
Systematic Derivation of

Static Analyses for Software Product Lines

Jan Midtgaard

Claus Brabrand

Andrzej Wπsowski

IT University Technical Report Series TR-2014-170

ISSN 1600–6100 March 2014

Copyright

c� 2014, Jan Midtgaard
Claus Brabrand

Andrzej Wπsowski

IT University of Copenhagen

All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use

on condition that this copyright notice is

included in any copy.

ISSN 1600–6100

ISBN 978-87-7949-308-7

Copies may be obtained by contacting:

IT University of Copenhagen

Rued Langgaards Vej 7

DK-2300 Copenhagen S

Denmark

Telephone: +45 72 18 50 00

Telefax: +45 72 18 50 01

Web www.itu.dk

Original version appeared in the 13th International Conference on Modularity, 2014

Systematic Derivation of
Static Analyses for Software Product Lines ˚

(Full version)

Jan Midtgaard
Dept. of Computer Science, Aarhus University

Aabogade 34, 8200 Aarhus N, Denmark
jmi@cs.au.dk

Claus Brabrand Andrzej Wąsowski
IT University of Copenhagen

Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark
{brabrand,wasowski}@itu.dk

Abstract
A recent line of work lifts particular verification and analysis meth-
ods to Software Product Lines (SPL). In an effort to generalize such
case-by-case approaches, we develop a systematic methodology
for lifting program analyses to SPLs using abstract interpretation.
Abstract interpretation is a classical framework for deriving static
analyses in a compositional, step-by-step manner. We show how
to take an analysis expressed as an abstract interpretation and lift
each of the abstract interpretation steps to a family of programs.
This includes schemes for lifting domain types, and combinators for
lifting analyses and Galois connections. We prove that for analyses
developed using our method, the soundness of lifting follows by
construction. Finally, we discuss approximating variability in an
analysis and we derive variational data-flow equations for an exam-
ple analysis, a constant propagation analysis for a simple imperative
language.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.2 [Theory of Computa-
tion]: Semantics of Programming Languages —Program Analysis

General Terms Languages, Theory, Verification

Keywords Software Product Lines, Verification, Static Analysis,
Abstract Interpretation

1. Introduction
The methodology of Software Product Lines (SPLs) [10] enables
systematic development of program families by maximizing reuse
in order to decrease development cost and time-to-market. The SPL
method has grown in popularity over the last 20 years, especially in
the domain of embedded systems, including safety critical systems
with stringent quality requirements on produced code.

˚ Supported by The Danish Council for Independent Research under the
Sapere Aude scheme, projects SADL and VARIETE.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODULARITY ’14, April 22–26, 2014, Lugano, Switzerland.
Copyright c� 2014 ACM 978-1-4503-2772-5/14/04. . . $15.00.
http://dx.doi.org/10.1145/2577080.2577091Reprinted from MODULARITY ’14, Pro-
ceedings of the 13th International Conference on Modularity, April 22–26, 2014,
Lugano, Switzerland, pp. 1–12.

While program families can be implemented using domain
specific languages and general purpose model transformation [19,
45], often it is possible to use simpler methods that are more
easily amenable to testing and analysis. The most popular [31]
implementation method relies on a simple form of two staged
computation in preprocessor style: the programming language used
(often C) is enriched with the ability to express simple compile
time computations (often C preprocessor). At build-time, the source
code is first configured, a variant describing a particular product is
derived, and only then is this variant compiled or interpreted.

In this two-stage process the compiler handles only the second
stage artifacts—the code of the actual product variant. Consequently,
all its static analysis mechanisms (such as type checking, data and
control-analyses) do not analyze the entire program source code,
but only the variant specialized for a particular product. This is
sufficient for analyses that aim for program optimization, but entirely
unacceptable for analyses that aim at identifying program errors.
Often, it is not feasible for the vendor shipping the code to analyze
each of the variants separately, due to a combinatorial explosion
of the number of products. For example, if variability is used to
provide personalization of software for various users, it suffices
to have 33 independent features to yield more configurations than
people on the planet (233). As little as 320 optional features yield
more configurations than the number of atoms in the universe. Now,
the Linux kernel code base contains more than 10,000 configuration
options [4]. The problem is particularly burning when runtime errors
remain disguised because exhaustive analysis is not possible.

In the last decade, many existing program analysis and verifica-
tion techniques have been lifted to work on program families leading
to the emergence of so-called family-based analyses [47] (see the
related work section for discussion of some of these). The main ad-
vantage of these analyses is that they do not work in two stages, but
analyze the entire code base—all configuration variants at once—at
a cost much lower than the accumulated cost of analyzing each of
the product variants separately.

Unfortunately, along with the growth of the collection of avail-
able lifted analysis methods, a more fundamental worry became
increasingly clear: does the variability challenge require redevel-
opment of the entire language and compiler engineering theory?
In response, the industry initiated standardization efforts to codify
common understanding of what variability in languages is (for ex-
ample [29]). In research, a number of papers have started to appear
that tackle the more fundamental question of “what is variability in
a programming language?” [23, 24].

As part of this larger effort, we attack the problem by developing
a systematic understanding of (1) how a single program analysis
relates to the lifted analysis, (2) how programming language defini-

1

tions (including semantics) are enriched with variability and (3) how
a program analysis developed formally for a single program can be
systematically lifted into a correct analysis for a set of programs.

We develop a systematic methodology for lifting single program
analyses using abstract interpretation [13]. Abstract interpretation
is a unifying theory of sound abstraction and approximation of
structures; a well-established general framework, which can express
many analyses (including data-flow analyses [13], control-flow anal-
yses [37], model-checking [16, 17], and type checking [11]). Our
method exploits knowledge about a single program analysis to obtain
a family-based analyses. The family-based analyses derived using
this method are not only sound, but also formally and intimately
related to their single program origins. The method is applicable to
any analysis expressible as an abstract interpretation. We contribute
the following:
• A systematic method for compositional derivation of sound SPL

analyses based on abstract interpretation.
• Understanding of the structure of the space of family-based

analyses (how single program analyses induce family-based
analyses, and which of their abstraction components can be
reused at family level).

• Understanding of individual family-based analyses (in particular,
precisely where analysis precision is lost).

• Transfer of the usual benefits of abstract interpretation to family-
based analyses (for example, techniques for trading precision
for speed and methods for proving analyses to be semantically
sound).

• A step-by-step example-driven demonstration of how to derive a
family-based analysis.

We have deliberately chosen a tutorial style of presentation for
the introduction to systematic derivation of analyses (based on the
calculational approach to abstract interpretation [12], on which our
results are founded). For this reason, our results are postponed until
Section 4, after SPLs and systematic derivation of analyses have
been properly introduced (Sections 2 and 3). We hope that this
presentation style maximizes the potential benefits of this paper
for the research community developing product line analysis tools.
We present a simple imperative language as the running example,
formalize its semantics, derive a constant propagation analysis, and
show how the whole derivation process and the resulting analysis
can be lifted to the family level for analyzing SPLs.

2. From Programs to Software Product Lines
We begin with settling the programming language that we want to
analyze. Then, we develop a formal understanding of its semantics
(as we aim at provably sound analyses). Finally, we introduce static
variability into the language, and into its formal semantics.

IMP Programs: Implementing Single Systems
We use a simple imperative language, IMP, as an example to
demonstrate abstract interpretation. In this paper, IMP impersonates
a regular general-purpose programming language, aimed at the
development of single programs (as opposed to program families).
IMP is a well established minimal language, used in teaching and
research. We give a brief account of IMP, referring the interested
reader to textbooks [41, 48] for more details. We stress that IMP is
the running example in the paper. However the presented systematic
methodology is not limited to IMP or its features.

Syntax. IMP is structured into two syntactic categories: expres-
sions (integer constants, variables, and binary operations) and state-
ments (no-ops, assignments, statement sequences, conditional state-
ments, and while loops). Its abstract syntax is summarized using the

xskip,�y Ñ �
SKIP

Epe,�q “ v

xx := e,�y Ñ �rx fiÑ vs

ASSIGN

xs0,�y Ñ xs1

0,�
1

y

xs0 ; s1,�y Ñ xs1

0 ; s1,�
1

y

SEQ1

xs0,�y Ñ �1

xs0 ; s1,�y Ñ xs1,�
1

y

SEQ2

Epe,�q “ v v ‰ 0

xif e then s0 else s1,�y Ñ xs0,�y

IF1

Epe,�q “ v v “ 0

xif e then s0 else s1,�y Ñ xs1,�y

IF2

Epe,�q “ v v ‰ 0

xwhile e do s,�y Ñ xs ; while e do s,�y

WHILE1

Epe,�q “ v v “ 0

xwhile e do s,�y Ñ �
WHILE2

Figure 1. Small-step structural operational semantics for IMP

following context free grammar:
e ::“ n | x | e0 ‘ e1

s ::“ skip | x := e | s0 ; s1 |
if e then s0 else s1 | while e do s

In the above, n stands for an integer constant, x stands for a variable
name, and ‘ stands for a binary operator. The precise choice of
available operators is immaterial for the remainder of the paper. We
denote by Stm and Exp the set of all statements, s, and expressions,
e, generated by the above grammar.

Semantics. A state of an IMP program is an abstraction of memory
storage (a store) mapping variables to values (integer numbers). We
write, Store , to denote the set of all possible stores. IMP expressions
are computed in a given store, denoted by � below. A function, E ,
defined below by structural induction, maps an expression and a
store to a value, thereby formalizing evaluation of expressions.

Val “ Z
Store “ Var Ñ Val

E : Exp ˆ Store Ñ Val

Epn ,�q “ n

Epx,�q “ �pxq
Epe0 ‘ e1,�q “ Epe0,�q ‘ Epe1,�q

Figure 1 presents a small-step structural operational semantics for
the language. Following the convention popularized by C, we
model Boolean values as integers, with zero interpreted as false
and everything else as true (see rules IF2 and WHILE2, respectively,
IF1 and WHILE1). Note the two types of rules: the typical small-
step rules (for instance, SEQ1 or SEQ2), which rewrite a complex
statement into a simpler one, possibly updating the store; and the
completion rules which execute a statement to completion producing
a new store (for instance, SKIP or WHILE2).

Product Families: Lifting IMP to Staged Computation
Implementation of SPL Architectures [10] relies on the existence
of a variability mechanism [19] that allows early, or staged, config-
uration of program functionality (i.e., ability to configure program
behaviour at build time or compile time). This way, a single program
can encode multiple variations of a software product, maximizing
code reuse. An individual product is derived by specializing the
multi-staged program at product derivation time, before it is built.

2

P rrskipss

k

“ skip

P rrx := ess

k

“ x := e

P rrs0 ; s1ss

k

“ P rrs0ss

k

; P rrs1ss

k

P rrif e then s0 else s1ss

k

“ if e then P rrs0ss

k

else P rrs1ss

k

P rrwhile e do sss

k

“ while e do P rrsss

k

P rr#if ' sss

k

“

#
P rrsss

k

k ('

skip k * '

Figure 2. Preprocessor from IMP to IMP for configuration, k.

A simple form of two-staged computation involving a C-style
preprocessor is the most common variability mechanism in prac-
tice [31]. We will now lift IMP from describing single programs to
program families, admitting two-staged computation in this style.

The compile-time computation is controlled by a product con-
figuration k—a set of product features that should be included in
the build process. A finite set F of Boolean variables, f , describes
available features, f P F. A configuration, k, is a subset of selected
features: k Ñ F. We write K for the set of all valid configurations.
We only consider valid configurations in the remainder of the paper.

The set of legal product configurations is typically described by
a feature model [30] or a configuration model in another similar
notation [4, 21]. The results of this paper are independent of the
choice of configuration language syntax representing the set K,
as we are concerned with mathematical proofs more than with
implementation details (so the set-theoretic view is simple and
convenient). In practice, syntax of feature models can be easily
related to sets of valid configurations [3]. An exhaustive account of
feature modeling and domain modeling can be found in [19].

Syntax. The programming language IMP is our two-stage ex-
tension of IMP. Its abstract syntax includes the same expression
and statement languages as IMP, but we add a new compile-time-
conditional statement, with keyword #if. It takes a condition over
features (') and a statement (s) that should be executed (included in
the product) if the condition is satisfied by the product configuration.

s ::“ ... | #if ' s

' ::“ f P F | ' | '0 ^ '1

We also add a syntactic category of Boolean expressions (') to write
compile-time propositional logic formulae over features. We write,
FeatExp, for the set of all Boolean expressions over features, and
Stm for the set of all statements of IMP. To stress the variability
aspect, we will sometimes write s to denote a statement from Stm

(despite the notational overhead). The set of expressions Exp remains
the same as for IMP.

Observe that adding preprocessor directives to the abstract syntax
of IMP was essentially a mechanical transformation of the grammar
that will look similar for other, more complex languages.

Semantics: From IMP to IMP. IMP’s semantics has two stages:
first, given a configuration k compute an IMP program for a given
product variant; second, execute the IMP program using regular
IMP semantics. Below we present the first stage of IMP’s semantics.

We capture the meaning of static conditional expressions over
features using a satisfiability relation, (Ñ K ˆ FeatExp, between
configurations and Boolean expressions:

k (f iff f P k

k (' iff k * '

k ('0 ^ '1 iff k ('0 ^ k ('1

‚
IMP

program

collecting semantics

C // ‚
uncomputable

analysis

↵1

66Galois connection ¨ ¨ ¨
�1

ww

↵n

77Galois connection ‚
computable

analysis
�n

vv

Figure 3. An overview of the abstract interpretation process.

The semantics of the first stage of the computation—a simple
preprocessor from IMP to IMP, is specified by the function P :
Stm Ñ K Ñ Stm in Figure 2. The semantic function P recursively
pre-processes all sub-statements of its input. The last case checks
whether a feature constraint is satisfied and, if so, it includes the
guarded statement. Otherwise it reduces to skip, which has the
effect of removing the guarded statement. Again, observe that the
above rules are independent of the semantics of IMP, so specifying
the semantics of the preprocessor is essentially a mechanical process.

3. Systematic Derivation of Analyses
In this section, we assume familiarity with partial orders, com-
plete lattices, monotone functions, fixed points, and the fixed-point
theorem. Appendix A summarizes these concepts.

We leave IMP aside for a few pages and work only with single
programs and IMP in the following. We will systematically derive
static analyses for IMP in a step-by-step compositional manner,
using abstract interpretation. We include this section for pedagogical
purposes. An analysis designer working with an existing language
and analyses for which the abstract interpretation setup exists, would
not need to do the work presented here. Instead, she would start right
away with lifting the analyses to the family-based setting, following
the steps outlined in Sect. 4.

We first introduce a so-called collecting semantics for IMP,
which is the starting point in abstract interpretation. A collecting
semantics takes a program as an argument and then defines how
to “collect” information of interest in the given program. It can
be seen as an analysis that does not introduce any imprecision (no
approximation). Such an analysis is obviously uncomputable—it
cannot be computed statically. Then, we introduce the notion of a so-
called Galois connection—a pair of functions capturing information
loss between two domains. Finally, we demonstrate how to combine
collecting semantics and Galois connections to derive approximate,
albeit computable analyses, which can statically determine dynamic
properties of programs. An overview of this derivation process is
shown in Fig. 3. We use a constant propagation analysis for IMP as
the running example.

The process assumes that we have a semantics for our language
(cf. Fig. 1), and define a compatible collecting semantics. A col-
lecting semantics mimics the behavior of a structural-operational
semantics, but with one important difference. Instead of working on
stores, it works on sets of stores. In other words: our property of in-
terest is the possible memories (modeled as a set of stores) that may
arise at each program point. Furthermore, unknown program input
can be modeled as any possible input (the set of stores in which a
dedicated input variable can take on any run time value). Finally, the
set of stores is naturally ordered under the subset ordering,Ñ. In this
way, the collecting semantics can already be thought of as a fully
precise (but uncomputable) analysis. Then the actual computable
analyses can be defined as approximations of this semantics.

The collecting semantics for IMP is given in Fig. 4. Going from
the semantics to the collecting semantics is straightforward. The
function Crrsss captures the effect of executing statement s on a
set of input stores, by computing the set of possible output stores

3

Crrskipss “ �c. c

Crrx := ess “ �c. t�rx fiÑ vs | � P c ^ v P C1rresst�uu
Crrs0 ; s1ss “ Crrs1ss ˝ Crrs0ss

Crrif e then s0 else s1ss “ �c. Crrs0sst� P c | 0 R C1rresst�uu
Y Crrs1sst� P c | 0 P C1rresst�uu

Crrwhile e do sss “ lfp��.�c. t� P c | 0 P C1rresst�uu
Y �pCrrssst� P c | 0 R C1rresst�uuq

C1rrn ss “ �c. tn u
C1rrxss “ �c. t�pxq | � P cu

C1rre0 ‘ e1ss “ �c. tv | v P tv0u 9‘ tv1u ^ � P c ^
v0 P C1rre0sst�u ^ v1 P C1rre1sst�uu

Figure 4. Collecting semantics for IMP where we have that Crrsss :
2Store Ñ 2Store and C1rress : 2Store Ñ 2Val .

(memory contents after executing s). For instance, since the SKIP
rule (cf. Fig. 1) does not modify the store, the corresponding case
in the collecting semantics function becomes the identity function
on sets of stores: �c. c. The if case results in the union of the effect
from the two corresponding rules (IF1 and IF2) with a contribution
from s0 (for the stores where the condition evaluates to a non-
zero value) and one from s1 (for the stores where the condition
evaluates to zero). The only slightly more complex case is that
of the while statement which is now given in a standard fixed-
point formulation (see Appendix A). The case similarly combines
the effects corresponding to the two rules (WHILE1 and WHILE2)
although with an application of � to capture additional iterations
of the loop. Observe, that the subordinate function C1rress does the
same exercise for expressions. The symbol, 9‘ , denotes lifting of
‘ to sets—an operator that produces a set of possible values of the
expression for each combination of arguments from argument sets.

The collecting semantics captures precisely all executions of
the structural operational semantics (SOS). Whenever a store is
reachable by derivations of the SOS, then it is included in the
corresponding denotation of the collecting semantics (and vice-
versa). Formally:

Theorem 1 (Correctness of statement collecting semantics).
@s P Stm, c P 2Store : Crrsssc “ t�1 | � P c ^ xs,�y Ñ˚

�

1u
Importantly, given a statement, s, our collecting semantics Crrsss :
2Store Ñ 2Store, and in particular the fixed point functional of the
while rule:

��.�c. t�Pc | 0PC1rresst�uu Y �pCrrssst�Pc | 0RC1rresst�uuq
are now monotone functions over complete lattices (see Appendix B
for proofs). By Tarski’s Fixed-Point Theorem, they admit a unique
least fixed point (cf. Appendix A). However, since these lattices have
infinite height, it is not guaranteed that we can compute a fixed-point
in finite time. Indeed, by reduction from the halting problem: if this
analysis was computable, we would be able to decide whether an
input program terminates by comparing the resulting store to lattice
bottom. Since IMP is a Turing complete language, this cannot be
the case; hence, the analysis must be uncomputable.

A Galois connection is a pair of functions, ↵ : C Ñ A and � :
A Ñ C (respectively known as the abstraction and concretization
functions), connecting two partially ordered sets, xC,§y and xA,Ñy
(often called the concrete and abstract domain, respectively), such
that:

@c P C, a P A : ↵pcq Ñ a ô c § �paq (1)

xC,§y xA,Ñy
�paq

§

a

�

concretization
ss

Ñ

c

↵

abstraction

33 ↵pcq
concrete
domain

abstract
domain

Figure 5. A Galois connection between a concrete, xC,§y, and an
abstract domain, xA,Ñy, connected via an abstraction, ↵ : C Ñ A,
and a concretization function, � : A Ñ C.

which is often typeset as: xC,§y ´́ Ñ–́ ´
↵

� xA,Ñy. Figure 5 illustrates
a Galois connection graphically. For a concrete domain C, we define
abstraction and concretization functions to and from a more abstract
domain A, where information has been abstracted away. Later we
will use the Galois connections to approximate an uncomputable
analysis formulated over C with a computable analysis formulated
over A.

The seemingly innocent concept has a number of important
properties [14]:

(i) ↵ is monotone: i.e., c § c

1 ñ ↵pcq Ñ ↵pc1q, for all c, c1 P C;
(ii) � is monotone; i.e., a Ñ a

1 ñ �paq § �pa1q, for all a, a1 P A;
(iii) � ˝ ↵ is extensive; i.e., c § p� ˝ ↵qpcq, for all c P C;
(iv) ↵ ˝ � is reductive; i.e., p↵ ˝ �qpaq Ñ a, for all a P A;
(v) If A and C are complete lattices, then ↵ is a complete join

morphism (CJM), i.e.,

↵p
§

cPC
cq “

ß

cPC
↵pcq

where Y and \ represent lattice joins in C and A, respectively.
(vi) The composition of two Galois connections is itself a Galois

connection (closure under composition):
´

xC,§y ´́ Ñ–́ ´
↵

� xB,Ñy ^ xB,Ñy ´́ Ñ́–́ ´́
↵

1
�

1
xA,Ñy

¯

ñ xC,§y ´́ ´́ Ñ–́ ´́ ´
↵

1
˝↵

�˝�

1
xA,Ñy

Due to this last closure property, abstraction can be split into
several steps by composing successive Galois connections that
incrementally abstracts away information. Indeed, we will do exactly
that in the derivation of a computable constant propagation analysis
for the IMP language. Collectively, properties (i)–(iv) are equivalent
to (1). Hence to test whether two functions form a Galois connection
one can either check (1) or check properties (i)–(iv).

Let us now return to our IMP example and show how to use
a Galois connection to abstract away information yielding a less
precise analysis (although, in this case, still intractable).

Recall that the collecting semantics of a statement s works on
sets of stores: it transforms sets of stores to sets of stores, cf. the
signature 2Store Ñ2Store of Crrsss in Fig. 4. Figure 6 defines a Galois
connection to abstract away information from sets of stores to multi-
valued stores, so from 2Store “ 2VarÑVal to Var Ñ 2Val. Multi-valued
stores are less precise than sets of stores, because they lose rela-
tional information about the values of different variables. Consider
the (concrete) store set, c “ trx fiÑ1, y fiÑ2s, rx fiÑ2, y fiÑ1su, as an
example. The abstraction function, ↵CB, abstracts the store set c into
b “ ↵CBpcq “ rx fiÑt1, 2u, y fiÑt1, 2us. Like most path-insensitive
program analyses, which merge and abstract away analysis infor-
mation at control-flow confluence points (e.g., where then joins

4

xC “ 2VarÑVal
,Ñy xB “ Var Ñ 2Val

,

9Ñy

�BC pbq
c

↵CBpcq “ �x. t�pxq|�Pcu

33
b

↵CB pcq

�BCpbq “ t�|@x:�pxqPbpxqu

ss

Figure 6. Galois connection between domains, C and B:
x2VarÑVal

,Ñy ´́´́Ñ–́´́´
↵CB

�BC xVar Ñ 2Val
,

9Ñy.

pf˝�qpaq ↵

abstract
,,

p↵˝f˝�qpaq

xC,§y xA,Ñy
�paq

f

ap
pl

y

HH

a

F

OO

�

concretize

kk

Figure 7. Abstract domain function, F “ ↵ ˝ f ˝ � : A Ñ A,
derived from a concrete domain function, f : C Ñ C, via a round-
trip in the Galois connection.

else), our abstract store b, will now have “forgotten” which values
of variable x go with which values of y. Now if the next statement
computes, say, multiplication x ˚ y, the analysis will conservatively
over-approximate the set of possible values to t1, 2, 4u, admitting
spurious values, 1 and 4, in addition to the precise answer: t2u. The
approximate response is bound to include the precise answer; in
other words, we have a sound analysis: t2u Ñ t1, 2, 4u.

Not only values can be abstracted from C to A. In fact, also
functions defined on the concrete domain, f : C Ñ C, can be
abstracted to work on the abstract domain, ↵ ˝ f ˝ � “ F : A Ñ A.
Figure 7 illustrates this process which transforms an argument,
a P A, in three simple steps: (1) concretize a, �paq P C; (2) apply
f , pf ˝ �qpaq P C; and (3) abstract the result, p↵ ˝ f ˝ �qpaq P A.
Also, if f is monotone, then its composition with a monotone ↵ and
� is monotone. In general, any monotone over-approximation of the
composition is sufficient for a sound analysis.

In our case, we derive from, Crrsss : 2VarÑVal Ñ 2VarÑVal, a
function working on the abstracted domain, ↵CB ˝ Crrsss ˝ �BC :
pVar Ñ 2Valq Ñ pVar Ñ 2Valq. This step is crucial—we use the
Galois connection to derive a more abstract semantics (and thus a
more approximating analysis) from the less abstract semantics (here
the collecting semantics). Let us elaborate on this.

Cousot and Cousot [13] observed that even fixed points transfer
from C to A. If xC,§y ´́ Ñ–́ ´

↵

� xA,Ñy is a Galois connection whose
domains, C and A, are complete lattices and, f , is a monotone func-
tion on f : C Ñ C, then by the fixed point transfer theorem [13]:

↵plfp fq Ñ lfpF Ñ lfpF#

where F “ ↵ ˝ f ˝ � and F

is some monotone, conservative
over-approximation of F ; formally: F 9ÑF

(i.e., @aPA : F paq Ñ
F

#paq). Note that F represents the best possible function over the
chosen abstract domain [14]. The above version of the fixed point
transfer theorem still lets us approximate the desired fixed point.
Under the stronger assumption that ↵ ˝ f “ F ˝ ↵ then a stronger
version of the theorem guarantees that no approximation of the fixed
point is taking place: ↵plfp fq “ lfpF [13].

The approach to abstract interpretation adopted in this paper,
known as the calculational approach [12], advocates simple alge-
braic manipulation to obtain a direct expression for the function, F

Brrskipss “ �b. b

Brrx := ess “ �b. brx fiÑ B1rressbs
Brrs0 ; s1ss “ Brrs1ss ˝ Brrs0ss

Brrif e then s0 else s1ss “ �b.Brrs0ssb 9Y Brrs1ssb
Brrwhile e do sss “ lfp��.�b. b 9Y �pBrrsssbq

B1rrn ss “ �b. tn u
B1rrxss “ �b. bpxq

B1rre0 ‘ e1ss “ �b.B1rre0ssb 9‘ B1rre1ssb

Figure 9. Systematically derived over-approximated abstracted
collecting semantics, Brrsss : pVar Ñ 2Valq Ñ pVar Ñ 2Valq and
B1rress : pVar Ñ 2Valq Ñ 2Val .

x2Val
,Ñy xConst,Ñy

�̂pvq
N

↵̂pNq“

$
&

%

K N “ H
n N “ tnu
J otherwise

44
v

↵̂pNq

�̂pvq“

$
&

%

H v “ K
tnu v “ n

Z v “ Jtt

�AB paq
b

↵BApbq“�x. ↵̂pbpxqq

33
a

↵BA pbq

�ABpaq“�x. �̂papxqq

ss

xB “ Var Ñ 2Val
,

9Ñy xA “ Var Ñ Const, 9Ñy

Figure 10. Galois connection: x2Val
,Ñy ´́ Ñ–́ ´

↵̂

�̂ xConst,Ñy (top
diagram) along with its pointwise lifting (bottom diagram):
xVar Ñ 2Val

,

9Ñy ´́´́Ñ–́´́´
↵BA

�AB xVar Ñ Const, 9Ñy.

(if, indeed, it exists); or, a sound approximation thereof, F#. It is
thus a systematic (as in “pen and paper”) rather than automatic (as
in “computer generated”) approach for deriving analyses.

Returning to our example, we now apply these ideas to our IMP
analysis to obtain a direct expression for an over-approximation of
↵CB ˝ Crrsss ˝ �BC which we henceforth abbreviate, Brrsss. Figure 8
illustrates how this may be done for the if case. Notice, how
additional approximation is introduced (highlighted in boldface).

If we repeat this systematic derivation process for all the remain-
ing cases, we can derive the over-approximated abstracted collecting
semantics, Brrsss, shown in Fig. 9 (where the case for if was the
one we derived in Figure 8). Formally, B is related to C as follows:

Theorem 2 (Soundness of approximate statement semantics).
@s P Stm, b P B : p↵CB ˝ Crrsss ˝ �BCqpbq 9Ñ Brrsss b

(See [39], for proof.) This is now starting to look like a conventional
static analysis. However, it is still intractable. The program:

x := 1 ; while (1) x := x + 1

will give rise to an infinite multi-valued abstract store b “ rx fiÑ
t1, 2, 3, ...us. Our next Galois connection will remedy this in ab-
stracting our abstract domain, Var Ñ 2Val, even further into a domain
with finite height, thereby guaranteeing an analysis computable with
a Kleene fixed point iteration.

Figure 10 presents a Galois connection between B “ Var Ñ 2Val

and A “ Var Ñ Const, xB, 9Ñy ´́´́Ñ–́´́´
↵BA

�AB xA, 9Ñy, for abstracting
the multi-valued store domain even further to a pointwise lifted

5

p↵CB ˝ Crrif e then s0 else s1ss ˝ �BCqpbq (start of derivation)

“ p↵CB ˝ p�c. Crrs0sst� P c | 0 R C1rresst�uu Y Crrs1sst� P c | 0 P C1rresst�uuq ˝ �BCqpbq (by def. of C, Fig. 4)

“ ↵CBpCrrs0sst� P �BCpbq | 0 R C1rresst�uu Y Crrs1sst� P �BCpbq | 0 P C1rresst�uuq (�-reduction)

“ ↵CBpCrrs0sst� P �BCpbq | 0 R C1rresst�uuq 9Y ↵CBpCrrs1sst� P �BCpbq | 0 P C1rresst�uuq (↵CB is a complete join morphism, p. 4 (v))

9Ñ ↵CBpCrrs0ssp�BCpbqqq 9Y ↵CBpCrrs1ssp�BCpbqqq (over-approximation: C and ↵CB monotone)

“ p↵CB ˝ Crrs0ss ˝ �BCqpbq 9Y p↵CB ˝ Crrs1ss ˝ �BCqpbq (by def. of function composition)

9Ñ Brrs0ss b 9Y Brrs1ss b (by inductive hypothesis: ↵CB ˝ Crrsiss ˝ �BC 9Ñ Brrsiss, twice)

“ Brrif e then s0 else s1ssb (by def. of B)

Figure 8. Systematic derivation of over-approximating semantics, Brrsss : pVar Ñ 2Valq Ñ pVar Ñ 2Valq, for if, by abstracting collecting
semantics, ↵CB ˝ Crrsss ˝ �BC. Operators, 9Y and 9Ñ, are extended to functions: f 9Y g “ �x. fpxq Y gpxq and f

9Ñ g “ @x. fpxq Ñ gpxq.

J
¨ ¨ ¨ -3 -2 -1 0 1 2 3 ¨ ¨ ¨

K

Figure 11. The constant propagation lattice: xConst,Ñy with \ as
its least upper bound operator (aka., join).

Arrskipss “ �a. a

Arrx := ess “ �a. arx fiÑ A1rressas
Arrs0 ; s1ss “ Arrs1ss ˝ Arrs0ss

Arrif e then s0 else s1ss “ Arrs0ss :\ Arrs1ss
Arrwhile e do sss “ lfp��.�a. a 9\ �pArrsssaq

A1rrn ss “ �a. n

A1rrxss “ �a. apxq
A1rre0 ‘ e1ss “ �a.A1rre0ssa p‘ A1rre1ssa

Figure 12. Constant propagation Arrsss : pVarÑConstq Ñ
pVarÑConstq and A1rress : pVarÑConstq Ñ Const.

constant propagation lattice (see Figure 11). If we now repeat the
systematic derivation steps analogous to the steps of Figure 8 on the
further abstracted analysis, ↵BA ˝Brrsss ˝�AB, we can finally derive a
computable constant propagation analysis as an over-approximation
of ↵BA ˝ Brrsss ˝ �AB, which we call Arrsss—see Fig. 12. We show
the derivation steps for the conditional statement in Fig. 13.

Since operators are functions, they too get abstracted by our
Galois connection. Recall that our example uses 9‘, the point-
wise extension of the binary operator ‘, defined as V0 9‘ V1 “
tv0 ‘ v1 | v0 P V0 ^ v1 P V1u. The abstract counterpart, p‘, can
be calculated by following the same recipe: ↵̂p�̂pV q 9‘ �̂pV 1qq Ñ
V

p‘ V

1, i.e., by concretizing its arguments, performing the corre-
sponding concrete operation, and finally abstracting the outcome.
The resulting abstract operator, p‘, can be computed effectively (in
constant time) for all concrete binary operators:

v0 p‘ v1 “
$
’&

’%

K if v0 “ K _ v1 “ K
n if v0 “ n0 ^ v1 “ n1, where n “ n0 ‘ n1

J otherwise

Finally, we write, 9\, to denote the pointwise join in the Var Ñ
Const lattice: a0 9\ a1 “ �x. a0pxq \ a1pxq. This operator is then
further lifted pointwise: f :\ g “ �a. fpaq 9\ gpaq.

p↵BA ˝ Brrif e then s0 else s1ss ˝ �ABqpaq (start of derivation)

“ p↵BA ˝ p�b.Brrs0ssb 9Y Brrs1ssbq ˝ �ABqpaq (by def. of B, Fig. 9)

“ ↵BApBrrs0ssp�ABpaqq 9Y Brrs1ssp�ABpaqqq (�-reduction)

“ ↵BApBrrs0ssp�ABpaqqq 9\ ↵BApBrrs1ssp�ABpaqqq (↵BA is a CJM, p. 4 (v))

9Ñ Arrs0ss a 9\ Arrs1ss a (by inductive hypothesis, twice)

“ Arrif e then s0 else s1ss a (by def. of A)

Figure 13. Systematic derivation of Arrsss from ↵BA ˝ Brrsss ˝ �AB

for the if case.

rrskip`ss
out

“ rrskip`ss
in

rrx :=

` ess
out

“ rrx :=

` ess
in

rx fiÑ A1rressrrx :=

` ess
in

s

rrs`00 ;

` s
`1
1 ss

out

“ rrs`11 ss
out

rrs`11 ss
in

“ rrs`00 ss
out

rrs`00 ss
in

“ rrs`00 ;

` s
`1
1 ss

in

rrif` e then s
`0
0 else s

`1
1 ss

out

“ rrs`00 ss
out

9\ rrs`11 ss
out

rrs`00 ss
in

“ rrif` e then s
`0
0 else s

`1
1 ss

in

rrs`11 ss
in

“ rrif` e then s
`0
0 else s

`1
1 ss

in

rrwhile` e do s`0 ss
out

“ rrs`0 ss
in

rrs`0 ss
in

“ rrwhile` e do s`0 ss
in

9\ rrs`0 ss
out

Figure 14. Data-flow equations for constant propagation of Fig. 12

Since our domain now has a finite height, we have a tractable
analysis. Indeed our example program from before gives rise to a
finite abstract store, a “ rx fiÑ Js. Also, as a byproduct of the
calculation, the analysis is provably sound:

Theorem 3 (Soundness of statement analysis).
@s P Stm, a P A : p↵BA ˝ Brrsss ˝ �ABqpaq 9Ñ Arrsss a

Notice again how this follows the recurring ↵-� composition pattern.
Also, Thm. 3 composes with the result of Thm. 2 yielding soundness
of the analysis not only with respect to the approximate semantics
B, but also with respect to the original collecting semantics C.

We may choose to implement the analysis in Figure 12 directly.
Since the collecting semantics was compositional so is the resulting
analysis, i.e., the analysis of straight-line code is straight-line
(without fixed point computation), only loops require local fixed
point computations. We may use Kleene’s Fixed-Point Theorem to
calculate these iteratively (cf. Appendix A).

To extract corresponding data-flow equations we assume the
individual statements have been uniquely labelled with labels, `,

6

‚
C “ CK

Crrsss: pCÑCq

K

ZZ
liftp↵CBq

33 ‚
B “ BK

Brrsss: pBÑBq

K

ZZ

liftp�BCq

ss

liftp↵BAq

33 ‚
A “ AK

Arrsss: pAÑAq

K

ZZ

liftp�ABq

ss

lif
t

OO

lif
t

OO

lif
t

OO

lif
t

OO

lif
t

OO

‚
2VarÑVal

“ C

Crrskss: C Ñ C

⌅⌅

↵CB

33 ‚
Var Ñ 2Val

“ B

Brrskss: B Ñ B

⌅⌅
�BC

ss

↵BA

33 ‚
Var Ñ Const

“ A

Arrskss: A Ñ A

⌅⌅
�AB

ss

Figure 15. Abstract interpretation of programs (bottom line) along
with lifted “variational abstract interpretation” of SPLs (top line).

to distinguish the individual flow to and from them and adapt A
to work over these. The corresponding data-flow equations are
shown in Fig. 14. Again the transformation from Fig. 12 to Fig. 14
is essentially mechanical. For each statement s` (program point) we
generate two flow variables rrs`ss

in

and rrs`ss
out

for the input and
output store, respectively. Then for each statement we simply write
down that the input and output variable are related by an expression
of the right-hand-side of the corresponding domain transformer in
Fig. 12, where the input variable is substituted for the parameter,
and the output variable for the value of the function (the same could
be done for all expressions, but for brevity we refer directly to
the semantics of expressions in Fig. 14). Observe that in the while
equations the fixed point operator is stripped, and the value of the
output variable is used for the recursive reference. The iteration used
to compute the analysis result using these equations will handle the
fixed point in the while rule at the meta-level. The iteration starts
from the bottom value of the semantic domain assigned to all flow
variables (if we disregard input), and stops when a fixed point is
reached. Formally, a solution to the data-flow equations is sound
with respect to the derived analysis:

Theorem 4 (Soundness of data-flow analysis). For all s`, such that
rrs`ss

in

, rrs`ss
out

satisfies the data-flow equations:

Arrs`ssprrs`ss
in

q 9Ñ rrs`ss
out

The resulting constant propagation analysis is the same as the data-
flow analysis presented in, e.g., [6], but with one crucial difference;
it has been systematically derived using the abstract interpretation
framework, resulting in a provably sound analysis.

4. Systematic Derivation of Analyses for SPLs
We are now ready to discuss how the analysis obtained in Sect. 3
can be effectively lifted to work on Software Product Lines—
the variational abstract interpretation for systematic derivation
of analyses for SPLs. Figure 15 presents and relates the abstract
interpretation of single programs and program families. The bottom
part of the figure shows the derivation process for single programs
presented in Sect. 3 (see also Fig. 3). The top part shows the same
derivation process only lifted to work on SPLs. This top line of
the workflow requires deriving the collecting semantics for the
language with variability (in our example IMP), and repeating the
same abstraction steps as before at the level of program families.
However, if we did this, we would almost completely ignore the
artifacts accumulated during creation of the single program analysis!
The core idea of the variational abstract interpretation is that the
analyses at the single program level can be systematically lifted to

s

Pk

✓✓

A “ liftpAq 11

generate-and-analyze:
1) sk “ Pkrrsss (generate)
2) then Arrskss (analyze)

..

Arrsss

s

k

A
11 Arrs

k

ss

lif
t

OO

Figure 16. Generate-and-analyze vs. lifted analysis.

work on the family level without rerunning the entire derivation
process: you arrive at the same, provably sound lifted analysis by
commutation of the diagram.

The final constant propagation A can be lifted to family-based
constant propagation A by applying a lifting combinator (lift) to
A and performing simplifying calculations. In the following, we
discuss how this is done in detail and obtain a correctness result.
We show how the domains of analyses, the analyses themselves
(the transfer functions), and the Galois connections are lifted to the
family level. Two kinds of upward arrows (dashed and dotted) lift
us from the single program world to the program family world in
Fig.15. There is a dashed upward arrow for lifting analyses, e.g.
Arrsss : A Ñ A is lifted to Arrsss : pA Ñ AqK; and a dotted
upward arrow for lifting Galois connections: C ´́ Ñ–́ ´

↵

�

B is lifted

to C ´́ ´́ Ñ́–́ ´́ ´́
liftp↵q

liftp�q

B. In the following we explain the meaning and
interaction of these arrows.

4.1 Lifting Domains
We first lift the semantic domains. Recall that K denotes a finite set
of valid configurations. A domain, pC,Ñq, is lifted to a variability
domain, pC, 9Ñq, by taking C to be CK (i.e., a tuple of |K| copies
of C, one for each valid configuration), and lifting the ordering 9Ñ
configuration-wise; i.e., c 9Ñ c

1 ”def for all k P K : ⇡

k

pcq Ñ
⇡

k

pc1q, where ⇡

k

selects the k

th component of a tuple.

4.2 Lifting Analyses
The lifted domain representation, A “ AK, and Fig. 15 suggest that
the lifted analysis, A, should be one complex function from AK

to AK. However, it turns out that using a tuple of |K| independent
simple functions, pA Ñ AqK, is a much better alternative. This
models our intuition that lifting corresponds to running |K| analyses
in parallel. Functions of type pA Ñ AqK are essentially a well
behaved subset of functions from AK to AK—namely those, for
which the k

th component of the function value only depends on the
k

th component of the argument. This warrants no problems with
interference between configurations, which is critical for correctness
of lifting.

To help readability, we introduce notational conventions that
allow using tuples of functions, as if they were functions on tuples.
We admit direct application of tuples of functions to tuples of
arguments: if f : pA Ñ AqK is a tuple of functions indexed by
of K, we write fpaq to mean the tuple of |K| values created by
applying each function to the corresponding argument in the tuple
of arguments:

±
kPK

⇡

k

pfqp⇡
k

paqq. Similarly, we overload the �-
abstraction notation, so creating a tuple of functions looks like
creating a function on tuples: we write �a.

±
kPK fp⇡

k

paqq to mean±
kPK �a

k

.fpa
k

q.
The straightforward way of analyzing a configuration, k, of an

SPL, s, using a conventional single-program analysis, A, is to first
generate product, s

k

“P

k

rrsss, using the preprocessor; then, analyze

7

liftpAqrrif e then s0 else s1ss
“ �a.

π

kPK
ArrP rrif e then s0 else s1sskssp⇡kpaqq (by def. of lift)

“ �a.
π

kPK
Arrif e then P rrs0ssk else P rrs1sskssp⇡kpaqq (by def. of P)

“ �a.
π

kPK
pArrP rrs0sskss :\ ArrP rrs1sskssqp⇡kpaqq (by def. of A)

“ �a.
π

kPK
ArrP rrs0sskssp⇡kpaqq 9\ ArrP rrs1sskssp⇡kpaqq (by def. of :\)

“ �a.
π

kPK
⇡kpArrs0ssaq 9\ ⇡kpArrs1ssaq (by inductive hypothesis, twice)

“ �a.Arrs0ssa :\ Arrs1ssa (by def. of :\)

“ Arrs0ss ;\ Arrs1ss (⌘-reduce)

“ Arrif e then s0 else s1ss (by def. of A)

Figure 17. Deriving lifted constant propagation, A “ liftpAq, for
conditional statements: if e then s0 else s1.

the generated product, s
k

, using the conventional analysis: Arrs
k

ss.
This two stage process is depicted in Fig. 16 (cf. arrow labeled
generate-and-analyze). However, it only analyzes one configuration
of the SPL (the arrow ends up at the bottom part of Fig. 16).

To lift the analysis to the family level, we need to execute A
for each of the valid configurations. Simply applying an analysis
to all configurations, yields the formal specification of the lifting
combinator for analyses. If Arrsss : A Ñ A is a single analysis
function, then we require that its lifted version Arrsss : pA Ñ AqK
satisfies the following:

Arrsss “ �a.

π

kPK
ArrP rrsss

k

ssp⇡
k

paqq (2)

The equation stipulates that running the aggregate analysis A must
be equivalent to running the original analysis A for each variant
separately, after deriving it using the preprocessor P . An analysis
A satisfying (2) transforms a lifted store, a P A “ AK, into
another lifted store, a1 “ ±

kPK ArrP rrsss
k

ss⇡
k

paq, of the same
type. In other words, A is a transformer between aggregated state
of all configurations on entry to a given program point to a set of
aggregated states of all configurations on the exit from that point.

This specification of lifting works for any single program analy-
sis, not just for constant propagation. We formulate it as a general
analysis-independent and language-independent combinator.

Definition 5. The generic lifting of analysis, X : X Ñ X, working
on domain X, is:

liftpX qrrsss “ �x.

π

kPK
X rrP rrsss

k

ssp⇡
k

pxqq

In Fig. 15 the dashed upward arrows represent applications of
the above lifting combinator. They transform an analysis function
(solid loop arrows at the bottom of the figure), to a family-based
analysis (solid loop arrows at the top).

Unfortunately, Def. 5 cannot be used as a direct definition of
analysis A as it still depends on the single program analysis. Imple-
menting A naively, directly following (2), would merely apply the
conventional analysis |K| times (one for each k P K). While this
would give the correct results, it is not what we wanted! We seek
an analysis that will analyse all configurations simultaneously. The
question is how to obtain a definition of A that is independent of
A, yet satisfies equation (2). To achieve this we simplify equation
(2), similarly to how we simplified the composition of analysis func-
tions with Galois connections. As such, our lifting is calculational
in nature, following the natural steps in abstract interpretation. If

Arrskipss “ �a. a

Arrx := ess “ �a.
π

kPK
p⇡kpaqqrx fiÑ ⇡kpA1rressaqs

Arrs0 ; s1ss “ Arrs1ss ˝ Arrs0ss
Arrif e then s0 else s1ss “ Arrs0ss ;\ Arrs1ss

Arrwhile e do sss “ lfp��.�a. a :\ �pArrsss aq

Arr#if ' sss “ �a.
π

kPK

$
&

%
⇡kpArrsssaq k ('

⇡kpaq k * '

A1rrn ss “ �a.
π

kPK
n

A1rrxss “ �a.
π

kPK
⇡kpaqpxq

A1rre0 ‘ e1ss “ �a.
π

kPK
⇡kpA1rre0ssaq p‘ ⇡kpA1rre1ssaq

Figure 18. Lifted constant propagation analysis of IMP where,
Arrsss : ppVar Ñ Constq Ñ pVar Ñ ConstqqK and A1rress :
ppVar Ñ Constq Ñ ConstqK.

rrskip`ss
out

“ rrskip`ss
in

@k P K: ⇡kprrx :=

` e`0 ss
out

q “ ⇡kprrx :=

` e`0 ss
in

qrx fiÑ ⇡kpA1rre`0 ssrrx :=

` e`0 ss
in

qs

rrs`00 ;

` s
`1
1 ss

out

“ rrs`11 ss
out

rrs`11 ss
in

“ rrs`00 ss
out

rrs`00 ss
in

“ rrs`00 ;

` s
`1
1 ss

in

rrif`e thens
`0
0 elses

`1
1 ss

out

“ rrs`00 ss
out

:\ rrs`11 ss
out

rrs`00 ss
in

“ rrif` e then s
`0
0 else s

`1
1 ss

in

rrs`11 ss
in

“ rrif` e then s
`0
0 else s

`1
1 ss

in

rrwhile` e do s`0 ss
out

“ rrs`0 ss
in

rrs`0 ss
in

“ rrwhile` e do s`0 ss
in

:\ rrs`0 ss
out

@k P K: ⇡kprr#if` ' s`0 ss
out

q “ ⇡kprrs`0 ss
out

q if k ('

@k P K: ⇡kprr#if` ' s`0 ss
out

q “ ⇡kprr#if` ' s`0 ss
in

q if k * '

@k P K: ⇡kprrs`0 ss
in

q “ ⇡kprr#if` ' s`0 ss
in

q if k ('

Figure 19. Flow equations for lifted constant propagation of Fig. 18.

we perform the composition and simplify the resulting expression
systematically, we can eliminate the intermediate product generation
step and obtain a direct expression as shown in Fig. 18 (correspond-
ing to the top arrow in Fig. 16). It is essential to emphasize that this
calculation, when completed for all cases, actually proves a theorem
that the analyses specified in equation (2) and in Fig. 18 are the
same:

Theorem 6. The lifting of the constant propagation analysis is
correct in the sense of requirement (2), so liftpAq “ A.

The equality sign in this theorem captures that lifting has
introduced no approximation: the family-based analyses obtained
this way are as precise as running the original analysis for each
configuration individually. In Appendix B we prove this theorem
for all three semantics. Here we briefly discuss it for constant
propagation. Figure 17 illustrates how the calculation is done
for conditional statements. In the fifth step we use the inductive
hypothesis, which here means applying the definition of lift in the
reverse direction to structurally smaller statements. Note that the

8

pointwise join operator 9\ defined in Section 3 is lifted to a join
over tuples, :\, defined as a0 :\ a1 “ ±

kPK ⇡

k

pa0q 9\ ⇡

k

pa1q. The
operator is then further lifted pointwise to functions, ;\, as well.

The calculation looks similar for most other statements. The
while-case is however non-trivial, due to the need of lifting the
fixed point expressions. In particular, rather than to lift a fixed
point computation to a tuple of fixed point computations, we wish
to equate two fixed points. To do so, we define an abstraction,
which projects a particular k configuration entry, along with the
corresponding concretization function.

↵

k

: AK Ñ A

↵

k

paq “ ⇡

k

paq

�

k

: A Ñ AK

�

k

paq “
π

k

1
PK

#
a k “ k

1

9J k ‰ k

1

Such projecting abstractions are well known to be Galois connec-
tions. We then lift this Galois connection to a Galois connection
between monotone transfer functions [14]:

↵

Ñ

: pAK m›Ñ AKq Ñ A m›Ñ A
↵

Ñ

p�q “ ↵

k

˝ � ˝ �

k

�

Ñ

: pA m›Ñ Aq Ñ AK m›Ñ AK

�

Ñ

p�q “ �

k

˝ � ˝ ↵

k

where we write X m›Ñ Y for the domain of monotone function from
X to Y . Then we show that
↵

Ñ

˝ p��.�a. a:\�pArrsssaqq “ p��.�a. a 9\�pArrP rrsss

k

ssaqq ˝ ↵
Ñ

which we can use to transfer fixed points without needless approxi-
mation, using the stronger fixed point theorem (see Sec. 3).

↵
Ñ

pArrP rrwhile e do sss

k

ssq

“ ↵
Ñ

pArrwhile e do P rrsss

k

ssq (by def. of P)
“ Arrwhile e do P rrsss

k

ss (by above and stronger fixed point thm.)
“ ArrP rrwhile e do sss

k

ss (by def. of P)

We can now calculate the closed form for while loops in the same
style as for conditional statements (using the above law in one of
the rewrite steps). This proof method is independent of the transfer
function (here A). In Appendix H and I we use it to lift fixed points
for the other two semantics.

The resulting formulation in Fig. 18 no longer depends on A, but
specifies A directly. Just like in Sect. 3, we can use this formulation
to derive data flow equations. This is a fairly mechanical process
that results in the equations of Fig. 19 (compare to figures 18,
14). As shown in previous work [5, 6], this simplified version can
be implemented to run much faster than the naive approach. The
obtained data-flow equations are now variability aware and provably
sound:

Theorem 7. (Soundness of lifted data-flow analysis) For all s`,
such that rrs`ss

in

,rrs`ss
out

satisfies the data-flow equations:

Arrs`ssprrs`ss
in

q :Ñ rrs`ss
out

An attentive reader may question if we obtained any aggregate
analysis here. After all, the specification in Fig. 19 appears to be
exponential in the size of the valid configurations. It is crucial
to understand that this mathematical specification for computing
aggregate analysis, is orthogonal to an implementation (including
choices of data structures). In particular for SPL analysis in practice,
many of the entries in the K-indexed tuples and transfer functions
will be identical (many program points are identical/act identically
for most configurations). Thus they can be executed and represented
efficiently, storing and running them once, instead of exponentially
many times. This is also the reason why the analyses in [5, 6] are so
efficient in practice.

‚xC “ CK
,

9
§y

liftp↵q “ �c.

±
kPK ↵p⇡kpcqq

22 ‚
liftp�q “ �a.

±
kPK �p⇡kpaqq

rr
xA “ AK

,

9Ñy

lif
t

OO

‚xC,§y

↵

22 ‚
�

rr
xA,Ñy

Figure 20. Pointwise lifting of a Galois connection.

4.3 Many Routes to Family-based Analysis
If we wanted to consider correctness of the lifted analysis A using
the classical abstract interpretation approach, we should devise a
collecting semantics C and a Galois connection relating them. If we
wanted to follow the same incremental process as in Sect. 3, then
we would need a chain of Galois connections:

xC, 9Ñy ´́´́Ñ–́´́´
↵CB

�BC xB, :Ñy ´́´́Ñ–́´́´
↵BA

�AB xA, :Ñy
Then, we would have to compute A by composing these Galois
connections with C and prove that the resulting analysis is identical
to the lifting of A, so that the diagram in Fig. 15 commutes. A
detailed development taking this route is available in the extended
version [39]. But there is an easier route as we have just seen! Instead
of devising the collecting semantics at family level, C, and then a
sequence of Galois connections, we can obtain them all by lifting.
The transfer functions, including the collecting semantics, can be
lifted like in Sect. 4.3 (see [39]). We can lift the Galois connections
using a third combinator:

liftp'q “ �d.

π

kPK
'p⇡

k

pdqq (3)

Figure 20 illustrates the lifting of a Galois connection. By viewing
lift (over a tuple) as a pointwise lifting (to configuration accepting
functions) this is a well-known lifting of Galois connections [15].
This way, no invention of new analyses for the family level is needed.
Instead, all analyses can be uniformly lifted and composed. This
is by no means automatic, but it is systematic; it does not require
any design effort, as the original analysis is a sufficient source of
information for obtaining the family-based analysis.

The following theorem states that the result of lifting the final
single-program analysis is equivalent to lifting and recalculating all
intermediate steps. This result does not depend on any particular
analysis. It states that if a static analysis X rrsss is obtained from a
more concrete analysis Yrrsss by applying a Galois connection and
simplifying (possibly with some approximation), then the lifting of
this analysis can be soundly obtained by applying a lifted Galois
connection to the lifting of Y . Effectively, the diagram of Fig. 15
commutes. It is sound to develop the single program analysis and
lift it as in Sect. 4.3, instead of lifting the collecting semantics and
developing the entire analysis anew at the family level.

Theorem 8. If for all programs s we have that ↵˝Yrrsss˝� 9Ñ X rrsss
then also for each program s with variability

liftp↵q ˝ liftpYqrrsss ˝ liftp�q :Ñ liftpX qrrsss
Moreover, if no approximation is introduced during the derivation
of a single program analysis X (so that ↵ ˝ Yrrsss “ X rrsss ˝ ↵)
then the lifting introduces no additional abstraction at the family
level: liftp↵q ˝ liftpYqrrsss “ liftpXqrrsss ˝ liftp↵q. With this general
theorem, the soundness for the example analysis now follows as a
corollary from Thm. 2, 3, 6 and 8:

9

Corollary 9 (Soundness). For all s P Stm:

liftp↵BA ˝↵CBq ˝ liftpCqrrsss ˝ liftp�BC ˝�ABq ;Ñ liftpAqrrsss “ Arrsss
4.4 Variability Relevant Abstractions
So far, we have argued that it is most practical to develop analyses for
single programs, and then apply our lifting combinator to lift their
definition to program families via a formal calculation. This process
appears most straightforward, but it has one disadvantage: all the
abstractions applied in the derivation of a single program analysis
are unaware of variability. This way it is impossible to abstract over
variability, which could sometimes be beneficial. For example, when
the configuration space is too large, it may be difficult or impossible
to represent lifted stores symbolically, so that they take little space
in memory. Variability abstractions can only be applied at the family
level: one needs an analysis formulated at the family level and then
apply the variability aware abstraction to it, in the very same way as
we applied usual abstractions on the single program level in Sect. 3.

Variability-aware abstractions can be plentiful. In this section
we show one example: an abstraction that ignores a certain subset
of features, presumably meant to have insignificant impact on the
analysis results. Let F Ä F be a set of features that we deem
relevant for the analysis. Then if k P K is a valid configuration,
kXF is a simplification of this configuration to relevant features
only. Let K

F

be the set of valid configurations over relevant features
(so K

F

“ tkXF | k P Ku). Let xX,Ñy stand for any complete
lattice domain, which is lifted as usual, so X “ XK. We write X

F

for lifting X to the set of valid configurations over only the relevant
features, so X

F

“ XKF . Both xX, 9Ñy and xX
F

,

9Ñy are complete
lattices. Clearly since the latter tracks the analysis values for a
smaller set of configurations, it is a more abstract domain, thereby
collapsing more information. Indeed, one can formulate abstraction
and concretization functions between the two lifted domains:

↵

F

pxq “
π

kF PKF

ó
tkPK|kF “kXFu

⇡

k

pxq (4)

�

F

px
F

q “
π

kPK
⇡

pkXF q

px
F

q (5)

It is easy to show (see [39]) that xX, 9Ñy ´́ Ñ́–́ ´́
↵F

�F xX
F

,

9Ñy is a Galois
connection. This Galois connection can be composed with any
family-based analysis transfer function to produce a version of the
analysis that is less precise regarding the set of valid configurations.
In particular, it could be composed with our constant propagation
analysis A. In the extreme case, if we ask for an analysis that is
insensitive to all features (so F “ H), we obtain an abstracted
analysis, which conservatively detects which values are constant
(same) in all configurations.

In general, the process of developing an analysis, which should
abstract variability, starts at a single program level (Fig. 15). We
recommend developing the analysis for single programs first, and
then applying lifting at a convenient intermediate step. After lifting
the intermediate analysis function, one can apply a variability
abstraction (for example xX, 9Ñy ´́ Ñ́–́ ´́

↵F

�F xX
F

,

9Ñy presented above)
and then continue applying the liftings of the remaining abstractions
(Galois connections) to develop the final analysis. In simple words:
it is possible to switch the level in Fig.15 at a convenient point,
where abstracting over variability is beneficial for the design.

5. The Variational Abstract Interpretation Method
Let us summarize the methodology of developing analyses of
program families. The main purpose of this section is to highlight
the abstract steps and results of our method independently of the
IMP language. The first three steps are the traditional steps of
calculational abstract interpretation:

1. Develop formal operational semantics for your language.
2. Design collecting semantics for your language. Show equiva-

lence of the operational and collecting semantics. Steps 1–2 are
often given for existing established languages.

3. Specify a series of abstractions applied to the semantics in
the form of Galois connections and compose them with the
collecting semantics to obtain a single program analysis. The
calculation of compositions includes developing an inductive
proof that the resulting analysis is sound.

Once the single program analysis is establish we set off to develop
the aggregate family-based analysis:

4. Extend the syntax of the language with a preprocessor, and give
semantics to the preprocessor P mapping syntactic constructs
with variability to syntactic constructs without variability.
Remark. The preprocessor may apply to all syntactic categories
of the language, and the language does not need to have any
particular flavour. In the example we only applied the preproces-
sor to statements, and IMP was an imperative language—these
choices were made purely for pedagogical reasons, and are not
restrictions of variational abstract interpretation.

5. Apply the lifting combinator lift to the analysis calculated in
step 3 above.
Remark. In the paper we only applied lift to transfer functions,
which were endofunctions. This is not a requirement. For exam-
ple, when lifting expression semantics, we had to lift functions
that given a store argument produce a simple value as a result
(see [39]). So variational abstract interpretation can be applied
not only to languages expressing computations (state transfers),
but also to others, for example constraint languages.

6. Simplify the resulting function to obtain a lifted analysis that is
formulated independently of the original single-program analysis
(prove theorem akin to Thm. 6)

7. Soundness of the lifted analysis at the family level now follows
from from combining the calculations in steps 3,6 with Thm. 8

For large configuration spaces it may be beneficial to include a
variability abstraction in the process:

1. Decide at which point in the design of single program analysis
the variability abstraction should be inserted. Compose the
collecting semantics and all Galois connections until this point
to obtain a partially specified analysis for single programs.

2. Apply the lifting combinator to the obtained analysis, and
simplify the result to obtain the partially specified lifted analysis.
As before, correctness follows from combining the previous
calculations and Thm. 8.

3. Lift the remaining Galois connections to program families by
applying our lifting combinator for Galois connections. By prop-
erty of the lifting combinator, the lifted functions form compos-
able Galois connections between lifted domains. Lifting is the
only operation necessary, no properties of Galois connections
need to be re-proven.

4. Formulate the Galois connection abstracting configurations.
Remark. You may want to use the feature abstraction specified
in equations (4) and (5), which is independent of IMP and the
analysis domains used in our running example.

5. Compose the lifted Galois connections with the lifted partial
analysis, in order to obtain the final formulation of the lifted
analysis that includes variability abstraction. Soundness of the
result follows from the soundness of the calculation argument
and the soundness of the partially lifted analysis.

10

6. Related Work
We divide our discussion of related work into five categories;
abstract interpretation, lifting representations, lifting data-flow
analyses, lifting other analyses, and multi-staged program analysis.

Abstract interpretation: Abstract interpretation is a general
theory that unifies data-flow analysis [13], model checking [16, 17],
type systems [11], verification [18], and testing [28]. Our analyses
have been developed using the classical Galois connection frame-
work [13]. In particular, we follow the calculational and compo-
sitional approach advocated by Cousot [12]. With this approach,
soundness follows from a systematic derivation. Indeed, this is the
case for the data-flow analysis derived in Fig. 19. This approach has
previously been used by the first author to derive, for instance, itera-
tive graph algorithms [44] and modular control-flow analyses [38].

Lifting representations: Kästner et al. [33] show how lan-
guages with preprocessor syntax can be parsed and represented
in syntax trees with variability, even if the preprocessor syntax is
not properly nested in the main language syntax (as it was the case
for IMP). Erwig and Walkingshaw [24] present the Choice Calculus,
which can be seen as a more expressive and elegant version of a
preprocessor with a fixed and well-defined semantics. It would be in-
teresting to develop variational abstract interpretation further, to sup-
port richer preprocessors (like the Choice Calculus), and ill-formed
preprocessor use. The former appears a rather straightforward exten-
sion, while the latter likely remains a challenge due to difficulty of
defining semantics elegantly in a syntax-directed manner. One angle
of attack would be to apply preprocessor normalization via rewrites
as suggested by Garrido and Johnson [25, 26].

Lifting data-flow analysis: Previous work lifts data-flow analy-
sis, resulting in feature-sensitive data-flow analysis [6], correspond-
ing to our Figure 19. Lifted data-flow analyses are much faster
than ones based on |K| runs of the naive generate-and-analyze strat-
egy [6]. Indeed, inter-procedural application of the lifted analysis
approach of SPLLIFT [5] achieves several orders of magnitude speed-
ups through the use of BDD-based sharing of configurations and
encoding of lifted transfer functions and control-flow as graphs
for which the fixed-point computation can be rephrased as graph
reachability. This technique works for analyses phrased within the
IFDS framework [43], a subset of data-flow analyses, which can
then be transparently lifted without programmer intervention. Re-
cently, larger SPLs based on C have been analyzed [36] via lifted
type checking and liveness data-flow analysis.

Lifting other analyses: Recent work [47] has surveyed analysis
strategies for SPLs and proposes a taxonomy of such which would
classify our lifted analyses as family-based analyses (whereas the
generate-and-analyze strategy yields a product-based analysis).

The approaches of type checking, model checking, and verifi-
cation are complementary to abstract interpretation and share the
commendable goal of detecting errors at compile-time as opposed
to at runtime. There is work on lifting all of them in an attempt
to find errors at SPL compile-time as opposed to at post product-
instantiation time, when a product happens to be compiled, possibly
long after it has been developed: lifted type checking [1, 32], lifted
well-formedness checking[20], lifted model checking [8, 9, 27], and
lifted verification [2, 35, 42]. With abstract interpretation, however,
analysis soundness comes for free, by derivation—and as we have
shown, even at the SPL level.

Safe composition [1, 22, 32, 34, 46] is about verification and
safe generation of properties for SPL assets and aims to provide
guarantees that only products where certain properties are obeyed
can be generated. Errors detected include type and definition-
usage errors (e.g., undeclared variables, undeclared fields, and
unimplemented abstract methods). We complement this with an
approach based on abstract interpretation with which analyses
intercepting those kinds of errors can be derived.

Multi-staged program analysis: Our work is related to multi-
staged program analysis, analyzing “programs that generate pro-
grams”, e.g., [7, 40]. In the context of Software Product Lines,
however, we are in a much simpler case where the first stage is
significantly more restrictive than a Turing-complete programming
language and can thus be dealt with without approximation. For
SPLs, our approach is simpler and sufficient; and without loss of
precision on the variability level.

7. Conclusion
We have shown how compositional and systematic derivation of
static analyses based on abstract interpretation can be lifted to Soft-
ware Product Lines. The result is variational abstract interpretation—
a compositional and systematic approach for the derivation of
variability-aware product line analyses, with the following distinc-
tive components and properties:

• A scheme to lift domain types, and combinators for lifting
analyses and Galois connections.

• A general soundness-by-construction result (Thm. 8), allowing
to lift a formally developed analysis, without re-proving the
entire abstract interpretation process. This crucially reuses all
the effort invested in developing a single-program analysis, to
obtain a provably sound family-based analysis.

• A possibility of incorporating abstractions that involve configu-
ration space; including an example of one such abstraction.

• Precise control over precision of analyses (lifting does not lose
any information per se).

• A scheme to obtain data-flow equations for family-based analy-
ses from the abstract interpretation definition.

Variational abstract interpretation mixes language-independent and
language-specific elements. The main language specific theorem
(Thm. 6) needs to be proven for each new analysis. We have proven
it for all the three semantics of our running example and extracted
a general proof methodology presented in this paper. On the other
hand, the main language-independent soundness theorem (Thm. 8)
holds in general and needs not be re-proven.

Abstract interpretation is a unifying theory that allows the deriva-
tion of data-flow analyses, control-flow analyses, model checking,
type systems, verification, and even testing. Hence, variational ab-
stract interpretation tells us how to systematically obtain lifted ver-
sions of all such analyses. We believe that in this sense, variational
abstract interpretation, contributes to the understanding of how vari-
ability affects analysis of programs in general.

Finally, since the lifting operator can be applied to a directly
formulated analysis, we claim that the obtained insight into lifting
extends beyond abstract interpretation. In particular, the lift com-
binator can be applied to analyses developed in an ad hoc process,
without abstract interpretation, but represented as transfer functions
(soundness of such lifting requires a separate argument though).
Acknowledgements. The authors thank Hans Erik Bugge Grathwohl
and Aleksandar Dimovski for fruitful technical discussions.

References
[1] S. Apel, C. Kästner, A. Grösslinger, and C. Lengauer. Type safety for

feature-oriented product lines. Automated Software Engineering, 17:
251–300, September 2010.

[2] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. Detection
of feature interactions using feature-aware verification. In ASE’11,
Lawrence, USA, November 2011. IEEE Computer Society.

[3] D. Batory. Feature models, grammars, and propositional formulas. In
9th International Software Product Lines Conference, volume 3714 of
LNCS, pages 7–20. Springer-Verlag, 2005.

11

[4] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. Vari-
ability modeling in the real: a perspective from the operating systems
domain. In ASE’10, pages 73–82, 2010.

[5] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and
M. Mezini. SPLLIFT - statically analyzing software product lines in
minutes instead of years. In PLDI’13, 2013.

[6] C. Brabrand, M. Ribeiro, T. Tolêdo, J. Winther, and P. Borba. Intrapro-
cedural dataflow analysis for software product lines. Transactions
on Aspect-Oriented Software Development, 10:73–108, 2013. Earlier
version in AOSD 2012.

[7] W. Choi, B. Aktemur, K. Yi, and M. Tatsuta. Static analysis of multi-
staged programs via unstaging translation. SIGPLAN Not., 46(1):81–92,
Jan. 2011.

[8] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin.
Model checking lots of systems: efficient verification of temporal
properties in software product lines. In ICSE’10, pages 335–344. ACM,
2010.

[9] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Symbolic
model checking of software product lines. In ICSE’11, pages 321–330,
2011.

[10] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[11] P. Cousot. Types as abstract interpretations. In POPL’97, pages 316–
331, 1997.

[12] P. Cousot. The calculational design of a generic abstract interpreter. In
M. Broy and R. Steinbrüggen, editors, Calculational System Design.
NATO ASI Series F. IOS Press, Amsterdam, 1999.

[13] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In POPL’79, pages 269–282, 1979.

[14] P. Cousot and R. Cousot. Abstract interpretation and application to
logic programs. Journal of Logic Programming, 13(2–3):103–179,
1992.

[15] P. Cousot and R. Cousot. Higher-order abstract interpretation (and ap-
plication to comportment analysis generalizing strictness, termination,
projection and PER analysis of functional languages), invited paper. In
ICCL’94, pages 95–112, Toulouse, France, May 1994.

[16] P. Cousot and R. Cousot. Refining model checking by abstract
interpretation. Autom. Softw. Eng., 6(1):69–95, 1999.

[17] P. Cousot and R. Cousot. Temporal abstract interpretation. In POPL’00,
pages 12–25, 2000.

[18] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The Astreé analyzer. In ESOP’05, pages 21–30, 2005.

[19] K. Czarnecki and U. Eisenecker. Generative programming: methods,
tools, and applications. Addison-Wesley, 2000.

[20] K. Czarnecki and K. Pietroszek. Verifying feature-based model
templates against well-formedness ocl constraints. In GPCE’06, pages
211–220, New York, NY, USA, 2006. ACM.

[21] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski.
Cool features and tough decisions: a comparison of variability modeling
approaches. In VaMoS’12, pages 173–182, 2012.

[22] B. Delaware, W. R. Cook, and D. Batory. Fitting the pieces together: a
machine-checked model of safe composition. In ESEC/FSE’09, pages
243–252, New York, NY, USA, 2009. ACM.

[23] B. Delaware, W. Cook, and D. Batory. Product lines of theorems. In
OOPSLA’11, pages 595–608, New York, NY, USA, 2011. ACM.

[24] M. Erwig and E. Walkingshaw. The choice calculus: A representation
for software variation. ACM Trans. Softw. Eng. Methodol., 21(1):6:1–
6:27, Dec. 2011.

[25] A. Garrido and R. E. Johnson. Refactoring C with conditional
compilation. In ASE’03, pages 323–326. IEEE Computer Society,
2003. ISBN 0-7695-2035-9.

[26] A. Garrido and R. E. Johnson. Analyzing multiple configurations of
a C program. In ICSM’05, pages 379–388. IEEE Computer Society,
2005. ISBN 0-7695-2368-4.

[27] A. Gruler, M. Leucker, and K. D. Scheidemann. Modeling and model
checking software product lines. In FMOODS’08, pages 113–131,
2008.

[28] D. Guilbaud, E. Goubault, A. Pacalet, and B. S. F. Védrine. A simple
abstract interpreter for threat detection and test case generation. In
WAPATV’01, with ICSE’01, Toronto, 2001.

[29] IBM, Thales, F. FOKUS, and TCS. Proposal for Common Variability
Language (CVL) Revised Submission, 2012.

[30] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA) feasibility study. Technical
report, Carnegie-Mellon University Software Engineering Institute,
November 1990.

[31] C. Kästner. Virtual Separation of Concerns: Toward Preprocessors 2.0.
PhD thesis, University of Magdeburg, Germany, May 2010.

[32] C. Kästner and S. Apel. Type-checking software product lines - a
formal approach. In ASE’08, pages 258–267, L’Aquila, Italy, 2008.

[33] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger. Variability-aware parsing in the presence of lexical macros
and conditional compilation. In OOPSLA’11, pages 805–824, Portland,
OR, USA, 2011. ACM.

[34] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking annotation-
based product lines. ACM Trans. Softw. Eng. Methodol., 21(3):14:1–
14:39, July 2012.

[35] C. H. P. Kim, E. Bodden, D. Batory, and S. Khurshid. Reducing
configurations to monitor in a software product line. In 1st International
Conference on Runtime Verification (RV), volume 6418 of LNCS, Malta,
November 2010. Springer.

[36] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer.
Scalable analysis of variable software. In ESEC/FSE’13, pages 81–91,
New York, NY, 8 2013.

[37] J. Midtgaard and T. Jensen. A calculational approach to control-flow
analysis by abstract interpretation. In SAS’08, volume 5079 of LNCS,
pages 347–362, Valencia, Spain, July 2008. Springer-Verlag.

[38] J. Midtgaard, M. D. Adams, and M. Might. A structural soundness
proof for Shivers’s escape technique: A case for Galois connections.
In SAS’12, volume 7460 of LNCS, pages 352–369, Deauville, France,
Sept. 2011. Springer-Verlag.

[39] J. Midtgaard, C. Brabrand, and A. Wasowski. Systematic derivation of
static analyses for software product lines. Technical Report TR-2014-
170, IT University of Copenhagen, 2014.

[40] F. Nielson and H. R. Nielson. Two-Level Functional Languages.
Cambridge Tracts in Theoretical Computer Science, vol. 34. Cambridge
University Press, 1992.

[41] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag, Secaucus, USA, 1999.

[42] H. Post and C. Sinz. Configuration lifting: Verification meets software
configuration. In ASE’08, pages 347–350, L´Aquila, Italy, 2008. IEEE
Computer Society.

[43] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL’95, pages 49–61, New York,
NY, USA, 1995. ACM.

[44] I. Sergey, J. Midtgaard, and D. Clarke. Calculating graph algorithms
for dominance and shortest path. In MPC’12, volume 7342 of LNCS,
pages 132–156, Madrid, Spain, June 2012. Springer.

[45] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Software
Development: Technology, Engineering, Management. John Wiley
& Sons, 2006.

[46] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe composition of
product lines. In GPCE’07, pages 95–104, New York, NY, USA, 2007.
ACM.

[47] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer, and G. Saake.
Analysis strategies for software product lines. Technical Report FIN-
004-2012, School of Computer Science, University of Magdeburg,
Germany, 2012.

[48] G. Winskel. The Formal Semantics of Programming Languages.
Foundation of Computing Series. The MIT Press, 1993.

12

A. Prerequisite Mathematics
A partial order is a mathematical structure, xS,Ñy, where S is a set
equipped with a binary order relation, Ñ, with the properties:

@x P S : x Ñ x (reflexivity)
@x, y, z P S : x Ñ y ^ y Ñ x ùñ x Ñ z (transitivity)

@x, y P S : x Ñ y ^ y Ñ x ùñ x “ y (anti-symmetry)

Let X Ñ S. We say that u P S is an upper bound for X , written
X Ñ u, if we have @x P X : x Ñ u. Similarly, ` P S is a lower
bound for X , written ` Ñ X , if @x P X : ` Ñ x. A least upper
bound, written \X , is defined by:

@x P X : x Ñ \X ^ @u P S : X Ñ u ùñ \X Ñ u

(Similarly a greatest lower bound, [, can be defined.) Usually,
binary infix notation, x\y, is used whenever the operator is applied
to only two elements; i.e., x \ y “ \tx, yu. A complete lattice is
a partial order for which \X and [X exist for all subsets X Ñ S.
As a consequence, a complete lattice will always have a unique
largest element, J, and a unique smallest element, K, defined as:
J “ \S and K “ [S. A function, f : S Ñ S, is monotone
when @x, y P S : x Ñ y ùñ fpxq Ñ fpyq. An element, x P S,
is called a fixed point of f : S Ñ S, if x “ fpxq.

Tarski’s fixed-point theorem says that the fixed points of a
monotone function, f : S Ñ S, on a complete lattice, xS,Ñy,
themselves form a complete lattice. This guarantees the existence of
a fixed point, and of a unique least fixed point, lfppfq P S.

A fixed point formulated over an infinite height lattice is thus well
defined mathematically speaking but it is not necessarily computable.
However, when the height of a complete lattice is finite the fixed
point may then be computed via Kleene’s fixed-point theorem:

lfppfq “ \
i

f

ipKq
This basically says that a fixed point may be computed iteratively
by computing larger and larger values of f ipKq:

K Ñ fpKq Ñ fpfpKqq Ñ ¨ ¨ ¨ Ñ f

ipKq “ f

i`1pKq
until a fixed point is reached, for some i where fpf ipKqq “ f

ipKq.
When the lattice has finite height, we are bound to hit the fixed point
eventually, for some i. This fact is often exploited in static analysis.

Note that a recursive function can easily be phrased and defined
as a least fixed point. Suppose we want to define the factorial
function n! in this manner. If we extend the usual numeric ordering
§ over natural numbers N to include infinity, 8, and looping, K
(where, K § n § 8, @n P N), the result forms a complete lattice
N8

K

“ N Y tK,8u. Factorial can now be defined as a least fixed
point of a monotone function over that lattice, fac : N8

K

Ñ N8

K

:

fac “def lfp��.�n.

$
’’’&

’’’%

K if n “ K
1 if n “ 0

n ˚ �pn ´ 1q if n ° 0 ^ n ‰ 8
8 if n “ 8

It is a simple exercise to check that the above functional is monotone
by appeal to extended multiplication over N8

K

being monotone.
Functions defined in this way will have the general form:

lfp��.�n. ¨ ¨ ¨�p¨ ¨ ¨ q ¨ ¨ ¨ where n is the argument to the function
being defined and �p¨ ¨ ¨ q plays the role of a recursive application of
the function being defined. Compare this with a non-recursive func-
tion with the same type signature, e.g., succ : N8

K

Ñ N8

K

, which

can be phrased directly as: succ “def �n.

$
’&

’%

K n “ K
n ` 1 n P N
8 n “ 8

(i.e.,without a fixed point).

B. Proof Overview
The rest of this appendix is structured as follows:

Section C proves the equivalence of the structural operational
semantics and the collecting semantics. The remaining theorems
are structured with respect to Figure 15 which we recall below,
annotated with the corresponding appendix section.

‚
C “ CK

Crrsss: pCÑCq

K

ZZ 33Sec. J ‚
B “ BK

Brrsss: pBÑBq

K

ZZ
ss 33Sec. L ‚

A “ AK

Arrsss: pAÑAq

K

ZZ
ss

Se
c.

H OO

Se
c.

I OO

Se
c.

K OO

lif
t

OO

lif
t

OO

‚
2VarÑVal

“ C

Crrskss: C Ñ C

⌅⌅
33Sec. D ‚

Var Ñ 2Val

“ B

Brrskss: B Ñ B

⌅⌅ss 33Sec. E ‚
Var Ñ Const

“ A

Arrskss: A Ñ A

⌅⌅ss

The first half of the appendix is then concerned with the single-
program analysis:
• Section D proves soundness of the approximate semantics wrt.

the collecting semantics.
• Section E proves soundness of the constant propagation analysis

wrt. the approximate semantics.
• Section F proves monotonicity for all single-program operations.
• Section G proves soundness of the data-flow equations with

respect to the single-program constant propagation analysis.

The second half of the appendix is then concerned with lifting the
single-program analysis to a family-based analysis:
• Section H proves the lifting of the single-program collecting

semantics to a family-based collecting semantics.
• Section I proves the lifting of the single-program approximate

semantics to a family-based approximate semantics.
• Section J proves soundness of the family-based approximate

semantics wrt. the family-based collecting semantics.
• Section K proves the lifting of the single-program constant

propagation analysis to a family-based constant propagation
analysis.

• Section L proves soundness of the family-based constant propa-
gation analysis wrt. the family-based approximate semantics.

• Section M proves monotonicity for the lifted operations.
• Section N proves soundness of the lifted data-flow equations wrt.

the lifted constant propagation analysis.

Finally,
• Section O proves the generic soundness theorem 8, and
• Section P proves that the suggested variability abstraction of

Section 4.4 constitutes a Galois connection.

In the simplest process of developing a lifted constant propaga-
tion one needs to follow the work done in appendices D, E, F, G and
K. Only the last step, in fact, is required if your analysis is already
formulated using abstract interpretation. The remaining appendices
serve as evidence for other parts of the paper (general theorems,
base material for extracting methodology, etc).

13

C. Equivalence of SOS and collecting semantics
C.1 Expression-level equivalence
Lemma 10 (Correctness of SOS and expression collecting seman-
tics).

@e P Exp,� P Store. tEpe,�qu “ C1rresst�u
Proof. Let e P Exp, � P Store be given. Proceed by structural
induction on e.

Case n :
C1rrn sst�u
“ p�c. tnuqt�u (by def of C1)
“ tnu (�-reduction)
“ tEpn ,�qu (by def of E)

Case x:
C1rrxsst�u
“ p�c. t�pxq | � P cuqt�u (by def of C1)
“ t�pxq | � P t�uu (�-reduction)
“ t�pxqu (simplify)
“ tEpx,�qu (by def. of E)

Case e0 ‘ e1:
C1rre0 ‘ e1sst�u
“ p�c. tv2 | v2 P tvu 9‘ tv1u ^ � P c

^ v P C1rre0sst�u ^ v

1 P C1rre1sst�uuqt�u
(by def of C1)

“ tv2 | v2 P tvu 9‘ tv1u ^ � P t�u
^ v P C1rre0sst�u ^ v

1 P C1rre1sst�uu
(�-reduction)

“ tv2 | v2 P tvu 9‘ tv1u ^ v P C1rre0sst�u ^ v

1 P C1rre1sst�uu
(simplify)

“ tv2 | v2 P tvu 9‘ tv1u ^ v P tEpe0,�qu ^ v

1 P tEpe1,�quu
(by IH, twice)

“ tEpe0,�qu 9‘ tEpe1,�qu (simplify)
“ tEpe0,�q ‘ Epe1,�qu (by def. of 9‘)
“ tEpe0 ‘ e1,�qu (by def. of E)

C.2 Helper lemmas
Lemma 11 (First sequence helper lemma).

@s0, s1,�,�1

. xs0,�y Ñ˚

�

1 ùñ xs0 ; s1,�y Ñ˚ xs1,�1y
Proof. Assume xs0,�y Ñn

�

1 for some n • 0. We prove
xs0 ; s1,�y Ñn xs1,�1y by induction in n.

n “ 0: The assumption xs0,�y Ñ0
�

1 is impossible hence the
conclusion holds vacuously.

n “ k ` 1: Assuming xs0,�y Ñk`1
�

1 there are two cases for the
shape of the configuration after the first step.
If xs0,�y Ñ �

2 then k “ 0, �1 “ �

2 and by rule SEQ2
xs0 ; s1,�y Ñ xs1,�1y.
If on the other hand xs0,�y Ñ xs1

0,�
2y Ñk

�

1 by rule SEQ1
and the IH xs0 ; s1,�y Ñ xs1

0 ; s1,�
2y Ñk xs1,�1y.

Lemma 12 (Second sequence helper lemma).

@s0, s1,�,�1

,�

2

. xs0 ; s1,�y Ñ˚

�

1

ñ xs0,�y Ñ˚

�

2 ^ xs1,�2y Ñ˚

�

1

Proof. ù: Assume Dn0 • 0, n1 • 0. xs0,�y Ñn0
�

2 ^
xs1,�2y Ñn1

�

1. By Lemma 11 and the second assumption
we get xs0 ; s1,�y Ñn0 xs1,�2y Ñn1

�

1.
ùñ : Assume Dn • 0. xs0 ; s1,�y Ñn

�

1 By induction in n we
prove Dn0 • 0, n1 • 0,�2

.xs0,�y Ñn0
�

2 ^ xs1,�2y Ñn1

�

1.
Case n “ 0: The assumption xs0 ; s1,�y Ñ0

�

1 is impossible
hence the conclusion holds vacuously.

Case n “ k ` 1: Assuming xs0 ; s1,�y Ñk`1
�

1 there are
two possible cases for the shape of the configuration after
the first step.
If xs0 ; s1,�y Ñ �

3 Ñk

�

1 then k “ 0 and �

1 “ �

3. But
this is impossible as neither SEQ1 nor SEQ2 can reduce a
sequence to a store in one step hence the conclusion holds
vacuously.
If on the other hand xs0 ; s1,�y Ñ xs,�3y Ñk

�

1 the first
step could result from each of the two possible sequence
rules. We now argue for both.
Subcase SEQ1: Now s “ s

1

0 ; s1 and xs0,�y Ñ xs1

0,�
3y.

By the IH Dn0 • 0, n1 • 0,�2

.xs1

0,�
3y Ñn0

�

2 ^
xs1,�2y Ñn1

�

1 and hence xs0,�y Ñn0`1
�

2.
Subcase SEQ2: Now s “ s1 and xs0,�y Ñ1

�

3 and
xs1,�3y Ñk

�

1.

Lemma 13 (If helper lemma).

@e, s0, s1,�,�1

.

xif e then s0 else s1,�y Ñ˚

�

1

ñ pEpe,�q ‰ 0 ^ xs0,�y Ñ˚

�

1q _ pEpe,�q “ 0 ^ xs1,�y Ñ˚

�

1q

Proof. ù: Assume pEpe,�q ‰ 0^xs0,�y Ñ˚

�

1q_pEpe,�q “
0 ^ xs1,�y Ñ˚

�

1q. If Epe,�q ‰ 0 ^ xs0,�y Ñ˚

�

1

by rule IF1 xif e then s0 else s1,�y Ñ xs0,�y and hence
xif e then s0 else s1,�y Ñ˚

�

1.
If Epe,�q “ 0 ^ xs1,�y Ñ˚

�

1 by rule IF2
xif e then s0 else s1,�y Ñ xs1,�y and hence
xif e then s0 else s1,�y Ñ˚

�

1.
ùñ : Assume Dn • 0. xif e then s0 else s1,�y Ñn

�

1. We
proceed by induction in n.
Case n “ 0: The assumption xif e then s0 else s1,�y Ñ0

�

1 is impossible hence the conclusion holds vacuously.
Case n “ k ` 1: Assuming xif e then s0 else s1,�y Ñk`1

�

1 there are two possible cases for the shape of the configu-
ration after the first step.
If xif e then s0 else s1,�y Ñ �

2 Ñk

�

1 then k “ 0
and �

1 “ �

2. But this is impossible as neither IF1 nor IF2
can reduce a conditional to a store in one step hence the
conclusion holds vacuously.
If on the other hand xif e then s0 else s1,�y Ñ xs,�2y Ñk

�

1 there are two possible cases for the first transition.
Subcase IF1: Now s “ s0, � “ �

2, Epe,�q “ v ‰ 0, and
xs0,�y Ñk

�

1.
Subcase IF2: Now s “ s1, � “ �

2, Epe,�q “ 0, and
xs1,�y Ñk

�

1.

14

Lemma 14 (While helper lemma).

@e, s,�1,�n

.

xwhile e do s,�1y Ñ˚

�

n

ñ
@i P t1, . . . , n ´ 1u. pEpe,�

i

q ‰ 0 ^ xs,�
i

y Ñ˚

�

i`1q ^ Epe,�
n

q “ 0

Proof. ùñ : Assume Dm • 0. xwhile e do s,�1y Ñm

�

n

. We
now show the right hand side by induction in m.
Subcase m “ 0: The assumption xwhile e do s,�1y Ñ0

�

n

is impossible, hence the conclusion holds vacuously.
Subcase m “ k ` 1: We can now case analyze the first step of

the assumption xwhile e do s,�1y Ñk`1
�

n

.
If the first step is by rule WHILE1 we know Epe,�1q “ v ‰
0 and xwhile e do s,�1y Ñ xs ; while e do s,�1y Ñk

�

n

. By Lemma 12 xs,�1y Ñk1
�2 and xwhile e do s,�2y Ñk2

�

n

for k1, k2 • 0 such that k “ k1 ` k2. Hence by
the IH we have pEpe,�1q ‰ 0 ^ xs,�1y Ñ˚

�2q ^
pEpe,�

i

q ‰ 0 ^ xs,�
i

y Ñ˚

�

i`1q ^ Epe,�
n

q “ 0 for
all i P t2, . . . , n ´ 1u.
If the first step is by rule WHILE2 we know Epe,�1q “ 0
and xwhile e do s,�1y Ñ �1 Ñk

�

n

and hence k “ 0,
n “ 1 and �1 “ �

n

which satisfies the right hand side:
@i P t1, . . . , n ´ 1u “ H. pEpe,�

i

q ‰ 0 ^ xs,�
i

y Ñ˚

�

i`1q ^ Epe,�
n

q “ 0.
ù: Assume pEpe,�1q ‰ 0 ^ xs,�1y Ñ˚

�2q ^ . . . ^
pEpe,�

n´1q ‰ 0 ^ xs,�
n´1y Ñ˚

�

n

q ^ Epe,�
n

q “ 0 for a
sequence of stores �1, . . . ,�n

. We prove the left hand side by
induction in n.

Subcase n “ 1: Now �1 “ �

n

and Epe,�1q “ 0. Hence by
one application of rule WHILE2 xwhile e do s,�1y Ñ1

�1 “ �

n

.
Subcase n “ k ` 1: Assume pEpe,�1q ‰ 0 ^ xs,�1y Ñ˚

�2q ^ . . . ^ pEpe,�
n´1q ‰ 0 ^ xs,�

n´1y Ñ˚

�

n

q ^
Epe,�

n

q “ 0. Now by one application of rule WHILE1
xwhile e do s,�1y Ñ xs ; while e do s,�1y.
Since xs,�1y Ñm

�2 by Lemma 11 we get
xs ; while e do s,�1y Ñm xwhile e do s,�2y. By the IH
we have xwhile e do s,�2y Ñ˚

�

n

and hence
xwhile e do s,�1y Ñ˚

�

n

.

C.3 Proof of Theorem 1: Statement-level equivalence
Proof. We prove

Crrsssc “ t�1 | � P c ^ xs,�y Ñ˚

�

1u
We proceed to calculate a direct expression for C by structural

induction on s

Case skip:

Crrskipssc
“ t�1 | � P c ^ xskip,�y Ñ˚

�

1u (by above def.)
“ t� | � P c ^ xskip,�y Ñ �u (by inversion)
“ c (simplify)

Case x := e:

Crrx := essc
“ t�1 | � P c ^ xx := e,�y Ñ˚

�

1u (by above def.)
“ t�1 | � P c ^ xx := e,�y Ñ �

1u (by inversion)
“ t�rx fiÑ vs | � P c ^ Epe,�q “ vu (by rule ASSIGN)
“ t�rx fiÑ vs | � P c ^ v P tEpe,�quu (by def. of P)
“ t�rx fiÑ vs | � P c ^ v P C1rresst�uu (by Lemma 10)

Case s0 ; s1:

Crrs0 ; s1ssc
“ t�1 | � P c ^ xs0 ; s1,�y Ñ˚

�

1u (by above def.)
“ t�1 | � P c ^ xs0,�y Ñ˚

�

2 ^ xs1,�2y Ñ˚

�

1u
(by Lemma 12 above)

“ t�1 | � P c ^ �

2 P Crrs0sst�u ^ �

1 P Crrs1sst�2uu
(by IH, twice)

“ Crrs1sst�2 | � P c ^ �

2 P Crrs0sst�uu (simplify)
“ Crrs1sspCrrs0sst� | � P cuq (simplify)
“ Crrs1sspCrrs0sscq (simplify)
“ pCrrs1ss ˝ Crrs0ssqc (by def. of ˝)

Case if e then s0 else s1:

Crrif e then s0 else s1ssc
“ t�1 | � P c ^ xif e then s0 else s1,�y Ñ˚

�

1u
(by above def.)

“ t�1 | � P c ^ pEpe,�q ‰ 0 ^ xs0,�y Ñ˚

�

1q
_ pEpe,�q “ 0 ^ xs1,�y Ñ˚

�

1qu
(by Lemma 13 above)

“ t�1 | � P c ^ Epe,�q ‰ 0 ^ xs0,�y Ñ˚

�

1u
Y t�1 | � P c ^ Epe,�q “ 0 ^ xs1,�y Ñ˚

�

1u
(by def. of _)

“ Crrs0sst� P c | Epe,�q ‰ 0u
Y Crrs1sst� P c | Epe,�q “ 0u (by IH, twice)

“ Crrs0sst� P c | 0 R tEpe,�quu
Y Crrs1sst� P c | 0 P tEpe,�quu (by singleton P/R)

“ Crrs0sst� P c | 0 R C1rresst�uu
Y Crrs1sst� P c | 0 P C1rresst�uu (by Lemma 10)

15

Case while e do s:
Crrwhile e do sss
“ �c. t�

n

| �1 P c ^ xwhile e do s,�1y Ñ˚

�

n

u
(by above def.)

“ �c. t�
n

| �1 P c ^ @i P t1, . . . , n ´ 1u.
pEpe,�

i

q ‰ 0 ^ xs,�
i

y Ñ˚

�

i`1q ^ Epe,�
n

q “ 0u
(by Lemma 14 above)

“ �c. t�
n

| �1 P c ^ @i P t1, . . . , n ´ 1u.
pEpe,�

i

q ‰ 0 ^ �

i`1 P Crrssst�
i

uq ^ Epe,�
n

q “ 0u
(by IH, n ´ 1 times)

“ �c. t�
n

| �1 P c ^ @i P t1, . . . , n ´ 1u.
p�

i`1 P Crrssst�
i

| Epe,�
i

q ‰ 0uq ^ Epe,�
n

q “ 0u
(by def. of C)

“ �c. t�
n

| �
n

P p�c
i

. Crrssst�
i

P c

i

| Epe,�
i

q ‰ 0uqn´1
c

^ Epe,�
n

q “ 0u
(by def. of p´qn´1)

“ �c. t�
n

| �
n

P p�c
i

. Crrssst�
i

P c

i

| 0 R tEpe,�
i

quuqn´1
c

^ 0 P tEpe,�
n

quu
(by singleton P/R)

“ �c. t�
n

| �
n

P p�c
i

. Crrssst�
i

P c

i

| 0 R C1rresst�
i

uuqn´1
c

^ 0 P C1rresst�
n

uu
(by Lemma 10)

“ lfp��.�c. t� P c | 0 P C1rresst�uu
Y �pCrrssst� P c | 0 R C1rresst�uuq (see below)

For the last step we prove inclusion in both directions. For short
hand notation we let

F “ ��.�c. t� P c | 0 P C1rresst�uu
Y �pCrrssst� P c | 0 R C1rresst�uuq

9Ö: We prove that the left hand side is a fixed point of F , hence
greater or equal to the least fixed point of F by Tarski’s fixed
point theorem.

F p�c. t�
n

| �
n

P p�c
i

. Crrssst�
i

P c

i

| 0 R C1rresst�
i

uuqn´1
c

^ 0 P C1rresst�
n

uuq
“ �c. t� P c | 0 P C1rresst�uu

Y t�
n

| �
n

P p�c
i

. Crrssst�
i

P c

i

| 0 R C1rresst�
i

uuqn´1

pCrrssst� P c | 0 R C1rresst�uuq
^ 0 P C1rresst�

n

uu
(�-reduction)

“ �c. t� P c | 0 P C1rresst�uu
Y t�

n

| �
n

P p�c
i

. Crrssst�
i

P c

i

| 0 R C1rresst�
i

uuqnc
^ 0 P C1rresst�

n

uu
(simplify)

“ �c. t�
n

| �
n

P p�c
i

. Crrssst�
i

P c

i

| 0 R C1rresst�
i

uuqn´1
c

^ 0 P C1rresst�
n

uu
(simplify)

9Ñ: Let �1 be another fixed point of F (F�1 “ �1). This means
that
�1

c “ F�1

c (by def. of fixed point)
“ t� P c | 0 P C1rresst�uu Y �1pCrrssst� P c | 0 R C1rresst�uuq

(�-reduction, twice)

We prove that �c. t. . .u 9Ñ�1, i.e., p�c. t. . .uqc Ñ �1

c for any
c. Let c be given.
Specifically we now prove

@n • 1. t�
n

| �
n

P p�c
i

. Crrssst�
i

P c

i

| 0 R C1rresst�
i

uuqn´1
c

^ 0 P C1rresst�
n

uu Ñ �1

c

by induction in n.
n “ 1:

t�
n

| �
n

P p�c
i

. Crrssst�
i

P c

i

| 0 R C1rresst�
i

uuq0c
^ 0 P C1rresst�

n

uu
“ t�

n

| �
n

P c ^ 0 P C1rresst�
n

uu (simplify)
Ñ �1

c (by the above)

n “ k ` 1:
t�

n

| �
n

P p�c
i

. Crrssst�
i

P c

i

| 0 R C1rresst�
i

uuqk`1´1
c

^ 0 P C1rresst�
n

uu
“ t�

n

| �
n

P p�c
i

. Crrssst�
i

P c

i

| 0 R C1rresst�
i

uuqk´1

pCrrssst�
i

P c | 0 R C1rresst�
i

uuq
^ 0 P C1rresst�

n

uu
(by def. of fm)

Ñ �1pCrrssst�
i

P c | 0 R C1rresst�
i

uuq (by the IH)
Ñ �1

c (by the above)

16

D. Soundness of approximate semantics
D.1 Expression-level soundness
Lemma 15 (Soundness of approximate expression semantics).

@e P Exp, b P Var Ñ 2Val

. pC1rress ˝ �BCqpbq Ñ B1rressb

Proof. Let e P Exp and b P Var Ñ 2Val be given. Proceed by
structural induction on e.

Case n :

pC1rrn ss ˝ �BCqpbq
“ pp�c. tnuq ˝ �BCqpbq (by def. of C1)
“ tnu (�-reduction)
“ B1rrn ssb (by def. of B1)

Case x:

pC1rrxss ˝ �BCqpbq
“ p�b. t�pxq | � P bu ˝ �BCqpbq (by def. of C1)
“ t�pxq | � P �BCpbqu (�-reduction)
“ t�pxq | � P t� | @x P Var . �pxq P bpxquu

(by def. of �BC)
“ t�pxq | @�, x P Var . �pxq P bpxqu (simplify)
Ñ bpxq (simplify)
“ B1rrxssb (by def. of B1)

Case e ‘ e

1:

pC1rre ‘ e

1ss ˝ �BCqpbq
“ p�b. tv2 | v2 P tvu 9‘ tv1u

^ � P b ^ v P C1rresst�u
^ v

1 P C1rre1sst�uu ˝ �BCqpbq (by def. of C1)
“ tv2 | v2 P tvu 9‘ tv1u

^ � P �BCpbq ^ v P C1rresst�u
^ v

1 P C1rre1sst�uu (�-reduction)
Ñ tv2 | v2 P tvu 9‘ tv1u

^ v P C1rressp�BCpbqq ^ v

1 P C1rre1ssp�BCpbqqu
(simplify)

“ C1rressp�BCpbqq 9‘ C1rre1ssp�BCpbqq (simplify)
Ñ B1rressb 9‘ B1rre1ssb (IH, twice, 9‘ monotone)

D.2 Proof of Theorem 2: Statement-level soundness
Proof. Let s P Stm and b P Var Ñ 2Val be given. Proceed by
structural induction on s.

Case skip:

p↵CB ˝ Crrskipss ˝ �BCqpbq
“ p↵CB ˝ p�b. bq ˝ �BCqpbq (by def. of C)
“ p↵CB ˝ �BCqpbq (identity fun.)
9Ñ b (↵CB ˝ �BC reductive)
“ Brrskipssb (def. of B)

Case x := e:

p↵CB ˝ Crrx := ess ˝ �BCqpbq
“ p↵CB ˝ p�b. t�rx fiÑ vs | � P b ^ v P C1rresst�uuq ˝ �BCqpbq

(by def. of C)
“ ↵CBpt�rx fiÑ vs | � P �BCpbq ^ v P C1rresst�uuq

(�-reduction)
“ �y. t�rx fiÑ vspyq | � P �BCpbq ^ v P C1rresst�uu

(by def. of ↵CB)
9Ñ �y. t�rx fiÑ vspyq | � P �BCpbq ^ v P C1rressp�BCpbqqu

(simplify)
“ �y. brx fiÑ C1rressp�BCpbqqspyq (by def. of �BC)
“ brx fiÑ C1rressp�BCpbqqs (⌘-reduction)
9Ñ brx fiÑ B1rressbs (by Lemma 15)
“ Brrx := essb (by def. of B)

Case s0 ; s1:

p↵CB ˝ Crrs0 ; s1ss ˝ �BCqpbq
“ p↵CB ˝ pCrrs1ss ˝ Crrs0ssq ˝ �BCqpbq (by def. of C)
9Ñ p↵CB ˝ pCrrs1ss ˝ �BC ˝ ↵CB ˝ Crrs0ssq ˝ �BCqpbq

(�BC ˝ ↵CB extensive)
9Ñ pBrrs1ss ˝ Brrs0ssqpbq (by IH, twice)
“ Brrs0 ; s1ssb (by def. of B)

Case if e then s0 else s1:

p↵CB ˝ Crrif e then s0 else s1ss ˝ �BCqpbq
“ p↵CB ˝ p�b. Crrs0sst� P b | 0 R C1rresst�uu

Y Crrs1sst� P b | 0 P C1rresst�uuq ˝ �BCqpbq
(by def. of C)

“ ↵CBpCrrs0sst� P �BCpbq | 0 R C1rresst�uu
Y Crrs1sst� P �BCpbq | 0 P C1rresst�uuq (�-reduction)

“ ↵CBpCrrs0sst� P �BCpbq | 0 R C1rresst�uuq
9Y↵CBpCrrs1sst� P �BCpbq | 0 P C1rresst�uuq

(↵CB a CJM)
9Ñ ↵CBpCrrs0ssp�BCpbqqq 9Y↵CBpCrrs1ssp�BCpbqqq

(upward judge)
9Ñ Brrs0ssb 9YBrrs1ssb (by IH, twice)
“ Brrif e then s0 else s1ssb (by def. of B)

Case while e do s: In this case our higher-order Galois connection
reads:

↵

Ñ

p�q “ �b.↵CBp�p�BCpbqqq
�

Ñ

p�q “ �c. �BCp�p↵CBpcqqq

For short-hand notation, we let

F “��.�c. t� P c | 0 P C1rresst�uu
Y �pCrrssst� P c | 0 R C1rresst�uuq

17

First observe that for any given monotone �:

p↵
Ñ

˝ F ˝ �

Ñ

q�
“ ↵

Ñ

pF p�
Ñ

p�qqq (by def. of ˝)
“ ↵

Ñ

pF p�c1

. �BCp�p↵CBpc1qqqqq (by def. of �
Ñ

)
“ ↵

Ñ

p�c. t� P c | 0 P C1rresst�uu
Y p�c1

. �BCp�p↵CBpc1qqqqCrrssst� P c | 0 R C1rresst�uuq
(by def. of F)

“ ↵

Ñ

p�c. t� P c | 0 P C1rresst�uu
Y �BCp�p↵CBpCrrssst� P c | 0 R C1rresst�uuqqqq

(�-reduction)
9Ñ ↵

Ñ

p�c. c Y �BCp�p↵CBpCrrssst� P c | 0 R C1rresst�uuqqqq
(↵

Ñ

monotone)
9Ñ ↵

Ñ

p�c. c Y �BCp�p↵CBpCrrssscqqqq
(C, ↵CB, �1, �BC, ↵

Ñ

monotone)
“ �b.↵CBp�BCpbq Y �BCp�p↵CBpCrrsss�BCpbqqqqq

(by def. of ↵
Ñ

)
“ �b.↵CBp�BCpbqq 9Y↵CBp�BCp�p↵CBpCrrsss�BCpbqqqqq

(↵CB a CJM)
9Ñ �b. b 9Y�p↵CBpCrrsss�BCpbqqq (↵CB ˝ �BC reductive, twice)
9Ñ �b. b 9Y�pBrrsssbq (by the IH, �1 monotone)

Since � and B are monotone, this functional is itself monotone.
Now we can utilize these observations:

p↵CB ˝ Crrwhile e do sss ˝ �BCqpbq
“ ↵

Ñ

pCrrwhile e do sssqpbq (by def. of ↵
Ñ

)
“ ↵

Ñ

plfpF qpbq (by def. of C)
9Ñ plfp↵

Ñ

˝ F ˝ �

Ñ

qpbq (fixed point transfer theorem)
9Ñ plfp��.�b. b 9Y�pBrrsssbqqpbq

(fixed point transfer theorem, above obs.)
“ Brrwhile e do sssb (by def. of B)

18

E. Soundness of constant propagation analysis
E.1 Expression level soundness
Lemma 16 (Soundness of expression analysis).

@e P Exp, a P A : p↵̂ ˝ B1rress ˝ �ABqpaq Ñ A1rress a
Proof. Let e P Exp and a P A be given. Proceed by structural
induction on e.

Case n :
p↵̂ ˝ B1rrn ss ˝ �ABqpaq
“ p↵̂ ˝ p�b. tnuq ˝ �ABqpaq (by def. of B1)
“ ↵̂ptnuq (�-reduction)
“ n (by def. of ↵̂)
“ A1rrn ssa (by def. of A1)

Case x:
p↵̂ ˝ B1rrxss ˝ �ABqpaq
“ p↵̂ ˝ p�b. bpxqq ˝ �ABqpaq (by def. of B1)
“ ↵̂p�ABpaqpxqq (�-reduction)
“ ↵̂p�̂papxqqq (by def. of �AB)
Ñ apxq (↵̂ ˝ �̂ reductive)
“ A1rrxssa (by def. of A1)

Case e0 ‘ e1:
p↵̂ ˝ B1rre0 ‘ e1ss ˝ �ABqpaq
“ p↵̂ ˝ p�b.B1rre0ssb 9‘ B1rre1ssbq ˝ �ABqpaq (by def. of B1)
“ ↵̂pB1rre0ss�ABpaq 9‘ B1rre1ss�ABpaqq (�-reduction)
Ñ ↵̂pp�̂ ˝ ↵̂qpB1rre0ss�ABpaqq 9‘ p�̂ ˝ ↵̂qpB1rre1ss�ABpaqqq

(�̂ ˝ ↵̂ extensive, twice, 9‘ , ↵̂ monotone)
Ñ ↵̂pp�̂pA1rre0ssaqq 9‘ p�̂pA1rre1ssaqqq (by IH, twice)

Ñ pA1rre0ssaq p‘ pA1rre1ssaq (by def. of p‘)
“ A1rre0 ‘ e1ssa (by def. of A1)

E.2 Proof of Theorem 3: Statement-level soundness
Proof. Let s P Stm and a P A be given. Proceed by structural
induction on s.

Case skip:
p↵BA ˝ Brrskipss ˝ �ABqpaq
“ p↵BA ˝ p�b. bq ˝ �ABqpaq (by def. of B)
“ p↵BA ˝ �ABqpaq (identity fun.)
9Ñ a (↵BA ˝ �AB reductive)
“ Arrskipssa (by def. of A)

Case x := e:
p↵BA ˝ Brrx := ess ˝ �ABqpaq
“ p↵BA ˝ p�b. brx fiÑ B1rressbsq ˝ �ABqpaq (by def. of B)
“ ↵BAp�ABpaqrx fiÑ B1rressp�ABpaqqsq (�-reduction)
“ p↵BAp�ABpaqqqrx fiÑ ↵̂pB1rressp�ABpaqqqs (by def. of ↵BA)
9Ñ arx fiÑ ↵̂pB1rressp�ABpaqqqs (↵BA ˝ �AB reductive)
9Ñ arx fiÑ A1rressas (by Lemma 16)
“ Arrx := essa (by def. of A)

Case s0 ; s1:
p↵BA ˝ Brrs0 ; s1ss ˝ �ABqpaq
“ p↵BA ˝ Brrs1ss ˝ Brrs0ss ˝ �ABqpaq (by def. of B)
9Ñ p↵BA ˝ Brrs1ss ˝ �AB ˝ ↵BA ˝ Brrs0ss ˝ �ABqpaq

(�AB ˝ ↵BA is extensive)
9Ñ pArrs1ss ˝ Arrs0ssqpaq (by IH, twice)
“ Arrs0 ; s1ssa (by def. of A)

Case if e then s0 else s1:
p↵BA ˝ Brrif e then s0 else s1ss ˝ �ABqpaq
“ p↵BA ˝ p�b.Brrs0ssb 9YBrrs1ssbq ˝ �ABqpaq (by def. of B)
“ ↵BApBrrs0ssp�ABpaqq 9YBrrs1ssp�ABpaqqq (�-reduction)
“ ↵BApBrrs0ssp�ABpaqqq 9\ ↵BApBrrs1ssp�ABpaqqq

(↵BA a CJM)
9Ñ Arrs0ssa 9\ Arrs1ssa (by IH, twice)
“ Arrif e then s0 else s1ssa (by def. of A)

Case while e do s: In this case our higher-order Galois connection
reads:

↵

Ñ

p�q “ �a.↵BAp�p�ABpaqqq
�

Ñ

p�q “ �b. �ABp�p↵BApbqqq
Let a monotone �1 be given. Now observe that:

p↵
Ñ

˝ p��.�b. b 9Y�pBrrsssbqq ˝ �

Ñ

q�1

“ p↵
Ñ

˝ p��.�b. b 9Y�pBrrsssbqqqp�b1

. �ABp�1p↵BApb1qqqq
(by def. of �

Ñ

)
“ ↵

Ñ

p�b. b 9Y p�b1

. �ABp�1p↵BApb1qqqqpBrrsssbqq
(�-reduction)

“ ↵

Ñ

p�b. b 9Y �ABp�1p↵BApBrrsssbqqqq (�-reduction)
“ �a.↵BAp�ABpaq 9Y �ABp�1p↵BApBrrsssp�ABpaqqqqqq

(by def. of ↵
Ñ

)
“ �a.↵BAp�ABpaqq 9\ ↵BAp�ABp�1p↵BApBrrsssp�ABpaqqqqqq

(↵BA a CJM)
9Ñ �a. a 9\ ↵BAp�ABp�1p↵BApBrrsssp�ABpaqqqqqq

(↵BA ˝ �AB reductive)
9Ñ �a. a 9\ �1p↵BApBrrsssp�ABpaqqqq (↵BA ˝ �AB reductive)
9Ñ �a. a 9\ �1pArrsssaq (by IH, �1 monotone)

Since �1 and A are monotone, this functional is itself monotone.
Now, we utilize these observations in the following rewriting:

p↵BA ˝ Brrwhile e do sss ˝ �ABqpaq
“ ↵

Ñ

pBrrwhile e do sssqpaq (by def. of ↵
Ñ

)
“ ↵

Ñ

plfp��.�b. b 9Y�pBrrsssbqqpaq (by def. of B)
9Ñ plfp↵

Ñ

˝ p��.�b. b 9Y�pBrrsssbqq ˝ �

Ñ

qpaq
(fixed point transfer theorem)

9Ñ plfpp��.�a. a 9\ �pArrsssaqqqpaq
(fixed point transfer theorem, above obs.)

“ Arrwhile e do sssa (by def. of A)

19

F. Monotonicity proofs
Please recall that the domain of monotone (endo-)functions over a
complete lattice themselves constitute a complete lattice. We use
this fact in the proofs of Theorems 18, 20, and 22.

Lemma 17 (C1 monotone).
@e, c, c1

. c Ñ c

1 ùñ C1rressc Ñ C1rressc1

Proof. Let e, c Ñ c

1 be given. We proceed by structural induction
on e.

Case n :
C1rrn ssc “ tnu “ C1rrn ssc1 (by def. of C1)

Case x:
C1rrxssc “ t�pxq | � P cu Ñ t�pxq | � P c

1u “ C1rrxssc1

(by def. of C1)

Case e0 ‘ e1:
C1rre0 ‘ e1ssc
“ tv2 | v2 P tvu 9‘ tv1u ^ � P c

^ v P C1rresst�u ^ v

1 P C1rre1sst�uu
(by def. of C1)

Ñ tv2 | v2 P tvu 9‘ tv1u ^ � P c

1

^ v P C1rresst�u ^ v

1 P C1rre1sst�uu
(by assumption)

“ C1rre0 ‘ e1ssc1 (by def. of C1)

Theorem 18 (C monotone).
@s, c, c1

. c Ñ c

1 ùñ Crrsssc Ñ Crrsssc1

Proof. Let s and c Ñ c

1 be given. We proceed by structural induction
on s.

Case skip:
Crrskipssc “ c Ñ c

1 “ Crrskipssc1 (by def. of C)

Case x := e:
Crrx := essc
“ t�rx fiÑ vs | � P c ^ v P C1rresst�uu (by def. of C)
Ñ t�rx fiÑ vs | � P c

1 ^ v P C1rresst�uu (by assumption)
“ Crrx := essc1 (by def. of C)

Case s0 ; s1:
Crrs0 ; s1ssc
“ pCrrs1ss ˝ Crrs0ssqc (by def. of C)
Ñ pCrrs1ss ˝ Crrs0ssqc1 (by IH, twice)
“ Crrs0 ; s1ssc1 (by def. of C)

Case if e then s0 else s1:
Crrif e then s0 else s1ssc
“ Crrs0sst�Pc |0RC1rresst�uu Y Crrs1sst�Pc |0PC1rresst�uu

(by def. of C)
Ñ Crrs0sst�Pc1 |0RC1rresst�uu Y Crrs1sst�Pc |0PC1rresst�uu

(by IH)
Ñ Crrs0sst�Pc1 |0RC1rresst�uu Y Crrs1sst�Pc1 |0PC1rresst�uu

(by IH)
“ Crrif e then s0 else s1ssc1 (by def. of C)

Case while e do s: Recall the while rule:

Crrwhile e do sss “ lfp��.�c. t� P c | 0 P C1rresst�uu
Y �pCrrssst� P c | 0 R C1rresst�uuq

For convenience we name the functional F :

F “ ��.�c. t� P c | 0 P C1rresst�uu
Y �pCrrssst� P c | 0 R C1rresst�uuq

First we prove that applying the functional F to a monotone func-
tion �, yields a monotone function as a result. As a consequence
the functional F constitutes an operator over the complete lattice
of monotone functions.
Let c Ñ c

1 be given.

pF�qc
“ t� P c | 0 P C1rresst�uu Y �pCrrssst� P c | 0 R C1rresst�uuq

(�-reduction, twice)
Ñ t� P c

1 | 0 P C1rresst�uu Y �pCrrssst� P c | 0 R C1rresst�uuq
(by assumption)

Ñ t� P c

1 | 0 P C1rresst�uu Y �pCrrssst� P c

1 | 0 R C1rresst�uuq
(by assumption, IH, monotonicity of �)

“ p��.�c. t� P c | 0 P C1rresst�uu
Y �pCrrssst� P c | 0 R C1rresst�uuqq�c1

(�-expansion, twice)
“ pF�qc1 (be def. of F)

Second we prove that the functional F itself is monotone which
guarantees that the while rule is well defined by Tarski’s fixed
point theorem.
Let monotone functions � 9Ñ �1 be given.

F�

“ �c. t� P c | 0 P C1rresst�uu Y �pCrrssst� P c | 0 R C1rresst�uuq
(�-reduction)

9Ñ �c. t� P c | 0 P C1rresst�uu Y �1pCrrssst� P c | 0 R C1rresst�uuq
(by assumption)

“ p��.�c. t� P c | 0 P C1rresst�uu
Y �pCrrssst� P c | 0 R C1rresst�uuqq�1

(�-expansion)
“ F�1 (by def. of F)

Since the least fixed point of F is itself an element of the lattice
of monotone functions, it is monotone:

Crrwhile e do sssc “ plfpF qc Ñ plfpF qc1 “ Crrwhile e do sssc1

which concludes this case.

Lemma 19 (B1 monotone).
@e, b, b1

. b

9Ñ b

1 ùñ B1rressb Ñ B1rressb1

Proof. Let e, b 9Ñ b

1 be given. We proceed by structural induction
on e.

Case n :
B1rrn ssb “ tnu “ B1rrn ssb1 (by def. of B1)

Case x:
B1rrxssb “ bpxq Ñ b

1pxq “ B1rrxssb1

(by def. of B1, assumption)

20

Case e0 ‘ e1:
B1rre0 ‘ e1ssb
“ B1rressb 9‘ B1rressb (by def. of B1)
Ñ B1rressb1 9‘ B1rressb (by IH, monotonicity of 9‘)
Ñ B1rressb1 9‘ B1rressb1 (by IH, monotonicity of 9‘)
“ B1rre0 ‘ e1ssb1 (by def. of B1)

Theorem 20 (B monotone).
@s, b, b1

. b

9Ñ b

1 ùñ Brrsssb 9Ñ Brrsssb1

Proof. Let s, b 9Ñ b

1 be given. We proceed by structural induction
on s.

Case skip:
Brrskipssb “ b

9Ñ b

1 “ Brrskipssb1

(by def. of B, assumption)

Case x := e:
Brrx := essb
“ brx fiÑ B1rressbs (by def. of B)
9Ñ b

1rx fiÑ B1rressbs (by assumption)
9Ñ b

1rx fiÑ B1rressb1s (by Lemma 19, def. of 9Ñ)
“ Brrx := essb1 (by def. of B)

Case s0 ; s1:
Brrs0 ; s1ssb
“ pBrrs1ss ˝ Brrs0ssqb (by def. of B)
9Ñ pBrrs1ss ˝ Brrs0ssqb1 (by IH, twice)
“ Brrs0 ; s1ssb1 (by def. of B)

Case if e then s0 else s1:
Brrif e then s0 else s1ssb
“ Brrs0ssb 9YBrrs1ssb (by def. of B)
9Ñ Brrs0ssb1 9YBrrs1ssb (by IH)
9Ñ Brrs0ssb1 9YBrrs1ssb1 (by IH)
“ Brrif e then s0 else s1ssb1 (by def. of B)

Case while e do s: Recall the while rule:

Brrwhile e do sss “ lfp��.�b. b 9Y�pBrrsssbq
For convenience we again name the functional F : F “
��.�b. b 9Y�pBrrsssbq.
We first prove that applying the functional F to a monotone func-
tion � yields a monotone function as a result. As a consequence
the functional F operates over the complete lattice of monotone
functions.
Let b 9Ñ b

1 be given.

pF�qb
“ b 9Y�pBrrsssbq (�-reduction, twice)
9Ñ b

1 9Y�pBrrsssbq (by assumption)
9Ñ b

1 9Y�pBrrsssb1q (by IH, � monotone)
“ pF�qb1 (by def. of F)

Second we prove that the functional itself is monotone. This
guarantees that the while rule is well defined by Tarski’s fixed
point theorem.

Let � :Ñ �1 be given.

F�

“ �b. b 9Y�pBrrsssbq (�-reduction)
:Ñ �b. b 9Y�1pBrrsssbq (by def. of :Ñ, assumption)
“ F�1 (by def. of F)

Since the least fixed point is itself an element of the complete
lattice of monotone functions the while rule is monotone:

Brrwhile e do sssb “ plfpF qb 9Ñ plfpF qb1 “ Brrwhile e do sssb1

which concludes this case.

Lemma 21 (A1 monotone).
@e, a, a1

. a

9Ñ a

1 ùñ A1rressa Ñ A1rressa1

Proof. Let e and a 9Ñ a

1 be given. We proceed by structural induction
on e.

Case n :
A1rressa “ ↵ptnuq “ A1rressa1 (by def. of A1)

Case x:
A1rrxssa “ apxq Ñ a

1pxq “ A1rrxssa1 (by def. of A1, 9Ñ)

Case e0 ‘ e1:
A1rre0 ‘ e1ssa
“ A1rre0ssa p‘ A1rre1ssa (by def. of A1)

Ñ A1rre0ssa1 p‘ A1rre1ssa (IH, p‘ monotone)

Ñ A1rre0ssa1 p‘ A1rre1ssa1 (IH, p‘ monotone)
“ A1rre0 ‘ e1ssa1 (by def. of A1)

Theorem 22 (A monotone).
@s, a, a1

. a

9Ñ a

1 ùñ Arrsssa 9Ñ Arrsssa1

Proof. Let s and a 9Ñ a

1 be given. We proceed by structural induction
on s.

Case skip:
Arrskipssa “ a

9Ñ a

1 “ Arrsssa1 (by def. of A)

Case x := e:
Arrx := essa
“ arx fiÑ A1rressas (by def. of A)
9Ñ a

1rx fiÑ A1rressas (by def. of 9Ñ)
9Ñ a

1rx fiÑ A1rressa1s (by def. of 9Ñ, Lemma 21)
“ Arrx := essa1 (by def. of A)

Case s0 ; s1:
Arrs0 ; s1ssa
“ pArrs1ss ˝ Arrs0ssqa (by def. of A)
9Ñ pArrs1ss ˝ Arrs0ssqa1 (IH, twice)
“ Arrs0 ; s1ssa1 (by def. of A)

21

Case if e then s0 else s1:
Arrif e then s0 else s1ssa
“ Arrsssa 9\ Arrs1ssa (by def. of A)
9Ñ Arrsssa1 9\ Arrs1ssa1 (IH, twice)
“ Arrif e then s0 else s1ssa1 (by def. of A)

Case while e do s: Recall the while rule:

Arrwhile e do sss “ lfp��.�a. a 9\ �pArrsssaq
For convenience we again name the functional F :

F “ ��.�a. a 9\ �pArrsssaq
First we prove that applying the functional F to a monotone
function � yields a monotone result, hence the functional F
constitutes a function over the complete lattice of monotone
functions.
Let a 9Ñ a

1 and a monotone � be given.

F�a

“ a 9\ �pArrsssaq (by def. of F)
9Ñ a

1 9\ �pArrsssaq (by def. of 9Ñ)
9Ñ a

1 9\ �pArrsssa1q (by IH, monotonicity of �, def. of 9Ñ)
“ F�a1 (by def. of F)

Second we prove that the functional F itself is monotone over
the complete lattice of monotone functions), which guarantees
that the while rule is well defined by Tarski’s fixed point theorem.
Let monotone functions � and �1 be given and assume � :Ñ �1

F�

“ �a. a 9\ �pArrsssaq (by def. of F)
:Ñ �a. a 9\ �1pArrsssaq (by assumption, def. of :Ñ)
“ F�1 (by def. of F)

Since the resulting fixed point is an element in the complete
lattice of monotone functions it is itself monotone:

Arrwhile e do sssa “ plfpF qa 9Ñ plfpF qa1 “ Arrwhile e do sssa1

which concludes this case.

22

G. Proof of Theorem 4: Data-flow equation
soundness

Note: the paper version of the data-flow equations are purely
statement based, whereas the below development also formulates
data-flow equations for (labelled) expressions. Because of the below
equality, analyzing expressions with A1 or with data-flow equations
is equivalent.

We prove that a solution rr´ss
in

, rr´ss
out

to the data-flow con-
straints is sound wrt. to the derived analysis:

A1rre`ssprre`ss
in

q “ rre`ss
out

Arrs`ssprrs`ss
in

q 9Ñ rrs`ss
out

for the following expression related equations:

rrn`ss
out

“ n

rrx`ss
out

“ rrx`ss
in

pxq
rre`00 ss

in

“ rre`00 ‘`

e

`1
1 ss

in

rre`11 ss
in

“ rre`00 ‘`

e

`1
1 ss

in

rre`00 ‘`

e

`1
1 ss

out

“ rre`00 ss
out

p‘ rre`11 ss
out

rre`00 ss
in

“ rrx :=

`

e

`0
0 ss

in

rrx :=

`

e

`0
0 ss

out

“ rrx :=

`

e

`0
0 ss

in

rx fiÑ rre`00 ss
out

s

Proof. Expression soundness: Let e

` be given. We proceed by
structural induction on e

`.
Case n

`:

A1rrn`ssprrn`ss
in

q “ n “ rrn`ss
out

(by def. of A1, rrn`ss
out

)

Case x`:

A1rrx`ssprrx`ss
in

q “ rrx`ss
in

px`q “ rrx`ss
out

(by def. of A1, rrx`ss
out

)

Case e

`0
0 ‘`

e

`1
1 :

A1rre`00 ‘`

e

`1
1 ssprre`00 ‘`

e

`1
1 ss

in

q
“ A1rre`00 ssprre`00 ‘`

e

`1
1 ss

in

q p‘ A1rre`11 ssprre`00 ‘`

e

`1
1 ss

in

q
(by def. of A1)

“ A1rre`00 ssprre`00 ss
in

q p‘ A1rre`11 ssprre`11 ss
in

q
(by def. of rre`00 ss

in

, rre`11 ss
in

)

“ rre`00 ss
out

p‘ rre`11 ss
out

(by IH, twice)

“ rre`00 ‘`

e

`1
1 ss

out

(by def. of rre`00 ‘`

e

`1
1 ss

out

)

Statement soundness: Let s` be given. We proceed by structural
induction on s

`.
Case skip`:

Arrskip`ssprrskip`ss
in

q “ rrskip`ss
in

“ rrskip`ss
out

(by def. of A,rrskip`ss
in

)

Case x :=

`

e

`0 :

Arrx :=

`

e

`0 ssprrx :=

`

e

`0 ss
in

q
“ prrx :=

`

e

`0 ss
in

qrx fiÑ A1rre`0 ssprrx :=

`

e

`0 ss
in

qs
(by def. of A)

“ prrx :=

`

e

`0 ss
in

qrx fiÑ A1rre`0 ssprre`0 ss
in

qs
(by def. of rre`0 ss

in

)

“ prrx :=

`

e

`0 ss
in

qrx fiÑ rre`0 ss
out

s
(by first half of theorem)

“ rrx :=

`

e

`0 ss
out

(by def. of rrx :=

`

e

`0 ss
out

)

Case s

`0
0 ;

`

s

`1
1 :

Arrs`00 ;

`

s

`1
1 ssprrs`00 ;

`

s

`1
1 ss

in

q
“ pArrs`11 ss ˝ Arrs`00 ssqprrs`00 ;

`

s

`1
1 ss

in

q (by def. of A)

“ pArrs`11 ss ˝ Arrs`00 ssqprrs`00 ss
in

q (by def. of rrs`00 ss
in

)
9Ñ Arrs`11 ssprrs`00 ss

out

q (by IH, A monotone)

“ Arrs`11 ssprrs`11 ss
in

q (by def. of rrs`11 ss
in

)
9Ñ rrs`11 ss

out

(by IH)

“ rrs`00 ;

`

s

`1
1 ss

out

(by def. of rrs`00 ;

`

s

`1
1 ss

out

)

Case if` e then s

`0
0 else s

`1
1 :

Arrif` e then s

`0
0 else s

`1
1 ssprrif` e then s

`0
0 else s

`1
1 ss

in

q
“ Arrs`00 ssprrif` e then s

`0
0 else s

`1
1 ss

in

q
9\ Arrs`11 ssprrif` e then s

`0
0 else s

`1
1 ss

in

q
(by def. of A)

“ Arrs`00 ssprrs`00 ss
in

q 9\ Arrs`11 ssprrs`11 ss
in

q
(by def. of rrs`00 ss

in

,rrs`11 ss
in

)
9Ñ rrs`00 ss

out

9\ rrs`11 ss
out

(by IH, twice)

“ rrif` e then s

`0
0 else s

`1
1 ss

out

(by def. of rrif` e then s

`0
0 else s

`1
1 ss

out

)

Case while` e do s

`0 : Recall the while equations:

rrwhile` e do s

`0 ss
out

“ rrs`0 ss
in

(eq.1)

rrs`0 ss
in

“ rrwhile` e do s

`0 ss
in

9\ rrs`0 ss
out

(eq.2)

We now prove by (inner) induction that for all n • 0

Fnp:Kqprrwhile` e do s

`0 ss
in

9\ rrs`0 ss
out

q 9Ñ rrwhile` e do s

`0 ss
out

where F “ ��.�a. a 9\ �pArrs`0 ssaq. From here it follows
that

Arrwhile` e do s

`0 ssprrwhile` e do s

`0 ss
in

q
“ plfpFqprrwhile` e do s

`0 ss
in

q (by def. of A)

“ p :\
i

Fip:Kqqprrwhile` e do s

`0 ss
in

q
(by Kleene’s fixed point theorem)

“ p�a. 9\
i

Fip:Kqaqprrwhile` e do s

`0 ss
in

q (by def. of :\)

“ 9\
i

Fip:Kqrrwhile` e do s

`0 ss
in

(�-reduction)
9Ñ 9\

i

Fip:Kqprrwhile` e do s

`0 ss
in

9\ rrs`0 ss
out

q
(by monotonicity of Fip:Kq)

9Ñ rrwhile` e do s

`0 ss
out

(by above)

23

Case n “ 0:
F0p:Kqprrwhile` e do s

`0 ss
in

9\ rrs`0 ss
out

q
“ :Kprrwhile` e do s

`0 ss
in

9\ rrs`0 ss
out

q
(by def. of F0)

“ 9K (�-reduction)
9Ñ rrwhile` e do s

`0 ss
out

(by def. of 9K)

Case n “ k ` 1:
Assume

Fkp:Kqprrwhile` e do s

`0 ss
in

9\ rrs`0 ss
out

q 9Ñ rrwhile` e do s

`0 ss
out

We now reason as follows:

Fk`1p:Kqprrwhile` e do s

`0 ss
in

9\ rrs`0 ss
out

q
“ Fk`1p:Kqprrs`0 ss

in

q (by eq.2)

“ FpFkp:Kqqprrs`0 ss
in

q (by def. of Fk`1)

“ p��.�a. a 9\ �pArrs`0 ssaqqpFkp:Kqqprrs`0 ss
in

q
(by def. of F)

“ p�a. a 9\ Fkp:KqpArrs`0 ssaqqprrs`0 ss
in

q
(�-reduction)

“ rrs`0 ss
in

9\ Fkp:KqpArrs`0 ssprrs`0 ss
in

qq
(�-reduction)

9Ñ rrs`0 ss
in

9\ Fkp:Kqprrs`0 ss
out

q
(by outer IH, monotonicity of Fkp:Kq)

9Ñ rrs`0 ss
in

9\ Fkp:Kqprrwhile` e do s

`0 ss
in

9\ rrs`0 ss
out

q
(by monotonicity of Fkp:Kq)

9Ñ rrs`0 ss
in

9\ rrwhile` e do s

`0 ss
out

(by inner IH)

“ rrwhile` e do s

`0 ss
out

(by eq.1)

24

H. Lifting of the collecting semantics
Lemma 23 (Expression collecting semantics equivalence).

@e. C1rress “ �c.

π

kPK
C1rressp⇡

k

pcqq

Proof. Let e be given. We proceed by structural induction on e.

Case n :
�c.

π

kPK
C1rrn ssp⇡

k

pcqq

“ �c.

π

kPK
p�c. tnuqp⇡

k

pcqq (by def. of C1)

“ �c.

π

kPK
tnu (�-reduction)

“ C1rrn ss (by def. of C1)

Case x:
�c.

π

kPK
C1rrxssp⇡

k

pcqq

“ �c.

π

kPK
p�c. t�pxq | � P cuqp⇡

k

pcqq (by def. of C1)

“ �c.

π

kPK
t�pxq | � P ⇡

k

pcqu (�-reduction)

“ C1rrxss (by def. of C1)

Case e0 ‘ e1:
�c.

π

kPK
C1rre0 ‘ e1ssp⇡

k

pcqq

“ �c.

π

kPK
p�c. tv | v P tv0u 9‘ tv1u ^ � P c ^

v0 P C1rre0sst�u ^ v1 P C1rre1sst�uuqp⇡
k

pcqq
(by def. of C1)

“ �c.

π

kPK
tv | v P tv0u 9‘ tv1u ^ � P ⇡

k

pcq ^

v0 P C1rre0sst�u ^ v1 P C1rre1sst�uu
(�-reduction)

“ �c.

π

kPK
tv | v P tv0u 9‘ tv1u ^ � P ⇡

k

pcq ^

v0 P C1rre0ssp⇡
k

p
π

k

1
PK

t�uqq ^

v1 P C1rre1ssp⇡
k

p
π

k

1
PK

t�uqqu
(proj.+constr. expansion)

“ �c.

π

kPK
tv | v P tv0u 9‘ tv1u ^ � P ⇡

k

pcq ^

v0 P ⇡

k

pC1rre0ssp
π

k

1
PK

t�uqq ^

v1 P ⇡

k

pC1rre1ssp
π

k

1
PK

t�uqqu (IH, twice)

“ �c.

π

kPK
tv | � P ⇡

k

pcq ^

v P p⇡
k

pC1rre0ssp
π

k

1
PK

t�uqqq 9‘ p⇡
k

pC1rre1ssp
π

k

1
PK

t�uqqqu
(simplify)

“ C1rre0 ‘ e1ss (by def. of C1)

Theorem 24 (Statement collecting semantics equivalence).

@s P Stm. Crrsss “ �c.

π

kPK
CrrP rrsss

k

ssp⇡
k

pcqq

Proof. Let s be given. We proceed by structural induction on s.

Case skip:

�c.

π

kPK
CrrP rrskipss

k

ssp⇡
k

pcqq

“ �c.

π

kPK
Crrskipssp⇡

k

pcqq (by def. of P)

“ �c.

π

kPK
p�c. cqp⇡

k

pcqq (by def. of C)

“ �c.

π

kPK
⇡

k

pcq (�-reduction)

“ �c. c (shortcut proj.+constr.)

“ Crrskipss (by def. of C)

Case x := e:

�c.

π

kPK
CrrP rrx := ess

k

ssp⇡
k

pcqq

“ �c.

π

kPK
Crrx := essp⇡

k

pcqq (by def. of P)

“ �c.

π

kPK
p�c. t�rx fiÑ vs | � P c ^ v P C1rresst�uuqp⇡

k

pcqq
(by def. of C)

“ �c.

π

kPK
t�rx fiÑ vs | � P ⇡

k

pcq ^ v P C1rresst�uu
(�-reduction)

“ �c.

π

kPK
t�rx fiÑ vs | � P ⇡

k

pcq ^ v P C1rressp⇡
k

p
π

k

1
PK

t�uqqu
(proj.+constr. expansion)

“ �c.

π

kPK
t�rx fiÑ vs | � P ⇡

k

pcq ^ v P ⇡

k

pC1rressp
π

k

1
PK

t�uqqu
(by Lemma 23)

“ Crrx := ess (by def. of C)

Case s0 ; s1:

�c.

π

kPK
CrrP rrs0 ; s1ss

k

ssp⇡
k

pcqq

“ �c.

π

kPK
CrrP rrs0ss

k

; P rrs1ss
k

ssp⇡
k

pcqq (by def. of P)

“ �c.

π

kPK
pCrrP rrs1ss

k

ss ˝ CrrP rrs0ss
k

ssqp⇡
k

pcqq
(by def. of C)

“ �c.

π

kPK
CrrP rrs1ss

k

sspCrrP rrs0ss
k

ssp⇡
k

pcqqq (by def. of ˝)

“ �c.

π

kPK
CrrP rrs1ss

k

ssp⇡
k

pCrrs0sscqq (by IH)

“ �c.

π

kPK
⇡

k

pCrrs1sspCrrs0sscqq (by IH)

“ �c. Crrs1sspCrrs0sscq (shortcut proj.+constr.)

“ �c. pCrrs1ss ˝ Crrs0ssqc (by def. of ˝)

“ Crrs1ss ˝ Crrs0ss (⌘-reduction)

“ Crrs0 ; s1ss (by def. of C)

25

Case if e then s0 else s1:

�c.

π

kPK
CrrP rrif e then s0 else s1ss

k

ssp⇡
k

pcqq

“ �c.

π

kPK
Crrif e then P rrs0ss

k

else P rrs1ss
k

ssp⇡
k

pcqq
(by def. of P)

“ �c.

π

kPK
p�c. CrrP rrs0ss

k

sst� P c | 0 R C1rresst�uu

Y CrrP rrs1ss
k

sst� P c | 0 P C1rresst�uuqp⇡
k

pcqq
(by def. of C)

“ �c.

π

kPK
CrrP rrs0ss

k

sst� P ⇡

k

pcq | 0 R C1rresst�uu

Y CrrP rrs1ss
k

sst� P ⇡

k

pcq | 0 P C1rresst�uu
(�-reduction)

“ �c.

π

kPK
CrrP rrs0ss

k

sst� P ⇡

k

pcq | 0 R C1rressp⇡
k

p
π

k

1
PK

t�uqqu

Y CrrP rrs1ss
k

sst� P ⇡

k

pcq | 0 P C1rressp⇡
k

p
π

k

1
PK

t�uqqu
(proj.+constr. expansion)

“ �c.

π

kPK
CrrP rrs0ss

k

sst� P ⇡

k

pcq | 0 R ⇡

k

pC1rressp
π

k

1
PK

t�uqqu

Y CrrP rrs1ss
k

sst� P ⇡

k

pcq | 0 P ⇡

k

pC1rressp
π

k

1
PK

t�uqqu
(by Lemma 23)

“ �c.

π

kPK
CrrP rrs0ss

k

ssp⇡
k

p
π

k

2
PK

t�P⇡
k

pcq |0R⇡
k

pC1rressp
π

k

1
PK

t�uqquqq

Y CrrP rrs1ss
k

ssp⇡
k

p
π

k

2
PK

t�P⇡
k

pcq |0P⇡
k

pC1rressp
π

k

1
PK

t�uqquqq
(proj.+constr. expansion, twice)

“ �c.

π

kPK
⇡

k

pCrrs0ssp
π

k

2
PK

t� P ⇡

k

pcq | 0 R ⇡

k

pC1rressp
π

k

1
PK

t�uqquqq

Y ⇡

k

pCrrs1ssp
π

k

2
PK

t� P ⇡

k

pcq | 0 P ⇡

k

pC1rressp
π

k

1
PK

t�uqquqq
(by IH, twice)

“ Crrif e then s0 else s1ss (by def. of C)

Case while e do s: We first define ↵

k

and �

k

as follows:

↵

k

: CK Ñ C
↵

k

pcq “ ⇡

k

pcq
�

k

: C Ñ CK

�

k

pcq “
π

k

1
PK

#
c k “ k

1

Store k ‰ k

1

Together they constitute a k-specific abstraction from the lifted
collecting semantics level to the single-program collecting se-
mantics level:

xCK
,

9Ñy ´́ ´Ñ›Ñ–́ ´́ ´
↵k

�k xC,Ñy
Projections such as this are well-known to be Galois connections.
In particular it is a Galois insertion:

p↵
k

˝ �

k

qpcq

“ ⇡

k

p
π

k

1
PK

#
c k “ k

1

Store k ‰ k

1

q (by def. of ↵
k

, �
k

)

“ c (�-reduction)

We now lift this Galois connection to monotone transfer func-
tions by a higher-order Galois connection:

↵

Ñ

: pCK m›Ñ CKq Ñ C m›Ñ C
↵

Ñ

p�q “ ↵

k

˝ � ˝ �

k

�

Ñ

: pC m›Ñ Cq Ñ CK m›Ñ CK

�

Ñ

p�q “ �

k

˝ � ˝ ↵

k

xCK m›Ñ CK
,

;Ñy ´́´́Ñ–́´́´
↵Ñ

�Ñ xC m›Ñ C, :Ñy
Now observe that ↵

k

induces a complete abstraction over the
body of the loop:

p��.�c. t� P c | 0 P C1rresst�uu
Y �pCrrP rrsss

k

sst� P c | 0 R C1rresst�uuqq ˝ ↵

Ñ

“ p��.�c. t� P c | 0 P C1rresst�uu
Y �pCrrP rrsss

k

sst� P c | 0 R C1rresst�uuqq ˝ p��.↵
k

˝ � ˝ �

k

q
(by def. of ↵

Ñ

)

“ ��. p��.�c. t� P c | 0 P C1rresst�uu
Y �pCrrP rrsss

k

sst� P c | 0 R C1rresst�uuqqp↵
k

˝ � ˝ �

k

q
(by def. of ˝)

“ ��.�c. t� P c | 0 P C1rresst�uu
Y p↵

k

˝ � ˝ �

k

qpCrrP rrsss
k

sst� P c | 0 R C1rresst�uuq
(�-reduction)

“ ��.�c. t� P c | 0 P C1rresst�uu
Y p⇡

k

˝ � ˝ �

k

qpCrrP rrsss
k

sst� P c | 0 R C1rresst�uuq
(by def. of ↵

k

)

“ ��.�c. t� P c | 0 P C1rresst�uu
Y ⇡

k

p�p�
k

pCrrP rrsss
k

sst� P c | 0 R C1rresst�uuqqq
(by def. of ˝)

“ ��.�c. t� P c | 0 P C1rresst�uu

Y ⇡

k

p�p
π

k

1
PK

#
pCrrP rrsss

k

sst� P c | 0 R C1rresst�uuq k “ k

1

Store k ‰ k

1

qq
(by def. of �

k

)

“ ��.�c. t� P c | 0 P C1rresst�uu

Y ⇡

k

p
π

k

1
PK

⇡

k

1 p�qp
#

pCrrP rrsss
k

sst� P c | 0 R C1rresst�uuq k “ k

1

Store k ‰ k

1

qq
(by def. of appl.)

“ ��.�c. t� P c | 0 P C1rresst�uu
Y ⇡

k

p
π

k

1
PK

⇡

k

1 p�qpCrrP rrsss
k

1 sst� P c | 0 R C1rresst�uuqq
(identical k entries)

“ ��.�c. t� P c | 0 P C1rresst�uu
Y ⇡

k

p�qpCrrP rrsss
k

sst� P c | 0 R C1rresst�uuq
(by def. of ⇡

k

)

“ ��.�c. t� P c | 0 P C1rresst�uu
Y ⇡

k

p�qpCrrP rrsss
k

ssp↵
k

p�
k

pt� P c | 0 R C1rresst�uuqqqq
(Galois insertion)

“ ��.�c. t� P c | 0 P C1rresst�uu
Y ⇡

k

p�qpCrrP rrsss
k

ssp⇡
k

p�
k

pt� P c | 0 R C1rresst�uuqqqq
(by def. of ↵

k

)

26

“ ��.�c. t� P c | 0 P C1rresst�uu
Y ⇡

k

p�qpCrrP rrsss
k

ssp⇡
k

p
π

k

2
PK

t�P⇡
k

2 p�
k

pcqq |0RC1rresst�uuqqq
(identical k entries)

“ ��.�c. t� P c | 0 P C1rresst�uu
Y ⇡

k

p�p
π

k

1
PK
CrrP rrsss

k

1 ssp⇡
k

1 p
π

k

2
PK

t�P⇡
k

2 p�
k

pcqq |0RC1rresst�uuqqqq
(by def. of appl.)

“ ��.�c. t� P c | 0 P C1rresst�uu
Y ⇡

k

p�pCrrsssp
π

k

2
PK

t�P⇡
k

2 p�
k

pcqq |0RC1rresst�uuqqq
(by IH)

“ ��.�c. t� P c | 0 P C1rresst�uu
Y ↵

k

p�pCrrsssp
π

k

2
PK

t�P⇡
k

2 p�
k

pcqq |0RC1rresst�uuqqq
(by def. of ↵

k

)

“ ��.�c.↵
k

p�
k

pt� P c | 0 P C1rresst�uuqq
Y ↵

k

p�pCrrsssp
π

k

2
PK

t�P⇡
k

2 p�
k

pcqq |0RC1rresst�uuqqq
(Galois insertion)

“ ��.�c.↵
k

p
π

k

2
PK

t� P ⇡

k

2 p�
k

pcqq | 0 P C1rresst�uuq

Y ↵

k

p�pCrrsssp
π

k

2
PK

t�P⇡
k

2 p�
k

pcqq |0RC1rresst�uuqqq
(identical k entries)

“ ��.�c.↵
k

p
π

k

2
PK

t� P ⇡

k

2 p�
k

pcqq | 0 P C1rresst�uu

9Y�pCrrsssp
π

k

2
PK

t�P⇡
k

2 p�
k

pcqq |0RC1rresst�uuqqq
(↵

k

a CJM)

“ ��.�c. p�c.↵
k

p
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P C1rresst�uu

9Y�pCrrsssp
π

k

2
PK

t�P⇡
k

2 pcq |0RC1rresst�uuqqqqp�
k

pcqq
(� expansion)

“ ��.�c. p↵
k

˝ p�c.
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P C1rresst�uu

9Y�pCrrsssp
π

k

2
PK

t�P⇡
k

2 pcq |0RC1rresst�uuqqqqp�
k

pcqq
(by def. of ˝)

“ ��.↵
k

˝ p�c.
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P C1rresst�uu

9Y�pCrrsssp
π

k

2
PK

t�P⇡
k

2 pcq |0RC1rresst�uuqqq ˝ p�c. �
k

pcqq
(by def. of ˝)

“ ��.↵
k

˝ p�c.
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P C1rresst�uu

9Y�pCrrsssp
π

k

2
PK

t�P⇡
k

2 pcq |0RC1rresst�uuqqq ˝ �

k

(⌘-reduction)

“ ��.↵
Ñ

p�c.
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P C1rresst�uu

9Y�pCrrsssp
π

k

2
PK

t�P⇡
k

2 pcq |0RC1rresst�uuqqq
(by def. of ↵

Ñ

)

“ ↵

Ñ

˝ p��.�c.
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P C1rresst�uu

9Y�pCrrsssp
π

k

2
PK

t�P⇡
k

2 pcq |0RC1rresst�uuqqq
(by def. of ˝)

“ ↵

Ñ

˝ p��.�c.
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P C1rressp⇡
k

2 p 9Hrk2 fiÑ t�usqqu

9Y�pCrrsssp
π

k

2
PK

t�P⇡
k

2 pcq |0RC1rressp⇡
k

2 p 9Hrk2 fiÑt�usqquqqq
(proj.+const. expansion)

“ ↵

Ñ

˝ p��.�c.
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑ t�usqqu

9Y�pCrrsssp
π

k

2
PK

t�P⇡
k

2 pcq |0R⇡
k

2 pC1rressp 9Hrk2 fiÑt�usqquqqq
(by Lemma 23)

As a consequence, we can now apply the stronger fixed point
theorem:

↵

Ñ

pCrrwhile e do sssq
“ ↵

Ñ

plfpp��.�c.
π

k

2
PK

t� P ⇡

k

2 pcq |0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqqu

9Y�pCrrsssp
π

k

2
PK

t� P ⇡

k

2 pcq |0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqquqqqq
(by def. of C)

“ lfpp��.�c. t� P c | 0 P C1rresst�uu
Y �pCrrP rrsss

k

sst� P c | 0 R C1rresst�uuqq
(by above)

“ Crrwhile e do P rrsss
k

ss (by def. of C)
“ CrrP rrwhile e do sss

k

ss (by def. of P)

Substituting equals for equals we now obtain:

�c.

π

kPK
CrrP rrwhile e do sss

k

ssp⇡
k

pcqq

“ �c.

π

kPK
↵

Ñ

pCrrwhile e do sssqp⇡
k

pcqq
(by above equality)

“ �c.

π

kPK
p↵

k

˝ Crrwhile e do sss ˝ �

k

qp⇡
k

pcqq
(by def. of ↵

Ñ

)

“ �c.

π

kPK
↵

k

pCrrwhile e do sssp�
k

p⇡
k

pcqqqq (by def. of ˝)

“ �c.

π

kPK
↵

k

pCrrwhile e do sssp
π

k

1
PK

#
⇡

k

pcq k “ k

1

Store k ‰ k

1

qq
(by def. of �

k

)

“ �c.

π

kPK
↵

k

p
π

k

1
PK

p⇡
k

1 pCrrwhile e do sssqqp
#
⇡

k

pcq k “ k

1

Store k ‰ k

1

qq
(by def. of appl.)

“ �c.

π

kPK
p⇡

k

pCrrwhile e do sssqqp⇡
k

pcqq (by def. of ↵
k

)

“ �c. Crrwhile e do sssc (by def. of appl.)

“ Crrwhile e do sss (⌘-reduce)

as we desired.

27

Case #if ' s:

�c.

π

kPK
CrrP rr#if ' sss

k

ssp⇡
k

pcqq

“ �c.

π

kPK

#
CrrP rrsss

k

ssp⇡
k

pcqq k ('

Crrskipssp⇡
k

pcqq k * '

(by def. of P)

“ �c.

π

kPK

#
CrrP rrsss

k

ssp⇡
k

pcqq k ('

⇡

k

pcq k * '

(by def. of C)

“ �c.

π

kPK

#
⇡

k

pCrrssscq k ('

⇡

k

pcq k * '

(by IH)

“ �c.

π

kPK
t� P ⇡

k

pCrrssscq | k ('u Y t� P ⇡

k

pcq | k * 'u
(by def. of Y)

“ Crr#if ' sss (by def. of C)

28

I. Lifting of the approximate semantics
Lemma 25 (Approximate expression semantics lifting).

@e P Exp. B1rress “ �b.

π

kPK
B1rressp⇡

k

pbqq

Proof. Let e be given. We proceed by structural induction on e.

Case n :

�b.

π

kPK
B1rrn ssp⇡

k

pbqq

“ �b.

π

kPK
p�b. tnuqp⇡

k

pbqq (by def. of B1)

“ �b.

π

kPK
tnu (�-reduction)

“ B1rrn ss (by def. of B1)

Case x:

�b.

π

kPK
B1rrxssp⇡

k

pbqq

“ �b.

π

kPK
p�b. bpxqqp⇡

k

pbqq (by def. of B1)

“ �b.

π

kPK
⇡

k

pbqpxq (�-reduction)

“ B1rrxss (by def. of B1)

Case e0 ‘ e1:

�b.

π

kPK
B1rre0 ‘ e1ssp⇡

k

pbqq

“ �b.

π

kPK
p�b.B1rre0ssb 9‘ B1rre1ssbqp⇡

k

pbqq (by def. of B1)

“ �b.

π

kPK
B1rre0ssp⇡

k

pbqq 9‘ B1rre1ssp⇡
k

pbqq (�-reduction)

“ �b.

π

kPK
⇡

k

pB1rre0ssbq 9‘ ⇡

k

pB1rre1ssbq (by IH, twice)

“ B1rre0 ‘ e1ss (by def. of B1)

Theorem 26 (Approximate statement semantics lifting).

@s P Stm. Brrsss “ �b.

π

kPK
BrrP rrsss

k

ssp⇡
k

pbqq

Proof. Let s be given. We proceed by structural induction on s.

Case skip:

�b.

π

kPK
BrrP rrskipss

k

ssp⇡
k

pbqq

“ �b.

π

kPK
Brrskipssp⇡

k

pbqq (by def. of P)

“ �b.

π

kPK
⇡

k

pbq (by def. of B)

“ �b. b (shortcut proj.+constr.)

“ Brrskipss (by def. of B)

Case x := e:
�b.

π

kPK
BrrP rrx := ess

k

ssp⇡
k

pbqq

“ �b.

π

kPK
Brrx := essp⇡

k

pbqq (by def. of P)

“ �b.

π

kPK
p�b. brx fiÑ B1rressbsqp⇡

k

pbqq (by def. of B)

“ �b.

π

kPK
p⇡

k

pbqqrx fiÑ B1rressp⇡
k

pbqqs (�-reduction)

“ �b.

π

kPK
p⇡

k

pbqqrx fiÑ ⇡

k

pB1rressbqs (by Lemma 25)

“ Brrx := ess (by def. of B)

Case s0 ; s1:

�b.

π

kPK
BrrP rrs0 ; s1ss

k

ssp⇡
k

pbqq

“ �b.

π

kPK
BrrP rrs0ss

k

; P rrs1ss
k

ssp⇡
k

pbqq (by def. of P)

“ �b.

π

kPK
pBrrP rrs1ss

k

ss ˝ BrrP rrs0ss
k

ssqp⇡
k

pbqq
(by def. of B)

“ �b.

π

kPK
BrrP rrs1ss

k

sspBrrP rrs0ss
k

ssp⇡
k

pbqqq (by def. of ˝)

“ �b.

π

kPK
BrrP rrs1ss

k

ssp⇡
k

pBrrs0ssbqq (by IH)

“ �b.

π

kPK
⇡

k

pBrrs1sspBrrs0ssbqq (by IH)

“ �b.Brrs1sspBrrs0ssbq (shortcut proj.+constr.)

“ �b. pBrrs1ss ˝ Brrs0ssqb (by def. of ˝)

“ Brrs1ss ˝ Brrs0ss (⌘-reduction)

“ Brrs0 ; s1ss (by def. of B)

Case if e then s0 else s1:

�b.

π

kPK
BrrP rrif e then s0 else s1ss

k

ssp⇡
k

pbqq

“ �b.

π

kPK
Brrif e then P rrs0ss

k

else P rrs1ss
k

ssp⇡
k

pbqq
(by def. of P)

“ �b.

π

kPK
BrrP rrs0ss

k

ssp⇡
k

pbqq 9YBrrP rrs1ss
k

ssp⇡
k

pbqq
(by def. of B)

“ �b.

π

kPK
⇡

k

pBrrs0ssbq 9Y⇡

k

pBrrs1ssbq (by IH, twice)

“ �b.Brrs0ssb :Y Brrs1ssb (by def. of :Y)

“ Brrif e then s0 else s1ssb (by def. of B)

Case while e do s: We first define ↵

k

and �

k

as follows:

↵

k

: BK Ñ B
↵

k

pbq “ ⇡

k

pbq
�

k

: B Ñ BK

�

k

pbq “
π

k

1
PK

#
b k “ k

1

�x.Val k ‰ k

1

Together they constitute a k-specific abstraction from the lifted
approximate semantics level to the single-program approximate

29

semantics level:

xBK
,

:Ñy ´́ ´Ñ›Ñ–́ ´́ ´
↵k

�k xB, 9Ñy

Projections such as this are well-known to be Galois connections.
In particular it is a Galois insertion:

p↵
k

˝ �

k

qpbq

“ ⇡

k

p
π

k

1
PK

#
b k “ k

1

�x.Val k ‰ k

1

q (by def. of ↵
k

, �
k

)

“ b (�-reduction)

We now lift this Galois connection to monotone transfer func-
tions by a higher-order Galois connection:

↵

Ñ

: pBK m›Ñ BKq Ñ B m›Ñ B
↵

Ñ

p�q “ ↵

k

˝ � ˝ �

k

�

Ñ

: pB m›Ñ Bq Ñ BK m›Ñ BK

�

Ñ

p�q “ �

k

˝ � ˝ ↵

k

xBK m›Ñ BK
,

;Ñy ´́´́Ñ–́´́´
↵Ñ

�Ñ xB m›Ñ B, :Ñy

Now observe that ↵
k

induces a complete abstraction over the
body of the loop:

↵

Ñ

˝ p��.�b. b :Y �pBrrsssbqq
“ ��.↵

Ñ

p�b. b :Y �pBrrsssbqq (by def. of ˝)

“ ��.↵
k

˝ p�b. b :Y �pBrrsssbqq ˝ �

k

(by def. of ↵
Ñ

)

“ ��.↵
k

˝ p�b. b :Y �pBrrsssbqq ˝ p�b. �
k

pbqq
(⌘-expansion)

“ ��.�b. p↵
k

˝ p�b. b :Y �pBrrsssbqqqp�
k

pbqq
(by def. of ˝)

“ ��.�b. p�b.↵
k

pb :Y �pBrrsssbqqqp�
k

pbqq (by def. of ˝)

“ ��.�b.↵
k

p�
k

pbq :Y �pBrrsssp�
k

pbqqqq (�-reduction)

“ ��.�b.↵
k

p�
k

pbqq 9Y ↵

k

p�pBrrsssp�
k

pbqqqq (↵
k

a CJM)

“ ��.�b. b 9Y ↵

k

p�pBrrsssp�
k

pbqqqq (Galois insertion)

“ ��.�b. b 9Y ↵

k

p�p
π

k

1
PK

BrrP rrsss
k

1 ssp⇡
k

1 p�
k

pbqqqqq
(by IH)

“ ��.�b. b 9Y ↵

k

p
π

k

1
PK

⇡

k

1 p�qpBrrP rrsss
k

1 ssp⇡
k

1 p�
k

pbqqqqq
(by def. of appl.)

“ ��.�b. b 9Y ⇡

k

p�qpBrrP rrsss
k

ssp⇡
k

p�
k

pbqqqqq
(by def. of ↵

k

)

“ ��.�b. b 9Y ⇡

k

p�qpBrrP rrsss
k

ssp↵
k

p�
k

pbqqqq
(by def. of ↵

k

)

“ ��.�b. b 9Y ⇡

k

p�qpBrrP rrsss
k

ssbq (Galois insertion)

“ ��.�b. b 9Y ⇡

k

p
π

k

1
PK

⇡

k

1 p�q
#

pBrrP rrsss
k

ssbq k “ k

1

�x.Val k ‰ k

1

q
(identical k entries)

“ ��.�b. b 9Y ⇡

k

p�p
π

k

1
PK

#
pBrrP rrsss

k

ssbq k “ k

1

�x.Val k ‰ k

1

qq
(by def. of appl.)

“ ��.�b. b 9Y ⇡

k

p�p�
k

pBrrP rrsss
k

ssbqqq (by def. of �
k

)

“ ��.�b. b 9Y p⇡
k

˝ � ˝ �

k

qpBrrP rrsss
k

ssbq (by def. of ˝)

“ ��.�b. b 9Y p↵
k

˝ � ˝ �

k

qpBrrP rrsss
k

ssbq
(by def. of ↵

k

)

“ ��. p��.�b. b 9Y �pBrrP rrsss
k

ssbqqp↵
k

˝ � ˝ �

k

q
(�-expansion)

“ p��.�b. b 9Y �pBrrP rrsss
k

ssbqq ˝ p��.↵
k

˝ � ˝ �

k

q
(by def. of ˝)

“ p��.�b. b 9Y �pBrrP rrsss
k

ssbqq ˝ ↵

Ñ

(by def. of ↵
Ñ

)

As a consequence, we can now apply the stronger fixed point
theorem:

↵

Ñ

pBrrwhile e do sssq
“ ↵

Ñ

plfp��.�b. b :Y �pBrrsssbqq (by def. of B)
“ lfp��.�b. b 9Y �pBrrP rrsss

k

ssbq (by above)
“ Brrwhile e do P rrsss

k

ss (by def. of B)
“ BrrP rrwhile e do sss

k

ss (by def. of P)

30

Substituting equals for equals we now obtain:

�b.

π

kPK
BrrP rrwhile e do sss

k

ssp⇡
k

pbqq

“ �b.

π

kPK
↵

Ñ

pBrrwhile e do sssqp⇡
k

pbqq
(by above equality)

“ �b.

π

kPK
p↵

k

˝ Brrwhile e do sss ˝ �

k

qp⇡
k

pbqq
(by def. of ↵

Ñ

)

“ �b.

π

kPK
↵

k

pBrrwhile e do sssp�
k

p⇡
k

pbqqqq (by def. of ˝)

“ �b.

π

kPK
↵

k

pBrrwhile e do sssp
π

k

1
PK

#
⇡

k

pbq k “ k

1

�x.Val k ‰ k

1

qq
(by def. of �

k

)

“ �b.

π

kPK
↵

k

p
π

k

1
PK

p⇡
k

1 pBrrwhile e do sssqqp
#
⇡

k

pbq k “ k

1

�x.Val k ‰ k

1

qq
(by def. of appl.)

“ �b.

π

kPK
p⇡

k

pBrrwhile e do sssqqp⇡
k

pbqq (by def. of ↵
k

)

“ �b.Brrwhile e do sssb (by def. of appl.)

“ Brrwhile e do sss (⌘-reduce)

as we desired.

Case #if ' s:

�b.

π

kPK
BrrP rr#if ' sss

k

ssp⇡
k

pbqq

“ �b.

π

kPK

$
&

%
BrrP rrsss

k

ssp⇡
k

pbqq k ('

Brrskipssp⇡
k

pbqq k * '

(by def. of P)

“ �b.

π

kPK

$
&

%
BrrP rrsss

k

ssp⇡
k

pbqq k ('

⇡

k

pbq k * '

(by def. of B)

“ �b.

π

kPK

$
&

%
⇡

k

pBrrsssbq k ('

⇡

k

pbq k * '

(by IH)

“ Brr#if ' sss (by def. of B)

31

J. Soundness of family-based approximate
semantics

Lemma 27 (Soundness of family-based approximate expression
semantics).

@e, b. pC1rress ˝ liftp�BCqqb :Ñ B1rressb

where

↵CBpcq “ �x. t�pxq | � P cu
�BCpbq “ t� | @x : �pxq P bpxqu

liftp↵CBq “ �c.

π

kPK
↵CBp⇡

k

pcqq

liftp�BCq “ �b.

π

kPK
�BCp⇡

k

pbqq

Proof. Let e and b be given. We proceed by structural induction on
e.

Case n :

pC1rrn ss ˝ liftp�BCqqb
“ C1rrn sspliftp�BCqbq (by def. of ˝)

“ p�c.
π

kPK
tnuqpliftp�BCqbq (by def. of C1)

“
π

kPK
tnu (�-reduction)

“ B1rrn ssb (by def. of B1)

Case x:

pC1rrxss ˝ liftp�BCqqb
“ C1rrxsspliftp�BCqbq (by def. of ˝)

“ p�c.
π

kPK
t�pxq | � P ⇡

k

pcquqpliftp�BCqbq (by def. of C1)

“
π

kPK
t�pxq | � P ⇡

k

ppliftp�BCqbqqu (�-reduction)

“
π

kPK
t�pxq | � P ⇡

k

p
π

k

1
PK

�BCp⇡
k

1 pbqqqu
(by def. of liftp�BCq)

“
π

kPK
t�pxq | � P �BCp⇡

k

pbqqu (by def. of ⇡
k

)

“
π

kPK
t�pxq | � P t�1 | @y : �1pyq P ⇡

k

pbqpyquu
(by def. of �BC)

“
π

kPK
⇡

k

pbqpxq (simplify)

“ B1rrxssb

Case e0 ‘ e1:
pC1rre0 ‘ e1ss ˝ liftp�BCqqb
“ C1rre0 ‘ e1sspliftp�BCqbq (by def. of ˝)

“ p�c.
π

kPK
tv | � P ⇡

k

pcq ^

v P p⇡
k

pC1rre0ssp
π

k

1
PK

t�uqqq 9‘ p⇡
k

pC1rre1ssp
π

k

1
PK

t�uqqquq

pliftp�BCqbq
(by def. of C1)

“
π

kPK
tv | � P ⇡

k

pliftp�BCqbq ^

v P p⇡
k

pC1rre0ssp
π

k

1
PK

t�uqqq 9‘ p⇡
k

pC1rre1ssp
π

k

1
PK

t�uqqqu
(�-reduction)

:Ñ
π

kPK
tv | � P ⇡

k

pliftp�BCqbq ^

v P p⇡
k

pC1rre0ssp
π

k

1
PK

⇡

k

pliftp�BCqbqqqq 9‘ p⇡
k

pC1rre1ssp
π

k

1
PK

t�uqqqu
(monotonicity of 9‘ ,⇡

k

,C1)

:Ñ
π

kPK
p⇡

k

pC1rre0ssp
π

k

1
PK

⇡

k

pliftp�BCqbqqqq

9‘ p⇡
k

pC1rre1ssp
π

k

1
PK

⇡

k

pliftp�BCqbqqqq
(monotonicity of 9‘ ,⇡

k

,C1)

“
π

kPK
p⇡

k

pC1rre0ssp
π

k

1
PK

⇡

k

1 pliftp�BCqbqqqq

9‘ p⇡
k

pC1rre1ssp
π

k

1
PK

⇡

k

1 pliftp�BCqbqqqq
(identical k entries)

“
π

kPK
p⇡

k

pC1rre0sspliftp�BCqbqqq 9‘ p⇡
k

pC1rre1sspliftp�BCqbqqq
(shortcut constr.+proj.)

:Ñ
π

kPK
p⇡

k

pB1rre0ssbqq 9‘ p⇡
k

pC1rre1sspliftp�BCqbqqq
(IH, monotonicity of 9‘ ,⇡

k

,C1)

:Ñ
π

kPK
p⇡

k

pB1rre0ssbqq 9‘ p⇡
k

pB1rre1ssbqq
(IH, monotonicity of 9‘ ,⇡

k

,C1)

“ B1rre0 ‘ e1ssb (by def. of B1)

Theorem 28 (Soundness of family-based approximate statement
semantics).

@s, b. pliftp↵CBq ˝ Crrsss ˝ liftp�BCqqb :Ñ Brrsssb
Proof. Let s and b be given. We proceed by structural induction on
s.

Case skip:
pliftp↵CBq ˝ Crrskipss ˝ liftp�BCqqb
“ pliftp↵CBq ˝ p�c. cq ˝ liftp�BCqqb (by def. of C)

“ pliftp↵CBq ˝ liftp�BCqqb (simplify)
:Ñ b (liftp↵CBq ˝ liftp�BCq reductive)

“ Brrskipssb (by def. of B)

32

Case x := e:

pliftp↵CBq ˝ Crrx := ess ˝ liftp�BCqqb
“ liftp↵CBqpCrrx := esspliftp�BCqbqq (by def. of ˝)

“ liftp↵CBqp
π

kPK
t�rx fiÑ vs | � P ⇡

k

pliftp�BCqbq ^

v P ⇡

k

pC1rressp
π

k

1
PK

t�uqquq
(by def. of B)

:Ñ liftp↵CBqp
π

kPK
t�rx fiÑ vs | � P ⇡

k

pliftp�BCqbq ^

v P ⇡

k

pC1rressp
π

k

1
PK

⇡

k

pliftp�BCqbqqquq
(monotonicity of liftp↵CBq, ⇡

k

, C1)

“ liftp↵CBqp
π

kPK
t�rx fiÑ vs | � P ⇡

k

pliftp�BCqbq ^

v P ⇡

k

pC1rressp
π

k

1
PK

⇡

k

1 pliftp�BCqbqqquq
(identical k entries)

“ liftp↵CBqp
π

kPK
t�rx fiÑ vs | � P ⇡

k

pliftp�BCqbq ^

v P ⇡

k

pC1rresspliftp�BCqbqquq
(shortcut constr.+proj.)

:Ñ liftp↵CBqp
π

kPK
t�rx fiÑ vs | � P ⇡

k

pliftp�BCqbq ^ v P ⇡

k

pB1rressbquq
(by Lemma 27)

“
π

kPK
↵CBp⇡

k

p
π

k

1
PK

t�rx fiÑ vs | � P ⇡

k

1 pliftp�BCqbq

^ v P ⇡

k

1 pB1rressbquqq
(by def. of liftp↵CBq)

“
π

kPK
↵CBpt�rx fiÑ vs | � P ⇡

k

pliftp�BCqbq ^ v P ⇡

k

pB1rressbquq
(shortcut constr.+proj.)

“
π

kPK
�y. t�1pyq | �1 P t�rx fiÑ vs | � P ⇡

k

pliftp�BCqbq

^ v P ⇡

k

pB1rressbquu
(by def. of ↵CB)

“
π

kPK
�y. t�rx fiÑ vspyq | � P ⇡

k

pliftp�BCqbq ^ v P ⇡

k

pB1rressbqu
(simplify)

“
π

kPK
�y.

#tv | � P ⇡

k

pliftp�BCqbq ^ v P ⇡

k

pB1rressbqu x “ y

t�pyq | � P ⇡

k

pliftp�BCqbq ^ v P ⇡

k

pB1rressbqu x ‰ y

(by def. of ↵CB)

:Ñ
π

kPK
�y.

#
⇡

k

pB1rressbq x “ y

t�pyq | � P ⇡

k

pliftp�BCqbqu x ‰ y

(by def. of :Ñ)

“
π

kPK
�y.

#
⇡

k

pB1rressbq x “ y

t�pyq | � P ⇡

k

p±
k

1
PK �BCp⇡

k

1 pbqqqu x ‰ y

(by def. of liftp�BCq)

“
π

kPK
�y.

#
⇡

k

pB1rressbq x “ y

t�pyq | � P �BCp⇡
k

pbqqu x ‰ y

(shortcut constr.+proj.)

“
π

kPK
�y.

#
⇡

k

pB1rressbq x “ y

t�pyq | � P t�1 | @z : �1pzq P ⇡

k

pbqpzquu x ‰ y

(by def. of �BC)

“
π

kPK
�y.

#
⇡

k

pB1rressbq x “ y

t�pyq | @z : �pzq P ⇡

k

pbqpzqu x ‰ y

(simplify)

“
π

kPK
�y.

#
⇡

k

pB1rressbq x “ y

⇡

k

pbqpyq x ‰ y

(simplify)

“
π

kPK
p⇡

k

pbqqrx fiÑ ⇡

k

pB1rressbqs (by def. of rfiÑs)

“ Brrx := essb (by def. of B)

Case s0 ; s1:

pliftp↵CBq ˝ Crrs0 ; s1ss ˝ liftp�BCqqb
“ pliftp↵CBq ˝ Crrs1ss ˝ Crrs0ss ˝ liftp�BCqqb (by def. of C)
:Ñ pliftp↵CBq ˝ Crrs1ss ˝ liftp�BCq ˝ liftp↵CBq ˝ Crrs0ss ˝ liftp�BCqqb

(liftp�BCq ˝ liftp↵CBq extensive)
:Ñ pBrrs1ss ˝ Brrs0ssqb (by IH, twice)

“ Brrs0 ; s1ssb (by def. of B)

Case if e then s0 else s1:

pliftp↵CBq ˝ Crrif e then s0 else s1ss ˝ liftp�BCqqb
“ liftp↵CBqpCrrif e then s0 else s1sspliftp�BCqbqq

(by def. of ˝)
“ liftp↵CBq

p
π

kPK
⇡

k

pCrrs0ssp
π

k

2
PK

t� P ⇡

k

pliftp�BCqbq | 0 R ⇡

k

pC1rressp
π

k

1
PK

t�uqquqq

Y ⇡

k

pCrrs1ssp
π

k

2
PK

t� P ⇡

k

pliftp�BCqbq | 0 P ⇡

k

pC1rressp
π

k

1
PK

t�uqquqqq
(by def. of C)

:Ñ liftp↵CBqp
π

kPK
⇡

k

pCrrs0ssp
π

k

2
PK

⇡

k

pliftp�BCqbqqq

Y ⇡

k

pCrrs1ssp
π

k

2
PK

⇡

k

pliftp�BCqbqqqq
(monotonicity of liftp↵CBq, ⇡

k

, C)

“ liftp↵CBqp
π

kPK
⇡

k

pCrrs0ssp
π

k

2
PK

⇡

k

2 pliftp�BCqbqqq

Y ⇡

k

pCrrs1ssp
π

k

2
PK

⇡

k

2 pliftp�BCqbqqqq
(identical k entries)

“ liftp↵CBqp
π

kPK
⇡

k

pCrrs0sspliftp�BCqbqq Y ⇡

k

pCrrs1sspliftp�BCqbqqq
(simplify)

“ liftp↵CBqp
π

kPK
⇡

k

pCrrs0sspliftp�BCqbqq 9Y
π

kPK
⇡

k

pCrrs1sspliftp�BCqbqqq
(by def. of 9Y)

“ liftp↵CBqpCrrs0sspliftp�BCqbq 9Y Crrs1sspliftp�BCqbqq
(simplify)

“ liftp↵CBqpCrrs0sspliftp�BCqbqq :Y liftp↵CBqpCrrs1sspliftp�BCqbqq
(liftp↵CBq a CJM)

:Ñ Brrs0ssb :Y Brrs1ssb (by IH, twice)

“ Brrif e then s0 else s1ssb (by def. of B)

33

Case while e do s: In this case our higher-order Galois connection
reads:

↵

Ñ

p�q “ liftp↵CBq ˝ � ˝ liftp�BCq
�

Ñ

p�q “ liftp�BCq ˝ � ˝ liftp↵CBq

First observe that for any given monotone �

p↵
Ñ

˝ p��.�c.
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqqu

9Y�pCrrsssp
π

k

2
PK

t� P ⇡

k

2 pcq | 0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqquqqq

˝ �

Ñ

q�
“ ↵

Ñ

pp��.�c.
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqqu

9Y�pCrrsssp
π

k

2
PK

t� P ⇡

k

2 pcq | 0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqquqqq

p�
Ñ

p�qqq (by def. of ˝)

“ ↵

Ñ

p�c.
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqqu

9Y �

Ñ

p�qpCrrsssp
π

k

2
PK

t� P ⇡

k

2 pcq |0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqquqqq
(�-reduction)

:Ñ ↵

Ñ

p�c.
π

k

2
PK

⇡

k

2 pcq

9Y �

Ñ

p�qpCrrsssp
π

k

2
PK

t� P ⇡

k

2 pcq |0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqquqqq
(monotonicity of ↵

Ñ

)

:Ñ ↵

Ñ

p�c.
π

k

2
PK

⇡

k

2 pcq 9Y �

Ñ

p�qpCrrsssp
π

k

2
PK

⇡

k

2 pcqqqq
(monotonicity of ↵

Ñ

, �
Ñ

, �, C)

“ ↵

Ñ

p�c. c 9Y �

Ñ

p�qpCrrssspcqqq
(shortcut constr.+proj., twice)

“ liftp↵CBq ˝ p�c. c 9Y �

Ñ

p�qpCrrssspcqqq ˝ liftp�BCq
(by def. of ↵

Ñ

)

“ �b. pliftp↵CBq ˝ p�c. c 9Y �

Ñ

p�qpCrrssspcqqq ˝ liftp�BCqqb
(⌘-expansion)

“ �b. liftp↵CBqpp�c. c 9Y �

Ñ

p�qpCrrssspcqqqpliftp�BCqbqq
(by def. of ˝)

“ �b. liftp↵CBqpliftp�BCqb 9Y �

Ñ

p�qpCrrssspliftp�BCqbqqq
(�-reduction)

“ �b. liftp↵CBqpliftp�BCqbq :Y liftp↵CBqp�
Ñ

p�qpCrrssspliftp�BCqbqqq
(liftp↵CBq a CJM)

:Ñ �b. b :Y liftp↵CBqp�
Ñ

p�qpCrrssspliftp�BCqbqqq
(liftp↵CBq ˝ liftp�BCq reductive)

“ �b. b :Y liftp↵CBqppliftp�BCq ˝ � ˝ liftp↵CBqqpCrrssspliftp�BCqbqqq
(by def. of �

Ñ

)
:Ñ �b. b :Y p� ˝ liftp↵CBqqpCrrssspliftp�BCqbqq

(liftp↵CBq ˝ liftp�BCq reductive)
:Ñ �b. b :Y �pBrrsssbq (IH, � monotone)

“ p��.�b. b :Y �pBrrsssbqq� (⌘-expand)

We can now utilize that observation in the following calculation.

pliftp↵CBq ˝ Crrwhile e do sss ˝ liftp�BCqqb
“ ↵

Ñ

pCrrwhile e do sssqb (by def. of ↵
Ñ

)
“ ↵

Ñ

plfpp��.�c.
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑ t�usqqu

9Y�pCrrsssp
π

k

2
PK

t� P ⇡

k

2 pcq | 0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑ t�usqquqqqq

b (by def. of C)
:Ñ plfp↵

Ñ

˝
p��.�c.

π

k

2
PK

t� P ⇡

k

2 pcq | 0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑ t�usqqu

9Y�pCrrsssp
π

k

2
PK

t� P ⇡

k

2 pcq | 0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑ t�usqquqqq

˝ �

Ñ

qb (by fixed point transfer theorem)
:Ñ plfp��.�b. b :Y �pBrrsssbqqb

(by fixed point transfer theorem + above)

“ Brrwhile e do essb (by def. of B)

Case #if ' s:

pliftp↵CBq ˝ Crr#if ' sss ˝ liftp�BCqqb
“ liftp↵CBqpCrr#if ' ssspliftp�BCqbqq (by def. of ˝)

“ liftp↵CBqp
π

kPK

#
⇡

k

pCrrssspliftp�BCqbqq k ('

⇡

k

pliftp�BCqbq k * '

q
(by def. of C)

“ liftp↵CBqp
π

kPK

#
⇡

k

pCrrssspliftp�BCqbqq k ('

⇡

k

p±
k

1
PK �BCp⇡

k

1 pbqqq k * '

q
(by def. of liftp�BCq)

“ liftp↵CBqp
π

kPK

#
⇡

k

pCrrssspliftp�BCqbqq k ('

�BCp⇡
k

pbqq k * '

q
(shortcut constr.+proj.)

“
π

kPK

#
↵CBp⇡

k

pCrrssspliftp�BCqbqqq k ('

↵CBp�BCp⇡
k

pbqqq k * '

(by def. of liftp↵CBq)

:Ñ
π

kPK

#
↵CBp⇡

k

pCrrssspliftp�BCqbqqq k ('

⇡

k

pbq k * '

(↵CB ˝ �BC reductive)

:Ñ
π

kPK

#
↵CBp⇡

k

pliftp�BCq ˝ liftp↵CBq ˝ Crrssspliftp�BCqbqqq k ('

⇡

k

pbq k * '

(liftp�BCq ˝ liftp↵CBq extensive)

:Ñ
π

kPK

#
↵CBp⇡

k

pliftp�BCqpBrrsssbqqq k ('

⇡

k

pbq k * '

(by IH, ↵CB, liftp�BCq monotone)

“
π

kPK

#
↵CBp⇡

k

p±
k

1
PK �BCp⇡

k

1 pBrrsssbqqqq k ('

⇡

k

pbq k * '

(by def. of liftp�BCq)

34

“
π

kPK

#
↵CBp�BCp⇡

k

pBrrsssbqqq k ('

⇡

k

pbq k * '

(shortcut constr.+proj.)

:Ñ
π

kPK

#
⇡

k

pBrrsssbq k ('

⇡

k

pbq k * '

(↵CB ˝ �BC reductive)

“ Brr#if ' sssb (by def. of B)

35

K. Lifting of the constant propagation analyses
Lemma 29 (Lifting of expression analysis).

@e P Exp. A1rress “ �a.

π

kPK
A1rressp⇡

k

paqq

Proof. Let e be given. We proceed by structural induction on e.

Case n :
�a.

π

kPK
A1rrn ssp⇡

k

paqq

“ �a.

π

kPK
p�a. nqp⇡

k

paqq (by def. of A1)

“ �a.

π

kPK
n (�-reduction)

“ A1rrn ss (by def. of A1)

Case x:
�a.

π

kPK
A1rrxssp⇡

k

paqq

“ �a.

π

kPK
p�a. apxqqp⇡

k

paqq (by def. of A1)

“ �a.

π

kPK
⇡

k

paqpxq (�-reduction)

“ A1rrxss (by def. of A1)

Case e0 ‘ e1:

�a.

π

kPK
A1rre0 ‘ e1ssp⇡

k

paqq

“ �a.

π

kPK
p�a.A1rre0ssa p‘ A1rre1ssaqp⇡

k

paqq
(by def. of A1)

“ �a.

π

kPK
A1rre0ssp⇡

k

paqq p‘ A1rre1ssp⇡
k

paqq (�-reduction)

“ �a.

π

kPK
⇡

k

pA1rre0ssaq p‘ ⇡

k

pA1rre1ssaq (by IH, twice)

“ A1rre0 ‘ e1ss (by def. of A1)

K.1 Proof of Theorem 6

@s P Stm. Arrsss “ �a.

π

kPK
ArrP rrsss

k

ssp⇡
k

paqq

Proof. Let s be given. We proceed by structural induction on s.

Case skip:

�a.

π

kPK
ArrP rrskipss

k

ssp⇡
k

paqq

“ �a.

π

kPK
Arrskipssp⇡

k

paqq (by def. of P)

“ �a.

π

kPK
p�a. aqp⇡

k

paqq (by def. of A)

“ �a.

π

kPK
⇡

k

paq (�-reduction)

“ �a. a (shortcut proj. + constr.)

“ Arrskipss (by def. of A)

Case x := e:

�a.

π

kPK
ArrP rrx := ess

k

ssp⇡
k

paqq

“ �a.

π

kPK
Arrx := essp⇡

k

paqq (by def. of P)

“ �a.

π

kPK
p�a. arx fiÑ A1rressasqp⇡

k

paqq (by def. of A)

“ �a.

π

kPK
p⇡

k

paqqrx fiÑ A1rressp⇡
k

paqqs (�-reduction)

“ �a.

π

kPK
p⇡

k

paqqrx fiÑ ⇡

k

pA1rressaqs (by Lemma 29)

“ Arrx := ess (by def. of A)

Case s0 ; s1:

�a.

π

kPK
ArrP rrs0 ; s1ss

k

ssp⇡
k

paqq

“ �a.

π

kPK
ArrP rrs0ss

k

; P rrs1ss
k

ssp⇡
k

paqq (by def. of P)

“ �a.

π

kPK
pArrP rrs1ss

k

ss ˝ ArrP rrs0ss
k

ssqp⇡
k

paqq
(by def. of A)

“ �a.

π

kPK
ArrP rrs1ss

k

sspArrP rrs0ss
k

ssp⇡
k

paqqq
(by def. of ˝)

“ �a.

π

kPK
ArrP rrs1ss

k

ssp⇡
k

pArrs0ssaqq (by IH)

“ �a.

π

kPK
⇡

k

pArrs1sspArrs0ssaqq (by IH)

“ �a.Arrs1sspArrs0ssaq (shortcut proj. + constr.)

“ �a. pArrs1ss ˝ Arrs0ssqa (by def. of ˝)

“ Arrs1ss ˝ Arrs0ss (⌘-reduce)

“ Arrs0 ; s1ss (by def. of A)

Case if e then s0 else s1:

�a.

π

kPK
ArrP rrif e then s0 else s1ss

k

ssp⇡
k

paqq

“ �a.

π

kPK
Arrif e then P rrs0ss

k

else P rrs1ss
k

ssp⇡
k

paqq
(by def. of P)

“ �a.

π

kPK
pArrP rrs0ss

k

ss :\ ArrP rrs1ss
k

ssqp⇡
k

paqq
(by def. of A)

“ �a.

π

kPK
pArrP rrs0ss

k

ssp⇡
k

paqqq 9\ pArrP rrs1ss
k

ssp⇡
k

paqqq
(by def. of :\)

“ �a.

π

kPK
p⇡

k

pArrs0ssaqq 9\ p⇡
k

pArrs1ssaqq (by IH, twice)

“ �a.Arrs0ssa :\ Arrs1ssa (by def. of :\)

“ Arrs0ss ;\ Arrs1ss (⌘-reduce)

“ Arrif e then s0 else s1ss (by def. of A)

36

Case while e do s: We first define ↵

k

and �

k

as follows:

↵

k

: AK Ñ A
↵

k

paq “ ⇡

k

paq
�

k

: A Ñ AK

�

k

paq “
π

k

1
PK

#
a k “ k

1

9J k ‰ k

1

Together they constitute a k-specific abstraction from the lifted
analysis level to the single-program analysis level:

xAK
,

:Ñy ´́ ´Ñ›Ñ–́ ´́ ´
↵k

�k xA, 9Ñy

Projections such as this are well-known to be Galois connections.
In particular it is a Galois insertion:

p↵
k

˝ �

k

qpaq

“ ⇡

k

p
π

k

1
PK

#
a k “ k

1

9J k ‰ k

1

q (by def. of ↵
k

, �
k

)

“ a (�-reduction)

We now lift this Galois connection to monotone transfer func-
tions by a higher-order Galois connection:

↵

Ñ

: pAK m›Ñ AKq Ñ A m›Ñ A
↵

Ñ

p�q “ ↵

k

˝ � ˝ �

k

�

Ñ

: pA m›Ñ Aq Ñ AK m›Ñ AK

�

Ñ

p�q “ �

k

˝ � ˝ ↵

k

xAK m›Ñ AK
,

;Ñy ´́´́Ñ–́´́´
↵Ñ

�Ñ xA m›Ñ A, :Ñy

Now observe that ↵
k

induces a complete abstraction over the
body of the loop:

↵

Ñ

˝ p��.�a. a :\ �pArrsssaqq
“ ��.↵

Ñ

p�a. a :\ �pArrsssaqq (by def. of ˝)

“ ��.↵
k

˝ p�a. a :\ �pArrsssaqq ˝ �

k

(by def. of ↵
Ñ

)

“ ��.↵
k

˝ p�a. a :\ �pArrsssaqq ˝ p�a. �
k

paqq
(⌘-expansion)

“ ��.�a. p↵
k

˝ p�a. a :\ �pArrsssaqqqp�
k

paqq
(by def. of ˝)

“ ��.�a. p�a.↵
k

pa :\ �pArrsssaqqqp�
k

paqq (by def. of ˝)

“ ��.�a.↵
k

p�
k

paq :\ �pArrsssp�
k

paqqqq (�-reduction)

“ ��.�a.↵
k

p�
k

paqq 9\ ↵

k

p�pArrsssp�
k

paqqqq
(↵

k

a CJM)

“ ��.�a. a 9\ ↵

k

p�pArrsssp�
k

paqqqq (Galois insertion)

“ ��.�a. a 9\ ↵

k

p�p
π

k

1
PK

ArrP rrsss
k

1 ssp⇡
k

1 p�
k

paqqqqq
(by IH)

“ ��.�a. a 9\ ↵

k

p
π

k

1
PK

⇡

k

1 p�qpArrP rrsss
k

1 ssp⇡
k

1 p�
k

paqqqqq
(by def. of appl.)

“ ��.�a. a 9\ ⇡

k

p�qpArrP rrsss
k

ssp⇡
k

p�
k

paqqqqq
(by def. of ↵

k

)

“ ��.�a. a 9\ ⇡

k

p�qpArrP rrsss
k

ssp↵
k

p�
k

paqqqq
(by def. of ↵

k

)

“ ��.�a. a 9\ ⇡

k

p�qpArrP rrsss
k

ssaq (Galois insertion)

“ ��.�a. a 9\ ⇡

k

p
π

k

1
PK

⇡

k

1 p�q
#

pArrP rrsss
k

ssaq k “ k

1

9J k ‰ k

1

q
(identical k entries)

“ ��.�a. a 9\ ⇡

k

p�p
π

k

1
PK

#
pArrP rrsss

k

ssaq k “ k

1

9J k ‰ k

1

qq
(by def. of appl.)

“ ��.�a. a 9\ ⇡

k

p�p�
k

pArrP rrsss
k

ssaqqq (by def. of �
k

)

“ ��.�a. a 9\ p⇡
k

˝ � ˝ �

k

qpArrP rrsss
k

ssaq (by def. of ˝)

“ ��.�a. a 9\ p↵
k

˝ � ˝ �

k

qpArrP rrsss
k

ssaq
(by def. of ↵

k

)

“ ��. p��.�a. a 9\ �pArrP rrsss
k

ssaqqp↵
k

˝ � ˝ �

k

q
(�-expansion)

“ p��.�a. a 9\ �pArrP rrsss
k

ssaqq ˝ p��.↵
k

˝ � ˝ �

k

q
(by def. of ˝)

“ p��.�a. a 9\ �pArrP rrsss
k

ssaqq ˝ ↵

Ñ

(by def. of ↵
Ñ

)

As a consequence, we can now apply the stronger fixed point
theorem:

↵

Ñ

pArrwhile e do sssq
“ ↵

Ñ

plfp��.�a. a :\ �pArrsssaqq (by def. of A)
“ lfp��.�a. a 9\ �pArrP rrsss

k

ssaq (by above)
“ Arrwhile e do P rrsss

k

ss (by def. of A)
“ ArrP rrwhile e do sss

k

ss (by def. of P)

37

Substituting equals for equals we now obtain:

�a.

π

kPK
ArrP rrwhile e do sss

k

ssp⇡
k

paqq

“ �a.

π

kPK
↵

Ñ

pArrwhile e do sssqp⇡
k

paqq
(by above equality)

“ �a.

π

kPK
p↵

k

˝ Arrwhile e do sss ˝ �

k

qp⇡
k

paqq
(by def. of ↵

Ñ

)

“ �a.

π

kPK
↵

k

pArrwhile e do sssp�
k

p⇡
k

paqqqq
(by def. of ˝)

“ �a.

π

kPK
↵

k

˜
Arrwhile e do sss

˜
π

k

1
PK

#
⇡

k

paq k “ k

1

9J k ‰ k

1

¸¸

(by def. of �
k

)

“ �a.

π

kPK
↵

k

˜
π

k

1
PK

p⇡
k

1 pArrwhile e do sssqq
˜#

⇡

k

paq k “ k

1

9J k ‰ k

1

¸¸

(by def. of appl.)

“ �a.

π

kPK
p⇡

k

pArrwhile e do sssqqp⇡
k

paqq (by def. of ↵
k

)

“ �a.Arrwhile e do sssa (by def. of appl.)

“ Arrwhile e do sss (⌘-reduce)

as we desired.

Case #if ' s:

�a.

π

kPK
ArrP rr#if ' sss

k

ssp⇡
k

paqq

“ �a.

π

kPK

$
&

%
ArrP rrsss

k

ssp⇡
k

paqq k ('

Arrskipssp⇡
k

paqq k * '

(by def. of P)

“ �a.

π

kPK

$
&

%
ArrP rrsss

k

ssp⇡
k

paqq k ('

⇡

k

paq k * '

(by def. of A)

“ �a.

π

kPK

$
&

%
⇡

k

pArrsssaq k ('

⇡

k

paq k * '

(by IH)

“ Arr#if ' sss (by def. of A)

38

L. Soundness of family-based analyses
Lemma 30 (Soundness of family-based expression analysis).

@e, a. pliftp↵̂q ˝ B1rress ˝ liftp�ABqqa 9Ñ A1rressa
where

↵BApbq “ �x. ↵̂pbpxqq
�ABpaq “ �x. �̂papxqq
liftp↵̂q “ �v.

π

kPK
↵̂p⇡

k

pvqq

liftp�̂q “ �v.

π

kPK
�̂p⇡

k

pvqq

liftp↵BAq “ �b.

π

kPK
↵BAp⇡

k

pbqq

liftp�ABq “ �a.

π

kPK
�ABp⇡

k

paqq

Proof. Let e, a be given. We proceed by structural induction on e.

Case n :

pliftp↵̂q ˝ B1rrn ss ˝ liftp�ABqqa
“ liftp↵̂qpB1rrn sspliftp�ABqaqq (by def. of ˝)

“ liftp↵̂qp
π

kPK
tnuq (by def. of B1)

“
π

kPK
↵̂ptnuq (by def. of liftp↵BAq)

“
π

kPK
n (by def. of ↵̂)

“ A1rrn ssa (by def. of A1)

Case x:

pliftp↵̂q ˝ B1rrxss ˝ liftp�ABqqa
“ liftp↵̂qpB1rrxsspliftp�ABqaqq (by def. of ˝)

“ liftp↵̂qp
π

kPK
⇡

k

pliftp�ABqaqpxqq (by def. of B1)

“ liftp↵̂qp
π

kPK
⇡

k

p
π

k

1
PK

�ABp⇡
k

1 paqqqpxqq
(by def. of liftp�ABq)

“ liftp↵̂qp
π

kPK
�ABp⇡

k

paqqpxqq (shortcut constr.+proj.)

“ liftp↵̂qp
π

kPK
�̂p⇡

k

paqpxqqq (by def. of �AB)

“
π

kPK
↵̂p�̂p⇡

k

paqpxqqq (by def. of liftp↵BAq)

9Ñ
π

kPK
⇡

k

paqpxq (↵̂ ˝ �̂ reductive)

“ A1rrxssa (by def. of A1)

Case e0 ‘ e1:

pliftp↵̂q ˝ B1rre0 ‘ e1ss ˝ liftp�ABqqa
“ liftp↵̂qpB1rre0 ‘ e1sspliftp�ABqaqq (by def. of ˝)

“ liftp↵̂qp
π

kPK
p⇡

k

pB1rre0sspliftp�ABqaqqq

9‘ p⇡
k

pB1rre1sspliftp�ABqaqqqq (by def. of B1)

9Ñ liftp↵̂qp
π

kPK
p⇡

k

pliftp�̂q ˝ liftp↵̂q ˝ B1rre0sspliftp�ABqaqqq

9‘ p⇡
k

pliftp�̂q ˝ liftp↵̂q ˝ B1rre1sspliftp�ABqaqqqq
(liftp�̂q ˝ liftp↵̂q extensive, liftp↵̂q monotone)

9Ñ liftp↵̂qp
π

kPK
p⇡

k

pliftp�̂q ˝ A1rre0sspaqqq

9‘ p⇡
k

pliftp�̂q ˝ A1rre1sspaqqqq
(by IH, liftp�̂q, liftp↵̂q monotone)

“ liftp↵̂qp
π

kPK
�̂p⇡

k

pA1rre0sspaqqq 9‘ �̂p⇡
k

pA1rre1sspaqqqq
(by def. of liftp�̂q)

“
π

kPK
↵̂p�̂p⇡

k

pA1rre0sspaqqq 9‘ �̂p⇡
k

pA1rre1sspaqqqq
(by def. of liftp↵̂q)

9Ñ
π

kPK
⇡

k

pA1rre0sspaqq p‘ ⇡

k

pA1rre1sspaqq (by def. of p‘)

“ A1rre0 ‘ e1ssa (by def. of A1)

Theorem 31 (Soundness of family-based statement analysis).

@s, a. pliftp↵BAq ˝ Brrsss ˝ liftp�ABqqa :Ñ Arrsssa

Proof. Let s, a be given. We proceed by structural induction on s.

Case skip:

pliftp↵BAq ˝ Brrskipss ˝ liftp�ABqqa
“ pliftp↵BAq ˝ p�b. bq ˝ liftp�ABqqa (by def. of B)
“ pliftp↵BAq ˝ liftp�ABqqa (simplify)
:Ñ a (liftp↵BAq ˝ liftp�ABq is reductive)

“ Arrskipssa (by def. of A)

39

Case x := e:

pliftp↵BAq ˝ Brrx := ess ˝ liftp�ABqqa
“ liftp↵BAqpBrrx := esspliftp�ABqaqq (by def. of ˝)

“ liftp↵BAqp
π

kPK
p⇡

k

pliftp�ABqaqqrx fiÑ ⇡

k

pB1rresspliftp�ABqaqqsq
(by def. of B)

“
π

kPK
↵BApp⇡

k

pliftp�ABqaqqrx fiÑ ⇡

k

pB1rresspliftp�ABqaqqsq
(by def. of liftp↵BAq)

“
π

kPK
↵BApp�ABp⇡

k

paqqqrx fiÑ ⇡

k

pB1rresspliftp�ABqaqqsq
(by def. of liftp�ABq)

“
π

kPK
pp↵BAp�ABp⇡

k

paqqqqrx fiÑ ↵̂p⇡
k

pB1rresspliftp�ABqaqqqsq
(by def. of ↵BA)

:Ñ
π

kPK
p⇡

k

paqrx fiÑ ↵̂p⇡
k

pB1rresspliftp�ABqaqqqsq
(↵BA ˝ �AB reductive)

“
π

kPK
p⇡

k

paqrx fiÑ ⇡

k

pliftp↵̂qpB1rresspliftp�ABqaqqqsq
(identical k entries)

:Ñ
π

kPK
p⇡

k

paqrx fiÑ ⇡

k

pA1rressaqsq (By Lemma 30)

“ Arrx := essa (by def. of A)

Case s0 ; s1:

pliftp↵BAq ˝ Brrs0 ; s1ss ˝ liftp�ABqqa
“ pliftp↵BAq ˝ Brrs1ss ˝ Brrs0ss ˝ liftp�ABqqa (by def. of B)
:Ñ pliftp↵BAq ˝ Brrs1ss ˝ liftp�ABq ˝ liftp↵BAq ˝ Brrs0ss ˝ liftp�ABqqa

(liftp�ABq ˝ liftp↵BAq extensive)
:Ñ pArrs1ss ˝ Arrs0ssqa (by IH, twice)

“ Arrs0 ; s1ssa (by def. of A)

Case if e then s0 else s1:

pliftp↵BAq ˝ Brrif e then s0 else s1ss ˝ liftp�ABqqa
“ liftp↵BAqpBrrif e then s0 else s1sspliftp�ABqaqq

(by def. of ˝)

“ liftp↵BAqpBrrs0sspliftp�ABqaq :Y Brrs1sspliftp�ABqaqq
(by def. of B)

“ liftp↵BAqpBrrs0sspliftp�ABqaqq :\ liftp↵BAqpBrrs1sspliftp�ABqaqq
(liftp↵BAq a CJM)

:Ñ Arrs0ssa :\ Arrs1ssa (by IH, twice)

“ Arrif e then s0 else s1ssa (by def. of A)

Case while e do s: In this case our higher-order Galois connection
reads:

↵

Ñ

p�q “ liftp↵BAq ˝ � ˝ liftp�ABq
�

Ñ

p�q “ liftp�ABq ˝ � ˝ liftp↵BAq

First observe that for any given monotone �

p↵
Ñ

˝ p��.�b. b :Y �pBrrsssbqq ˝ �

Ñ

q�
“ ↵

Ñ

pp��.�b. b :Y �pBrrsssbqqp�
Ñ

p�qqq (by def. of ˝)

“ ↵

Ñ

p�b. b :Y �

Ñ

p�qpBrrsssbqq (�-reduction)

“ liftp↵BAq ˝ p�b. b :Y �

Ñ

p�qpBrrsssbqq ˝ liftp�ABq
(by def. of ↵

Ñ

)

“ �a. pliftp↵BAq ˝ p�b. b :Y �

Ñ

p�qpBrrsssbqq ˝ liftp�ABqqa
(⌘-expansion)

“ �a. liftp↵BAqp�b. b :Y �

Ñ

p�qpBrrsssbqqpliftp�ABqaq
(by def. of ˝)

“ �a. liftp↵BAqpliftp�ABqa :Y �

Ñ

p�qpBrrssspliftp�ABqaqqq
(�-reduction)

“ �a. liftp↵BAqpliftp�ABqaq :\ liftp↵BAqp�
Ñ

p�qpBrrssspliftp�ABqaqqq
(liftp↵BAq a CJM)

;Ñ �a. a :\ liftp↵BAqp�
Ñ

p�qpBrrssspliftp�ABqaqqq
(liftp↵BAq ˝ liftp�ABq reductive)

“ �a. a :\ liftp↵BAqppliftp�ABq ˝ � ˝ liftp↵BAqqpBrrssspliftp�ABqaqqq
(by def. of �

Ñ

)
;Ñ �a. a :\ p� ˝ liftp↵BAqqpBrrssspliftp�ABqaqq

(liftp↵BAq ˝ liftp�ABq reductive)
;Ñ �a. a :\ �pArrsssaq (by IH, � monotone)

Now we can utilize that observation

pliftp↵BAq ˝ Brrwhile e do sss ˝ liftp�ABqqa
“ ↵

Ñ

pBrrwhile e do sssqa (by def. of ↵
Ñ

)

“ ↵

Ñ

plfp��.�b. b :Y �pBrrsssbqqa (by def. of B)
:Ñ plfp↵

Ñ

˝ p��.�b. b :Y �pBrrsssbqq ˝ �

Ñ

qa
(by the fixed point transfer theorem)

:Ñ plfpp�a. a :\ �pArrsssaqqqa
(by the fixed point transfer theorem, above)

“ Arrwhile e do sssa (by def. of A)

40

Case #if ' s:
pliftp↵BAq ˝ Brr#if ' sss ˝ liftp�ABqqa
“ liftp↵BAqpBrr#if ' ssspliftp�ABqaqq (by def. of ˝)

“ liftp↵BAqp
π

kPK

$
&

%
⇡

k

pBrrssspliftp�ABqaqq k ('

⇡

k

pliftp�ABqaq k * '

q

(by def. of B)

“
π

kPK

$
&

%
↵BAp⇡

k

pBrrssspliftp�ABqaqqq k ('

↵BAp⇡
k

pliftp�ABqaqq k * '

(by def. of liftp↵BAq)

“
π

kPK

$
&

%
↵BAp⇡

k

pBrrssspliftp�ABqaqqq k ('

↵BAp�ABp⇡
k

paqqq k * '

(by def. of liftp�ABq)

:Ñ
π

kPK

$
&

%
↵BAp⇡

k

pBrrssspliftp�ABqaqqq k ('

⇡

k

paq k * '

(↵BA ˝ �AB reductive)

“
π

kPK

$
&

%
⇡

k

pliftp↵BAqpBrrssspliftp�ABqaqqq k ('

⇡

k

paq k * '

(identical k entries)

:Ñ
π

kPK

$
&

%
⇡

k

pArrsssaq k ('

⇡

k

paq k * '

(by IH)

“ Arr#if ' sssa (by def. of A)

41

M. Family-based monotonicity proofs
Lemma 32 (C1 monotone). @e, c, c1

. c

9Ñ c

1 ùñ C1rressc 9Ñ C1rressc1

Proof. Let e, c 9Ñ c

1 be given.

C1rressc
“

π

kPK
C1rressp⇡

k

pcqq (by def. of C1)

9Ñ
π

kPK
C1rressp⇡

k

pc1qq (by assumption, monotonicity of C1)

“ C1rressc1 (by def. of C1)

Theorem 33 (C monotone). @s, c, c1

. c

9Ñ c

1 ùñ Crrsssc 9Ñ Crrsssc1

Proof. Let s, c 9Ñ c

1 be given.

Crrsssc
“

π

kPK
CrrP rrsss

k

ssp⇡
k

pcqq (by def. of C)

9Ñ
π

kPK
CrrP rrsss

k

ssp⇡
k

pc1qq (by assumption, monotonicity of C)

“ Crrsssc1 (by def. of C)

We consider in particular the fixed point definition of while:

Crrwhile e do sss “
lfpp��.�c.

π

k

2
PK

t� P ⇡

k

2 pcq | 0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqqu

9Y�pCrrsssp
π

k

2
PK

t� P ⇡

k

2 pcq | 0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqquqqq

For shorthand notation, we let

F “ ��.�c.
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqqu

9Y�pCrrsssp
π

k

2
PK

t� P ⇡

k

2 pcq | 0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqquqq
.
For a monotone �, F� is monotone: Let c 9Ñ c

1 be given:

F�c

“
π

k

2
PK

t� P ⇡

k

2 pcq | 0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqqu

9Y�pCrrsssp
π

k

2
PK

t� P ⇡

k

2 pcq | 0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqquqq
(by def. of F)

9Ñ
π

k

2
PK

t� P ⇡

k

2 pc1q | 0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqqu

9Y�pCrrsssp
π

k

2
PK

t� P ⇡

k

2 pcq | 0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqquqq
(by assumption, def. of Y)

9Ñ
π

k

2
PK

t� P ⇡

k

2 pc1q | 0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqqu

9Y�pCrrsssp
π

k

2
PK

t� P ⇡

k

2 pc1q | 0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqquqq
(monotonicity of C and �)

“ F�c1 (by def. of F)

As a result, F can be seen as an operator over the domain of
monotone functions.

Now we argue that F is itself monotone. Let monotone functions
� :Ñ �

1 be given.

F�

“ �c.

π

k

2
PK

t� P ⇡

k

2 pcq | 0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqqu

9Y�pCrrsssp
π

k

2
PK

t� P ⇡

k

2 pcq | 0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqquqq
(by def. of F)

:Ñ �c.

π

k

2
PK

t� P ⇡

k

2 pcq | 0 P ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqqu

9Y�
1pCrrsssp

π

k

2
PK

t� P ⇡

k

2 pcq | 0 R ⇡

k

2 pC1rressp 9Hrk2 fiÑt�usqquqq
(by assumption)

“ F�
1 (by def. of F)

This ensures that the while-case is well defined by Tarski’s fixed
point theorem (a monotone operator over the complete lattice of
monotone functions). Since the fixed point is itself a member of the
lattice of monotone functions, we thereby confirm monotonicity of
the while rule.

Lemma 34 (B1 monotone).

@e, b, b1

. b

:Ñ b

1 ùñ B1rressb :Ñ B1rressb1

Proof. Let e and b

:Ñ b

1 be given.

B1rressb
“

π

kPK
B1rressp⇡

k

pbqq (by def. of B1)

:Ñ
π

kPK
B1rressp⇡

k

pb1qq (by assumption, monotonicity of B1)

“ B1rressb1 (by def. of B1)

Theorem 35 (B monotone).

@s, b, b1

. b

:Ñ b

1 ùñ Brrsssb :Ñ Brrsssb1

Proof. Let s and b

:Ñ b

1 be given.

Brrsssb
“

π

kPK
BrrP rrsss

k

ssp⇡
k

pbqq (by def. of B)

:Ñ
π

kPK
BrrP rrsss

k

ssp⇡
k

pb1qq (by Theorem 20)

“ Brrsssb1 (by def. of B)

Again we consider in particular the fixed point definition of while:

Brrwhile e do sss “ lfp��.�b. b :Y �pBrrsssbq
For shorthand notation, we let F “ ��.�b. b :Y �pBrrsssbq.
For a monotone �, F� is monotone: Let b :Ñ b

1 be given:

F�b

“ b :Y �pBrrsssbq (by def. of F)

:Ñ b

1 :Y �pBrrsssbq (by def. of :Y)

:Ñ b

1 :Y �pBrrsssb1q (monotonicity of B and �)

“ F�b
1 (by def. of F)

42

As a result, F can be seen as an operator over the domain of
monotone functions.

Now we argue that F is itself monotone. Let monotone functions
� :Ñ �

1 be given.

F�

“ �b. b :Y �pBrrsssbq (by def. of F)

;Ñ �b. b :Y �
1pBrrsssbq (by assumption)

“ F�
1 (by def. of F)

Again this ensures that the while-case is well defined by Tarski’s
fixed point theorem (a monotone operator over the complete lattice
of monotone functions). Since the fixed point is itself a member of
the lattice of monotone functions, we thereby confirm monotonicity
of the while rule.

Lemma 36 (A1 monotone). @e, a, a1

. a

:Ñ a

1 ùñ A1rressa :Ñ A1rressa1

Proof. Let e, a :Ñ a

1 be given.

A1rressa
“

π

kPK
A1rressp⇡

k

paqq (by def. of A1)

:Ñ
π

kPK
A1rressp⇡

k

pa1qq (by assumption, monotonicity of A1)

“ A1rressa1 (by def. of A1)

Theorem 37 (A monotone). @s, a, a1

. a

:Ñ a

1 ùñ Arrsssa :Ñ Arrsssa1

Proof. Let s, a :Ñ a

1 be given.

Arrsssa
“

π

kPK
ArrP rrsss

k

ssp⇡
k

paqq (by def. of A)

:Ñ
π

kPK
ArrP rrsss

k

ssp⇡
k

pa1qq (by Theorem 22, def. of :Ñ)

“ Arrsssa1 (by def. of A)

Yet again we consider in particular the fixed point definition of
while:

Arrwhile e do sss “ lfp��.�a. a :\ �pArrsssaq
For shorthand notation, we let F “ ��.�a. a :\ �pArrsssaq.
For a monotone �, F� is monotone: Let a :Ñ a

1 be given:

F�a

“ a :\ �pArrsssaq (by def. of F)
:Ñ a

1 :\ �pArrsssaq (by def. of :\)
:Ñ a

1 :\ �pArrsssa1q (monotonicity of A and �)

“ F�a1 (by def. of F)

As a result, F can be seen as an operator over the domain of
monotone functions.

Now we argue that F is itself monotone. Let monotone functions
� :Ñ �

1 be given.

F�

“ �a. a :\ �pArrsssaq (by def. of F)

;Ñ �a. a :\ �
1pArrsssaq (by assumption)

“ F�
1 (by def. of F)

Yet again this ensures that the while-case is well defined by Tarski’s
fixed point theorem (a monotone operator over the complete lattice
of monotone functions). Since the fixed point is itself a member of
the lattice of monotone functions, we thereby confirm monotonicity
of the while rule.

43

N. Proof of Theorem 7: Lifted data-flow equation
soundness

Note: the main paper version of the data-flow equations are purely
statement based, whereas the below development also formulates
data-flow equations for (labelled) expressions. Because of the below
equality, analyzing expressions with A1 or with data-flow equations
is equivalent.

We prove that a solution rr´ss
in

, rr´ss
out

to the lifted data-flow
constraints is sound wrt. to the lifted analysis:

A1rre`ssprre`ss
in

q “ rre`ss
out

Arrs`ssprrs`ss
in

q :Ñ rrs`ss
out

for the following expression related equations:

@k P K. ⇡

k

prrn`ss
out

q “ n

@k P K. ⇡

k

prrx`ss
out

q “ ⇡

k

prrx`ss
in

qpxq
rre`00 ss

in

“ rre`00 ‘`

e

`1
1 ss

in

rre`11 ss
in

“ rre`00 ‘`

e

`1
1 ss

in

@k P K. ⇡

k

prre`00 ‘`

e

`1
1 ss

out

q “ ⇡

k

prre`00 ss
out

q p‘ ⇡

k

prre`11 ss
out

q
and for the following statement related equations:

rrskip`ss
in

“ rrskip`ss
out

rre`0 ss
in

“ rrx :=

`

e

`0 ss
in

@k P K. ⇡

k

prrx :=

`

e

`0 ss
out

q “ ⇡

k

prrx :=

`

e

`0 ss
in

qrx fiÑ⇡

k

prre`0 ss
out

qs
rrs`00 ss

in

“ rrs`00 ;

`

s

`1
1 ss

in

rrs`11 ss
in

“ rrs`00 ss
out

rrs`00 ;

`

s

`1
1 ss

out

“ rrs`11 ss
out

rrif` e then s

`0
0 else s

`1
1 ss

out

“ rrs`00 ss
out

:\ rrs`11 ss
out

rrs`00 ss
in

“ rrif` e then s

`0
0 else s

`1
1 ss

in

rrs`11 ss
in

“ rrif` e then s

`0
0 else s

`1
1 ss

in

rrwhile` e do s

`0 ss
out

“ rrs`0 ss
in

rrs`0 ss
in

“ rrwhile` e do s

`0 ss
in

:\ rrs`0 ss
out

@k P K. ⇡

k

prr#if` ' s

`0 ss
out

q “ ⇡

k

prrs`0 ss
out

q if k ('

@k P K. ⇡

k

prr#if` ' s

`0 ss
out

q “ ⇡

k

prr#if` ' s

`0 ss
in

q if k * '

@k P K. ⇡

k

prrs`0 ss
in

q “ ⇡

k

prr#if` ' s

`0 ss
in

q if k ('

Proof. Expression soundness: Let e

` be given. We proceed by
structural induction on e

`.
Case n

`:

A1rrn`ssprrn`ss
in

q “
π

kPK
n “

π

kPK
⇡

k

prrn`ss
out

q “ rrn`ss
out

(by def. of A1, rrn`ss
out

)

Case x`:

A1rrx`ssprrx`ss
in

q “
π

kPK
⇡

k

prrx`ss
in

qpxq “
π

kPK
⇡

k

prrx`ss
out

q “ rrx`ss
out

(by def. of A1, rrx`ss
out

)

Case e

`0
0 ‘`

e

`1
1 :

A1rre`00 ‘`

e

`1
1 ssprre`00 ‘`

e

`1
1 ss

in

q
“

π

kPK
⇡

k

pA1rre`00 ssprre`00 ‘`

e

`1
1 ss

in

qq

p‘ ⇡

k

pA1rre`11 ssprre`00 ‘`

e

`1
1 ss

in

qq (by def. of A1)

“
π

kPK
⇡

k

pA1rre`00 ssprre`00 ss
in

qq p‘ ⇡

k

pA1rre`11 ssprre`11 ss
in

qq
(by def. of rre`00 ss

in

, rre`11 ss
in

)

“
π

kPK
⇡

k

prre`00 ss
out

q p‘ ⇡

k

prre`11 ss
out

q (by IH, twice)

“
π

kPK
⇡

k

prre`00 ‘`

e

`1
1 ss

out

q (by def. of rre`00 ‘`

e

`1
1 ss

out

)

“ rre`00 ‘`

e

`1
1 ss

out

(simplify)

Statement soundness: Let s` be given. We proceed by structural
induction on s

`.
Case skip`:

Arrskip`ssprrskip`ss
in

q “ rrskip`ss
in

“ rrskip`ss
out

(by def. of A,rrskip`ss
in

)

Case x :=

`

e

`0 :

Arrx :=

`

e

`0 ssprrx :=

`

e

`0 ss
in

q
“

π

kPK
p⇡

k

prrx :=

`

e

`0 ss
in

qqrx fiÑ ⇡

k

pA1rre`0 ssprrx :=

`

e

`0 ss
in

qqs
(by def. of A)

“
π

kPK
p⇡

k

prrx :=

`

e

`0 ss
in

qqrx fiÑ ⇡

k

pA1rre`0 ssprre`0 ss
in

qqs
(by def. of rre`0 ss

in

)

“
π

kPK
p⇡

k

prrx :=

`

e

`0 ss
in

qqrx fiÑ ⇡

k

prre`0 ss
out

qs
(by first half of theorem)

“
π

kPK
⇡

k

prrx :=

`

e

`0 ss
out

q (by def. of rrx :=

`

e

`0 ss
out

)

“ rrx :=

`

e

`0 ss
out

(simplify)

Case s

`0
0 ;

`

s

`1
1 :

Arrs`00 ;

`

s

`1
1 ssprrs`00 ;

`

s

`1
1 ss

in

q
“ pArrs`11 ss ˝ Arrs`00 ssqprrs`00 ;

`

s

`1
1 ss

in

q (by def. of A)

“ pArrs`11 ss ˝ Arrs`00 ssqprrs`00 ss
in

q (by def. of rrs`00 ss
in

)

“ Arrs`11 sspArrs`00 ssrrs`00 ss
in

q (by def. of ˝)
:Ñ Arrs`11 ssprrs`00 ss

out

q (by IH, A monotone)

“ Arrs`11 ssprrs`11 ss
in

q (by def. of rrs`11 ss
in

)
:Ñ rrs`11 ss

out

(by IH)

“ rrs`00 ;

`

s

`1
1 ss

out

(by def. of rrs`00 ;

`

s

`1
1 ss

out

)

44

Case if` e then s

`0
0 else s

`1
1 :

Arrif` e then s

`0
0 else s

`1
1 ssprrif` e then s

`0
0 else s

`1
1 ss

in

q
“ pArrs`00 ss ;\ Arrs`11 ssqprrif` e then s

`0
0 else s

`1
1 ss

in

q
(by def. of A)

“ Arrs`00 ssprrif` e then s

`0
0 else s

`1
1 ss

in

q
:\ Arrs`11 ssprrif` e then s

`0
0 else s

`1
1 ss

in

q
(by def. of ;\)

“ Arrs`00 ssprrs`00 ss
in

q :\ Arrs`11 ssprrs`11 ss
in

q
(by def. of rrs`00 ss

in

,rrs`11 ss
in

)
:Ñ rrs`00 ss

out

:\ rrs`11 ss
out

(by IH, twice)

“ rrif` e then s

`0
0 else s

`1
1 ss

out

(by def. of rrif` e then s

`0
0 else s

`1
1 ss

out

)

Case while` e do s

`0 : Recall the while equations:

rrwhile` e do s

`0 ss
out

“ rrs`0 ss
in

(eq.1)

rrs`0 ss
in

“ rrwhile` e do s

`0 ss
in

:\ rrs`0 ss
out

(eq.2)

We now prove by (inner) induction that for all n • 0

F
np;Kqprrwhile` e do s

`0 ss
in

:\ rrs`0 ss
out

q :Ñ rrwhile` e do s

`0 ss
out

where F “ ��.�a. a :\ �pArrs`0 ssaq and ;K “ �a.

±
kPK

9K .
From here it follows that

Arrwhile` e do s

`0 ssprrwhile` e do s

`0 ss
in

q
“ plfpFqprrwhile` e do s

`0 ss
in

q (by def. of A)

“ p;\
i

F
ip;Kqqprrwhile` e do s

`0 ss
in

q
(by Kleene’s fixed point theorem)

“ p�a. :\
i

F
ip;Kqaqprrwhile` e do s

`0 ss
in

q (by def. of ;\)

“ :\
i

F
ip;Kqrrwhile` e do s

`0 ss
in

(�-reduction)

:Ñ :\
i

F
ip;Kqprrwhile` e do s

`0 ss
in

:\ rrs`0 ss
out

q
(by monotonicity of Fip;Kq)

:Ñ rrwhile` e do s

`0 ss
out

(by above)

Case n “ 0:

F
0p;Kqprrwhile` e do s

`0 ss
in

:\ rrs`0 ss
out

q
“ ;Kprrwhile` e do s

`0 ss
in

:\ rrs`0 ss
out

q (by def. of F0)

“
π

kPK

9K (by def. of ;K)

:Ñ rrwhile` e do s

`0 ss
out

(by def. of :Ñ and 9K)

Case n “ k ` 1:
Assume Fkp;Kqprrwhile` e do s

`0 ss
in

:\ rrs`0 ss
out

q :Ñ rrwhile` e do s

`0 ss
out

.

We now reason as follows:

F
k`1p;Kqprrwhile` e do s

`0 ss
in

:\ rrs`0 ss
out

q
“ F

k`1p;Kqprrs`0 ss
in

q (by eq.2)

“ FpFkp;Kqqprrs`0 ss
in

q (by def. of Fk`1)

“ p��.�a. a :\ �pArrs`0 ssaqqpFkp;Kqqprrs`0 ss
in

q
(by def. of F)

“ p�a. a :\ F
kp;KqpArrs`0 ssaqqprrs`0 ss

in

q (�-reduction)

“ rrs`0 ss
in

:\ F
kp;KqpArrs`0 ssprrs`0 ss

in

qq (�-reduction)

:Ñ rrs`0 ss
in

:\ F
kp;Kqprrs`0 ss

out

q
(by outer IH, monotonicity of Fkp;Kq)

:Ñ rrs`0 ss
in

:\ F
kp;Kqprrwhile` e do s

`0 ss
in

:\ rrs`0 ss
out

q
(by monotonicity of Fkp;Kq)

:Ñ rrs`0 ss
in

:\ rrwhile` e do s

`0 ss
out

(by inner IH)

“ rrwhile` e do s

`0 ss
out

(by eq.1)

Case #if` ' s

`0 :
Arr#if` ' s

`0 ssprr#if` ' s

`0 ss
in

q

“ p�a.
π

kPK

$
&

%
⇡

k

pArrs`0 ss aq k ('

⇡

k

paq k * '

qprr#if` ' s

`0 ss
in

q

(by def. of A)

“
π

kPK

$
&

%
⇡

k

pArrs`0 ss rr#if` ' s

`0 ss
in

q k ('

⇡

k

prr#if` ' s

`0 ss
in

q k * '

(�-reduction)

“
π

kPK

$
&

%
⇡

k

pArrs`0 ss rrs`0 ss
in

q k ('

⇡

k

prr#if` ' s

`0 ss
in

q k * '

(by guarded def. of rrs`0 ss
in

)

:Ñ
π

kPK

$
&

%
⇡

k

prrs`0 ss
out

q k ('

⇡

k

prr#if` ' s

`0 ss
in

q k * '

(by IH)

“
π

kPK

$
&

%
⇡

k

prr#if` ' s

`0 ss
out

q k ('

⇡

k

prr#if` ' s

`0 ss
out

q k * '

(by def. of rr#if` ' s

`0 ss
out

)

“
π

kPK
⇡

k

prr#if` ' s

`0 ss
out

q (simplify)

“ rr#if` ' s

`0 ss
out

(simplify)

45

O. A Generic Soundness Proof
Proof of Thm. 8. Assume for all s P Stm: ↵ ˝ Yrrsss ˝ �

9Ñ X rrsss.
Let s be given.

liftp↵q ˝ liftpYqrrsss ˝ liftp�q
“ �y. pliftp↵q ˝ liftpYqrrsss ˝ liftp�qqpyq (⌘-expansion)
“ �y. liftp↵qpliftpYqrrssspliftp�qpyqqq (by def. of ˝)

“ �y. liftp↵q
π

kPK
YrrP rrsss

k

ssp⇡
k

pliftp�qpyqqq
(by def. of liftpYq)

“ �y. liftp↵q
π

kPK
YrrP rrsss

k

ssp⇡
k

p
π

k

1
PK

�p⇡
k

1 pyqqqq
(by def. of liftp�q)

“ �y. liftp↵q
π

kPK
YrrP rrsss

k

ssp�p⇡
k

pyqqq (by def. of ⇡
k

)

“ �y.

π

kPK
↵pYrrP rrsss

k

ssp�p⇡
k

pyqqqq (by def. of liftp↵q)

:Ñ �y.

π

kPK
X rrP rrsss

k

ssp⇡
k

pyqq (by assumption)

“ liftpX qrrsss (by def. of lift)

46

P. Abstracting Variability: The Galois
Connection Proof

Theorem 38. xX, 9Ñy ´́ Ñ́–́ ´́
↵F

�F xX
F

,

9Ñy

Proof. ↵
F

is monotone: assume x

9Ñ x

1

↵

F

pxq
“

π

kF PKF

ó
tkPK|kF “kXFu

⇡

k

pxq (by def. of ↵
F

)

9Ñ
π

kF PKF

ó
tkPK|kF “kXFu

⇡

k

px1q (by assumption)

“ ↵

F

px1q (by def. of ↵
F

)

�

F

is monotone: assume x

F

9Ñ x

1

F

�

F

px
F

q
“

π

kPK
⇡

pkXF q

px
F

q (by def. of �
F

)

9Ñ
π

kPK
⇡

pkXF q

px1

F

q (by assumption)

“ �

F

px1

F

q (by def. of �
F

)

�

F

˝ ↵

F

extensive:
�

F

p↵
F

pxqq
“

π

kPK
⇡

pkXF q

p↵
F

pxqq (by def. of �
F

)

“
π

kPK
⇡

pkXF q

p
π

kF PKF

ó
tk

1
PK|kF “k

1
XFu

⇡

k

1 pxqq
(by def. of ↵

F

)

“
π

kPK

ó
tk

1
PK|kXF“k

1
XFu

⇡

k

1 pxq (by def. of ⇡
pkXF q

)

9Ö
π

kPK
⇡

k

pxq (since k X F “ k X F)

“ x (simplify)

↵

F

˝ �

F

reductive:
↵

F

p�
F

px
F

qq
“

π

kF PKF

ó
tkPK|kF “kXFu

⇡

k

p�
F

px
F

qq (by def. of ↵
F

)

“
π

kF PKF

ó
tkPK|kF “kXFu

⇡

k

p±
k

1
PK ⇡

pk

1
XF q

px
F

qq
(by def. of �

F

)

“
π

kF PKF

ó
tkPK|kF “kXFu

⇡

pkXF q

px
F

q (by def. of ⇡
k

)

“
π

kF PKF

ó
tkPK|kF “kXFu

⇡

kF px
F

q (since k

F

“ k X F)

“
π

kF PKF
⇡

kF px
F

q (simplify)

“ x

F

(simplify)

47

