3.1). Results of this article show
that for the data sets used, complexity measures are highly correlated with measures used
to compute the effect of slowing of EEG. If used together for classification purpose they
will only introduce redundant information to the classifier. Therefore, only by modeling
one of the effects (slowing of EEG or changes in the complexity of the signal), may suffice
to obtain the information contained in the recording.



Chapter 3

Using Empirical Mode
Decomposition for preprocessing

This chapter focuses on improving the quality of EEG data by removing artifacts, using a
new signal processing technique, Multivariate Empirical Mode Decomposition (mEMD).
This technique provides a decomposition of the original EEG data into several oscilla-
tory modes. By using this decomposition, a cleaning method is presented, and then the
efficiency of the proposed method is evaluated on simulated EEG data.

The organization of this chapter can be summarized as follows. First, in Section 3.1, an
introduction about the main interferences existing in the EEG data (which are known as
artifacts), is presented. Section 3.2 presents the original decomposition technique Empiri-
cal Mode Decomposition (EMD), and its extension for multichannel data sets, mEMD, is
then detailed in Section 3.3. Section 3.4 presents a new method to clean EEG data based
on mEMD. Section 3.5 describes the methods used to simulate EEG data, and results
obtained of applying the cleaning method on EEG simulated data are then presented in
Section 3.6. Section 3.7 is devoted to explain other applications of the mEMD technique
used for signal processing. Last section of this chapter is devoted to discussion.

3.1 Introduction

EEG signals commonly present different interference signals due to muscles artifacts, such
as eye blinks or eye movements. Electric potentials due to these artifacts can be orders
of magnitude larger than the EEG and can propagate across the scalp, masking and
distorting brain signals (Croft & Barry, 2000).

Along years, different preprocessing techniques have been used to remove undesired signals
from EEG. Some of these are filtering the data with filters, used mainly to remove the noise
introduced for the power supply at 50 or 60 Hz, or by adaptive filtering, suppressing only
the undesired signals. Other approaches are reducing the artifacts by asking the subject
to avoid any movement during the recording, or by later rejecting the corrupted epochs
that contain artifacts (Dauwels et al., 2010b). On the other hand, an alternative approach
known as BSS (Cichocki & Amari, 2002), has been largely used to clean artifacts from
EEG signals (Joyce et al., 2004; Delorme et al., 2007; Vialatte et al., 2009c; Solé-Casals
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et al., 2010). BSS describes the EEG signals by a linear combination of a finite set of
sources located within the brain. Using BSS for artifact rejection, the assumption is that
artifacts are generated by a subset of extracted sources. Therefore, if sources that produce
the artifacts are removed, signals can be reconstructed without affecting the EEG signals
(Dauwels et al., 2010b).

Even though BSS appears to be the most suitable method for artifact rejection, as any
method, it presents some limitations. The key challenge is to determine what sources need
to be removed. Usually this is a process that can not be done automatically. Visually
inspection of the components extracted by BSS is done and then which components have
to be removed is decided. This is a time consuming process, and therefore is not suitable
for routine clinical EEG (Jung et al., 2000). Furthermore, visual inspection is subjective
(Romero et al., 2009), and therefore the reliability of BSS is limited. In order to over-
come this limitations, semi-automatic methods have been developed. This semi-automatic
methods select the sources that have to be removed by computing statistical markers. Dif-
ferent approaches have been presented. However, is not well define which markers are the
most appropriate for artifact detection (Dauwels et al., 2010b).

New methods presented in this chapter aims to develop a system to perform the EEG signal
preprocessing. This system have to be fully automatic, and therefore easy to implement
for clinical EEG. The process of avoiding the visual inspection of the results is a key step
that may facilitate its usage. Before this new method is defined, the main artifacts which
can be found in EEG data are presented.

3.1.1 Artifacts due to eye blinks

Eye blink artifacts are generated by the movement of the eyelid along the cornea, such
as during an eye blink. By friction between lid and cornea, this movement results in
charge separation, with a dominantly dipolar charge distribution, and the dipole moment
pointing in up-down-direction. In the EEG, this is recorded as a positive peak that lasts a
few tenths of a second, is most visible in the frontopolar region (electrodes Fp1 and Fp2),
but propagating to all the electrodes of the montage, becoming weaker with distance from
the front. The frequency bands that are more affected by this artifacts are δ and θ, with
the main portion of energy below the 5 Hz (Schalk & Mellinger, 2010).

An example of eye blinks it presented in Figure 3.1. This figure shows EEG time series
that present three eye blinks. It can be observed the high impact that eye blinks produce
on the frontal electrodes Fp1 and Fp2, achieving higher values than normal EEG, and
how with some attenuation it affects all other electrodes of the data set. Attenuation is
proportional to the distance between electrodes and the eyes.

3.1.2 Artifacts due to eye movements

This type of artifacts are produced by eye movements, due to a frictive mechanism similar
to the one underlying eye blink artifacts but involving retina and cornea rather than cornea
alone. Eye movement artifact affects frontal electrodes which are positioned close to the
temporal area, e.g. F7 and F8. The effect created on electrodes can be symmetric or
antisymmetric, depending whether the movement is vertical or horizontal, respectively.
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Figure 3.1: Example of EEG recording with eye blinks. Frontal electrodes Fp1 and Fp2
present clear interferences due to the activity of eye blinks. Other electrodes present the
same interference, with a proportional attenuation to the distance. (Schalk & Mellinger,
2010)
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Figure 3.2: Example of EEG recording with eye movements. Distortion is clearly present
in electrodes C3 and C4, which are those that present an external position. (Schalk &
Mellinger, 2010)
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Figure 3.3: Example of EEG recording with muscle artifacts. Distortion is clearly present
in all electrodes, specially those found in the central and parietal area. (Schalk &Mellinger,
2010)

The effect of eye movement artifacts is quite similar to that of blink artifacts, except
that their frequency content is even lower, and amplitudes tend to be larger (Schalk &
Mellinger, 2010).

Figure 3.2 present an example of EEG recording that present distortions due to lateral
eye movements. In this case distortion caused by eye movements i lower in frequency and
presents its maximum values in electrodes close to the eyes.

3.1.3 Artifacts due to muscle movements

Muscle artifacts are produced by the muscles that lift the eye brows, and those that close
the jaw. Both group of muscles produce involuntary movements due to physiological
phenomenon. The recordings of this type of artifacts can present a higher amplitude than
EEG signals, making difficult to extract the EEG information. This kind of artifacts have
to be prevented during the EEG recording (Schalk & Mellinger, 2010).

An example of muscle artifacts is shown in Figure 3.3. In this figure it can be observed
that this kind of artifacts affect all the electrodes, and that brain activity is completely
masked in the presence of these artifacts.

3.2 Empirical Mode Decomposition

This section presents the EMD technique. First, the definition is detailed and then is
presented an example of application on a signal. This decomposition technique is used
for signal processing analysis, nonetheless several shortcomings are found when is used in
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multichannel data sets. These shortcomings are also detailed. Even though this is not
the technique used for the data analysis, a clear understanding of it will facilitate the
extension to multichannel data sets.

3.2.1 Theoretical definition

EMD algorithm is a method designed for multiscale decomposition and timefrequency
analysis, which can analyze nonlinear and non-stationary data (Huang et al., 1998). This
method decomposes an original signal into a finite and often small number of oscillatory
modes. These modes present an amplitude or frequency modulation. Oscillatory modes
are called Intrinsic Mode Functions (IMFs). Each IMF satisfies two basic conditions
(Huang et al., 1998):

• The number of zero-crossings and the number of extrema must be the same or differ
at most by one in the whole data set.

• At any point, the mean value of the envelope defined by the local maxima and the
envelope defined by the local minima is zero.

The EMD algorithm (Huang et al., 1998; Rilling et al., 2003) for the signal x(t) can be
summarized as presented in Algorithm 3.1.

Algorithm 3.1: Empirical Mode Decomposition

i. Determine the local maxima and minima of x(t).

ii. Generate an upper and a lower signal envelope by interpolationg the local
maxima and minima values computed on step (i), obtaining emin(t) and emax(t).

iii. Compute the local mean m(t) as:

m(t) = emin(t)+emax(t)
2

iv. Subtract the local mean from the data:

s(t) = x(t)−m(t)

v. If s(t) obeys the stopping criterion, then define d(t) = s(t) as an IMF,
otherwise set x(t) = s(t) and repeat the process from step (i).

Then, the empirical mode decomposition of a signal x(t) can be written as:

x(t) =

n∑
k=1

IMFk(t) + ε(t) (3.1)

Where n is the number of extracted IMFs, and the final residue ε(t) is the mean trend or
a constant.

Figure 3.4 presents an example of application of the EMD on a signal x(t). First, original
signal x(t) it is presented in Figure 3.4(a). Figure 3.4(b) shows the point (i) of the Algo-
rithm 3.1, were the local maxima (red dots) and minima (blue dots) of x(t) are computed.
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Figure 3.4: Example of one iteration of the EMD algorithm on the signal x(t). (a) Initial
signal x(t). (b) Step (i) of the Algorithm 3.1 computing local maxima and minima values.
(c) Step (ii) of the Algorithm 3.1 computing emin(t) and emax(t). (d) Step (iii) of the
Algorithm 3.1 computing m(t). (e) Step (iv) of the Algorithm 3.1 before substracting
m(t) to x(t). (f) Step (v) of the algorithm presenting the signal s(t).
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Figure 3.5: EMD of two EEG sensors FP1 and O2. Below each of the sensors the IMF
obtained using the EMD are presented.

Then on Figure 3.4(c) the lower signal envelope (emin(t), in blue) and upper signal en-
velope (emax(t), in red) are computed. These curves are obtained using an interpolation
method to connect the values computed previously. This procedure is defined in the step
(ii) of the algorithm. Figure 3.4(d) presents the computation of the local mean (m(t), in
purple) as the average of emax(t) and emin(t), being the step (iii) of Algorithm 3.1. Fig-
ure 3.4(e) shows the signals x(t) and m(t) before being substracted. Result of computing
the difference between these signals is presented in Figure 3.4(f) obtaining the signal s(t).
Once the signal s(t) is computed, the step (v) of the Algorithm 3.1 is reached. At this
point the algorithm decides if s(t) obeys the stopping criterion, being an IMF or if it does
not. The stopping criterion used usually is to obtain a median envelope as close as possible
to zero.

3.2.2 EMD shortcomings for multichannel data sets

As presented in previous section, the EMD allows us to decompose a signal in different
oscillatory modes. This decomposition technique has been successfully used previously for
removing artifacts from EEG data (Rutkowski et al., 2008; Diez et al., 2009; Rutkowski
et al., 2009; Salis et al., 2013). However, several shortcomings are presented when this
technique is used in multichannel data sets such as EEG.

The IMFs from different time series do not necessarily correspond to the same frequency,
and different time series may end up having a different number of IMFs (Mutlu & Aviyente,
2011). This second shortcoming, when using EMD for multichannel data sets, is illustrated
in Figure 3.5. This figure shows five seconds of the EMD of two EEG sensors, FP1 pre-
sented in Figure 3.5(a) and O2 presented in Figure 3.5(b). These figures demonstrate that
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for different time series, a different number of IMFs are obtained during the decomposition
(eight for the sensor FP1 and nine for the sensor O2). On the other hand, another short-
coming is that even if the same number of IMFs is obtained during the decomposition, it
may not represent the same rang of frequencies, therefore it will be difficult to compare
between two modes.

These shortcomings make difficult to use this technique to work with multivariate data
sets, because it is laborious to match the different obtained IMFs from different channels.
To solve the presented shortcomings when working with multivariate data sets, several
extensions of EMD have been proposed. These extensions are Bivariate Empirical Mode
Decomposition (Molla et al., 2010), to decompose two time series at the same time, and
Trivariate Empirical Mode Decomposition (Rehman & Mandic, 2010a), to decompose
three time series at the same time. Recently, for multivariate data sets, such as EEG, an
extension of EMD to mEMD was proposed (Rehman & Mandic, 2010b).

3.3 Multivariate Empirical Mode Decomposition

The decomposition technique mEMD has been designed as an extension for multivariate
data sets of EMD. This technique has been presented to deal with the shortcomings
detailed in Section 3.2.2. Therefore mEMD obeys two different conditions:

• Different signals have the same number of IMFs.

• IMF i of one signal presents the same oscillation frequencies than the IMF i of
another signal.

In mEMD the local mean is computed by tanking an average of upper and lower envelopes
obtained from all the channels. The upper and lower envelopes, in turn are obtained by
interpolating between the local maxima and minima values. However, in general for mul-
tivariate signals, the local maxima and minima may not be defined directly. To deal with
these problems multiple n-dimensional envelopes are generated by taking signal projec-
tions along different direction in n-dimensional spaces (Rehman & Mandic, 2010b).

Consider a sequence of n-dimensional vectors {v(t)}Tt=1 = {v1(t), v2(t), . . . , vn(t), } which
represents a multivariate signal with n components, and xθk = {xk1, xk2, . . . , xkn} denoting
a set of direction vectors along the directions given by angles θk = {θk1 , θk2 , . . . , θk(n−1)} on

an (n−1) sphere. Then, the mEMD algorithm (Rehman & Mandic, 2010b) is summarized
as presented in Algorithm 3.2. Once all IMFs have been extracted, the mEMD of the input
signal v(t) can be written as detailed in Equation 3.1.

Figure 3.6 shows the mEMD of an EEG sensor. This decomposition has been obtained
from the join decomposition of EEG simulated data, obtaining a total of 9 IMFs and
ε(t). This figure demonstrate that first modes present the high frequencies, and that the
lasts IMFs present the low frequencies. Last value shown is ε(t), which has a really low
frequency oscillation term. On the other hand, Figure 3.6 shows that there is a certain
relation between the presence of eye blinks in the data of the original sensor, and the
presence of modulations of low frequency in IMF 4 and IMF 5. Taking into account these
results, next section presents a cleaning method based on mEMD to decompose a set of
original EEG data, and after computing the mEMD, IMF that present a relationship with
the eye blinks are eliminated.
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Algorithm 3.2: Multivariate Empirical Mode Decomposition

i. Choose a suitable pointset for sampling on an (n− 1) sphere.

ii. Calculate a projection, denoted by pθk(t)}Tt=1, of the input signal {v(t)}Tt=1

along the direction vector xθk , for all k, giving pθk(t)}Kt=1 as the set of projections.

iii. Find the time instants {tθki } corresponding to the maxima of the set of
projected signals pθk(t)}Kt=1.

iv. Interpolate [tθki , v(t
θk
i )] to obtain multivariate envelope curves eθk(t)}Kt=1.

v. For a set of K direction vectors, the mean of the envelope curves m(t) is
calculated as:

m(t) = 1
K

∑K
k=1 e

θk(t)

vi. Extract the detail d(t) using d(t) = x(t)−m(t). If the detail d(t) fulfills the
stopping criterion for a multivariate IMF, apply the above procedure to x(t)−d(t),
otherwise apply it to d(t).
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Figure 3.6: mEMD of two EEG signal. Values obtained for the sensors are presented in
the first line. IMFs obtained are presented below. For the same sensors used in Figure
3.5 the same number of IMF have been obtained. IMF with the same number correspond
to the same frequency ranges.
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3.4 A cleaning method based on mEMD

As presented in Section 3.3, the mEMD of a multivariate signal v(t) can be written as the
sum of different IMF. Aiming to eliminate artifacts from EEG recordings, a new cleaning
method is presented. The cleaning method is based on mEMD and seeks the common
modes which are present in all the electrodes. The key idea is that if a mode is present in
all the electrodes, it is probably due to artifacts and not to EEG signals. Therefore this
mode has to be eliminated in the reconstruction process.

With the aim of improving the quality of the data, the cleaning method is detailed in
Algorithm 3.3. This method present several advantages. The first is that is fully automatic,
does not requires visual inspection. The second advantage is that when using this method,
only the EEG signals are used during the cleaning process, and there is no need to use
extra electrodes such as electrooculography (EOG) electrodes. However, a shortcoming
presented for this method is that the parameter T has to be selected. In Section 3.6
different values are tested for this parameter, and a final value is presented as the optimal
one. Figure 3.7 presents an example of application of the cleaning method.

Algorithm 3.3: Cleaning method

i. Apply mEMD to raw EEG data of N electrodes, in order to obtain M
oscillatory modes of the multivariate data.

ii. Construct a matrix containing the same mode for all the channels. Therefore
a total of M matrices are obtained.

iii. Calculate the Correlation Matrix (CM) of each one of these previous ma-
trices, obtaining CM ∈ RN ·N ·M , by computing the correlation between all IMF
with the same number.

iv. Compute the Communality Index (CI), containing the mean correlation of
each mode for all the sensors (CI ∈ RM ). The CI is computed using the following
expression:

CI = 1
N2

∑N
i=1

∑N
j=1|CM |

v. Normalize CI between 0 and 1.

vi. Threshold CI in order to find which of these modes are common within all
the channels. Modes with high correlation (|r|> T ) are eliminated.

vii. Reconstruct clean signals without taking into account the eliminated modes.

3.5 Methods for EEG data simulation

This section presents the methodology used to simulate EEG data. In order to quantify
the improvement that the cleaning method causes on the data, two types of data are
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Figure 3.7: Example of reconstruction of a signal using Algorithm 3.3. After the com-
putation of mEMD the correlation between each IMF of the same number is computed,
obtaining CM . Then CI is computed and normalized. Values obtained at CI are used to
select if an IMF is used in the reconstruction of the signal or not.
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Figure 3.8: Position of the 19 electrodes used to simulate EEG data.

simulated. The first type is EEG data with eye blinks artifacts and different levels of
noise. The second type is the same EEG data but without artifacts and noise.

Data simulation is done as it follows. It is known that the electric fields recorded using
EEG follow this expression (Pascual-Marqui, 2002):

ϕ = KJ + η(t) (3.2)

where ϕ is a matrix containing scalp electric potentials measured at N electrodes each
time interval 1

Ts
, J is the current density at each of the groups of neurons, also named

voxels. η(t) is white noise, uncorrelated with ϕ, generated by the electronic elements of
the recording system. Finally K is a matrix containing the distances between each of
the electrodes and each of the voxels. K matrix can be created with the software low
resolution brain electromagnetic tomography (LORETA) (Pascual-Marqui, 2002).

LORETA software uses a realistic head model to create the K matrix. In this model,
human cortex is divided into 2394 areas of 7mm3 cubic volume called voxels (Pascual-
Marqui, 2002). K matrix presents the relation between each of the electrodes and each of
the voxels.

For the data simulation, first aK matrix is created with the preferred number of electrodes.
Then electric activity J is modeled. To simulate the electrical activity resulting from each
voxel, a time series is created simulating the electrical activity of each dipole. In the present
work, simulated time series are sine waves at a specific frequency. Next step consists in
choosing a position for the dipole in the list of 2394 existent in the model. Then, by
applying Equation 3.2 on the generated data, the simulated EEG is obtained. The last
term of Equation 3.2, standing for η(t), is simulated by adding random noise to obtain a
realistic system. Adding random noise allows us to control the signal to noise ratio (SNR).
In this work, different levels of SNR are tested in order to check the performance of the
cleaning algorithm in different situations.

For this experiment, 10 seconds of EEG data containing 19 electrodes with a sampling
frequency of 128 Hz are simulated. Different levels of SNR are tested, from -20 dB to +20
dB. Electrodes position are presented in Figure 3.8.

3.6 Results on simulated data

This section details the obtained results when applying the cleaning method on simulated
EEG data. First the simulation of the data is described. Then methods used to compute
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the improvement of the results are detailed. Section 3.6.3 shows the results for SNR of 0
dB. Finally in Section 3.6.4 results for all computed SNR are presented.

3.6.1 EEG data simulation

Two types of EEG data are simulated to check the improvement of the cleaning method:

• Raw EEG data: EEG time series containing eye blinks artifacts and different levels
of white noise.

• Clean EEG data: EEG time series without artifacts and noise.

Equation 3.2 is used in both types of data for simulation. During data generation of both
types, four dipoles are used to simulate electrical activity. For each dipole a sine wave
in the traditional frequency bands is used (α, β, γ and μ). Location used for each dipole
present a consistent position in the cortex according to physiological findings, as presented
in Chapter 2.

In order to evaluate the improvement of the cleaning method presented in Algorithm 3.3,
different levels of SNR are generated by adding noise with different amplitudes to the
data. To study the statistical significance, different trials are simulated with the same
SNR. Consequently, for each of the levels of SNR defined, ten trials are simulated with
four simulated sine wave in different locations. For each trial the white noise is simulated
again. The positions of the dipoles are also different for each of the trials. However,
dipoles presenting the activity of the same frequency band are located in the same area.
The temporal time series used to simulate the electrical activity of the dipoles is presented
in Figure 3.9. On the other hand, the area defined for each of the dipoles is presented in
Figure 3.10.
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Figure 3.9: Time series used to simulate dipoles activity of EEG simulated data.
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(a) Area defined for the dipoles used in the α band

(b) Area defined for the dipoles used in the μ band

(c) Area defined for the dipoles used in the β band

(d) Area defined for the dipoles used in the γ band

Figure 3.10: Cortex areas defined for dipoles position of EEG simulated data. In each
area a dipole simulating electrical activity is simulated. L:left, R: right, A: anterior, P:
posterior, S:superior, I:inferior.
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(a) 10 seconds period of the time series used to create the eye blinks. Extracted from a real EEG
recording using BSS.

(b) Area defined for the dipoles used for the right eye

(c) Area defined for the dipoles used for the left eye

Figure 3.11: Cortex areas and source of dipoles activity defined for simulated eye blinks.
L:left, R: right, A: anterior, P: posterior, S:superior, I:inferior.

Furthermore, simulated raw EEG data present eye blinks that affect the recording. The
time series corresponding to eye blinks is not simulated, a real one is used. This procedure
is done because a realistic aspect is aimed to be present on the EEG simulated signals. In
this case, a real time series containing eye blinks was extracted from a recording. BSS was
used to extract an eye blink component of a real EEG recording. An only component was
extracted even though different trials are simulated for each level of SNR. However, as the
length of the extracted eye blink is long, only a part of the recording is used. In order
to have eye blinks in different positions of the recording, the extracted period is selected
randomly for each trial. Ten seconds of the time series extracted as an eye blink are
presented in Figure 3.11(a). The position of the eye blinks are also different for each trial,
as is done with the other positions, an area is selected to locate the eye blinks. Selected
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(b) Simulated raw EEG Data

Figure 3.12: Example of simulated EEG time series used in the study. Results presented
for the SNR = 0 dB

area for both eyes is shown in Figures 3.11(b) and 3.11(c), presenting the area for right
and left eye respectively.

Used methodology present several limitations that must be highlighted. In real situations
electrical activity due to eye blinks is not present in the cortex. This activity is present in
the muscles above the skull. However, due to the model used, where only the relationship
between electrodes and the cortex is defined, this electrical activity has to be approached
and positioned in the cortex. Another point to be emphasized is that, even though two
different spatial positions have been selected for the eye blinks, only a time series is used.
This fact is due to movement of the eye blinks is the same for both eyes, and there is no
delay between them.

Simulation of clean EEG data is done with the dipole activities presented in Figure 3.9,
with the spatial locations defied in Figure 3.10. An example of EEG clean data is presented
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in Figure 3.12(a). On the other hand, simulation of raw EEG data is done with the dipole
activities presented in Figure 3.9 with the spatial locations defied in Figure 3.10. Eye
blinks presented in Figure 3.11(a) are located in the areas defined in Figures 3.11(b) and
3.11(c). White noise is added to the generated signals with different levels of SNR. An
example of simulated raw EEG data is shown in Figure 3.12(b). Signals presented in
Figure 3.12(b) present a SNR equal to 0 dB.

3.6.2 Methods for EEG preprocessing using mEMD

Parameter T has been presented as a key choice in Algorithm 3.3, because the final quality
of the data will depend on this parameter. Therefore, in order to measure the amount of
improvement introduced by the cleaning method, correlation is used to compute the sim-
ilarity between the time series of the raw EEG data and the clean EEG data. Correlation
between the preprocessed data (cleaned EEG data) and the original clean EEG data is
also computed. Then these two correlations are compared.

For two time series x(n) and y(n), correlation coefficient is computed as (Kropotov, 2009):

r =
1

N

N∑
n=1

(x(n)− x̄)

σx

(y(n)− ȳ)

σy
(3.3)

where N is the length of the signals, x̄ and ȳ are the mean averages of the times series
x(n) and y(n), and σx and σy correspond the standard deviation of the time series x(n)
and y(n).

Correlation measure allows to quantify the improvement that the cleaning method pro-
duces on the raw EEG data, making it more similar to the simulated clean EEG data. In
order to facilitate the comparison between correlation values, the improvement value is
defined in Equation 3.4.

ET =

∑N
n=1 r̂n∑N
n=1 rn

(3.4)

where ET is the improvement value. Parameters r̂n and rn stand for the correlation be-
tween the simulated raw EEG data and simulated clean EEG data (rn) and correlation
between cleaned EEG data and simulated clean EEG data (r̂n) computed at each elec-
trode. Parameter ET is then computed by averaging the obtained correlation at each
electrode. As the term r̂n is defined in the numerator, values of ET higher than 1 present
an improvement of the data during the cleaning process. On the other hand, values of ET

smaller than 1 means that some information has been lost.

3.6.3 Preprocessing results for SNR of 0 dB

This section exposes the results obtained after applying the presented cleaning method on
data with a SNR = 0 dB. Once the decomposition mEMD is applied, the CI is computed.
An example of CI is presented in Figure 3.13. For parameter T different values are tested
(0.95, 0.90, 0.85, 0.80, 0.75 and 0.70). These values are presented in different colors in
Figure 3.13. Signals after applying the algorithm are reconstructed with the IMFs that
present lower value than T . Therefore the choice of this parameter defines if the algorithm
is more or less strict with the correlated IMFs.
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Figure 3.13: CI obtained after applying the decomposition mEMD to a 10 s of simulated
raw EEG data. Different threshold values are presented.

Figure 3.13 shows that depending on the value of T , the number of IMFs used for recon-
struction change. For example for a high value of T , e.g. T=0.95, only IMF7 and IMF8
are eliminated during the reconstruction process. On the other hand for a low value of T ,
e.g. T=0.70, all IMF are eliminated except IMF 3.

Figure 3.14 presents the correlation results obtained for each electrode with the different
values of T used. In this figure, green bars stand for rn and yellow bars present r̂n.
In both cases, the mean value and the standard deviation computed along all the trials
is computed. For all figures presented, it can be clearly seen that eye blinks and noise
disturb EEG data in such a way that rn is very low in all the electrodes. Especially frontal
electrodes Fp1 and Fp2 present a low correlation (r < 0.15), as they are close to eyes.
Using the cleaning methods to improve the quality of the data, allows us to recover an
approximation of clean EEG data, and this can be observed in r̂n values. Initial correlation
of data with artifacts is improved with cleaned EEG data. Depending on the value of T
used, the improvement changes. For T = 0.95 there is a small improvement. Values
obtained by r̂n increase as the T value decrease, until the value T = 0.70, where the mean
obtained values for r̂n clearly decrease.

In order to facilitate the comparison between the improvement compared to the values
of the threshold, Figure 3.15 presents the improvement ET obtained for each threshold
value. Mean values and standard deviation obtained along all simulated trials are shown.
These results show that depending on the T used, there is a higher improvement or not.
Initial threshold T = 0.95, present a mean improvement of 1.45, then when the value of
T decreases the cleaned EEG data is more similar to the original simulated clean data,
as present the higher values obtained for ET . The maximum value obtained for ET is
1.82, obtained with T = 0.75. Then when T = 0.70 the value of ET decreases, presenting
that too much information have been eliminated, and therefore there is a decrease in the
quality of the data.

The proposed cleaning method presents a clear improvement on the simulated data. Re-
sults presented in Figures 3.14 and 3.15 show this improvement by comparing the simulated
raw EEG data and the cleaned EEG data, both being correlated with the original simu-
lated clean EEG data. On the other hand, the parameter T defined in the Algorithm 3.3 is
a key factor to obtain the best data cleaning. This section presents only the results when
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Figure 3.14: Correlation comparison for all electrodes with different values of T . Green
bars stand for the correlation between raw EEG data and clean EEG data (rn). Yellow
bars present the correlation between cleaned EEG data with the cleaning method and
simulated clean EEG data (r̂n).
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Figure 3.15: Impromement ET presented in the simulated EEG for each of the different
threshold values used.

the simulated data present a SNR equal to 0 dB. Next section presents the same compu-
tations but using different values of SNR. However, only results for threshold T = {0.85,
0.80 and 0.75} are presented, being the values where the best improvement is found.

3.6.4 Preporcessing results for all SNR

This section presents the results for different SNR on the simulated data. The same
procedure to simulate the signals with SNR equal to 0 dB is used in this case. However,
values of SNR vary from -20 dB to +20 dB.

Figure 3.16 shows the evolution of the parameter ET , presenting the mean and the standard
deviation obtained. Different threshold values are presented, T = 0.85 (in Figure 3.16(a)),
T = 0.80 (in Figure 3.16(b)) and T = 0.75 (in Figure 3.16(c)). Only three thresholds
are used because these are the ones that present the best results in Figure 3.15, when the
cleaning method is used with data presenting a SNR equal to 0 dB.

Results presented in Figure 3.16 show that when the SNR is low, i.e. -20 dB, there is no
improvement of the quality of the data, for T = 0.85 the value of ET is equal to 1, and
the other values are lower than 1, presenting that the cleaning method do not improve
the quality of the data but eliminates too much information. The obtained value for ET

improves as the value of SNR increases. However, for high SNR there is a decrease of ET .
Depending on the threshold used, this decrease is in different values. For T = 0.85 there
is a small decrease of ET when the SNR is equal to 16 dB, 17 dB and 18 dB. Values of ET

obtained with this SNR present a high variance showing that there is variability in the
results. Results for T = 0.80 present one small decrease at SNR of 3 dB, and for higher
values than 3 dB ET stills increasing its value. However, when the SNR is equal to 9 dB,
10 dB and 11 dB, computed ET presents a high variance, presenting that the cleaning
method eliminated too much information from the simulated EEG data in some trials.
For this same value of T , when the SNR is bigger than 13 dB, the obtained values of ET

are not stable. Last value of T used is 0.75. For this value the decrease of ET is produced
at SNR = 9 dB. Values higher than this SNR value show that there is a high variance in
the result and the value of ET is not stable.
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Figure 3.16: Evolution of parameter ET in function of SNR.

In order to facilitate the comparison between values of T , the mean values of ET are
presented together in Figure 3.17. Only mean values are presented without standard
deviation for clarity of the figure. Figure 3.17 shows that the values obtained for the
different thresholds are not too much different when the SNR is close to 0 dB, confirming
the results presented in Section 3.6.3. However, for extreme values such as -20 dB and
20 dB, there is a clear decrease for threshold values T = 0.80 and T = 0.75, whereas
for T = 0.85 the value increases. With the presented results at hand, the best possible
threshold value to be selected is T = 0.85 for several reasons. The first is that when using
T = 0.85 the value obtained for ET is always equal or higher than 1, presenting that never
there is a loss of information of the cleaned signal but there is always an improvement.
The second reason is that, even though the obtained value of ET is the lowest for the
three thresholds when SNR is equal to 0 dB, when using extreme values of SNR the
value obtained for ET is the highest. The last reason is that when T = 0.85 is used in
Figure 3.16, its figure is the one that presents the lower values of variance for the three
thresholds, meaning that is the one with the lower variability between the simulated trials.

Aiming to test the performance of the cleaning algorithm in different scenarios, one last
experiment is tested. In this experiment, two types of EEG data are simulated with
different levels of SNR. One data type is the raw EEG data used in previous analysis,
therefore it contains eye blinks and noise. The other type of data contains only noise with
different levels of SNR. Again the improvement parameter ET is computed comparing the
correlation between the cleaned EEG data and the raw EEG data against the simulated
EEG clean data. Results presenting the evolution of ET for the data with artifacts and
without artifacts with a threshold value of T = 0.85 are presented in Figure 3.18.

Results presented in Figure 3.18 show that whereas the improvement of ET of data with
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Figure 3.17: Mean improvement ET presented in the simulated EEG for each of the
different threshold values used.

artifacts (blue in Figure 3.18) present an improvement as the level of SNR increases, ET

computed for signals only containing white noise (red in the figure) present an important
decrease for SNR higher than 4 dB. Values ET computed for positives SNR values, show
values close to 1 and lower. This it means that the final correlation of the reconstructed
data is lower than the correlation of the raw data, presenting that an important part of the
data has been eliminated during the cleaning process. On the other hand, results presented
for signals with artifacts show that there is always an improvement of ET . These results
suggest that the cleaning method starts eliminating the noise when the SNR is low. But
when the SNR is high, starts to eliminate the introduced artifacts presenting a similitude
with the cleaned EEG data 1.6 times better than the simulated raw EEG signals.

Presented results suggest that if the data introduced to the cleaning method present a high
level of interferences, being high level of noise or artifacts, the cleaning method generates
an improvement of the data. However, if the data we want to clean present a low level
of interference the cleaning results are not as good as before, because some important
information may be lost during the cleaning, depending on the value of SNR. Therefore, if
EEG data do not present a high level of noise or artifacts is better not to use the cleaning
method, in order to conserve all the data.

3.7 Other applications of Multivariate Empirical Mode De-
composition

Presented methods for EEG denoising have been published in conference proceedings by
the author of this documents in the publications (Gallego-Jutglà et al., 2011) and (Gallego-
Jutglà et al., 2012b). However, the use of the mEMD has been tested in other domains.

The same procedure for denoising signals was used in (Solé-Casals et al., 2013), where the
cleaning method was used to improve the speech signals of two different speakers. Data
simulation was done by mixing the speech recording of two subjects and random noise
with different levels of SNR. Results obtained are similar to the ones obtained in this
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Figure 3.18: Mean improvement ET presented in the simulated EEG data with and without
artifacts. Results presented for T = 0.85.

chapter, where a high improvement was obtained for small SNR, and low improvement
was obtained for high SNR.

On the other hand, mEMD was also used for image processing. These results were pub-
lished in conference proceedings (Gallego-Jutglà & Solé-Casals, 2012) and (Gallego-Jutglà
et al., 2013). In these articles mEMD is used to decompose images containing faces of
different subjects. Then these decompositions are used to classify the subjects. The used
data base contains 40 subjects with 10 images for each one, presenting the subject in
different positions. The method used in these articles is summarized in Figure 3.19. The
implemented classification system using mEMD it is summarized as it follows:

i. Five images are kept as representative for each class. The mean image of these five
images is obtained for each class. These images are named as Ri∀1 ≤ i ≤ N , where
N is the total number of classes. Remaining classes are kept for classification.

ii. For each new input image I to be classified, mEMD between I and all Ri is calculated,
obtaining a total of N mEMD decompositions Di.

iii. Then the distance between IMFs is calculated for each Di, obtaining a vector of N
values corresponding to the distances between input image I and each one of the
classes.

iv. The input image I is then associated to a class as a function of some criteria on the
distance.

In the presented works, different measures are used to compute the distances defined in
step (iii). These measures are Correlation, the normalized Frobenius inner product and
the Frobenius norm of the difference. The class association defined in step (iv) is done
by two criteria as defined in Figure 3.19. Criteria defined in (Gallego-Jutglà & Solé-
Casals, 2012) is to associate the new image I to the class corresponding to the minimum
distance. Criteria defined in (Gallego-Jutglà et al., 2013) is to associate the new image I
using Artificial Neural Network (ANN). By applying the minimum distance criteria and
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Figure 3.19: Scheme of the methods used for image processing using mEMD.

resizing the image to a smaller resolution (17 x 20 pixels in comparison with the original
resolution of 92 x 112), obtained results presented a performance of classification of 82.50%.
Results presented in (Gallego-Jutglà et al., 2013) using a resolution of 29 x 34, present a
comparison between the minimum distance criteria and the use of ANN. With the new
resolution a 90% of classification performance it was obtained, when the class association
based on minimum distance was used, and a 97.25% when an ANN was used. By using the
three measures together as input features to an ANN, the classification results improved
to 98.25%, equaling the best classification performance obtained with the same data set,
but using a more simple approach.

3.8 Discussion

This chapter presents the use of the new decomposition technique mEMD to improve the
quality of EEG signals. The cleaning method presents a clear improvement of the quality
of the simulated data. EEG simulated data with artifacts is more similar to the original
clean data once the cleaning method has been applied. The application of the cleaning
method with different levels of SNR present that the selected threshold T = 0.85 present
an improvement in all the ranges of SNR tested.

On the other hand, the usage of mEMD it has been presented as useful. These new
technique for decomposition it is defined to work with multichannel data sets, therefore it
explores the join information of the data. This join information helps in the identification
of the information which is more present all along the data set, making easy its elimination.

Even though results on simulated data have been presented as promising, this method
has not been tested on real data. As defined in Section 1.1, several steps are defined in
neuroscience. Presented method in this chapter is only the first step. Chapter 8 presents
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all the steps of the signal processing approach together. Therefore, in that chapter the
presented cleaning method is used in real data.

A shortcoming that have been presented in this chapter is that, if the data used contains
or artifacts or noise, the cleaning method clearly improve the quality of the data. However,
if the data does not present artifacts or have a high SNR, some parts of the data may be
erased. This is because during the cleaning, CI is normalized between 0 and 1, and then
the threshold is used to select the eliminated modes. Therefore, even though before the
normalization a data set present small values of CI some modes will be deleted during the
reconstruction process. This opens a line for the future work where another step must be
included in the cleaning method, to select if the computed values of CI are high enough to
compute the normalization and to suppress some of them, or they are really low, meaning
that there is no information to eliminate.
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Chapter 4

Early diagnosis of AD by
frequency selection

A new signal processing method for the early diagnosis of AD is introduced in this chap-
ter. Different measures are used as feature for classification, helping in the process of
distinguish between healthy subjects and AD patients. These measures are computed in
different frequency ranges aiming to find a frequency range that facilitates the classifica-
tion of healthy subjects and AD patients. This methodology is tested instead of using the
standard frequency bands.

This chapter is organized as it follows. An introduction of the study is presented in Sec-
tion 4.1. Section 4.2 introduces the three data sets used, one containing MCI patients
and healthy subjects, and two containing Mild AD patients and healthy subjects. Sec-
tion 4.3 explains the measures used to characterize subjects of the data bases, and then
the methods used to apply these measures are described in Section 4.4. Section 4.5 shows
the results of applying the presented methods on the three data sets. Obtained results are
finally discussed in Section 4.6.

4.1 Introduction

An EEG recording is usually characterized by the presence of activity on specific frequency
bands (δ, θ, α and β), as presented in Chapter 2. To distinguish between AD patients
and healthy patients, studies traditionally have analyzed the standard frequency bands
(Babiloni et al., 2006; Koenig et al., 2005), or extend the analysis to the entire frequency
range between 4 and 30 Hz (Dauwels et al., 2010a).

In this chapter a new frequency approach is presented in order to improve the early diag-
nosis of AD. Traditional EEG frequency bands have achieved good classification results.
However, dividing the power spectra in predefined frequency ranges may not be optimal,
because a more suitable frequency range may exists that facilitates how healthy subjects
and AD patients are identified. The presented approach is based on working in the entire
frequency range from 1 to 30 Hz, by analyzing all possible frequency ranges (e.g., 1 - 2
Hz, 1 - 3Hz, 1 - 4Hz, ... 29 - 30Hz).

47
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On the other hand, aiming to characterize the effects that AD causes on EEG, a selection of
measures has been done to parametrize this changes. In Dauwels et al. (2010a) a group of
synchrony measures were used to distinguish between AD patients and healthy subjects.
However, results presented in the same study suggest that a small group of synchrony
measures may suffice to quantify the perturbations of EEG synchrony in AD patients. This
fact is due to the high correlation observed between some synchrony measures. Therefore,
ten of the measures defined in that work are used in the present study. Furthermore,
a power measure is used to parametrize the effect of slowing of EEG. This measure is
Relative Power (RP).

Even though three perturbations that AD causes on EEG data have been presented in
Section 2.3, in this work only two of these effects are characterized. Results presented
in Dauwels et al. (2011) demonstrate that RP and loss of complexity are strongly anti-
correlated at low frequencies. As two of the main perturbations in EEG data are closely
related, the present study investigates the early diagnosis of AD using the two other
changes in EEG: slowing of EEG and changes in EEG synchrony.

4.2 EEG data sets

In this study, we consider three different data sets. The first data set contains EEG
recordings of MCI patients and healthy subjects, the second and the third contain EEG
recordings of Mild AD patients. These data sets are following described.

4.2.1 The MCI Data Set: MCI patients and control subjects

The EEG data contained in this follow-up data set have been previously analyzed in a
number of studies evaluating the early diagnosis of AD (Musha et al., 2002; Cichocki et al.,
2005; Vialatte et al., 2005a; Woon et al., 2007; Dauwels et al., 2009a, 2010a, 2011).

Patients who only complained of memory impairment were recruited. They underwent
thorough neuropsychological testing that revealed a quantified and objective evidence of
memory impairment with no apparent loss in either general cognitive, behavioral, or func-
tional status. Patients did not suffer from other neurological diseases. The classification
of very mild dementia impairment required a MMSE ≥ 24 and a Clinical Dementia Rating
scale score of 0.5 with memory performance less than one standard deviation below the
normal reference (Wechsler Logical Memory Scale and Paired Associates Learning sub-
tests, IV and VII, ≤ 9, and/or ≤ 5 on the 30 min delayed recall of the Rey-Osterreith
figure test). Fifty-three patients met these criteria. Each patient underwent Single-Photon
Emission Computed Tomography (SPECT) at initial evaluation and was followed clini-
cally for 12-18 months. Twenty-five of these fifty-three very mild AD patients developed
probable or possible AD according to the criteria defined by the National Institute of
Neurological and Communicative Disorders and Stroke, and the Alzheimer’s disease and
Related Disorders Association. These subjects formed the group of patients of the MCI
Data Set (age: 71.9± 10.2 years old), while 56 age-matched healthy subjects constituted
the control group (age: 71.7 ± 8.3 years old). EEG recordings were conducted at the
MCI stage. The control group consisted of healthy subjects who had no memory or other
cognitive impairments. The scores of the MMSE were 28.5±1.6 for the control group and
26± 1.8 for the MCI patients.
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Figure 4.1: Electrodes positions used in each data set. (a) MCI Data Set contains 21
electrodes. (b) Mild AD Data Set 1 contains 19 electrodes and (c) Mild AD Data Set 2
contains 30 electrodes.

The EEG time series were recorded using 21 electrodes, positioned according to the 10-20
international system, with the reference electrode on the right earlobe. Positions of the
21 electrodes are presented in Figure 4.1(a). EEG was recorded with Biotop 6R12 (NEC
Sanei, Tokyo, Japan) at a sampling rate of 200Hz, with analog bandpass filtering in the
frequency range 0.5 - 250 Hz and online digital bandpass filtering between 1 and 30 Hz,
using a third-order Butterworth filter (forward and reverse filtering).

4.2.2 The Mild AD Data Set 1: Mild AD patients and healthy subjects

The Mild AD Data Set 1 has also been analyzed previously (Goh et al., 2006; Henderson
et al., 2006; Dauwels et al., 2009a; Vialatte et al., 2009c; Elgendi et al., 2011; Gallego-
Jutglà et al., 2012a; Latchoumane et al., 2012).

The Mild AD Data Set 1 consists of 24 healthy control subjects (age: 69.4±11.5 years old)
and 17 patients with Mild AD (age: 77.6±10.0 years old). The patient group underwent a
full battery of cognitive tests (MMSE, Rey Auditory Verbal Learning Test, Benton Visual
Retention Test, and memory recall tests). The results from the psychometric tests were
scored and interpreted by a psychologist, and all clinical and psychometric findings were
discussed at a multidisciplinary team meeting. All age matched controls were healthy
volunteers and had normal EEG (confirmed by a Consultant Clinical Neurophysiologist).
The two groups are not perfectly age-matched, which might pose bias later on, but it
was shown that no major effect was found due to this disparity (Henderson et al., 2006).
Patients did not suffer from other neurological diseases. The EEGs were recorded during a
resting period containing various states: awake, drowsy, alert and resting with eyes closed
and open. All recording sessions and experiments proceeded after informed consent was
obtained of the subjects or the caregivers and were approved by local institutional ethics
committees.

The EEG time series were recorded using 19 electrodes, with a reference electrode on
each earlobe. Electrodes were positioned according to the Maudsley system, similar to the
10-20 international system. Positions of the 19 electrodes are presented in Figure 4.1(b).
Signals were digitalized at a sampling frequency of 128 Hz. The EEGs were band-pass
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MCI Data Set Mild AD Data Set 1 Mild AD Data Set 2

MCI
patients

Healthy
subjects

Mild AD
patients

Healthy
subjects

Mild AD
patients

Healthy
subjects

Subjects 22 38 17 24 28 22

Age 71.9± 10.2 71.7± 8.3 77.6± 10.0 69.4± 11.5 80.8± 10.5 68.9± 10.3

MMSE 26± 1.8 28.5± 1.6 Access not possible 19.5± 4.4 28.3± 1.6

Table 4.1: Summary of the characteristics of each data set used.

filtered with a digital third-order Butterworth filter (forward and reverse filtering) between
0.5 and 30 Hz.

4.2.3 The Mild AD Data Set 2: Mild AD patients and healthy subjects

The Mild AD Data Set 2 has not been previously analyzed. All subjects included in this
data set are subjects that went to the hospital with memory complaints and suspected
AD. All subjects underwent a full battery of neuropsychological tests and examinations
(MMSE and others), and in addition brain imaging and blood sampling. Also they had
an interview with a neurologist who observed clinical signs. The criterion used to include
subjects in the Mild AD group or in the control group was based on the diagnostic made
by the neurologist, who based his decision on all the available information. The control
group had no diagnostic even though they suffered memory complaints. Finally the Mild
AD group was formed by 32 patients (age: 80.8 ± 10.5 years old) and the control group
was formed for 24 subjects (age: 68.9 ± 10.3 years old). The scores of the MMSE were
28.3± 1.6 for the control group and 19.5± 4.4 for the Mild AD patients.

The EEGs were recorded during a resting period containing various states: eyes open,
eyes close and periods of stimulation with steady-state visual evoked potentials (SSVEP)
at different frequencies, i.e. 1 Hz, 2 Hz, 3 Hz, 4 Hz, 5 Hz, 10 Hz, 15 Hz, 20 Hz and 30
Hz. For the present study only the eyes closed period was used. All recording sessions
and experiments proceeded after informed consent was obtained of the subjects and the
ethical review board of Hospital Charles Foix (Paris) validated the research project.

The EEG time series were recorded using 30 electrodes placed on the scalp according to the
10-20 international system. Positions of the 30 electrodes are presented in Figure 4.1(c).
EEG was recorded with Deltamed amplifier at a sampling frequency of 256 Hz. The EEGs
were band-pass filtered with a digital third-order Butterworth filter between 1 and 30 Hz.

4.2.4 Recording conditions common to all data sets

In all data sets, all recording sessions included in the analysis were conducted with the
subjects in an awake but resting state. The length of the EEG recording was about 5
minutes per subject for the MCI Data Set and the Mild AD Data Set 1. For the Mild
AD Data Set 2 the initial total length of the recording was 20 minutes. Approximately
5 minutes were extracted for each subject in resting state with the eyes closed. In all
the recordings the EEG technicians prevented the subjects from falling asleep (vigilance
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control). After recording, the EEG data was carefully inspected. As presented in Sec-
tion 3.1, EEG recordings are prone to a various artifacts, for example, due to electronic
noise, head movements, and muscular activity. For this study no pre-processing was done,
and for each patient an EEG expert selected, by visual inspection, one 20 second segment
of artifact-free EEG. Only subjects whose EEG recordings contained at least 20 seconds
of artifact-free data were retained in the analysis. Specifically, for the Mild AD Data Set
2 the author of this manuscript was the responsible of all the preprocessing of the data,
doing the visual inspection to select the 20 seconds of data.

As a result of this approach, the number of subjects of the MCI data set was further
reduced to 22 MCI patients and 38 control subjects and the number of subjects of the
Mild AD Data Set 2 was reduced to 28 Mild AD patients and 22 healthy subjects. For the
Mild AD Data Set 1 no reduction was made. For the subjects eventually included in each
data set, statistical differences between the ages of the patients were checked. For none
of these three data sets the age difference between AD patients and control subjects is
significant (t-test p >> 0.05). The final characteristics for each data set are summarized
in Table 4.1.

4.3 EEG Measures

This study considers two types of EEG measures: a power measure and synchrony mea-
sures. As a power measure RP is selected. For synchrony, various measures are used:
Correlation, Coherence, Granger Causality, OC and PS. A description of these measures
is presented below.

The spectrum of EEG is helpful in describing and understanding brain activity, as pre-
sented in Section 2.3.1. The well-known effect of slowing of EEG can be easily modeled
by the measure RP. RP allows us to compare the difference of power between subjects in
a specific frequency range (e.g. α or θ bands), which may facilitate to distinguish between
AD patients and healthy subjects. On the other hand, the use synchrony measures help
to model the changes of synchrony described in Section 2.3.2 for AD patients.

4.3.1 Relative Power

RP measures the percentage of power within a specific frequency range compared to the
power of the entire frequency range. It is computed using the power spectrum of the
signal. The spectrum can be computed by means of the Discrete Fourier Transform (DFT)
of the signal. The DFT of a signal represents his spectrum as a finite combination of
complex sine wave (Bloomfield, 2000). Computation of DFT can easily be performed in
a computer using the Fast Fourier Transform (FFT) algorithm (Cooley & Tukey, 1965;
Frigo & Johnson, 1998). The DFT (X(f)) of a signal x(n) with a length N is defined as:

X(f) =

N−1∑
n=0

x(n)e
−jkn
N (4.1)

Fourier coefficients defined in Equation 4.1 allows us to compute the power spectrum of a
signal. The power spectrum Px(f) of the signal x(n) is computed as (Proakis & Manolakis,
1996):

Px(f) = X(f)X∗(f) = |X(f)|2 (4.2)
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Using Equation 4.2, the power for a specific frequency range is computed as:

Px(f1, f2) =

f2∑
f=f1

Px(f) (4.3)

where [f1, f2] is the band of interest and Px(f) is the power spectrum of the EEG signal
x(n). Finally, RP is computed as:

RPx(f1, f2) =
Px(f1, f2)

Px(fmin, fmax)
(4.4)

where Px(f1, f2) is the power in the frequency range of interest [f1, f2] for signal x(n) and
Px(fmin, fmax) is the power in the entire frequency range [fmin, fmax] for the same signal.

4.3.2 Correlation Coefficient

Correlation coefficient (r) is a measure of similarity between two signals. Correlation
coefficient expression has already been defined in Equation 3.3.

The correlation coefficient r quantifies the linear correlation between two time series. r
varies between -1 and +1. So, if the two time series change coherently and in the same
direction in time, the correlation coefficient between these two variables is positive and
close to 1. If two variables change in out of phase mode the correlation coefficient between
these variables is close to -1. If it does not exist relation between the two time series r = 0.

4.3.3 Coherence

Coherence estimates phase synchronization between two time series in the frequency do-
main. Coherence is computed using the cross-spectrum of the signals. The cross-spectrum
(Pxy(f)) of the signals x(n) and y(n) is computed as (Nunez & Srinivasan, 2006):

Pxy(f) = X(f)Y ∗(f) (4.5)

were X(f) and Y (f) are the DFT of the signals x(n) and y(n) respectively, and Y ∗(f)
denotes the complex conjugate of Y (f). When x(n) = y(n) the cross-spectrum reduces to
the power spectrum, as computed in Equation 4.2. The cross-spectrum can be interpreted
as a measure of the covariance between two signals at one specific frequency. Using the
cross-spectrum, coherence is defined as (Nunez & Srinivasan, 2006):

c(f) =
|Pxy(f)|2

Px(f)Py(f)
(4.6)

Coherence is usually interpreted as an indicator of connectivity between two brain areas
(Sanei & Chambers, 2009). It takes values from the range 0 to 1 (c(f) ∈ [0, 1]), were
0 indicates no relation. Equation 4.6 follows closely the form of correlation presented in
Equation 3.3. The numerator is the squared modulus of the cross-spectrum, analogous
to the squared covariance. In the denominator, the power spectrum is analogous to the
variance o the signal. Thus Equation 4.6 is analogous to dividing squared covariance by the
variance of each channel, which is a squared correlation coefficient. Coherence measures
the fraction of variance of channel x at frequency f that can be explained by a constant
linear transformation of the Fourier coefficients obtained at channel y.
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4.3.4 Granger Causality measures

Granger Causality is a family of measures that attempts to extract and quantify the
directionality from information. This family of measures has its roots in the economics
literature. The method was first proposed in 1969 by Granger and now it is known as
Granger Causality (Granger, 1969). Granger measures aims to explain the relationship
between two events X and Y. If events X causes event Y, then knowledge of past values
of X should improve our prediction of the current value of Y. The past values of X used
in the prediction are known as the model order.

Granger measures are calculated trough the multivariate autoregressive (MVAR) model of
the data. The MVAR model of multivariate time series is computed as it follows: suppose
that n signals x1(n), x2(n), ..., xn(n) are given, each stemming from a different channel.
Each of these times series is normalized, with zero mean and standard deviation equal to
one. We consider the following MVAR model (Kaminski & Liang, 2005):

x(n) =

p∑
l=1

A(j)x(n− l) + e(n) (4.7)

where x(n) = (x1(n), x2(n), ..., xn(n))
T , p is the model order, the model coefficients A(j)

are n×n matrices and e(n) is a zero-mean Gaussian random vector of size n. Equation 4.7
can be rewritten as:

e(n) =

p∑
l=0

Ã(j)x(n− l) (4.8)

where Ã(0) = I (identity matrix) and Ã(j) = −A(j) for j > 0. Equation 4.8 can
be transformed to the frequency domain (by applying the Z transform and substituting
z = e−j2πf∆t) (Proakis & Manolakis, 1996):

E(f) = Ã(f)X(f)

X(f) = Ã−1(f)E(f) = H(f)E(f)

H(f) =

 p∑
j=0

Ã(f)e(−j2πmf∆t)

−1

(4.9)

where ∆t is the sampling period Ts. The matrix H is called the transfer matrix of the
system. It contains information about relations between data channels constituting the
system.

The power spectrum matrix of the signal is then given by:

S(f) = X(f)X∗(f) = H(f)E(f)E∗(f)H∗(f) (4.10)

The terms E(f)E∗(f) denotes the variance of the noise. If we define V = E(f)E∗(f) then
Equation 4.10 can be described as:

S(f) = H(f)VH∗(f) (4.11)

where V is not dependent on frequency. Once the MVAR of the input signals is computed,
the calculation of the Granger measures is done using Ã,H and S matrices. Description
of the Granger measures is presented below.
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It has to be noted that Granger measures is a family of synchrony measures that are derived
from linear stochastic models of time series. Therefore, Granger measures are multivariate,
and they can be applied to multiple signals simultaneously such as EEG. However, some
authors suggested that the application of Granger measures in multichannel recordings it
is not computationally efficient and computation may be done from pair-wise combinations
of electrodes (Sanei & Chambers, 2009). By using this strategy some causal information
is lost. Therefore, in this study Granger measures are used as a multivariate measure.
However, an average between some specific electrodes is done in order to avoid big data
estimation. Method used are later described in Section 4.4.

Granger Coherence

Granger Coherence (GC) describes the amount of in-phase components between two sig-
nals. It is a measure derived from the MVAR model defined in Equation 4.7. It is
computed through the S matrix defined in Equation 4.11. The computation of GC is
defined as (Kaminski & Liang, 2005):

Kij(f) =
Sij(f)√

Sii(f)
√
Sjj(f)

(4.12)

where Sij are elements of the spectral matrix S. Sij is the cross-spectrum between channels
i and j, Sii is the power spectrum for channel i. Likewise Sjj for channel j. The modulus
of the GC takes values from the range 0 to 1 (|Kij | ∈ [0, 1]), were 0 indicates no relation.

The squared magnitude |Kij |2 ∈ [0, 1] is an alternative to the square magnitude coherence
function c(f) defined in Equation 4.6. The coherence function |Kij |2 may be more reliable
than c(f) if the MVAR system is a good model for the signals at hand.

Partial Coherence

Partial coherence (PC) describes the amount of in-phase components in signals i and j at
the frequency f when the influence of the other signals (the part of the signals that can
be explained by linear combination of the other channels) is statistically removed. PC can
be written as (Kaminski & Liang, 2005):

Cij(f) =
Mij(f)√

Mii(f)
√
Mjj(f)

(4.13)

where Mij(f) is the determinant of S with row i and column j removed. The modulus of
PC takes values from the range 0 to 1 (|Cij(f)| ∈ [0, 1]), similar to ordinary coherence,
but it is nonzero only when the relation between channel i and j is a direct influence.

The Granger measures presented in the next sections capture causal relations. Therefore
they are asymmetric or directed, being the information computed between electrode i and
j different than the information computed between electrode j and i.
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Directed Transfer Function

The Directed Transfer Function (DTF) is a multichannel causality measure. It is computed
as (Kaminski & Blinowska, 1991; Kaminski & Liang, 2005):

γ2ij(f) =
|Hij(f)|2∑m
j=1 |Hij(f)|2

(4.14)

where Hij(f) is the relation between input j with output i at the frequency f defined
by the H matrix. H is a not symmetric matrix, which it means that transmission from
channel i to channel j is different from channel j to channel i (Hij ̸= Hji). DTF is a
measure that represents a ratio between the inflow to channel i from channel j and all
the inflows to channel i. As there is a normalization value in the denominator, DTF takes
values between 0 and 1 (γij(f) ∈ [0, 1]). Values of DTF close to 0 present that there is no
flow from channel j to channel i at that specific frequency, and values of DTF close to 1
indicate most of the signal in channel i consists of signal from channel j.

Full Frequency Directed Transfer Function

The definition of DTF presents several difficulties for the comparison of outflows of in-
formation at different frequencies. To this end, a modified version of DTF was presented
by Korzeniewska et al. (2003). This modified version is full frequency Directed Transfer
Function (ffDTF) and it is computed as (Korzeniewska et al., 2003):

F 2
ij(f) =

|Hij(f)|2∑
f

∑m
j=1 |Hij(f)|2

(4.15)

The frequency normalization appearing in the denominator assures that this value does
not change with frequency. Therefore values obtained with ffDTF are only dependents
on the outflow of information between channels. ffDTF as a normalize extension of DTF
takes values between 0 and 1 (F 2

ij(f) ∈ [0, 1]).

DTF and ffDTF indicate a causal relation between channels. However, transmission of
information between channels i and j may not be direct and signal may go through several
other channels. If it is the case, DTF and for extension ffDTF will show that the relation
exists. In some cases it is important to know what relations are direct without any other
channels involved. Aiming to describe this direct relation, some direct measures were
presented in the literature, those are presented below.

Partial Directed Coherence

Partial Directed Coherence (PDC) is an estimator proposed to quantify direct causal
connections. It describes the interaction between two time series, when the influence due
to all other N−2 time series is discounted. PDC it is described as (Baccalá & Sameshima,
2001):

Pij(f) =
Ãij(f)√
a†j(f)aj(f)

(4.16)

were Ãij(f) is the relation between the two channels i and j, aj(f) is the j
th column of the

matrix Ã, † represents transposition and complex conjugate operation. PDC takes values
between 0 and 1 (Pij(f) ∈ [0, 1]).
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Direct Directed Transfer Function

The last direct and causal measure considered is the direct Directed Transfer Function
(dDTF). dDTF aims to emphasize only direct connections between channels i and j. It
is defined as the product between PC and DTF, which is represented as (Korzeniewska
et al., 2003):

χ2
ij(f) = F 2

ij(f)C
2
ij(f) (4.17)

dDTF it combines information from partial coherence function with information about
direction of influence in one measure. dDTF takes values between 0 and 1 (χ2

ij(f) ∈ [0, 1]).

Therefore χ2
ij(f) will be nonzero when:

• There is a causal connection from channel j to channel i.

• The relation between channels i and j is direct.

4.3.5 Omega Complexity

OC is a synchrony measure for multichannel data sets. It quantifies the amount of spatial
synchronization in a group of multivariate time series (Bhattacharya, 2000). Synchrony is
evaluated through the covariance matrix of the data set.

Given a data set of multivariate n signals x1(n), x2(n), x3(n), ...xn(n), the covariance ma-
trix C is first computed. C is decomposed using Principal Component Analysis (PCA) as
(Wackermann, 1996):

C =WΛW T (4.18)

where Λ is a diagonal matrix of eigenvalues λ(n) and W are the orthogonal eigenvec-
tors. OC is then computed using the eigenvalues. To compute the contribution of each
eigenvalue, these are normalized to unit sum applying:

λ′i =
λi∑n
i=1 λi

(4.19)

The value of OC is then calculated as (Saito et al., 1998):

Ω = exp

(
−

n∑
i=1

λ′i log λ
′
i

)
(4.20)

The argument of the exponential in Equation 4.20 is the entropy of the distribution ob-
tained with the eigenvalues. OC presents minimum value for identical signals (Ω = 1).
The maximum value is obtained for independent signals (Ω = n).

4.3.6 Phase Synchrony

PS computes the synchronization between two time series x(n) and y(n). It measures
only the phase between signals, even when the amplitudes of x and y are statistically
independent. PS is computed using the instantaneous phase of the signals.
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The analytic signal ψ(n) of a signal x(n) is defined as (Rosenblum et al., 1996):

ψ(n) = x(n) + jx̃(n) (4.21)

where x̃ is the Hilbert transform of x. The instantaneous phase (ϕx) is then defined as:

ϕx(n) = arg [x(n) + jx̃(n)] (4.22)

Then, the PS index for the two instantaneous phases of signals x and y (respectively ϕx
and ϕy) is defined as (Lachaux et al., 1999):

γ =
∣∣⟨ej(kϕx−mϕy)

⟩∣∣ (4.23)

where k and m are integers (usually k = m = 1) (Le Van Quyen et al., 2001b), and ⟨·⟩ is
time averaging.

4.4 Methods Used to Compute Measures

This section describes the methods used to compute presented measures in Section 4.3.
As defined previously, a new methodology to improve AD diagnosis is presented. This
methodology investigates all possible sets of frequency ranges between 1 and 30 Hz, with
the aim to find if there is a specific frequency range that improves the early diagnosis of
AD. Before the computation of each measure, signals are first filtered. Then, the measures
are statistically analyzed and classified.

4.4.1 Bandpass filtering and computation of the measures

All the possible frequency ranges between 1 and 30 Hz are systematically analyzed. To
define the frequency ranges of study, the start frequency band (F ) varies from 1 to 29 Hz,
and the width (W ) varies from 1 to 29 (e.g. 1 - 2 Hz, 1 - 3 Hz, 1 - 4 Hz, ... 1 - 30 Hz, ...
29 - 30 Hz). The maximum frequency of analysis (F +W ) is limited to 30 Hz. A total of
435 frequency ranges are studied, as is next detailed:

W ∈ N[1, 29]



1− 2
1− 3 2− 3
1− 4 2− 4 3− 4
...

...
...

. . .

1− 29 2− 29 3− 29 . . . 28− 29
1− 30 2− 30 3− 30 . . . 28− 30 29− 30


F ∈ N[1, 29]

Before measures are computed, signals are band-pass filtered with Butterworth filters.
These types of filters are characterized by a magnitude response that is maximally flat in
the pass-band, and they offer good transition characteristics at low coefficient orders, so
they can be easily implemented (Oppenheim & Schafer, 1975).

In this study, third-order Butterworth filters are used, as it was done in (Dauwels et al.,
2010a). Third-order Butterworth filters offer a frequency response able to filter narrow
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Figure 4.2: Frequency response of a third order Butterworth band-pass filter, filtering
between 6 and 7 Hz with Fs=128 Hz. Left images present the frequency and phase
response on the entire frequency range. Right images present in detail the frequency and
phase response in the pass-band.

band frequency ranges with a bandwidth of 1 Hz, such as 1 - 2 Hz, 2 - 3 Hz, . . ., 29 - 30
Hz. Even if a third-order filter offers a not-so-steep transition between the pass-band and
the stop-band, for frequency ranges with W = 1, the frequencies F and F +W offer an
attenuation of 3 dB, and the adjacent frequencies, i.e. F − 1 and F +W + 1, offer an
attenuation of minimum 25 dB. Figure 4.2 shows the frequency response of a filter between
6 - 7 Hz, detailing that the adjacent frequencies, 5 and 8 Hz, present a attenuation of 36
dB and 31 dB respectively.

To compute the described measures a different approach is done between the computation
of synchrony measures and the power measure. However, for both types of measures only
a value is computed to represent each subject. These values are then used for classifica-
tion purpose. The computation is done as it follows. RP is computed for each channel
independently. To obtain a global measure for each subject, the RP for all the channels
are averaged as:

RPs(f1, f2) =

∑N
i=1RPi(f1, f2)

N
(4.24)

were N is the number of channels contained in the data set, and s refers to the number
of subject. On the other hand, computation of synchrony measures follow different ap-
proaches. As there are bivariate and multivariate measures, for each type of measure a
different approach is used.

For bivariate synchrony measures, the approach defined in Dauwels et al. (2010a) is used.
In this approach, the EEG signals are aggregated into five regions (frontal, left temporal,
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Figure 4.3: Regions defined by aggregation of electrodes: Region 1, blue, left temporal
area. Region 2, red, frontal area. Region 3, green, parietal area. Region 4, orange, occipital
area. Region 5, yellow, right temporal area. This example presents the aggregation for 19
electrodes.

central, right temporal and occipital). Figure 4.3 presents an example of aggregation for 19
electrodes. This strategy is useful because it facilitates the results comparison of different
data sets that contain different number of electrodes. To compute the synchrony between
two regions, one first computes the synchrony between each EEG signal from one region
and each signal from the other, obtaining a value Syncei,ej for each of the pairs. The next
step is evaluating synchrony between regions by computing the average of these signal
pairs as:

SyncRj ,Rk
=

∑Nj

i=1

∑Nk
j=1 Syncei,ej

Nj ×Nk
(4.25)

where Nj and Nk are the number of electrodes of region j and k respectively. Using this
notation, if for example we compute the synchrony between the left temporal (Region
1) and the parietal (Region 3) regions, the value SyncR1,R3 is computed. To obtain this
value the average of SyncF7,Fz , SyncF7,C3 , SyncF7,Cz , SyncF7,C4 , ...SyncT5,Pz it is used in
numerator of Equation 4.25. Then in the denominator of Equation 4.25 the value of 15 is
used. This value is the number of pairs of electrodes used, in our case N1 = 3 and N3 = 5.

Once all SyncRj ,Rk
are computed, the average of synchrony between these values are

calculated to obtain a global synchrony value for each subject (Syncs). This value is
computed as:

Syncs =

∑5
j=1

∑5
j=i+1 SyncRj ,Rk

10
(4.26)

The denominator presented in Equation 4.26 is equal to 10 due to the fact that we have
aggregated the electrodes into five different regions. This approach is used for all the
bivariate synchrony measures (Correlation, Coherence and PS).

A different approach is used to compute the EEG synchrony for multivariate measures.
OC is applied directly to all EEG signals of the data set. However, a different strategy
is followed for Granger measures. As presented in Section 4.3.4, some authors suggest
that application of Granger measures in multichannel recordings it is not computationally
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efficient (Sanei & Chambers, 2009). If for example an EEG data set contains 19 elec-
trodes, when we apply the Granger measures it supposed to estimate a 19-dimensional
MVAR model. To avoid this high-dimensional estimation, some authors suggest to com-
pute Granger measures from pair-wise combinations of electrodes (Sanei & Chambers,
2009). This could be a solution, but if we apply this approach, we will be losing informa-
tion about the causality, due to the fact that the influence of other channels in a specific
channel it is not defined in the MVAR model. Therefore some measures such as DTF and
ffDTF will not be useful. Consequently another approach is followed. In this approach we
defined the same five regions that are previously defined in Figure 4.3. Then, in order to
reduce the number of electrodes, the time averaging between electrodes of the same region
is calculated, obtaining averaged EEG time series for each region. The Granger measures
are then applied to these five averaged EEG signals. As presented previously for the bivari-
ate measures, an only value of global synchrony measure is used to represent each subject.
Hence, the values computed for the Granger measures between regions (SyncRj ,Rk

) are
averaged to obtain a global synchrony measure (Syncs) using Equation 4.26.

4.4.2 Statistical analysis

To evaluate the difference between populations, the Mann-Whitney test is used. This test
measures the significance of the differences between two populations. In the present study,
this test is computed between the values computed using the measures for the MCI patients
and control subjects as well as between Mild AD patients and control subjects. Mann-
Whitney test is a non-parametric test that allows investigating the statistical differences
between two populations without assumptions of Gaussianity. Low p-values (close to zero,
e.g., p < 0.05) indicate a large difference between the medians of the two populations.

EEG is highly non-stationary (Nunez & Srinivasan, 2006). It is widely accepted that
the duration of a so-called quasi-stationary interval of continuous EEG recordings is ex-
pected not to exceed 2-4 s, but some authors found much longer fragments of even 12 s
(Cohen & Sances, 1977) and even 25 s (Kawabata, 1976), and thus data characteristics
may change over time. To deal with this problem, time segmentation is used to compute
synchrony measures. Exploring different parameters like window length (in all the syn-
chrony measures) or polynomial order (only in Granger measures) is important to select
the parameters that are most effective in classifying the subjects as AD or healthy.

As a priory the best window time to use is an unknown parameter, several time window
length values (L=1 s, 5 s, and 20 s) are used for each data set. Also several polynomial
orders are evaluated in Granger measures (p=1, 2, . . . 9). Then, the Mann-Whitney test
is computed along all the possible configurations in all the possible frequency ranges. The
parameter configuration that presented the lowest p-value in any of the defined frequency
ranges is defined as optimal and used in further analysis for that specific data set. In
section results (Section 4.5), the configuration used for each measure and for each data
set is presented.

4.4.3 Separability criterion

The separability criterion (J(F, F+W )) is used to represent the difference between popula-
tion in all the frequency ranges studied. J(F, F +W ) is a measure of distance between two
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normal distributions inspired by the z-score (Kropotov, 2009). The distance J(F, F +W )
has large values when the mean difference between two populations is large, and the stan-
dard deviations of both distributions are small, therefore the two populations can then
be easily distinguished. On the other hand, if there is little difference between two pop-
ulations, J(F, F +W ) presents a value close to 0. The separability criterion is defined
as:

J(F, F +W ) =
|µCtr(F, F +W )− µPat(F, F +W )|
σCtr(F, F +W ) + σPat(F, F +W )

(4.27)

where (F, F +W ) refers to the frequency range of study. As defined in Section 4.4.1, F
and (F +W ) refer to the start and end frequency of the study respectively; µCtr is the
mean of the control population; and µPat is the mean of the patient population (MCI
or Mild AD depending on the data set). Similarly, σCtr and σPat refer to the standard
deviations of the control and patient (MCI or Mild AD) groups. Separability criterion is
computed for each proposed measure.

4.4.4 Classification

Changes in EEG synchrony or RP allow us to distinguish between AD patients and healthy
subjects. In order to quantify the number of subjects that can be classified with the
presented methodology, Linear Discriminant Analysis (LDA) is used with leave-one-out
(LOO) cross-validation. Classification Rate (CR) is then computed as: number of correctly
classified subjects divided by the total number of subjects. Therefore, CR presents the
percentage of subjects correctly classified.

LDA is a well-known scheme for feature extraction and dimension reduction. This classifi-
cation method has been widely used in many applications involving high dimensional data,
such as face recognition and image retrieval (Duda et al., 2001). LDA projects the data
onto a lower-dimensional vector space such that the ratio of the between-class distances to
the within-class distance is maximized, achieving maximum discrimination. The decision
of classification is done in the low dimensional space (Bishop, 2006). LDA makes the
assumption that the density of the input data follows a normal distribution. Therefore,
the gaussianity of the computed synchrony values was checked before the computation of
the classification values by means of histograms and quantile-quantile plots.

On the other hand, presented data sets in Section 4.2 present a small number of subjects.
Small number of subjects in the data base is a traditional problem that occurs in machine
learning field. In order to build good models, different solutions have been presented.
One of these solutions it is cross-validation. Cross-validation allows to use as much of the
available data as possible for training. When using cross-validation, different approaches
can be used (Bishop, 2006):

• k-fold cross-validation: In this approach data is partitioned into k groups. Then k−1
of the groups are used to train a model, that later is evaluated with the remaining
group. This procedure is then repeated k times, using a different subset each time
for validation purpose. Final CR is obtained by averaging the CR obtained in each
group.

• LOO cross-validation: This approach is a particular case of the k-fold, used when
the number of subjects in the data base is small, as the databases presented in this



62 Chapter 4. Early diagnosis of AD by frequency selection

document. In this case is considered k = N , where N is the total number of subjects.
Therefore, all subjects except one are used for training, and the remaining subject
is used for evaluation. This procedure is repeated N leaving a different subject out
in each iteration. As for the k-fold cross-validation, the final CR is obtained by
averaging the CR obtained for each of the subjects.

The advantage of these approaches is that all observations are used for both training and
validation, and each observation is used for validation exactly once. These are the most
robust evaluation methods because they try to overcome a possible overfitting. After
applying cross-validation, a final value of CR is obtained because results for each of the
iteration are averaged in order to produce a single estimation.

For clinical applications it is also suggested that the computation of two statistical mea-
sures, is useful. These two statistical measures are Sensitivity (SE) and Specificity (SP).
SE, also call true positive rate, measures the proportion of actual positives which are cor-
rectly identified. SP, also call false negative rate, measures the proportion of negatives
which are correctly identified. Therefore in the presented study for AD, SE measures the
percentage of people identified as AD which suffer AD, and SP measures the percentage
of people identified as healthy which are healthy.

4.5 Results

This section presents the results obtained through searching the optimal frequency range
for each measure, instead of study the traditional EEG frequency bands, i.e. δ, θ, α or
β. Results presented are obtained using each measure independently as a classification
feature. Results for the three data sets are presented. Results for the MCI data set are
shown in Section 4.5.1, results for the Mild AD Data Set 1 are described in Section 4.5.2
and results for the Mild AD Data Set 2 are presented in Section 4.5.3.

EEG non stationarity is an issue that has to be addressed when working with EEG. As
presented in Section 4.4.2, for each synchrony measure the optimal configuration is used,
i.e. window length and Granger order. These optimal configurations are presented in
Table 4.2 and Table 4.3. Table 4.2 presents the selected configuration for the synchrony
measures, with the optimal time length of the window. Table 4.3 presents the selected

Measure
Window length

MCI Mild AD Mild AD
Data set Data set 1 Data set 2

Correlation 20 sec 20 sec 1 sec

Coherence 1 sec 5 sec 1 sec

OC 5 sec 1 sec 5 sec

PS 20 sec 20sec 20 sec

Table 4.2: Optimal time window lengths used to compute the synchrony measures for the
three data sets.
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Granger
Measures

Window length

MCI Mild AD Mild AD
Data set Data set 1 Data set 2

GC 1 sec 1 sec 5 sec

PC 20 sec 1 sec 5 sec

DTF 1 sec 20 sec 1 sec

ffDTF 1 sec 20 sec 20 sec

PDC 1 sec 1 sec 5 sec

dDTF 20 sec 20 sec 5 sec

Granger
Measures

Granger order

MCI Mild AD Mild AD
Data set Data set 1 Data set 2

GC 2 9 3

PC 4 4 5

DTF 7 8 9

ffDTF 2 8 2

PDC 2 3 2

dDTF 2 8 5

Table 4.3: Optimal time window lengths and orders used to compute the Granger measures
for the three data sets.

configurations for Granger measures, with the optimal time length of the window and the
Granger order used to compute them.

The optimal frequency range for each measure is defined as the range in which the best
CR is found; if a measure has several frequency ranges with the same CR, the one selected
as the optimal frequency range is the one with the highest J(F, F +W ) for that measure.
Results presented below are the ones obtained in the optimal frequency range.

4.5.1 Results MCI data set

Results obtained for the MCI Data Set are shown below. Table 4.4 presents the optimal
frequency range and the CR computed in this frequency range. The SE and the SP com-
puted in the optimal frequency range are also presented. The p-value computed between
values of MCI patients and healthy subjects obtained in the optimal frequency range are
shown in the last column. The three best results are highlighted in bold.

The best result for the MCI Data Set is obtained using RP with a value of 78.33% (SE
72.73% and SP 81.58%) in the frequency range of 2 - 9 Hz. This frequency range is close
to the θ band, the one that has been largely used for the early diagnosis of AD due to
the effect of slowing of EGG. The best result with a synchrony measure is 75.00% (SE
81.82% and SP 71.05%) for dDTF in the frequency range of 14 - 16 Hz. This frequency
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Measures
Optimal

freq. range
(Hz)

CR (%) SE (%) SP (%) p-value

RP 2 - 9 78.33 72.73 81.58 0.0001

Correlation 1 - 8 71.67 77.27 68.42 0.0012

Coherence 8 - 13 68.33 63.64 71.05 0.0132

GC 2 - 8 70.00 72.73 68.42 0.0021

PC 21 - 27 70.00 81.82 63.16 0.0157

DTF 6 - 27 65.00 63.64 65.79 0.2727

ffDTF 8 - 30 70.00 63.64 73.68 0.0013

PDC 1 - 2 66.67 68.18 65.79 0.0085

dDTF 14 - 16 75.00 81.82 71.05 8.88 × 10−5

OC 8 - 10 68.33 59.09 73.68 0.0138

PS 4 - 5 70.00 90.91 57.89 0.0201

Table 4.4: Obtained results for the MCI data set. CR is presented with the optimal
frequency ranges, its corresponding p-value and the computed values of SE and SP. The
three best results for this data set are shown in bold.

range is inside the β band, therefore may be affected by the decrease of synchrony that
AD patients suffer in the high frequencies. The third best result obtained for the MCI
Data Set is 71.67% (SE 77.27% and SP 68.42%) achieved with Correlation. This result is
obtained in the frequency range 1 - 8 Hz, expanding the δ and θ bands.

The best value obtained of SE is 90.91% obtained with PS. However PS presents a lower
SP (57.89%), therefore the global CR is 70.00%. Best SP is obtained using RP. Interest-
ingly most of the synchrony measures (six of the total ten) presents higher SE than SP.
Furthermore, the only power measure, RP, presents higher SP than SE.

Obtained results in the optimal frequency range present always an equal or higher value
of CR than the results obtained in the traditional δ, θ, α or β bands. To illustrate this,
Figure 4.4 presents a comparison of the CR obtained in different frequency bands. Results
presented in Figure 4.4 show that CR obtained in the optimal frequency range is always
higher than the others. Only for Coherence the obtained value in the optimal frequency
range and the value in the α band are equal, because the optimal frequency range is the
same than the α band.

Another observation that can be extracted from Table 4.4 is that, presented results show
that only four synchrony measures (Correlation, GC, PDC and PS) have the optimal
frequency range in the low frequencies. All other measures found the optimal frequency
range in the high frequencies, which may be related with the decrease of synchrony in
the higher frequencies. To check this effect, the box plots of the values in their optimal
frequency ranges are computed. Results for each measure are presented in Figure 4.5.

Presented results in Figure 4.5 are consistent with previous knowledge of changes that
AD causes on EEG. Figure 4.5(a) presents the box plot of RP. It can be observed the
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Figure 4.4: CR comparison between the optimal frequency range, δ, θ, α and β bands.
Results presented for the MCI Data Set.

effect of slowing of EEG, in which the MCI patients present higher values of RP than
the healthy subjects. Synchrony measures that have the optimal frequency range in the
higher frequency, i.e. Coherence, PC, DTF, ffDTF, dDTF, OC, present higher values of
synchrony for healthy subjects than for MCI patients, which correspond to the loss of
EEG synchrony in the higher frequencies. Figure 4.5(j) present a higher value for MCI
patients than for healthy subjects. However, it has to be noted that OC presents higher
values when there is no synchronization of the time series. On the other hand, results
obtained for PDC (Figure 4.5(h)), presents a higher synchrony value for MCI patients
than for healthy subjects.

4.5.2 Results Mild AD Data Set 1

Results obtained for the Mild AD Data Set 1 are shown below. Table 4.5 presents the
optimal frequency range and the CR computed in this frequency range. The SE and the
SP computed in the optimal frequency range for each measure are also presented. The
p-value computed between values of Mild AD patients and healthy subjects obtained in
the optimal frequency range are shown in the last column. The three best results are
highlighted in bold.

The best result for the Mild AD Data Set 1 is obtained using RP with a value of 97.56%
(SE 94.12% and SP 100.00%) in the frequency range of 4 - 7 Hz. This frequency range is
close to the θ band, which is affected for the slowing of EEG effect. The best result with
a synchrony measure is 95.12% (SE 100.00% and SP 91.67%) for DTF in the frequency
range of 5 - 6 Hz. The third best result obtained for the Mild AD Data Set 1 is 82.93% (SE
76.47% and SP 87.50%) obtained with GC. This result is obtained in the low frequency



66 Chapter 4. Early diagnosis of AD by frequency selection

0.2

0.3

0.4

0.5

0.6

0.7

MCI patients Healthy subjects

(a) RP

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

MCI patients Healthy subjects

(b) Correlation

0.3

0.35

0.4

0.45

0.5

0.55

0.6

MCI patients Healthy subjects

(c) Coherence

0.5

0.55

0.6

0.65

0.7

0.75

MCI patients Healthy subjects

(d) GC

0.15

0.2

0.25

0.3

MCI patients Healthy subjects

(e) PC

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

MCI patients Healthy subjects

(f) DTF

0.035

0.04

0.045

0.05

0.055

MCI patients Healthy subjects

(g) ffDTF

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

MCI patients Healthy subjects

(h) PDC

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

MCI patients Healthy subjects

(i) dDTF

1.5

2

2.5

3

3.5

4

4.5

MCI patients Healthy subjects

(j) OC

0.1

0.2

0.3

0.4

0.5

MCI patients Healthy subjects

(k) PS

Figure 4.5: Box plots showing the differences between MCI patients and healthy subjects
in the optimal frequency range, where the best CR is achieved. Results presented for the
MCI Data Set.
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Measures
Optimal

freq. range
(Hz)

CR (%) SE (%) SP (%) p-value

RP 4 - 7 97.56 94.12 100.00 8.38 × 10−8

Correlation 23 - 24 68.29 58.82 75.00 0.0699

Coherence 8 - 13 75.61 82.35 70.83 0.0003

GC 1 - 2 82.93 76.47 87.50 3.07 × 10−5

PC 3 - 4 68.29 70.59 66.67 0.0027

DTF 5 - 6 95.12 100.00 91.67 2.64 × 10−6

ffDTF 1 - 2 80.49 88.24 75.00 3.00× 10−6

PDC 1 - 4 80.49 88.24 75.00 1.78× 10−6

dDTF 2 - 4 78.05 76.47 79.17 8.50× 10−5

OC 7 - 8 75.61 82.35 70.83 0.0005

PS 9 - 10 80.49 88.24 75.00 5.45× 10−5

Table 4.5: Obtained results for the Mild AD data set 1. CR is presented with the optimal
frequency ranges, its corresponding p-value and the computed values of SE and SP. The
three best results for this data set are shown in bold.

range 1 - 2 Hz. Obtained p-values are small for almost all the measures, which is consistent
with the high classification rates obtained.

Interestingly, the best value obtained of SE is 100.00% obtained with DTF, which helps to
obtain the best CR for a synchrony measure. Best SP is obtained using RP. As the results
presented for the MCI Data Set, synchrony measures may help to improve the value of SE
and RP may help to improve the value of SP.

Figure 4.6 presents a comparison of the CR obtained in different frequency bands. Results
presented in Figure 4.6 show that CR obtained in the optimal frequency range is always
higher than the CR obtained in the traditional δ, θ, α or β bands. Again, as Coherence
obtained the optimal frequency range in the α band, computed values of CR in the optimal
frequency range and in the α band it is the same.

Presented results in Table 4.5 show that almost all synchrony measures (except Correla-
tion, Coherence and PS) present the optimal frequency range in the lower frequencies. To
check the obtained values in their optimal frequency ranges, the box plots of each measure
are computed.

Figure 4.7 presents the box plot of obtained values in their optimal frequency range for
each measure. Figure 4.7(a) presents the obtained values for RP. In this figure it can be
observed the effect of slowing of EEG, due to the higher values of RP that present Mild AD
patients than healthy subjects. Another effect that has been largely reported as one of the
causes of AD is the decrease of synchrony in the higher frequencies. However, presented
results in Figure 4.7 show that for some of the synchrony measures, specifically the Granger
measures (Figure 4.7(d-i)), there is an increase of synchrony for Mild AD patients in the
narrow bands inside the δ and θ bands. Interestingly this increase of synchrony may be
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Figure 4.6: CR comparison between the optimal frequency range, δ, θ, α and β bands.
Results presented for the Mild AD Data Set 1.

more discriminative than the well-known decrease of synchrony, due to the fact that all
Granger measures found their optimal frequency range in the low frequencies. An example
of the power of discrimination that may introduce this increase of synchrony is presented
for DTF (Figure 4.7(f)), whose optimal frequency range has been obtained where there is
a clear increase of synchrony for Mild AD patients. Although OC (Figure 4.7(j)) found
the optimal frequency range in the lower frequencies, no such increase it is observed for
it. On the other hand, Correlation and PS found the optimal frequency range in narrow
bands inside the β and α bands respectively. For Correlation (Figure 4.7(b)) no decrease
of synchrony it is observed for Mild AD patients, whereas for PS (Figure 4.7(k)) obtained
values for Mild AD patients are lower than those obtained for healthy subjects.

4.5.3 Results Mild AD Data Set 2

Results obtained for the Mild AD Data Set 2 are shown below. Table 4.6 presents the
optimal frequency range and the CR computed in this frequency range. As in the other
sections, SE, SP and p-value are also presented in the table. The four best classification
results for this data set are highlighted in bold.

The best CR for the Mild AD Data Set 2 is 76.00%, obtained at the same time for two
synchrony measures OC, in the frequency range of 16 - 21 Hz with a SE of 71.43% and a
SP of 81.82%, and for PS in the frequency range of 2 - 12 Hz with a SE of 78.57% and
a SP of 72.73%. The second best result is 74.00% obtained with Correlation and DTF.
Correlation (SE 71.43% and SP 77.27%) presents its optimal frequency range inside the
θ band (5 - 9 Hz), and DTF (SE 75.00% and SP 72.73%) presents its optimal frequency
range inside the α band (9 - 11 Hz). Classification values are the lowest obtained for any
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Figure 4.7: Box plots showing the differences between Mild AD patients and healthy
subjects in the optimal frequency range, where the best CR is achieved. Results presented
for the Mild AD Data Set 1.
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Measures
Optimal

freq. range
(Hz)

CR (%) SE (%) SP (%) p-value

RP 10 - 11 72.00 82.14 59.09 0.0340

Correlation 5 - 9 74.00 71.43 77.27 0.0018

Coherence 9 - 10 72.00 78.57 63.64 0.0108

GC 11 - 13 70.00 75.00 63.64 0.0293

PC 7 - 8 68.00 64.29 72.73 0.0195

DTF 9 - 11 74.00 75.00 72.73 0.0007

ffDTF 10 - 11 72.00 64.29 81.82 0.0011

PDC 10 - 11 68.00 57.14 81.82 0.0031

dDTF 9 - 10 68.00 67.86 68.18 0.0769

OC 16 - 21 76.00 71.43 81.82 0.0011

PS 2 - 12 76.00 78.57 72.73 0.0308

Table 4.6: Obtained results for the Mild AD data set 2. CR is presented with the optimal
frequency ranges, its corresponding p-value and the computed values of SE and SP. The
four best results for this data set are shown in bold.

of the data sets and accordingly, the obtained p-values are the highest. RP in this data
set is not as effective as when used in the other data sets.

Figure 4.8 presents again the comparison of the CR obtained in different frequency bands.
Results presented in Figure 4.8 show that even if CR using the optimal frequency bands
do not achieve the same high values obtained with the other data sets, obtained CR in
the optimal frequency range stills being the best CR obtained with this data set, because
is better than any other CR computed in the traditional EEG frequency bands.

Obtained results in Table 4.6 show that for the Mild AD Data Set 2, almost all the
measures obtained their optimal frequency range in the α band. Only Correlation, PC,
OC and PS obtained their values in other ranges that the α band. Specifically PS found
its optimal frequency range in a range of frequencies spanning the δ, θ and α bands. To
check the differences between the obtained values the box plots of the obtained values in
the optimal frequency bands are presented in Figure 4.9.

Results presented in Figure 4.9 again are consistent with the previous knowledge of AD.
Figure 4.9(a) presents the effect of the slowing of EEG, where in the α band the values of
RP are lower for Mild AD patients than for healthy subjects. Also the effect of decrease
of synchrony in the higher frequencies is present for Mild AD patients of this data set.
Synchrony values computed in the α band present lower values for Mild AD patients than
for healthy subjects, a clear example of it is presented for Coherence (Figure 4.9(c)) and
ffDTF (Figure 4.9(g)). All other measures found in the α band (GC, DTF and PDC)
also present lower values for Mild AD patients. The clear differences between Mild AD
patients and healthy subjects can be observed where the optimal frequency range is found
(Correlation, DTF, OC and PS). However, this differences is not enough significant to
obtain a good CR. Finally, as it is noted for the other data sets, some of the synchrony
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Figure 4.8: CR comparison between the optimal frequency range, δ, θ, α and β bands.
Results presented for the Mild AD Data Set 2.

measures found an increase of synchrony for Mild AD patients in the θ band. For this
data set, this result can be observed for PC (Figure 4.9(e)) but not for Correlation.

4.5.4 Results comparison

Presented results in Sections 4.5.1, 4.5.2 and 4.5.3, are consistent with previous results
noted in the literature (Jeong, 2004; Dauwels et al., 2010b; Vecchio et al., 2013). For the
three data sets the effect of slowing of EEG has been reported in the results. For the MCI
Data Set and the Mild AD Data Set 1, RP found their optimal frequency ranges close to
the θ band, therefore reported values of RP are higher for AD patients than for healthy
subjects. Reported results of RP for the Mild AD Data Set 2 are found inside the α band.
Therefore obtained values of RP are higher for healthy subjects when compared to values
of AD patients.

Values obtained for the synchrony measures present the expected results due to the lit-
erature review. For the three data sets the effect of decrease of synchrony in the higher
frequencies has been reported in the results. Shown results for all data sets presented
higher synchrony values in the α and β bands for healthy subjects than for AD patients.
However, synchrony results presented in the θ band in some cases present an increase of
synchrony for the AD patients, especially for the Granger measures. This effect is really
clear in the Mild AD Data Set 1, where all the Granger measures present this increase of
synchrony, whereas that results obtained with the MCI Data Set and the Mild AD Data
Set 2, only obtain a Granger measure with increase of synchrony, PDC for the MCI Data
Set and PC for the Mild AD Data Set 1. This increase of synchrony in the θ band was
first presented for the author of this document in the conference paper (Gallego-Jutglà
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Figure 4.9: Box plots showing the differences between Mild AD patients and healthy
subjects in the optimal frequency range, where the best CR is achieved. Results presented
for the Mild AD Data set 2.
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Figure 4.10: Modulus of the correlation coefficient computed between all the measures for
each data set. The optimal frequency range of each measure is used.

et al., 2012a). This discovery latter motivated the work presented in Chapter 5, where
this increase of synchrony is used to facilitate the discrimination between patients suffering
from AD and healthy patients.

In this chapter the parametrization of the two main effects observed in the EEG of AD
patients have been investigated independently. A combination of both effects may in-
crease the ability of the system to differentiate between AD patients and healthy subjects.
However, the direct combinations of the features may lead to use irrelevant or redundant
features to the target concept. To evaluate the redundant information presented by the
features, correlation coefficient is computed between measures in its optimal frequency
range. Figure 4.10 presents the correlation modulus of the obtained results. For each data
set, high correlation (|r| > 0.8) is found between some measures. Figure 4.10(a) presents
the obtained results for the MCI Data Set. This figure only presents a correlation value
higher than |r| > 0.8. This value is found between Correlation and GC. Results found
for Mild AD Data Set 1, presented in Figure 4.10(b), present six pairs of features with
high correlation (|r| > 0.8). These values are found between pairs of Granger measures
(DTF-PC, ffDTF-DTF, PDC-DTF, PDC-ffDTF, dDTF-ffDTF and dDTF-PDC). Finally
results presented in Figure 4.10(c) for the Mild AD Data Set 2 present only two pairs of
measures with |r| > 0.8. These values are found again between pairs of Granger measures,
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PC-dDTF and PDC-ffDTF.

Interestingly the two data sets that present the lower CR (MCI Data Set and Mild AD Data
Set 2) are less correlated between them than the Mild AD Data Set 1, which obtained
the highest CR. This may indicate that results presented for these data sets may be
easily improved by combining the power measure and the synchrony measures. However,
obtained features achieve good classification rates when they are used as single feature but
they introduce overfitting if we combine them directly into a multifeature classifier (Guyon
& Elisseeff, 2003). Overfitting appears because the system learns redundant information
of the same aspects of the data. Therefore a feature selection method is needed in order
to minimize overfitting and to improve the ability of the system to distinguish between
healthy subjects and AD patients.

4.6 Discussion

In this chapter, the use of synchrony measures and a frequency power measure in the whole
set of frequency ranges existing between 1 and 30 Hz have been investigated. Presented
results show that for some of the data sets high classification results are achieved. However,
these high values of CR are not constant for all the data sets and classification results are
obtained in different frequency ranges. Furthermore, the use of specific frequency ranges
for each measure improves the classification performance in comparison with the results
obtained in the classical frequency bands (δ, θ, α and β).

The presented results show that when using only one measure, RP is the best discrimi-
nating feature for the classification of AD patients versus healthy subjects. For the MCI
Data Set, using RP we obtain a CR of 78.33%. On the other hand, the use of only a
single synchrony measure achieves the best CR, 75.00% for DTF. Previous studies using
this data set achieved similar results. For instance (Cichocki et al., 2005), using a com-
pletely different approach BSS and RP in a different frequency range achieved a CR of
80%. In the results presented in this chapter, 78.33% is obtained without applying any
decomposition technique. Results using synchrony measures present some improvement
over results presented in the literature. In (Dauwels et al., 2009a, 2010a), using only one
measure as an input feature and LDA, the best obtained classification result was 70%
using ffDTF. These studies evaluated the synchrony measures in the frequency range of
4 - 30 Hz. Presented results show that analyzing an optimal frequency range for each
measure results in a better CR than using the whole frequency range. Using multiple fea-
ture classification the results improved to 78.33% in (Dauwels et al., 2011). A number of
other studies have also presented an improvement of CR, though only with using multiple
features. In (Woon et al., 2007), 88.3% of CR was obtained by dividing the time series
into small windows and computing the RP in each one. The value used as a discriminative
feature in that study was the maximum value of RP, the best value obtained using the
values of four electrodes. In (Dauwels et al., 2011), the best CR, using a combination
of RP and a synchrony measure, was again 88.33%. The best CR obtained for the MCI
Data Set was obtained in (Vialatte et al., 2005a), achieving 93.3% using bump modeling
(Vialatte et al., 2009a,b), an approach completely different from the one presented here,
which exploit time-frequency space information using a synchrony model, whereas the
presented system only exploit the frequency information.

Using only one feature, a CR of 97.56% is obtained for the Mild AD Data Set 1. The
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use of only one single synchrony measure did not improve this result, because the best
classification obtained is 95.12% for DTF. In (Dauwels et al., 2009a) the best CR obtained
was 82.9% using only one measure and in (Dauwels et al., 2011) the use of three measures
as input features to a classifier achieved a CR of 95.12%. Presented results are better in
both cases. In (Latchoumane et al., 2012), a CR of 97.6% was obtained using multiway
array decomposition in other words, the same value as is obtained in this study for RP
used as individual feature classification, but using a more complex approach based on
multiway array decomposition.

The presented results in frequency ranges differing from the standard bands are shown
to be more discriminant. It seems that using a specific configuration and computing
neural synchrony in a specific frequency range is more effective than standardizing all
configurations.
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Chapter 5

Increase of synchrony for the early
diagnosis of AD

This chapter aims to evaluate the discriminative power of the increase of synchrony in
the θ band presented in Chapter 4. To do that, a new ratio between different frequency
ranges is presented.

Aiming to study the increase of synchrony in the θ band, first an introduction is done.
Then Section 5.2 is devoted to present the methods used to compute the ratio, which
later in Section 5.3 it is applied on the data sets to check the discriminative power of the
increase of synchrony. In the last section of the chapter discussion is presented evaluating
the obtained results.

5.1 Introduction

One of the changes that AD cause on EEG signals is the perturbation of synchrony. This
change affects AD patients, as have been reported in Chapter 2. This change is that
there is a decrease of synchrony for AD patients when compared with healthy subjects.
Obtained results in Chapter 4 show consistency with the results presented in the literature,
and also present an increase of synchrony for AD patients when compared with healthy
subjects.

Frequency-dependent abnormalities in EEG synchrony in AD patients has been studied in
detail (Jeong, 2004; Dauwels et al., 2010b). Most of the studies have analyzed synchrony
changes in different frequency bands (δ, θ, α and β) (Stam et al., 2005), by analyzing
synchrony differences between different brain regions (Tóth et al., 2014), or by using
multivariate measures (Yi et al., 2014). These studies have mainly highlighted the decrease
of synchrony in α and β bands for AD patients (Koenig et al., 2005; Hsiao et al., 2013).

On the other hand, other researchers presented results using EEG which are consistent
with the finding of Chapter 4. Adler et al. (2003) found an increase of coherence between
electrodes T5 and T6 and Locatelli et al. (1998) also found an increase of synchrony for a
limited number of subjects who displayed severe cognitive problems. Both studies found
this increase in the θ band. Other studies using magnetoencephalography (MEG) also
found such increase of synchrony in the θ band for AD patients (Stam et al., 2006).

77
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A method enabling to use this increase of synchrony together with the well-known decrease
of synchrony in high frequencies is presented. With that aim, a ratio is proposed between
synchrony measures in different frequency ranges to improve the early diagnosis of AD. The
present study combines the ratio with the selection of specific frequency ranges in a highly
detailed analysis of all possible combinations, which clearly enhances the discrimination
between AD patients and healthy subjects.

5.2 Methods

Methods used in this chapter to compute synchrony measures have already been defined
in Chapter 4. In this study, however, a ratio is defined with synchrony values computed
in a different frequency range. Three different data sets are used to study the increase of
synchrony. These data sets are MCI Data Set, Mild AD Data Set 1 and Mild AD Data
Set 2, defined previously in Section 4.2. The set of synchrony measures used are the same
that have been used in Chapter 4 which have been defined in Section 4.3. Parameter
configuration presented in Section 4.5 for each measure is also used in this chapter.

5.2.1 Bandpass filtering

Signals are bandpass filtered using third order Butterworth filters, as defined in Section 4.4.
However, in this case two different sets of frequency ranges are defined for this study. All
the possible frequency ranges inside the θ band and the α band are used, defining two sets
of frequency ranges.

For the first set of frequency ranges (θ(f1, f2)), the starting frequency f1 varies from 4 to 7
Hz, and the widthW varies from 1 to 4. The maximum frequency of analysis (f2 = f1+W )
is limited to 8 Hz. A total of 10 frequency ranges are used for the study. These frequency
ranges are presented below:

W ∈ N[1, 4]


4− 5
4− 6 5− 6
4− 7 5− 7 6− 7
4− 8 5− 8 6− 8 7− 8


f1 ∈ N[4, 7]

For the second set of frequency ranges, the α band is analyzed (α(f3, f4)). In this case,
f3 varies from 8 to 12 Hz, and W varies from 1 to 5. The maximum frequency of analysis
(f4 = f3 +W ) is limited to 13 Hz. A total of 15 frequency ranges are used for this study.
These frequency ranges are presented below:

W ∈ N[1, 5]


8− 9
8− 10 9− 10
8− 11 9− 11 10− 11
8− 12 9− 12 10− 12 11− 12
8− 13 9− 13 10− 13 11− 13 12− 13


f3 ∈ N[8, 12]

Synchrony measures are computed in these frequency ranges and then used to compute
the ratio.
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5.2.2 Synchrony Ratio

To evaluate the difference between populations representing the increase of synchrony in
the θ band, the following ratio is defined by dividing a synchrony value in the θ band
(syncθ(f1, f2)) by a synchrony value in the α band (syncα(f3, f4)):

ρ =
syncθ(f1, f2)

syncα(f3, f4)
(5.1)

Ratio presented in Equation 5.1, aims to maximize the distance between AD patients
and healthy subjects, and therefore, make easier to distinguish between populations. As
presented in Section 4.5, an increase of synchrony has been discovered for AD patients
in the θ band for narrow bands. Therefore the synchrony in the θ band is placed in the
numerator of the ratio. On the basis of existing literature (Jeong, 2004; Dauwels et al.,
2010b; Vecchio et al., 2013) and the results presented in Section 4.5, we also know that
there is a decrease of synchrony for AD patients in the α band. Therefore the synchrony
in the α band is placed in the denominator increasing the value of ρ for AD patients.

The values syncθ(f1, f2) and syncα(f3, f4) refer to the synchrony values computed in
the θ band and the α band, respectively. Frequency ranges θ(f1, f2) and α(f3, f4) are
selected for each measure in order to maximize the difference between AD and healthy
subjects. Given this aim, the frequency range to be used in θ(f1, f2) is the one that presents
the highest synchrony mean value for AD patients in comparison with healthy subjects.
Therefore syncθ(f1, f2) is the synchrony value computed in that frequency range. The
same procedure is applied to define α(f3, f4). However, as we are looking for a decrease
of synchrony in AD patients in the α band, the frequency range used in α(f3, f4) is the
one that presents the minimum mean value for AD patients. By selecting the frequency
range θ(f1, f2) with higher mean value for AD patients and the frequency range α(f3, f4)
with lower mean value for AD patients, we are maximizing the differences between AD
and healthy subjects. Later on, this will make it easier to distinguish between these two
populations. This procedure designed to select θ(f1, f2) and α(f3, f4) is repeated for each
of the measures we used.

CR is computed using LDA as performed in Chapter 4. Again LOO procedure is used.
The mean success classification value in percentage, i.e. the CR, is obtained as a final
result. To evaluate the difference between populations, the statistical significance of the
differences between synchrony values is studied using the Mann-Whitney test.

5.3 Results using the synchrony ratio

The ratio (ρ) is used to improve the early diagnosis of patients with AD. Results presented
in this section show that measures which have an increase of synchrony in the θ band,
made AD patients easier to identify when compared to healthy subjects. Results for the
MCI Data Set are detailed in Section 5.3.1, results for the Mild AD Data Set 1 are shown
in Section 5.3.2 and results for the Mild AD Data Set 2 are presented in Section 5.3.3.
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Measure θ(f1, f2)
p-value
θ(f1, f2)

α(f3, f4)
p-value
α(f3, f4)

p-value
ρ

Correlation 4 - 8 0.0003 8 - 9 0.0102 0.6844

Coherence 5 - 6 0.2661 8 - 9 0.0470 0.0111

GC 4 - 8 0.0089 8 - 11 0.0132 0.4295

PC 6 - 7 0.0324 12 - 13 0.2406 0.0006

DTF 4 - 5 0.6289 12 - 13 0.0901 0.0022

ffDTF 4 - 5 0.6289 12 - 13 0.0872 0.0021

PDC 4 - 5 0.0256 8 - 13 0.6181 0.0300

dDTF 6 - 7 0.0144 12 - 13 0.0078 8.81× 10−7

OC 5 - 6 0.3534 8 - 10 0.0138 0.0277

PS 4 - 8 0.1347 8 - 10 0.0093 0.1746

Table 5.1: Obtained θ(f1, f2) and α(f3, f4) for each measure and p-values computed on
each frequency rate and using ρ. Results presented for the MCI data set.

Measure
CR (%)
θ(f1, f2)

CR (%)
α(f3, f4)

CR (%)
ρ

SE (%)
ρ

SP (%)
ρ

Correlation 70.00 65.00 53.33 36.36 63.16

Coherence 61.67 60.00 66.67 63.64 68.42

GC 61.67 63.33 53.33 59.09 50.00

PC 61.67 56.67 70.00 72.73 68.42

DTF 53.33 60.00 75.00 68.18 78.95

ffDTF 53.33 60.00 75.00 68.18 78.95

PDC 58.33 56.67 58.33 59.09 57.89

dDTF 70.00 61.67 83.33 81.82 84.21

OC 50.00 68.33 58.33 63.64 55.26

PS 60.00 70.00 55.00 54.55 55.26

Table 5.2: Obtained CR in θ(f1, f2) and α(f3, f4) frequency ranges and using ρ. Results
presented for the MCI data set. The three best results for this data set are shown in bold.
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5.3.1 Results MCI Data Set

Results obtained for the MCI Data Set are explained below. Table 5.1 presents the fre-
quency ranges used for each measure in the θ band (θ(f1, f2)) and α band (α(f3, f4)). This
table also show the p-value computed between the synchrony values of healthy subjects
and MCI patients in the different scenarios, the selected frequency range in the θ band,
the selected frequency range in the α band and using the ratio. Frequency ranges that do
not present any increase (θ band) or decrease (α band) of synchrony for MCI patients are
highlighted in blue.

Table 5.2 shows the CR obtained in the θ band (θ(f1, f2)) and α band (α(f3, f4)), the
CR obtained using the ρ and SE and SP obtained with the ρ. To facilitate the results
comparison, Figure 5.1 also shows a comparison between the CR obtained in θ(f1, f2), CR
obtained in α(f3, f4) and CR obtained using ρ.

Results shown in Table 5.2 confirm the increase of synchrony. Coherence, PC, DTF, ffDTF,
dDTF and OC obtain a higher CR using the ρ than the CR obtained in the θ(f1, f2) or
α(f3, f4) band. These results can be easily compared in Figure 5.1. PDC achieves the same
CR for the ρ than the CR obtained in the θ(f1, f2). Measures that obtain the best CR
are the same that present an increase of synchrony and that obtain a lower p-value, with
the exception of OC that presented a higher p-value when ρ is used. Best CR obtained
for this data set is 83.33% (SE 81.82% and SP 84.21%) obtained by dDTF. The second
and the third best results, obtained by DTF and ffDTF, are 75.00% (SE 68.18% and SP
78.95%). Other measures that achieve good classification results are PC with a CR of
70.00% and Coherence with a CR of 66.67%.
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Figure 5.1: Comparison between CR obtained in θ(f1, f2), CR obtained in α(f3, f4) and
CR obtained using the ρ. Results presented for the MCI Data Set.
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Figure 5.2: Box plots presenting the three best results obtained for the MCI data set.
Results in the θ(f1, f2) range, α(f3, f4) range and using the ρ are presented.

Presented results in Figure 5.2 represent the phenomenon that has been detailed previ-
ously. For the three best measures, i.e. DTF, ffDTF and dDTF, the box plots of the
synchrony values computed in the θ(f1, f2) range, the α(f3, f4) range and using the ρ are
shown. For the other measures the same box plots are presented in Appendix A. Results
presented in Figure 5.2 show that even though the frequency ranges in the θ band are se-
lected because there is an increase of synchrony for MCI patients, the differences between
the two populations are small, dDTF measure (Figure 5.2(g)), is the one that presented
the highest difference, which is consistent with the results presented in Table 5.1 where this
measure presented a small p-value. Results for α band present higher differences. In this
case the effect of decrease of synchrony for MCI patients is clearly visible. Finally, results
obtained when using the ρ show that the method presented in this chapter increases the
distance between the two distributions. Therefore, this makes easier to classify subjects
into one of the groups, as the results of the CR have shown.
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Figure 5.3: Comparison between CR obtained in θ(f1, f2), CR obtained in α(f3, f4) and
CR obtained using the ρ. Results presented for the Mild AD Data Set 1.

5.3.2 Results Mild AD Data Set 1

Results obtained for the Mild AD Data Set 1 are presented below. Table 5.3 presents the
frequency ranges used for each measure in the θ band (θ(f1, f2)) and α band (α(f3, f4)). P-
values computed between the synchrony values of Mild AD patients and healthy subjects
in different scenarios are shown; the selected frequency range in the θ band, the selected
frequency range in the α band and using the ρ. Frequency ranges that do not present any
increase (θ band) or decrease (α band) of synchrony for Mild AD patients are highlighted
in blue.

Table 5.4 presents the CR obtained in the θ band (θ(f1, f2)) and α band (α(f3, f4)), the
CR obtained using the ρ and SE and SP obtained with the ρ. To facilitate the results
comparison, Figure 5.3 also presents a comparison between the CR obtained in θ(f1, f2),
CR obtained in α(f3, f4) and CR obtained using ρ.

Results detailed in Table 5.3 only present Correlation as the measure in which there is
no decrease of synchrony in the α band. For this measure the standard α band is used.
Frequency range selected for OC in the α band is also 8 - 13 Hz. However, for this measure
this is the selected frequency as the most discriminative between Mild AD patients and
healthy subjects. Obtained results show that almost all measures that have an increase
and a decrease of synchrony for Mild AD patients, obtain a lower p-value when the ρ is
used instead of the frequency ranges θ(f1, f2) and α(f3, f4). DTF is the only measure that
does not present a lower p-value for the ρ. This result emphasizes the idea that the ratio
helps to distinguish between AD patients and healthy subjects. As results reported in
Section 5.3.1, results presented for this data set show that the frequency ranges in which
the increase of synchrony in the θ band was found are narrow band frequency ranges.
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Measure θ(f1, f2)
p-value
θ(f1, f2)

α(f3, f4)
p-value
α(f3, f4)

p-value
ρ

Correlation 4 - 5 0.4998 8 - 13 0.6244 0.8220

Coherence 5 - 6 0.0179 10 - 11 0.0002 4.86× 10−5

GC 4 - 5 0.0003 10 - 11 0.2286 0.0001

PC 4 - 5 0.0091 9 - 10 0.0550 8.50× 10−5

DTF 6 - 7 3.41× 10−6 12 - 13 0.1094 4.41× 10−6

ffDTF 4 - 5 1.71× 10−5 12 - 13 0.0155 9.31× 10−6

PDC 4 - 5 3.88× 10−6 12 - 13 0.0072 1.20× 10−6

dDTF 4 - 5 0.0001 12 - 13 0.0155 1.78× 10−6

OC 4 - 6 0.2088 8 - 13 0.0206 0.0005

PS 5 - 6 0.0457 8 - 11 0.0002 2.74× 10−5

Table 5.3: Obtained θ(f1, f2) and α(f3, f4) for each measure and p-values computed on
each frequency rate and using ρ. Results presented for the Mild AD Data Set 1.

Measure
CR (%)
θ(f1, f2)

CR (%)
α(f3, f4)

CR (%)
ρ

SE (%)
ρ

SP (%)
ρ

Correlation 56.10 53.66 12.20 5.88 16.67

Coherence 68.29 68.29 80.49 76.47 83.33

GC 75.61 58.54 75.61 70.59 79.17

PC 63.41 56.10 82.93 76.47 87.50

DTF 87.80 63.41 87.80 82.35 91.67

ffDTF 73.17 73.17 80.49 76.47 83.33

PDC 75.61 73.17 78.05 64.71 87.50

dDTF 73.17 65.85 82.93 58.82 100.00

OC 56.10 63.41 78.05 88.24 70.83

PS 65.85 70.73 78.05 70.59 83.33

Table 5.4: Obtained CR in θ(f1, f2) and α(f3, f4) frequency ranges and using ρ. Results
presented for the Mild AD Data Set 1. The three best results for this data set are shown
in bold.
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Figure 5.4: Box plots presenting the three best results obtained for the Mild AD data set
1. Results in the θ(f1, f2) range, α(f3, f4) range and using the ρ are presented.

Obtained values show that for the θ(f1, f2), all frequency ranges presented a bandwidth of
1 Hz, being 4 - 5 Hz, 5 - 6 Hz and 6 - 7 Hz the frequency ranges selected as the ones that
present higher synchrony for the Mild AD patients. Values obtained for the α band also
present narrow band frequency ranges. In this case, again a bandwidth of 1 Hz is selected
together with bandwidths of 3 and 5 Hz. Frequency ranges selected for the bandwidth of
1 Hz are 9 - 10 Hz, 10 - 11 Hz and 12 - 13 Hz, being this last one (12 - 13 Hz) the one
selected more times.

Table 5.4 confirms the previous results. Almost all measures, except Correlation, GC and
DTF present a higher CR using the ρ than the CR obtained in the θ(f1, f2) or α(f3, f4)
range. Specifically, GC and DTF achieved the same CR using the ρ than the CR obtained
in the θ(f1, f2). Figure 5.3 facilitates the CR comparison between measures. Measures that
present better CR are the same that presented an increase of synchrony and that presented
a lower p-value. Best CR obtained for this data set is 87.80% (SE 82.35% and SP 91.67%)
obtained by DTF. The second and the third best results are 82.93% obtained by PC (SE
76.47% and SP 87.50%) and dDTF (SE 58.82% and SP 100%). Other measures that
achieve good classification are PDC, OC and PS with a CR of 78.05%. Results presented
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for DTF in Table 5.3 shown higher p-value for the synchrony values obtained using the ρ
than the values obtained in the θ(f1, f2) range. However, the best CR is achieved with this
measure. It has to be taken into account that the p-value obtained in the θ(f1, f2) range
is significantly small (3.41×10−6). P-value obtained using the ρ is also small (4.41×10−6)
but not as the presented in the θ(f1, f2) range.

Figure 5.4 present the box plots of the synchrony values computed in the θ(f1, f2) band,
the α(f3, f4) band and using the ρ. Results for the three best measures, i.e. PC, DTF
and dDTF, are presented. For the other measures the same box plots are presented in
Appendix A in Figure A.3 and in Figure A.4. Results presented in Figure 5.4 show a clear
increase of synchrony for the three measures in the narrow bands inside the θ band. In
addition, there is a clear decrease of synchrony in the α(f3, f4) range for two of the three
measures (PC (Figure 5.4(b)) and dDTF (Figure 5.4(h))). DTF (Figure 5.4(e)) presents
a lower median value but a higher variance for the values of Mild AD patients than for
healthy subjects. For the three measures, box plots obtained for the ρ present a higher
difference between the two population than any of the other frequencies ranges.

5.3.3 Results Mild AD Data Set 2

Results using the ρ obtained for the Mild AD Data Set 2 are presented next. Table 5.5
shows the frequency ranges used for each measure in the θ band (θ(f1, f2)) and α band
(α(f3, f4)). P-values computed between the synchrony values of Mild AD patients and
healthy subjects in different scenarios are shown; the selected frequency range in the θ

band, the selected frequency range in the α band and using the ρ. Frequency ranges that
do not present any increase (θ band) or decrease (α band) of synchrony for Mild AD
patients are highlighted in blue.

Measure θ(f1, f2)
p-value
θ(f1, f2)

α(f3, f4)
p-value
α(f3, f4)

p-value
ρ

Correlation 4 - 8 0.0050 8 - 9 0.0167 0.5001

Coherence 5 - 6 0.6887 9 - 10 0.0108 0.0081

GC 4 - 8 0.1565 12 - 13 0.0158 0.1623

PC 7 - 8 0.0195 8 - 13 0.1202 0.1250

DTF 6 - 7 0.8681 10 - 11 0.0007 0.0648

ffDTF 4 - 8 0.4518 10 - 11 0.0011 0.1299

PDC 5 - 6 0.9922 11 - 12 0.0176 0.2075

dDTF 7 - 8 0.0431 11 - 12 0.8835 0.0947

OC 4 - 8 0.1299 9 - 13 0.0769 0.2957

PS 4 - 8 0.1509 9 - 10 0.0648 0.1509

Table 5.5: Obtained θ(f1, f2) and α(f3, f4) for each measure and p-values computed on
each frequency rate and using ρ. Results presented for the Mild AD Data Set 2.
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Measure
CR (%)
θ(f1, f2)

CR (%)
α(f3, f4)

CR (%)
ρ

SE (%)
ρ

SP (%)
ρ

Correlation 62.00 64.00 54.00 39.29 72.73

Coherence 46.00 72.00 68.00 60.71 77.27

GC 56.00 68.00 62.00 60.71 63.64

PC 68.00 56.00 60.00 53.57 68.18

DTF 44.00 70.00 60.00 57.14 63.64

ffDTF 54.00 72.00 58.00 50.00 68.18

PDC 34.00 66.00 50.00 42.86 59.09

dDTF 60.00 12.00 58.00 46.43 72.73

OC 58.00 60.00 64.00 67.86 59.09

PS 54.00 66.00 20.00 17.86 22.73

Table 5.6: Obtained CR in θ(f1, f2) and α(f3, f4) frequency ranges and using ρ. Results
presented for the Mild AD Data Set 2. The three best results for this data set are shown
in bold.

Table 5.6 presents the CR obtained in the θ band (θ(f1, f2)) and α band (α(f3, f4)), the
CR obtained using the ρ and SE and SP obtained with the ρ. To facilitate the results
comparison, Figure 5.5 also presents a comparison between the CR obtained in θ(f1, f2),
CR obtained in α(f3, f4) and CR obtained using ρ.

Results detailed in Table 5.5 show five measures which do not present increase of synchrony
in the θ band, i.e. Correlation, GC, ffDTF, OC and PS, and one measure which does not
present decrease of synchrony for the Mild AD patients in the α band, which is PC.
For all these measures the standard ranges are used. Results presented for this data set
show that only for Coherence a lower p-value is achieved for the ρ, for all other measures
obtained p-values using the ρ are higher than the obtained in the θ(f1, f2) or α(f3, f4)
ranges. Frequency ranges in which the increase of synchrony in the θ band for the Mild
AD patients is found, are frequency ranges with a bandwidth of 1 Hz, which are 5 - 6 Hz,
6 - 7 Hz and 7 - 8 Hz. On the other hand, the decrease of synchrony for AD patients find
in the α band are also find in narrow band with a band width of 1 Hz (8 - 9 Hz, 9 - 10
Hz, 10 - 11 Hz, 11 - 12 Hz and 12 - 13 Hz), but OC find the frequency range in which the
differences between synchrony for AD patients and healthy subjects are higher in the 9 -
13 Hz, a frequency range close to the α band.

CR results presented in Table 5.6 show that there is only one measure that present an
increase of the CR when the ρ is used, in comparison with the CR obtained in the θ(f1, f2)
and α(f3, f4) range. This measure is OC. However, this measure did not present an increase
of synchrony for the Mild AD patients. Therefore the standard θ band is used. This results
comparison can be easily seen in Figure 5.5, where bars presenting the CR obtained using
the ρ are always lower than the obtained for the other CR, with the exception of OC. As
can be seen in Table 5.6, measures that presented the best CR are Coherence, OC and
GC. Best CR using the ρ obtained for this data set is 68.00% (SE 60.71% and SP 77.27%)
obtained by Coherence. The second best result it is 64.00 % obtained by OC, with 67.86%
of SE and 59.09% of SP. The third best result it is obtained with GC and achieves a CR
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Figure 5.5: Comparison between CR obtained in θ(f1, f2), CR obtained in α(f3, f4) and
CR obtained using the ρ. Results presented for the Mild AD Data Set 2.

of 62.00% (SE 60.71% and SP 63.64%).

As for the other data sets, the box plots of the synchrony values computed in the θ(f1, f2)
band, the α(f3, f4) band and using the ρ are computed. These are shown in Figure 5.6.
Results for the three measures that achieve the higher CR using the ρ are shown. Re-
sults presented in Appendix A in Figure A.5 and in Figure A.6, show the results for the
other measures. Results detailed in Figure 5.6 show that for GC (Figure 5.6(d)) and OC
(Figure 5.6(g)) no increase of synchrony is found, therefore they use the standard θ band.
Results presented for the α(f3, f4) range are consistent with previous results found, due
to the decrease of synchrony presented for the Mild AD patients. Results obtained using
the ρ do not help to enlarge the differences between populations as happened with the
other data sets. Results presented in Appendix A show that measures that in Table 5.5
presented a narrow band frequency range of 1 Hz, present higher synchrony values for
Mild AD patients. However, this increase is not significant enough to help to distinguish
between AD patients and healthy subjects.

5.3.4 Results comparison

Presented results show different outcome for the three data sets. Obtained results with the
MCI Data Set and the Mild AD Data Set 1 present a clear improvement of the CR and the
p-value when ρ is used. However Mild AD Data Set 2 does not present such improvement.
Obtained results show consistence with previous results presented in the literature (Jeong,
2004; Dauwels et al., 2010a; Vecchio et al., 2013), and at the same time confirm previous
studies (Gallego-Jutglà et al., 2012a; Gallego-Jutglà & Solé-Casals, 2013) that presented
a increase of synchrony for AD patients in the θ band.
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Figure 5.6: Box plots presenting the three best results obtained for the Mild AD data set
2. Results in the θ(f1, f2) range, α(f3, f4) range and using the ρ are presented.

Results obtained for the three data sets show that in the narrow bands inside the θ band,
synchrony measures present an increase of value for AD patients, whether MCI or Mild
AD patients. For the MCI Data Set and the Mild AD Data Set 1, the frequency range
4 - 5 Hz is the one that appears most discriminative in the θ band, (three times for the
MCI Data Set and six for the Mild AD Data Set 1). For these data sets, the frequency
range 5 - 6 Hz is the second that appears the most, twice for each data set, followed for
the frequency range 6 - 7 Hz. Results obtained for the Mild AD Data Set 2 show that
only some measures present this increase of synchrony. For this data set there are two
frequency ranges that appear the most, these are 5 - 6 Hz and 7 - 8 Hz, being selected
each of those two times by different measures.

On the other hand, the decrease of synchrony in the α band is also presented in narrow
bands frequency ranges. For MCI Data Set and Mild AD Data Set 1, the frequency range
12 - 13 Hz appears as the most discriminative, being selected four times for both data
sets. Results presented for the Mild AD Data Set 2 only present the frequency range of
12 - 13 Hz being selected one time. For this data set the frequencies ranges that appear
frequently are 9 - 10 Hz, 10 - 11 Hz and 11 - 12 Hz, being selected twice each one. Even
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though these are different, they are also found in narrow bands frequency range of 1 Hz.

As presented in Chapter 4, Mild AD Data Set 2 is the most difficult to classify. In this
section obtained results show the same tendency. Results presented for the MCI Data Set
and the Mild AD Data Set 1 show that the ability to distinguish between healthy subjects
and AD patients is increased when the ρ is used in comparison with the results obtained
in the classical EEG frequency bands. In addition, in some cases using the ρ improves
the CR obtained in the optimal frequency band which is defined in Chapter 4. Figure 5.7
presents the results comparison between the CR obtained using the ρ and CR obtained in
the optimal frequency range (results presented in Chapter 4). Results for the three data
sets are shown.

As presented in Figure 5.7(a), results for the MCI Data Set show that the three best
measures obtained using the ρ (DTF, ffDTF and dDTF), the CR obtained using the ρ
overcomes classification results obtained in the optimal frequency range. The best CR
obtained using the ρ, 83.33% obtained with dDTF, clearly improves the CR obtained for
synchrony measures in the optimal frequency range, and also improve the 81.58% obtained
with RP in the frequency range of 2 - 8 Hz. Therefore the result of 83.33% obtained using
the ratio is the best result obtained for the MCI data set. Results obtained for the Mild
AD Data Set 1 (Figure 5.7(b)), show that four measures obtain a better CR using the
ρ than the CR obtained in the optimal frequency range. These measures are Coherence,
PC, dDTF and OC. Even though these measures present an improvement of the CR, the
best CR obtained for a synchrony measure for the Mild AD Data Set 1, 95.12% obtained
with DTF in the frequency range of 5 - 6 Hz, it is not improved. Finally, results obtained
in Figure 5.7(c) for the Mild AD Data Set 2 show that obtained results using the ρ do not
improve results in the optimal frequency range for each measure.

5.4 Discussion

In this chapter the increase of synchrony found in AD patients has been studied. With
that aim, a ratio has been presented that compares the synchrony in different frequency
bands. Presented results for the MCI Data Set and the Mild AD Data Set 1 show that
the ρ improves classification of the individuals as either AD patients or healthy subjects.
The p-values obtained are smaller for the ρ than for the synchrony measures alone. The
results obtained for the Mild AD Data Set 1 present higher CR than the results obtained
for the MCI Data Set. Results obtained for the Mild AD Data Set 2 do not present this
tendency, neither improvement of CR nor a decrease of the p-value.

Our results show that for the MCI Data Set a CR of 83.33% is achieved and a CR of
87.8% is obtained for Mild AD Data Set 1. Previous studies using these data sets and
synchrony measures achieved comparable results. In (Dauwels et al., 2009a, 2010a) the
same results were achieved using the MCI Data Set, but in this case using two measures as
input features to a LDA classifier. When these studies used only one measure as a single
feature, the best CR decreased to 70.0 %. For the Mild AD Data Set 1 a CR of 85.0 %
was achieved using two measures and LDA, but using only one measure the CR decreased
to 82.9 % in (Dauwels et al., 2009a). The two obtained values in (Dauwels et al., 2009a)
were lower than the ones obtained in this study.

Different results were obtained in (Dauwels et al., 2011) where a combination of RP and
other measures were used. The best result in (Dauwels et al., 2011) for MCI Data Set was
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Figure 5.7: Results comparison between the CR obtained in the optimal frequency range
and using the ρ.
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78.33 % using Stochastic Event Synchrony and the RP in the θ band as input features into
a LDA classifier. Therefore, for the MCI Data Set, the ratio clearly improves the CR and
simplifies the classification system. However, for the Mild AD Data Set 1, using RP in the
θ band and ffDTF as features, the best CR obtained was 95.12 %. This result improves
our best CR for this data set. Nevertheless, it is important to note that: (i) input space is
two-dimensional (a vector of two features as input for the classifier), whereas we have only
one-dimensional space and (ii) features used to obtain the best CR were different for both
data sets, whereas we use the ratio in both data sets. Keeping in mind that the objective
is to deal with the early diagnosis of AD, the proposed ratio ρ yields good classification
performance on both EEG data sets, which is interesting for medical applications.

On the other hand, earlier studies were mainly focused on the decrease of synchrony for
AD patients in higher frequencies (Jeong, 2004; van der Hiele et al., 2007); only a few
studies have presented an increase of synchrony in the θ band. In our study, such increase
of synchrony in the θ band is confirmed for Mild AD patients of the Mild AD Data Set 1,
and an increase of synchrony in narrow bands is also found in MCI subjects. This increase
is also present for some measures of the Mild AD Data Set 2. However, this increase is
not as significant as the others to help to distinguish between AD patients and healthy
subjects. Other earlier studies (Adler et al., 2003; Babiloni et al., 2006; Knyazeva et al.,
2010, 2013; Kramer et al., 2007) also presented an increase of synchrony in the θ band,
usually in a specific region like the posterior cingulate gyrus area, or the area covered
by the electrodes P3-P4, C3-C4, F3-F4 and FP1-FP2. Locatelli et al. (1998) found an
increase of synchrony in the θ band only for a limited number of subjects who displayed
severe cognitive problems. Other studies (Koenig et al., 2005) reported an increase of
global synchrony in the θ band using a multivariate measure. Some of the above studies
highlight the decrease of synchrony in the α band, instead of the increase in θ band. Our
results show an increase on the global synchrony value in the θ band.

Comparing results from different studies remains a difficult task. The most important
issue is the high variability among the different methods used in the studies. Few studies
consider multiple synchrony measures. Usually only one synchrony measure is considered
in each paper, which is often different in each study. Besides, experimental conditions
between studies may be different, e.g., different recording conditions, electrode placements,
and/or patient inclusion criteria. This last condition may be a key factor to explain the
variability of results found in the literature.



Chapter 6

Classification improvement
through feature selection

This chapter presents a feature selection method to improve the early diagnosis of AD.
As presented in the previous chapters, different features have been computed. However,
the simple combination of those may lead to overfitting. In order to reduce it, a feature
selection method it is presented and tested with the data sets containing MCI and Mild
AD patients.

The organization of this chapter can be summarized as follows. First an introduction to
feature selection is presented. Then, in Section 6.2 the new proposed method for feature
selection is detailed, and in Section 6.3 this method is used aiming to improve the rate at
which AD patients are distinguished from healthy subjects. Once results are shown, their
statistical significance is presented in Section 6.4. Last section of this chapter is devoted
to the discussion of the obtained results.

6.1 Introduction to feature selection

Feature selection is a specific term inside the main term dimension reduction. Research on
this field dates back to the 60’s. Since then the research in dimension reduction has been a
challenging field. Nowadays machine learning and data acquisition advances demand the
processing of data with thousands of features. An example is microarray processing. Using
dimension reduction helps us to select the features that are more relevant to describe the
data.

In real-world situations, the relevant features that may be used to explain a target are
an unknown parameter. To achieve a good representation of the domain, usually many
candidate features are introduced into the systems. Unfortunately, many of these features
are either partially or completely irrelevant/redundant to the target concept (Dash & Liu,
1997). A relevant feature is neither irrelevant nor redundant to the target concept; an
irrelevant feature does not affect the target concept in any way, and a redundant feature
does not add anything new to the target concept and may affect negatively the performance
of associated classification methods (John et al., 1994; Rückstießet al., 2011). Therefore,
applying dimension reduction to the number of irrelevant/redundant features drastically
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reduces the running time of a learning algorithm and yields a more general concept. This
helps in getting a better insight into the underlying concept of a real-world classification
problem (Koller & Sahami, 1995; Kohavi & Sommerfield, 1995).

Nowadays, there are two major approaches for dimension reduction, feature extraction
and feature selection (Levner et al., 2006). Feature extraction is based in the reduction of
the existing features by applying a transformation to these, obtaining a lower dimensional
space which better represents the target concept (Levner et al., 2006). An example of
transformation to apply feature extraction it is PCA (Duda et al., 2001). On the other
hand, feature selection is a field of study that consists in find automatically a subset of
features such that this new subset, is more relevant to the target concept (Kohavi & John,
1997).

Feature selection is also necessary in order to limit model complexity to the minimum
necessary to explain the data. Attempts to improve prediction performance on training
data by increasing model complexity may lead to data overfitting. If we use a high number
of features to describe the data, what it could happen is that the accuracy obtained using
training data is high, but this high performance does not extend to new test data; the
model does not generalize to new unknown cases (Guyon & Elisseeff, 2003). On the other
hand, overfitting also occurs when a model is excessively complex, such as having too
many parameters relative to the number of observations, and it describes random error or
noise instead of the underlying the real relationship that there is on the data (Guyon &
Elisseeff, 2003; Brown et al., 2012).

The presented methodology in Chapter 4 shows that a high number of features are com-
puted to characterize the EEG data of AD patients and healthy subjects. For each pa-
tient eleven measures are computed and for each measure a total number of 435 frequency
ranges are computed. When used alone, some of these measures presented good results
in the differentiation between patients suffering AD and healthy subjects. With the re-
sults achieved, one could think about the possibility to increase the dimensionality of the
features used in the classifier, i.e. use more features, and by testing all the possible com-
bination of features until find an optimal. In this case we would introduce an important
overfitting to the results because we could find pair of measures that perfectly explain
the data set. However, when new data will be used, results would show that the selected
features are not as optimal as could be.

In order to minimize the problem of overfitting and to select the features that better
differentiate between AD patients and healthy subjects, feature selection is done. Next
section presents a new feature selection method used to select the best frequency range for
each of the measures used, and then sort the measures in the order that better describe the
data set. This new method is based in a previous one call Orthogonal Forward Regression
(OFR). However, a variation to select the best frequency range is added to fulfill the
presented methodology in this work.

6.2 Methods for feature selection

This section presents the feature selection method used to increase the performance in the
classification of AD patients and healthy subjects. First the original OFR algorithm is
presented, then a methodology to control overfitting is detailed and finally the proposed
variation of OFR is presented.
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6.2.1 Orthogonal Forward Regression

OFR is an iterative algorithm that sorts the variables candidates based on the relevance
with the output. The traditional OFR algorithm is the one presented in (Chen et al.,
1989). This algorithm considers the observation space, with dimension N , in which the
output that has to be modeled is a vector yp, and each of the variables is represented by a
vector zi, i = 1 . . . p; being p the number of parameters that will be used by the model and
N the total number of subjects (i.e. number of AD patients + number of healthy subjects).
This algorithm selects the input feature zi that best correlates with the desired output,
and projects the remaining features in the null space of the selected one. This procedure
is repeated for all input features. The algorithm sorts the input features according to their
correlation with the output. The OFR algorithm is summarized as presented in Algorithm
6.1 (Dreyfus et al., 2008).

Algorithm 6.1: Orthogonal Forward Regression

i. Compute the correlation between all input features zi and the output to be
modeled yp as:

r2yp,zi = cos2θi =
(yp·zi)2

(yp·yp)(zi·zi)

ii. Define the selected feature (xj) as the one that maximize the correlation
between zi and y

p:

xj = zi : max(r2yp,zi)

iii. Project yp and all other zi onto the null space orthogonal to the selected
feature xj using Gram-Schmidt orthogonalization

y′p = yp − yp·xj

xj ·xj
xj

z′i = zi − zi·xj

xj ·xj
xj for i = 1 ... p

iv. Remove xj from the list of input feature zi.

v. Return to (i) until all features have been selected.

Figure 6.1 presents an example of feature selection using OFR for N = 2 and p = 4. In
this example an iteration of the algorithm is presented, working with four vectors acting as
an input features zi and one output vector yp modeling the desired output. For simplicity
the representation in two dimensions is presented. However, this algorithm presents no
limitation in the number of dimensions to be use.

Used features are first presented in Figure 6.1(a). This figure displays four features zi
pointing to different directions in the space. Output to be modeled, i.e. yp, it is then
displayed in Figure 6.1(b). The first step defined in point (i) of the Algorithm 6.1, is to
compute the correlation between the desired yp and all existing zi. This correlation is
presented in Figure 6.1(c). In this figure, the angles between the features and the output
are represented. The smallest angle, therefore the highest correlation, with the output is
obtained with z2. As defined in step (ii) of the Algorithm 6.1, this feature is kept as x2
(presented in Figure 6.1(d)), and then all resting features are projected onto the null space
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Figure 6.1: Example of one iteration of the OFR algorithm. (a) Initial input features zi.
(b) zi and the output to be modeled yp. (c) Step (i) of the Algorithm 6.1. (d) Step (ii) of
the Algorithm 6.1. (e - h) Step (iii) of the Algorithm 6.1.

orthogonal to x2. The Gram-Schmidt orthogonalization of the input features zi is shown
from Figure 6.1(e) to Figure 6.1(g), presenting the corresponding orthogonal feature z′i in
each figure. Finally, the last step is applying the orthogonalization to the output vector
yp as displayed in Figure 6.1(h). In this step, vector x2 will be removed from the list of
input features and the procedure will be repeated with the resting z′i.

6.2.2 Orthogonal Forward Regression with random probe

The OFR algorithm presented in Section 6.2.1 sorts the input features based on their
relevance. However, when this system is used, even though we give the selected features
by the OFR algorithm to a classifier, we will introduce an overfitting to the system.
Therefore, in this work, in order to control overfitting a variation of the algorithm is
applied. This variation selects the optimal number of features depending on the data
characteristics. This variation is known as random probe method (Stoppiglia et al., 2003).

Random probe method refers to a method in which random generations of data are used
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to verify that the analyzed data is more significant than random data. To compute the
OFR with a random probe, one first creates a set of random probes. Then, one defines
a risk level that corresponds to the risk that a feature might be kept despite being less
relevant than the probe. The algorithm to compute the OFR with random probe it is
summarized as presented in Algorithm 6.2 (Stoppiglia et al., 2003).

Algorithm 6.2: Orthogonal Forward Regression with random probe

i. Define M sets of random probes.

ii. Compute the OFR algorithm M times. Use a different random probe each
time as input feature zi.

iii. Compute the cumulative distribution function of the position achieved by
the probe each time.

iv. Select a level of risk., e.g. 5%, 10%...

v. Select features that are ranked in a lower position than the level of risk
defined.

Figure 6.2 presents an example of feature selection using OFR with random probe. For
each figure a different random probe is given to the algorithm. Vectors presenting the
features to be classified, zi, are the same that have been used in Figure 6.1. Therefore,
as presented in Section 6.2.1, if the OFR algorithm is applied, the first selected feature
will be z2. In examples presented in Figures 6.2(a) and 6.2(c), the random probe which is
represented with the red vector, will not change this selection because the angle between
the random probe and yp it is bigger than the angle between z2 and yp. However, as
presented in Figure 6.2(b), in some cases random probe may be more correlated with yp

than any of the zi, in any of the iterations of the algorithm. Therefore in this case, the
random data will be selected before than any of the other features, which it will mean that
our system it is affected by noise. Once all the M random probes have been introduced
to the OFR algorithm, the ranking of the positions of the random probes is computed
to check the positions that the random probe achieved. Finally, with the position of the
random probe, it is obtained which of the features are more relevant than the percentage
of random data defined.
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Figure 6.2: Example of application of the OFR with random probe algorithm. A different
random probe is used in each figure, represented by the red vector.
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6.2.3 Orthogonal Forward Regression with random probe and Fre-
quency Pre-Selection

The OFR with probe algorithm has been used in previous studies to select the best features
to compute classification on EEG data sets (Vialatte et al., 2005a,b). However, in this
study a variation of the OFR algorithm with probe is used. This variation is Orthogonal
Forward Regression with random probe and Frequency Pre-Selection (OFRFPS). The
main difference between OFR algorithm with probe and the variant implemented in this
work lies in how the feature selection is performed. Whereas the OFR algorithm with
probe presented in Section 6.2.2 sorts the given inputs and selects the optimal number of
features to use, OFRFPS preselects the input features that are given to the OFR algorithm
in each iteration.

As detailed in Chapter 4, a new frequency approach is presented to improve the early
diagnosis of AD. However, if all features were given to a classifier overfitting would oc-
cur as presented in Section 6.1. On the other hand, optimal selected frequency range for
each measure presents high correlation when compared. Therefore if the OFR algorithm
is applied using those features as zi, redundant information presented by correlated val-
ues will be lost during the orthogonalization, and no new information will be included.
Consequently, a new OFR algorithm is presented to deal with these issues.

Each measure presents a set of f frequency ranges, as detailed in Section 4.4.1. The pre-
selection is used to select the values V computed in one of these f frequency range as
zi. This process is repeated for each measure. The separability criterion J(F, F +W ),
defined in Equation 4.27, is used to evaluate the frequency range that presents the highest
differences between AD and healthy patients, and therefore is used as zi. Then the OFR
algorithm with all selected zi is applied. On the first iteration, once the first feature xj
has been selected, the orthogonalization is not applied to the computed zi. In this new
approach, the orthogonalization is applied to values V computed in all f frequencies ranges
of each measure. This process is repeated until all features have been selected. The new
proposed OFRFPS is summarized as presented in Algorithm 6.3.

This new implementation of the OFR algorithm helps to reduce the redundant information,
and therefore the overfitting, of the data. As in each iteration the input features are re-
selected, if during the orthogonalization a feature is completely decorrelated based in some
others information, it will not be selected in the next iteration.

6.2.4 Feature selection for improving classification rate

Methods used to compute the CR using feature selection are the same that have already
been presented in Chapter 4. The 11 measures presented in Section 4.2, RP, Correla-
tion, Coherence, Granger Causality measures, OC and PS are used with the parameter
configuration, i.e. window length and Granger order, presented in Section 4.5.

Once the OFRFPS algorithm is applied, the list of features that better characterize each
data set is extracted. Then this list of features are used to compute the CR using LDA
and LOO, the same methods that are presented in Section 4.4.4.

In the implementation of the OFRFPS algorithm computed in this work, random probes
presented a special characteristic. Random probes are not generated using random data.



6.2. Methods for feature selection 99

Algorithm 6.3: Orthogonal Forward Regression with random probe and frequency
pre-selection

i. DefineM sets of random probes with the same size of the used measures, i.e.
with the same number of subjects (N) and frequencies ranges (f).

ii. Compute Ji(F, F +W ) for all f and for all p measures (including the used
random probe).

iii. Define the input features zi as the values Vi where the highest J(F, F +W )
it is achieved for each measure:

zi = Vi(F, F +W ) : max(Ji(F, F +W )) for i = 1 ... p

iv. Compute the correlation between all input features zi and the output to be
modeled yp as:

r2yp,zi = cos2θi =
(yp·zi)2

(yp·yp)(zi·zi)

v. Define the selected feature (xj) as the one that maximize the correlation
between zi and y

p:

xj = zi : max(r2yp,zi)

vi. Project yp onto the null space orthogonal to the selected feature xj :

y′p = yp − yp·xj

xj ·xj
xj

vii. Project Vi(F, F +W ) onto the null space orthogonal to the selected feature
xj :

V ′
i (F, F +W ) = Vi(F, F +W )− Vi(F,F+W )·xj

xj ·xj
xj for F, F +W = 1 ... f

i = 1 ... p

viii. Remove xj from the list of input feature zi.

ix. Return to (ii) until all features have been selected.

x. Repeat from step (ii) to (ix) M times. Use a different random probe each
time.

xi. Select a level of risk., e.g. 5%, 10%...

xii. Select features that are ranked in a lower position than the level of risk
defined.
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Instead, surrogate probes are generated with the same characteristics as the original data,
with a different measure (or a synchrony measure or RP) used to generate each probe. The
values of a specific measure for the two populations (AD patients and control subjects)
are mixed together, and then labels for each class are assigned randomly. This process is
repeated 500 times for each measure. Therefore 5.500 probes are computed and added to
the feature set to quantify the degree of overfitting.

6.3 Results using feature selection

Feature selection is used to improve the early diagnosis of patients with AD. Results
presented in this section show that once the algorithm of the OFRFPS it is used, the
CR improves as more features are used. Results for the MCI Data Set are presented in
Section 6.3.1, results for the Mild AD Data Set 1 are detailed in Section 6.3.2 and results
for the Mild AD Data Set 2 are shown in Section 6.3.3.

6.3.1 Results MCI Data Set

Results obtained for the MCI Data Set are shown below. Table 6.1 presents the measures
in the order that are selected by the OFRFPS algorithm. Selected OFRFPS frequency
ranges and the corresponding standard frequencies are also presented in the same table.

Algorithm
Order

Features
OFRFPS Selected

frequency
ranges (Hz)

Standard
frequency
bands (Hz)

1 RP 2 - 8 4 - 8

2 Correlation 3 - 8 4 - 8

3 Coherence 1 - 6 1 - 4

4 PDC 1 - 3 1 - 4

5 ffDTF 9 - 29 13 - 30

6 OC 24 - 25 13 - 30

7 GC 1 - 30
1 - 4, 4 - 8,
8 - 13, 8 - 13

8 DTF 4 - 5 4 - 8

9 PC 1 - 10 1 - 4, 4 - 8

10 PS 28 - 30 13 - 30

11 dDTF 1 - 2 1 - 4

Table 6.1: Features and frequency ranges selected by the OFRFPS algorithm for MCI
Data Set. The last column presents the standard frequency bands corresponding to the
measures.
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Results detailed in Table 6.1 show that the first measure selected by the OFRFPS al-
gorithm is RP. Therefore, RP is the best feature for differentiating MCI patients from
healthy subjects in the frequency range 2 - 8 Hz. This result is consistent with the ob-
tained in Section 4.5.1, where the best CR is obtained with RP. However, in Section 4.5.1
the frequency range defined as optimal it is 2 - 9 Hz. This change is due to the parame-
ter selection, that in Section 4.5.1 is only based on the best CR achieved, and using the
OFRFPS it is based on the maximum value of J(F, F +W ).

The first synchrony measure that appears in the OFRFPS results is Correlation. It ap-
pears in the range of 3 - 8 Hz, close to the 1 - 8 Hz defined as optimal frequency range
in Section 4.5.1. However, using the OFRFPS it appears to be more discriminative than
when it is used as a single feature, because in this results appears as the second most dis-
criminative feature whereas when used alone it appeared as the third most discriminative
feature. dDTF, which it is the synchrony measure that achieved the best CR when the
optimal frequency range is used, in this case appears in the last position of the ranking.
This result may indicate that some of the features selected in lower positions made dDTF
lost part of its redundant information during the orthogonalization process. None of the
selected frequency ranges presents the same results than any of the standard frequency
ranges. Correlation and PDC are the only ones that present a close value to standard
frequency ranges, 3 - 8 Hz and 1 - 3 Hz respectively. Any of the others is close to a
standard band.

In order to study the improvement in the CR presented from including more of the selected
features as input features to a classifier, the evolution between the obtained CR and the
number of features used is examined. It is also examined the improvement of performance
by computing the CR using the features and frequency range selected by the OFRFPS
algorithm, and the same features in the standards frequency bands. SE and SP are also
evaluated for the different numbers of input features. Figure 6.3 presents this relationship
for MCI subjects. Figure 6.3(a) represents the CR evolution, comparing the CR obtained
with selected OFRFPS frequency ranges and the CR computed with the standards fre-
quency bands. Vertical lines indicate the percentage of noise introduced in the data set
using the probe method. Figure 6.3(b) presents the evolution of SE and SP in comparison
with the number of features used.

Results obtained using the OFRFPS selected features in Figure 6.3(a) present a clear
improvement as more features are used in the classification. Using one measure obtained
CR is 75.00%. When more features are used, CR achieves a 86.67% when using five
features, with a level of significance lower than 15%, but then when the sixth feature is
used (which is OC as presented in Table 6.1), CR drops down its value to 81.67%. However,
when seven or more features are used the CR ascends again to high CR values, achieving
95.00% when the eleven features are used. However when using eleven features the level of
significance is lower than 50%. Figure 6.3(a) presents that CR obtained with the OFRFPS
selected features is higher than CR obtained in the standard bands. Only when there is the
decrease in the sixth feature CR using OFRFPS is lower than the obtained in the standard
bands. CR obtained in the standard bands starts with a CR of 70.00%, and increases its
value to a maximum of 85.00% when five features are used, but then if more features are
used, the obtained CR does not improve its value but decreases. Values presented for
SE and SP in Figure 6.3(b) present the same evolution. There is an improvement in the
values obtained as more features are used for the classification. Interestingly, SP starts
being higher than SE. Then when OC is used SE has the same value and SP drops down
his value and the global CR. Finally, when nine, ten or eleven features are used SP present



102 Chapter 6. Classification improvement through feature selection

1 2 3 4 5 6 7 8 9 10 11
70

75

80

85

90

95

Number of features used in classification

C
R

(%
)

 

 

CR − OFRFPS
CR − Standard band

 CR improvement:                 

5%
10%
15%, 20% and 30%
40%
50% and 75%

 Percentage of noise:            

(a) CR evolution

1 2 3 4 5 6 7 8 9 10 11
50

55

60

65

70

75

80

85

90

95

100

Number of features used in classification

C
R

(%
)

 

 
SE − OFRFPS
SP − OFRFPS
SE − Standard band
SP − Standard band

(b) SN and SP evolution

Figure 6.3: Results of applying the selected OFRFPS features for the MCI Data Set.

again higher values than SE. This result indicates that the decrease of the CR is due to
the difficult of OC in differentiating healthy subjects.

6.3.2 Results Mild AD Data Set 1

Results obtained for the Mild AD Data Set 1 are shown in this section. Table 6.2 presents
the measures in the order that are selected by the OFRFPS algorithm. Selected OFRFPS
frequency ranges and the corresponding standard frequencies are also presented in the
same table.
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Algorithm
Order

Features
OFRFPS Selected

frequency
ranges (Hz)

Standard
frequency
bands (Hz)

1 RP 4 - 7 4 - 8

2 GC 1 - 2 1 - 4

3 Correlation 9 - 10 8 - 13

4 PS 25 - 26 13 - 30

5 PC 13 - 14 13 - 30

6 dDTF 2 - 6 4 - 8

7 Coherence 5 - 6 4 - 8

8 OC 11 - 14 8 - 13

9 ffDTF 6 - 19 8 - 13

10 DTF 20 - 21 13 - 30

11 PDC 1 - 2 1 - 4

Table 6.2: Features and frequency ranges selected by the OFRFPS algorithm for Mild AD
Data Set 1. The last column presents the standard frequency bands corresponding to the
measures.

Results presented in Table 6.2 show that the first measure selected by the OFRFPS algo-
rithm is RP. Interestingly, the frequency range which has been selected is 4 - 7 Hz, which
is the same that is presented as optimal in Section 4.5.2. Therefore, RP and the frequency
range of 4 - 7 Hz it is presented as the best feature for differentiating Mild AD patients
from healthy subjects in this data set. The first synchrony measure that appears in the
OFRFPS results is GC. It appears in the range of 1 - 2 Hz, again is the same that is pre-
sented as optimal in Section 4.5.2. Results presented in Section 4.5.2 showed that GC is
the second synchrony measure that achieved the best CR. The first synchrony measure is
DTF. In this case GC has been presented more discriminative than DTF, which achieved
the tenth position. The third best feature is Correlation, which as happens in results for
the MCI Data Set presented in Section 6.3.1, is presented as one of the three best features
to explain this data set. Results presented in Chapter 4 show that high correlation is
found in the optimal frequency range for the Granger measures (results presented in Fig-
ure 4.10, pag. 73). During the orthogonalization process this information is eliminated.
This may explain the lower positions achieved for some of the Granger measures such as
ffDTF, DTF and PDC which achieved high CR when used alone, but in this join analysis
they are ranked in the lasts positions. Regarding the frequencies ranges selected for the
OFRFPS algorithm, any of these presents the same results than any of the standards
frequency bands. RP is the only that present a close value to standard α band with 4 - 7
Hz. Any of the others is close to a standard band.

The evolution between the obtained CR and the use for classification of different number of
features select by the OFRFPS algorithm is examined. Figure 6.4 presents this evolution
for the Mild AD Data Set 1. Figure 6.4(a) represents the CR evolution, comparing the
CR obtained with selected OFRFPS frequency ranges and the CR computed with the
standards frequency bands. Vertical lines indicate the percentage of noise introduced in
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Figure 6.4: Results of applying the selected OFRFPS features for the Mild AD Data Set
1.

the data set using the probe method. Figure 6.4(b) shows the evolution of SE and SP in
comparison with the number of features used.

Results obtained using the OFRFPS selected features in Figure 6.4(a) present a clear
improvement as more features are used in the classification. When RP alone is used,
CR is 97.56%, the same value that is achieved in Section 4.5.2. Then when GC it is used
together with RP the CR drops down to 95.12%, which is the lowest value obtained. Using
three features the classification improves again to 97.56%, and then when four features are
used, the CR reaches the values of 100% with a level of significance bigger than 10% and
lower than 15%. The value of 100% persists when more features are used in classification.
CR obtained using the standards frequency bands do not improve the previous CR. When
two features are used is the only moment that the two CR have the same value. For
all other number of features, the CR obtained using the OFRFPS parameters are always
higher. CR obtained using the standard bands, present different increases and decreases of
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Algorithm
Order

Features
OFRFPS Selected

frequency
ranges (Hz)

Standard
frequency
bands (Hz)

1 OC 17 - 18 13 - 30

2 PS 14 - 15 13 - 30

3 DTF 10 - 11 8 - 13

4 Correlation 1 - 2 1 - 4

5 dDTF 26 - 27 13 - 30

6 GC 17 - 18 13 - 30

7 RP 10 - 11 8 - 13

8 Coherence 27 - 28 13 - 30

9 PC 23 - 29 13 - 30

10 ffDTF 15 - 16 13 - 30

11 PDC 16 - 17 13 - 30

Table 6.3: Features and frequency ranges selected by the OFRFPS algorithm for Mild AD
Data Set 2. The last column presents the standard frequency bands corresponding to the
measures.

the CR value, which may demonstrate that the ensemble use is not optimal. The highest
value obtained it is 97.56% when five, six, seven and nine features are used, which is the
same value that using the selected features has been achieved with one or three features.

Results presented for SE and SP in Figure 6.4(b) show that the value of SP is always at
100%, and the value that changes it is the SE when the OFRFPS features are used. This
may indicate that adding more synchrony measures can characterize Mild AD patients
better.

6.3.3 Results Mild AD Data Set 2

This section presents the results obtained for the Mild AD Data Set 2 using the OFRFPS
algorithm. Table 6.3 shows the measures in the order that are selected by the algorithm.
Selected OFRFPS frequency ranges and the corresponding standard frequencies are also
presented in the same table.

Results presented in Table 6.3 show that the first measure selected by the OFRFPS al-
gorithm is OC in the frequency range of 17 - 18 Hz. Interestingly, for this data set the
first selected measure it is a synchrony measure, whereas for the MCI Data Set and the
Mild AD Data Set 1 RP appears as the first feature. In Section 4.5.3 the frequency range
defined as optimal for OC it is 16 - 21 Hz. In this case the selected OFRFPS frequency
range is a narrow band frequency range of 1 Hz, which is inside the optimal frequency
range. The second selected feature presented in Table 6.3 is PS in the frequency range of
14 - 15 Hz. This frequency range is different to the defined as optimal in Section 4.5.3.
The third and fourth OFRFPS features are respectively DTF in the frequency range of
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Figure 6.5: Results of applying the selected OFRFPS features for the Mild AD Data Set
2.

10 - 11 Hz and Correlation in the frequency range of 1 - 2 Hz. Results show in Table 4.6,
Section 4.5.3 pag. 70, present this four features as the four which obtained the best CR
when used individually, presenting a performance in the classification of 76.00% for OC
and PS, and a 74.00 % for DTF and Correlation. However, frequency ranges presented
are not the ones defined as optimal. For OC and DTF the OFRFPS frequency range is
a narrow band frequency range inside the optimal. For PS and Correlation the OFRFPS
frequency range is found outside the optimal frequency range. Measures found in the fifth
and sixth positions are a couple of Granger Measures, dDTF and GC respectively. Then
RP appears in the seventh position in the frequency range of 10 - 11 Hz. For this data set,
results presented for RP are not as good as the reported for the other data sets, in which
RP achieved the best CR when used individually and is selected as the first measure for
the OFRFPS algorithm.

The evolution between the obtained CR and the use for classification of different number



6.3. Results using feature selection 107

of features select by the OFRFPS algorithm is also examined. Figure 6.5 presents this
evolution for the Mild AD Data Set 2. Figure 6.5(a) represents the CR evolution, compar-
ing the CR obtained with selected OFRFPS frequency bands and the CR computed with
the standards frequency bands. Vertical lines indicate the percentage of noise introduced
in the data set using the probe method. Figure 6.5(b) presents the evolution of SE and
SP in comparison with the number of features used.

Results obtained using the OFRFPS selected features in Figure 6.5(a) show that there
is an improvement of the CR when more of the OFRFPS features are used as a input
features to a classifier. When OC alone it is used CR is equal to 68.00%. Then when
PS it is used together with OC the CR achieved it is 76.00%. Including DTF to the
classifier improves the CR to 88.00%, but when Correlation and dDTF are used the CR
drops down to 86.00%, with a percentage of significance lower than 15%. The use of GC
improves the CR to 92.00%, which is a maintained when RP it is included in the used
features. The best CR obtained for this data set it is 96.00% using eight and nine features,
with a percentage of significance lower than 30%. The last CR obtained is 94.00% when
ten or eleven features are used, and with a percentage of significance lower than 75%.
This is a small decrease in the CR, a 2% that represents only one subject of the total 50.
CR obtained using the standards frequency bands do not improve the previous CR. When
one or two features are used a 60.00% is obtained. When three or four features are used,
the CR achieves its maximum value obtained of 74.00%, but then when more features are
added there is a decrease of the CR presenting a stable final value of 70.00%. Results
presented in Figure 6.5(a) show that CR obtained using the OFRFPS frequency ranges
are better than the obtained using the standards frequency bands. Results presented for
SE and SP in Figure 6.5(b) show again that including more features helps to improve the
performance. In this case, however, there is a clear improvement of the value of SE, which
when eight features are used reaches the value of 100%, and the value of SP present stable
values between 86.36% and 90.91%.

6.3.4 Results comparison

Results shown for the three data sets present a clear improvement of the CR when the
OFRFPS parameters are used. However, the selected OFRFPS configuration for each
data set it is different. Results shown for the MCI Data Set and the Mild AD Data Set
1 present RP as the most discriminative feature, ranking it in the first position for both
data sets. Selected frequency ranges for the RP in each data set are similar, selecting 2 - 8
Hz in the MCI Data Set and 4 - 7 Hz in the Mild AD Data Set 1. These frequency ranges
are where the effect of slowing of EEG presents the higher differences, and both are close
to the θ band, presenting higher values for the AD patients. Results detailed for the Mild
AD Data Set 2 present RP in the seventh position, and the selected frequency range is 10
- 11 Hz. This frequency range is also affected for the effect of slowing of EEG, however
healthy subjects present higher values than the AD patients. Results obtained using RP
for the Mild AD Data Set 2 in this chapter are consistent with the obtained in Chapter 4,
where RP presented low CR values.

On the other hand, when synchrony measures are used obtained CR is improved for all
data sets. For the three data sets Correlation appears in the top four measures, being the
only measure that it is used in the four initial positions for all data sets. However, the
OFRFPS selected frequency ranges do not present the same tendency, because selected
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Figure 6.6: Modulus of the correlation coefficient computed between all the measures for
each data set. Frequencies selected by the OFRFPS algorithm are used.

frequency range are different for each data set. Even though all the other synchrony
measures used present a high variability, some similitude can be found between Mild AD
Data Set 1 and Mild AD Data Set 2. In both data sets some measures achieved different
but close position. PS it is the fourth selected feature of the Mild AD Data Set 1 and
the second for the Mild AD Data Set 2. Other measures, such as dDTF, Coherence and
ffDTF achieved positions that varied only one number between data sets. Finally PDC
appears for both data sets as the least meaningful feature, being the last selected in both
cases.

To check the redundant information that the selected features provide, correlation be-
tween measures is computed as in Section 4.6. However, this time the OFRFPS selected
frequency ranges are used. The modulus of the results are presented in Figure 6.6. We
observe that correlation values are now lower than those presented in Figure 4.10 (pag.
73). Figure 6.6(a) shows the obtained results for the MCI Data Set. For this data set
the highest correlation is obtained between PDC and DTF (|r| = 0.72). These values
are ranked in the lasts positions of the OFRFPS features, therefore small redundancy is
introduced. All the other values are smaller than 0.70. Results obtained for the Mild AD
Data Set 1 presented in Figure 6.6(b) show an important decrease compared to the ones
depicted in Figure 4.10. Now, only the correlation between PDC and dDTF presents a
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high value (|r| = 0.85), in contrast with the six pairs obtained without using OFRFPS.
All other pairs of correlation presents lower values that |r| < 0.671, demonstrating the
decrease of redundant information. For the Mild AD Data Set 1, the existing high cor-
relation between PDC and dDTF it is not meaningful, because PDC is found as the last
measure in the OFRFPS algorithm, and the CR of 100% is obtained previously. Finally,
results presented in Figure 6.6(c) show the correlation values obtained for the Mild AD
Data Set 2. For this data set, the high correlation between pairs of Granger measures,
PC-dDTF and PDC-ffDTF, found in Section 4.6 present not changes. However, a decrease
of the maximum values is found for the other measures. As it happened with the Mild AD
Data Set 1, this high correlation is not meaningful, because these measures are ranked in
the lasts positions of the OFRFPS algorithm.

6.4 Statistical analysis

Results shown in Section 6.3 present that there is an improvement of the CR obtained when
more features are used into the classifier. However, as the data sets used are small, the
same subset used to compute the OFRFPS is the subset used to compute the classification.
This of course, introduces an important overfitting to the system.

To deal with the problem of compute the overfitting introduced to the system, the random
probe method is used to study the level of noise that is introduced to the system during
the feature selection procedure. Moreover, to evaluate the level of overfitting introduced
to the system due to the methodology used, another experiment is done using random
data. In this experiment computed measures are substituted for random data following a
normal distribution (N(0, 1)). The CR is computed with the same procedure as defined
in previous sections. As the three used data sets present different number of subjects,
this procedure is repeated for each data set using the same number of subjects in the
data simulation. The computation of the CR using random data is repeated 1.000 times.
Results presenting a comparison between the CR obtained for each data set and the mean
and the standard deviation of the CR obtained using the random data and are presented
in Figure 6.7. In this figure, the levels of noise defined for the random probe method are
also presented.

Results presented in Figure 6.7 show that for the MCI Data Set (Figure 6.7(a)) and
the Mild AD Data Set 2 (Figure 6.7(c)) CR results using random data achieve better
classification results than the obtained using the measures computed for each specific data
set. On the other hand, results presented in Figure 6.7(b) for the Mild AD Data Set 1
show that the CR obtained achieve better classification performance than the random data.
Results presented in Figure 6.7 suggest that as the random data is classified achieving a
100% in all the figures there is a high overfitting in the presented results. Therefore, a
cross-validation method has to be used in the feature selection procedure to avoid such
overfitting.

Presented results in Figures 6.7(a) and 6.7(c) also show that when the number of features
used is lower than three (for the Mild AD Data Set 2) or four (for the MCI Data Set),
CR obtained with the random data is not much more different than the CR obtained with
the OFRFPS parameters. Therefore the level of noise is small for those configurations.
This result it is consistent with the presented for the random probe levels of noise, being
the CR obtained below the first level of noise (5%) the ones that do not present a big
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Figure 6.7: CR comparision between the OFRFPS features and random data.
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Figure 6.8: CR comparison, using random data with different number of subjects and the
OFRFPS method without cross-validation.

difference. Then when the percentage of noise defined by the random probe is high, for
example 20% the CR obtained with the random data achieves values close to 100% of
performance, presenting that this results are highly overfitted.

Another conclusion can be extracted from results presented in Figure 6.7. CR results
presented for the random data in the MCI Data Set and in the Mild AD Data Set 2,
present a lower increase that those presented for the Mild AD Data Set 1. This result is
due to the total number of subjects contained in the data base as presented in Figure 6.8.
This figure presents the CR evolution for random data that simulates different number of
subjects in the data base. Figure 6.8 shows that as more subjects are used in the random
data base, results more close are to the 50% of performance. Interestingly, there is always
an increase of the performance when more features are used, presenting the efficiency of
the algorithm to select the optimal features, even though these are random. Figure 6.8
also present that with the methodology used, a database containing a high number of
subjects would have to be used to present results more significant than the noise.

6.5 Discussion

In this chapter, it has been investigated the join use of synchrony measures and a frequency
power measure in the whole set of frequency ranges existing between 1 and 30 Hz. Using
this two types of measures, we are only modeling two of the three effects that AD cause
on EEG data as detailed in Chapter 2. The third type of change that AD causes on EEG
signals is usually modeled by complexity measures. However, this type of measures present
a high correlation with RP as presented in (Dauwels et al., 2011). As we use OFRFPS,
each extracted feature is orthogonalized with respect to the previous extracted ones. Since
RP have been selected for two of the three data sets, as the foremost discriminative fea-
ture, complexity measures would be decorrelated on this basis. The results obtained in
this chapter in comparison with the ones obtained in Chapter 4 show that using a single
measure, the classification is not as robust as can be with more attributes, and that a
combination of RP and synchrony measures results in better classification performance.
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Furthermore, the use of specific frequency ranges for each measure improves the classifica-
tion performance in comparison with the results obtained in the classical frequency bands
(δ, θ, α and β).

Obtained results show that combining two of the well-known changes that AD causes
on EEG data can help to improve the ability to distinguish between AD patients and
healthy subjects. The effect of the slowing of EEG, characterized by RP appears to
be more discriminative than the changes in synchrony for the MCI Data Set and the
Mild AD Data Set 1. These results agree with the results of different studies presented
in (Vecchio et al., 2013), where the effect of slowing of EEG can be used to predict
the progression from MCI to dementia. On the other hand, combining this effect with
the changes of synchrony, modeled with Coherence or Correlation for example, it has
been as presented that increase the ability of differentiation between AD patients and
healthy subjects. Changes of synchrony on EEG signals have been related with changes
in functional connections between cortical regions (Jeong, 2004), and brain cortical and
subcortical atrophy (Babiloni et al., 2011). Therefore, presented results may suggest
that combining the different effects that patients with AD present can make easier to
differentiate between a patient with AD an another healthy.

Presented results in Section 6.3, show that there is an improvement of the CR obtained
when more features are used into the classifier. However, as the data sets used are small,
the same subset used to compute the OFRFPS is the subset used to compute the classi-
fication. This of course, introduces an overfitting to the system. For the MCI data set,
using the eleven measures as input features for the classifier, a CR of 95.00% is achieved
the best result obtained with this data set. However, the level of significance using random
probes is 50% as presented in Figure 6.3(a), and has been confirmed for Figure 6.7(a).
This indicates that these results are overfitted. For the Mild AD Data Set 1, a CR of 100%
was achieved using four features. The level of significance at which this value was obtained
is less than 15% (presented in Figure 6.4(a)), which indicates that those measures are able
to clearly identify AD patients in an advanced stage of the disease. Results presented
of the Mild AD Data Set 2 obtained a CR of 96.00% and the level of significance using
random probes is between 20% and 30 % as presented in Figure 6.5(a). Presented results
in Figure 6.7(c) also show an important overfitting in this data set.

Finally, obtained results may indicate that MCI is a stage difficult to identify in comparison
with the Mild AD stage. In the case of MCI, patients start to present some memory
impairments but preserve other cognitive domains, whereas in the Mild AD stage subjects
begin to display some cognitive deficits. On the other hand, differences observed between
Mild AD 1 and Mild AD 2 data sets show that the Mild AD Data Set 2 is more difficult
to classify. These two data sets both contain Mild AD patients and healthy subjects.
However, as presented in the data set description in Section 4.2, the healthy subjects used
in both data sets are different. Subjects used as healthy in the Mild AD Data Set 1 are
healthy volunteers and had normal EEGs, whereas that healthy subjects used in the Mild
AD Data Set 2 are subjects with memory complaints and suspected AD which went to
the hospital and a neurologist determined if they had AD or not. This issue may explain
the differences obtained using the two data sets, and show that the results obtained with
the Mild AD Data Set 2 clearly show that used methods are adequate for the diagnosis of
AD.



Chapter 7

Feature selection using
cross-validation

This chapter is devoted to improve results presented in Chapter 6. Results obtained in the
previous chapter achieved high classification results. However, it has been showed that
some of these are overfitted. To deal with this problem this chapter details the use of
cross-validation during the feature selection to reduce overfitting.

This chapter presents an introduction on Section 7.1 and then different methodologies are
described. Section 7.2 applies the LOO cross-validation to the features selection, and the
k-fold validation is then applied in Section 7.3. Last section of this chapter is devoted to
discussion.

7.1 Introduction

Results presented using feature selection clearly improves the ratio in which AD pa-
tients and healthy subjects are classified. However, as presented in Section 6.4, using
the OFRFPS method improves the CR when using the computed features and also when
using random noise.

The presented overfitting is due to the small number of subjects in the data bases. To
deal with this shortcoming the usage of cross-validation has been defined in Section 4.4.4.
Usually cross-validation is applied in the classification step, a part of the subjects are used
for training the system and the other part are used to validate the system.

Cross-validation presented in this chapter is applied in the same way. During the OFRFPS
algorithm, the cross-validation is done by leaving a group of subjects out of the study.
This present some variability on the input data and show if the presented approach is
stable along the variations. Once the cross-validation has been used and the features had
been selected, the classification is done as in Chapters 4, 5 and 6, by doing LOO cross-
validation using all subjects except one to train a classifier, and the remaining subject is
used to evaluate the performance.

113
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7.2 Feature cross-validation using Leave-One-Out

Presented results in Chapter 6 show the need of use feature cross-validation in the feature
selection process. In order to study stability across subjects who present the selected
OFRFPS features, an experiment is carried out using feature selection through LOO
cross-validation. This cross-validation is performed by leaving a different subject out of
the study in each iteration, with the aim of checking whether the selected features are
stable all along the data set. Therefore, the OFRFPS algorithm is computed in each data
set the same number of times that subjects the data base has, leaving one different subject
out each time. Figure 7.1 presents the results obtained for the three data sets. In this
figures, for each measure, blue column stands for the % of times that each measure is
selected in the same order as by the OFRFPS algorithm and green column stands for the
% of times that a feature is selected in the same order and with the same frequency range
as by the OFR algorithm. Features are listed in the same order as that obtained using
the OFRFPS algorithm.

Results presented in Figure 7.1(a) show the obtained results for the MCI Data Set. In
this figure is shown that RP is the most stable feature selected by the 90.00% of the
iterations as the first feature. Then Correlation and Coherence are selected an 86.67%
and an 83.33% respectively. For all the other features there is variability in the percentage
of feature stability, varying from the 30.00% obtained with DTF and PS to the 71.67%
obtained with ffDTF. Values obtained for the stability of frequency selection follows the
same pattern that the selection of feature. The three first measures are the higher and then
it changes depending on the feature. Results for the Mild AD Data Set 1 are presented in
Figure 7.1(b), for this data set RP is selected as first feature for all the iterations, achieving
a 100.00% of feature stability. Then GC, Correlation and PS are stable across the variation
of subjects, achieving 85.37%, 87.80% and 90.24% respectively, and then other features
present different percentages values. As for the MCI Data Set, results presented for the
Mild AD Data Set 1, present high stability in the frequency selection for the first three
features, but then there is a decrease of the value for other measures. Results for the Mild
AD Data Set 2 are presented in Figure 7.1(c). This figure present a lower stability in the
percentage of times that a feature is selected being PDC, the last of the features selected
by the OFRFPS, the one that is presented as most stable with a value of 86.00%. The
second that presents more stability it is OC, ranking a value of 84.00%. Measures that
are ranked between second and sixth positions, i.e. PS, DTF, Correlation, dDTF and
GC, present a percentage of stability lower or equal to 50.00%. This result suggests that
there is a high variability between subjects, and that these are divided into two groups.
Interestingly, this data set present high similitude between the percentage of ranking the
feature and the frequency range which in the first five measures, present the same value
or lower only a 2.00%.

Results at hand show that there is stability in the feature selection, when then the OFRFPS
algorithm is repeated leaving one subject out each time. This result suggest that if cross-
validation is applied, it may affect more at the random data than at the computed mea-
sures, and therefore CR of the random data will be drooped down when cross-validation
will be used.

Once the cross-validation is used, for the MCI Data Set the selected features are the same
that have been defined in Table 6.1 (pag. 100). Therefore the use of LOO cross-validation
do not affects the performance of the classification. Results presented for the Mild AD Data
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(b) Mild AD Data Set 1
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(c) Mild AD Data Set 2

Figure 7.1: Results of computing the LOO feature cross-validation in the OFRFPS algo-
rithm. Percentage of stability is presented for each data set. Features are presented in the
same order than the OFRFPS select each.

Set 1 are similar to those presented in Table 6.2 (pag. 103). When LOO cross-validation
is applied for this data set, the order of the selected features is the same than the one
presented in Table 6.2. However, selected frequency range present a small difference after
applying cross-validation. Measures ranked in positions eight (OC), nine (ffDTF) and ten
(DTF), changed the selected frequency range. OC enlarged the frequency range from 11 -
14 Hz to 11 - 17 Hz. ffDTF reduced the frequency range from 6 - 19 Hz to 18 - 19 Hz and
DTF changed the frequency range from 20 - 21 Hz to 25 - 26 Hz. Selected features for the
Mild AD Data Set 2 are the same that have been presented in Table 6.3 (pag. 105), being
selected without using cross-validation. The only results that present some variation when
using LOO cross-validation are for Mild AD Data Set 1. These results are consistent with
results shown in Figure 7.1(b), when lasts positions of the OFRFPS algorithm showed low
percentage of selection, whereas high percentage of selection are obtained for the other
data sets.

Selected features using LOO cross-validation are used to discriminate between AD patients
and healthy subjects. Figure 7.2 presents the CR obtained after applying the features
selected by LOO cross-validation (in blue), and also applying LOO cross-validation to
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Figure 7.2: CR comparison between the OFRFPS features and random data. Features
used to compute the classification are selected using LOO cross-validation.

simulated data (in red). For this simulation also 1.000 realizations of random data are
performed. Obtained results for each data set are presented. Presented results show that
the curves describing the CR obtained with the AD data do not descent in comparison with
the ones obtained in Chapter 6. Results presented for the MCI Data Set (Figure 7.2(a))
and for the Mild AD Data Set 2 (Figure 7.2(c)) still present a smaller value than the mean
value obtained with random data. However, using LOO cross-validation the distance
between CR obtained using random data and the CR obtained using the features has
decreased. Results presented in Figure 7.2(b) for the Mild AD Data Set 1 show that these
results are more significant than the noise. CR obtained for the Mild AD Data Set 1, even
though has presented some changes in the parameter selection, still achieving a 100% of
classification.

Figure 7.2 presents the effect that cross-validation has created to the random data. If
information presented in this figure is compared with the one presented in Figure 6.7, is
easy to check that the maximum value obtained for the classification of random data in
that figure is 100% with a really small variance, whereas results presented in Figure 7.2
achieves a mean value of 95%.

7.3 Feature cross-validation using k-fold

Results shown in the previous section using LOO cross-validation presented a decrease of
the values achieved by the random data. However, results still presenting some overfitting.
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MCI Data Set

Algorithm
Order

Features
Frequency
ranges (Hz)

20-fold
Features

20-fold
freq. ranges (Hz)

5 ffDTF 9 - 29 ffDTF 9 - 30

6 OC 24 - 25 GC 18 - 25

7 GC 1 - 30 OC 24 - 25

8 DTF 4 - 5 dDTF 5 - 6

9 PC 1 - 10 PC 7 - 8

10 PS 28 - 30 PS 11 - 12

11 dDTF 1 - 2 DTF 10 - 11

Mild AD Data Set 1

Algorithm
Order

Features
Frequency
ranges (Hz)

20-fold
Features

20-fold
freq. ranges (Hz)

6 dDTF 2 - 6 OC 24 - 26

8 OC 11 - 14 dDTF 2 - 6

9 ffDTF 6 - 19 ffDTF 8 - 12

Mild AD Data Set 2

Algorithm
Order

Features
Frequency
ranges (Hz)

20-fold
Features

20-fold
freq. ranges (Hz)

11 PDC 16 - 17 PDC 1 - 2

Table 7.1: Differences between results of the OFRFPS algorithm without cross-validation
and using 20-fold cross-validation. Differences between configurations are presented.

In order to reduce the overfitting the k-fold cross-validation is used in this section together
with the OFRFPS algorithm.

Aiming to use the maximum number of subjects contained in the data set, the 10-fold
and 20-fold are used. Another approach such as 5-fold could be used. However, as the
total number of subjects for each data base is small, using the 5-fold cross-validation would
suppose lose the 20% of the subjects. This high loss of subjects would make not significant
the results.

7.3.1 Feature cross-validation using 20-fold

The 20-fold cross-validation is used to select the features that are more stable along the dif-
ferent iterations of the OFRFPS algorithm. Selected features using 20-fold cross-validation
are similar to the ones obtained without using cross-validation presented in Table 6.1, Ta-
ble 6.2 and Table 6.3 for MCI Data Set, Mild AD Data Set 1 and Mild AD Data Set 2
respectively. Table 7.1 present only the differences in the configuration obtained when
20-fold cross-validation is used.

Results presented in Table 7.1 show that the data set that presents higher variability



118 Chapter 7. Feature selection using cross-validation

1 2 3 4 5 6 7 8 9 10 11
65

70

75

80

85

90

95

Number of features used in classification

C
R

(%
)

(a) MCI Data Set

1 2 3 4 5 6 7 8 9 10 11
70

75

80

85

90

95

100

Number of features used in classification

C
R

(%
)

(b) Mild AD Data Set 1

1 2 3 4 5 6 7 8 9 10 11
65

70

75

80

85

90

95

100

Number of features used in classification

C
R

(%
)

(c) Mild AD Data Set 2

Figure 7.3: CR comparison between the CR obtained using 20-fold cross-validation fea-
tures (in blue), features selected without cross-validation (in black) and random data (in
red).

in the results when using 20-fold cross-validation is the MCI Data Set. For this data
set, some measures such as ffDTF, PC and PS appear in the same position that when
cross-validation is not used but in different frequency ranges. OC and GC features have
interchanged position 6 and position 7, changing the selecting frequency range for GC.
DTF and dDTF, had also interchanged positions, presenting that these two measures
may obtain similar values for MCI patients, because when one of these is selected in the
eighth position, the other one is selected as the last. Results presented for the data sets
containing Mild AD patients present small changes in the configurations. For the Mild
AD Data Set 1 only two features have interchanged positions, dDTF and OC, whereas
ffDTF has changed the selected frequency range. Last results presented correspond to the
Mild AD Data Set 2, which present all the features in the same order than the obtained
without cross-validation, nevertheless the frequency range of the last selected feature PDC
has changed.

CR is also tested using the 20-fold cross-validation selected features. Results for the three
data sets are presented in Figure 7.3. For each data set in blue is presented the CR
obtained using the 20-fold cross-validation features, in black is presented the CR obtained
for the features without cross-validation and in red it is presented the mean CR obtained
after applying the 20-fold cross-validation to random data. For this simulation 1.000 sets of
random data are simulated and classified. Comparison between the CR obtained using the
20-fold cross-validation features and the features without cross-validation is not clear for
Figure 7.3(b) and Figure 7.3(c), because the two CR lines are the same. For Figure 7.3(c),
results are the same for all the positions except for the last. This differences are consistent
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with the results presented in Table 7.1, where only small changes are presented.

Results presented in Figure 7.3 for the three data sets present a clear decrease of the
CR obtained using random data in comparison with the obtained without cross-validation
(presented in Figure 6.7) that reached the 100%. When using cross-validation, the best
CR obtained using random data is close to 88% for the Mild AD Data Set 1. CR obtained
for the other data sets is higher than 85%. Comparing all these CR it can be seen that
whereas the CR of the features has only decrease in the MCI Data Set when using 20-fold
cross-validation, results for the random data have clearly descend. Therefore, that using
cross-validation the statistical significance of the results has increased. On the other hand,
almost all obtained CR using 20-fold cross-validation are higher than the mean value of
CR using random data. Therefore, results for MCI Data Set and Mild AD Data Set 2 still
achieving the same results that random data, but present a lower overfitting.

Feature cross-validation using 10-fold

The 10-fold cross-validation is used to select the features that are more stable along the
different iterations of the OFRFPS algorithm. Differences between the configuration ob-
tained for each data set are presented in Table 7.2. In this case more changes are presented
than when the 20-fold is used.

Results presented in Table 7.2 for the MCI Data Set present that almost all the features
presented (only DTF and PC do not), the position that is selected by the algorithm
when the 10-fold cross-validation is used is the same that when cross-validation it is not
used, nevertheless selected frequency ranges are different. For the MCI Data Set only the
first and the second features are stable to cross-validation. Coherence and PDC which
achieved the third and the fourth position, present a frequency range that is close to
the selected without cross-validation. Results presented for the Mild AD Data Set 1
present that the first four features are the more stables, being equal to the configuration
obtained in Chapter 6. Features obtained in the position five and above, present not stable
values neither in the position achieved or the frequency ranges selected. Results obtained
for the Mild AD Data Set 2 present also different configurations when the 10-fold cross-
validation is used. For this data set only OC is stable at the cross-validation. Interestingly,
Correlation is selected in the second position, PC is selected in the third positions and PS
is selected in the fourth.

The CR is computed using the 10-fold cross-validation features. Results in blue are pre-
sented in Figure 7.4. The same figure present the CR obtained without cross-validation
(black in the figure) and the mean and the standard deviation of the CR obtained for ran-
dom data also applying the 10-fold cross-validation (red in the figure). For this simulation
1.000 sets of random data are simulated and classified.

Presented results in Figure 7.4 show a clear decrease of the mean CR obtained with
the random data. Therefore, the level of overfitting has clearly been reduced with this
procedure. However, at the same time, the CR obtained with the feature has decrease
in comparison with the results obtained without cross-validation. Results presented in
Figure 7.4(a) show that the CR obtained using the 10-fold cross-validation features is the
same that the obtained without, until the fourth feature is used. When the fifth feature
is used, the CR obtained using cross-validation maintains its value. Best value obtained
with this data set is a CR of 88.33% using six features. In this point the computed results
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MCI Data Set

Algorithm
Order

Features
Frequency
ranges (Hz)

10-fold
Features

10-fold
freq. ranges (Hz)

3 Coherence 1 - 6 Coherence 1 - 9

4 PDC 1 - 3 PDC 2 - 3

5 ffDTF 9 - 29 ffDTF 8 - 19

6 OC 24 - 25 OC 17 - 18

7 GC 1 - 30 GC 27 - 28

8 DTF 4 - 5 PS 8 - 9

9 PC 1 - 10 PC 7 - 8

10 PS 28 - 30 DTF 5 - 20

11 dDTF 1 - 2 dDTF 10 - 30

Mild AD Data Set 1

Algorithm
Order

Features
Frequency
ranges (Hz)

10-fold
Features

10-fold
freq. ranges (Hz)

5 PC 13 - 14 ffDTF 1 - 30

6 dDTF 2 - 6 Coherence 6 - 8

7 Coherence 5 - 6 DTF 9 - 10

8 OC 11 - 14 dDTF 1 - 17

9 ffDTF 6 - 19 PC 4 - 7

10 DTF 20 - 21 OC 5 - 7

Mild AD Data Set 2

Algorithm
Order

Features
Frequency
ranges (Hz)

10-fold
Features

10-fold
freq. ranges (Hz)

2 PS 14 - 15 Correlation 6 - 7

3 DTF 10 - 11 PC 26 - 28

4 Correlation 1 - 2 PS 14 - 15

5 dDTF 26 - 27 GC 18 - 19

6 GC 17 - 18 Coherence 18 - 20

7 RP 10 - 11 RP 14 - 18

8 Coherence 27 - 28 dDTF 25 - 30

9 PC 23 - 29 PDC 8 - 10

10 ffDTF 15 - 16 ffDTF 13 - 14

11 PDC 16 - 17 DTF 8 - 11

Table 7.2: Differences between results of the OFRFPS algorithm without cross-validation
and using 10-fold cross-validation. Differences between configurations are presented.
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Figure 7.4: CR comparison between the CR obtained using 10-fold cross-validation fea-
tures (in blue), features selected without cross-validation (in black) and random data (in
red).

present a higher value than the standard deviation of the random noise, meaning that the
level of overfitting is low. Results presented for the Mild AD Data Set 1 still being similar
to the obtained without cross-validation. Only when the number of features used is equal
to nine the CR obtained decreases to 97.56%. Results presented for the Mild AD Data Set
2 using cross-validation, differs from the obtained without it as presented in Figure 7.4(c).
CR using one or two features is the same, but when three or four features are used the
CR is lower. Then when five features are selected the CR reaches its maximum value of
90.00%, being higher than the obtained without cross-validation with this data set. In this
same point, the CR obtained is higher than the standard deviation of the CR obtained
with random data, showing that the level of overfitting is low.

7.4 Discussion

Results presented in this section show that when different cross-validations approach have
been used, the level of overfitting in the data has been reduced. However, as the data sets
used present a small number of subjects, the level of overfitting still being high.

Results obtained using LOO present a small decrease in the CR obtained with random
data and almost the same configuration than when no cross-validation is used. This is
due to the fact that only one subject is extracted each time, therefore, the configuration is
quite similar. On the other hand, results presented for k-fold cross-validation (with k=10



122 Chapter 7. Feature selection using cross-validation

and k=20) present variance in the obtained results. Nevertheless these results have to be
taken carefully due to the small number of subjects contained in the data base after the
segmentation.

A common result that have can be extracted with the results presented in previous sections,
is that for all the configurations the first features are the more stables. Based on this
criterion, for the MCI Data Set using four features an 85.00% of success in the classification
can be achieved with a low level of overfitting, because the three tested configuration
reached this value. For the Mild AD Data Set 1 results are similar, using the four first
feature, the obtained CR is 100.00% and it has been achieved with all the configurations.
Results presented for the Mild AD Data Set 2 are difficult to interpret due to the high
variability presented in the 10-fold cross-validation configuration. Therefore, the obtained
configuration using LOO and 20-fold cross-validation can be used with a small number of
features, such as three. With this configuration the CR obtained is 88.00%. This number
of features obtained is consistent with results presented in Chapter 7 when the random
probe method is used.



Chapter 8

Preprocessing to improve
classification

This section presents some of the analysis performed in this work together. As defined in
the Introduction (Section 1.1), all the steps used in neuroscience are used in this thesis.
Therefore a good way to test the cleaning method presented in Chapter 3 in real data is
by repeating the studies but with cleaned data.

In this chapter the cleaning method first presented in Chapter 3 is applied in order to
obtain cleaned data. Then, measures presented in Chapter 4 are used to parametrize the
data. This data is then classified individually and using the OFR method presented in
Chapter 6. Presented results show that using the cleaning method some improvement in
the final CR is obtained in comparison with the CR obtained with raw data.

8.1 Methods

Methods used for the signal processing applied are presented in this section. In this work,
EEG signals of the Mild AD Data Set 2 are used for cleaning and for evaluation. Figure 8.1
summarizes the used methods.

Data of the Mild AD Data Set 2 is used because is the only data set in which the raw data
with any type of preprocessing is available. For this study the first 20 seconds are selected
for each subject, independently if they presented a high or low SNR. In order to obtain
IMF that does not expand along the entire spectrum, signals are band-pass filtered with a
digital third-order Butterworth filter between 1 and 30 Hz. This is the same preprocessing
applied to data defined in Section 4.2. However, data used in the previous study was
selected by visual inspection, therefore the cleanest period it was selected for each subject,
and now data is selected directly for all subjects.

Once signals are cleaned, measures defined in Chapter 4 are computed in the cleaned data
and in the raw data as presented in Figure 8.1. Window time and Granger order config-
urations are the same that the ones defined in Table 4.2 and Table 4.3. Results between
different types of data are then compared. The OFRFPS algorithm is also computed on
both types of data. Results are also compared. To compute the data cleaning, Algorithm
3.3 is used with the threshold value of T = 0.85, as is the best value obtained when used
with simulated data.
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Figure 8.1: Methods used to compare raw data of a recording with data cleaned using the
cleaning method.

8.2 Preprocessing results with AD data

Results obtained after applying the methods described in this thesis are presented in this
section. First measures are computed on all existing frequency ranges. CR computed for
each data type and the results obtained in Chapter 4 are compared in Figure 8.2. The
corresponding p-values for these data sets are presented in Table 8.1.

Results presented in Figure 8.2 show that, for some measures, when the cleaning method
is applied they obtain a higher CR that when the measures are computed directly on raw
data. Presented results show that for RP, Coherence, GC and DTF there is an increase in
the CR of 2%. On the other hand PC, PDC and dDTF present a decreased value for the
cleaned data, obtaining higher values for the raw data. These results show that in some
cases there is an small improvement of the data and in some others there is a deterioration.
Decrease in the value of the CR is always found when some Granger measures are used,
whereas in other cases GC and DTF, also Granger measures, present an improvement of the
CR. Presented results suggest that some of the IMFs eliminated during the reconstruction
process are parametrized by some of the Granger measures, whereas other measures are
not affected. Even though some measures present an improvement of the CR when the
cleaning method is used, CR are not comparable with the results obtained in Chapter 4.
Only for GC obtained CR using the cleaned data is higher than the one obtained with
visual selected data, in all other cases obtained CR is smaller. Data used in Chapter 4
was selected by visual inspection and therefore a period of 20 seconds without any kind
of interference is used.

Results presented in Table 8.1 present the frequency ranges at which the CR where com-
puted and its corresponding p-value. Interestingly for some of the measures such as RP,
Coherence, PC, DTF, ffDTF and dDTF there is a decrease of the computed p-value for
measures computed with the cleaned data. However, this decrease of the p-value is not
corresponded by an increase of the CR for the measures PC, PDC and dDTF. Obtained
frequency ranges are the same between raw and cleaned data for some measures (Cor-
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Figure 8.2: CR comparison between the raw data, the cleaned data and results of Chapter
4. Results presented for the Mild AD Data Set 2 when measures are used individually to
compute the CR.

Measures
Raw data
freq. range

(Hz)

p-value
raw data

Clean data
freq. range

(Hz)

p-value
clean data

RP 9 - 10 0.0542 9 - 14 0.0340

Correlation 26 - 30 0.0411 26 - 30 0.0411

Coherence 8 - 9 0.0909 8 - 28 0.2957

GC 8 - 9 0.0054 8 - 9 0.0054

PC 4 - 18 0.5909 7 - 10 0.2370

DTF 1 - 6 0.5511 9 - 11 0.0909

ffDTF 9 - 13 0.0451 7 - 10 0.0411

PDC 17 - 21 0.0374 3 - 24 0.1299

dDTF 13 - 30 0.4756 9 - 10 0.0185

OC 19 - 28 0.0081 19 - 28 0.0091

PS 9 - 12 0.0060 9 - 12 0.0060

Table 8.1: Optimal frequency ranges and computed p-values using the raw data and the
cleaned data.
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Figure 8.3: Five seconds period of EEG time series comparison between (a) raw data and
(b) cleaned data. To facilitate the understanding of the figure, only 20 of the original 30
sensors are presented.
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Raw data Cleaned data

Algorithm
Order

Features

OFRFPS
Selected
frequency

ranges (Hz)

Features

OFRFPS
Selected
frequency

ranges (Hz)

1 PS 9 - 10 PS 9 - 10

2 dDTF 12 - 15 DTF 8 - 9

3 PDC 6 - 8 GC 10 - 12

4 OC 13 - 14 Correlation 11 - 12

5 Coherence 10 - 16 OC 8 - 9

6 DTF 9 - 13 Coherence 3 - 4

7 PC 13 - 15 dDTF 13 - 15

8 Correlation 21 - 22 RP 3 - 4

9 RP 10 - 11 ffDTF 13 - 14

10 GC 8 - 9 PC 13 - 14

11 ffDTF 8 - 9 PDC 6 - 7

Table 8.2: Features and frequency ranges selected by the OFRFPS algorithm using raw
and cleaned data.

relation, GC, OC and PS). For some other measures such as RP and Coherence, the
frequency range of the cleaned data is expanded in comparison with the frequency range
obtained with raw data. Finally, frequency ranges obtained for Granger measures present
the biggest differences presenting different results between cleaned and raw data.

Relating obtained results with results presented in Chapter 3, it have to be pointed out
that selected data is just the first 20 seconds of each recording. Therefore for each of the
subjects a different level of artifacts is presented, and of course a different level of SNR it
would be computed. Usually for these recordings there is not a high presence of artifacts
in the recordings, they present some small changes as the example presented in Figure 8.3.
In this figure, raw time series (Figure 8.3(a)) show a clear artifact at second 2.5. This
artifact is corrected for the cleaned data. For the other recording the situation is quite
similar, and therefore the SNR computed for these recordings would be high. At the view
of these results, small improvement presented in the results is normal due to the small
room for improvement which data presents.

In order to check the evolution of the CR when measures are used together, the OFRFPS
algorithm is computed as in Chapter 6. The most discriminative features are selected and
then CR is computed. Selected features for the raw and the cleaned data are presented in
Table 8.2. CRs obtained using these features are presented in Figure 8.4. This figure also
presents a comparison with results obtained using visual inspected data.

Results presented in Table 8.2 show that for the two types of data PS is the most discrim-
inative feature, whereas results obtained in Chapter 6 (Table 6.3, pag. 105) show that the
most discriminative feature is OC. However, the second features selected is PS. Obtained
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Figure 8.4: CR comparison between the raw data and the cleaned EEG data. Results
presented for the Mild AD Data Set 2 when the CR is computed using the OFRFPS
selected features.

results using the cleaned data are more similar to results obtained in Table 6.3 than re-
sults obtained using the raw data. Interestingly the five first selected features when the
cleaned data is used are the same that results presented in Chapter 6, even though they
present different order and Coherence have been included instead of dDTF. This result is
significant because, as presented in Chapter 7, the three or four first features are usually
the more stables when cross-validation is applied. On the other hand results using raw
data do not present any relation with results obtained in Chapter 6, and for example a
feature that has been prove that does not improve the CR when used, PDC, is ranked in
the third position. Two conclusions can be extracted of these results. First conclusion
is that when the cleaning method is used, the selected configuration is more similar to
the one obtained visually inspecting the data, therefore some improvement is presented in
the data when the cleaning method is used. Second conclusion is that bivariate measures
such as PS, Correlation, Coherence and RP presents changes in the position of only one or
two positions, whereas multivariate measures such as OC or the Granger measures present
important changes in the position achieved. Therefore the cleaning method present an im-
portant perturbation to multivariate measures, meanwhile bivariate measures are slightly
perturbed.

The evolution of the CR presented in Figure 8.4 show that results between raw data and
cleaned data are similar. However, results presented for the cleaned data present high
oscillation in the obtained CR. These results emphasizes the conclusion presented before
that bivariate measures are less affected than multivariate measures. CR obtained using
cleaned data starts improving from a 68% until a 82% when three features are used, in this
case PS and two Granger measures, DTF and GC. However, when four and five features
are used CR drops down to 76%. Interestingly the fourth measure is Correlation that
even though being a bivariate measure do not improve the CR. The fifth measure used is
OC, which is multivariate. From measures six to measure nine, when bivariate measures
are used there is an improvement of the results and for multivariate measures there is a
decrease. Results obtained for raw data present an important decrease when PDC, OC
and Coherence are used, but then there is an improvement of the obtained CR until a
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final value of 90%. Results obtained with visual inspected data in Chapter 6 are higher
than the other almost in all the cases, only when two features are used CR obtained with
cleaned data is higher.

In this study no cross-validation is performed as it is done with data inspected visually
in Chapter 7. Presented results therefore present an overfitting, but the main purpose of
this study is to show that some improvement is performed with the cleaning method when
this is used on real data. Presented results show that some improvement can be found in
the CR and in the p-value when the cleaning method is used, even if this is small.

8.3 Discussion

This section has presented the use of the cleaning method proposed in Chapter 3 in real
data. At the view of obtained results it can be pointed out that the cleaning methods
improve the quality of the data, but it is not as good as using the visual inspection for
the preprocessing, as results on CR has presented. However, the procedure of using visual
inspection for preprocessing is really time consuming and it can not be replicated exactly.
Therefore, when the preprocessing has to be done, it is a compromise between the time
to do the preprocessing and the aimed quality of the data. If the data is for some medical
application, such as data used in previous chapters to work on the early diagnosis of
AD, the best option is to check by visual inspection the data, because this data needs to
have a higher quality. However, if some application needs some simple technique to apply
denoising it can be used. For example for some BCI implementation it could be used.

One of the main problems that the cleaning method presents is that it uses mEMD to
decompose the data. This decomposition is a really good technique for decomposition,
but its main problem is that it is really slow when used with long periods of data, i.e.
15 s or 20 s, with lot of EEG channels to decompose. However, when used with short
windows time and small number of channels, it is faster. Therefore the idea of a BCI
implementation using this technique could be possible if some considerations are taken
into account, such as use the minimum number of channels possible, like the ones which
are close to the eyes, and small time windows.

On the other hand, the shortcoming presented in Chapter 3 that some part of the data
may be lost if the cleaning procedure is applied with data that present a low level of noise
or artifacts, may introduce some bias to the results computed in this chapter. Therefore
if the cleaning method aims to be used it is necessary to add some step that decide if the
level of noise is higher enough to apply the cleaning method or not.

Presented results on real data evaluate the performance of the cleaning method based on
the final CR obtained after applying it. It have to be taken in account that CR is based on
synchrony measures and RP. Synchrony measures present some clear perturbation when
some IMFs are eliminated. Therefore, this cleaning method has to be tested in other data
sets where synchrony is not a key issue.
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Chapter 9

Conclusion and Future Work

This thesis has presented new signal processing and machine learning methods for the
early diagnose of AD. The main steps used in EEG data analysis have been explored,
from the preprocessing until the classification. The main conclusions extracted from this
study are presented below.

Preprocessing is an important step that facilitates the posterior analysis of the data. A
new cleaning method based on mEMD has been presented. This cleaning method has
been evaluated on simulated data and on real data. Results presented using simulated
data with different levels of SNR, show that for signals presenting high level of noise and
artifacts, the cleaning method improves the quality of the data when compared to data
without artifacts. However, for signals with a low level of noise or artifacts, the cleaning
method is not as effective. Results obtained after using the cleaning method on real
data presents the same characteristics, obtaining a small classification improvement when
compared with data without cleaning. Results shown in this work open a new line of work
in which this cleaning method can be tested in other data sets used for other purpose, such
as for BCI applications (Graimann et al., 2011) or for some other applications such as EEG
sonification (Elgendi et al., 2014). However, as pointed out in Chapter 8, in order to apply
this method in real data an important step has to be added. This pre-cleaning step would
be used to decide if the data is clean enough, avoiding unnecessary cleaning. Another
line of work could be to develop an optimized implementation of mEMD to improve the
computation time of the algorithm.

Furthermore, different biomarkers indicative of changes that AD causes on EEG data have
been identified. Afterwards, these measures have been used individually to distinguish
between healthy subjects and AD patients in different stages (MCI and Mild AD). Single
features have been used to compute CR in order to obtain the optimal frequency range
that best discriminates between AD patients and healthy subjects. A multiple feature
classification approach, which is call OFRFPS has also been presented, aiming to optimize
the CR. An increase of synchrony in the narrow bands inside the θ band has also been
introduced. This change of EEG signals was previously presented for some authors in the
literature, but it were not studied enough as the well-known decrease of synchrony in the
α and β bands. Presented results show that this increase of synchrony can also be used to
correctly classify AD patients and healthy subjects.

Methodology presented for selecting the optimal frequency range by computing all pos-
sible frequency ranges between 1 and 30 Hz it has been presented as more efficient that
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computing the CR in the classical frequency bands (δ, θ, α and β). However, the results
obtained using this methodology are not constant for the different data sets tested. The
data sets analyzed in this study were obtained in different experimental conditions in dif-
ferent hospitals, with different EEG systems and slightly different protocols. Therefore,
significant variations in the experimental conditions can be expected. Consequently, com-
paring these data sets is a challenging task, and it has been performed as an independent
study of each database separately. The calibration and normalization of features between
data sets is worth future investigation.

The joint use of the effects of slowing of EEG and changes in the synchrony has been pre-
sented as useful in two of the three data sets. Satisfactory classification results have been
obtained, even if as later presented in Chapter 7 these results are partly due to overfitting.
This joint use of information present the same problem that when the features are used
individually, the different configurations obtained for the data sets. On the other hand,
when using OFRFPS algorithm only two types of measures have been used. Complexity
measures due to the correlation presented with RP have not been used. However, results
presented for the Mild AD Data Set 2 show that RP is not as effective as have been pre-
sented in the other data sets. Therefore, future work will analyze the joint use of the three
effects that AD cause on EEG signals, aiming to improve the rate at which AD patients
and healthy subjects of the Mild AD Data Set 2 are classified. The methodology presented
could be also explored for the early diagnose of other neurodegenerative diseases.

The use of the ρ defined to study the increase of synchrony for AD patients in the narrow
bands inside the θ band has been shown useful. However, in future works other aspects
could be further explored. For instance, controlling if a better CR could be achieved
by combining the proposed ratio with different synchrony measures. Furthermore, the
differences of synchrony between AD patients and healthy subjects might be enlarged by
using some other function rather than a ratio.

Another line of investigation that can be followed is to investigate changes in the inter-
region synchrony instead of global synchrony; this would allow us to identify which regions
exhibit the strongest perturbations in synchrony, and therefore to obtain more insight on
how to differentiate AD patients from healthy subjects. It may also be studied how the
spatial averaging approach affects the synchrony, due to the fact that it may affect the
values of inter-region and global synchrony. By studying the inter-region synchrony, it
opens the way to work with other signal processing techniques which also work with
feature selection. For example the use of tensor decomposition (Phan & Cichocki, 2010;
Cichocki, 2011) has been presented as a prerequisite for classification of data with large
dimension such as brain recordings or multiview images. Some approach for the early
diagnose of AD using tensor decomposition have already been presented for Latchoumane
et al. (2012). However, in this case a new approach is suggested by using the synchrony
values computed between all the regions as a matrix for each subject. Then using tensor
decomposition the common information between healthy subjects and AD patients could
be extracted, using only the different information between each class as features to a
classifier. Taking into account the small number of subjects contained in the data sets,
the number of features given to the classifier should be restricted to a minimum in order
to avoid overfitting.

Another line of research would be to analyze the use of SSVEP on subjects suffering
from AD. Indeed, some studies have already shown some changes related with aging and
neurodegenerative disorders, some of those articles are presented in (Vialatte et al., 2010).



133

However, as the recordings corresponding to Mild AD Data Set 2 present different stages
of the subjects (eyes open, eyes close and periods of SSVEP at different frequencies), the
parameters extracted using SSVEP could be used together with the measures used and
the ρ. Nevertheless, as so many parameters would be extracted of the data, some feature
selection method would have to be used, such as the OFRFPS or some other variation,
which would define the number of measures that had to be used in order to minimize
overfitting.

Finally, it must be noted that the two data sets used are rather small. A larger database is
needed in order to generalize our results. Data sets containing different types of dementia,
and optimally the evolution of MCI subjects to Mild AD, could significantly facilitate the
early diagnosis of AD.
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Complementary results using the
ratio
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Figure A.1: Box plots presenting the results obtained for the MCI Data Set for Coherence,
GC and PC measures. Results in the θ(f1, f2) range, α(f3, f4) range and using the ρ are
presented.
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Figure A.2: Box plots presenting the results obtained for the MCI Data Set for PDC,
OC and PS measures. Results in the θ(f1, f2) range, α(f3, f4) range and using the ρ are
presented.
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Figure A.3: Box plots presenting the results obtained for the Mild AD Data Set 1 for
Coherence, GC and ffDTF measures. Results in the θ(f1, f2) range, α(f3, f4) range and
using the ρ are presented.
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Figure A.4: Box plots presenting the results obtained for the Mild AD Data Set 1 for
PDC, OC and PS measures. Results in the θ(f1, f2) range, α(f3, f4) range and using the
ρ are presented.



140 Chapter A. Complementary results using the ratio

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Mild AD patients Healthy subjects

(a) Correlation: θ(4, 8)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mild AD patients Healthy subjects

(b) Correlation: α(8, 9)

0.5

1

1.5

2

2.5

3

Mild AD patients Healthy subjects

(c) Correlation: ρ

0.15

0.2

0.25

0.3

0.35

Mild AD patients Healthy subjects

(d) PC: θ(7, 8)

0.2

0.25

0.3

0.35

0.4

Mild AD patients Healthy subjects

(e) PC: α(8, 13)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Mild AD patients Healthy subjects

(f) PC: ρ

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

Mild AD patients Healthy subjects

(g) DTF: θ(6, 7)

0.34

0.35

0.36

0.37

0.38

0.39

Mild AD patients Healthy subjects

(h) DTF: α(10, 11)

0.85

0.9

0.95

1

1.05

1.1

1.15

Mild AD patients Healthy subjects

(i) DTF: ρ

0.08

0.1

0.12

0.14

0.16

Mild AD patients Healthy subjects

(j) ffDTF: θ(4, 8)

0.1

0.15

0.2

0.25

Mild AD patients Healthy subjects

(k) ffDTF: α(10, 11)

0.4

0.6

0.8

1

1.2

Mild AD patients Healthy subjects

(l) ffDTF: ρ

Figure A.5: Box plots presenting the results obtained for the Mild AD Data Set 2 for
Correlation, PC, DTF and ffDTF measures. Results in the θ(f1, f2) range, α(f3, f4) range
and using the ρ are presented.
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Figure A.6: Box plots presenting the results obtained for the Mild AD Data Set 2 for
PDC, dDTF and PS measures. Results in the θ(f1, f2) range, α(f3, f4) range and using
the ρ are presented.
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