
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Coevolution of Variability Models and Related
Software Artifacts
A Fresh Look at Evolution Patterns in the Linux Kernel

Leonardo Passos · Leopoldo Teixeira ·
Nicolas Dintzner · Sven Apel · Andrzej
Wąsowski · Krzysztof Czarnecki · Paulo
Borba · Jianmei Guo

Received: date / Accepted: date

Abstract Variant-rich software systems offer a large degree of customization,
allowing users to configure the target system according to their preferences and
needs. Facing high degrees of variability, these systems often employ variability
models to explicitly capture user-configurable features (e.g., systems options)
and the constraints they impose. The explicit representation of features allows
them to be referenced in different variation points across different artifacts,
enabling the latter to vary according to specific feature selections. In such

This work was partially funded by CAPES (BEX 0459-10-0), NECSIS, CNPq (141909/2010-2
and 245311/2012-2), FACEPE (APQ-0570-1.03/14), the German Research Foundation (AP
206/4, AP 206/5, and AP 206/6), ARTEMIS JU (295397 VARIES), and the Danish Agency
for Science, Technology and Innovation.

L. Passos, K. Czarnecki, and J. Guo
University of Waterloo, Canada
Tel.: +1 519-884-2277
E-mail: {lpassos, gjm, kczarnec}@gsd.uwaterloo.ca

L. Teixeira and P. Borba
Federal University of Pernambuco, Brazil
Tel.: +55 81-2126-8430 ext 4323
E-mail: {lmt,phmb}@cin.ufpe.br

Nicolas Dintzner
Delft University of Technology, The Netherlands
Tel.: +31 6-2315-7647
E-mail: N.J.R.Dintzner@tudelft.nl

S. Apel
University of Passau, Germany
Tel.: +49 851-509-3225
E-mail: apel@uni-passau.de

A. Wąsowski
IT University of Copenhagen, Denmark
Tel.: +45 7218-5086
E-mail: wasowski@itu.dk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50527507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Leonardo Passos et al.

settings, the evolution of variability models interplays with the evolution of
related artifacts, requiring the two to evolve together, or coevolve. Interestingly,
little is known about how such coevolution occurs in real-world systems, as
existing research has focused mostly on variability evolution as it happens in
variability models only. Furthermore, existing techniques supporting variability
evolution are usually validated with randomly-generated variability models or
evolution scenarios that do not stem from practice. As the community lacks a
deep understanding of how variability evolution occurs in real-world systems
and how it relates to the evolution of different kinds of software artifacts, it is
not surprising that industry reports existing tools and solutions ineffective, as
they do not handle the complexity found in practice. Attempting to mitigate
this overall lack of knowledge and to support tool builders with insights on
how variability models coevolve with other artifact types, we study a large and
complex real-world variant-rich software system: the Linux kernel. Specifically,
we extract variability-coevolution patterns capturing changes in the variability
model of the Linux kernel with subsequent changes in Makefiles and C source
code. From the analysis of the patterns, we report on findings concerning
evolution principles found in the kernel, and we reveal deficiencies in existing
tools and theory when handling changes captured by our patterns.

Keywords Variability · Evolution · Software Product Lines · Patterns · Linux

1 Introduction

Variant-rich software systems offer a high degree of configurability, allowing
users to tailor the target system according to their preferences and needs.
The high degree of configurability arises from the variability of the artifacts
of the system, meaning that they can be configured for use in a particular
context [25]. Once configured, the target system is restructured accordingly,
leading to a specific variant. Examples of such systems span different domains,
including database management systems [5,32,55,56], SOA-based applications
[4], operating systems [2,7,9], and industry-based software product lines.1

As large and complex variant-rich systems have considerable numbers of
points of variabilities, these systems often describe them in terms of features, and
they employ variability models to explicitly capture user-relevant features and
the constraints they impose. Features, in this case, denote either functionality
chunks (coarse-grained variability) or fine-grained configuration parameters.
Features declared in the variability model may then be referenced in related
software artifacts (e.g., Makefiles and C source code) by means of explicit
variation points (e.g., conditional build rules and ifdef annotations). This
referencing, in turn, allows different artifacts to vary according to specific
configurations (feature selections).

Facing a high degree of variability, variation points spread across many
software artifacts, making variability pervasive in the system. For illustration,

1 http://splc.net/fame.html

Coevolution of Variability Models and Related Software Artifacts 3

consider the Linux kernel, a successful, large, and complex variant-rich software
system. Along with the complexity of its variability model [41,59], which
contains over 13,000 features in its latest release (3.9), the kernel has over
95,000 variation points distributed across its source code (comprising over
30,000 implementation and header C files) and build files (comprising over
1,800 Makefiles). This pervasiveness of variability is also found in many other
variant-rich software systems, including both open-source software [9,44,45]
and industrial product lines [6,27].

When variability is spread across different artifacts, variability evolution
requires variability models and related software artifacts to evolve together, or
to coevolve. The interrelation of multiple sources of variability makes variability
evolution intricate. A thorough analysis of the evolution of the Linux kernel
between releases 2.6.32 and 2.6.33, for instance, shows that 35% of the features
removed from the variability model continue to exist elsewhere, being merged
with other features, renamed, or becoming an integral part of the code base
[52].

Interestingly, existing research has focused much of its efforts on variability
evolution as it occurs in the variability model, but it has ignored the coevolution
of other related artifacts [1,17,24,29,41,54,59,65]. Moreover, previous research
often relies on randomly-generated variability models or evolution scenarios
that do not come from real-world systems [24,29,65]. The few existing studies
covering variability evolution across different artifacts and from real-world
systems are based on small case studies, which are unlikely to reflect the
complexity typically found in large systems. For instance, Neves et al. [49]
study the coevolution of variability models and related artifacts in real software
product lines, but their subjects have 40 features, at most. In addition, their
analysis is limited to refinement changes (i.e., changes that do not affect
the behaviour of the system). This assumption, however, is too restrictive in
practice, as feature modification and retirement often occur [52,53].

The lack of a thorough understanding of how variability evolves in large and
complex real-world systems is directly reflected in the quality of existing tools
and methodologies. As Babar et al. point out [3], the few existing approaches
claiming to support variability evolution are ineffective in practice, as they fail
to support variability evolution across different artifacts:

"Variability evolves as a result of adding, deleting, or updating variation points
and variants. However, we found little support for systematically and
sufficiently supporting evolution in variability models and other related

artifacts."

—Babar et al., IEEE Software, 2010.

To better understand how variability models and related software artifacts
coevolve, we study the evolution history of a large and complex variant-rich
real-world system: the Linux kernel.

Linux is widely used in industry, with an increasing number of companies
supporting its development [13]. Due to its complexity, publicly available

4 Leonardo Passos et al.

source code, and practical appeal, researchers often study the Linux kernel to
better understand practical issues arising from the maintenance of variant-rich
software systems, subsequently deriving tool support that industry can directly
benefit from [16,34,45,46,60,64]. In our case, we are particularly interested
in understanding how developers coevolve the kernel variability model, build
files, and C source code. As these three artifact types also define the structure
of other open-source variant-rich systems [9,45] and some industrial product
lines [6], we are confident that investigating coevolution of different artifacts in
the context of a large, complex, mature, and long-lived software system such
as the Linux kernel will provide insights to foster further research that will
eventually lead to better tool support and evolution principles.

In previous work [53], we investigated a sample of the Linux kernel evolution
history, deriving a catalog of 13 variability-coevolution patterns relative to
feature additions and removals. In that catalog, we reported a pattern if we
found it to be recurrent: the number of change instances matching a pattern
must be equal to, at least, 3% of the size of the sample under analysis.

In this paper, we redefine the recurrence notion of our previous work [53] to
better align it with state-of-the-art approaches in pattern analysis [22,37,48].
Specifically, recurrence is now measured by two main criteria. First, a pattern
must enclose, at least, three instances. Thus, recurrence is given in absolute
terms, rather than a percentage of a certain sample size. This equates recurrence
exactly as prescribed by the Rule of Three, stating that a pattern should only
be claimed as such if it has, at least, three distinct instances.2 The Rule of
Three is a common recurrence measure in pattern analysis, and it has been
used for the identification of design patterns [37], refactoring opportunities [22],
and antipatterns [48]. In addition, an absolute threshold, as stated by the rule,
facilitates the identification of patterns across different systems, as recurrence
becomes independent of any selected sample size. Second, a pattern must come
from three different sources [37]. Adapted to our context, this requires that a
pattern is applied by, at least, three distinct contributors (developers), avoiding
bias towards any personal style on how to accomplish variability evolution.

With this refined recurrence notion, we reanalyze our original dataset and
verify the catalog of our previous work [53]. Furthermore, our new analysis
increases the sample by 30%, comprising 268 feature additions and 132 feature
removals in total. Given the sampled additions and removals, we analyze their
corresponding commits, along with over 250 extra ones to aid our understanding;
in total, we analyze 657 commits. The analyzed commits cover changes in the
2.6.26–3.3 release range of the Linux kernel, spanning almost four years of
kernel development. The new catalog we offer in this article contains seven new
variability-coevolution patterns, four inferred ones (situations that follow from
our set of patterns, but that do not have, at least, three distinct contributors
or a minimum of three instances), and a generalization of a previously reported
pattern. We also remove one pattern from our earlier catalog, as it has not
been applied by, at least, three different developers, nor could it be inferred.

2 See also: http://c2.com/cgi/wiki?RuleOfThree

Coevolution of Variability Models and Related Software Artifacts 5

We claim the following contributions:

– We provide a detailed study of how variability models coevolve with different
artifacts in the context of a large and complex variant-rich software system:
the Linux kernel.

– We define a taxonomy for the coevolution of variability models, build files,
and C source code, resulting from the addition or removal of features in
the variability model. We organize the proposed taxonomy as a catalog of
variability-coevolution patterns.

– We devise a repeatable methodology that allows others to extract patterns
in systems other than the Linux kernel. For instance, future work may
apply our methodology in systems that have a similar structure as found
in the Linux kernel, including open-source variant-rich systems [9,45] and
industrial product lines [6].

– We identify a set of principles guiding how Linux kernel developers em-
ploy ifdef annotations when encoding the kernel’s compile-time variability.
As these principles ease kernel maintenance and evolution, they are also
beneficial for other variant-rich software systems that also rely on ifdef
annotations.

– We present empirical evidence that some evolution scenarios captured by
our patterns cannot be correctly handled by state-of-the-art variability
evolution techniques.

– We provide empirical evidence for the need of a new theory for software-
product-line evolution. While many of our patterns are captured by the
existing theory of software-product-line refinement [10], feature-retirement
patterns are not. Since the latter are too frequent to be ignored, a new
theory should be devised to account feature retirement.

– Based on our catalog of patterns, we formulate a research agenda outlining
future research.

2 Background

This section explains how variability spreads across different artifacts of the
Linux kernel. We also introduce a notation for describing patterns.

2.1 The Three Spaces of the Linux Kernel

Variability in the Linux kernel is present in three spaces: variability model,
mapping, and implementation. Such structure is not exclusive to the kernel, as
it is also found in other open-source variant-rich systems [9,45] and industrial
product lines [6]. Following the steps in Figure 1, we describe how each of these
spaces works and how they are connected.

6 Leonardo Passos et al.

1. rendered by
(configurator)

Mapping

(Makefiles)

Implementation

(C source code files)

(.config file)
2. makes a feature selection

3. writes

(config)

Variability Model

vm1. menuconfig FB
vm2. tristate "Support for frame buffer devices"
vm3. config FB_UVESA
vm4. tristate "Userspace VESA VGA graphics"
vm5. config FB_IMAC
vm6. bool "Intel-based Macintosh Framebuffer
 Support"
vm7. depends on (FB = y) && X86 && EFI
vm8. select FB_CFB_FILLRECT
vm9. select FB_CFB_COPYAREA
vm10. select FB_CFB_IMAGEBLIT
...

(Kconfig files)

m1. obj-$ (CONFIG_FB) += fb.o
m2. fb-objs := fbmem.o \
m3. fbmon.o \
m4. fbcmap.o \
m5. fbsysfs.o modedb.o fbcvt.o
m6.
m7. obj-$ (CONFIG_FB_IMAC) += imacfb.o
m8. obj-$ (CONFIG_FB_EFI) += efifb.o
m9. obj-$ (CONFIG_FB_UVESA)+= uvesa.o
...

efifb.c

fmem.c

uvesafb.c

...

...
CONFIG_FB=y
CONFIG_FB_IMAC=y
CONFIG_FB_EFI is not set
CONFIG_FB_UVESA=m
...

(auto.conf)

...
CONFIG_FB=y
CONFIG_FB_IMAC=y
CONFIG_FB_EFI is not set
CONFIG_FB_UVESA=m
CONFIG_MTRR=y
...

(autoconf.h)

...
#define CONFIG_FB 1
#define CONFIG_FB_IMAC 1
#define CONFIG_FB_UVESA_MODULE 1
#define CONFIG_MTRR 1
...

uvesafb.c

5.1. reads

5.2
.tr

an
sla

tes(make)

(cpp)

5.4
. p

re-
pr

oc
es

se
s

(cc)

5.5. compiles
(pre-processed)

Kbuild

(user)

imacfb.o

fmem.o

uvesafb.o

...

(ld)

5.6
. li

nk
s

builtin.o

uvesafb.ko

vmlinux

Top
Makefile 5.

ex
ec

ute
s

4. invokes

...
i1. ...
i2. static void __devinit uvesafb_init_mtrr
i3. (struct fb_info *info)
i4. {
i5. #ifdef CONFIG_MTRR
i6. ... // Definition given upon the
 ... //presence of MTRR
i42. ...
i43. #endif /* CONFIG_MTRR */
i44. }
...

fbcvt.c
fbcvt.o

imacfb.c

5.3. appends #include<autconf.h>

Fig. 1: The three spaces in the Linux kernel and their interaction with Kbuild

Variability Model. The Linux kernel variability model comprises a set of files
written in the Kconfig language.3 A configurator renders (step 1) a tree of
features from Kconfig files that are available for the user’s platform (i.e.,
processor family). From it, users select features that should be present in the
resulting kernel (step 2).

As shown in the excerpt of the variability model in Figure 1, features in
Kconfig are represented mostly by config declarations (lines vm3 and vm5).
In our example, FB (the parent of all frame-buffer-related features)4 and
FB_UVESA (a generic frame-buffer driver) are tristate features (lines vm2
and vm4). They can be absent (n) or present either as dynamically loadable
kernel modules (m) or by being statically compiled into the resulting kernel
(y). Boolean features are also possible (line vm6), assuming either y or n as
value. Other types include integer and strings (not shown).

In Kconfig, features may contain attributes. The prompt attribute is a short
text describing the feature (lines vm2, vm4 and vm6). The configurator uses
the prompt to render feature nodes in the hierarchy (the absence of a prompt
makes a feature invisible to users). A default attribute (not shown) provides an
initial value of the corresponding feature, which can be later changed during
configuration. Two specific attributes define cross-tree constraints: depends on
and selects. The depends on attribute (line vm7) allows writing a dependency

3 https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
4 https://www.kernel.org/doc/Documentation/fb/framebuffer.txt

Coevolution of Variability Models and Related Software Artifacts 7

stated as a condition that must be satisfied to allow users to select the feature
with this attribute. Not all dependencies result in cross-tree constraints, as
the Linux kernel configurator uses some dependencies as a means to define
the parent of a feature. A select attribute is a reverse dependency that en-
forces the immediate selection of one or more target features. For example,
selecting FB_IMAC causes the immediate selection of FB_CFB_FILLRECT,
FB_CFB_COPYAREA, and FB_CFB_IMAGEBLIT (lines vm8–vm10).

Once the user finishes the selection, the configuration is saved. The con-
figurator then writes a .config file (step 3), containing a sequence of feature-
name=value lines. In this file, feature names are prefixed with CONFIG_.

Mapping. In the Linux kernel, the mapping between features and compilation
units occurs mostly inside Makefiles. Kbuild, the kernel build infrastructure,5
controls the whole compilation process of the kernel. To build a kernel image
according to a given configuration, users invoke make (step 4), which triggers
the execution of the top Makefile at the root of the Linux kernel source code
tree (step 5). The top Makefile then invokes config, which in turn reads the
configuration file (step 5.1) and translates it to two other files (step 5.2):
auto.conf, later used by make, and autoconf.h, later used by the C pre-processor
(cpp).

The top Makefile controls vmlinux (the resident kernel image) and the kernel
loadable modules. To build vmlinux, Kbuild first builds all the object files stored
in core-y, libs-y, drivers-y, and net-y variables, as stated in the top Makefile:

1 vmlinux := $(core-y) $(libs-y) $(drivers-y) $(net-y) ...
2 ...
3 drivers-y += drivers/ main/

These variables denote lists of object files to which further elements can be
appended. When appending directories (line 3 above), Kbuild recursively runs
the Makefile in each of the listed directories and generates all objects of a special
list: obj-y (similarly, a list obj-m is kept for dynamically loadable modules).
Objects are conditionally added to such a list by replacing y with a feature
name. As shown in the Makefile of Figure 1 (line m7), imacfb.o is added to obj-y
if FB_IMAC is set to be y in the auto.conf file (the same applies to FB_EFI
and FB_UVESA, lines m8–m9). Kbuild attempts to compile object files by
locating a corresponding C file with a matching name. If such file does not
exist, Kbuild uses a list named after the object file and suffixed with either -y
or -objs. In our example, the FB feature is associated with the set of objects in
the fb-objs list (lines m2–m5 in Figure 1); there is no fb.c file in the Makefile’s
directory.

Implementation. Variability in the source code is expressed in terms of condi-
tional compilation macro directives (ifdefs). In the C pre-processor, an ifdef is
either an #ifdef, #ifndef, #if, or #elif. The conditions of each of these macro

5 https://www.kernel.org/doc/Documentation/kbuild/

8 Leonardo Passos et al.

directives are essentially Boolean expressions over feature names, guarding
whether certain source code fragments should be compiled.

Prior to compilation, Kbuild adds an inclusion directive to autoconf.h in
each target source file (step 5.3). This header file contains macro definitions for
the features selected during configuration. It is encoded as follows: all features
in the .config file result in pre-processor symbols with the same name; tristate
features selected as modules are suffixed with _MODULE; macros of selected
Boolean/tristate features are set to 1; integer/string features, if present, lead
to macros whose values match those given during configuration.

Given the macro definitions in autoconf.h, the C pre-processor evaluates all
ifdef conditions, deciding which code blocks to include and which to remove
(step 5.4). Then, the C compiler compiles the resulting code (step 5.5). From
the example configuration in Figure 1, pre-processing uvesafb.c results in a
non-empty body of the __devinit uvesafb_init_mtrr function (lines i6–i42), as
CONFIG_MTTR is a defined macro in autoconf.h.

The last step in the compilation process links the object files in obj-y,
merging them into a built-in.o file (step 5.6). This file is later linked into vmlinux
by the parent Makefile. Similarly, tristate features set to m, after linkage, result
in loadable kernel objects (.ko file).

2.2 Patterns and Notation

A coevolution pattern summarizes changes in each space and shows how
the spaces coevolve. Consider a particular instance of a merge pattern that
operates on two framebuffer-related features, which were presented in the
previous section: FB_IMAC and FB_EFI. Both features are children of FB.
Due to their similarity, developers decide to merge the two features, adding
the capabilities of FB_IMAC into the implementation of FB_EFI. To avoid
capability redundancy, developers remove FB_IMAC from the variability model,
mapping and implementation.6

The described change is captured by the pattern in Figure 2. A pattern
denotes a transition from a before-state to a state after the application of
the prescribed change—after-state. The transition is represented by an arrow
(shown in the middle); the before-state is on the left of the arrow; the after-
state follows it. In each state, the pattern captures key characteristics in the
variability model, build files, and source code.

We express the variability model in a FODA-based notation, together with
the set of the existing cross-tree constraints (i.e., CTC). Since FODA [30] is
a simple, intuitive and widespread notation praised by both researchers and
practitioners [8], we can abstract over many specific details of Kconfig, while
reaching a larger audience. In the before-state of Figure 2, two optional sibling
features exist: f1 (matches FB_IMAC) and f2 (matches FB_EFI). To explicitly

6 See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=7c08c9ae

Coevolution of Variability Models and Related Software Artifacts 9

report that these features are visible (promptable) during configuration, we
use a corresponding attribute (shown inside square brackets).

We capture the mapping M as a sequence of build rules defined by the
following syntax:
M ::= 〈R+〉
R ::= (E,R,R) | compilation unit+ | directory+ | compilation flag+ | ε

In a conditional build rule (e, r1, r2), e is an expression E over feature names;
r1 is another build rule R executed in case e evaluates to true; and r2 is an
alternative build rule for the case e does not hold. The shorthand form (e, r1) is
used when r2 is empty. Unconditional rules are either a sequence of compilation
units, a non-empty list of directories, one or more compilation flags, or an empty
rule. The pattern in Figure 2 shows two build rules: (f1, f1.o) and (f2, f2.o),
stating that the presence of f1 and f2 triggers the compilation and linkage of
their corresponding compilation units (imacfb.o and efifb.o in the example).
For simplicity, this representation does not distinguish dynamically loadable
modules from objects to be statically linked against the kernel.

Similarly to the mapping space, we capture the implementation (I) as a
sequence of code block triples (e, c1, c2), where e is a macro-based expression
over feature names and c1 and c2 are themselves code block triples. As before,
simplifications are possible: c denotes an unconditional code block and (e, c1)
is a conditionally compiled code block without an alternative. In case an entire
compilation unit implements a feature, we draw a square in the code space
(e.g., matching imacfb.c and efifb.c, respectively).

In all spaces, we use ellipses (“. . . ”) to ignore unrelated elements that do
not affect the features under analysis.

In the after-state of the merge pattern in Figure 2, f1 is removed from all
three spaces (removal is generally denoted by omitting elements previously
shown in the before-state). The set of cross-tree constraints is then rewritten
(CTC′) such that every reference to f1 becomes a reference to f2. Besides
referential integrity, such rewrite guarantees that all constraints imposed by
f1 are now imposed by f2 as well (no constraint is lost). Furthermore, the
compilation unit of f2 continues to support the capabilities of f1, plus its own,
which we denote as f2 > f1.

3 Methodology

We build a catalog of variability-coevolution patterns by analyzing commit
patches (textual diffs) that change the variability model by either adding
or removing feature names. We then keep track of how the mapping and
implementation spaces change as a result.

To scope our analysis, we focus on the x86 architecture of the Linux
kernel, as the variability model of the x86 architecture follows the same growth
pattern of the variability model of the whole kernel [41]. Next, we describe
the methodology for data collection, followed by how we identify patterns. All

10 Leonardo Passos et al.

Fig. 2: Definition of Merge Visible Optional Feature into Sibling (MVOFS)

the collected data, its analyses, and the custom underlying infrastructure are
available at a supplementary site.7

3.1 Data Collection

We collect the entire set of added and removed features by calculating the
feature set difference of the variability models of consecutive stable kernel
releases. The union of all added features comprise the additions population;
likewise, the removals population is given by the union of all removed feature
names. To list the features in the variability model of a given release, we
extract the Kconfig infrastructure shipped in the Linux kernel source code.
Currently, our infrastructure can process Kconfig files in any version starting
from the kernel release 2.6.26, up to 3.3, the latest release available when we
first collected patterns.

The size of the additions population in the given release range (4,112) is
four times bigger than the size of the removals sample (1,002). These numbers
are consistent with other works [17,41], which show that feature additions in
the Linux kernel exceed feature removals.

From the population data, we select two random samples: one comprising
6.5% (268) of all feature additions, and another with 13% (132) of all feature
removals. These samples extend the original ones used when extracting the
first version of our catalog [53], adding 30% new commits relative to feature
additions (62) and removals (31).

An entry in the additions sample is a pair of the form (f, ri+1), where ri+1

adds a feature named f that does not exist in the previous stable release ri.
An entry (f, ri+1) in the removals sample mean that release ri+1 no longer
contains f , although ri does. A feature f in either of the entries is referred as
primary feature—a primary object in our investigation.

7 http://gsd.uwaterloo.ca/coevolution-patterns

Coevolution of Variability Models and Related Software Artifacts 11

(v2.6.26,fv2.6.27)
...

(v3.0,fv3.1)
...

(v3.2,fv3.3)

(Commitfpatches)

(Kernelfgitfrepository)

(Orderedfpairsfoffstableffreleaseftags)

1.fCollectfordered
tagsfoffstable

releases

(Commitfmetadata) (Changefunits)

2.fParsefcommitsfperf
releasefpair

Relationalfdatabase

 insert

3.fParsefeach
commitfpatch

 insert insert

(Patchfmetadata)

Fig. 3: Database creation process

To obtain the patch adding or removing a primary feature, we must first
locate its corresponding commit, referred to as primary commit. To that end,
we use a custom-made tool [50] to create a relational database from the Linux
kernel Git commit history.8 Figure 3 depicts how the database is populated.
First (step 1), we enumerate all stable releases saved in the commit history,
storing them as ordered sequential release pairs of the form (ri, ri+1). In step
2, we parse all commits between the releases of each release pair, storing the
commit author name and email, the commit message, the commit hash, etc.
Next (step 3), we parse the patch of each commit from step 2, saving associated
metadata (e.g., the name of the changed file, whether the file is new, removed,
or renamed, etc.) and any feature change units. A feature change unit is a
change that adds or removes a feature name in a Kconfig file. For each change
unit in our database, we also store the name of the feature it adds or removes.
In all steps, we link data accordingly: each patch metadata and change unit
record links to a corresponding commit record, which in turn, links to a specific
release pair.

With the database in place, retrieving the primary commit of a primary
feature becomes a simple matter of issuing an SQL-query: if a feature f is in
the feature set difference of ri+1 and ri, then there exists a primary commit
with a change unit adding f . Such commit, in turn, associates with the release
pair (ri, ri+1). Likewise, if f is in the difference of the feature sets of ri and
ri+1, then there exists a primary commit with a change unit removing f . As
before, the retrieved commit associates with the release pair (ri, ri+1).

In the database, a primary commit associates with one or more primary
features. Primary features may also have two or more associated primary
commits, but we restrict it to be exactly one to facilitate analysis. Taking f as

8 See git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

12 Leonardo Passos et al.

primary feature, we find the following cases that lead to two or more primary
commits in the target population:

T1 In addition to x86, f is also in the namespace of other architectures
(e.g., sparc, powerpc, etc.), being declared in Kconfig files specific to such
CPUs. Therefore, adding or removing f happens in all architectures that
support it, having different commits for different architectures (generally,
one per architecture type). When facing multiple commits targeting different
architectures, we select the one concerning x86 (our scope of analysis).

T2 A commit adds f , another removes it (e.g., by reverting the first change),
and a third adds f again. Likewise, a commit may remove f , a second add
it, and a third remove it again. In both cases, we take the primary commit
to be the last one in the series, regardless of which sample f originates
from.

T3 A commit adds f to its own Kconfig file, which is then included by a parent
Kconfig file. Later, another commit replaces the inclusion instruction by
the declaration of f itself (another addition). In such situation, we take
the first commit, as the second does not affect the namespace; rather, it
only relocates f ’s declaration.

T4 A commit first adds f , followed by another commit creating an additional
configuration option f (in Kconfig, it is possible for a feature to be declared
twice). Similar to the previous case, the namespace is not changed. As
before, we take the first commit as the primary one.

T5 Due to the distributive nature of the kernel development, patches may
be submitted more than once. Consequently, different commits may have
equal patches. For example, a patch submitted to the kernel mailing list
may be accepted by a developer, who commits it to his local copy of the
kernel repository. Prior to pushing it to the remote site, the developer
pulls from the remote copy to retrieve any updates. Meanwhile, another
developer also accepts the change, and prior to pushing it, he also performs
a pull to fetch any remote updates. Note that both pulls do not retrieve
the accepted change, as it has not been pushed by either developer. Then,
the second developer pushes his changes, followed by the push of the first
developer. As a result, the remote repository now has two exact patches,
each with a different commit hash.

T6 There are two or more commits removing f , with each commit holding a
different patch. As an example, consider the case where a commit copies
f to a new location in the repository, resulting in a duplicate declaration.
A new feature is then introduced, generalizing the capabilities of f . As
the generalized feature supersedes the original and the copied features,
both must be removed. The developer, however, separates such removal
in two commits. The first one contains the removal of the original feature;
the second commit contains the patch adding the generalized feature,
together with the removal of f ’s copy. When facing multiple removals, we
take the latest one. Likewise, it also happens that two different commits
add a feature f in distinct ways. For example, a developer sends to the

Coevolution of Variability Models and Related Software Artifacts 13

Release range: 2.6.26 to 3.3
Nbr. of commits 176,449
↪→ Nbr. of commits changing Kconfig files 10,205
↪→ Nbr. of commits adding/removing features 5,704

↪→ Nbr. of distinct primary commits in our two samples 359

Table 1: Commit statistics

mailing list a patch adding f , which eventually gets accepted. Later to
his first submission, the same developer re-submits the patch with further
enhancements.

In the kernel repository, feature additions and removals that link to multiple
primary commits are infrequent. In our samples, we only find three additions
(two cases of T1 and one case of T5) and two commits removing the same
primary feature (T5).

Forcing a primary feature to have exactly one primary commit means that
we will work with the same number of primary commits as our sample sizes;
hence, we collect 268 and 132 primary commits relative to added and removed
features, respectively. Since some primary commits concern more than one
primary feature, the number of distinct primary commits (359) is lower than
the sum of the two sample sizes. Table 1 puts these statistics into context.9 The
number of distinct commits in our two samples equals to 6% of all commits that
either add or remove features. The latter, in turn, is a subset of the commits
that necessarily change Kconfig files, representing 56% of all the commits in
that set. Commits that necessarily change Kconfig files are a particular piece
of the kernel evolution history, accounting for approximately 6% of all commits
in the given release range. Overall, the two samples cover 0.2% of all commits
between releases 2.6.26 and 3.3.

Once all primary commits are known, we proceed to extract variability-
coevolution patterns.

3.2 Pattern Extraction

We apply a multiple step analysis to extract the evolution pattern of a primary
feature. As the primary commit only guarantees to retrieve changes in the
variability model (changes in other spaces may be in other commits), we rely on
a commit window to expand the search scope for changes in related artifacts.

A commit window is a sequence of commits that in addition to the
primary commit, may include commits preceding or following the primary
one. To exemplify a commit window, consider the addition of the CAP-
TURE_DAVINCI_DM64X_EVM feature.10 As shown in Figure 4, the primary

9 The numbers in the table do not account for commits that merge branches.
10 See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=89803d83

14 Leonardo Passos et al.
T
im
e

Fig. 4: Commit window example

commit (highlighted in gray) is part of a sequence of commits changing the V4L
and DVB subsystems,11 as stated in the commit log messages. The primary
commit patch is shown in Figure 5. A patch is a textual diff recording added
(prefixed with “+”) and removed lines (prefixed with “-”). Lines without prefix
provide context to ease understanding. In the example, the primary commit
adds a Kconfig entry (Figure 5, lines 8–11) and a new build rule to compile
vpif_capture.c (line 15). Such compilation unit, however, is not added in the
primary commit. In that case, we set to expand the commit window to the point
where such an addition occurs (if it occurs). The commit following the primary
one adds vpif_capture.c; thus, we expand the commit window to include the
commit above the primary one. The resulting commit window is shown as a
black rectangle in Figure 4.

Strictly, the boundaries of a commit window are only limited by the total
number of commits in the evolution history. Furthermore, selecting which
commits should be part of a commit window is ultimately a subjective process.

To mitigate subjectivity, we expand a commit window by including commits
that have the same commit message label as the primary one, and that neces-
sarily preceded or follow it. For example, in Figure 4, all commits changing
the V4L and DVB subsystems are labelled with "VL4/DVB", and thus, are
potential candidates to be included in the resulting commit window. Following
sequences of commits sharing the same label, however, does not necessarily
retrieve commits related to the primary feature under investigation (e.g., it
may include commits relative to a sibling feature of the primary feature, both
belonging to the same part of the kernel). To avoid large windows with un-
related commits, we define four main expansion rules for including commits
sharing the same label of a primary commit:

E1 Include commits that add/remove compilation units known to be mapped
to the primary feature.

E2 Include commits whose changes affect files mapped to the primary feature.
E3 Include commits whose changes add/remove compile-time variation points

that reference the primary feature.
E4 Include commits that modify the declaration of the primary feature in the

variability model.

11 V4L/DVB: Video for Linux/Digital Video Broadcasting

Coevolution of Variability Models and Related Software Artifacts 15

1 drivers/media/video/Kconfig
2

3 config DISPLAY_DAVINCI_DM646X_EVM
4 help
5 - Support for DaVinci based display device.
6 + Support for DM6467 based display device.
7

8 +config CAPTURE_DAVINCI_DM646X_EVM
9 + tristate "DM646x EVM Video Capture"

10 + depends on VIDEO_DEV && MACH_DAVINCI_DM6467_EVM
11 + ...
12

13 drivers/media/video/davinci/Makefile
14

15 +obj-$(CONFIG_CAPTURE_DAVINCI_DM646X_EVM) += vpif_capture.o

Fig. 5: Patch adding the Davinci DM646x EVM driver (primary commit)

Initially, we apply these rules to expand the commit windows of features
in the additions sample only. Starting with the primary commit, we allow a
commit window to grow as large as needed, but stop its expansion whenever
we meet one of the following boundary conditions: (a) the commits in the
current window provide enough context to understand the changes related
to the primary feature. For instance, to understand the addition of CAP-
TURE_DAVINCI_DM64X_EVM we are only required to extend the commit
window up to the point where vpif_capture.c is added, but not further; (b)
we reach a large sequence of commits that do not share the same label as the
primary commit. In this case, we consider the change of the primary feature to
be over. The rationale of first expanding commit windows of features in the
addition sample follows from our assumption that commit windows of features
in the removals sample are likely to be smaller; if true, the maximum commit
window size in the additions sample works as an upper bound for the commit
window size of features in the removals sample. Our assumption relies on the
fact that removing features should be done at once, in a single commit, as
developers should not leave dead code behind, nor break the system compilation.
Additions, on the other hand, may span more than a single commit, as adding
incremental chunks agrees with Git’s principle commit early, commit often.12

We find that commit windows of added primary features have at most 28
commits, although in most cases it has a single one (the primary commit). For
defining the commit windows of removed features, we conservatively increase
the 28-limit to 40, as an attempt to avoid loosing any commits. Upon the
validity of our previously stated assumption, however, commit windows in the
removals sample should never reach such a limit. In fact, they do not. After
applying the four expansion rules, while respecting boundary conditions and a

12 http://sethrobertson.github.io/GitBestPractices/

16 Leonardo Passos et al.

Additions sample Removals sample

0

50

100

150

200

1 2 3 4 5 7 8 9 10 12 13 14 17 21 27 28 1 2 3 4 5 7 8 9 10 12 13 14 17 21 27 28
Commit window size

N
um

be
r

of
 c

om
m

it
w

in
do

w
s

Fig. 6: Commit window sizes

maximum commit window size of 40, we find that almost every commit window
in the removals sample has size one. Few commit windows (6) have more than
one commit; three commit windows have two commits, while the remaining
three have four, five, and 14 commits, respectively. Overall, commit windows
are small in both samples (see Figure 6). In the additions sample, an average
commit window has 1.9 commits, whereas in the removals sample, the average
is 1.2.13 In both samples, the median commit window size is one. Therefore, in
the case of the Linux kernel, determining the size of commit windows is not
difficult, as a typical commit window contains only the primary commit of the
feature under investigation.

Within each retrieved commit window, we move to inspect all the changes
it contains, initially classifying it as addition, removal, split, merge, or rename
of the primary feature. Windows with the same category are then clustered
together. Note that classifying commit windows require us to ignore changes
unrelated to the primary feature. Lines 5–6 in Figure 5 show a simple example.
More complex unrelated changes occur when a commit window contains patches
that, in addition to the primary feature, also add or remove other features. In
this case, we set focus on patch parts that explicitly associate with the primary
feature (e.g., a code fragment guarded by an ifdef condition referring to primary
feature, a C file whose compilation depends on selecting the primary feature,
etc.), or that relate to it as a consequence of the change under investigation
(e.g., a new ifdef condition is created for a new feature, which in turn, results
from the rename of the primary one).

The relevant changes inside each window are then taken as a whole, which
we capture as a before-state and after-state. At this stage, we create specialized

13 These values are calculated as follows: for the additions sample, we sum the size of all
its commit windows (502), and divide the result by the number of added primary features
(268). Likewise, in the removals case, we sum the total number of commits in the commit
windows in the corresponding sample (155), and divide it by the number of removed primary
features (132).

Coevolution of Variability Models and Related Software Artifacts 17

subcategories to represent the changes and their similarity in terms of how they
affect specific characteristics of primary features and their cross-tree constraints.
Such characteristics include, but are not limited to:

a) Visibility: Feature is promptable in the configurator or not;
b) Type: Whether the feature is a switch (i.e., Boolean/tristate) or a value-

based feature (int/string) [9];
c) Computed defaults;
d) Mandatory;
e) Whether the feature causes the addition of compile-time variation points,

and in which spaces;
f) Whether the feature contains associated compilation units;
g) Whether the feature adds compilation flags.

We then re-cluster results accordingly and discard clusters with less than
three instances, or clusters respecting such threshold, but with less than
three distinct contributors. Different from our initial analysis [53], these two
key criteria conform to state-of-the-art pattern analysis [22,37,48] and they
make the recurrence measure of a pattern independent of the sample size. To
differentiate among contributors, we use the contributor’s name and email, as
recorded in the metadata of each commit. Once we cannot further subcategorize
clusters, we set to extract a pattern that explains the changes in the commit
windows of each obtained cluster.

In total, we examine 657 commits in all commit windows, where 502 relate
to features in the additions sample and the remaining 155 to features in the
removals sample.In some cases, however, we cannot derive a full understanding
of the changes relative to a primary feature. As an example, consider the addi-
tion of the NEED_PER_CPU_KM feature to the kernel memory management
subsystem.14 Figures 7 and 8 show the addition’s primary commit (highlighted
in gray) and its corresponding patch fragment, respectively. Since the newly
added feature is a computed (it is assigned its default value upon the validity
of its depend on clause) and invisible feature, users cannot configure it directly.
Thus, the identifier NEED_PER_CPU_KM must be referred elsewhere for the
feature to be useful. However, expanding the initial commit window to include
commits sharing the same label of the primary commit (shown as a dashed
rectangle in Figure 7) does not show any reference addition. Hence, as we can-
not fully understand the change in place, we exclude NEED_PER_CPU_KM
from further analysis. Overall, when facing doubt, we exclude 4.5% (12) of the
features in the additions sample; in the removals sample, the exclusion rate is
8.3% (11).

Following the described methodology, four authors participated in the
extraction process, namely A1–A4. Authors A1 and A4 are proficient Linux
users with past experience in the analysis of feature evolution in the Linux
kernel [17,50,52,53]; author A2 has expertise in variability model evolution

14 See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=bbddff05

18 Leonardo Passos et al.

Fig. 7: Commits changing the kernel memory-based chunk allocation

1 mm/Kconfig
2

3 +config NEED_PER_CPU_KM
4 + depends on !SMP
5 + bool
6 + default y
7

8 mm/Makefile
9

10 -ifdef CONFIG_SMP
11 -obj-y += percpu.o
12 -else
13 -obj-y += percpu_up.o
14 -endif
15

16 mm/percpu-km.c
17

18 -#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
19 +#if defined(CONFIG_SMP) && \
20 defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
21 #error "contiguous percpu allocation is incompatible..."
22 #endif
23

Fig. 8: Patch adding NEED_PER_CPU_KM

[24], while A3 has previously investigated evolution patterns in small-sized
software product lines [49]. Table 2 summarizes the role of each author.

In the analyses of the original sample of [53], authors A1 and A2 were
responsible for extracting variability-coevolution patterns (indicated with an
’E’ in the corresponding table cell). As extracting patterns requires human
analysis (e.g., establishing the boundaries of a commit window and defining
the subcategories for clustering), A1 and A2 worked closely, discussing any
arising issue, in addition to reviewing the results of one another (shown with

Coevolution of Variability Models and Related Software Artifacts 19

Author Original sample Extension sample
Additions Removals Additions Removals
(206) (101) (62) (31)

A1 E + R(A2) E + R(A2) E E
A2 E + R(A1) E + R(A1) – –
A3 R(A1, A2) R(A1, A2) R(A1) R(A1)
A4 R(A1, A2, A3) R(A1, A2, A3) R(A1, A2, A3) R(A1, A2, A3)

Table 2: Activities performed by each author in each sample (E: Extracting
patterns; R(A): Review of the patterns extracted/reviewed by author A; R(A,
B): Review of the patterns extracted/reviewed by authors A and B)

an ’R’ in the corresponding table cell). After the extraction of A1 and A2,
A3 reviewed their joint work (shown as R(A1, A2) in the table), pointing out
possible inaccuracies. A fourth review was performed by A4. Each inaccuracy
resulting from the review of A3 and A4 was discussed among the authors, which
in turn agreed on the final form of the extracted patterns. In the analyses of
the 30%-extension of the original sample, only A1 extracted patterns, followed
by a review of A3 and A4. As before, in the case of inconsistencies, the authors
discussed them and reached a final agreement on the correct form of the
reported patterns.15

3.3 Pattern Inference

After collecting patterns, we compare them to our previous catalog in [53], and
label the extracted patterns as follows:

– ’O’ (original): The pattern is as reported in the original catalog;
– ’N’ (new): The pattern is new, and it is not reported in the previous catalog;
– ’G’ (generalization): The extracted pattern results from generalizing a

pattern in our previous catalog.

Patterns marked as ’O’, ’N’, or ’G’ have, at least, three instances in the
analyzed samples, with a minimum of three distinct contributors. However,
even when either one or both of these two conditions are not satisfied, some
patterns can still be inferred from our catalog. We point two specific inference
rules:

I1 There exists a pattern adding a given feature, but no inverse pattern exists
in the removals sample. From the fact that every added feature should
be eventually removed, and that such removal can be achieved by simply

15 When reviewing the original and extended samples, A3 indicated five possible inconsis-
tencies: three were minor comments, whereas for the remaining two, A3 did not agree that
they were instances of a particular pattern. Upon further clarification, A3 agreed that the
two instances were indeed related to the pattern in question. A4, in turn, pointed out 7%
and 14% inconsistencies in the classification of the primary features in the additions and
removals samples, respectively. Almost all inconsistencies were confirmed, and the patterns’
frequency were changed accordingly.

20 Leonardo Passos et al.

following the opposite steps performed when adding the feature, we take
the inverse of any addition pattern to be an inferred removal if it is not
already in the catalog.

I2 There exists a pattern in the removals sample, but an inverse pattern is
not reported in the additions sample. From the rationale that a feature can
only be removed if it is first added, and that such addition can be achieved
by following the inverse steps of its removing pattern, we take the inverse
of any removal pattern to be an inferred addition if it is not already in the
catalog.

These rules are not exhaustive, and other patterns can be inferred by
additional rules (e.g., by composing patterns). However, we restrict inference
to rules I1 and I2 on the basis that the existence of their inferred patterns
is suggested by the reported inverse non-inferred patterns. To differentiate
inferred patterns from non-inferred ones, we introduce a fourth label: ’I’.

4 Pattern Catalog

This section presents the resulting catalog of variability-coevolution patterns.
Table 3 lists all the patterns and their usage frequency in our samples. Compared
to the previous catalog [53], the patterns herein reported are either as reported
before (labelled with an ’O’ in the Info column of Table 3), a generalization of
a pattern in our earlier version (labelled with a ’G’), completely new (labelled
with ’N’), or inferred (labelled with an ’I’). In the latter case, a pattern is
found in one of the samples, but an inverse pattern does not exist in the other
sample, although it is likely to exist in the evolution of the kernel. For instance,
if one adds a visible (promptable) feature controlling a specific compilation
flag as prescribed by the AVOCFF pattern (row 4), it is also the case that the
same feature should be later removed in the course of evolution, although such
pattern is not seen in the removals sample. The presented catalog also removes
one pattern from our earlier version, as the pattern is not applied by, at least,
three different developers, nor could it be inferred.

We discuss all the patterns in the following, except for rename (RNM),
which we omit due to its simplicity.16 We also present a brief discussion over
changes that do not lead to patterns.

4.1 Feature Addition Patterns (Non-Inferred)

Non-inferred patterns are those respecting our two criteria for identifying a
pattern, i.e., there exists, at least, three instances of the change, each from a
distinct source of evidence (different developer). We present nine non-inferred
patterns in the additions sample concerning two specific situations: (i) adding

16 Basically, a rename just updates all references to a given feature name f to a new name
fN in all spaces where f appears. Note that renaming does not cause any behavioural change,
nor does it change the set of cross-tree constraints.

Coevolution of Variability Models and Related Software Artifacts 21

Additions sample Removals sample
Pattern Frequency Info Pattern Frequency Info

1 AVOMF 124 O RVOMF 22 O
2 AVOGMF 11 O RVOGMF 12 O
3 AVONMF 32 O RVONMF 10 O
4 AVOCFF 4 N RVOCFF 0 I
5 AVONMCFF 3 N RVONMCFF 0 I
6 AVOAF 2 I RVOAF 6 N
7 AVMVF 3 N RVMVF 3 N
8 AIMF 12 O RIMF 3 O
9 ACINMF 2 I RCINMF 3 N
10 FCUTVOF 10 G MVOFNO 3 O
11 FCFTVOF 4 N MVOFS 3 O
12 RNM 11 O RNM 18 O

Total 218 Total 83
Sample % 81% Sample % 63%

Table 3: Collected patterns and their frequency

a new feature from completely new elements (AVOMF, AVOGMF, AVONMF,
AVOCFF, AVONMCFF, AVMVF, and AIMF); (ii) adding a new feature
created out of existing elements—featurization (FCUTVOF and FCFTVOF).
Altogether, they capture how the mapping and implementation change upon
adding a new feature in the variability model namespace.

Add Visible Optional Modular Feature (AVOMF). A visible and optional mod-
ular feature increases the user configuration space by providing a functionality
unit that can be optionally present in the resulting kernel. Modularity, in
this case, assures that the capabilities of the new feature reside in its own
compilation unit(s).

As shown in Figure 9, the pattern adds a new optional and visible feature
f in the variability model, along with its associated cross-tree constraints
(CTCf). A build rule then relates the feature presence to its compilation
units, whose files are added to the implementation space. The addition of
CAPTURE_DAVINCI_DM646X_EVM, previously discussed in Section 3, is an
instance of this pattern.

Most primary features in the additions sample (46%) fit into this pattern.
To verify where the instances of this pattern add features to, we slice the kernel
according to seven subsystems, namely arch, core, driver, firmware, fs, misc, and
net. Such slicing was proposed by Greg Kroah-Hartman, one of the main kernel
maintainers, when collecting different statistics of the evolution of the Linux
kernel [13]. These subsystems consist of files from different directories of the
kernel source code tree. The code tree is organized in 21 top-level folders, whose
descriptions are given in Table 4. A mapping between the kernel source code tree
to its associated subsystems is summarized in Table 5, with a bullet indicating
that, at least, one file in a given folder (row) maps to the corresponding
subsystem (column). The complete map is publicly available in Hartman’s

22 Leonardo Passos et al.

GitHub repository.17 By applying Hartman’s mapping to each Kconfig file, we
take the subsystem of a feature to be the same of its enclosing Kconfig file.
Once we associate each feature with a single subsystem, we count the number
of pattern instances adding primary features to each kernel subsystem (see
Table 6). In the case of the AVOMF pattern, its instances add features to the
following subsystems:

– Device driver (driver): 93.6% of the instances in this pattern concern the
addition of device drivers (i.e., features that are “plugged-in” to the kernel
to support different hardware). This high frequency is in line with previous
work [21,23,28,41] stating that Linux kernel evolution is mainly driven by
the addition of new device driver-related features.

– Architecture specific code (arch): 2.4% of the instances of this pattern add
modules that are specific to a given hardware architecture. For example, one
instance adds support for injecting machine checks when testing the kernel
for the x86 architecture. Such functionality is used by kernel developers
when performing quality assurance.

– File system (fs): 1.6% of AVOMF features relate to adding file system
functionalities, including support for integrity tests and compression support
(LZO) for the Squash file system.18

– Network (net): 1.6% of the features of this pattern provide network capabil-
ities, such as extending a network protocol with a new functionality. One
specific case adds probing support for incoming SCTP packets.

– Core functionality (core): 0.8% of the features of this pattern add a module
to the core subsystem. An example is self-test for 64-bit atomic instructions.

Instances of this pattern are either tristate (91%) or Boolean. The dominance
of tristate features follows a trend of most of the patterns related to modular
features, evidencing a strong relationship between the two. This association
is unlikely to be accidental, as modular tristate features provide flexibility
to cover different requirements and configuration purposes. For example, in
embedded platforms where hardware can be anticipated, tristate features can
be statically linked against the final kernel; in other situations, when hardware
configuration varies, tristate features can be compiled as modules and loaded
as needed.

It is worth noting that a modular feature can still be referenced in code
extensions (ifdefs) elsewhere. In such cases, the feature is scattered across files
that are not the compilation units of the feature. To verify the number of
AVOMF primary features scattered across the Linux kernel code, we iterate
over each AVOMF instance, checking out the stable kernel release that adds
the primary feature under analysis. Then, we collect all ifdefs in code whose
condition refers to the name of the primary feature. Such strategy allows to
overcome the scope limitation imposed by the commit window size.

We find that only 13 (10%) of the primary features of this pattern are
scattered elsewhere, with a small number of ifdefs. The fact that the majority
17 https://raw.github.com/gregkh/kernel-history/master/scripts/genstat.pl
18 http://squashfs.sourceforge.net/

Coevolution of Variability Models and Related Software Artifacts 23

Folder Description
arch Architecture (CPU) dependent code
block I/O scheduling algorithms for block devices
crypto Cryptography related-algorithms
Documentation Brief descriptions of each part of the implemented kernel
drivers Device drivers of different devices classes
firmware Device firmware needed to use certain drivers
fs Defines the virtual file system abstraction, along with concrete file

systems
include Kernel header files
init Kernel boot and initialization
ipc Support for inter-process communication (IPC)
kernel The main kernel code (architecture independent)
lib Library (helper) routines
mm Memory management support
net Network protocols implementation
samples Different code examples
scripts Different scripts for building the kernel
security The security framework of the kernel, known as LSM (Linux

Security Modules), supporting different access control models [70]
sound The Linux sound subsystem and related device drivers
usr Implementation of initramfs, a RAM-based root filesystem required

by the startup process; the first process (init) runs on top of it
tools Tools for building the kernel and helper programs useful for kernel

developers
virt Virtualization support

Table 4: Description of the top-level folders of the Linux kernel source code
tree (based on [11,42,68])

of features of this pattern concern modular drivers that cause little scattering
suggests that adding driver features aligns with the kernel’s architecture, as
their modules are "plugged-in" to the system, registering themselves as handlers
to specific events (e.g., hardware interrupts) [14]. Scattered modular drivers
account for 11 cases in total, with a median number of one ifdef (min=1,
max=6). Of these 11 drivers, most (6) are scattered across files in the driver
subsystem; the remaining (5) are scattered across other subsystems, with
extensions in arch (4) and core (1). The two other scattered features are
located in fs. Different from the drivers’ case, their scattering is completely
restricted to fs, introducing two and six ifdefs, respectively. It is not surprising
that the scattering in fs is local to this subsystem, as the Virtual File System
in the kernel acts as an abstraction layer for any specific file system and its
supported feature set.

Add Visible Optional Guard Modular Feature (AVOGMF). This pattern is a
specialization of AVOMF. However, we distinguish between the two and count
them separately because the structure of AVOGMF plays an important role
in the compilation process. In addition to the changes imposed by AVOMF,
the AVOGMF pattern requires that f acts as a compilation guard over an
entire directory, controlling whether the compilation process should recursively

24 Leonardo Passos et al.

Source code Subsystems
folder arch core driver firmware fs misc net

arch •
block •
crypto •
Documentation •
drivers •
firmware •
fs •
include • • • • •
init •
ipc •
kernel •
lib •
mm •
net •
samples •
scripts •
security •
sound •
usr •
tools •
virt •

Table 5: Mapping of the kernel’s top-level directories and its subsystems

Pattern Distribution across subsystems
arch core driver firmware fs misc net

AVOMF 3 1 116 0 2 0 2
AVOGMF 0 0 9 0 0 0 2
AVONMF 7 2 19 0 3 0 1
AVOCFF 0 2 2 0 0 0 0
AVONMCFF 2 0 1 0 0 0 0
AVMVF 0 1 2 0 0 0 0
AIMF 0 0 11 0 0 0 1
FCUTVOF 0 0 10 0 0 0 0
FCFTVOF 0 1 3 0 0 0 0
RNM 0 0 10 0 1 0 0

Table 6: Frequency of non-inferred patterns per subsystem (additions sample)

descend to that location. As such, it contains an additional mapping rule in
the parent Makefile:

This rule instructs Kbuild to enter a child directory f upon the presence of
that feature. Once Kbuild enters the f folder, it processes a Makefile with
the rule on how to build f itself. Note that the condition over f.o in the

Coevolution of Variability Models and Related Software Artifacts 25

Fig. 9: Definition of Add Visible Optional Modular Feature (AVOMF)

drivers/net/wireless/rtlwifi/Makefile

+obj-$(CONFIG_RTL8192SE) += rtl8192se/
...

drivers/net/wireless/rtlwifi/rtl8192se/Makefile

+rtl8192se-objs := dm.o fw.o hw.o led.o phy.o rf.o \
+ sw.o table.o trx.o
+
+obj-$(CONFIG_RTL8192SE) += rtl8192se.o
...

Fig. 10: Example of Add Visible Optional Guard Modular Feature (AVOGMF)

build rule in the child Makefile is redundant. Developers, however, tend to
include it to prevent others from interpreting that the compilation of f.o is
not subject to the presence of the f feature. The addition of the device driver
supporting Realtek’s© 8192 network adapter illustrates this (see Figure 10):19
in the parent Makefile (top snippet in the figure), Kbuild assesses whether
RTL8192SE is present. If so, it enters the rtl8192se directory and processes
the child Makefile there (bottom snippet); in that case, RTL8192SE’s presence
enables the compilation of all objects in the rtl8192se-objs list.

This pattern comprises 4% of all additions, and two idioms result from its
usage: (a) developers create guard modular features to control the compilation
of a single feature, whose implementation is given by the files in the guarded
directory. This represents 82% of the instances of this pattern, where all

19 See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=85e09b40

26 Leonardo Passos et al.

Fig. 11: Definition of Add Visible Optional Non-Modular Feature (AVONMF)

instances add features to the driver subsystem; (b) a guard modular feature
roots a subtree in the variability model with, at least, one modular descendant
feature. All modular features in the subtree reside in the f directory. All the
instances of the AVOGMF pattern that relate to this idiom usage add features
to the net subsystem.

Add Visible Optional Non-Modular Feature (AVONMF). This pattern concerns
the addition of features that do not fit inside a module, but rather reside in an
existing host code; 12% of the additions instances match this pattern.

As shown in Figure 11, this pattern adds a visible optional feature in
the variability model, while not changing the mapping. The implementation
changes by including new conditionally compiled code blocks whose condition
refers to f (note that the alternative code C2 may be absent).

This pattern serves the purpose of extending existing capabilities in code.
The following patch snippet illustrates this:20

+#ifdef CONFIG_SQUASHFS_4K_DEVBLK_SIZE
+#define SQUASHFS_DEVBLK_SIZE 4096
+#else
+#define SQUASHFS_DEVBLK_SIZE 1024
+#endif

If SQUASHFS_4K_DEVBLK_SIZE (matches f) is present, the block size of
the Squash file system is set to four kilobytes; otherwise it is set to one kilobyte.

Following the granularity measures proposed by previous studies [33,39], we
verify at which granularity level these extensions take place. The granularity
level is defined by the smallest enclosing context, with seven possible levels:
global (e.g., an ifdef annotating an entire function declaration), function (e.g.,
an ifdef annotating a statement in the body of a function), type (e.g., an ifdef
annotating a field in a struct), block (e.g., an ifdef annotating a statement

20 See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=7657cacf

Coevolution of Variability Models and Related Software Artifacts 27

inside the body of a for-loop), statement (e.g., an ifdef annotating the type
or a name of a variable declaration), expression (e.g., an ifdef annotating
the use of a particular operator or operand), and function signature (e.g., an
ifdef annotating a function parameter declaration). Coarse-grained extensions
control the inclusion/exclusion of entire functions or data structures, whereas
fine-grained extensions control source code pieces, such as statement and
expression extensions or function signature changes [33]. From a total of 122
code ifdefs in the commit windows of all non-modular features of this pattern,
44.3% are extensions at the global level (e.g., declaring a new macro, variable,
function, structure, etc.), 32.8% occur at the function level (e.g., by adding
statements inside a function), 13.1% extend a block statement (e.g., adding a
statement inside an if-block), and 9% extend a type declaration (e.g., adding a
field to a structure). This distribution is similar to the one found by Liebig et
al. [39] when investigating 40 pre-processor-based systems. As we found only
a single case (0.8%) of an extension at the statement level and no extensions
at the level of expressions or function signatures, our findings strengthens the
claim of Liebig et al. that fine-grained extensions are not frequent in practice.
Interestingly, f negatively affects the conditionally compiled code in 3% of the
extensions, i.,e., its presence excludes a portion of code in the post-processed
file (negated f guards an ifdef block that does not have an else part).

In contrast to the modular features, in 94% of the instances of this pattern,
f is a Boolean feature. Since it does not introduce any compilation unit (and
thus, no build rules), it is not possible to directly control whether f should
be statically present in the resulting kernel or whether it should be possible
to load f dynamically at runtime. The only situation in which f is tristate
is when it contains a reverse dependency to a modular tristate feature fs;
if declared as Boolean, f would cause fs to be statically compiled into the
resulting kernel, and thus, breaking the flexibility of the runtime variability
related to fs. However, visible optional non-modular tristate features are rather
infrequent, as only two instances appear in our sample; one of them has no
selection towards another tristate feature, and thus, provides no benefit over a
Boolean declaration.

Most instances of the AVONMF pattern add features to the driver subsys-
tem (59.3%), although less frequently than AVOMF instances. In the remaining,
21.9% relate to adding features in arch, 9.4% in fs, 6.3% in core, and 3.1% in
net.

Add Visible Optional Compilation Flag Feature (AVOCFF). This pattern
captures the addition of features that exist with the sole purpose of enabling
specific compilation flags; it comprises 1% of all additions in our sample. This
pattern is new in our catalog and follows directly from our refined recurrence
measure. The purpose of the pattern is to expose a compilation flag that
enables specific diagnostic capabilities, such as profiling and debug messages.
Figure 12 shows the pattern, and an example is given in Figure 13.21 Selecting
21 See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=72246da4

28 Leonardo Passos et al.

Fig. 12: Definition of Add Visible Optional Compilation Flag Feature (AV-
OCFF)

1 drivers/usb/dwc3/Kconfig
2

3 +config USB_DWC3_VERBOSE
4 + bool "Enable Verbose Debugging Messages"
5 + depends on USB_DWC3_DEBUG
6 + help
7 + Say Y here to enable verbose debugging messages on
8 + DWC3 Driver.
9 +

10 ...
11

12 drivers/usb/dwc3/Makefile
13

14 +ccflags-$(CONFIG_USB_DWC3_VERBOSE) += -DVERBOSE_DEBUG
15 ...
16

Fig. 13: Example of Add Visible Optional Compilation Flag Feature (AVOCFF)

USB_DWC3_VERBOSE, a new feature added to the Kconfig model (Figure
13, lines 3–8), defines the macro symbol VERBOSE_DEBUG, which is then
referred in code, controlling whether calls to specific debug routines should
be in the post-processed file. The definition of VERBOSE_DEBUG occurs by
adding the compilation flag -DVERBOSE_DEBUG to the C flags list (ccflags).

In the investigated sample, half of the AVOCFF instances add features to
core, while the remaining add features to driver.

Add Visible Optional Non-Modular Compilation Flag Feature (AVONMCFF).
This pattern is a composition of AVONMF and AVOCFF. It is not accounted
in neither AVONMF nor AVOCFF, as the former does not change the mapping,

Coevolution of Variability Models and Related Software Artifacts 29

Fig. 14: Definition of Add Visible Mandatory Value-Based Feature (AVMVF)

whereas the latter does not affect the implementation. To cover both types of
changes, we introduce the new pattern AVONMCFF, which is equivalent to the
composition of the two base patterns. The result of the AVONMCFF pattern
in the after state is a new visible optional feature in the variability model,
and a new compilation flag whose activation is subject to the presence of the
newly added feature, together with ifdefs in code that refer to it. Since the new
feature does not hold a compilation unit of its own, it is non-modular. The
pattern has three instances, corresponding to 1% of the additions sample size.
All three instances are Boolean, adding features to arch (2) and driver (1).

Add Visible Mandatory Value-Based Feature (AVMVF). This pattern, shown
in Figure 14, covers the addition of a mandatory visible value-based feature
(integer or string). As the feature is just a place-holder for a value, it does not
add any cross-tree constraint, nor any compilation unit, preserving both CTC
andM . The feature is, however, referred in the implementation when initializing
specific parts of the code. Figure 15 exemplifies this.22 The newly added value-
based feature RCU_BOOST_PRIO is referred in kernel/rcutiny.c (line 27) to
initialize a scheduling parameter. In the example, RCU_BOOST_PRIO depends
on RCU_BOOST. Such dependency, however, is not a cross-tree constraint.
Rather, the dependency is used by the Linux kernel configurator to place
RCU_BOOST_PRIO as a child of RCU_BOOST. Thus, no new cross-tree
constraint is added. Three instances of our sample (1%) fall into this pattern,
adding features to core (1) and driver (2).

Add Internal Modular Feature (AIMF). Internal modular features are not
directly exposed to users during configuration, as they are invisible (non-
promptable). Such features exist to provide a common infrastructure to other

22 See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=24278d14

30 Leonardo Passos et al.

1 init/Kconfig
2

3 +config RCU_BOOST_PRIO
4 + int "Real-time priority to boost RCU readers to"
5 + range 1 99
6 + depends on RCU_BOOST
7 + default 1
8 + help
9 + This option specifies the real-time priority to which

10 + preempted RCU readers are to be boosted. If you are
11 + working with CPU-bound real-time applications, you
12 + should specify a priority higher then the highest-priority
13 + CPU-bound application.
14 +
15 ...
16

17 kernel/rcutiny.c
18

19 ...
20 static int __init rcu_spawn_kthreads(void)
21 {
22 - rcu_cbs_task = kthread_run(rcu_cbs, NULL, "rcu_cbs");
23 + struct sched_param sp;
24

25 + rcu_kthread_task = kthread_run(rcu_kthread, NULL,
26 + "rcu_kthread");
27 + sp.sched_priority = RCU_BOOST_PRIO;
28 + sched_setscheduler_nocheck(rcu_kthread_task, SCHED_FIFO, &sp);
29 return 0;
30 }
31 ...
32

Fig. 15: Example of Add Visible Mandatory Value-Based Feature (AVMVF)

features, which in turn select them by means of reverse dependencies. Overall,
this pattern comprises 4% of all additions in our sample.

This pattern describes how internal modular features are added: as with
other modular features, the variability model, mapping, and implementation
change to accommodate the new feature (referred as f1). However, two key
characteristics arise: (i) f1 is invisible; (ii) an additional constraint states
that another feature f2 selects f1 (represented as an implication). Thus, the
cross-tree constraints in the after-state are: CTC’ = CTC ∪CTCf1∪{f2 → f1}.

Except for one feature in net, all other instances of AIMF concern the
addition of driver-related features (92%).

Coevolution of Variability Models and Related Software Artifacts 31

Fig. 16: Definition of Featurize Compilation Unit to Visible Optional Fea-
ture (FCUTVOF)

Featurize Compilation Unit to Visible Optional Feature (FCUTVOF). Featur-
ization occurs when existing elements are exposed as new features. One specific
kind of featurization is when an existing compilation unit, initially subject to
the presence of a feature p, becomes associated with its own feature, which is
in turn created as a result. Such situation occurs in 4% of additions.

In the extracted pattern, illustrated in Figure 16, a feature p controls a
set of object files f1.o . . . fn.o. One of these objects, however, is not essential
to the functionality provided by p; rather, its capability is optional. In this
case, fi.o is featurized, i.e., a new feature fi is created to control whether
fi.o should be compiled or not. The new feature, in turn, is placed in the
variability model under an existing feature q. Features p and q may or not be
the same, which generalizes our original definition in [53],23 which imposed p
and q to be equal. Upon the creation of fi, fi.o is then removed from the list
of objects controlled by p. Featurizing fi.o gives users a finer-grained control
over the configuration process, while decreasing the granularity of p. That
prevents unnecessary functionality to be shipped in the resulting kernel, and
in turn, improves its memory usage and boot time. The example shown in
Figure 17 illustrates the featurization of me4000.o, previously controlled by
COMEDI_PCI_DRIVERS, into the new feature COMEDI_ME4000.24

All 10 instances of the FCUTVOF pattern add features to the driver
subsystem.

Featurize Code Fragment to Visible Optional Feature (FCFTVOF). In this
featurization pattern (see Figure 18), an unconditional code fragment C0

23 In our previous catalog [53], we named the pattern as Featurize code (FTC).
24 See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=f1d7dbbe

32 Leonardo Passos et al.

drivers/staging/comedi/Kconfig

menuconfig COMEDI_PCI_DRIVERS
tristate "Comedi PCI drivers"

+config COMEDI_ME4000
+ tristate "Meilhaus ME-4000 support"
+ help
+ Enable support for Meilhaus PCI data acquisition cards
+ ME-4650, ME-4670i, ME-4680, ME-4680i and ME-4680
...

drivers/staging/comedi/drivers/Makefile

-obj-$(CONFIG_COMEDI_PCI_DRIVERS) += me4000.o
+obj-$(CONFIG_COMEDI_ME4000) += me4000.o
...

Fig. 17: Example of Featurize Compilation Unit to Visible Optional Fea-
ture (FCUTVOF)

becomes conditionally compiled and bound to the presence of a newly added
feature f . To cover the case where f is not present, an alternative piece of
code is given (C1). When C1 is not empty, the goal of the pattern is to provide
an alternative behavior to an already existing implementation. Otherwise, the
pattern extracts optional behaviour, decreasing the footprint of the resulting
object code, which improves overall performance.

This FCFTVOF pattern covers 1% (4) of the sampled additions, and for the
most part (3) it concerns the featurization of code fragments in driver-related
features. Figure 19 provides an example of the featurization of volume-related
functions in the subdriver of the ACPI ALSA driver for ThinkPad©.25 If
THINKPAD_ACPI_ALSA_SUPPORT is present (a newly added feature), the
volume-subdriver registers support for volume capabilities (not shown) and
successfully initializes, as given by the return value in its init function (Figure 19,
line 27); otherwise, THINKPAD_ACPI_ALSA_SUPPORT is not present, and
volume capability-functions are not compiled in the resulting driver, causing the
initialization of the volume-subdriver to fail, as given by the return value one
(line 39). The commit log message of the patch confirms that the featurization
is motivated by performance optimization:

"Allow the user to choose through Kconfig if the Console Audio Control
interface (aka "volume subdriver") should be available or not. This not
only saves some memory, but also allows the thinkpad-acpi driver to

25 See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=ff850c33

Coevolution of Variability Models and Related Software Artifacts 33

Fig. 18: Definition of Featurize Code Fragment to Visible Optional Fea-
ture (FCFTVOF)

be built-in even if ALSA is modular when the console audio control
interface is not wanted..."

4.2 Feature Addition Patterns (Inferred)

We infer two patterns in the additions sample: Add Visible Optional Abstract
Feature (AVOAF) and Add Computed Internal Non-Modular Feature (AC-
INMF). Both inferred patterns are bellow the threshold of three instances,
but they have a corresponding inverse non-inferred pattern in the removals
sample. The existence of an inverse non-inferred pattern in the removals sample
suggests the inferred ones.

Add Visible Optional Abstract Feature (AVOAF). This inferred pattern con-
cerns the addition of abstract features, i.e., features that are exclusive to the
variability model, and thus, are not referred in other spaces [66]. All the four
cases of adding abstract features in the unexcluded portion of the additions
sample relate to Boolean and optional features, but only half are visible. Thus,
this pattern is under our set threshold, as it has only two instances. However,
as we report an inverse non-inferred pattern (RVOAF) in the removals sample
(see Section 4.3), we classify these two visible features as part of an inferred
pattern in the additions sample.

Interestingly, all abstract features in the addition sample are leafs in the
variability model (as opposed to being internal nodes). In the cases where these
abstract features are visible, their addition aims at capturing a configuration
aspect that other features rely on. These features, in turn, do affect the mapping
and/or implementation. Figure 20 illustrates this:26 the addition of the visible
optional abstract feature RD_XZ in the misc subsystem (lines 4–12) captures

26 See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=3ebe1243

34 Leonardo Passos et al.

1 drivers/platform/x86/Kconfig
2

3 +config THINKPAD_ACPI_ALSA_SUPPORT
4 + bool "Console audio control ALSA interface"
5 + depends on THINKPAD_ACPI
6 + depends on SND
7 + depends on SND = y || THINKPAD_ACPI = SND
8 + default y
9 + ---help---

10 + Enables monitoring of the built-in console audio output
11 + control (headphone and speakers), which is operated by
12 + the mute and (in some ThinkPad models) volume hotkeys.
13 ...
14

15 drivers/platform/x86/thinkpad_acpi.c
16

17 +#ifdef CONFIG_THINKPAD_ACPI_ALSA_SUPPORT
18 ...
19 // Volume-related functions
20 ...
21 static int __init volume_init(struct ibm_init_struct *iibm)
22 {
23 ...
24 vdbg_printk(TPACPI_DBG_INIT,
25 "initializing volume subdriver\n");
26 ...
27 return 0;
28 }
29 ...
30 +#else /* !CONFIG_THINKPAD_ACPI_ALSA_SUPPORT */
31 +
32 +#define alsa_card NULL
33 + ...
34 +static int __init volume_init(struct ibm_init_struct *iibm)
35 +{
36 + printk(TPACPI_INFO,
37 + "volume: disabled as there is no ALSA support...\n");
38 +
39 + return 1;
40 +}
41 +
42 +#endif
43

Fig. 19: Example of Featurize Compilation Unit to Visible Optional Fea-
ture (FCUTVOF)

Coevolution of Variability Models and Related Software Artifacts 35

whether users want support for initial RAM disk compression. An initial
RAM disk (initrd) is an initial root file system loaded as part of the kernel
booting process, providing a minimal set of directories and executables that
support the booting process (e.g., the insmod executable will be called to load
different kernel modules, such as device drivers) before the actual file system
is mounted. An initial RAM disk is kept as a compressed file, which is then
uncompressed during the boot and placed in the primary memory (RAM).
Upon the selection of RD_XZ, a reverse dependency selects DECOMPRESS_XZ,
causing decompress_unxz.o to be compiled in a supporting library for the kernel
(line 20). The other instance of this inferred pattern concerns the addition of
an IPV4 feature in net.

The other two situations of adding abstract features relate to invisible ones.
The two invisible features are capability abstractions [9] over the target hard-
ware architecture for the kernel. Figure 21 illustrates this:27 HAVE_KERNEL_GZIP
(line 3) abstracts over gzip compression support of the target kernel image.
As this functionality is not specific to x86, another feature KERNEL_GZIP
exists, and its selection depends on the existing support of the target hardware
architecture. Hence, x86 explicitly states its supported capabilities by selecting
them, which includes HAVE_KERNEL_GZIP (line 23). Although this situation
is actually prescribed in the Kconfig manual,28 it was not found recurrent in
our sample, and thus, we do not report it as a pattern. Moreover, it cannot be
inferred, as we do not report an inverse pattern in the removals sample.

Add Computed Internal Non-Modular Feature (ACINMF). This inferred pattern
concerns the addition of a feature that is not promptable, and thus, it is invisible
to users. Its presence is computed from a constraint setting the default value
of the feature. The added feature is referred in code by means of ifdefs; as
it does not have a compilation unit, the feature is non-modular. Computed
internal features exist to encapsulate specific constraints, which simplifies the
encoded variability; instead of repeating the constraint at each variation point
that it is needed, developers encapsulate it in a single feature, which facilitates
later maintenance when updating the constraint. Two instances of this inferred
pattern appear in the additions sample, and both concern Boolean features
being added to arch and core, respectively.

4.3 Feature Removal Patterns (Non-Inferred)

Non-inferred patterns in the removal sample capture how the mapping and
implementation spaces change, if at all, upon the removal of an existing feature
in the variability model. Excluding rename (RNM), we report nine non-inferred
patterns in the removals sample, from which seven capture retirement situations
directly matching their counterpart in the additions sample: Retire Visible

27 See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=2e9f3bdd
28 https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

36 Leonardo Passos et al.

1

2 usr/Kconfig
3

4 +config RD_XZ
5 + bool "Support initial ramdisks compressed using XZ"
6 + if EMBEDDED
7 + default !EMBEDDED
8 + depends on BLK_DEV_INITRD
9 + select DECOMPRESS_XZ

10 + help
11 + Support loading of a XZ encoded initial ramdisk or cpio
12 + buffer. If unsure, say N.
13 +
14 ...
15

16 lib/Makefile
17

18 +# XZ
19 lib-$(CONFIG_DECOMPRESS_LZMA) += decompress_unlzma.o
20 +lib-$(CONFIG_DECOMPRESS_XZ) += decompress_unxz.o
21 +
22 ...

Fig. 20: Example of Add Visible Optional Abstract Feature (AVOAF)

Optional Modular Feature (RVOMF), Retire Visible Optional Guard Modular
Feature (RVOGMF), Retire Visible Optional Non-Modular Feature (RVONMF),
Retire Visible Optional Abstract Feature (RVOAF), Retire Visible Mandatory
Value-Based Feature (RVMVF), Retire Internal Modular Feature (RIMF), and
Retire Computed Internal Non-Modular Feature (RCINMF). Among these,
retirement patterns removing visible optional features and affecting the imple-
mentation space account for most removal cases. The inverse addition patterns
matching these removal patterns show the same trend. Thus, both trends
suggest that the kernel evolution is mainly driven by adding or removing visible
optional features with some associated implementation. Moreover, as observed
in the additions sample, most remove patterns relate to features in the driver
subsystem (see Table 7).

Kernel maintainers retire features when: (a) the features are under staging
(unstable features) for a long time, and there is no indication that they will
gain enough quality to be merged into the main kernel. Reasons include broken,
unmaintained, or buggy features, or non-adherence to development conventions;
(b) the features break due to changes elsewhere and no effort is put to fixing
them; (c) the features are not used and are unmaintained for a long time; (d)
another feature supersedes an obsolete one, causing the latter to be retired.

Interestingly, 67% of RIMF and RVMVF, 64% of RVONMF, 50% of RVOAF,
and 27% of the RVOMF instances are removed as a consequence of retiring the

Coevolution of Variability Models and Related Software Artifacts 37

1 init/Kconfig
2

3 +config HAVE_KERNEL_GZIP
4 + bool
5 +
6

7 config KERNEL_GZIP
8 - bool "Gzip"
9 + depends on HAVE_KERNEL_GZIP

10 help
11 The old and tried gzip compression. Its compression ratio
12 is the poorest among the 3 choices; however its speed
13 (both compression and decompression) is the fastest.
14

15 ...
16

17 arch/x86/Kconfig
18

19 config X86
20 select HAVE_GENERIC_DMA_COHERENT if X86_32
21 select HAVE_EFFICIENT_UNALIGNED_ACCESS
22 select USER_STACKTRACE_SUPPORT
23 + select HAVE_KERNEL_GZIP
24 ...
25

Fig. 21: Example of an invisible optional abstract feature

Pattern Distribution across subsystems
arch core driver firmware fs misc net

RVOMF 1 1 20 0 0 0 0
RVOGMF 0 0 12 0 0 0 0
RVONMF 0 0 10 0 0 0 0
RVOAF 0 0 4 0 0 0 2
RVMVF 0 0 2 0 0 0 1
RIMF 0 0 3 0 0 0 0
RCINMF 2 0 1 0 0 0 0
MVOFNO 0 0 3 0 0 0 0
MVOFS 0 0 3 0 0 0 0
RNM 0 0 16 0 1 0 1

Table 7: Frequency of non-inferred patterns per subsystem (removals sample)

whole subtree containing them. This suggests that some forms of retirement
occur in a coarse-grained manner and are triggered by the removal of a feature
rooting an entire subtree, along with all its descendants.

38 Leonardo Passos et al.

Fig. 22: Definition of Merge Visible Optional Feature into New One (MVOFNO)

Non-retirement patterns also exist, and capture cases where a feature is
merged into another one. Two such patterns exist: Merge Visible Optional
Feature into New One (MVOFNO) and Merge Visible Optional Feature into
Sibling (MVOFS). The instances of each merge pattern concern the merging of
features in the driver subsystem. It is worth noting that in our earlier catalog
[53], we also reported a third pattern: Merge Visible Optional Feature into
Computed Internal. Such pattern, however, has been dropped from this new
catalog, since it does not contain, at least, three distinct sources of evidence,
nor could it be inferred. We present MVOFNO and MVOFS in the following.

Merge Visible Optional Feature into New One (MVOFNO). This pattern
concerns the creation of a feature from an existing one, which is then enhanced
with new code. Figure 22 illustrates the pattern. A feature f1 is renamed
to f2, and its set of cross-tree constraints is replaced with a new set CTCf2 .
Furthermore, all references to f1 are replaced by references to f2 in all spaces.
At the implementation level, f2 > f1 captures the enhanced code, meaning
that f2 supports all the capabilities of f1, plus new ones.

Of all instances in the removals sample, 2% (3) fit into this pattern and
often relate to generalizing drivers to support a set of related hardware family.

As a concrete example, consider the merge of BATTERY_PALMTX into
the new feature BATTERY_WM97XX supporting a whole family of chips.29 As
shown in the associated patch (see Figure 23), developers drop the original cross-
tree constraints and rename the previous feature from the variability model and
mapping. Moreover, the code is updated with various information about the new
driver (not shown). Note that in the example, the merge changes the associated
help text, but it does not relate the new feature back to BATTERY_PALMTX.

29 See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=4e9687d9

Coevolution of Variability Models and Related Software Artifacts 39

drivers/power/Kconfig

-config BATTERY_PALMTX
- tristate "Palm T|X battery"
- depends on MACH_PALMTX
+config BATTERY_WM97XX
+ bool "WM97xx generic battery driver"
+ depends on TOUCHSCREEN_WM97XX

help
- Say Y to enable support for the battery in Palm T|X.
+ Say Y to enable support for battery measured by WM97xx
...

drivers/power/Makefile

-obj-$(CONFIG_BATTERY_PALMTX) += palmtx_battery.o
+obj-$(CONFIG_BATTERY_WM97XX) += wm97xx_battery.o
...

Fig. 23: Example of Merge Visible Optional Feature into New One (MVOFNO)

Thus, when users migrate towards a newer kernel with BATTERY_WM97XX,
they may incorrectly conclude that BATTERY_PALMTX is no longer supported.
Hence, merges can cause the false impression that some features cease to exist.

Merge Visible Optional Feature into Sibling (MVOFS). This pattern covers the
situation in which developers merge a visible optional feature into its sibling
(see Figure 2), due to their similarity. The merging of FB_IMAC into FB_EFI,
previously discussed in Section 2.2, exemplifies the pattern.

This pattern aims at easing maintenance, as keeping two similar features
might require a duplicate effort whenever a change occurs in either of them.
As other merges, this pattern is responsible for 2% (3) of all removals in the
sample.

4.4 Feature Removal Patterns (Inferred)

We infer two removal patterns: Retire Visible Optional Compilation Flag
Feature (RVOCFF) and Retire Visible Optional Non-Modular Compilation
Flag Feature (RVONMCFF). Opposed to the inferred patterns in the additions
sample, we do not find any instances of these two patterns. However, as these
feature types are added as seen in the additions sample, it is reasonable to
assume that one way of retiring such features is by performing the opposite
steps of their addition.

40 Leonardo Passos et al.

4.5 Non-Patterns in the Additions and Removals Samples

The patterns reported in Table 3 cover most of the additions (81%) and removals
(63%) we analyzed. However, not every change results in a pattern. Following
the names defined in the previous section, the additions that do not match a
pattern and are not excluded from analysis (38) fall into the following cases:

– Addition of guard features (5), i.e., features whose sole purpose is to
guarantee the compilation of the content inside a given folder. Although
such case respects the defined threshold, this cluster does not hold three
distinct sources of evidence.

– Addition of internal optional abstract features (2).
– Addition of computed internal modular features (2).
– Addition of a computed internal non-modular feature whose extension

combines new code fragments with existing lines of code (1).
– Addition of an internal mandatory modular feature (1).
– Addition of internal mandatory non-modular features (2).
– Addition of internal optional non-modular features (2).
– Addition of a computed value-based feature, i.e., a value-based feature

whose presence is computed (1).
– Different situations of exposing existing code as a feature (15).
– Distinct merge cases (4).
– Featurization of existing constraints in the variability model (2).
– Combination of the rename of a feature and the split of its compilation unit
(1).

In the case of the 38 unexcluded instances in the removals sample that are
not put as part of a pattern, we report the following situations:

– Removal of individual cases of internal features (4) not fitting RIMF nor
RCINMF. A concrete example includes the removal of an internal optional
compilation flag feature.

– Different cases where a feature becomes an integral part of the code, while
being removed from the variability model (16).

– Different merge situations that do not lead to patterns (17).
– One split case.

Compared to the additions sample, removals tend to contain more merge-
related changes, with a rich realization that leads to different ways on how to
accomplish them. Consequently, few merge patterns arise.

5 Summary of Findings and Further Discussion

Based on the extracted catalog, we discuss some evolution principles revealed
by the analysis of the reported patterns, followed by a discussion of how our
patterns already point to deficiencies in state-of-the-art tools/techniques. In
addition, we argue for a new evolution theory in the software-product-line field.

Coevolution of Variability Models and Related Software Artifacts 41

5.1 Kernel Evolution Principles

In our catalog, the two most frequent patterns are AVOMF and AVONMF,
accounting for 58% of all investigated feature additions. Together, these two
patterns reveal some key principles governing the Linux kernel evolution.

The AVOMF pattern, the most recurrent pattern in our catalog, shows
that most additions introduce modular features, i.e., features that have their
own compilation unit(s). This high degree of modularity allows the kernel
developers to confine implementation under well-defined interfaces (e.g., the
driver-development API), causing changes to be localized and fostering parallel
development—a key strategy in the distributed setting in which the kernel
is developed. If features are not fully modular, they are, at least, not heavily
scattered across the kernel. Instead, scattering is restricted mostly to files in
the same subsystem as their associated primary features. This suggests that
Linux kernel evolution is kept in line with the underlying software architecture.

The extensions introduced by non-modular features, as prescribed by
AVONMF, are coarse-grained, occurring mostly at the global and function
levels. Coarse-grained extensions suggest a disciplined usage of ifdefs, as anno-
tations align with the syntactic units of the host programming language. As
argued by Liebig et. al [39,40], disciplined annotations facilitate maintenance
activities (e.g., refactoring in the presence of ifdefs) and even make it possible
to rewrite scattered features by means of other alternative techniques that
could modularize them (e.g., using aspects [35]).

The dominance of modular features, low scattering, and coarse-grained
annotations mitigates the challenges imposed by the use of ifdef annotations
on program comprehension [20,31,38,62] and on the potential of introducing
bugs [19,34]. While modularity is supported by the plugin architecture of the
kernel, low scattering and coarse grain annotations appear to follow directly
from coding guidelines related to ifdef use:30

"Code cluttered with ifdefs is difficult to read and maintain. Don’t do
it. Instead, put your ifdefs in a header, and conditionally define ‘static
inline‘ functions, or macros, which are used in the code. Let the compiler
optimize away the "no-op" case."

The kernel development process also reinforces that understanding:31

"The C pre-processor seems to present a powerful temptation to some
C programmers, who see it as a way to efficiently encode a great deal of
flexibility into a source file. But the pre-processor is not C, and heavy
use of it results in code which is much harder for others to read and
harder for the compiler to check for correctness. Heavy pre-processor
use is almost always a sign of code which needs some cleanup work [...]
Conditional compilation with #ifdef is, indeed, a powerful feature, and

30 https://www.kernel.org/doc/Documentation/SubmittingPatches
31 https://www.kernel.org/doc/Documentation/development-process/4.Coding

42 Leonardo Passos et al.

it is used within the kernel. But there is little desire to see code which is
sprinkled liberally with #ifdef blocks."

which is further stressed by Linus Torvalds himself when rejecting a contributed
patch:32

"Note that there is no way I will ever apply this particular patch for
a very simple reason: #ifdef ’s in code [...] And make your #ifdef’s be
outside the code. I hate code that has #ifdef’s. It’s a major design
mistake [...] So please spend some time cleaning it up, I can’t look at it
like this."

—Linus Torvalds, Wed, 8 Aug 2001 09:40:07 (fa.linux.kernel newsgroup)

Having the #ifdef ’s outside the code tends to have two advantages:

- it makes the code much more readable, and doesn’t split things up.

- you have to choose your abstraction interfaces more carefully, which
in turn tends to make for better code.

Abstraction is nice - _especially_ when you have a compiler that sees
through the abstraction and can generate code as if it wasn’t there.

—Linus Torvalds, Wed, 8 Aug 2001 12:14:32 (fa.linux.kernel newsgroup)

5.2 Patterns: Empirical Evidence

Deficiency in Existing Tools/Techniques Our pattern catalog lists additions
and removal situations that stem from a large and complex real-world system.
Although we cannot claim that our patterns are representative of all the changes
performed in the evolution of all kinds of variant-rich systems, some patterns
already capture real evolution scenarios that some state-of-the-art variability
evolution techniques are not able to handle correctly.

To illustrate our point, consider the edit-based reasoning technique proposed
by Thüm et al. [65]. They categorize changes in the variability model as:

– Generalization: The introduced changes in the variability model do not
impact previous valid configurations. The changes, however, allow new valid
configurations.

– Specialization: The changes decrease the set of previously valid configura-
tions.

– Refactoring : The set of valid configurations resulting from the changes
remains the same.

– Arbitrary edit : None of the above.

32 http://yarchive.net/comp/linux/ifdefs.html

Coevolution of Variability Models and Related Software Artifacts 43

In Thüm’s approach, reasoning is performed by efficiently translating both
the original variability model and the one resulting from the changes into a
satisfiability problem; by avoiding an exponential explosion of CNF clauses, the
proposed reasoning has been tested over large models, showing to scale with
randomly-generated models with up to 10,000 features. Moreover, reasoning
does not require variability models to have the same set of features, as gen-
eralization can include new ones, and specialization remove others. This is in
contrast to previous work [29,63], which limited the focus to either equivalence
[63] or specialization [29] of variability models with the same set of features.

Despite the advances of the work of Thüm et al., their approach may not
produce sound results in the case of changes that affect the feature set, but
that preserve the overall functionality of the target software through changes
in other spaces. The merging of FB_IMAC into FB_EFI, discussed in Section
2.2, illustrates this situation. While FB_IMAC is removed from the variability
model, FB_EFI supersedes the removed feature in the implementation space.
Furthermore, since FB_EFI has the same cross-tree constraints as FB_IMAC,
no constraint is lost (a renaming refactoring updates references to FB_IMAC
to become references to FB_EFI). After the merge, functionality is preserved,
as support for FB_IMAC is now given by FB_EFI. However, since the edit-
reasoning technique of Thüm et al. considers only changes of the variability
model, it would report the discussed merge as specialization, which would be
incorrect; after the merge, the resulting system would still be compatible with
the one prior to the change, and as such, it would preserve all the existing
variants. Other techniques, such as those proposed in [29,63], are not even able
to process such a change, even if restricted to changes in the variability model
only; these techniques require the same feature set.

Finally, our patterns provide preliminary evidence of specific evolution
practices that ought to be of interest to tool builders. When retiring features,
for instance, Linux kernel developers often remove entire subtrees in the
variability model, removing all features therein, along with their associated
artifacts. Further studies shall confirm whether such practice is also found in
other systems.

The Need for New Theories Our catalog shows that feature retirement comprises
most of the patterns in the removals sample. Thus, removals are frequent in
the evolution of the Linux kernel. While the MVOFS and MVOFNO patterns
are captured by the existing theory of software-product-line refinement [10],
retirement patterns are not. Thus, a new theory of product-line evolution that
covers not only refinement, but also retirement situations is needed. As our
catalog is the first of its kind, our patterns can serve as a starting point for
understanding specific types of feature removals that should be accounted for
in new theories.

44 Leonardo Passos et al.

6 Threats to Validity

There is a threat that our analysis does not reflect the whole population of
feature additions/removals in the Linux kernel. To mitigate this threat, we rely
on randomly collected samples in the hope that they are representative of the
additions and removals found in the target population of the x86 architecture.

Our scoping decisions threaten external validity. First, our analysis focuses
on additions and removals in the variability model of the x86 architecture, while
observing how related artifacts coevolve as a result. Despite existing evidence
that the variability model of the x86 architecture follows a similar growth in
comparison to the variability model of the whole kernel [41], it is not safe to
claim that our patterns are representative for all kernel architectures. Similarly,
we cannot claim that our patterns are representative of feature additions and
removals as found in other variant-rich software systems, open-source or not.
As a first study of its kind, our work shall be succeeded by other studies to
verify whether the reported patterns are exclusive to the evolution of the Linux
kernel or whether they are also found in other systems. Any system organized
in terms of a variability model, a mapping, and source code that relies on ifdef
annotations, is a prospective candidate. Examples include other open-source
Kconfig-based software systems [9,45], the eCos real-time operating system
[44], and even industrial software product lines [6].

The size of the samples is a threat in our study, although minor: if a different
and larger sample is used, new patterns may be found, possibly with a different
frequency. However, the patterns we report are still valid (although not possibly
found in the other sample), as they are selected from clusters with, at least,
three instances and with three or more distinct contributors.

The choice of a recurrence measure is a threat to internal validity. We
argue, however, that the use of, at least, three instances assures the inclusion
of less frequent patterns, while still requiring a minimal recurrence degree.
Furthermore, having, at least, three instances prevents us from incorrectly
reporting non-inferred patterns over extreme outliers (rare evolution scenarios).
To avoid bias towards personal change styles, the non-inferred patterns are also
required to have three distinct sources of evidence, meaning that the patterns
have been employed by, at least, three distinct developers. Inferred patterns,
in contrast, do not guarantee the existence of, at least, three instances, nor
three distinct sources of evidence. Thus, inferred patterns impose an additional
threat. We argue, however, that it is logical to assume the existence of an
inferred pattern, as long as we provide evidence that its inverse pattern is not
inferred. Such guarantee follows from our methodology (see Section 3). To
prevent readers from interpreting inferred patterns as non-inferred ones, we
clearly label them with ’I’ in Table 3.

Manually extracting and classifying patterns raises a threat to construct
validity. We mitigate this threat by devising and following a methodology with a
well-defined sequence of steps. Some steps, however, involve subjective analysis
(e.g., defining the size of commit windows and cluster categories). Following best
practices in case study research [57], subjectivity is mitigated by performing,

Coevolution of Variability Models and Related Software Artifacts 45

at least, three extensive reviews of our analysis to guarantee the consistency
among all reported patterns. We also document all the collected data and
its analyses, making them publicly available for independent verification (see
Section 3).

Last, but not least, we acknowledge that our patterns result from an indirect
observation of what developers do. As such, despite the fact that we are able
to explain most of the additions and removals in our samples, our catalog may
not represent the evolution at the same abstraction level as perceived by kernel
developers. Moreover, as our patterns directly follow from the analysis of the
kernel commit history, they cannot capture any kernel variability evolution
practices occurring outside the kernel source code repository.

7 Related Work

Our previous investigation [53] presented a catalog of 13 variability-coevolution
patterns. In this work, we reanalyze our initial dataset, augmenting it with
30% more additions and removals, and report a new catalog with seven new
variability-evolution patterns, four inferred ones (situations that follow from
our set of patterns, but that are not seen in the collected sample), and a
generalization of a previously reported pattern. While adding new patterns, we
also remove one from our earlier catalog, as it does not meet our requirement
of, at least, three distinct sources of evidence.

Although we are the first to consider variability in Linux kernel from the
viewpoint of the evolution of its variability model with other related software
artifacts, different researchers have studied Linux from other perspectives.

She et al. [59] propose the Linux variability model as a realistic benchmark
for evaluating variability modeling tools. By analyzing various metrics (e.g.,
branch factor, cross-tree constraint ratio, depth, etc.), the authors show that,
for the most part, Linux Kconfig models surpass the complexity of models
found in the research community.

Lotufo et al. [41] extend She’s work with a longitudinal analysis over Linux
Kconfig models, in addition to presenting evolution scenarios and operations
faced by developers when evolving those models. For the most part, the authors
restrict their analysis to variability models, which, as we argued before, leads
to an incomplete and possibly misleading understanding of the evolution in
place.

Researchers also investigate the problems resulting from the coevolution of
the spaces of the Linux kernel. Tartler et al. [64] detect inconsistencies between
the variability model and the C code (e.g., an ifdef whose condition cannot be
satisfied given the set of cross-tree constraints). Nadi et al. [47] extend that
framework to detect inconsistencies among different spaces (e.g., a build rule is
dead due to an inconsistency with the constraints in the variability model).

Others cover evolution in a multi-space setting, but restrict analysis to small
software product lines. Holdschick [26] presents change operations between
variability models and functional models in the automotive domain. Neves et

46 Leonardo Passos et al.

al. [49] extract operations conforming to the refinement theory in [10]. Their
operations guarantee that old variants can still be mapped to variants in the
product line resulting from an operation execution. In contrast, our catalog
has no such focus, and further shows that the Linux kernel drops support for
specific products during its evolution, as feature retirement often happens.

Seidl et al. [58] present a set of evolution scenarios and mapping operators
to reestablish the correct binding of different spaces in a software product line.
In contrast to our work, they do not provide any empirical evidence over the
need of supporting those scenarios. Furthermore, the authors state that changes
are driven either by edits in the variability model or in the implementation
side. However, as the FCUTVOF pattern shows, this does not hold entirely, as
changes can also stem from the mapping.

Kim et al. [36] propose a rule-based program differencing approach that
discovers and summarizes systematic code changes as logic rules. They also use
the version control history to detect evolution patterns, as we did. However,
they inspect only code differences, whereas we investigate the coevolution of
the variability model, Makefiles, and source code.

8 Conclusion

In variant-rich software systems, variability is not restricted to variability
models, but it is rather pervasive in different artifacts, such as build files
and code. In such settings, variability evolution requires variability models
to coevolve with related artifacts. Surprisingly, little is known about such
coevolution, with a direct impact in the quality of existing tools.

Attempting to mitigate this overall lack of knowledge, we analyze coevo-
lution in the context of a large and complex case study: the Linux kernel. In
particular, we investigate the coevolution of the Linux kernel variability model,
Makefiles, and C source code by analyzing a sample spanning almost four years
of Linux kernel evolution history. From our investigation, we collect a catalog
of variability-coevolution patterns that extends our earlier work [53], capturing
patterns that were not reported before.

Each pattern in our catalog explains how certain kinds of changes affect the
artifact types in the kernel, the frequency of such changes, and how they are
used by Linux kernel developers. To the best of our knowledge, our catalog is
the first to extract the coevolution of variability models and related artifacts in
a large and complex real-world software. It leads us to collect a set of principles
guiding the variability evolution of the Linux kernel and how they ease its
maintenance and evolution. We also discuss how our patterns provide concrete
scenarios in which existing reasoning techniques yield incorrect results.

9 Future Work (Research Agenda)

Based on our catalog, we formulate the following research directions to extend
our current work:

Coevolution of Variability Models and Related Software Artifacts 47

Coevolution Coverage and External Practices Since our patterns cover only
a small fraction of the whole kernel evolution history, future research shall
investigate which other kinds of changes exist in the Linux kernel, which
relate to the coevolution of variability models and other artifacts, and how
such coevolution occurs. In this direction, further research shall investigate
coevolution when changes are not triggered by adding or removing features in
the variability model (e.g., updating a cross-tree constraint, ifdef condition,
etc.).

Moreover, as our patterns are an indirect observation of what developers
do, it would be valuable to conduct interviews with kernel developers to get
further insights on how they coevolve variability models and related artifacts,
and verify whether there are existing practices in the Linux kernel community
that corroborate our reported patterns.

Pattern Generality Further research shall verify the generality of our catalog,
checking whether our patterns occur in systems other than Linux. This can be
achieved by investigating other Kconfig-based variant-rich software systems [9,
45], if scoped to open-source systems, or industrial product lines that have a
similar structure as found in the kernel [6].

Evolution Algebra and New Product-Line Theories After defining which pat-
terns are general, a natural follow-up is the decomposition of patterns into a set
of operators that transform the variability model, mapping, and code. Patterns,
in turn, would be expressed as a mere composition of such operators. The set
of derived operators would comprise an evolution algebra for evolving systems
whose structure is similar to the one found in the Linux kernel. Such algebra
could then be supported by specialized tools (e.g., version control systems,
IDEs, etc.). Building on top of the evolution algebra, new theories could also be
devised, accounting not only feature refinement (as in [10]), but also retirement
situations.

Pattern-Based Feature Traceability Our patterns provide a starting point for
creating new feature traceability heuristics in systems that follow a similar
structure as found in the Linux kernel (variability model, mapping, and C
code with pre-processor annotations). Although existing feature localization
techniques [12,15,18,43,61,67,69] can relate code artifacts (or fragments of
them) to features of the system, enabling the vertical traceability between
features and code, evolution imposes a temporal traceability among features;
to trace a feature from a given point to another back in the evolution history
or forward in time, one must account for changes that occur together with
the variability model; otherwise, incorrect traces might be reported (e.g., as
in the case of FB_IMAC, discussed throughout the paper). As we argue in
previous work [51], we are unaware of any existing technique that performs
such a holistic analysis. In this case, our patterns can serve as a starting point
for researching pattern-based traceability heuristics. For example, as reported
in our two merge patterns (MVOFS and MVOFNO), the removal of a feature

48 Leonardo Passos et al.

and its implementation artifacts, together with aiding the implementation of
another feature with the capabilities of the removed one, is likely to characterize
a merge between the two features.

Alternatively, evolution patterns can be incorporated in the evolution pro-
cess of variant-rich systems. Once cataloged (e.g., following our methodology),
patterns can be associated with each new commit, either manually (e.g., by
stating such relation in commit log messages), or automatically. In the lat-
ter case, research shall investigate how to detect whether patches conform
to specific patterns. Associating patterns and commit patches are likely to
improve developers’ productivity when revisiting a past change and reduce
misinterpretations when analyzing its structure.

References

1. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.: Refactoring Product
Lines. In: Proceedings of the International Conference on Generative Programming and
Component Engineering, pp. 201–210. ACM (2006)

2. Apel, S., Batory, D., Kstner, C., Saake, G.: Feature-Oriented Software Product Lines:
Concepts and Implementation. Springer (2013)

3. Babar, M.A., Chen, L., Shull, F.: Managing Variability in Software Product Lines. IEEE
Software 27(3), 89–91, 94 (2010)

4. Baresi, L., Guinea, S., Pasquale, L.: Service-Oriented Dynamic Software Product Lines.
IEEE Computer 45(10), 42–48 (2012)

5. Batory, D.S., Barnett, J.R., Garza, J.F., Smith, K.P., Tsukuda, K., Twichell, B.C., Wise,
T.E.: GENESIS: An Extensible Database Management System. IEEE Transactions on
Software Engineering 14(11), 1711–1730 (1988)

6. Berger, T., Nair, D., Rublack, R., Atlee, J.M., Czarnecki, K., Wąsowski, A.: Variability
Modeling in Industry: Practices, Benefits, and Challenges. In: Model-Driven Engineering
Languages and Systems, Lecture Notes in Computer Science, vol. 8767, pp. 302–319.
Springer (2014)

7. Berger, T., She, S., Lotufo, R., Czarnecki, K., Wąsowski, A.: Feature-to-code Mapping
in Two Large Product Lines. Tech. rep., Department of Computer Science, University of
Leipzig (2010)

8. Berger, T., She, S., Lotufo, R., Wąsowski, A., Czarnecki, K.: Variability Modeling in
the Real: A Perspective from the Operating Systems Domain. In: Proceedings of the
International Conference on Automated Software Engineering, pp. 73–82. ACM (2010)

9. Berger, T., She, S., Lotufo, R., Wąsowski, A., Czarnecki, K.: A Study of Variability
Models and Languages in the Systems Software Domain. IEEE Transactions on Software
Engineering 39(12), 1611–1640 (2013)

10. Borba, P., Teixeira, L., Gheyi, R.: A Theory of Software Product Line Refinement.
Theoretical Computer Science 455(0), 2–30 (2012)

11. Bovet, D., Cesati, M.: Understanding the Linux Kernel. O’Reilly (2005)
12. Chen, K., Rajlich, V.: Case Study of Feature Location Using Dependence Graph, after

10 Years. In: Proceedings of the International Workshop on Program Comprehension,
pp. 1–3. IEEE (2010)

13. Corbet, J., Kroah-Hartman, G., McPherson, A.: Linux Kernel Development: How Fast
It is Going, Who is Doing It, What They are Doing, and Who is Sponsoring It.
http://www.linuxfoundation.org/publications/linux-foundation/
who-writes-linux-2013 (2013). Last seen: July 16th, 2014

14. Corbet, J., Rubini, A., Kroah-Hartman, G.: Linux Device Drivers, 3rd Edition. O’Reilly
(2005)

15. Deprez, J.C., Lakhotia, A.: A Formalism to Automate Mapping from Program Features
to Code. In: Proceedings of the International Workshop on Program Comprehension,
pp. 69–78. IEEE (2000)

Coevolution of Variability Models and Related Software Artifacts 49

16. Dietrich, C., Tartler, R., Schröder-Preikschat, W., Lohmann, D.: A Robust Approach for
Variability Extraction from the Linux Build System. In: Proceedings of the International
Software Product Line Conference, pp. 21–30. ACM (2012)

17. Dintzner, N., Van Deursen, A., Pinzger, M.: Extracting Feature Model Changes from
the Linux Kernel Using FMDiff. In: Proceedings of the International Workshop on
Variability Modelling of Software-Intensive Systems, pp. 22:1–22:8. ACM (2013)

18. Eisenbarth, T., Koschke, R., Simon, D.: Locating Features in Source Code. IEEE
Transactions on Software Engineering 29(3), 210–224 (2003)

19. Ernst, M.D., Badros, G.J., Notkin, D.: An Empirical Analysis of C Preprocessor Use.
IEEE Transactions on Software Engineering 28(12), 1146–1170 (2002)

20. Favre, J.M.: Understanding in the Large. In: Proceedings of the International Workshop
on Program Comprehension, pp. 29–38. IEEE (1997)

21. Feitelson, D.G.: Perpetual Development: a Model of the Linux Kernel Life Cycle. Journal
of Systems and Software 85(4), 859–875 (2012)

22. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the
Design of Existing Code. Addison Wesley (1999)

23. Godfrey, M.W., Tu, Q.: Evolution in Open Source Software: A Case Study. In: Pro-
ceedings of the International Conference on Software Maintenance, pp. 131–142. IEEE
(2000)

24. Guo, J., Wang, Y., Trinidad, P., Benavides, D.: Consistency Maintenance for Evolving
Feature Models. Expert Systems and Applications 39(5), 4987–4998 (2012)

25. Gurp, J.V., Bosch, J., Svahnberg, M.: On the Notion of Variability in Software Product
Lines. In: Proceedings of the Working Conference on Software Architecture, pp. 45–54.
IEEE (2001)

26. Holdschick, H.: Challenges in the Evolution of Model-Based Software Product Lines in the
Automotive Domain. In: Proceedings of the International Workshop on Feature-Oriented
Software Development, pp. 70–73. ACM (2012)

27. Hunsen, C., Zhang, B., Siegmund, J., Kästner, C., Lessenich, O., Becker, M., Apel, S.:
Preprocessor-Based Variability in Open-Source and Industrial Software Systems: An
Empirical Study. Empirical Software Engineering (2014). To appear

28. Izurieta, C., Bieman, J.: The Evolution of FreeBSD and Linux. In: Proceedings of the
International Symposium on Empirical Software Engineering, pp. 204–211. ACM (2006)

29. Janota, M., Kiniry, J.: Reasoning About Feature Models in Higher-Order Logic. In:
Proceedings of the International Software Product Line Conference, pp. 13–22. IEEE
(2007)

30. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Tech. rep., Carnegie-Mellon University
Software Engineering Institute (1990)

31. Kästner, C., Apel, S.: Virtual Separation of Concerns – A Second Chance for Preproces-
sors. Journal of Object Technology 8(6), 59–78 (2009)

32. Kästner, C., Apel, S., Batory, D.: A Case Study Implementing Features Using AspectJ.
In: Proceedings of the International Software Product Line Conference, pp. 223–232.
IEEE (2007)

33. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in Software Product Lines. In:
Proceedings of the International Conference on Software Engineering, pp. 311–320. ACM
(2008)

34. Kästner, C., Giarrusso, P.G., Rendel, T., Erdweg, S., Ostermann, K., Berger, T.:
Variability-Aware Parsing in the Presence of Lexical Macros and Conditional Compila-
tion. In: Proceedings of the International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 805–824. ACM (2011)

35. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin,
J.: Aspect-Oriented Programming. In: Proceedings of the European Conference on
Object-Oriented Programming, pp. 220–242. Springer (1997)

36. Kim, M., Notkin, D., Grossman, D., Wilson Jr., G.: Identifying and Summarizing
Systematic Code Changes via Rule Inference. IEEE Transactions on Software Engineering
39(1), 45–62 (2013)

37. Kuchana, P.: Software Architecture Design Patterns in Java. Auerbach Publications
(2004)

50 Leonardo Passos et al.

38. Le, D., Walkingshaw, E., Erwig, M.: #ifdef Confirmed Harmful: Promoting Understand-
able Software Variation. In: Proceedings of the Symposium on Visual Languages and
Human-Centric Computing, pp. 143–150. IEEE (2011)

39. Liebig, J., Apel, S., Lengauer, C., Kästner, C., Schulze, M.: An Analysis of the Variability
in Forty Preprocessor-based Software Product Lines. In: Proceedings of the International
Conference on Software Engineering, pp. 105–114. ACM (2010)

40. Liebig, J., Kästner, C., Apel, S.: Analyzing the Discipline of Preprocessor Annotations
in 30 Million Lines of C Code. In: Proceedings of the International Conference on
Aspect-oriented Software Development, pp. 191–202. ACM (2011)

41. Lotufo, R., She, S., Berger, T., Czarnecki, K., Wąsowski, A.: Evolution of the Linux
Kernel Variability Model. In: Proceedings of the International Conference on Software
Product Lines: Going Beyond, pp. 136–150. Springer (2010)

42. Love, R.: Linux Kernel Development, 3rd edn. Addison Wesley (2010)
43. Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., Sergeyev, A.: Static Techniques

for Concept Location in Object-Oriented Code. In: Proceedings of the International
Workshop on Program Comprehension, pp. 33–42. IEEE (2005)

44. Massa, A.: Embedded Software Development with eCos. Prentice Hall (2002)
45. Nadi, S., Berger, T., Kästner, C., Czarnecki, K.: Mining Configuration Constraints:

Static Analyses and Empirical Results. In: Proceedings of the International Conference
on Software Engineering, pp. 140–151. ACM (2014)

46. Nadi, S., Holt, R.: Mining Kbuild to Detect Variability Anomalies in Linux. In: Pro-
ceedings of the European Conference on Software Maintenance and Reengineering, pp.
107–116. IEEE (2012)

47. Nadi, S., Holt, R.: The Linux Kernel: A Case Study of Build System Variability. Journal
of Software: Evolution and Process (2013)

48. Neill, C.J., Laplante, P.A.: Antipatterns: Identification, Refactoring, and Management.
CRC Press (2005)

49. Neves, L., Teixeira, L., Sena, D., Alves, V., Kulezsa, U., Borba, P.: Investigating the Safe
Evolution of Software Product Lines. In: Proceedings of the International Conference on
Generative Programming and Component Engineering, pp. 33–42. ACM (2011)

50. Passos, L., Czarnecki, K.: A Dataset of Feature Additions and Feature Removals from
the Linux Kernel. In: Proceedings of the Working Conference on Mining Software
Repositories, pp. 376–379. ACM (2014)

51. Passos, L., Czarnecki, K., Apel, S., Wąsowski, A., Kästner, C., Guo, J.: Feature-Oriented
Software Evolution. In: Proceedings of the International Workshop on Variability
Modelling of Software-intensive Systems, pp. 17:1–17:8. ACM (2013)

52. Passos, L., Czarnecki, K., Wąsowski, A.: Towards a Catalog of Variability Evolution
Patterns: The Linux Kernel Case. In: Proceedings of the International Workshop on
Feature-Oriented Software Development, pp. 62–69. ACM (2012)

53. Passos, L., Guo, J., Teixeira, L., Czarnecki, K., Wąsowski, A., Borba, P.: Coevolution
of Variability Models and Related Artifacts: A Case Study from the Linux Kernel. In:
Proceedings of the International Software Product Line Conference, pp. 91–100. ACM
(2013)

54. Pleuss, A., Botterweck, G., Dhungana, D., Polzer, A., Kowalewski, S.: Model-Driven
Support for Product Line Evolution on Feature Level. Journal of Systems and Software
85(10), 2261–2274 (2012)

55. Rosenmuller, M., Apel, S., Leich, T., Saake, G.: Tailor-made Data Management for
Embedded Systems: A Case Study on Berkeley DB. Data & Knowledge Engineering
68(12), 1493–1512 (2009)

56. Rosenmüller, M., Siegmund, N., Schirmeier, H., Sincero, J., Apel, S., Leich, T., Spinczyk,
O., Saake, G.: FAME-DBMS: Tailor-made Data Management Solutions for Embedded
Systems. In: Proceedings of the EDBT Workshop on Software Engineering for Tailor-
made Data Management, pp. 1–6. ACM (2008)

57. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples, 1st edn. John Wiley & Sons (2012)

58. Seidl, C., Heidenreich, F., Aßmann, U.: Coevolution of Models and Feature Mapping
in Software Product Lines. In: Proceedings of the International Software Product Line
Conference, pp. 76–85. ACM (2012)

Coevolution of Variability Models and Related Software Artifacts 51

59. She, S., Lotufo, R., Berger, T., Wąsowski, A., Czarnecki, K.: The Variability Model of the
Linux Kernel. In: Proceedings of the International Workshop on Variability Modelling
of Software-Intensive Systems, pp. 45–51. Universität Duisburg-Essen (2010)

60. She, S., Lotufo, R., Berger, T., Wąsowski, A., Czarnecki, K.: Reverse Engineering Feature
Models. In: Proceedings of the International Conference on Software Engineering, pp.
461–470. ACM (2011)

61. Simmons, S., Edwards, D., Wilde, N., Homan, J., Groble, M.: Industrial Tools for the
Feature Location Problem: an Exploratory Study. Journal of Software Maintenance and
Evolution 18(6), 457–474 (2006)

62. Spencer, H., Collyer, G.: #ifdef Considered Harmful, or Portability Experience with C
News. In: Proceedings of the USENIX Security Symposium. Usenix Association (1992)

63. Sun, J., Zhang, H., Wang, H.: Formal Semantics and Verification for Feature Modeling.
In: Proceedings of the International Conference on Engineering of Complex Computer
Systems, pp. 303–312. IEEE (2005)

64. Tartler, R., Sincero, J., Dietrich, C., Schröder-Preikschat, W., Lohmann, D.: Revealing
and Repairing Configuration Inconsistencies in Large Scale System Software. Interna-
tional Journal on Software Tools for Technology Transfer 14(5), 531–551 (2012)

65. Thüm, T., Batory, D., Kastner, C.: Reasoning About Edits to Feature Models. In:
Proceedings of the International Conference on Software Engineering, pp. 254–264. IEEE
(2009)

66. Thüm, T., Kastner, C., Erdweg, S., Siegmund, N.: Abstract Features in Feature Modeling.
In: Proceedings of the International Software Product Line Conference, pp. 191–200.
IEEE (2011)

67. Valente, M.T., Borges, V., Passos, L.: A Semi-Automatic Approach for Extracting
Software Product Lines. IEEE Transactions on Software Engineering 38(4), 737–754
(2012)

68. Venkateswaran, S.: Essential Linux Device Drivers, 1st edn. Prentice Hall (2008)
69. Wilde, N., Scully, M.C.: Software Reconnaissance: Mapping Program Features to Code.

Journal of Software Maintenance 7(1), 49–62 (1995)
70. Wright, C., Cowan, C., Smalley, S., Morris, J., Kroah-Hartman, G.: Linux Security

Modules: General Security Support for the Linux Kernel. In: Proceedings of the USENIX
Security Symposium, pp. 17–31. USENIX Association (2002)

