
Exformatics Declarative Case Management Workflows
as DCR Graphs

Tijs Slaats1,2, Raghava Rao Mukkamala1,
Thomas Hildebrandt1, and Morten Marquard2,�

1 IT University of Copenhagen,
Rued Langgaardsvej 7, 2300 Copenhagen, Denmark

{hilde,rao,tslaats}@itu.dk
http://www.itu.dk

2 Exformatics A/S,
Lautrupsgade 13, 2100 Copenhagen, Denmark

{mmq,ts}@exformatics.com
http://www.exformatics.com

Abstract. Declarative workflow languages have been a growing research subject
over the past ten years, but applications of the declarative approach in industry are
still uncommon. Over the past two years Exformatics A/S, a Danish provider of
Electronic Case Management systems, has been cooperating with researchers at
IT University of Copenhagen (ITU) to create tools for the declarative workflow
language Dynamic Condition Response Graphs (DCR Graphs) and incorporate
them into their products and in teaching at ITU. In this paper we give a status
report over the work. We start with an informal introduction to DCR Graphs. We
then show how DCR Graphs are being used by Exformatics to model workflows
through a case study of an invoice workflow. Finally we give an overview of the
tools that have been developed by Exformatics to support working with DCR
Graphs and evaluate their use in capturing requirements of workflows and in a
bachelor level course at ITU.

Keywords: workflows, declarative specifications, tools, teaching, case study.

1 Introduction

Declarative workflow modelling [8,9,16] is an emerging field in both academia and in-
dustry which offers a new paradigm that supports flexibility and adaptability in business
processes. Traditional imperative workflow languages describe how a process is carried
out as a procedure with explicit control flow. This often leads to rigid and overspecified
process descriptions, that fails to capture why the activities must be done in the given
order. Declarative workflow languages on the other hand specify processes by the con-
straints describing why activities can or must be executed in a particular order, and not
how the the process is to be executed, i.e. activities can be executed in any order and
any number of times, as long as not prohibited by a constraint [15, 19]. This may lead
to under specified process descriptions and make it difficult to perceive the path from

� This research is supported by the Danish Research Agency through an industrial PhD Grant.

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 339–354, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50527563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.itu.dk
http://www.exformatics.com


340 T. Slaats et al.

start to end, but captures the reason for the ordering of activities and leaves flexibility
in execution.

An example a constraint between activities is the response constraint [4, 16] (e.g.
A •→ B), which requires that an execution of one task (A) is eventually followed by
an execution of another task (B), but it does not put any further limits on the number
of times and order in which the tasks are executed. For example, it would be perfectly
valid if the second task occurs first, as long as it also occurs after the first task. In other
words, B,AB,BAB,AAB, ... are all valid runs, where as A,BA,BBA, ... are not
valid runs, as they fail to satisfy the constraint by having an occurence of A that is not
followed by an occurence of B.

Examples of processes that require more flexibility are commonly found in the health-
care [5] and case management [1] domains. In those processes, the work is being carried
out by knowledge workers who typically have the experience and expertise needed to
deal with the complexity of a process whose requirements may vary from case to case.
For this reason, knowledge-intensive processes require flexible workflow systems that
support the users in their work (instead of dictating them what to do) and allow them to
make their own choices as long as they do not break those constraints that do need to
be strictly followed in all cases (e.g. laws or organizational policies).

Over the last decade, several declarative languages for business processes have been
proposed in academic literature. The first of these languages is Declare [15, 19] which
gave a number of common workflow constraints formalized in Linear-time Temporal
Logic (LTL). More recently, DCR Graphs [4] have been developed as a generalization
of event structures [21], where processes are described as a graph of events related
by only 4 basic constraints. A simple operational semantics based on markings of the
process graph makes it possible to clearly visualize the runtime state. Furthermore,
the Guard-Stage-Milestone [10] has been developed, which is a data-centric workflow
model with declarative elements for modeling life cycles of business artifacts.

Even though by now these techniques have become well known in academia, their
application in the industry is relatively uncommon. Over the last two years Exformat-
ics A/S, a Danish provider of Electronic Case Management(ECM) systems, has been
collaborating with researchers of IT University of Copenhagen (ITU), to develop tools
for the declarative workflow language DCR Graphs with the aim to apply and evaluate
the use of DCR Graphs on real world scenarios in the case management domain and in
teaching at ITU.

The goal of the present paper is to give a status report, presenting and evaluating
the tools developed so far. As the first step, the core DCR Graphs model were used
by Exformatics A/S in a case study to capture some of the requirements in the design
phase of a cross-organizational case management system [1]. The case study led to
the further development of the DCR Graphs model by adding support for hierarchical
modelling using nested events and a (milestone) constraint [6], making it possible to
concisly specify that some event(s) must not be pending in order for some event to
happen. It also encouraged developing a graphical design, simulation and verification
tool [18] which is being used successfully in further case studies with industry and in
teaching at ITU.



Exformatics Declarative Case Management Workflows as DCR Graphs 341

In the remainder of this paper we will first introduce DCR Graphs informally in
Sec. 2, in Sec. 3 we will explain how they are used as the underlying formalism for
workflows within the Exformatics ECM system and in Sec. 4 we will give an overview
of the tools for managing DCR Graphs that have been developed by Exformatics. We
evaluate and describe related work in Sec. 5 and conclusions and future work in Sec. 7.

2 DCR Graphs by Example

This section describes DCR Graphs informally by giving an overview of the declarative
nature of the language and its graphical modeling notation. (All figures shown are pro-
duced in the developed graphical editor and simulation tool [18]). The formal semantics
of DCR Graphs are given in [4, 6, 12].

A DCR Graph specifies a process as a set of events, typically representing the (pos-
sibly repeated) execution of activities in the workflow process, changes to a dataset or
timer events. The events are represented graphically as rectangular boxes with zero or
more roles in a small box on top of the event as depicted in Fig. 1, showing an excerpt
of an invoice workflow with three events: Recieve Invoice, Enter Invoice Data and
Responsible Approval and two roles: Administration (Adm), representing the admin-
istration office of a company and Responsible (Res), the person responsible for the
invoice. The administation office has access to the tasks Recieve Invoice and Enter
Invoice Data and the responsible has access to the task Responsible Approval.

Fig. 1. DCR Graphs: Tasks and Roles

The concrete principals/actors (either human or automated) are typically not shown
in the graphical notation, but will at runtime be assigned one or more of the roles and
can then execute any of the events that are assigned to one of these roles.

The events in a DCR Graph can happen any number of times and in any order, unless
prevented by a constraint relation. The graph in Fig. 1 has no constraints, so it would be
valid to e.g. just receive an invoice and do nothing else, or to receive an invoice and then
approve the invoice twice. Constraints are defined using five different kinds of relations
between the events, named the condition, response, milestone, inclusion and exclusion
relation respectively.

Fig. 2(a) gives an example of a condition relation (depicted graphically as →•) be-
tween Recieve Invoice and Enter Invoice Data, which states that before Enter In-
voice Data can happen, the event Recieve Invoice must first have happened. In other
words, we have to receive an invoice before we can enter the details of the invoice into



342 T. Slaats et al.

the system. The DCR Graph shown in Fig. 2(a) allows possible runs such as Recieve
Invoice.Enter Invoice Data or Recieve Invoice.Enter Invoice Data.Recieve In-
voice or Recieve Invoice.Recieve Invoice.Enter Invoice Data, but it does not allow
e.g. Enter Invoice Data. Recieve Invoice as it invalidates the condition constraint.
As a help for the user, the graphical editor shows a ”no entry” sign at the event Enter
Invoice Data to indicate that it is not enabled.

(a) The Condition Relation (b) The Response Relation

Fig. 2. The Condition and Response relations

In Fig. 2(b) is given an example of the response relation (depicted graphically as
•→), which states that if Enter Invoice Data happens, Responsible Approval even-
tually has to happen in order for the workflow to be completed. Note that this relation
is not counting, i.e., it is not required to execute Responsible Approval once for each
execution of Enter Invoice Data. In other words, the response relation offers the flex-
ibility of approving one to many invoices just by executing Responsible Approval
once. Examples of completed runs in the process represented by the graph in Fig. 2(b)
are: Enter Invoice Data.Responsible Approval, and Enter Invoice Data.Enter In-
voice Data.Responsible Approval. An example of a run which is possible, but not
completed is Enter Invoice Data.Responsible Approval.Enter Invoice Data as the
last Enter Invoice Data is not (yet) followed by Responsible Approval.

In [6] we extended DCR Graphs to allow nested events as shown in Fig. 3. Nesting
both acts as a logical grouping and as a shorthand notation for having the same relation
between many events. For instance, the response relation from Enter Invoice Data in
Fig. 3 represents a response relation from Enter Invoice Data to all three sub events of
the super event Approval.

Adding nesting to the model, made it apparant, that it is useful to be able of express,
that an event can not happen when a nested subgraph is not in an accepting state. We
call this relation the milestone relation (depicted graphically as →�), and is exemplified
shown in Fig. 3 from the Approval super event to Pay Invoice. The meaning is, that
after doing Enter Invoice Data, we will have a pending response on each approval task
and therefore we can’t execute Pay Invoice until each of these tasks has been done.
Note that in contrast to the condition relation, by using a combination of the response
and milestone relations we can require approval again after it was already given.

Finally, the exclude relation (depicted graphically as →%) and its dual the include
relation (depicted graphically as →+) allows for dynamically respectively exclude and
include events from the workflow. Fig. 4(a) shows a typical example of the use of the
dynamic include and exclude relations to model exclusive choice between events: The



Exformatics Declarative Case Management Workflows as DCR Graphs 343

Fig. 3. Example of Nesting and the Milestone Relation

responsible may choose between approving or request a change to the invoice. The
choice is modelled by letting the two events mutually exclude each other. If a change
is requested, the administration is required to enter data again (because of the response
relation from Request Change to Enter Invoice Data), and when data is entered
again, the two events nested under the Approval super event is included again because
of the include relation from Enter Invoice Data to Approval. This example illustrates
the flexible nature of DCR Graphs in process modeling, as compared to the typical
BPMN procedural model in Fig. 4(b). In the DCR Graph, invoice data can be entered
any number of times before approval, and changes can also be requested any number of
times before data is entered again, while the BPMN process only allows every task to
be executed once for each cycle in the loop. It is of course possible to model the more
flexible execution in BPMN, but not in a natural way.

2.1 Execution Semantics

The runtime state of a DCR Graph is defined by a marking of the graph, formally given
by 3 finite sets of events representing respectivly which events are executed (at least
once), pending responses and included. By keeping track of which events have been
executed at least once in the executed set, we can determine which conditions have been
satisfied. The pending responses set keeps track of which events need to be executed
before the workflow is in a completed state. Finally, the included set keeps track of the
currently included events. An event is enabled for execution if it is currently included



344 T. Slaats et al.

(a) Modeling choice with include and exclude (b) Imperative BPMN model

Fig. 4. Declarative DCR Graph and imperative BPMN model of invoice approval

(i.e. part of the included set in the current marking) and all of its conditions are either
executed or excluded (i.e all condition events that are currently included should be part
of the executed events set) and no event related to it by the milestone relation is included
and a pending response. A (finite or infinite) execution is defined to be accepting, when
no event from some point stays included and as a pending response forever without
eventually being executed.

The excluded events are graphically depicted by a dashed border, the executed events
by a green checkmark at the event, and pending response events by a red exclamation
mark. This is shown in Fig. 5, where Enter Invoice Data and Request Change are
executed, and thereby Responsible Approval is a pending response, but it is also ex-
cluded and Enter Invoice Data is a pending response too.

A DCR Graph contains an initial marking defined as part of the graph. For example,
a graph may have a number of initial pending responses (representing tasks that are
required to be executed mandatorily for the workflow to be considered finished), or
initially excluded events.

2.2 DCR Graphs with Global Data

In one of the more recent extensions to DCR Graphs [12], we have introduced the
concept of global data. In DCR Graphs, data is modelled as a global store that contains
a number of named variables. The variables are mapped to events so that we can specify
which events can read/write to specific variables. Furthermore, guards are defined as
boolean expressions over the values of variables. Guards can be placed on both events
and relations. If a guard is assigned to an event, then as long as the guard does not
evaluate to true, the event is blocked from execution. On the other hand, having a guard
on a relation means that the relation is only evaluated when the guard evaluates to true,
in other words the condition constraint only needs to hold and an event is only recorded
as a response while the guard holds.



Exformatics Declarative Case Management Workflows as DCR Graphs 345

Fig. 5. Example marking after executing Enter Invoice Data followed by Request Change

For example, the response between Enter Invoice Data and Manager Approval in
Fig 6 is only recorded when the amount of the invoice is equal or larger than 1000 euro,
if the amount is lower than 1000 euros, executing Enter Invoice Data will not make
Manager Approval a pending response.

3 Exformatics Workflows as DCR Graphs

Before the introduction of (Nested) DCR Graphs, the Exformatics workflow model
consisted of tasks grouped under phases. There was always one active phase, which
could be changed manually by the user, tasks belonging to that phase were then enabled.
When introducing DCR Graphs we chose to map tasks to events and to maintain the
phase model, mapping it to a single-level nesting structure. We removed the practice
that tasks were enabled when their phase was active and allowed the active phase to
be changed automatically through the execution of certain tasks. In the new model, the
active phase no longer controls the workflow but instead just gives a general indication
of the state that the case is in. We introduced all five relations of DCR Graphs as ways of
constraining the flow of tasks. One distinction from the traditional DCR Graph approach
is that tasks in the Exformatics system are normally only done once. As a result, when
a task is executed, it is not shown in the list of tasks that need to be done anymore.
However, unless it is exlicitely excluded through the exclude relation it remains possible
to open the task again manually and do it again, so the execution semantics remains
faithful to the DCR Graphs semantics.



346 T. Slaats et al.

Fig. 6. Exformatics Invoice Workflow as a DCR Graph

Fig. 6 shows a workflow that is being used internally by Exformatics and has been
modelled using DCR Graphs. It describes how to handle the process of receiving
invoices.

The workflow contains five roles: 1) the administration department (Adm), which is
responsible for receiving the invoice, scanning it and creating an invoice case . 2) The
invoice responsible (Res), which is responsible for the invoice, usually because they are
the person that bought the items that the invoice concerns, they are expected to check
and approve the invoice. 3) The manager of the responsible (Man), whose approval
may be needed in certain circumstances. 4) The CEO (CEO) who may also need to
give approval in certain exceptional cases. And finally 5) the finance department (Fin),
which takes care of paying the invoice and confirming that payment has succeeded.
The tasks are divided into three phases, the Initial Phase which contains the tasks of
the administration department, the Approval Phase which consists of the approval
tasks and the Payment Phase which contains the tasks that handle the payment of the
invoice.



Exformatics Declarative Case Management Workflows as DCR Graphs 347

The process starts when an invoice is received by the administration department,
because Exformatics wants to keep all their documents in an electronic format it is re-
quired (through the response relation from Receive Invoice to Scan Invoice) that the
invoice is scanned. The administration department is also required to decide if the in-
voice should be entered into the system (sometimes fake or wrong invoices are received
which can be easily filtered out at first sight, for example because they are addressed to
a non-existent employee). If they decide that the invoice appears legit then they enter all
relevant data into the system, in particular the amount the invoice is for, which is used
by the workflow system to determine whose approval is needed for the invoice. The re-
sponsible for the invoice should always approve the invoice (modelled by an unguarded
response relation), if the amount of the invoice is higher then 1000 euros, approval from
the responsible’s manager is required as well (modelled by a response relation with the
guard amount ≥ 1000). In special cases where the amount is higher then 20000 euros,
approval from the CEO of the company is required as well.

It is possible that data is entered again, for example because a mistake was made
by the administration department, or because a correction on the invoice was received,
in this case new approvals will be required. When all necessary approvals have been
received the invoice can be paid, this is modelled through the milestone relation from
the Approval Phase to the task Pay Invoice, which means that Pay Invoice can not
be done while there are pending responses in the Approval Phase. Once payment is
confirmed, the invoice case should be closed, modelled through an exclusion relation
from Confirm Payment to all three phases. There are five conditions in the workflow:
first of all, Receive Invoice is required before the administration department can exe-
cute Enter Invoice Data or Scan Invoice. Enter Invoice Data is required before any
approval can be given and all of the tasks in the Initial Phase should be done before
any of the tasks in the Payment Phase can be done. Finaly, we have to pay the invoice
before we can confirm payment.

4 Tool Support

Several tools have been developed at Exformatics to design and execute DCR Graphs
internally or externally when presenting DCR Graphs at seminars or when interacting
with customers. First of all, to facilitate the exchange of process descriptions between
the tools developed by Exformatics and the tools being developed at IT University of
Copenhagen, we defined a common XML format, which we will show in the first sub-
section. Secondly we developed a set of webservices that provide functionality for the
execution, verification, storage and visualization of DCR Graphs, we named this set of
services the Process Engine. Finally, as already mentioned above, we developed a stand-
alone graphical editor to support the visual modelling and simulation of DCR Graphs,
called the DCR Graphs Editor, which has also been used for teaching at a bachelor level
course on Business Processes and IT at the IT University of Copenhagen.

Fig. 7 gives an overview of these tools and how they interact with eachother and
the Exformatics ECM. The Process Engine is central to our tools and is used by the
ECM to execute, verify and visualize workflows. The DCR Graphs Editor allows for
execution of single steps by itself, but also uses the Process Engine for verification



348 T. Slaats et al.

Process Engine
http://processengine.exformatics.net

Execution Repository

Visualization Verification

Other Applications
at Customer

Exformatics ECM

DCR Graphs
XML Format

DCR Graphs
XML Format

DCR Graphs
XML Format

DCR Graphs Editor

Fig. 7. Overview of the Exformatics DCR Graphs Tools

of DCR Graphs. Finally the purpose of the Process Engine is to be easily plugged in
to other case management solutions as well, so that we may provide only workflow
functionalities such as execution, verification, visualization and storage to customers
without them being required to adopt the full Exformatics ECM package.

4.1 DCR Graphs XML Format

In listing 1 we give an example of the XML format for describing DCR Graphs.
The xml file consists of two main parts: the specification of the DCR Graph and the

runtime state of the DCR Graph. The specification is split up into a section decribing
resources and section describing constraints. The resource section contains subsections
for events (possibly nested), labels, a mapping from labels to events, variables, expres-
sions and variable acccess rights. The constraint section contains five subsections for
the DCR Graph relations. The runtime section contains a subsection for the marking,
containing the set of executed events, pending responses and included events, and a
subsection for the state of the globalstore, which contains the values assigned to the
variables in the current state.

Listing 1. Overview of DCR Graph XML Format
<?xml v e r s i o n = ” 1 . 0 ” encod ing = ” u t f 8 ” ?>
<d c r g r a p h>

<s p e c i f i c a t i o n>
<r e s o u r c e s>

<e v e n t s>
<e v e n t i d =” I n i t i a l Phase ”>

<e v e n t i d =” E n t e r I n v o i c e Data ” />
. . .

</ e v e n t>



Exformatics Declarative Case Management Workflows as DCR Graphs 349

. . .
</ e v e n t s>
< l a b e l s>

< l a b e l i d =”CEO Approva l ” />
. . .

</ l a b e l s>
<l a b e l M a p p i n g s>

<l abe lM app ing e v e n t I d =”CEO Approva l ” l a b e l I d =”CEO Approva l ” />
. . .

</ l a b e l M a p p i n g s>
<v a r i a b l e s>

<v a r i a b l e i d =” amount ” v a l u e =”0” />
</ v a r i a b l e s>
<e x p r e s s i o n s>

<e x p r e s s i o n i d =” g te1000 ” v a l u e =” amount >= 1000 ” />
. . .

</ e x p r e s s i o n s>
<v a r i a b l e A c c e s s e s>

<r e a d A c c e s s e s>
<r e a d A c c e s s e v e n t I d =” E n t e r I n v o i c e Data ” v a r i a b l e I d =” amount ” />
. . .

</ r e a d A c c e s s e s>
<w r i t e A c c e s s e s>

<w r i t e A c c e s s e v e n t I d =” E n t e r I n v o i c e Data ” v a r i a b l e I d =” amount ” /
>

</ w r i t e A c c e s s e s>
</ v a r i a b l e A c c e s s e s>

</ r e s o u r c e s>
<c o n s t r a i n t s>

<c o n d i t i o n s>
<c o n d i t i o n s o u r c e I d =” Rece ive I n v o i c e ” t a r g e t I d =” Scan I n v o i c e ” />
. . .

</ c o n d i t i o n s>
<r e s p o n s e s>

<r e s p o n s e s o u r c e I d =” E n t e r I n v o i c e Data ” t a r g e t I d =” Manager Approva l
” e x p r e s s i o n I d =” g te1000 ” />

. . .
</ r e s p o n s e s>
<e x c l u d e s>

<e x c l u d e s o u r c e I d =” Confirm Payment ” t a r g e t I d =” Approva l Phase ” />
. . .

</ e x c l u d e s>
<i n c l u d e s />
<m i l e s t o n e s>

<m i l e s t o n e s o u r c e I d =” Approva l Phase ” t a r g e t I d =” Pay I n v o i c e ” />
</ m i l e s t o n e s>

</ c o n s t r a i n t s>
</ s p e c i f i c a t i o n>
<r u n t i m e>

<marking>
<e x e c u t e d />
<i n c l u d e d>

<e v e n t i d =” Approva l Phase ” />
. . .

</ i n c l u d e d>
<pend ingRes pons es />

</ marking>
<g l o b a l S t o r e>

<v a r i a b l e i d =” amount ” v a l u e =”0 ” />
</ g l o b a l S t o r e>

</ r u n t i m e>
</ d c r g r a p h>

Next to the standard elements described above, it is possible to insert custom ele-
ments at all nodes of the XML tree. This allows one to add additional data for specific
tools that is not required for the formal definition of a DCR Graph. Examples of these



350 T. Slaats et al.

are the roles (they are not a part of the formal model as they are not necesairily interest-
ing for applications in other domains than BPM) and the location of events when drawn
in the visual editor as shown in listing 2.

Listing 2. Example of how custom data can be insterted into the XML format
<?xml v e r s i o n =” 1 . 0 ” encod ing =” u t f 8 ” ?>
<e v e n t i d =”CEO Approva l ”>

<custom>
<v i s u a l i z a t i o n>

<l o c a t i o n xLoc=” 449 ” yLoc=” 123 ” />
</ v i s u a l i z a t i o n>

<r o l e s>
<r o l e>CEO</ r o l e>

</ r o l e s>
</ cus tom>

</ e v e n t>

4.2 Process Engine

Currently the Process Engine consists of three main webservices: the first for execution,
the second for storage of DCR Graphs and the third for visualization of DCR Graphs.
The execution service contains methods for executing and verifying DCR Graphs. The
execution methods support the global data model, verification consists of checking for
deadlock and livelock, but only for standard DCR Graphs without data. In the future
we plan to extend the verification aspect and move it to its own service. The repository
service for storage of DCR Graphs is currently very limited and mainly a proof of
concept, it is planned to extend this in the future so it can be used to support sharing
of workflows between cooperating organizations. The visualization service can be used
to automatically layout and draw DCR Graphs, currently limited to the basic model
without guards on data. All of these services are used by the Exformatics ECM for
modelling and executing workflows.

4.3 DCR Graphs Editor

The DCR Graphs Editor is a graphical editor for modelling and simulating DCR Graphs.
There are two main screens in the tool: in the Process Model screen one can design DCR
Graphs by drawing events, changing the name, label and initial marking, adding roles
and adding relations between events. In he Process Simulation Screen one can simulate
DCR Graphs by clicking on the events that one wants to execute, the tool will give
feedback on the current trace of executed events, which events can be executed and if
the DCR Graph is in an accepting state. The tool can also interact with the verifica-
tion methods of the Process Engine to check DCR Graphs for deadlock and livelock.
It currently supports nested DCR Graphs including the milestone relation and work is
underway to also add support for the global data model. All the images of DCR Graphs
in this paper come directly from the editor.

5 Related Work

As mentioned in the introduction Declare [15, 19] was the first serious attempt at cre-
ating a declarative notation for describing business processes. Tool support for Declare



Exformatics Declarative Case Management Workflows as DCR Graphs 351

consists of a design tool, a server and corresponding user client for executing Declare
processes. The designer is similar to the DCR Graphs Editor, allowing modellers to
draw and verify Declare models (including a notion of data) by using a graphical user in-
terface. The server is similar to the execution webservices contained in the Process En-
gine, allowing execution of Declare models by client programs. Finally the user client
is somewhat comparable to the simulation part of the DCR Graphs Editor, although it
offers more features to support the user in the execution of the process. These tools have
been in development since the inception of the Declare language and therefor have seen
a fair amount of iterations and reached a high level of maturity. The DCR Graphs tools
on the other hand can be seen as being an advanced prototype version (with the most
mature parts, such as the execution engine, currently being brought into production),
where new features are still frequently being added. Both Declare and DCR Graphs
are being included as extensions to the newest version of CPN Tools [20], for Declare
it is the intention that this will become the main vehicle for further developments on
the language and that no further features will be added to the previously mentioned
tools. Declare also offers extensive support for analysis of Declare logs through ProM
and support for process mining through the Declare Miner [11]. At the moment nothing
comparable exists for DCR Graphs, however there is an interest in investigating process
mining on running instances of DCR Graphs, particularly in the context of adaptive pro-
cesses, with the goal of identifying common adaptation patterns. DCR Graphs also offer
extended tool support for verification, allowing users to specify properties to be verified
as a DCR Graph and then verifying processes modelled as DCR Graphs against these
properties [13]. These tools are being developed at the IT University of Copenhagen
and are therefor not described in detail this paper, however since these tools use the
common XML format described in sec. 4.1, the Exformatics tools can easily interact
with them.

The business artifacts [14] model developed by IBM Research combines both data
and process aspects in a holistic manner. An artifact type contains both an information
model (data for business objects) and a lifecycle model, which describes the possible
ways a business entity might progress through and responds to events and external
activities. A declarative approach using Guard-Stage-Milestone (GSM model) [9] based
on ECA(Event Condition Action)-like rules for specification of life cycles on business
artifacts has been developed in the recent years. Compared to DCR Graphs, the GSM-
model has a richer support for data, but also a more complex semantics that does not
capture acceptance criteria for infinite executions.

6 Evaluation

This work provides an initial report on tools being developed at Exformatics A/S ex-
amplified by a use-case being used internally within the company itself. As such no
concrete quantitative evaluation of the usefulness and commercial viabilty of the tools
exists yet. However, DCR Graphs as a modelling paradigm and the Exformatics tools
themselves have already seen both commercial and academic use. As a modelling
paradigm, DCR Graphs were applied in a commercial project involving Exformat-
ics and Landsorganisationen i Danmark (LO), the umbrella organisation for Danish



352 T. Slaats et al.

unions. During this project DCR Graphs were used to model the IT system that Ex-
formatics developed for LO [1], but the lack of tool support for design and simulation
limited its use. In [5] we showed how DCR Graphs can be used to model a distributed
healthcare process encountered in a Danish hospital. DCR Graphs and the tools are cur-
rently employed in a project jointly with a danish research foundation for modelling the
case management process for handling funding applications from submission to decis-
sion. All of these cases have been demonstrated for industry at seminars with positive
feedback resulting in several requests for follow up meetings. Finally, Exformatics has
recently started a commercial project for the Danish Cancer Society, including the de-
velopment of an invoice approval solution based on the example used in this paper and
using the Process Engine for execution of the workflows in the solution.

In the recent paper [17] we give the first empirical evaluation on what practitioners
think of declarative modelling based on a study performed at a Dutch provider of ECM
software. During the study some of those participating were presented Declare, while
others were presented DCR Graphs. While the overall results of the study point in the
direction of a hybrid model combining the imperative and declarative paradigms, it was
also clear that the declarative paradigm by itself was percieved as useful for the right
application domains.

In the Spring 2012 and 2013, the DCR Graphs model has been introduced in a bache-
lor course in IT and Business Process Modelling at the IT University of Copenhagen [2].
Each year, the course was followed by about 40 students, and the DCR Graph model
was introduced for capturing process requirements, along with BPMN 2.0 for modelling
processes imperatively. The students worked in groups, modelling their own processes
identified in a field study performed in a previous course. They first modelled the pro-
cess in BPMN and subsequently were asked to model the requirements in DCR Graphs
and compare the models. They all experienced that the initial BPMN was good at de-
scribing a procedure of how to carry out the process. However, when turning to the DCR
Graph model, they also realized that in most cases their BPMN model only described a
fairly rigid, happy path through the process. In most cases it took the group two itera-
tions to change their mindset to model requirements instead of the procedure. This may
however be influenced by the fact, that they did no longer have access to the company
in which they had performed the field study. Only in 2013, the DCR Graphs editor was
available, and we experienced that it made it much easier for the students to learn the
notation and semantics, and to appreciate its use for modelling process requirements.
However, it was also clear that it still could be difficult for some of the students to
visualize the possible paths of the process specified as DCR Graphs.

7 Conclusion

In this paper, we have given an informal introduction to DCR Graphs and briefly de-
scribed current tool support, and how DCR Graphs and the tools are being used by
Exformatics and in teaching at ITU university to model workflows.

Even though the uses in practice and teaching so far is limited, it has been very en-
couraging. At presentations for industry the models have generally been appreciated
and easily understood. At the course the students were able to apply DCR Graphs to



Exformatics Declarative Case Management Workflows as DCR Graphs 353

model processes obtained from their own field studies in a previous course. They re-
ported back that using the simulation facility in the tool was a great help to understand
both the constraints of their own process and DCR Graphs as a model language.

As part of the future work, we plan to further develop the tools, making them more
easily accessible and user-friendly to process modelers, based on the usability studies
and feedback from students and clients of Exformatics. Furthermore, we also intend
to upgrade the tools to support some of the latest extensions on DCR Graphs such as
time [7], a distributed data model and more advanced verification techniques. Simi-
larly, we are also working on extending the theory of DCR Graphs to provide a behav-
ioral type system for cross-organizational workflows as initiated in [3]. In the future we
also want to research the challenge of developing business processes for knowledge-
intensive and adaptive case management processes as initiated in [13], which require
more focus on evolutionary process data and adaptability of the process during
execution.

References

1. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Designing a cross-organizational case man-
agement system using dynamic condition response graphs. In: 2011 15th IEEE International
Enterprise Distributed Object Computing Conference (EDOC), October 2-September 2, pp.
161–170 (2011)

2. Hildebrandt, T.: It and business process modelling course. IT University of Copenhagen
(2013), https://blog.itu.dk/BIMF-F2013/

3. Hildebrandt, T., Carbone, M., Slaats, T.: Rsvp: Live sessions with responses. In: Proceedings
of BEAT 2013, 1st International Workshop on Behavioural Types (2013)

4. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as distributed dynamic
condition response graphs. In: Post-Proceedings of PLACES 2010 (2010)

5. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Declarative modelling and safe distribution of
healthcare workflows. In: International Symposium on Foundations of Health Information
Engineering and Systems, Johannesburg, South Africa (August 2011)

6. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response graphs. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 343–350. Springer, Heidel-
berg (2012)

7. Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-organizational
workflows as timed dynamic condition response graphs. Journal of Logic and Algebraic
Programming, JLAP (May 2013),
http://dx.doi.org/10.1016/j.jlap.2013.05.005

8. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as distributed dy-
namic condition response graphs. In: Honda, K., Mycroft, A. (eds.) PLACES. EPTCS,
vol. 69, pp. 59–73 (2010)

9. Hull, R.: Formal study of business entities with lifecycles: Use cases, abstract models, and
results. In: Bravetti, T., Bultan, M. (eds.) 7th International Workshop on Web Services and
Formal Methods. LNCS, vol. 6551, Springer, Heidelberg (2001)

10. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III, F.T., Hobson, S., Linehan, M.,
Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing the guard-stage-milestone
approach for specifying business entity lifecycles. In: Proc. of WS-FM 2010, pp. 1–24.
Springer, Heidelberg (2011)

https://blog.itu.dk/BIMF-F2013/
http://dx.doi.org/10.1016/j.jlap.2013.05.005


354 T. Slaats et al.

11. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-Guided Discovery of Declarative
Process Models. In: 2011 IEEE Symposium on Computational Intelligence and Data Mining,
IEEE (2011)

12. Mukkamala, R.R.: A Formal Model For Declarative Workflows - Dynamic Condition Re-
sponse Graphs. PhD thesis, IT University of Copenhagen (March 2012) (forthcomming)

13. Mukkamala, R.R., Hildebrandt, T., Slaats, T.: Towards trustworthy adaptive case manage-
ment with dynamic condition response graphs. In: Proceedings of the 17th IEEE Interna-
tional EDOC Conference, EDOC 2013 (2013)

14. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Syst. J. 42, 428–445 (2003)

15. Pesic, M., Schonenberg, M.H., Sidorova, N., Van Der Aalst, W.M.P.: Constraint-based work-
flow models: change made easy. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS,
vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

16. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes
management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp.
169–180. Springer, Heidelberg (2006)

17. Reijers, H.A., Slaats, T., Stahl, C.: Declarative Modeling — An Academic Dream or the
Future for BPM? In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp.
307–322. Springer, Heidelberg (2013)

18. Slaats, T.: Dcr graphs wiki. IT University of Copenhagen (2013),
http://www.itu.dk/research/models/wiki/index.php/
DCR Graphs Editor

19. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing be-
tween flexibility and support. Computer Science - R&D 23(2), 99–113 (2009)

20. Westergaard, M., Slaats, T.: Mixing Paradigms for More Comprehensible Models. In: Daniel,
F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 283–290. Springer, Heidel-
berg (2013)

21. Winskel, G.: Events in Computation. PhD thesis, Edinburgh University (1980)

http://www.itu.dk/research/models/wiki/index.php/DCR_Graphs_Editor
http://www.itu.dk/research/models/wiki/index.php/DCR_Graphs_Editor

	Exformatics Declarative Case ManagementWorkflowsas DCR Graphs
	1 Introduction
	2 DCR Graphs by Example
	2.1 Execution Semantics
	2.2 DCR Graphs with Global Data

	3 Exformatics Workflows as DCR Graphs
	4 Tool Support
	4.1 DCR Graphs XML Format
	4.2 Process Engine
	4.3 DCR Graphs Editor

	5 Related Work
	6 Evaluation
	7 Conclusion
	References




