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Abstract 

Objective. Recently, significant advances have been made in the early diagnosis of Alzheimer’s 

disease from EEG. However, choosing suitable measures is a challenging task. Among other 

measures, frequency Relative Power and loss of complexity have been used with promising 

results. In the present study we investigate the early diagnosis of AD using synchrony measures 

and frequency Relative Power on EEG signals, examining the changes found in different 

frequency ranges. Approach. We first explore the use of a single feature for computing the 

classification rate, looking for the best frequency range. Then, we present a multiple feature 

classification system that outperforms all previous results using a feature selection strategy. 

These two approaches are tested in two different databases, one containing MCI and healthy 

subjects (patients age: 71.9 ± 10.2, healthy subjects age: 71.7 ± 8.3), and the other containing 

Mild AD and healthy subjects (patients age: 77.6 ± 10.0; healthy subjects age: 69.4± 11.5). 

Main Results. Using a single feature to compute classification rates we achieve a performance 

of 78.33% for the MCI data set and of 97.56 % for Mild AD. Results are clearly improved using 

the multiple feature classification, where a classification rate of 95% is found for the MCI data 

set using 11 features, and 100% for the Mild AD data set using 4 features. Significance. The 

new features selection method described in this work may be a reliable tool that could help to 

design a realistic system that does not require prior knowledge of a patient's status. With that 

aim, we explore the standardization of features for MCI and Mild AD data sets with promising 

results. 

 

Keywords: Alzheimer’s disease; Mild cognitive impairment; Electroencephalography; 

Synchrony; Relative power; Granger causality; Gram-Schmidt orthogonal forward regression 
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1. Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disease and the most common form of 

dementia. AD is a progressive and irreversible deterioration of brain functions that starts with 

loss of memory and leads to other cognitive impairments, such as language and judgment 

deficits. Currently no cure exists for Alzheimer’s, but administering certain medications in the 

early stages may delay the onset of symptoms [1,2]. Therefore, developing methods for 

detecting the pathology in its earliest stages is a critical task. 

The progression of AD is classified into four stages. The first, or “preclinical,” stage is Mild 

Cognitive Impairment (MCI). MCI patients usually present some memory impairment, but 

retain their abilities in other cognitive domains and functional activities [3,4]. Some MCI 

patients (between 6% and 25%) later develop AD. The next steps are characterized by growing 

cognitive deficits, which cause a reduction of independence. The second and third stages are 

known as Mild AD and Moderate AD, while the last stage is known as Severe AD, entailing 

complete dependence on caregivers [1]. MCI and Mild AD are key stages: An early diagnosis of 

AD in either stage may confer several benefits [2]. 

Electroencephalography (EEG) has been suggested as a potential diagnostic tool for AD.  

Compared to other systems like functional Magnetic Resonance Imaging (fMRI) or Positron 

Emission Tomography (PET), EEG systems are inexpensive and easy to transport. Studies have 

repeatedly found AD cause three major perturbations in EEG data: slowing of EEG, reduction 

in the complexity of EEG signals, and changes in EEG synchrony (see [2] and [5] for an 

extended review). These changes in the EEG data have been used as a discriminative feature to 

diagnose AD. Early diagnosis is, however, by no means a simple task, as these perturbations in 

the EEG data tend to vary across subjects, and therefore have insufficient specificity [6]. 

Recently, a strong relationship between the slowing of EEG and a reduction in the complexity 

of the signals has been reported. The results presented in [7] demonstrate that frequency 

Relative Power (RP), a measure used to parameterize the slowing of EEG, and loss of 

complexity are strongly anti-correlated at low frequencies. As two of the main perturbations in 

EEG data are closely related, the present study investigates the early diagnosis of AD using the 
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two other changes in EEG: slowing of EEG and changes in EEG synchrony. Earlier research [8] 

has shown that a small group of synchrony measures may suffice to quantify EEG synchrony in 

AD patients, due to the high correlation observed between some synchrony measures. 

Consequently, in this paper, we select a reduced group of synchrony measures and a power 

measure to study the difference between healthy subjects and AD patients.   

An EEG recording is usually characterized by the presence of activity on specific frequency 

bands: 0.1-4 Hz (), 4-8 Hz (), 8-13 (), 13-30 () and 30-100 () [9,10]. To distinguish 

between AD patients and healthy patients, studies traditionally analyse the standard frequency 

bands [11,12], or extend the analysis to the entire frequency range between 4 and 30 Hz [8]. 

Some studies have analysed all the frequency bands between 1 and 30 Hz, for instance, using a 

power measure [13] or a set of synchrony measures [14]. The present study investigates whether 

the diagnosis of AD can be improved by analysing all possible frequency ranges in the 1-30Hz 

frequency range (e.g., 1-2 Hz, 1-3Hz, 1-4Hz…. 29-30Hz) using power and synchrony measures. 

To the best of our knowledge, no study so far has conducted out such an analysis.  

The present study analyses two different data sets, one consisting of MCI patients and another 

of Mild AD patients. Classification is evaluated in the entire set of frequency ranges. First, each 

measure is used independently as an input feature, and individual classification results are 

presented. Then, a multiple feature classification is performed using the measures that best 

characterize the data set and the optimal frequency range. The optimal measures and the optimal 

frequency range are selected with the Orthogonal Forward Regression (OFR) algorithm.  

The paper is organized as follows: Section 2 introduces the two data sets (MCI and Mild AD 

data sets), explains the measures used to characterize AD patients, and details the methods used 

to apply those measures. Section 3 presents the results, which are further discussed in Section 4. 

Finally, Section 5 concludes the paper. 

2. Material and methods 

This Section presents the methods applied to two different data sets. Data sets are presented in 

Section 2.1. Synchrony and power measures are presented in Section 2.2. Selected measures 

were studied in all possible sets of frequency ranges between 1 and 30 Hz. The computation of 
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those measures is detailed in Section 2.3. Differences between measures were statistically 

analysed (defined in Section 2.4) and classified, first independently and then concurrently using 

the OFR algorithm (defined in Section 2.6). Some of the methods used in this work are detailed 

in [8]. However, we present a number of novel analytical methods, based on a new frequency 

approach and the optimal selection of measures, which aim to improve the rate at which 

MCI/Mild AD patients are distinguished from healthy subjects.  

2.1 Data sets 

In this study, we consider two data sets. One data set contains EEG recordings of MCI patients 

and healthy subjects, and the other contains EEG recordings of Mild AD patients and healthy 

subjects.  

 2.1.1 The MCI data set: MCI patients and control subjects 

The EEG data contained in this follow-up data set have been previously analysed in a number of 

studies evaluating the early diagnosis of AD [7,8,15–18].  

The MCI data set originally consisted of fifty-three patients. Initially patients who only 

complained of memory impairment were recruited. They underwent thorough 

neuropsychological testing that revealed a quantified and objective evidence of memory 

impairment with no apparent loss in either general cognitive, behavioural, or functional status. 

The patients did not suffer from other neurological diseases. The classification of very mild 

dementia impairment required a Mini-Mental Status Exam (MMSE) ≥24 and a Clinical 

Dementia Rating (CDR) scale score of 0.5 with memory performance less than one standard 

deviation below the normal reference (Wechsler Logical Memory Scale and Paired Associates 

Learning subtests, IV and VII, ≤9, and/or ≤5 on the 30 min delayed recall of the Rey-Osterreith 

figure test). Each patient underwent Single-Photon Emission Computed Tomography (SPECT) 

at initial evaluation and was followed clinically for 12–18 months. Twenty-five of these fifty-

three very mild AD patients developed probable or possible AD according to the criteria defined 

by the National Institute of Neurological and Communicative Disorders and Stroke, and the 

Alzheimer's disease and Related Disorders Association (NINDS-ADRDA). These subjects 

formed our group of patients of the MCI data set (age: 71.9 ± 10.2 years old), which MMSE 
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scores were 28.5 ± 1.6). EEG recordings were conducted at the MCI stage. The control group 

consisted of healthy subjects who had no memory or other cognitive impairments. This control 

group was formed for 56 age-matched healthy subjects (age: 71.7 ± 8.3 years old), which 

MMSE scores were 26 ± 1.8. 

For the recording, 21 Ag/AgCl electrodes (discs with a diameter of 8 mm) were placed on the 

scalp according to the 10-20 international system, with the reference electrode on the right 

earlobe. The EEG was recorded with Biotop 6R12 (NEC San-ei, Tokyo, Japan) at a sampling 

rate of 200 Hz, with analog bandpass filtering in the frequency range 0.5-250 Hz and online 

digital bandpass filtering between 0.5 and 30 Hz, using a third-order Butterworth filter (forward 

and reverse filtering). 

2.1.2 The Mild AD data set: Mild AD patients and healthy subjects 

The second EEG data set has also been analysed previously [13,14,16,19,20].  

The EEGs were recorded during a resting period containing various states: awake, drowsy, alert 

and resting with eyes closed and open. All recording sessions and experiments proceeded after 

informed consent was obtained of the subjects or the caregivers and were approved by local 

institutional ethics committees. The EEG data is composed of 24 healthy control subjects (age: 

69.4± 11.5; 10 males) and 17 patients with mild AD (age: 77.6 ± 10.0; 9 males). The patient 

group underwent a full battery of cognitive tests (MMSE, Rey Auditory Verbal Learning Test, 

Benton Visual Retention Test, and memory recall tests). The results from the psychometric tests 

were scored and interpreted by a psychologist, and all clinical and psychometric findings were 

discussed at a multidisciplinary team meeting. All controls were healthy volunteers and had 

normal EEGs (confirmed by a Consultant Clinical Neurophysiologist). The patients did not 

suffer from other neurological diseases. The EEG time series were recorded using 19 electrodes 

positioned according to the Maudsley system, similar to the 10-20 international system, at a 

sampling frequency of 128 Hz. The EEGs were bandpass filtered with a third-order digital 

Butterworth filter (forward and reverse filtering) between 0.5 and 30 Hz. 
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2.1.3 Recording conditions common to both data sets 

In both data sets, all recording sessions included in the analysis were conducted with the 

subjects in an awake but resting state with eyes closed, and the length of the EEG recording was 

about 5 minutes per subject. The EEG technicians prevented the subjects from falling asleep 

(vigilance control). After recording, the EEG data was carefully inspected. EEG recordings are 

prone to a various artifacts, for example, due to electronic noise, head movements, and muscular 

activity. For each patient, an EEG expert selected, by visual inspection, one 20-second segment 

of artifact-free EEG, blinded from the results of the present study. Only subjects whose EEG 

recordings contained at least 20 seconds of artifact-free data for all the channels were retained in 

the analysis. This selection was conducted blind from the outcomes of this study. Based on this 

requirement, the number of subjects in the MCI data set was further reduced to 22 MCI patients 

and 38 control subjects; in the Mild AD Data set no such reduction was required. 

2.2. EEG measures 

We consider two types of EEG measures: frequency power and synchrony. As a spectral 

measure, we selected Relative Power (RP). For synchrony, various measures were used: 

Correlation, Coherence, Granger Causality (including Granger coherence, Partial coherence 

(PC), Directed transfer function (DTF), Full frequency directed transfer function (ffDTF), 

Partial directed coherence (PDC), Direct directed transfer function (dDTF)), Omega 

Complexity, and Phase Synchrony. These synchrony measures have been reviewed earlier in 

[8]. A brief description is presented below. 

2.2.1 Relative power  

Relative Power (RP) measures the percentage of power within a specific frequency band 

compared to the power of the entire frequency range. RP is computed as: 

            
         

             
 (1) 

where           is the power spectrum in the frequency band of interest         for channel i, 

and                is the power spectrum in the entire frequency range             for the 

same channel. The power spectrum is computed using Fast Fourier Transform [21,22].  
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2.2.2 Correlation coefficient 

The correlation coefficient     measures the similarity between two time series; it is a measure 

of interdependence:     if the two time series are identical,     if the time series are 

completely different, and      if the two time series are identical and exactly out-of-phase. 

For two time series x and y, correlation is computed as [10]: 

  
 

 
 

         

  

         

  
 

 

   

 (2) 

where   is the length of the signals,    and    are the mean averages of the time series   and  , 

and    and    correspond to the variance of the time series   and  .  

2.2.3 Coherence 

Coherence estimates phase synchronization between two bivariate time series (x and y) in the 

frequency domain. Coherence is usually interpreted as an indicator of connectivity between two 

brain areas [23], and it is computed by dividing the time series in M segments of length L. 

Coherence         is defined as [10,24]:   

      
              

                
 (3) 

where      and      denote the discrete Fourier transforms of the two signals x and y,    is the 

complex conjugate of    ,        is the magnitude of  , and        stands for the average of 

     computed over M segments, likewise        and            . 

2.2.4 Granger causality 

Granger causality
1  

refers to a family of synchrony measures derived from linear stochastic 

models of time series; they quantify the interdependence between multivariate signals.  

Granger causality measures are derived from the multivariate autoregressive (MVAR) model of 

the multivariate time series. Let the set of n signals                      be the normalized 

                                                           
1
 The code for the Granger causality measures used in this study is implemented in the BioSig library: http://biosig.sourceforge.net 
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EEG time series of a recording (mean equal to zero and standard deviation equal to one). The 

MVAR of those times series is defined as: 

                     

 

   

 (4) 

where                           
 
, p is the model order, the model coefficients      are 

    matrices, and      is a zero-mean Gaussian random vector of size n. Equation (4) can be 

rewritten as: 

                 

 

   

 (5) 

where         (identity matrix) and               for j > 0. Applying the z-transform and 

substituting          , with sampling rate =     , equation (5) can be written as: 

               (6) 

                          (7) 

If the variance of the noise      is represented by  , then the power spectrum matrix of the 

signal      is defined as: 

                (8) 

Granger measures are defined in terms of A, H and S matrices. 

Granger coherence 

Granger Coherence describes the amount of in-phase components in signals i and j at the 

frequency f. With the matrix S, Granger coherence                can be computed as [25]: 

       
      

              
 (9) 
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Partial coherence 

Partial coherence (PC) describes the amount of in-phase components in signals i and j at the 

frequency f when the influence of the other signals is statistically removed. PC can be written as 

[25]: 

       
      

              
 (10) 

where        is the determinant of S with row i and column j removed.                 

Directed transfer function  

The Directed Transfer Function (DTF) quantifies the fraction of inflow to channel i stemming 

from channel j. It is computed in terms of the H transfer matrix [25]: 

   
     

        
 

         
  

   

 (11) 

Full frequency directed transfer function 

The Full Frequency Directed Transfer Function (ffDTF) is defined as [25]: 

   
     

        
 

          
  

    

 (12) 

ffDTF can be seen as a variation of DTF, with a global normalization in frequency. 

Partial directed coherence  

Partial Directed Coherence (PDC) is an extension of PC. It represents the fraction of outflow 

from channel j to channel i. PDC                is described as [25]: 

       
       

           
  

   

 
(13) 
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Direct directed transfer function  

The Direct Directed Transfer Function (dDTF) is defined as [26]: 

   
        

       
     (14) 

dDTF is non-zero if the connection between channels i and j is causal. DTF, dDTF, PDC, and 

ffDTF are asymmetric measures, i.e.:    
     

 ,    
     

 ,         and    
      

 . 

2.2.5 Omega complexity 

Omega Complexity     is a synchrony measure for multichannel data sets. It quantifies the 

amount of spatial synchronization in a multivariate time series. Synchrony is evaluated with the 

Principal Component Analysis (PCA) of the obtained covariance of the data [27–29].  

Given a data set of n signals,                        covariance matrix            is 

computed. PCA is then used to obtain the eigenvectors and eigenvalues       in descending 

order. Omega Complexity is defined in terms of those normalized eigenvalues [30]: 

               

 

   

  (15) 

The argument of the exponential in (15) is the entropy of the distribution obtained with the 

eigenvalues. Omega Complexity presents minimum value       for identical signals. The 

maximum value (   ) is obtained for independent signals.    

2.2.6 Phase synchrony 

The Phase Synchrony index     computes the synchronization between two time series      and 

    . Phase Synchrony depends only on the phase between signals, even when the amplitudes of 

x and y are statistically independent. First, the instantaneous phase    of a signal x is computed 

as [31]: 

                       (16) 
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where    is the Hilbert transform of x. Then, the phase synchrony index for the two 

instantaneous phases of signals x and y (   and   ) is defined as [31]: 

                         (17) 

where n and m are integers (usually      ), and     is time averaging. 

2.3 Bandpass filtering and computation of EEG measures 

All the possible frequency ranges between 1 and 30 Hz were analysed with the set of measures 

presented in Section 2.2. To define the frequency ranges of study, the start frequency (F) was 

varied from 1 to 29 Hz, and the width (W) varied from 1 to 29 (e.g. 1-2 Hz, 1-3 Hz, 1-4 Hz… 1-

30 Hz…, 29-30 Hz). The maximum frequency of analysis       was limited to 30 Hz. A 

total of 435 frequency ranges were studied, as detailed in figure 1:  

 

Figure 1. Range of frequency ranges considered in this study. 

Before the measures were computed, the signals were bandpass filtered with Butterworth filters. 

These types of filters are characterized by a magnitude response that is maximally flat in the 

passband, and they offer good transition band characteristics at low coefficient orders, so they 

can be easily implemented [32].  

In this study, we used third-order Butterworth filters as in [8], since such filters can handle 

narrow bands with a bandwidth of 1 Hz, such as 1 – 2 Hz, 2 – 3 Hz, …, 29 – 30 Hz. For 

frequencies ranges with    , the frequencies   and     have an attenuation of     , and 

the adjacent frequencies (i.e.     and       ) have an attenuation of at least      . 

Figure 2 illustrates the frequency response for a band-pass filter between 5 – 6 Hz. It can be 

seen that the adjacent frequencies 4 and 7 Hz have an attenuation of        and -      

respectively.   
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Figure 2. Frequency response of a third order Butterworth band-pass filter, filtering between 5 and 6 Hz 

with a sampling rate of 128 Hz. Left images show the frequency and phase response on the entire 

frequency range. Right images show in detail the frequency and phase response in the band pass. 

 

Each measure was applied to the filtered signals. RP was computed for each channel 

independently. To obtain a global measure for each subject, the RP for all the channels was 

averaged. Since some of the synchrony measures were bivariate and others multivariate, we 

applied different approaches in evaluating them (for a review of those approaches see [8]).  

For bivariate synchrony measures, we used the Local Approach 2 introduced in [8]. In this 

approach, the EEG signals are aggregated into five regions (frontal, left temporal, central, right 

temporal and occipital). Figure 3 presents the electrodes aggregated to each region. To compute 

the synchrony between two regions, one first computes the synchrony between each EEG signal 

from one region and each signal from the other. The next step is evaluating synchrony by 

computing the average synchrony values of these signal pairs. For example, synchrony between 

the left temporal and the occipital regions is evaluated by averaging the synchrony measures 

obtained from the 12 pairs of signals (F7,P3), (F7,P4), (F7,O1), (F7,O2), …., (T5,O2). Once the 

synchrony between each region is computed, the average of synchrony between regions (10 

pairs) is calculated to obtain a global synchrony value for each subject. This approach was used 

for all the bivariate synchrony measures (Correlation, Coherence and Phase Synchrony). 
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Figure 3. Layout and partition of the 21 electrodes used for the EEG recording. Regions defined by 

aggregation of electrodes: frontal area, left temporal area, parietal area, right temporal area and occipital 

area. 

 

A different approach was used to compute the EEG synchrony for multivariate measures. 

Omega complexity was applied to all EEG signals of the data set. However, Granger measures 

require estimating a 21-dimensional MVAR model. To avoid this high-dimensional estimation, 

we calculated the time averaging between electrodes of the same region, obtaining averaged 

EEG time series for each region defined in figure 3. The Granger measures were then applied to 

these 5 averaged EEG signals. The Granger values between the regions were averaged (10 

pairs) to obtain a global synchrony measure [8]. 

2.4 Statistical analysis 

To evaluate the difference between populations, we calculated the statistical significance of the 

differences between MCI patients and control subjects as well as between Mild AD patients and 

control subjects using the Mann-Whitney test – a non-parametric test allowing us to investigate 

the statistical differences between two populations without assumptions of Gaussianity. Low p-

values (close to zero, e.g.,       ) indicate a large difference between the medians of the two 

populations. 

EEG is highly non-stationary (see [8,10] for an extended review), and thus data characteristics 

may change over time; usually, therefore, time segmentation is used to compute synchrony 

measures. Exploring different parameters like window length (in all the synchrony measures) or 
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polynomial order (only in Granger measures) is important in selecting the parameters that are 

most effective in classifying the subjects as AD or healthy.  

We used several time window length values:            and      for both data sets. We also 

evaluated several polynomial orders in Granger measures: p=1, 2, 3…. 9. Then, the Mann-

Whitney test was computed along all the possible configurations in all the possible frequency 

ranges. The parameter configuration that presented the lowest p-value in any of the defined 

frequency ranges was defined as optimal and used in further analysis for that specific data set. 

2.5 Separability criterion  

We used a separability criterion            to represent the difference between the analysed 

classes in all the frequency ranges studied.           is a measure of distance between two 

normal distributions inspired by the z-score [9]. The distance          has large values 

when the mean difference between two populations is large, and the standard deviations of both 

distributions are small; the two populations can then be easily distinguished. On the other hand, 

if there is little difference between two populations,          presents a value close to 0. 

We define the separability criterion as: 

         
                         

                         
 (18) 

where         refers to the frequency range of study.   and       refer to the start and 

end frequency of the study, respectively, as discussed in Section 2.3;      is the mean of the 

control population; and      is the mean of the patient population (MCI or Mild AD depending 

on the data set). Similarly,      and      refer to the standard deviations of the control and 

patient (MCI or Mild AD) groups. We computed this separability criterion for each proposed 

measure. 

2.6 Classification 

We investigated whether changes in EEG synchrony or RP allow us to distinguish between AD 

patients and healthy subjects. Using the proposed synchrony measures and the RP, we computed 

two different classifications. All measures were used as input features in a classifier, both 
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individually and in combinations determined to be optimal using the method described in the 

next section.   

For both types of classification (individual and multiple features), Linear Discriminant Analysis 

(LDA) was used with leave-one-out (LOO) cross-validation methodology. The Classification 

Rate (CR), i.e. the percentage of subjects correctly classified, is obtained as a result. In addition, 

true positive rate, i.e. sensitivity (SE), and true negative rate, i.e. specificity (SP), were also 

computed. 

LDA is a well-known scheme for feature extraction and dimension reduction [33]. Because 

LDA makes the assumption of Gaussian distribution for the input data, we confirmed the 

Gaussianity of the computed values by means of histograms and quantile-quantile plots. 

2.6.1 Multiple feature classification 

We performed multiple feature classification to determine which measures would be the most 

relevant for distinguishing MCI/Mild AD patients from healthy subjects. To control overfitting 

and to rank the input features by their significance, a multiple feature selection was used. This 

procedure is based on Gram-Schmidt Orthogonal Forward Regression (OFR).  

The traditional OFR algorithm is the one presented in [34]. In that algorithm, initially the input 

features      are defined, after which the algorithm selects the feature that best correlates with 

the desired output, and projects the remaining features in the null space of the selected one. This 

procedure is repeated for all input features. The algorithm sorts the input features according to 

their correlation with the output. The traditional OFR algorithm is summarized as follows 

[34,35] : 

i. Select the candidate feature      that is best correlated with the output     to be 

modeled:                      

ii. Project the output vector and all other candidate features on to the null space of the 

selected feature   , using Gram-Schmidt orthogonalization.  

iii. Remove the selected feature      from the list of input features. 

iv. Return to (i) until all features have been selected. 
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This OFR algorithm sorts the input features based on their relevance, but in order to control 

overfitting, does not select the optimal number of features. We applied the random probe 

method [36], which refers to random generations of data used to verify that the analysed data is 

more significant than random data. To compute the OFR with a random probe, one first creates 

a set of random probes. Then, one defines a risk level that corresponds to the risk that a feature 

might be kept despite being less relevant than the probe. The OFR algorithm is applied using all 

the different probes, one probe at a time. Finally, the cumulative distribution function of the 

position that the probe achieved in the OFR algorithm is computed to rank the probe. Selected 

features for each risk level are those that are ranked in a lower position than the probe. 

In this study, a variation of OFR with a probe was used. The main difference between standard 

OFR with a probe and our variant lies in how the feature selection is performed. Whereas the 

standard variant sorts the given inputs and selects the optimal number of features to use, our 

method preselects the input features that are given to the OFR algorithm in each iteration. In our 

OFR implementation, there are multiple frequency ranges for each measure: the frequency 

range with the greatest difference between the two populations, as indicated by the Separability 

Criterion (J) value, is used. This process was repeated for all the measures. Feature 

normalization was not applied to the original selected features but to the values for all frequency 

ranges. Another difference is that random probes were not generated using random data. 

Instead, surrogate probes were generated with the same characteristics as the original data, with 

a different measure (or a synchrony measure or RP) used to generate each probe. The values of 

a specific measure for the two populations (AD patients and control subjects) were mixed 

together, and then labels for each class were assigned randomly. This process was repeated 500 

times for each measure. The OFR algorithm used in this work can be summarized as follows: 

i. Select the input features     . For each   , select the frequency range that corresponds 

to the largest  . Repeat this procedure for all i measures. 

ii. Select the candidate feature      that best correlates to the output     to be modelled: 

                    . 
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iii. Project the output vector on to the null space of the selected feature. Orthogonalize the 

rest of features using Gram-Schmidt orthogonalization in all the existing frequency 

ranges. 

iv. Remove the selected feature      from the list of input measures. 

v. Return to (i) until all features have been selected. 

In our implementation, 5,500 probes were computed and added to the feature set to quantify the 

degree of overfitting.  

3. Results  

Table 1. Optimal time window lengths and orders used to compute the synchrony measures for the two 

data sets. 

Measures 

MCI data set Mild AD data set 

Window 

Length (s) 

Granger 

Order 

Window Length  

(s) 

Granger 

Order 

Correlation 20 - 20 - 

Coherence 1 - 5 - 

Granger Coherence 1 9 1 2 

PC 1 4 20 4 

DTF 20 8 1 7 

ffDTF 20 8 1 2 

PDC 1 3 1 2 

dDTF 1 9 1 2 

Omega Complexity 5 - 1 - 

Phase Synchrony 20 - 20 - 

 

Changes in the power and synchrony of EEG data of patients with MCI and Mild AD were 

evaluated. Each measure presented in Section 2.2 was computed in both data sets, after the 

computed values were used as input features for a classifier, first individually (results presented 

in Section 3.1), and next for a set of multiple features selected using the OFR algorithm (Section 

3.2). The optimal configuration (window length and Granger Order) for each synchrony 

measure was used.  
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Table 1 presents the selected configuration for the synchrony measures, with the optimal time 

length of the window and the Granger order used to compute them. 

3.1 Individual feature classification 

Each measure was used independently as a classification feature. The results shown in table 2 

show the CR for all measures for the MCI data set, while the results presented in table 3 show 

the results for the Mild AD data set. The results are presented only for the best set of 

parameters. The optimal frequency range for each measure is defined as the range in which the 

best CR is found; if a measure has several frequency ranges with the same CR, the one selected 

as the optimal frequency range is the one with the highest   for that measure. Figure 4 displays 

the CR obtained in each standard frequency band (, ,  and ), in comparison with results 

obtained in the optimal frequency range for both data sets. Obtained CR in the optimal 

frequency range of each measure are always equal to or higher than the values in the standard 

frequency ranges.  

The best CR was obtained in both data sets with RP, with a value of 78.33% for the MCI data 

set and 97.56% for the Mild AD data set. The results are obtained in a set of frequencies close to 

the θ frequency range, 2-9 Hz for the MCI data set and 4-7 Hz for Mild AD data set. The best 

result with a synchrony measure was 75.00% for dDTF in the frequency range of 14-16 Hz, for 

the MCI data set, and 95.12% for DTF measure in the frequency range of 5-6 Hz, for the Mild 

AD data set. Interestingly, for the Mild AD data set, most of the best classification results are in 

low frequency ranges,  and θ. Our results for the MCI data set present only four measures 

(Correlation, Granger Coherence, PDC and Phase Synchrony) in which the best CR results for 

synchrony measures were obtained at low frequencies.  
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Table 2. CR for the MCI data set. CR is presented with the optimal frequency ranges and its 

corresponding p-value. The three best results for this data set are shown in bold. 

Measures 

Optimal 

frequency 

range (Hz) 

CR optimal 

frequency 

range (%) 

SE (%) SP (%) p-value 

RP 2 - 9 78.33 72.73 81.58 0.0001 

Correlation 1 - 8 71.67 77.27 68.42 0.0012 

Coherence 8 - 13 68.33 63.64 71.05 0.0132 

Granger 

Coherence 
2 - 8 70.00 72.73 68.42 0.0021 

PC 21 - 27 70.00 81.82 63.16 0.0157 

DTF 6 - 27 65.00 63.64 65.79 0.2727 

ffDTF 8 - 30 70.00 63.64 73.68 0.0013 

PDC 1 - 2 66.67 68.18 65.79 0.0085 

dDTF 14 - 16 75.00 81.82 71.05 8.88 × 10
-5

 

Omega 

Complexity 
8 - 10 68.33 59.09 73.68 0.0138 

Phase 

Synchrony 
4 - 5 70.00 90.91 57.89 0.0201 

 

 

Figure 4. CR comparison between the optimal frequency range, , θ,  and  bands. Top image presents 

obtained results for the MCI data set. Bottom image presents obtained results for the Mild AD data set. 
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Table 3. CR obtained for the Mild AD data set. CR is presented with the optimal frequency ranges and its 

corresponding p-value. The three best results for this data set are shown in bold. 

Measures 

Optimal 

frequency   

range (Hz) 

CR optimal 

frequency 

range (%) 

SE (%) SP (%) p-value 

RP 4 - 7 97.56 94.12 100.00 8.38 × 10
-8

 

Correlation 23 - 24 68.29 58.82 75.00 0.0699 

Coherence 8 - 13 75.61 82.35 70.83 0.0003 

Granger 

Coherence 
1 - 2 82.93 76.47 87.50 3.07 × 10

-5
 

PC 3 - 4 68.29 70.59 66.67 0.0027 

DTF 5 - 6 95.12 100.00 91.67 2.64 × 10
-6

 

ffDTF 1 - 2 80.49 88.24 75.00 3.00 × 10
-6

 

PDC 1 - 4 80.49 88.24 75.00 1.78 × 10
-6

 

dDTF 2 - 4 78.05 76.47 79.17 8.50 × 10
-5

 

Omega 

Complexity 
7 - 8 75.61 82.35 70.83 0.0005 

Phase 

Synchrony 
9 - 10 80.49 88.24 75.00 5.45 × 10

-5
 

 

To evaluate the redundant information presented by the features, Pearson's linear correlation 

coefficient was computed between measures in their optimal frequency range. This 

methodology has been used in other publications [7,8] aiming to evaluate the same principle as 

we do. Nevertheless, we inspected scatterplots of pairs of features in order to verify that they 

have a linear relationship in our specific case. Figure 5 presents the correlation modulus of the 

obtained results. For each data set, high correlation            was found between some 

measures. The MCI data set only presents a correlation value higher than         . This value 

is found between Correlation and Granger Coherence. However, results found for Mild AD data 

set present six pairs of features with high correlation           . These values are found 

between pairs of Granger measures (DTF–PC, ffDTF–DTF, PDC–DTF, PDC–ffDTF, dDTF–

ffDTF and dDTF–PDC). Therefore, obtained features achieve good classification rates when 

they are used as single feature but they introduce overfitting if we combine them into a 
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multifeature classifier. Overfitting appears because the system learns redundant information of 

the same aspects of the data. Therefore a feature selection method is needed in order to 

minimize it. 

 

Figure 5. Modulus of the Pearson's linear correlation coefficient computed between all the measures. The 

optimal frequency range of each measure was used. 

3.2 Multiple feature classification 

Classification was also evaluated using multiple feature classification. The OFR algorithm 

defined in Section 2.6.1 was used in order to select the best parameters to perform a multiple 

feature classification. All computed measures in all frequency ranges were used as input 

features for the OFR algorithm. 

The obtained features that best define each data set are presented in table 4 (MCI) and table 5 

(Mild AD). The measures are presented in the order selected by the OFR algorithm along with 

selected OFR frequency ranges and the corresponding standard frequencies. 

The results presented in table 4 demonstrate that the best feature for differentiating MCI patients 

from healthy subjects is RP in the frequency range 2-8 Hz. Table 5 again shows RP as the best 

feature, and the range from 4-7 Hz as the optimal range. These results seem to be consistent 

with the results obtained in Section 3.1, where RP obtained the higher CR in those frequency 

ranges in both data sets.  
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Table 4. Features and frequency ranges selected by the OFR algorithm for MCI data set. The last column 

presents the standard frequency bands corresponding to the measures. 

Algorithm Order Features 

OFR Selected 

frequency ranges 

(Hz) 

Standard 

frequency bands 

(Hz) 

1 RP 2 - 8 4 - 8 

2 Correlation 3 - 8 4 - 8 

3 Coherence 1 - 6 1 - 4 

4 PDC 1 - 3 1 - 4 

5 ffDTF 9 - 29 13 - 30 

6 Omega Complexity 24 - 25 13 - 30 

7 Granger Coherence 1 - 30 
1 - 4, 4 - 8, 8 – 13, 

13 - 30 

8 DTF 4 - 5 4 - 8 

9 PC 1 - 10 1 - 4, 4-8 

10 Phase Synchrony 28 - 30 13 - 30 

11 dDTF 1 - 2 1 - 4 

 

Table 5. Features and frequency ranges selected by the OFR algorithm for Mild AD data set. The last 

column presents the standard frequency bands corresponding to the measures. 

Algorithm Order Features 

OFR Selected 

frequency ranges 

(Hz) 

Standard 

frequency bands 

(Hz) 

1 RP 4 – 7 4 - 8 

2 Granger Coherence 1 – 2 1 - 4 

3 Correlation 9 – 10 8 - 13 

4 Phase Synchrony 25 – 26 13 - 30 

5 PC 13 – 14 13 - 30 

6 dDTF 2 – 6 4 - 8 

7 Coherence 5 – 6 4 - 8 

8 Omega Complexity 11 – 14 8 - 13 

9 ffDTF 6 – 19 8 - 13 

10 DTF 20 – 21 13 - 30 

11 PDC 1 – 2 1 - 4 
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In order to study the improvement in the CR that results from including more of the selected 

features as input features to a classifier, we examined the evolution between the obtained CR 

and the number of features used as input. We also studied the improvement of performance by 

computing the CR using the features and frequency range selected by the OFR algorithm, and 

the same features in the standard frequency range. SE and SP were also evaluated for the 

different numbers of input features. Figure 6 presents this relationship for MCI subjects, and 

Figure 7 presents the same for Mild AD patients. In both images the top image represents the 

CR evolution, comparing the CR obtained with selected OFR frequency ranges and the CR 

computed with the standard frequency bands. Vertical lines indicate the percentage of noise 

introduced in the data set using the probe method. In the same figures, the bottom image 

presents the evolution of SE and SP.  

 

Figure 6. Relationship between the CR and the different number of features selected by the OFR 

algorithm. The top image presents the evolution of CR using OFR frequency ranges and the standard 

frequency bands. The bottom image presents the evolution of SE and SP. Results presented for the MCI 

data set. 



25 
 

 

Figure 7. Relationship between the CR and the different number of features selected by the OFR 

algorithm. The top image presents the evolution of CR using OFR frequency ranges and the standard 

frequency bands. The bottom image presents the evolution of SE and SP. Results presented for the Mild 

AD data set. 

Results presented in figure 6 (MCI data set) show that there is an improvement in the 

classification performance when we include more of the selected features as input parameters in 

a classifier. The same figure shows that using the OFR-selected frequency range achieves a 

better CR than using the standard frequency bands. The best value obtained using the OFR-

selected frequency ranges is 95%, whereas using the classical frequency ranges the CR attains a 

maximum value of 85% and then decreases. SE and SP also present the same improvement with 

the increase of the number of features. 

The results for Mild AD (figure 7) also show increases in performance when more input 

features are used. In this case, using only four features in the selected OFR frequency ranges, a 

CR of 100% is achieved; this value is stable when more features are added to the classifier. On 
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the other hand, with the standard frequency ranges the CR achieved is not as impressive. The 

maximum CR with those frequencies is 97.56%, using 5, 6, or 7 features. The use of 8, 9, or 10 

features does not improve performance; instead the CR decreases to 92.68%. The evolution of 

SE and SP shows that SP is always equal to 1 for the OFR-selected frequencies, and it is SE that 

improves with the use of more features. This may indicate that adding more synchrony 

measures can characterize Mild AD patients better.  

To check the redundant information provided by the selected features, Pearson’s linear 

correlation between measures was computed as in Section 3.1. However, this time the frequency 

ranges selected by OFR were analysed. The features chosen by OFR are more salient for 

discriminating between patients and healthy subjects. The modulus of the results is presented in 

figure 8. We observe that correlation values are now lower than those presented in figure 5. For 

the MCI data set the highest correlation is obtained between PDC and DTF (         ). 

Results obtained for the Mild AD data set present an important decrease compared to the ones 

depicted in figure 5.  Now, only the correlation between PDC and dDTF presents a high value 

(        ), in contrast with the six pairs obtained without using OFR.  

 

Figure 8. Modulus of the Pearson's linear correlation coefficient computed between all the measures. 

Frequency ranges defined by the OFR algorithm were used. 

In order to standardize the obtained results, we carried out one more experiment. As the selected 

OFR features for each data set are different, both data sets were evaluated using the obtained 
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parameters from the other data set. Figure 9 presents the evolution of the CR using different 

numbers of features, where in this case the Mild AD data set was evaluated using the OFR-

selected features for the MCI data set (top line) and the MCI data set was evaluated using the 

OFR-selected features for the Mild AD data set (bottom line). As can be seen, the change of 

parameters clearly reduces the CR obtained for the MCI data set but only presents a slight 

decrease for the Mild AD data set in comparison with the results obtained for each data set 

using its own OFR-selected measures and frequency ranges (see figure 6 for MCI and figure 7 

for Mild AD). These results suggest that the results obtained for the MCI data set can be 

extended to the Mild AD data set to implement a system that could be used in hospitals. 

 

Figure 9. Evolution of the CR obtained, using the different numbers of features. The line with asterisks 

shows the MCI data set using OFR-selected features for Mild AD patients. The line with squares indicates 

the Mild AD data set using OFR-selected features for MCI patients. 

In order to study stability across subjects who present the selected OFR features, we carried out 

a new experiment using feature selection through leave-one-out cross-validation. This cross-

validation was performed by leaving a different subject out of the study in each iteration, with 

the aim of checking whether the selected features were stable all along the data set. Figure 10 

presents the results obtained for the MCI data set, and figure 11 presents the same results for the 

Mild AD data set. In both cases, the features are listed in the same order as that obtained using 

the OFR algorithm. The results presented in figure 10 and figure 11 show that RP is the most 

stable feature selected for both data sets, for Mild AD data set RP was selected as first feature 



28 
 

for all the patients. In the MCI data set, Correlation and Coherence are stable across subjects, 

but PDC is not stable across subject variation. For the Mild AD data set, Granger Coherence, 

Correlation and Phase Synchrony are stable across the variation of subjects. For both data sets, 

there was variation in the percentage of times the latter features were selected in the same 

position as that obtained through the OFR algorithm. This may be due to the fact that in the 

OFR algorithm, each time that a feature is retained the remaining features are orthogonalized 

based on the selected feature. Consequently, if the first features present variability, this 

variability could be extended to the other features in the orthogonalization process. Taking into 

account these results, we can assume that the previously reported 95% of CR for MCI, the best 

result obtained with this data set so far, can be a generalizable value and not an overfitting 

effect. 

 

Figure 10. Results of computing the feature cross-validation in the OFR algorithm for the MCI data set. 

For each measure, first column stands for the % of times that each measure was selected in the same order 

as by the OFR algorithm and second column stands for the % of times that a feature was selected in the 

same order and with the same frequency range as by the OFR algorithm. The MCI data set contains 60 

subjects. 
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Figure 11. Results of computing the feature cross-validation in the OFR algorithm for the Mild AD data 

set. For each measure, first column stands for the % of times that each measure was selected in the same 

order as by the OFR algorithm and second column stands for the % of times that a feature was selected in 

the same order and with the same frequency range as by the OFR algorithm. The Mild AD data set 

contains 41 subjects. 

4. Discussion  

In this study we investigated the use of synchrony measures and a frequency power measure in 

the whole set of frequency ranges existing between 1 and 30 Hz. As we use OFR, each extracted 

feature is orthogonalized with respect to the previous extracted ones. Since RP was selected as 

the foremost discriminative feature, complexity measures were decorrelated on this basis. The 

results obtained in this study show that using a single measure, the classification is not as robust 

as can be with more attributes, and that a combination of RP and synchrony measures results in 

better classification performance. Furthermore, the use of specific frequency ranges for each 

measure improves the classification performance in comparison with the results obtained in the 

classical frequency range (, θ, α and β). 

The presented results show that when using only one measure, RP is the best discriminating 

feature for the classification of AD patients versus healthy subjects. For the MCI data set, using 

RP we obtain a CR of 78.33%. On the other hand, the use of only a single synchrony measure 
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achieves the best CR, 75.00% for dDTF. Previous studies using this data set achieved similar 

results. For instance [15], using a completely different approach – Blind Source Separation 

(BSS) and RP in a different frequency range – achieved a CR of 80%. In our case, 78.33% is 

obtained without applying any decomposition technique. Our results using synchrony measures 

present some improvement over results presented in the literature. In [8,16], using only one 

measure as an input feature and LDA, the best obtained classification result was 70% using 

ffDTF. These studies evaluated the synchrony measures in the frequency range of 4-30 Hz. Our 

results show that analysing an optimal frequency range for each measure results in a better CR 

than using the whole frequency range. Using multiple feature classification the results improved 

to 78.33% in [7]. A number of other studies have also presented an improvement of CR, though 

only with using multiple features. In [18], 88.3% of CR is obtained by dividing the time series 

into small windows and computing the RP in each one. The value used as a discriminative 

feature in that study is the maximum value of RP, the best value obtained using the values of 

four electrodes. In [7], the best CR, using a combination of RP and a synchrony measure, is 

again 88.33%. The best CR obtained for the MCI data set was obtained in [17], achieving 

93.3% using bump modelling [37,38], an approach completely different from the one presented 

here, which exploit time-frequency space information using a synchrony model, whereas our 

system only exploit the frequency information. 

Using only one feature, a CR of 97.56% was obtained for the Mild AD data set. The use of only 

one single synchrony measure did not improve this result, because the best classification 

obtained was 95.12% for DTF (Mild AD). In [16] the best CR obtained was 82.9% using only 

one measure and in [7] the use of three measures as input features to a classifier achieved a CR 

of 95.12%. Our results are better in both cases. In [19], a CR of 97.6% was obtained using 

multiway array decomposition – in other words, the same value as is obtained in this study for 

RP used as individual feature classification, but using a more complex approach based on 

multiway array decomposition. 

Using multiple features classification, the OFR algorithm selected RP as the most significant 

feature in both data sets. Interestingly, the frequency range obtained for RP is close, for both 
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data sets, to the standard θ range, which is the one that is usually analysed to study the slowing 

of EEG [5,39]. The results obtained also suggest that correlation may play an important role in 

the diagnosis of AD. For both data sets, correlation appears among the first three positions of 

the OFR-selected features, for MCI in the frequency range 3-8 Hz, and for Mild AD patients in 

the frequency range 9-10Hz. Another measure that appears to be significant is coherence in its 

different variants (Coherence and Granger Coherence).  

For the MCI data set, using the eleven measures as input features for the classifier, a CR of 95% 

is achieved – the best result obtained with this data set. However, the level of significance using 

random probes is 50% (see figure 6), which indicates that those results may be overfitted. For 

the Mild AD data set, a CR of 100% was achieved using four features. The level of significance 

at which this value was obtained is less than 15% (see figure 7), which indicates that those 

measures were able to clearly identify AD patients in an advanced stage of the disease. This 

may indicate that MCI is a stage difficult to identify in comparison with the Mild AD stage. In 

the case of MCI, patients start to present some memory impairments but preserve other 

cognitive domains, whereas in the Mild AD stage subjects begin to display some cognitive 

deficits.  

We have demonstrated that combining two of the well-known perturbations in AD EEG data 

(EEG slowing and changes in EEG synchrony) improve the ability to distinguish between AD 

patients and healthy subjects. The effect of the slowing of EEG, characterized by RP, appears to 

be more discriminative than the changes in synchrony. These results are in agreement with [40], 

where the effect of slowing of EEG was used to predict the progression from MCI to dementia. 

On the other hand, combining EEG slowing with the changes of EEG synchrony, quantified by 

coherence or correlation coefficient for instance, allows us to better differentiate between AD 

patients and healthy subjects. Changes of synchrony on EEG signals have been related with 

changes in functional connections between cortical regions [5] and brain cortical and subcortical 

atrophy [41].  

Even though presented results achieve a good classification performance, i.e., 95% for MCI and 

100% for Mild AD patients, several limitations of the present study should be emphasized. Due 
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to the limited number of subjects in each database, results may be prone to overfitting caused by 

parameters selection (time window and Granger order). On the other hand, the subjects in the 

Mild AD dataset are not age matched. Age differences have been related with changes in 

complex brain functional networks and cognitive decline [42]. Furthermore, studies comparing 

young and old AD patients have also described changes in the brain due to age [43]. Therefore, 

results obtained for the Mild AD patients have to be taken carefully because of the age 

differences between subjects. 

In this study we limit ourselves to global values for each subject. Therefore, information 

specific to a particular pair of electrodes might get lost due to the average process. Regional 

analyses comparing the activity on different brain regions and different electrodes may further 

facilitate the differentiation of patients against healthy subjects. 

Finally, we have to take into account that Mild AD is a stage in which the cognitive deficits are 

more pronounced than in MCI and, therefore, it is easier to classify the Mild AD subjects 

compared to MCI ones. Even if some shortcomings can be identified, the methodology 

described in this article opens an interesting line of research that could help to improve the 

diagnosis of the early stages of AD. 

5. Conclusions 

In this study, a group of synchrony measures and a frequency power measure were used to 

distinguish between healthy subjects and AD patients in different stages (MCI and Mild AD). 

Single features were used to compute CR in order to obtain the optimal frequency range that 

best discriminates between AD patients and healthy subjects. A multiple feature classification 

approach based on OFR was also presented, with the aim of obtaining a final CR that improves 

upon state of the art results, was described. 

The two data sets analysed in this study (MCI and Mild AD) were obtained through different 

EEG recordings in two different hospitals, with different EEG systems and slightly different 

protocols. We can therefore expect significant variations in the experimental conditions. 

Consequently, comparing these two data sets is a challenging task. We chose to perform an 

independent study of each database separately. Interestingly, with both data sets high 
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classification rates were obtained: 95% for the MCI data set (using 11 features), and 100% for 

the Mild AD set (using 4 features). The results in frequency ranges differing from the standard 

bands were shown to be more discriminant. It seems that using a specific configuration and 

computing neural synchrony in a specific frequency range is more effective than standardizing 

all configurations. Furthermore, with the aim of obtaining a practical classification system, we 

explored the possibility of using the same features for both data sets. In this case, using features 

optimal for the MCI data set, we obtained promising results for the Mild AD data set, while, of 

course, maintaining the result for MCI. The standardization of features for the MCI and Mild 

AD data sets is worth future investigation. 

Finally, it must be noted that the two data sets used are fairly small. A larger database is needed 

in order to generalize our results. Data sets containing different types of dementia, and optimally 

the evolution of MCI subjects to Mild AD, could significantly facilitate the early diagnosis of 

AD. In future work, we will analyse whether a better CR could be achieved by investigating and 

comparing the synchrony in each of the obtained regions, instead of computing a mean value for 

all the subjects. This methodology will allow us to identify which regions exhibit the most 

significant changes. 
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