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Image series are increasingly being used to output ecological indicators because they provide the ability to
reanalyze data that has already been collected and they improve temporal as well as spatial resolution. We
address both the increased utilization and the need to diversify the way they are produced by introducing an
open source Python (www.python.org) library called EcoIS that creates image series from unaligned pictures
of specially equipped plots. We use EcoIS to sample flowering phenology plots in a high arctic environment
and create image series that later generate phenophase counts and automatically estimate phenological dates
of interest. Our results exhibit one day difference between EcoIS estimations of local indicators and the ones
calculatedwith the establishedfield-based process.We show that EcoIS' error is similar to the one of image series
generatedwith fixed camera setups.We see that EcoIS processes an image in 3.8s and showhow it is equipped to
handle data intensive scenarios. We additionally identify in-camera automatic image formatting and image
acquiring oversight as contributing factors for increasing the overall error. Our main conclusion is that EcoIS
creates usable image series that maintain the spatiotemporal qualities of the original images and can successfully
be utilized to generate ecological indicators. EcoIS is relevant as a replacement for traditional image series
infrastructure where the cost of deploying EcoIS is smaller or less intrusive to the ecosystem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Arctic ecosystems are changing rapidly and dramatically along with
observed changes in climate (Gilg et al., 2012; Post et al., 2009).
Quantifying the interaction between climate and ecosystems is complex
and requires extended concurrent data collection from multiple
compartments of an ecosystem (Meltofte et al., 2008a). Our ability to
understand and predict the effects of climate change on ecosystems
depends on coordinated long-term monitoring programs (Schmidt
et al., 2012b) that establish the difference between effects inherent to
ecosystems and those caused by environmental perturbations like
climate change (Meltofte et al., 2008a), as well as provide context for
interpreting experiments conducive to designing, implementing and
evaluating environmental policy (Lovett et al., 2007).

Technology has long aided long-term monitoring by providing
solutions like tape recorders that facilitate documentation, personal
desktop assistants (PDA) that automate data transmission and loggers
that collect data for long periods of time (Michener et al., 2011). Recent
developments in digital photography have broadened this scope by
facilitating projects that range from phenological event detection
(Richardson et al., 2007) to demographics (Bolger et al., 2012).

Image series (ISeries) are of special interest because they provide the
ability to reanalyze data that has already been collected and can
improve spatial and temporal resolution of long-term monitoring
variables while at the same time reduce labor (Ide and Oguma, 2010).
Plant phenology which is an observable trait impacted by climatic
variations (Badeck et al., 2004;Høye et al., 2007) vital for understanding
species responses, ecosystem function and the effects of climate
(Wright et al., 1999) has been detailed by ISeries (Graham et al., 2009;
Richardson et al., 2007) and has been related to measurements such
as carbon dioxide uptake (Mizunuma et al., 2013) and gross primary
production (Saitoh et al., 2012).

In general, ISeries are generated from cameras placed in housing
platforms designed to provide stability, power and protection. Housing
platforms that have been used to fix cameras close to the ground in
order tomeasure leaf area index (Ryu et al., 2012), have enclosed cameras
that generated simple field estimations of photosyntheses (Graham et al.,
2006) and have positioned cameras near and above forest canopies
(Sonnentag et al., 2012; Zhao et al., 2012). They provide translational
(Graham et al., 2009) as well as rotational (Granados et al., 2013)
movement increasing the amount of possible arrangements. A housing
platform is what aligns all images by providing the same view point.

But what if a housing platform cannot be deployed? As we move
monitoring efforts away from well known infrastructure (electricity
grids and communication networks) into remote areaswhere powering
and maintaining equipment are expensive and resource intensive, we
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encounter situations where the cost of a camera housing platform is
prohibitively expensive. Moreover, the inherent invasive nature of
housing platforms might prevent their deployment in research sta-
tions where invasive structures are prohibited inside denominated
undisturbed areas (Meltofte et al., 2008b). It is in these situations
where we need an alternative way to create ISeries.

In these cases we replace the invasive housing platformwith amore
versatile approach that uses autonomous mobile entities, like humans
or unmanned autonomous vehicles (UAV) as vessels that transport
and actuate a camera. Because of their mobile nature, they would
generate unaligned images which would not be suitable for generating
ISeries. Projects have addressed this by manually aligning the images
(Liang et al., 2012), but this becomes unmanageable as the amount of
images increases.

Inspired by the need to generate ISeries from unaligned images we
have created EcoIS (Granados, 2010a), a Python (http://www.python.
org) library that automates the alignment process and suggests an
alternative way of gathering data based on ISeries. We give a detailed
description of its inner workings and outline how it was used in an
existing long-term phenological monitoring program located in a high
arctic research station.We characterize changes in the arcticmonitoring
work-flows by describing their established processes and comparing
them to new ones brought on by the use of EcoIS. We see how ecolog-
ical indicators (from established work-flows) can be created and
demonstrate how to generate other spatiotemporal measurements
that can only proceed from ISeries. Finally, we see how errors intrinsic
to camera systems and image transformations affect ISeries and the
indicators that they generate.

2. Materials and methods

2.1. EcoIS

EcoIS (Granados, 2010a) is an open source Python library that
creates ISeries from images taken from regions of interest delineated
by special markers. It aligns images giving them a unique virtual view
point which is similar to creating orthophotos (Duhaime et al., 1997).

It creates ISeries which are the foundation for spatiotemporal analysis
used in ecological indicator calculations.

2.1.1. Photo-plot layout
Photo-plot layout (Fig. 1B) is square and enclosed by three spherical

(Fig. 2A) and one chessboard (Fig. 2B) markers. Spheres mark three of
the plot corners (center of chessboards marks the fourth) while
chessboards contain information used for plot identification (Samples
and ID sections, Fig. 2B) as well as sphere detection (Sphere section,
Fig. 2B). All markers are fastened to the ground for the duration of
deployments.

The Samples section contains squares depicting six possible colors
that appear in the ID section (Fig. 2B) two of which were not used in
our implementation but were left in the chessboard for future use.
Each square from the ID section encodes two bits and contains part of
the plot ID representation (Fig. 3). The amount of squares in the ID
section depends on the number of plots being identified (greater
number→more ID squares). For example, Fig. 2B shows three squares
in the ID sectionwhich encode to 35 (see Fig. 3 for encoding calculation)
and have the potential to identify 64 plots.

2.1.2. Serialization algorithm
EcoIS begins searching for a chessboard (Fig. 3) by using OpenCV's

findChessboardCorners function (Bradski and Daebler, 2008a) which
operates in five steps (Rufli et al., 2008): 1) Images are converted
to grayscale. 2) They are then segmented by applying adaptive
thresholding which binarizes the images (Bradski and Daebler,
2008b). 3) The binary image is then eroded (Jähne and Haußecker,
2000) with a 3 × 3 rectangular kernel which is gradually increased
when quadrangles (squares) are difficult to detect. 4) Closed contours
(Bradski and Daebler, 2008c) are then calculated which the algorithm
uses to fit into quadrangles. 5) Finally, every successfully fitted
quadrangle is linked to adjacent ones (Rufli et al., 2008). If a chessboard
is not found after these steps, the image is discarded and EcoIS
continues with the next image.

After the chessboard is found, the plot number contained in the ID
section (Fig. 3) is calculated. First, the HSV color space (Smith, 1978)
is segmented into six consecutive compartments based on mean hue

Fig. 1. Established and photo-plot work-flows. A) Established work-flow. Counting and digitizing of phenophases are manually done in the field at a predefined frequency. Plot layout is
rectangular of varying size marked by stakes driven into the ground at each corner. Next to each plot there is a sign containing plot ID. B) Photo-plot work-flow. Digital images are taken
from several view points at a predefined frequency. ISeries are automatically created by EcoIS from field images which in turn are used for phenophase counts, EcoIP estimators and
Parrott's metrics. Plot layout is rectangular enclosed by three spherical and one chessboard markers which are all driven into the ground. Chessboard marker contains plot ID.
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values of the Samples squares (Fig. 4A). We then use this segmentation
to count the hue values of the ID squares and choose the color based on
the segment where the count is greater (Fig. 4B). Sampling of colors
prior to detecting is done for every image in order to adjust for pixel
value variability in the ID section caused by lighting differences and
automatic camera adjustments.

To find the sphere centers (Fig. 3) we first sample the Sphere square
(Fig. 2) and calculate mean (c) and standard deviation (σc) for color
components in CIE L*a*b* (CIE (Commission Internationale de
l'Eclairage), 1986) color space. We then create a range containing the
sphere color (c� σ c) and use it to binarize the image. We continue by
applying consecutive open and close operations (Jähne and Haußecker,
2000) with a circle shaped kernel of varying sizes that reduces noise
and makes the spheres more prominent. Finally, we use OpenCV's
HoughCircles function which uses Hough circle transform (Bradski and

Daebler, 2008d) to approximate the circle centers. If EcoIS does not
find exactly three spheres, the image is discarded.

Thefinal step in our algorithm consists inmoving all the pixels in the
image in such a way that the corners of the plots (spheres and
chessboard) are in the image corners (Fig. 3). This involves multiplying
all coordinates by a transformation matrix and then performing

A B

Fig. 2. Closeup ofmarkers in the field. A) Spheremarker paintedwith water proof paint. B) Chessboardmarker is printed on paper, placed on an aluminum base and laminated tomake it
waterproof. This is a marker for plot 35 containing red spheres. Samples section is used to model squares containing encoding colors. Sphere section holds sphere color. ID section has
encoding squares detected by models from Samples section.

Fig. 3. Serialization algorithm. First step: Find a chessboard in each image. Second step:
Calculate ID from ID section. Each color encodes two bits: green encodes 11, red 00 and
magenta 01. They each represent a power of 2 and sum to 32. Third step: With color
sample from Sphere section, find sphere centers. Fourth step: Transform image so all
centers are placed in the image corners.

A

B

Fig. 4. Chessboard color detection. A) For each of the Samples squares we calculated min
value (lower case), mean (midrange cue) and max value (upper case) effectively
segmenting the hue dimension of the HSV color space (Smith, 1978). The “Mage”
abbreviation means magenta. B) Each ID square is binned into ranges and the one with
greater value is selected. The first is detected as magenta and the second as blue.
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pixel value interpolation on the result. The matrix is calculated by
solving X′

i
¼ M � Xi; i ¼ 0;1;2;3 where M is the transformation matrix,

Xi is the ith plot coordinate and X′
i
is the ith destination coordinate. For

our particular case the plot coordinates are the image coordinates
where the spheres and chessboard are located; the destination
coordinates are the re-projected image corners (coordinates for a
5000×5000pixel image are {(5000,0); (5000,5000); (0,5000); (0,0)}).
Once thematrix is calculatedwe use OpenCV'swarpPerspective function
(Bradski and Daebler, 2008d) to actually move the pixels and perform
the interpolation.

These four steps (Fig. 3) take the view point of the original image
and re-project it into a virtual one which is shared by all re-
projections of the plot (Fig. 5). The new image is scaled to a resolution
of 5000 × 5000 pixels and indexed into a directory using its plot ID.
Additional sanity checks are executed to avoid images where corner
detection errors occurred.

2.1.3. Photo-plot work-flow
Plots are created by arranging three spherical markers and a

chessboard in a square containing elements of interest (Fig. 1B). Spheres
are painted with the same color as the Sphere section (Fig. 2B) which
should contrast with the elements in the plots to avoid interference.
Images are taken from only four markers, if a fifth (sphere or
chessboard) is visible in the frame, it might interfere with correct
detection and could contribute to inaccuracies. Moreover, plots should
occupy as much of the frame as possible in order to maximize the
amount of pixel information available for markers and for elements of
interest.

Plots are photo sampled (photographed) at a predetermined
frequency taking care of acquiring several photographs from different
view points per photo sample in order to increase the possibility of at
least one image getting serialized (Fig. 1B). When we have finished
collecting images, EcoIS is executed in order to create an ISeries for
each plot which can subsequently be used to explore the behavior of
the elements of interest. This work-flow is denominated photo-plot
work-flow (Fig. 1B).

EcoIS requires an image based storage system which has its own
challenges, yet having the data in an ISeries representation creates a
new potential in terms of data usability. ISeries not only provide the
possibility for re-measuring plots (for corroboration), it also allows
scientists to ask and answer new questions given sufficient image
quality. We demonstrate this in an arctic deployment by using ISeries
to create three types of ecological indicators (Fig. 1B).

2.2. Field deployment at Zackenberg

We deployed in 2012 at Zackenberg station in northeast Greenland
(74°30′N, 20°30′W), a high arctic research station run by the
Department of Bioscience at Aarhus University in Denmark. There, we
focused on the established plant flowering phenology work-flow
which has kept track of phenological phases of interest (phenophases)
by doing seasonal counts (Fig. 1A). The process is mostly done in the
field where technicians count individuals in a plot and then digitize
the information into a PDA (Fig. 1A), they do this once every week for
the duration of the season. This process is carried out for 28 permanent
monitoring plots located in the valley lowland and produces files
containing yearly plot phenophase counts (Fig. 1A).

2.2.1. Photo-plot layout
We implemented the EcoIS photo-plot layout (Section 2.1.1) with

spheres of 40mm in diameter (Fig. 2A) and chessboards that measured
110×90mm(Fig. 2B)We usedwater resistant paint on the spheres and
laminated the chessboard marker with transparent plastic (Fig. 2B) to
prevent weather damage. We used a seven by six chessboard that
allowed us to track 64 plots (we deployed nine) and placed it on top
of an aluminum plate to prevent it from deforming. Stakes were

screwed on all markers and driven into the ground to hold them in
place. Plots had dimensions of 80 × 80 cm and were captured from an
approximate height of 125 cm with an average focal length of
26.0mm (35mm equiv).

2.2.2. Photo-plot work-flow
We applied EcoIS' photo-plot work-flow (Fig. 1B) by visiting

(weekly) nine plots containing Mountain Avens (Dryas octopetala/
integrifolia; hereafter referred to as Dryas) from Day Of Year (DOY)
167 to 219which generated a total of 60 photo sampleswith an average
of four images per sample. Here it is important to distinguish between
photo samples and individual images: the first is a series of consecutive
images taken of a plot from different view points on one specific date,
the second is just one picture. Notice that there are redundant images
per photo sample to compensate for EcoIS' raw error.

A total of 265 imageswere takenwith three cameras (Table 1)which
produced raw files that were formatted into Joint Photographic Experts
Group (JPEG; ITU, 1992) with a raw image processing application
(RIPA) called Rawtherapee (www.rawtherapee.com). The Sony camera
generated raw and JPEG versions which allowed us to add 108 Sony
generated JPEGs bringing the total to 375.1 Plots were visited between
ten in the morning and seven in the afternoon. Images were taken by
avoiding shadows on markers, avoiding positions where chessboards
reflected the sun and including only four markers.

EcoIS automatically created all the ISeries on a LenovoW500 (Model
W500, Lenovo, Morrisville, North Carolina) laptopwith 8GB ofmemory
and an Intel® Core™ Duo (2.66GHz) processor. After analyzing all the
JPEGs, EcoIS had effectively put all images into their respective ISeries
and put all discarded images into an error directory. The photo-plot
work-flow ended by counting the phenophases of interest on the
created ISeries in an office back in Denmark.

2.2.3. Calculating error
We calculated two types of error related to discarded images: raw

error and ISeries error. The first refers to the total number of discarded
images which points to how often EcoIS fails but does not reflect the
proportion of missing photo samples. The second refers to the total
amount of missing photo samples and increases when EcoIS fails to
serialize all the images of a photo sample. The ISeries error expresses
missing data that cannot be reclaimed by the photo sample redundancy
and gives us an idea of the impact of taking multiple images.
Additionally we looked at image quality by measuring the virtual
movement related to OpenCV's warpPerspective function (Bradski and
Daebler, 2008d) by following specific elements throughout an ISeries
and calculating their Euclidean distance from image to image.

We calculated missing and movement values from ISeries created
with a pan–tilt–zoom (PTZ) camera (Model VB-C50iR, Canon U.S.A.,
Inc., Lake Success, New York) placed 30m above ground and compared
them to the ones from EcoIS ISeries. Given that the camera
configurations were different we normalized the focal length, distance
to objects and crop factor using a simple pinhole camera model
(Bradski and Daebler, 2008a) in order to compare the EcoIS images
with the PTZ ones (model not shown). For the movement comparisons
we only considered inanimate objects that did not grow such as rocks,
markers or pebbles. Finallywe characterized the impact of using camera
formatted JPEGs in the photo-plot work-flow by comparing the success
rate of images formatted using a RIPA with images formatted using the
Sony camera. We report the number of rejected images in both of these
cases.

2.2.4. Using image series
Parrott's three dimensional metrics (Parrott et al., 2008) are based

on a stack of successive spatial images sampled at uniform intervals

1 216 Sony images: 108 formatted by Rawtherapee and 108 formatted by the camera.
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called space-time cubes. The smallest constitutional units are voxels
which are regular pixels with an added temporal dimension that,
when put together, make up three dimensional blobs (fig. 1b in
Parrott et al., 2008). The two ways of making blobs are: with 26-
voxel (Moore's system) and with 6-voxel (Von Neumann's system)
neighborhoods. These constructs are used to characterize three-
dimensional data sets by calculating metrics designed to represent a
property. Among the ones described in (Parrott et al., 2008) there is
shape complexity defined as the ratio of blob volume to bounding box
volume which ranges from zero (complex shapes) to one (simple
rectangular shapes). There is also contagion measuring the dispersion
of blob types and ranges from zero (random mix of voxel types) to
one (contiguous landscape with little change). Finally, there is
spatiotemporal complexity which measures how one type of blob
occupies the cube and also ranges from zero (uniform blob shapes) to
one (complex and random shapes).

To demonstrate EcoIS' usability we applied Parrott's metrics to see
how well they describe the resulting ISeries. We created an
intermediate representation of our ISeries data (space-time cube) by
stacking binary versions of individual images into a three dimensional
cube (we used Moore's system). We then took this space-time cube
and used it to run Parrott's code which ultimately gave us values for
each of the metrics.

EcoIP (Granados et al., 2013) is a toolkit used for characterizing
phenophases of different species which bear distinct colors, like the
tones of leaves in the fall. It involves creating a statistical model with a
set of training images and applying it to an ISeries to produce a
representative signal which is then analyzed by a semiautomatic
process that ends with the estimation of beginning and ending dates.
It is based on a Naive Bayesian model of color values applied to ISeries

images that produces temporal estimators by finding the inflection
points of fitted sigmoid signals. Among its outstanding features is the
ability to use a variety of color transformations to adjust the accuracy
of the estimations.

To further demonstrate the quality of the generated ISeries, we
estimated flowering periods with EcoIP (Granados et al., 2013). Of all
the deployed photo-plots we chose plot four because it had a high
sample number and a missing value of zero (Table 2). We trained a
model with the characteristic yellow of the flowering Dryas and
used that to generate the representative signal. The semiautomatic
procedure described in (Granados et al., 2013) then estimated the
beginning and ending dates of flowering periods.

Finally, to demonstrate that no functionality was lost with the
photo-plot work-flow (Fig. 1B), we generated season counts by
identifying phenophases of interest (buds, flowers and senescent) in
ISeries with an annotation tool (Granados, 2010b). These phenophase
counts (new work-flow, Fig. 1B) were validated by two trained field
ecologists andwere comparedwith field counts by looking at the actual
counts (Table 3) as well as 50% flowering and senescence onset
estimators (Table 4; Høye et al., 2007, 2013; Iler et al., 2013).

3. Results

3.1. General

EcoIS spent a total of 962min analyzing a subset of 248 images. On
average, it spent 3.8min per image which meant that we had to leave
it overnight to process all the 373 images. It spent more time on error
images as the algorithm was designed to try different detection
configurations before discarding an image. Given the approximate

Table 1
Cameras in Zackenberg. Characteristics of cameras used in our Zackenberg deployment.
Resolution is given in pixels, focal length is given in millimeters and is normalized to
35 mm equivalence, exposure is given in seconds and “Imgs” gives the number of
images taken with each camera. Formats refer to how the images were formatted in
camera; only the Sony camera kept each image in raw and JPEG (ITU, 1992) formats.

Sony Nex-3 Nikon D700 Nikon D300

Lens Sony E
18–55mm f/3.5–5.6

AF-S Nikkor
14–24mm f/2.8G ED

AF-S Nikkor
14–24mm f/2.8G ED

Resolution 4608× 3072 4288× 2844 4352 × 2868
Aperture f/9.0–22.0 f/10.0–11.0 f/8.0–11.0
ISO 200 200–500 200–640
Exposure 1/320–1/8 1/500–1/125 1/500–1/160
Focal length 27 24 25–27
Imgs 108 56 101
Flash No No No
Formats JPEG/raw Raw Raw

Table 2
Missing samples. EcoIS refers to Zackenberg ISeries. PTZ refers to ISeries gathered in the
James Reserve by a pan–tilt–zoom camera. ID is the plot ID for EcoIS and the position ID
for PTZ. Sample is the number of intended samples. Missing is the number of samples
that went missing. The last row is the error calculated as the number of discarded images
proportional to the number of intended ones.

EcoIS PTZ

ID Sample Missing ID Sample Missing

4 8 0 0 365 88
35 8 0 6 365 82
59 4 0 1 365 35
0 8 1 2 365 25
16 4 1 3 365 44
20 4 1 4 365 34
24 8 1 5 365 76
47 8 2 7 365 89
63 8 2 8 365 82
Error: 13.33% Error: 16.86%

167 169 177 184 190

Original

Re-projected

Fig. 5. Plot image originals and their transformations. The first row contains original images taken for each DOY of plot four. The second is the transformed images using EcoIS algorithm
(Fig. 3). Notice that there are no shadows on the markers in the original images. DOY 167 and 169 contain Dryas buds (too small to see), DOY 177 shows the plot flowering and DOY 184
and 190 show the senescent stage of this species.

198 J.A. Granados et al. / Ecological Informatics 18 (2013) 194–202



Author's personal copy

view point height of 125 cm, we calculated an average distance to the
markers of 150 cm which produced images containing spheres of
100 pixels in diameter and chessboard markers with dimensions of
170×200pixels.

3.2. EcoIS error

Raw error was the number of discarded images (180) proportional
to the total number of images (373) and was calculated to be 48.25%
(Table 5). The error for the Sony images formatted by the Sony camera
was 67.59% (Table 5). Image taken with the Sony camera formatted by
the raw image processing application (RIPA) had error of 42.59% while
the ones taken with the Nikon cameras had an error of 38.85%
(Table 5). The error of the images formatted only with the RIPA was
40.37% (Table 5).

Of the 60 photo samples that should have produced 60 images for
the ISeries, EcoIS produced 52 (eight missing) which represented an
ISeries error of 13.33% (Table 2). The other 86.66% were correctly
identified, re-projected and placed in a directory as an ISeries image.
Virtual movement for the EcoIS generated ISeries was, on average,
1.85% of the image size which represented a distance of 130.85 pixels.
PTZ objects, on the other hand, moved an average distance of 0.31 of
the image size.

3.3. Image series

Wecalculated thenumber of blobs, shape complexity, contagion and
spatiotemporal complexity (Table 6) with Parrott's metrics (Parrott
et al., 2008). We also applied EcoIP's semiautomatic process to the
data of plot four which resulted in estimations of the beginning and
ending dates of the Dryas flowering period (Fig. 6). We further used
the field and ISeries counts to calculate and compare 50% flowering
onset and 50% senescence onset where the duration of the Dryas
flowering period was the same (8 days) with both count types
(Table 4). Finally, we compared field counts and ISeries counts from

plot four and calculated the average differences in numbers to be 25.6,
7 and 15.6 for the bud, flowers and senescence counts respectively
which averaged to 22.75 for the whole plot (Table 3).

4. Discussion

4.1. Applicability of image series

4.1.1. Phenophase counts
There was a tendency to undercount buds in the field (Table 3) due

to the difficulty of seeing them at an early stage (buds are small). On the
other hand, detection was facilitated on ISeries because technicians
could identify the position and state of a bud by referring to images in
the past and in the future. In other words, technicians had information
in images from different dates which hinted at the location of very
small elements; if one image in an ISeries contained an element in one
location, the other images probably had the same element in the same
location.

The average difference between the field and ISeries counts dropped
from 25.6 for the buds to 7 for the flowers. This was because the white
flowers were easier to detect on a dark green background in both the
field and the ISeries scenarios. This difference went back up to 15.6 for
the senescent counts which were more difficult to spot in the field as
the Dryas turned brown and blended with the background.

Despite the differences in the counts for all Dryas phenophases, 50%
flowering onset and 50% senescence onset for both the field and the
ISeries counts coincided well with a difference of just one day
(Table 4) and the duration of the flowering period (from flowering
onset to senescence onset) was identical in both cases (Table 4). This
gives credibility to results generated with EcoIS ISeries and suggests
that the ecological indicators are contained in the ISeries themselves.

4.1.2. Parrott's algorithm
Parrott's algorithm (Parrott et al., 2008) generated metrics that

accurately described the spatiotemporal form of the Zackenberg plots.
The shape complexity mean value (Table 6) was greater than 0.6 and
points to simple blob complexities where the blob shape tends to fill

Table 3
Dryas flowering phenology counts. Values are from plot four. DOY is Day Of Year. F is the
field counts. I is the count done on ISeriesminus field countswhere a plus (+) is for larger
ISeries , a minus (−) is for smaller and (0) when there is no change. Buds are flowers that
are not yet open, Flowers are open Dryas giving access to their reproductive organs and
Senescence is when all the petals turn brown or are missing (Schmidt et al., 2012a).
Total is the sum of all the elements and AF is the average absolute difference between
the F and I that varied.

DOY Buds Flowers Senescence Total

F I F I F I F I

167 75 +24 0 0 0 0 75 +24
169 93 +31 2 −2 0 0 95 +29
177 3 +22 108 −12 1 −1 112 +22
184 0 0 22 +14 91 +5 113 +19
190 0 0 1 0 70 +57 71 +57
197 0 0 0 0 105 +10 105 +10
204 0 0 0 0 101 +14 101 +14
211 0 0 0 0 105 −7 105 −7
AF 25.6 7 15.6 22.75

Table 4
50% phenophase onset counts. Timing of phenological events in Dryas using field counts
and images series counts, respectively. Values represent DOY. Field numbers come from
counts done in the field. ISeries numbers come from counts done on the ISeries.
Flowering onset is the DOY when 50% of the plot flowered. Senescence onset is the DOY
when 50% of the plot became senescent. Duration is (senescence onset) − (flowering
onset).

Field ISeries

Flowering onset 173 174
Senescence onset 181 182
Duration 8 8

Table 5
Rawerror. Img is total number of images, Discarded is the amount of discarded images and
Err is Discarded/Img. The row labeled Sony by Sony contains the JPEG files thatwere taken
and formatted by the Sony camera. The Sony by RIPA and Nikon by RIPA are image taken
by the Sony and Nikon cameras and formatted by the raw image processing application
(RIPA) Rawtherapee (www.rawtherapee.com). The fourth row contains all RIPA
formatted JPEGs and the last row consolidates the first three rows to display the total
number of analyzed JPEGs.

Img Discarded Err

Sony by Sony 108 73 67.59%
Sony by RIPA 108 46 42.59%
Nikon by RIPA 157 61 38.85%
Sony & Nikon by RIPA 256 107 40.37%
Total raw error 373 180 48.25%

Table 6
Parrott's three dimensional metrics (Parrott et al., 2008). All values
except Number of blobs range from 0 to 1. Number of blobs is the
amount of blobs in the space-time cube. Shape complexity ranges
from 0 (complex ratio) to 1 (simple ratio). Contagion ranges from
0 (random blobs) to 1 (continuous blobs). Spatiotemporal
complexity (STC) ranges from 0 (uniform shapes) to 1 (complex
shapes).

Value

Number of blobs 261
Shape complexity mean 0.664
Contagion 0.656
STC 0.282
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its bounding box. This agrees with elements in the Zackenberg plots
moving little throughout their three stages (bud, flower and senescent)
effectively creating a cylinder in the space-time cube. A contagion value
of over 0.6 was expected as values that tend to one are considered to
originate from continuous blobs which should be formed when we
stack our images one on top of the other. Though we would expect a
value closer to one due to the cylindrical nature of the Dryas elements
in the space-time cube, the result tended towards 0.5 due to the virtual
movement caused by the warpPerspective function (Bradski and
Daebler, 2008d) which separates blobs that should otherwise be
together. This inadvertent separation also caused the number of blobs
(261) to be greater than the maximum amount of elements present in
the plot (134, Table 3); these two values should be closer as each
three dimensional blob is supposed to represent a Dryas element in
the plot. Finally we have the spatiotemporal value of 0.28 which agrees
with the uniform shape characteristic seen in the Dryas plots. In other
words, instead of having complex patterns in the space-time cube we
see long rectangle shapes which are the longest in the time axis.

4.1.3. EcoIP
EcoIS was able to provide EcoIP (Granados et al., 2013) with ISeries

that produced an estimation of the beginning and ending flowering
dates for plot four (Fig. 6). This shows that EcoIS generated ISeries
maintain pixel positional coherency and pixel color values even after
going through OpenCV's warpPerspective transform (Bradski and
Daebler, 2008d). The estimated onset date fell between the day where
most of the Dryas were still buds (DOY 169) and the day where most
of them had bloomed (DOY 177) which was the same date for the
field and the ISeries counts (Table 3). The estimated ending date fell
between the day were most of the Dryas were flowering (DOY 177)
and the date where there were almost no flowers because they were
mostly senescent (DOY 190) which again was equal for the field and
ISeries counts (Table 3). Finally there were at most four days of
difference between the 50% onset field and ISeries values and the ones
calculated by EcoIP (Fig. 6) which supports the notion of EcoIS
producing usable ISeries that contain spatiotemporal information fit
for estimations.

4.2. Accuracy

4.2.1. Serialization error
On average, close to half (48.25%) of the JPEGs analyzed by EcoIS

were discarded because of lack of information (Table 5) and that value
only dropped to 40.37% when we ignored the Sony created files which
had a negative effect on the process (Table 5). If the same proportion
of dates was missing from an ISeries, it would have been useless;
which is the reason we had multiple images per photo sample. Though

we managed to go from the raw error of 48.25% (Table 5) to the ISeries
error of 13.33% (Table 2), we also increased the amount of images being
analyzed which, in turn, increased the amount of analysis time. This
suggests that the raw error is important because its reduction directly
translates into the reduction of the execution time and is relevant for
the user experience of EcoIS.

An ISeries error of 13.33% (Table 2) meant that 86.66% of the dates
were correctly serialized which was enough to characterize the season
using EcoIP (Fig. 6), Parrott's three-dimensional metrics (Table 6) and
the 50% onset values (Table 4). This error (13.33%) was lower than the
PTZ deployment error (Table 2) of 16.86% and though they did not
have the same cause, they could be compared as they both represented
missing images. This comparison was relevant because it showed that
an ISeries is still useful despite a 13.33% ISeries error and showed that
EcoIS generated ISeries could be used for ecological analysis in the
same way as the ISeries generated with PTZ cameras in Granados et al.
(2013).

We experienced additional serialization error related to automatic
camera formatting of variables like white balance, saturation and
contrast (Table 5). We could clearly visualize the effect that the Sony
camera had on the error by comparing the first two rows of Table 5
where both represent JPEGs generated from the same raw files yet
have very different behavior. This points towards the use of raw formats
for automating phenology as the better choice over camera generated
JPEGs which have great variability because of diversity in manu-
facturers, formatting variables and user customizations. The use of
Rawtherapee (www.rawtherapee.com) allowed the standardization of
raw image formatting variables reducing the error in EcoIS but also
restricted the type of cameras that we could use to those that could
produce raw files.

Finally, EcoIS' ability to analyze images depends on the lighting on
the chessboard being similar to the one on the spheres and although
we tried to avoid it, 24 images were excluded due to the photographer
casting shadow on at least one marker. None of these were correctly
serialized and represented 13.33% of the total error. This implies that
we can potentially reduce the error by 13.33% if we are more careful
when acquiring the images.

4.2.2. Virtual movement
As expected from the outset, the amount of movement in ISeries

generated with the PTZ camera was less than the ones generated by
EcoIS. Though it has three degrees of freedom, the PTZ camera was
able to return to a predefined position which resulted in a virtual
movement of 0.31%. EcoIS, on the other hand, was less accurate
(Fig. 7) with a virtualmovement value (1.85%) that was six times larger.
This greater variability (Fig. 7) did not overly affect the phenophase
counts as individual elements could still be identified based on their
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Fig. 6. Phenophase estimations. Sigmoid fit (solid line) to the original signal (dotted line) was calculated by EcoIP (Granados et al., 2013) of plot four containing Dryas. Training was done
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locations in prior and posterior images. Moreover an average difference
of 130pixels (1.85%) is not significant when compared to the resolution
of the original images (Table 1) or the generated re-projections
(5000×5000pixels).

The analysis donewith EcoIP (Granados et al., 2013)was alsomostly
unaffected by virtualmovement (130pixels) as its temporal estimations
are based on complete images instead of regions of interest. In contrast,
Parrott's (Parrott et al., 2008) numbers were affected where estimators
like contagion were expected to be closer to one but ended up being
0.656 (Table 6) due to blob separation caused by virtual movement.
This was addressed by using Moore's neighborhood (Parrott et al.,
2008) which reduced the chance of blobs getting separated due to the
increased number of adjacent voxels.

4.3. Deploying EcoIS

4.3.1. In the field
We looked at theworkload already in place (Fig. 1A) and revised it in

order to increase automation while at the same time reduced the
number of steps at the field (Fig. 1B).We replaced the two steps needed
to service a plot (counting and digitizing, Fig. 1A) with just one
(imaging, Fig. 1B) and in the same way replaced the hardware needed
for the old work-flow (PDA andmechanical counters)with one camera.
And though this reduction is relevant, it still remains to be seen if EcoIS'
overhead is optimal (in terms of time and cost).

4.3.2. Time of analysis
Our experiments show that the algorithm spent 3.8 min (on

average) analyzing images taken in eight weeks from nine plots (one
photo sample per week per plot). But how would EcoIS behave with
more data? How long would it take EcoIS to serialize a hypothetical
year-round deployment that measured once every day on nine plots?
Having four pictures per photo sample of nine plots we would have 36
pictures taken per day. This would give us a total of 13,140 images per
year which would need 49,932 min to be serialized (34.67 days). We
can reduce this hypothetical month if we segment the totality of the
images and analyze each in a separate process. If we had 16 processors,
we would reduce the 34.67days to just 2.16 and as machines get faster
this time will be reduced even more. Additionally these are not man-
hours and are times where researchers can do other tasks.

4.3.3. EcoIS scope
Dryas are a few centimeters across when fully bloomed and flower

stems usually grow to a height of 5 to 7cm. This is a pattern that repeats
itself across the species at Zackenberg and is a very convenient
characteristic for EcoIS because virtual movement is minimized for
elements that are close to the ground. If we measured taller species
(e.g. shrubs in the lowArctic) the virtualmovement causedbyOpenCV's
warpPerspective function (Bradski and Daebler, 2008d) would be too
much to follow the plant through the ISeries. Depending on the height
it could even block the markers, rendering serialization impossible.
Our approach fits comfortably with species found at Zackenberg as
well as cases where the studied elements have manageable height as
in Graham et al. (2006).

5. Conclusions

We have introduced EcoIS, a toolkit that creates image series by
re-projecting and identifying images taken from specially marked
plots. We have successfully fitted EcoIS into an established work-
flow in a high arctic monitoring station and reduced the amount of
steps that were needed to sample field plots. We have shown that
the phenophase count differences between our photo-plot work-
flow and the established Zackenberg procedure do not affect
the 50% onset event interpolation values (flowering onset and
senescence onset) used as an ecological indicator. We have
demonstrated that in addition to procuring phenological counts,
ISeries produced by EcoIS can be used to calculate spatiotemporal
metrics (Parrott et al., 2008) and estimate beginning and ending
phenophase dates (Granados et al., 2013).

We found that the number of EcoIS discarded images is similar to
more traditional PTZ camera setups and documented how camera
formatted images can increase this number. We showed that despite
the presence of missing images, temporal information and spatial
information were maintained in ISeries. We demonstrated that the
virtual movement of ISeries created with EcoIS, which was greater
than the ones created with PTZ setups, does not impede analysis
based on visual inspection nor analysis based on automatic processes.
Finally we show how EcoIS can be used in a data intensive scenario by
spreading the load among several processors to adjust for the extended
time of execution.
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