
Interactive Virtual
Cinematography

Paolo Burelli

Center For Computer Games Research

IT University of Copenhagen

A thesis submitted for the degree of

Doctor of Philosophy

April 2012

To Diego and Rosalba

Acknowledgements

I would like to express my gratitude to my supervisor and friend Dr. Georgios

Yannakakis. He has been a critical and yet very encouraging supervisor and a

model for me to develop as a researcher. Furthermore, I would like to thank all

the colleagues that I had the honour and pleasure to collaborate with during my

studies at the Center for Computer Games Research. My gratitude goes also to

the members of my doctoral committee Dr. Julian Togelius, Dr. John Hallam

and Dr. James Lester for their insightful comments and suggestions. Finally, a

big “thank you” to my friends and family; this thesis is also the product of your

support, your patience and your love.

Abstract

A virtual camera represents the point-of-view of the player through which she

perceives the game world and gets feedback on her actions. Thus, the virtual

camera plays a vital role in 3D computer games and affects player experience

and enjoyability in games. Interactive virtual cinematography is the process of

visualising the content of a virtual environment by positioning and animating

the virtual camera in the context of interactive applications such as a computer

game.

Camera placement and animation in games are usually directly controlled by

the player or statically predefined by designers. Direct control of the camera by

the player increases the complexity of the interaction and reduces the designer’s

control on game storytelling. A completely designer-driven camera releases the

player from the burden of controlling the point of view, but might generate

undesired camera behaviours. Furthermore, if the content of the game is pro-

cedurally generated, the designer might not have the necessary information to

define a priori the camera positions and movements.

Automatic camera control aims to define an abstraction layer that permits to

control the camera using high-level and environment-independent rules. The

camera controller should dynamically and efficiently translate these rules into

camera positions and movements before (or while) the player plays the game.

Automatically controlling the camera in virtual 3D dynamic environments is an

open research problem and a challenging task. From an optimisation perspective

it is a relatively low dimensional problem (i.e. it has a minimum of 5 dimen-

sions) but the complexity of the objective function evaluation combined with the

strict time constraints make the problem computationally complex. Moreover,

the multi-objective nature of the typical camera objective function, introduces

problems such as constraints conflicts, over-constraining or under-constraining.

An hypothetical optimal automatic camera control system should provide the

right tool to allow designers to place cameras effectively in dynamic and unpre-

dictable environments. However, there is still a limit in this approach: to bridge

the gap between automatic and manual cameras the camera objective should

be influenced by the player. In our view, the camera control system should be

able to learn camera preferences from the user and adapt the camera setting to

improve the player experience. Therefore, we propose a new approach to auto-

matic camera control that indirectly includes the player in the camera control

loop.

To achieve this goal we have analysed the automatic camera control problem

from a numerical optimization perspective and we have introduced a new opti-

mization algorithm and camera control architecture able to generate real-time,

smooth and well composed camera animations. Moreover, we have designed

and tested an approach to model the player’s camera preferences using machine

learning techniques and to tailor the automatic camera behaviour to the player

and her game-play style.

Experiments show that, the novel optimisation algorithm introduced success-

fully handles highly dynamic and multi-modal fitness functions such as the ones

typically involved in dynamic camera control. Moreover, when applied in a

commercial-standard game, the proposed automatic camera control architec-

ture shows to be able to accurately and smoothly control the camera. Finally,

the results of a user survey, conducted to evaluate the suggested methodology for

camera behaviour modelling and adaptation, shows that the resulting adaptive

cinematographic experience is largely favoured by the players and it generates

a positive impact on the game performance.

8

Contents

1 Introduction 1

1.1 Problem Definition and Motivation . 1

1.2 Objectives and Key Contributions . 4

1.3 Automatic Camera Control . 5

1.4 Adaptive Camera Control . 6

1.5 Thesis Structure . 7

2 Related Work 9

2.1 Navigation and Control . 9

2.2 Virtual Camera Control . 10

2.3 Automatic Camera Control . 11

2.3.1 Camera Planning . 12

2.3.2 Virtual Camera Composition . 12

2.3.3 Camera Animation . 14

2.4 Camera Control in Games . 15

2.5 Artificial Intelligence . 17

2.5.1 Optimisation . 18

2.5.2 Artificial Intelligence in Games . 19

2.5.3 Player Modelling . 19

2.6 Gaze Interaction in Games . 20

2.7 Summary . 21

3 Automatic Camera Control 23

3.1 Frame constraints . 24

3.1.1 Vantage Angle . 25

3.1.2 Object Projection Size . 26

3.1.3 Object Visibility . 27

3.1.4 Object Frame Position . 30

3.1.5 Camera Position . 31

i

Contents

3.1.6 Composition Objective Function . 31

3.2 Animation Constraints . 32

3.3 Controller’s Architecture . 33

3.4 Optimisation Module . 34

3.4.1 Artificial Potential Field . 35

3.4.2 Sliding Octree . 38

3.4.3 Genetic Algorithm . 39

3.4.4 Differential Evolution . 41

3.4.5 Particle Swarm Optimisation . 41

3.4.6 Hybrid Genetic Algorithm . 42

3.5 Animation Module . 43

3.5.1 Lazy Probabilistic Roadmap . 45

3.6 Summary . 46

4 Adaptive Camera Control 49

4.1 Camera Behaviour . 51

4.1.1 Gaze . 52

4.1.2 Behaviour Identification . 54

4.1.3 Prediction . 56

4.2 Adaptation . 58

4.3 Summary . 59

5 Test-bed Environments 61

5.1 Virtual Camera Sandbox . 61

5.1.1 Functionalities . 62

5.1.2 Environment Elements . 63

5.1.3 Architecture . 65

5.2 Lerpz Escape . 66

5.2.1 Game Mechanics . 66

5.2.2 Stages and Areas . 68

5.2.3 Controls . 69

5.2.4 Technical Characteristics . 70

5.3 Summary . 70

ii

Contents

6 Hybrid Genetic Algorithm Evaluation 73

6.1 Test-bed Problems . 73

6.2 Complexity . 74

6.2.1 Fitness-based Measures . 74

6.2.2 Complexity Measures by Törn et al. 75

6.2.3 Dynamism . 76

6.2.4 Scenario categorisation by problem complexity 78

6.3 Algorithms Configurations . 81

6.4 Results . 81

6.4.1 Accuracy . 82

6.4.2 Reliability . 84

6.5 Summary . 85

7 Controller Evaluation 87

7.1 Experimental Methodology . 87

7.2 Experimental Setup . 90

7.3 Collected Features . 90

7.4 Results . 91

7.4.1 Order Of Play . 91

7.4.2 Preferences . 92

7.4.3 Gameplay . 95

7.5 Summary . 97

8 Evaluation of Adaptive Camera 99

8.1 Camera Behaviour Models . 99

8.1.1 Experiment . 100

8.1.2 Collected Data Types and Feature Extraction 103

8.1.3 Behaviour Models . 104

8.1.4 Models Evaluation . 107

8.2 User Evaluation . 109

8.2.1 Experiment . 110

8.2.2 Results . 114

8.3 Summary . 122

iii

Contents

9 Discussion and Conclusions 125

9.1 Contributions . 125

9.1.1 Dynamic Virtual Camera Composition 125

9.1.2 Real-Time Automatic Camera Control 126

9.1.3 Adaptive Camera Control . 127

9.2 Limitations . 128

9.2.1 Methods . 128

9.2.2 Experiments . 130

9.3 Extensibility . 131

9.3.1 Benchmarking . 131

9.3.2 Optimisation . 131

9.3.3 Manual Control . 132

9.3.4 Aesthetics . 132

9.3.5 Animation . 133

9.3.6 Adaptation . 133

9.4 Summary . 133

Bibliography 135

iv

List of Figures

1.1 Standard virtual camera parameters. 2

1.2 An example of an automatic camera control problem: the camera controller

is requested to find the position and orientation of the camera that produced

a certain shot (a) and it has to animate to camera to the target position

according to the characteristics of a certain animation (b) 3

2.1 Examples of advanced camera control in modern computer games. 17

3.1 View angle sample shots. Each shot is identified by a horizontal and a vertical

angle defined in degrees. 26

3.2 Object projection size sample shots. Each shot is identified by a projection

size defined as the ratio between the longest side of the object’s projection

bounding box and the relative side of the frame. 27

3.3 Object visibility sample shots. Each shot is identified by a visibility value

defined as the ratio between the visible area of the object and its complete

projected area. 28

3.4 Example of the 5 points used to check visibility in the Object Visibility

objective function. 29

3.5 Object frame position sample shots. Each shot is identified by a two-dimensional

vector describing the position of the object’s center in the frame. 30

3.6 Controller’s architecture. The black squares identify the controllable settings,

while the white squares identify the virtual environment features considered

by the controller. The two modules of the architecture are identified by the

white ellipses. 34

3.7 Position (b) and orientation (c) potential fields produced by a visibility con-

straint on a sphere (a). The two three-dimensional potential fields are sam-

pled along the XZ plane on at the Y coordinate of the sphere. 36

v

List of Figures

3.8 Example of a Sliding Octree iteration step. At each pass of the iteration, the

branch of the octree containing the best solution is explored, the distance

between the children nodes and the parent node decreases by 25% at each

level of the tree. 39

3.9 Chromosome of an individual of the Genetic Algorithm, containing 5 real

values describing the camera position and orientation. 40

3.10 Flowchart representing the execution flow of the proposed hybrid GA. The

labels CR, MU, A-MU are used to refer, respectively, to the crossover, mu-

tation and APF base mutation operators . 44

3.11 Probabilistic Roadmap . 46

4.1 Camera behaviour modelling and adaptation phases of the adaptive camera

control methodology. The first phase leads to the construction of a camera

behaviour model, which is used in the adaptation phase to drive the auto-

matic camera controller and generate the adaptive camera behaviour. . . . 50

4.2 A screenshot from a 3D platform game in which the objects observed by the

player are highlighted by green circles. 51

4.3 Example of a data collection setup. The player plays a game and manu-

ally controls the virtual camera. The game keeps track of the virtual camera

placement, the player behaviour and the gaze position on the screen; gaze po-

sition is recorded using a gaze-tracking device. The software used in the setup

portrayed in the figure is the ITU Gaze Tracker (http://www.gazegroup.org),

and the sensor is an infra-red camera. 54

4.4 An example of a fully connected feed-forward artificial neural network. Start-

ing from the inputs, all the neurons are connected to all neurons in the sub-

sequent layer. 56

4.5 Camera behaviour prediction scheme. The neural network is presented with

the features describing the gameplay characteristics of the next record and

the features about the previous player behaviour as input and returns the

next predicted camera behaviour for the next record as the output. 58

5.1 Interface of the virtual camera sandbox, showing the virtual environment and

the interface elements. 62

5.2 Main components of the virtual camera sandbox. From left to right: the

subject, the forest, the house and the square. 63

vi

List of Figures

5.3 Maximum value of the objective function sampled for each area of the sand-

box across the X and Z axis. The position and orientation of each subject is

identified by the black marks. The composition problem evaluated in each

figure contains three frame constraints: an Object Visibility an Objective

Projection Size and a Vantage Angle. 64

5.4 Virtual camera sandbox architecture. 65

5.5 Main components of the Lerpz Escape game. From left to right: player’s

avatar (Lerpz), a platform, a collectible item (fuel canister), an enemy (cop-

per), a respawn point and Lerpz’s spaceship. 66

5.6 The two virtual environments employed in the user evaluation. The avatar is

initially placed at the right side of the map, close to the dome-like building,

and has to reach the space-ship at the left side of the map. 67

5.7 The three different area types met in the test-bed game. 68

5.8 Sceenshots from the game used during the evaluation displaying the different

controls schemes. The game interface displays the game controls configu-

ration, as well as the current number of collected canisters and the time

remaining to complete the level. 69

6.1 Test problems sorted in a scatter plot according to their dynamism factor D

and their landscape complexity P . The Pareto front identified by the squares

contains all the non dominated problems in terms of complexity and dynamism. 79

6.2 Median best solution value over time (median run) for each algorithm on the

problems in which the proposed hybrid GA fails to achieve the best results. 83

7.1 Screen-shots of the game menus introducing the experiment and gathering

information about the subject and her experience. 88

7.2 Expressed preferences (7.2a) and corresponding motivations (7.2b). The bar

colours in the motivations chart describe which preference the motivations

have been given for. 93

vii

List of Figures

7.3 Differences ∆F = Fa − Fm of completion time (7.3a), number of canisters

collected (7.3b), number of jumps (7.3c) and number of falls (7.3d) between

the games played with the automatic camera controller and the ones with

manual camera control. The background color pattern shows which level was

preferred and which level was played first for each game played. If the dark

grey bar is in the upper half of the plot the level featuring the automatic

camera controller was preferred and vice versa. If the light grey bar is in the

upper half of the plot the level featuring the automatic camera controller was

played first and vice versa. The four features displayed have a significant or

close-to-significant (i.e. p-value < 0.10) correlation with either the order of

play or the camera control paradigm. 96

8.1 Experimental setup used for the data collection experiment. 101

8.2 Best 3-fold cross-validation performance obtain by the three ANNs across

different input feature sets and past representations. The bars labelled 1S

refer to the one step representation of the past trace, the ones labelled 2S refer

to the two step representation and 1S+A to the representation combining one

previous step and the average of the whole past trace. 109

8.3 Example of a transition from one camera profile to another. As soon as the

avatar enters the bridge, the neural network relative to the fight area is ac-

tivated using the player’s gameplay features, recorded in all the previously

visited fight areas, as its input. The camera profile associated to the be-

haviour cluster selected by the network is activated until the avatar moves

to a new area. 112

8.4 Changes in a camera profile before and after the collection of one fuel canister

and the activation of one re-spawn point. The screen-shots above each profile

depict the camera configuration produced by the two profiles for the same

avatar position. 115

8.5 Expressed preferences (a) and corresponding motivations (b). The bar colours

in the motivations chart describe which preference the motivations have been

given for. 117

8.6 Subjects sorted according to their average completion time and average num-

ber of collected canisters. The subjects indicated with a cross symbol belong

to the expert players cluster, the ones indicated with a triangle symbol be-

long to the average players cluster, while the subjects indicated with a circle

symbol belong to the novices cluster. 118

viii

List of Figures

8.7 Differences ∆F = Fad − Fau of completion time (a), number of canisters

collected (b), number of jumps (c) and number of falls (d) between the levels

played with the adaptive camera behaviours and the ones without. The

background color pattern shows which level was preferred and which level

was played first for each game played. If the dark grey bar is in the upper half

of the plot the level featuring the adaptive camera controller was preferred

and vice versa. If the light grey bar is in the upper half of the plot the level

featuring the adaptive camera controller was played first and vice versa. . . 122

ix

List of Figures

x

Chapter 1

Introduction

According to the Oxford Dictionary Of English (2005), cinematography is “is the art of

photography and camerawork in film-making”; following this definition it is possible to

define the concept of virtual cinematography (or virtual camera control) as the application

of this art to virtual reality. With the term interactive virtual cinematography we identify

the process of visualising the content of a virtual environment in the context of an interactive

application such as a computer game. In this thesis, we propose the automation of such a

creative process using automatic camera control, we investigate the challenges connected to

camera automation and we examine solutions for them. In addition we investigate means

for the player to influence the automatic control process.

1.1 Problem Definition and Motivation

A virtual camera represents the point-of-view of the player through which she perceives the

game world and gets feedback on her actions. The perspective camera model in OpenGL 1

defines a virtual camera with six parameters: position, orientation, field of view, aspect

ratio, near plane and far plane (see Figure 1.1). Camera position is a three-dimensional

vector of real values defining a Cartesian position. Camera orientation can be defined either

using a quaternion, a set of three Euler angles or a combination of two three-dimensional

vectors describing the front direction and the up direction.

Camera placement — i.e the configuration of the camera parameters within the virtual

environment — and animation — i.e. the process of transitioning from one set of camera

parameters to another one — play a vital role in 3D graphics interactive applications and

it deeply influences his way to perceive the environment and his ability to effectively ac-

complish any task. In applications such as 3D modellers and computer games, the virtual

camera provides means of interaction with the virtual environment and has a large impact

1Open Graphics Library - http://www.opengl.org

1

Chapter 1. Introduction

Figure 1.1: Standard virtual camera parameters.

on the usability and the overall user experience (Pinelle and Wong, 2008). Moreover, in

3D computer games the presentation of the game events largely depends on the camera

position and movements, thus virtual camera control has a significant impact on aspects

such as gameplay and story-telling.

In computer games, the virtual camera is usually directly controlled by the player or

manually predefined by a game designer. While the player’s control is often assisted by the

game, direct control of the camera by the player increases the complexity of the interaction

and reduces the designer’s control over game storytelling. On the other hand, designer

placed cameras release the player from the burden of controlling the point of view, but they

cannot guarantee a correct visualisation of all possible player actions. This often leads the

game designers to reduce the range of possible player actions to be able to generate a more

cinematographic player experience. Moreover, in multi-player games or in games where

the content is procedurally generated, the designer has potentially no information to define

a-priori the camera positions and movements.

Automatic camera control aims to define an abstraction layer that permits the control of

the camera using high-level and environment-independent requirements, such as the visibil-

ity of a particular object or the size of that object on the screen. Given these requirements

and the game state at any time, the camera controller should dynamically and efficiently

calculate an optimal configuration. An optimal camera configuration is defined as the com-

bination of camera settings which maximises the satisfaction of the requirements imposed

on the camera, known as camera profile (Bares et al., 2000).

The camera requirements describe the desired camera in terms of abstract properties

such as frame composition or motion. Frame composition (see Figure 1.2a) describes the

way in which the objects should be framed by the camera, such as their position in the

frame or the size of their projected image. Camera motion requirements describe the way

2

1.1. Problem Definition and Motivation

(a) Composition

Subject

Camera

(b) Animation

Figure 1.2: An example of an automatic camera control problem: the camera controller is
requested to find the position and orientation of the camera that produced a certain shot
(a) and it has to animate to camera to the target position according to the characteristics
of a certain animation (b)
.

the virtual camera should be animated in the virtual environment while framing the subjects

(see Figure 1.2b). The definition of these requirements originates from the rules used to

shoot real-world scenes in cinematography and photography (Arijon, 1991).

Finding the optimal camera that maximises the fulfilment of the designer requirements

is a complex optimisation problem, despite its relatively low dimensionality (i.e. it can

be modelled using a 5 to 10 dimensional space); the complexity of the objective function

evaluation and the short execution time imposed to ensure a real-time execution, make

the problem computationally hard. The evaluation of visual aspects such as visibility or

size of the project image require computationally expensive operations such as rendering or

ray-casting and their evaluation functions often generate terrains that are very rough for

a search algorithm to explore. Moreover, in real-time camera control, the algorithm needs

to find the best possible solution within the rendering time of a frame (typically between

16.6 and 40 ms in commercial games) and needs to maintain it throughout the computation

while the environment changes due to the dynamic nature of ergodic media such as games.

Several techniques for automatic camera control have been proposed in the past — the

reader is referred to Christie et al. (2008) and Chapter 2 of this thesis for a comprehensive

review. The most common approaches model the camera control problem as a constraint

satisfaction or optimisation problem. These approaches allow the designer to define a set

of requirements on the frames that the camera should produce and on the camera motion.

Depending on the approach, the controller positions and animates one or more virtual

cameras that attempt to satisfy the predefined requirements.

While automatic camera control aims to automatise the translation process between

high level requirements and the camera animation and placement, the definition of the

requirements is commonly delegated to a human designer which hand-crafts manually the

3

Chapter 1. Introduction

cinematographic experience. Some efforts have been dedicated also to the automation of

these requirements (Bares and Lester, 1997a; Bares et al., 1998; Tomlinson et al., 2000). In

particular the studies of Bares et al. (1997a; 1998) have investigated the personalisation of

the cinematographic experience through task and user modelling.

In this thesis we propose a novel approach to interactive virtual cinematography in

which we address both the problem of efficient and effective automatic camera control

(see Section 1.3) and camera behaviour adaptivity (see Section 1.4). For this purpose, we

present an automatic camera control framework, we name CamOn, that addresses both

virtual camera composition (i.e. finding the best camera configuration to fulfil the com-

position requirements) and camera animation (i.e. finding the best camera trajectory to

fulfil the motion requirements). We introduce a novel hybrid search algorithm able find

and track the optimal camera configuration in dynamic real-time environments and, finally,

we present a methodology to build camera user models and use them to generate adaptive

cinematographic experiences for interactive 3D virtual environments.

1.2 Objectives and Key Contributions

This thesis aims to contribute primarily to the field of virtual cinematography; however, mi-

nor contributions to areas of research peripheral to camera control, such as player modelling,

natural interaction and dynamic optimisation, are also present. An impact is expected also

on the computer games industry as we believe that the instruments for interactive virtual

cinematography described in this thesis could expand the design possibilities for future

computer games.

The main research questions that will be answered in this thesis are as follows.

1. How to effectively approach camera composition and animation in real-time in dy-

namic and interactive environments.

2. How does automatic camera control affect the player experience in three-dimensional

computer games.

3. Within the framework of automatic camera control, how can the player affect the

cinematographic experience.

In order to answer these research questions, this thesis pursuits two objectives: develop

and evaluate a real-time automatic camera controller, and design and evaluate a methodol-

ogy for adaptive camera control. Our first hypothesis is that a combination of optimisation

4

1.3. Automatic Camera Control

and path planning can be used to successfully animate the camera in dynamic and inter-

active environments; moreover, we believe, that by hybridising a population-based optimi-

sation algorithm with a local search algorithm, a camera controller can achieve sufficient

efficiency, accuracy and robustness to be employed in such conditions. We also hypothesise

that controlling the camera using such an approach can effectively increase the quality of

the player experience in computer games and can improve the player’s performance. Our

last hypothesis is that player modelling can be employed to implicitly involve the player in

the control loop of the camera also in the context of automatic camera control.

In summary, the main contributions of this thesis are as follows.

• A novel architecture for automatic camera control that is able to address both the

problems of virtual camera composition and virtual camera animation in interactive

virtual environments (Burelli and Yannakakis, 2010a, 2012a).

• A novel hybrid optimisation algorithm for dynamic virtual camera composition that

combines a Genetic Algorithm with an Artificial Potential Field based local search

algorithm (Burelli and Jhala, 2009a,b; Burelli and Yannakakis, 2010b, 2012b).

• A novel methodology to generate personalised cinematographic experiences in com-

puter games based on player modelling and adaptation (Picardi et al., 2011; Burelli

and Yannakakis, 2011).

In the remanding of the chapter we introduce the concepts of automatic camera control

and adaptive camera control.

1.3 Automatic Camera Control

To address the key problems of camera composition and animation, we propose a novel

approach that combines advantages from a set of algorithms with different properties. In

particular, we combine a local search algorithm with a population-based algorithm to couple

the computational efficiency of the first with the robustness of the second. Finally, the

solution found through the combination of these algorithms is used as a target to guide a

3D path planning algorithm.

At each iteration, the system evaluates two types of input: the current state of the

environment and the camera requirements. The first input class includes the geometry of

the scene and the camera configuration defined as a three-dimensional position and a two-

dimensional rotation (represented as spherical coordinates). The scene geometry is stored

in a engine-dependent data structure (usually a scene tree) and it is used to evaluate the

frame constraints that define the composition problem.

5

Chapter 1. Introduction

The second input class includes the desired frame composition properties — which

describe how the scene rendered through the virtual camera should look like — and the

desired camera motion properties. Frame composition properties describe the disposition

of the visual elements in the image (Arijon, 1991); following the model proposed by Bares

et al. (2000), we define a set of properties each of which may be applied to an object of

interest for the camera.

The optimal camera configuration is calculated by optimising an objective function

which is proportional to the satisfaction level of the required frame composition proper-

ties. For this purpose, we have designed an hybrid optimisation algorithm that combines a

Genetic Algorithm (Holland, 1992) with an Artificial Potential Field (Khatib, 1986) based

search algorithm. The structure of this hybrid meta-heuristic algorithm follows the struc-

ture of a Genetic Algorithm with one main difference: a mutation operator that is driven

by an APF is added to the standard crossover and mutation operators. Such an operator is

added to exploit the knowledge of the objective function by employing an Artificial Poten-

tial Field optimisation algorithm based on an approximation of the composition objective

function derivative.

The results of a comparative evaluation show that this hybrid Genetic Algorithm demon-

strates the best reliability and accuracy across most of the investigated scenarios indepen-

dently of task complexity.

Furthermore, the overall architecture combining the hybrid Genetic Algorithm with a

Probabilistic Roadmap Method (Kavraki et al., 1994) for camera animation is evaluated

in a commercial-standard three-dimensional computer game production. A user survey on

this game reveals both high levels of player satisfaction for the automatic camera and a

significant preference for the automatic camera over the manual camera scheme.

1.4 Adaptive Camera Control

Virtual camera parameters are commonly hand-crafted by game designers and are not

influence by player preferences. Including the player in the definition of these parameters

requires the construction of a model of the relationship between camera motion and player

experience (Martinez et al., 2009). We aim to close the loop of automatic camera control

by allowing the player to implicitly affect the automatic camera controller; for this purpose

we investigate player preferences concerning virtual camera placement and animation, and

we propose a model of the relationship between camera behaviour and player behaviour,

and game-play. This model is used to drive the automatic camera controller and provide a

personalised camera behaviour.

6

1.5. Thesis Structure

In this thesis, we present a methodology to build user models of camera behaviour from

the combination of player’s gaze, virtual camera position and player’s in-game behaviour

data. Including gaze information allows for a finer analysis of the player’s visual behaviour

permitting, not only to understand what objects are visualised by the player, but also which

ones are actually observed. Information on player’s visual focus also allows to filter exactly

which object is relevant for the player among the ones visualised by the player through her

control of the virtual camera.

From this data, a set of camera behaviours is extracted using a clustering algorithm

and the relationship between such behaviours and the players’ playing style is modelled

using machine learning. This model is then used to predict which kind of camera behaviour

does the user prefer while playing the game in order to appropriately instruct the camera

controller to replicate such a behaviour.

1.5 Thesis Structure

The thesis is organized into chapters as follows.

Chapter 2 outlines the state-of-the-art in control, user modelling and their application

to games; furthermore, it presents an extensive literature review of automatic virtual cine-

matography.

Chapter 3 presents a camera control architecture designed to successfully solve the virtual

camera composition and animation problems and it describes the algorithms and techniques

employed.

Chapter 4 describes a methodology to design adaptive cinematographic experiences in

games by building user models of the camera behaviour and using them to control camera

movements.

Chapter 5 presents the virtual environment developed to evaluate the algorithms and

methodologies presented in this thesis.

Chapter 6 presents an evaluation of the optimisation algorithm at the core of the automatic

camera control architecture presented in the thesis.

Chapter 7 showcases the application of the automatic camera control architecture pre-

sented in this thesis to a commercial-standard 3D platform game and it tests its performance

trough a user evaluation experiment.

Chapter 8 describes a case study that showcases the application of the adaptive camera

control methodology presented in Chapter 4 to a 3D platform game. Moreover it presents

a user evaluation of the resulting adaptive camera controller.

7

Chapter 1. Introduction

Chapter 9 summarises the thesis’ main achievements and contributions and discusses the

proposed approaches’ current limitations. Moreover, potential solutions that might embrace

these drawbacks are presented.

8

Chapter 2

Related Work

This chapter briefly outlines the state-of-the-art of navigation, control and optimisation

since these are the areas in which interactive cinematography and our solution belong to.

The analysis then narrows its scope by presenting an extensive literature review of virtual

camera control and it follows with an analysis of camera control in computer games. The

chapter closes with a review of the techniques used for optimisation, player modelling and

adaptation in games and with a summary of the findings.

2.1 Navigation and Control

Navigation (i.e. motion planning) has attracted the interest of different communities, such

as non-linear control, robotics and artificial intelligence. A classical motion planning prob-

lem raises several challenges (Salichs and Moreno, 2000): first, the agent must be able to

control its movements while interacting with the external environment; second, the agent

must be able to collect knowledge of the environment and be aware of its state within the

environment, finally the agent must be able to identify the goal location and an optimal

path that connects its current location to the goal.

In real-world motion control problems, such as autonomous vehicle control (Frazzoli

et al., 2000), the controller is required to handle the agent’s interaction with the physical

world and it has to deal with aspects such as obstacle avoidance, inertia or speed. Common

techniques for motion control include Artificial Potential Field (APF) (Khatib, 1986), Vi-

sual Servoing (Corke, 1994) or Certainty Grids (Moravec and Elfes, 1985); such techniques

address the motion control problem in different environment types and with different types

of inputs, for instance Artificial Potential Field require a global spatial information, while

Visual Servoing uses local visual information acquired through one or multiple cameras.

Furthermore, if the world model is unknown, an agent also needs the ability to explore

and learn about their environment, build a model of the world and identify its state within

9

Chapter 2. Related Work

this model. The representation of such a model greatly varies among different approaches

depending on the type of information available about the world and the moment in which

the learning takes place. Occupancy Grids (Filliat and Meyer, 2002) is a deterministic

graph based model of the environment which is built during the navigation process, while

Certainty Grids (Moravec and Elfes, 1985) employ Artificial Neural Networks to store the

probability of a certain position to be occupied by an obstacle.

In order to reach the goal destination, an agent needs to identify a plan that connects its

current position to the target one. Probably the most popular technique used for this task

is A* (Hart et al., 1968). A* performs a best-first search to find the least-cost path from

a given initial cell to the goal cell in a discrete space. Other algorithms such as Reinforce-

ment Learning (Sutton and Barto, 1998), Monte-Carlo Search (bar, 1990) or Probabilistic

Roadmap Methods (PRM) (Kavraki et al., 1994) address the path planning problems under

different conditions such as a continuous space or an unknown distance heuristic function.

Controlling the view point in a 3D application shares some of the same problems as

the virtual camera needs to be moved through a virtual environment composed by com-

plex three-dimensional geometries; the next section will introduce how the problem has

been modelled within the field of virtual camera control and it will show how some of the

aforementioned techniques have been successfully applied to address different tasks.

2.2 Virtual Camera Control

Since the introduction of virtual reality, virtual camera control attracted the attention of

a large number of researchers (refer to Christie et al. (2008) for a comprehensive review).

Early approaches focused on the mapping between the degrees of freedom (DOF) for input

devices to 3D camera movement. Ware and Osborne (1990) proposed the following set of

mappings:

Eyeball in hand: the camera is controlled by the user as if she holds it in her hands;

rotations and translations are directly mapped to the camera.

Scene in hand: the camera is pinned to a point in the world, and it rotates and translates

with respect to that point; the camera faces always the point and rotates around it,

the forward direction of the movements is the relative direction of the point. Such a

metaphor has been explored also by Mackinlay et al. (1990) in the same period.

Flying vehicle control: the camera is controlled similarly to an aeroplane, with controls

for translation and rotation velocity.

10

2.3. Automatic Camera Control

While these metaphors are currently still common in many virtual reality applications,

direct manipulation of the several degrees of freedom of the camera soon demonstrated

to be problematic for the user, leading researchers to investigate how to simplify camera

control (Phillips et al., 1992; Drucker and Zeltzer, 1994). Another control metaphor, called

through-the-lens camera control, was introduced by Gleicher and Witkin (1992) and was

refined by Kyung and Kim (1995). In through-the-lens camera control, the user controls the

camera by translating and rotating the objects on the screen; the camera parameters are

recomputed to match the new user’s desired locations on screen by calculating the camera

displacement from the object’s screen displacement. Christie and Hosobe (2006) extended

this metaphor by including an extended set of virtual composition primitives to control the

features of the image.

In parallel to the research on control metaphors, a number of researchers investigated

the automation of the camera configuration process. The first example of an automatic

camera control system was showcased in 1988 by Blinn (1988). He designed a system to

automatically generate views of planets in a space simulator for NASA. Although limited in

its expressiveness and flexibility and suitable only for non interactive applications, Blinn’s

work served as an inspiration to many other researchers that investigated more efficient

solutions and more flexible mathematical models able to handle more complex aspects such

as camera motion and frame composition (Arijon, 1991) in static and dynamic contexts.

2.3 Automatic Camera Control

Automatic camera control identifies the process of automatically configuring the camera in a

virtual environment according to a set of requirements. It is a non-linear automatic control

problem (Pontriagin, 1962): the system’s input are the requirements on composition and

motion, while the internal state of the system is defined by the camera parameters — e.g.

position and rotation. Following this model. it is possible to identify three main research

questions:

• How to identify the best inputs for the system.

• How to find the optimal state of the camera with respect to the given inputs.

• How to control the dynamic behaviour of the camera.

The first problem, the definition of the system’s inputs, is often referred as camera/shots

planning and it deals with the selection of the shot type to be used to frame a certain event

in the virtual world. The second problem deals with the approach to be used to find the

optimal camera configuration that satisfies the input requirements. Constraint satisfaction

11

Chapter 2. Related Work

or optimisation techniques are often used for this purpose. The last problem deals with the

control of the camera movements during the framing of one scene and during the transitions

between two subsequent shots.

2.3.1 Camera Planning

The camera planning problem was defined for the first time by Christianson et al. (1996)

as the problem of automatically scheduling the sequence of shots to film one or more events

in a virtual environment. Christianson et al. proposed a language (DCCL) to define shot

sequences and to automatically relate such sequences to events in the virtual world. He

et al. (1996) extended the concept of idioms within DCCL by modelling them as a finite

state machines and allowing for richer expressiveness. Bares and Lester (1997b; 1998)

suggested and evaluated a system that selects the most appropriate camera settings to

support different user’s tasks in a virtual learning environment. Charles et al. (2002) and

Jhala and Young (2005) investigated the automatic generation of shot plans from a story.

Moreover, Jhala and Young (2009; 2010) proposed an evaluation method for such task,

based on the users’ understanding of the story represented.

An alternative approach to shot generation through planning has been proposed by

various researchers. Tomlinson et al. (2000) modelled the camera as an autonomous virtual

agent, called CameraCreature, with an affective model and a set motivations. The agent

shots the most appropriate shot at every frame according to the events happening in the

environment and its current internal state. Bares and Lester (1997a) investigated the idea of

modelling the camera behaviour according to the user preferences to generate a personalised

cinematographic experience. The user model construction required the user to specifically

express some preferences on the style for the virtual camera movements. In this thesis, we

propose a methodology to build user profiles of camera implicitly by capturing a user’s gaze

movements on the screen during the interaction.

2.3.2 Virtual Camera Composition

The aforementioned approaches addressed the problem of automatic shot selection, however,

once the shot has been selected it is necessary to identify the best camera configuration to

convey the desired visuals. This process involves two aspects: the definition of the desired

shot in terms of composition rules and the calculation of the camera parameters.

The first seminal works addressing virtual camera composition according to this model

(Jardillier and Languénou, 1998; Bares et al., 2000; Olivier et al., 1999) defined the concept

of frame constraint and camera optimisation. These approaches require the designer to

define a set of required frame properties which are then modelled either as an objective

12

2.3. Automatic Camera Control

function to be maximised by the solver or as a set of constraints that the camera configu-

ration must satisfy. These properties describe how the frame should look like in terms of

object size, visibility and positioning.

Jardillier and Languénou (1998) as well as Bares et al. (2000) modelled the visual prop-

erties as constraints and looked for valid camera configurations within the constrained space.

The solver suggest by Bares et al., as well as all the other constraint satisfaction approaches,

returns no solution in the case of conflicting constraints. Bares and Lester (1999) addressed

the issue by identifying conflicting constraints and producing multiple camera configurations

corresponding to the minimum number of non-conflicting subsets.

In contrast to constraint satisfaction approaches, global optimisation approaches (Olivier

et al., 1999; Halper and Olivier, 2000) model frame constraints as an objective function (a

weighted sum of each required frame property) allowing for partial constraint satisfaction.

These approaches are able to find a solution also in case of conflicting constraints; how-

ever, they may converge to a near-optimal solution and their computational cost is usually

considerably higher than the constraint satisfaction ones. A set of approaches (Pickering,

2002; Christie and Normand, 2005; Burelli et al., 2008) address this computational cost

issue by combining constraint satisfaction to select feasible volumes (thereby reducing the

size of the search space) and optimisation to find the best camera configuration within these

spaces. While such solutions are more robust than pure constraint satisfaction methods,

the pruning process might still exclude all possible solutions.

An algorithm’s computational cost becomes a critical factor especially when the algo-

rithm is applied for control on real-time dynamic virtual environments. In the camera

control context the controller is required to produce a reasonable solution at short intervals

(potentially down to 16.6 ms) for an indefinitely long time. For this reason, researchers

have also investigated the application of local search methods; for instance, Bourne et al.

(2008) proposed a system that employs sliding octrees to guide the camera to the optimal

camera configuration.

Local search approaches offer reasonable real-time performance and handle well frame

coherence, but often they converge prematurely to local minima. This characteristic be-

comes critical when the camera control system has to optimise the visibility of a subject in

the frame since the visibility heuristic consists of many local minima areas with almost no

gradient information available to guide local search.

Occlusion

Successfully handling object occlusion constitutes a vital component of an efficient camera

controller (Christie et al., 2008). Object visibility plays a key role in frame composition.

13

Chapter 2. Related Work

For instance, an object satisfying all frame conditions (e.g. position in frame and projection

size) does not provide any of the required visual information if it is completely invisible due

to an occlusion.

The object occlusion problem can be separated in two dissimilar yet dependent tasks:

occlusion evaluation/detection and occlusion minimisation/avoidance. An occlusion occurs

when one of the subjects the camera has to track is hidden (fully or partially) by another

object. A common technique to detect occlusion consists of casting a series of rays between

the object of interest and the camera (Burelli et al., 2008; Bourne et al., 2008). A similar

approach (Marchand and Courty, 2002) generates a bounding volume containing both the

camera and the object of interest and checks whether other objects intersect this volume.

A third approach (Halper et al., 2001) exploits the graphic hardware by rendering the scene

at a low resolution with a colour associated to each object and checking the presence of the

colour associated to the object of interest. All the optimization algorithms examined in this

thesis perform occlusion-detection using ray casting as presented in Chapters 6,7 and 8 of

the thesis.

Based on their occlusion detection technique, Halper et al. (2001) deal with the problem

of occlusion avoidance by sequentially optimising each constraint and solving visibility as

the last problem in the sequence; therefore, occlusion minimisation overrides all the previous

computations. Bourne et al. (2008) devised an escape mechanism from occluded camera

positions which forces the camera to jump to the first non-occluded position between its cur-

rent position and the position of the object of interest. Their approach, however, considers

just one object of interest.

Pickering (2002) proposed a shadow-volume occlusion avoidance algorithm where the

object of interest is modelled as a light emitter and all the shadow-volumes generated are

considered occluded areas. However, the aforementioned approach to occlusion avoidance is

not suitable for real-time applications like games due to their high computational cost. Lino

et al. (2010), within their system on real-time cinematography, use a similar approach, based

on a cell-and-portal visibility propagation technique, which achieves real-time performance.

2.3.3 Camera Animation

The aforementioned virtual camera composition approaches calculate an optimal camera

configuration given a shot description. However they do not take into consideration the

dynamic nature of the scene and the camera. The camera is positioned in order to max-

imise the satisfaction of the current requirements without considering the previous and the

future states of the system. Nevertheless, these aspects are extremely relevant in the auto-

matic generation of camera animations and the automatic control of the camera in dynamic

14

2.4. Camera Control in Games

environments. In these conditions, continuity in camera position, smooth animations and

responsiveness become critical aspects.

Beckhaus et al. (2000) proposed a first approach to automatise the camera animation

for virtual museum tours generation. Their system used an Artificial Potential Field (APF)

to guide the camera through the museum: each painting was modelled as low potential

area attracting the camera and every time a painting was reached the potential of the area

was deactivated so that the camera would smoothly continue towards the next paining.

The system suggested by Bourne et al. (2008) is able to control also the camera animation

during the optimisation process, this is a characteristic common to local search approaches,

as subsequent solutions are normally close to each other an can, therefore, be used to

animate the camera.

Such an approach combines both the identification of the target camera configuration

and the animation of the camera towards the target. However, due to the hill-climbing na-

ture of the algorithms adopted these approaches often fail to find a smooth path for the cam-

era as they tend to prematurely converge into local optima. A set of approaches (Nieuwen-

huisen and Overmars, 2004; Baumann et al., 2008; Oskam et al., 2009) have focused purely

on the camera path planning task and have proposed different forms of the probabilistic

roadmap method to generate smooth and occlusion aware camera paths.

The camera control framework presented in this thesis addresses the problems of camera

composition and animation by combining different algorithms. In particular, we couple a

local search algorithm with a population-based algorithm to combine the computational

efficiency of the first with the robustness of the second (Burelli and Yannakakis, 2012b).

Finally the solution found through the combination of these algorithms is used as a target

to guide a 3D path planning algorithm (Burelli and Yannakakis, 2012a).

2.4 Camera Control in Games

Computer games stand as a natural benchmark application for automatic camera control

techniques as they impose the necessity for real-time execution; moreover, the camera needs

to react to unexpected and dynamic changes of the environment and to accommodate the

behaviour of the player to foster an optimal interactive experience. Despite this, in the

game industry, virtual cinematography has received considerably less attention than other

aspects such as visual realism or physics, and camera control has been mostly restricted to

the following standard interaction paradigms (Christie et al., 2008):

First person: the camera position and orientation corresponds to the player’s location in

the virtual environment; therefore, the camera control scheme follows the character

15

Chapter 2. Related Work

control scheme. Examples of games adopting such a camera control scheme include

Quake (id Software, 1996) and Halo: Combat Evolved (Microsoft Game Studios, 2001).

Third person: the camera either follows the character from a fixed distance with different

angles to avoid obstacles in the environment or multiple cameras are manually placed

in the environment and the view point changes according to the position of the main

game character. A different variant of the first type of camera control paradigm is

used in strategy or managerial games; in these games the target of the camera is

freely selectable by the player. Examples of games adopting such a camera control

scheme include Tomb Raider (Eidos Interactive, 1996) and Microsoft Game Studios

(Microsoft Game Studios, 2007).

Cut-scenes and replays: in these non interactive phases of the games, the camera focuses

on representing the important elements of the story rather than focuses on fostering

the interaction. It is often used in sport games (i.e. replay) and in story-heavy games

(i.e. cut-scenes). Games featuring such a camera control scheme include Metal Gear

Solid (Konami, 1998) or most sport video games.

Recent games demonstrate an increasing tendency to extend this list of paradigms and

enhance the player experience by employing cinematographic techniques to portrait narra-

tive and interaction in games. Examples such as Heavy Rain (Sony Computer Entertain-

ment, 2010) or the Uncharted (Sony Computer Entertainment, 2007) series show extensive

usage of cinematic techniques to frame the in-game actions (see Figure 2.1a). In such games,

however, the cameras are set manually in place during the development of the game; reduc-

ing heavily the movement and the actions the player can take. Moreover, such a solution

would be inapplicable in games in which the content is not known in advance since it is

either procedurally generated (Yannakakis and Togelius, 2011; Shaker et al., 2010) or crowd

sourced — e.g. World Of Warcraft (Vivendi, 2004).

Some simple dynamic techniques have been applied to more action oriented games such

as Gears Of War (Microsoft Game Studios, 2006) (see Figure 2.1b), in which the camera

changes relative position and look-at direction automatically to enhance some actions or

allow for a better view of the environment.

In games, a common camera control problem, involves following and keeping visible

one or more subjects while avoiding obstacles. Moreover, aesthetics and narrative can be

supported during and between actions by applying high composition and animation rules.

Halper et al. (2001) proposed an automatic camera control system specifically designed for

computer games, in which he highlights the necessity of frame-coherence (smooth changes in

camera location and orientation) to avoid disorienting the player during the game. Hamaide

16

2.5. Artificial Intelligence

(a) A screen-shot from Heavy Rain by Quantic
Dream, demonstrating usage of cinematographic
techniques.

(b) A screen-shot from Gears Of War by Epic during
a running action; in such context the camera moves
downward and shakes to enhance the haste sensa-
tion.

Figure 2.1: Examples of advanced camera control in modern computer games.

(2008) presented a camera system developed by 10Tacle Studios based on the controller by

Bourne et al. (2008); this system extends the one presented by Bourne et al. by adding

more advanced control on the camera dynamic behaviour with the support for predefined

movement paths.

None of these systems, however, supports both composition on multiple subjects and

animation contemporary, being unable to support cinematographic representations of the

game actions. Moreover, these works focus primarily on the automation of camera animation

and occlusion avoidance not considering aspects such as shots planning and editing. This

thesis addresses these aspects by applying machine learning to model the players’ preferences

on camera behaviour; such computational models are used to identify the most appropriate

shot to be selected during gameplay

2.5 Artificial Intelligence

As stated by Russell and Norvig (2009), Artificial Intelligence (AI) has been defined in

multiple ways depending on which aspect is considered more important. Rusell and Norvig

identify two dimensions along which the different definitions vary: which aspect of the

process is considered between reasoning and acting and whether the final goal is to achieve

and optimal or a human like result. This thesis work, by investigating the aforementioned

aspects of automatic camera control, focuses on the acting aspect of AI with the purpose

of both achieving and optimal and a human like behaviour of the camera. This section will

present a short overview of the state of the art in optimisation followed by two subsections

describing how optimisation and machine learning are used in computer games to generate

optimal agent behaviours and game contents and to model the player.

17

Chapter 2. Related Work

2.5.1 Optimisation

Many of the approaches presented in section 2.3 address different aspects of virtual camera

control as numerical optimisation tasks. In numerical optimisation, the algorithm is required

to find the best configuration in a given search space that minimises or maximises a given

objective function. For instance, in APF, the controller searches for the solution which

minimises the function representing the potential field, similarly in PRM, the controller

searches for the path of minimum length connecting two points. In the first example, the

objective function is the potential field function and the search space is its domain. In the

second example, the objective function is the function measuring the length of the produced

path, while the search space contains all the possible paths connecting the two points.

Optimisation techniques vary according to the domain type, the objective function and

how much is known about these two aspects. Some techniques, such as linear program-

ming (Hadley, 1962), make strong assumptions on the type of objective function, while

other techniques, such as meta-heuristics, make few or no assumptions about the problem

being optimized. Due to this flexibility, meta-heuristic methods stand as an ideal instrument

to address both the problems of camera animation and virtual camera composition (Olivier

et al., 1999; Halper and Olivier, 2000; Beckhaus et al., 2000; Bourne et al., 2008; Burelli

and Yannakakis, 2012b; Pickering, 2002; Christie and Normand, 2005; Burelli et al., 2008)

Metaheuristics are optimisation methods that iteratively try to improve a candidate

solution with regard to a given measure of quality; the iterative process commonly in-

cludes some form of stochastic optimization. Examples of meta-heuristic methods include

population based algorithms such as Genetic Algorithms (Holland, 1992) or Evolutionary

Algorithms (Schwefel, 1981) and local search algorithms such as Simulated Annealing (Kirk-

patrick et al., 1983) or Tabu Search (Glover and Laguna, 1997).

Section 3.4 describes virtual camera composition as an optimisation problem and, more

specifically, a dynamic optimisation problem. This family of problems includes all the op-

timisation problems in which the objective function changes during the optimisation prob-

lem (Branke, 2001). Algorithms that attempt to solve such problems have to be able to

reuse information between optimisation cycles to guide their convergence while keeping the

population diversified to avoid premature convergence. Examples of memory mechanisms

used to improve standard meta-heuristics algorithms include memorisation of successful

individuals (Ramsey and Grefenstette, 1993) or diploidy (Goldberg and Smith, 1987). Ex-

amples of techniques adopted to ensure diversity in the population include both approaches

that inject noise after the objective function changes, such as Hypermutation (Cobb, 1990)

and Variable Local Search (Vavak et al., 1997), as well as approaches that maintain the

diversity during the optimisation process, such as multi-modal optimisation (Ursem, 2000).

18

2.5. Artificial Intelligence

These techniques, however, assume that the objective function changes at most once every

generation; as it is explained in Chapter 3, the change rate in automatic camera control

is potentially much higher so a different approach is proposed to deal with the dynamic

nature of the objective function.

2.5.2 Artificial Intelligence in Games

Artificial Intelligence in games has been employed in a variety of forms to address a multi-

tude of problems such as procedural content generation (Togelius et al., 2010), game play-

ing (Lucas, 2008) or player modelling (Houlette-Stottler, 2004; Yannakakis and Maragoudakis,

2005).

Various optimisation algorithms have been employed to develop optimal strategies to

play games (Wirth and Gallagher, 2008) or to generate more intelligent non player character

behaviours (Hagelbäck and Johansson, 2009). Others attempted to use machine learning to

learn how to play a game (Tesauro, 1994; Thrun, 1995); such task very often stands as a more

complex task than board or card games, due to larger space of states, higher unpredictability

and larger number of possible actions. Therefore, several approaches attempted to learn

playing computer games such as Super Mario Bros (Togelius et al., 2009), Pacman (Lucas,

2005) or TORCS (Cardamone et al., 2009).

Another prominent direction of research in the field investigates the application of ma-

chine learning for content generation in games. The primary challenges of procedural con-

tent generation are: how to represent the game content, how to evaluate the content quality

and how to find the best content configuration. Machine learning has been used to address

all these problems: for instance, evolution has been employed to generate tracks for racing

games (Togelius et al., 2006) or to generate strategy game units (Mahlmann et al., 2011)

and ANNs have been used to model the weapons in a multi-player space fight game (Hast-

ings et al., 2009). Shaker et al. (2010) built a set of ANNs models of player experience and

employed them as evaluation functions for the game content.

Bares and Lester (1997a) proposed an explicit method to build user models of camera

behaviour used to generate personalised camera control experiences, this thesis draws upon

this work and modern player modelling to design a method to generate adaptive cinemato-

graphic experiences in computer games.

2.5.3 Player Modelling

The term player modelling identifies the application of user modelling to games (Charles

and Black, 2004; Houlette-Stottler, 2004; Yannakakis and Maragoudakis, 2005). Player

modelling has been employed on different aspects of games; however, it is possible to isolate

19

Chapter 2. Related Work

two main purposes: a post-hoc analysis of the players’ in-game behaviour (Drachen et al.,

2009) or as as the first step to adapt game content (Yannakakis and Togelius, 2011).

Clustering techniques have been used to isolate important traits of the player behaviour:

self-organising maps have been used to identify relevant game-play states (Thurau et al.,

2003) or to identify player behaviour types from game-play logs (Thawonmas et al., 2006;

Drachen et al., 2009) and neural gas (Thurau et al., 2004) has been applied to learn players’

plans. Thurau et al. (2003; 2004) coupled clustering techniques with supervised learning to

build believable Quake II (Activision, 1997) bots.

Viewing player modelling as an initial step in the design process of adaptive behaviour

in games, Yannakakis and Maragoudakis (2005) combined naive Bayesian learning and on-

line neuro-evolution in Pac-Man to maximize the player’s entertainment during the game

by adjusting NPCs behaviour. Thue et al. (2007) built a player profile during the game,

based on theoretical qualitative gameplay models, and used this profile to adapt the events

during an interactive narrative experience.

Yannakakis et al. (2010) studied the impact of camera viewpoints on player experience

and built a model to predict this impact. That research study demonstrates the existence of

a relationship between player emotions, physiological signals and camera parameters; how-

ever, since the relationship is built on low level camera parameters, the findings give limited

information about the visual features which are more relevant for the player. Therefore, in

the light of these results, in this thesis we further investigate the relationship between cam-

era and player experience to automate the generation and selection of the virtual camera

parameters. More specifically, in this thesis, we attempt to incorporate alternative player

input modalities (i.e. gaze) to model the user’s visual attention for camera profiling.

2.6 Gaze Interaction in Games

Eye movements can be recognised and categorised according to speed, duration and direc-

tion (Yarbus, 1967). In this paper, we focus on fixations, saccades and smooth pursuits. A

fixation is an eye movement that occurs when a subject focuses at a static element on the

screen; a saccade occurs when a subject is rapidly switching her attention from one point

to another and a smooth pursuit is a movement that takes place when a subject is looking

at a dynamic scene and she is following a moving object.

Research on gaze interaction in computer games include studies on the usage of gaze

as a direct player input (Nacke et al., 2009; Munoz et al., 2011) and studies on gaze as a

form of implicit measure of the player’s state. El-Nasr and Yan (2006), for instance, used

an eye tracker to record eye movements during a game session to determine eye movement

20

2.7. Summary

patterns and areas of interest in the game. Moreover, they employed this information to

calculate the areas of the game that necessitate a higher graphic quality.

Sundstedt et al. (2008) conducted an experimental study to analyse players’ gaze be-

haviour during a maze puzzle solving game. The results of their experiment show that

gaze movements, such as fixations, are mainly influenced by the game task. They conclude

that the direct use of eye tracking during the design phase of a game can be extremely

valuable to understand where players focus their attention, in relation to the goal of the

game. Bernhard et al. (2010) performed a similar experiment using a three-dimensional

first-person shooter game in which the objects observed by the players were analysed to

infer the player’s level of attention. We are inspired by the experiment of Bernhard et al.

(2010); unlike that study however, in this thesis, we analyse the player’s gaze patterns to

model the player’s camera movements, and moreover, investigate the relationship between

camera behaviour, game-play and player-behaviour.

2.7 Summary

This chapter described the state-of-the art of virtual camera control and how it is related

to field such as optimisation, machine learning and user modelling. Moreover, it gives and

outline of the outstanding issues existing in the field and, more specifically, in the use of

automatic camera control in dynamic and interactive applications. Problems such as the

computational complexity of dynamic camera placement and animation and the dichotomy

between interactivity and cinematography, which have been introduced in this section, will

be analysed in depth in the following chapter and a series of solutions will be proposed and

evaluated.

21

Chapter 2. Related Work

22

Chapter 3

Automatic Camera Control

This chapter1 presents the algorithms and techniques adopted to successfully tackle the

virtual camera composition and animation problems.

The virtual camera composition problem is commonly defined as a static problem in

which, given an environment setup and a shot description, one or multiple optimal static

shots are generated. In this paper, the concept of virtual camera composition is extended

to address environments that change dynamically during optimisation. In this context,

optimisation is not intended as a finite process that produces an optimal set of results at

the end of its execution. It is, instead, a never-ending process that continuously adapts and

tracks the best possible camera configuration while the environment is changing. In other

words, the optimisation process is not run every frame, instead it runs in parallel to the

rendering process at each frame rendering the current best solution can be used to drive

the camera.

We believe that continuous dynamic optimisation of the camera configuration with re-

spect to composition is a fundamental aspect of automatic camera control in dynamic

environments. Successfully solving such an optimisation problem would allow develop a

controller which is always aware of the optimal camera configuration in composition terms.

Such information could be employed directly to place the camera or it could be used to drive

an animation process. In such a structure, a camera controller is divided in three layers

solving respectively composition, animation and shot planning. The camera configurations

identified by the composition layer during the optimisation are used to drive inform the

animation layer, which employs a Probabilistic Roadmap based path planning algorithm to

smoothly animate a virtual camera.

In the first part of the chapter, virtual camera composition and animation are defined

as dynamic numerical optimisation problems and the concepts of frame and animation

1Parts of this chapter have been published in (Burelli and Jhala, 2009b,a; Burelli and Yannakakis, 2010a,b)
and have been submitted for publication in (Burelli and Yannakakis, 2012b)

23

Chapter 3. Automatic Camera Control

constraints are introduced and each constraint is described in detail with references to the

state-of-the art. The chapter continues with an overview of the architecture of CamOn,

a detailed description of the optimisation and path planning algorithms employed in its

development and evaluation, and it concludes with a summary of the chapter’s content.

3.1 Frame constraints

In order to define virtual camera composition as an optimisation problem, we primarily

need to identify the number and types of key attributes that need to be included in the

objective function of the optimisation problem.

The characteristics of the search space of the optimisation problem depend on the num-

ber and type of parameters used to define the camera. The choice of parameters affects

both the dimensionality of the optimisation problem (thus, the performance of the optimi-

sation process) and the expressiveness, in terms of shot types that can be generated. The

solution space contains all the possible camera configurations (the term solution and cam-

era configuration are used interchangeably in this article) and, according to the standard

perspective camera model in OpenGL, a virtual camera is defined by six parameters: posi-

tion, orientation, field of view, aspect ratio, near plane and far plane. Camera position is

a three-dimensional vector of real values defining a Cartesian position. Camera orientation

can be defined either using a quaternion, a set of three Euler angles or a combination of two

three-dimensional vectors describing the front direction and the up direction. With the last

four parameters, the domain of the virtual camera composition objective function is at least

10-dimensional. However, some parameters such as near and far planes and the camera up

vector are commonly constant, while other parameters are tightly related to the shot type.

In particular, parameters such as field of view and aspect ratio are used dynamically and

statically to express certain types of shots (Arijon, 1991). For instance, an undesired change

of field of view performed by the composition optimisation layer during the shooting of a

scene, might create an undesired zoom effect which disrupts the current shot purpose. On

the other hand, if a vertigo shot is selected at shot planning level — e.g. by a designer or by

an automatic planning system such as Darshak (Jhala and Young, 2010) —, the animation

layer will take care of widening the field of view, while the composition layer will automat-

ically track the best camera configuration towards the subject to maintain the composition

properties. For this reason, we consider these aspects of camera as parts of the high level

requirements for the optimisation algorithm instead of as optimisation variables. The search

space which composes the domain of our objective function is, therefore, five-dimensional

and it contains all possible combinations of camera positions and orientations.

24

3.1. Frame constraints

Bares et al. CamOn

OBJ PROJECTION SIZE Object Projection Size

OBJ VIEW ANGLE Vantage Angle

OBJ IN FIELD OF VIEW Object Visibility
OBJ OCCLUSION MINIMISE
OBJ EXCLUDE OR HIDE
OBJ OCCLUSION PARTIAL

OBJ PROJECTION ABSOLUTE Object Projection Position

CAM POS IN REGION Camera Position

Table 3.1: Comparison between the frame constraints defined by Bares et al. (2000) and
the frame constraints supported by the camera controller described in this thesis.

Bares et al. (2000) described the concept of frame constraint as a set of requirements that

can be imposed to define a camera control problem. Every frame constraint is converted

into an objective function that, in a linear combination with all the constraints imposed,

defines a camera control objective function (Olivier et al., 1999). An example of a frame

constraint is OBJ PROJECTION SIZE that requires the projection of an object to cover

a specified fraction of the frame.

We consider a reduced set of frame constraints: Vantage Angle, Object Projection Size,

Object Visibility and Object Projection Position. These four constraints serve as representa-

tives of all the constraints listed by Bares et al. (2000). Table 3.1 contains a comprehensive

comparison of such constraints and their equivalent frame constraint in the CamOn system.

In the remaining of this section, we present these frame constraints, their corresponding

objective functions as well as how each constraint relates to one or more constraints of the

aforementioned list. Note that the terms fitness and objective function value will be used

interchangeably in this chapter to describe the same concept as most of the algorithms

considered are based on population-based meta-heuristic algorithms.

3.1.1 Vantage Angle

This constraint binds the camera position to the position and rotation of a target object. It

requires the camera to be positioned so that the angle between the target object front vector

and the front vector of the camera equals to a certain value. A vantage angle constraint is

defined by three parameters: the target object, the horizontal angle and the vertical angle.

Figure 3.1 depicts three sample shots showcasing the relationship between the angles, the

target object and the generated shot. The objective function fθ of this frame constraint

quantifies how close to the required angle is the position of the camera and it is defined as

25

Chapter 3. Automatic Camera Control

(a) Angle: 0, 0 (b) Angle: -90, 0 (c) Angle: 45, 45

Figure 3.1: View angle sample shots. Each shot is identified by a horizontal and a vertical
angle defined in degrees.

follows:

fθ = fα · fβ

fα = 1− |
~̂Px − ~Hx|+ | ~̂Pz − ~Hz|

4

fβ = 1− |
~Vy − ~̂Py|

2
~P = ~C − ~T

~V =

1 0 0
0 cos(β) − sin(β)
0 sin(β) cos(β)

× ~F

~H =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

× ~F

(3.1)

where α is the desired horizontal angle, β is the desired vertical angle, ~F is the target’s

front vector, ~C is the current camera position, ~T is the current target position and ~̂P is the

normalised relative direction of the camera with respect to the target object. Using this

constraint, it is also possible to control only one angle; in which case, fθ equals either to fα

or fβ depending on the angle that should be constrained.

This frame constraint is equivalent to OBJ VIEW ANGLE constraint of the Bares et al.

(2000) list (see Table 3.1).

3.1.2 Object Projection Size

This constraint binds the camera position and rotation to the position and size of a target

object. It requires the area covered by the projection of a target object to have a specific

size. The object projection size constraint is defined by two parameters: the target object

26

3.1. Frame constraints

(a) Size: 1.0 (b) Size: 0.5 (c) Size: 1.5

Figure 3.2: Object projection size sample shots. Each shot is identified by a projection size
defined as the ratio between the longest side of the object’s projection bounding box and
the relative side of the frame.

and the fraction of the frame size that the projection should cover. Figure 3.2 shows three

sample shots demonstrating the relationship between the projection size, the target object

and the generated shot. The objective function fσ of this frame constraint quantifies the

proximity of the current camera position to the closest position which generates a projection

of the object covering the desired size. It is calculated as:

fσ =

{
σc
σd

if σd > σc,
σd
σc

otherwise.
(3.2)

where σd is the desired projection size and σc is the actual projected image size of the

target object. The size of an object’s projected area can be calculated with different lev-

els of approximation. Maximum accuracy can be obtained by rendering to an off-screen

buffer and counting the area covered by the object. The bounding box and sphere can

also be used effectively for the area calculation. While these approximations drastically

decrease the computational cost of the objective function evaluation, they also provide less

accuracy. Using the bounding sphere of the object is the fastest evaluation method but

it approximates poorly most of the possible targets, especially human-shaped objects. In

the current implementation of the evaluation function, the target object is approximated

using its bounding box and the projected area size is calculated using Schmalstieg and To-

bler’s method (1999). This frame constraint corresponds to the OBJ PROJECTION SIZE

constraint of the Bares et al. (2000) list (see Table 3.1).

3.1.3 Object Visibility

This constraint binds the camera position and rotation to the position and size of a target

object. It requires the target object to be included in the frame and not hidden by any

27

Chapter 3. Automatic Camera Control

(a) Visibility: 1.0 (b) Visibility: 0.6 (c) Visibility: 0.5

Figure 3.3: Object visibility sample shots. Each shot is identified by a visibility value
defined as the ratio between the visible area of the object and its complete projected area.

other object; both conditions are necessary to identify the target object as visible. In order

to respect these two requirements, the camera should be placed at a sufficient distance from

the target and oriented in order to frame the target. Moreover, the volume between the

camera and the target object should not contain obstacles that hide the target object.

Every opaque object in the virtual environment can potentially act as an obstacle and

generate an occlusion. Figure 3.1 illustrates three sample shots showcasing the relationship

between the visibility value, the target object and the generated shot. The objective function

fγ of this frame constraint quantifies the rate between the actual visible area of the projected

image of the object and its total projected area and it is defined as:

fγ = 1− |γd − γc|

γc =

∑N
i=1 infov(~vi)

N

∑Ne
i=1(1− occ(~ei))

5

infov(~x) =

{
1 if ~x is in the view frustum,

0 otherwise.

occ(~x) =

{
1 if ~x is occluded,

0 otherwise.

(3.3)

where γc is the current visibility value of the target object, γd the desired visibility value,

~vi is the position of the ith vertex of the object’s mesh, N is the number of vertices of the

mesh, function infov(~x) calculates whether a point is included in the field of view or not,

~e is the list containing the positions of the four extreme vertices in field of view — i.e. the

top, bottom, left and right vertices on screen — and the one closer to the center of the

projected image, and Ne is equal to 5 (an example of these points is depicted in Fig. 3.4).

The occ(~x) function calculates whether the point ~x is occluded by another object or not.

28

3.1. Frame constraints

Figure 3.4: Example of the 5 points used to check visibility in the Object Visibility objective
function.

29

Chapter 3. Automatic Camera Control

(a) Position: 0.25, 0.25 (b) Position: 0.75, 0.75 (c) Position: 0.5, 0.5

Figure 3.5: Object frame position sample shots. Each shot is identified by a two-dimensional
vector describing the position of the object’s center in the frame.

The first part of the visibility function returns the fraction of the object which is in the

field of view, while the second part returns the fraction of that part which is not occluded,

the product of these two values is the overall visibility.

The implemented version of the function is optimised not to calculate the second part of

the function if the first part is equal to 0. The occlusion check is implemented by casting a

ray towards the point defined by the vector ~x and then checking whether the ray intersects

any other object other than the target. The infov(~x) function is implemented by checking

whether the point defined by ~x is included within the six planes composing the view frustum.

The object visibility constraint includes the OBJ IN FIELD OF VIEW, OBJ OCCLU-

SION MINIMISE, OBJ EXCLUDE OR HIDE and OBJ OCCLUSION PARTIAL con-

straints of the list proposed by Bares et al. (2000) (see Table 3.1). The first two can be

obtained by setting the desired visibility to 1, the third by setting it to 0, while any number

between these two cases expresses the fourth constraint.

3.1.4 Object Frame Position

This constraint binds the camera position and rotation to the position of a target object. It

requires the target object to be included in the frame at a specific two-dimensional location.

The object frame position constraint is defined by three parameters: the target object, the

desired horizontal position and the desired vertical position. Figure 3.5 shows three sample

shots demonstrating the relationship between the frame position, the target object and the

generated shot.

The objective function fρ of this frame constraint quantifies how close to the required

30

3.1. Frame constraints

orientation is the camera and it is defined as follows:

fρ = 1− | ~pa − ~pd|√
2

(3.4)

where ~pa is the two-dimensional position of the target object in the frame and ~pd is the

desired position. Both vectors are defined between (0,0) and (1,1) where (0,0) corresponds

to the lower left corner of the frame and (1,1) corresponds to the upper right corner of

the frame. By combining object frame position and object projection size constraints it is

possible to express the OBJ PROJECTION ABSOLUTE constraint, since it is possible to

control both size and location of the object’s projected image.

3.1.5 Camera Position

This constraint binds the camera position to a specific location in the virtual environment.

It is improperly considered a frame constraint as it does not bind the solution to a char-

acteristic of the image to be rendered; however, it is often useful to be able to bind the

camera to a certain location. Moreover, the constraint has been included for completeness

with respect to the reference list defined by Bares et al. (2000) as it corresponds to the

CAM POS IN REGION constraint (see Table 3.1).

The objective function fε of this frame constraint expresses how close the camera is to

the region of space identified by the positions ~vmax and ~vmin and it is defined as follows:

fε =

{
1 if ~v < ~vmax ∧ ~v > ~vmin

1− min(|~v−~vmax|,|~v−~vmin|)
Dmax

otherwise.
(3.5)

where Dmax is the maximum distance between two points in the virtual environment.

3.1.6 Composition Objective Function

The complete virtual camera composition objective function is a linear combination of the

four aforementioned objective functions. Each objective function corresponds to a frame

constraint imposed on a certain object, the complete objective function f is given by:

f =

Nγ∑
i=1

wγifγi +

Nσ∑
i=1

wσifσi +

Nθ∑
i=1

wθifθi +

Nρ∑
i=1

wρifρi +

Nε∑
i=1

wεifεi (3.6)

where Nγ , Nσ, Nθ, Nρ and Nε are, respectively, the number of object visibility, object

projection size, vantage angle, object frame position and camera position constraints. wγi

and fγi are, respectively, the weight and the objective function value of the ith object

visibility constraint; wσi and fσi are, respectively, the weight and the objective function

value of the ith object projection size constraint; wθi and fθi are, respectively, the weight and

31

Chapter 3. Automatic Camera Control

the objective function value of the ith vantage angle constraint; wρi and fρi are, respectively;

the weight and the objective function value of the ith object frame position constraint; and

wεi and fεi are, respectively, the weight and the objective function value of the ith camera

position constraint.

3.2 Animation Constraints

The objective function presented in Eq. 3.6 describes the ideal shot the camera should gen-

erate; however, in a dynamic virtual environment, the camera cannot jump continuously to

the optimal configuration as this would often provoke a completely disorienting behaviour

(e.g. a virtual camera instructed to frame flickering object, such as a flame, would contin-

uously jump forward and backward to maintain the object’s projection size).

In dynamic environments, it is necessary for an automatic camera controller to moderate

also the camera motions/animation properties. For this purpose, we identify a minimal set

of four key motion constraints that the system should support, which are as follows:

• Camera Movement Speed: Defines the speed in space units per second at which

the camera follows the ideal position.

• Camera Rotation Speed: Defines the speed in degrees per second at which the

camera adjusts towards ideal rotation.

• Frame Coherence: Defines the threshold value (minimum percentage of visible

targets) for generating a cut — i.e. if the current visible surface of all the targets is

below the fraction defined by frame coherence (or there is no available path connecting

the current camera position with the next one) the controller will generate a cut, and

will place to camera to the new position without generating any animation.

• Obstacle Avoidance: A predefined boolean value that controls whether the camera

should or should not avoid the objects in the scene during its motion.

More constraints could be included in the set to support more cinematographic anima-

tions such as constraints on motion directions or constraints on frame properties during

motion (Lino et al., 2010). However, the proposed set guarantees an essential control of the

camera dynamic behaviour.

32

3.3. Controller’s Architecture

3.3 Controller’s Architecture

The structure of CamOn (see Fig. 3.6) is the result of an iterative design process. Through

the different design phases we have analysed the virtual camera composition objective func-

tion (Eq. 3.6) and we have evaluated different algorithms. The final results of this empirical

process are presented in Chapter 6.

The architecture of the controller includes two main components: an optimisation mod-

ule and an animation module (see Figure 3.6). The controller operates iteratively: at each

iteration, the optimisation module finds the next best camera solution according to the

frame constraints defined to describe the current shot, while the animation module ani-

mates the camera towards this solution according to the animation constraints. The inputs

considered by the controller are: the current camera configuration, the current geomet-

rical configuration of the virtual environment, the frame constraints and the animation

constraints. The output of the controller is a new virtual camera configuration. The pa-

rameters of the camera which are not controlled by CamOn (e.g. field of view) can be

directly set on the camera.

The controller balances the computational resources given to the two modules at each

iteration in order to guarantee real-time execution; therefore, depending on the computa-

tional resources available, the controller will pause the optimisation process to guarantee

an execution of each iteration in 16.6 ms (60 iterations per second). For this reason, only

few steps of the optimisation are executed each cycle; therefore, the optimiser has to search

an optimal solution in a dynamic problem in which the geometry might change during the

optimisation process. After the optimisation phase is concluded the animation module cal-

culates the new configuration of the virtual camera according to the animation constraints

and the best solution found so far by the optimiser.

The controller’s execution flow is as follows:

1. The system takes the current camera configuration, the frame constraints, the ani-

mation constraints and the current virtual environment’s geometry configuration as

input.

2. The next potential camera configuration that optimises the frame composition objec-

tive function is calculated by the optimisation module.

3. A path connecting the potential new camera configuration to the current one is cal-

culated by the animation module.

33

Chapter 3. Automatic Camera Control

CamOn

Optimiser

Animator

Camera Geometry

Camera Settings Frame Constraints Animation Constraints

Figure 3.6: Controller’s architecture. The black squares identify the controllable settings,
while the white squares identify the virtual environment features considered by the con-
troller. The two modules of the architecture are identified by the white ellipses.

4. If a path connecting the two points is available, the camera position and rotation are

animated towards the new solution according to the animation constraints; otherwise

the current camera is replaced by the newly found one, generating a cut.

5. The execution restarts from step 1

3.4 Optimisation Module

The optimisation module within the CamOn controller is responsible of finding and tracking

the camera configuration that optimises the given set of frame constraints. The optimisation

is executed in real-time while the virtual environment changes; therefore the module needs

to search an optimal solution of a dynamic optimisation problem.

We propose a novel approach, based on an hybrid meta-heuristic, to the problem of

finding and tracking the optimal camera in real-time in a dynamic environment. The pro-

posed search algorithm, combining an Artificial Potential Field and a Genetic Algorithm,

stands upon the author’s earlier work on camera control (Burelli and Jhala, 2009b; Burelli

and Yannakakis, 2010a) and extends it by introducing a novel coupling mechanism of the

two algorithms. At the initial stage of its development the optimisation module was purely

base on Artificial Potential Field to optimize the camera position and orientation; how-

ever, while the algorithm proved to allow the controller to operate in real-time, it showed

34

3.4. Optimisation Module

limitations caused by tendency of APF to prematurely converge to local optima with no

visibility of the targets (Burelli and Jhala, 2009b). A specific study on this aspect of the

optimization function revealed that GAs successfully optimize the visibility objective func-

tion (Burelli and Yannakakis, 2010b); however, the objective function in dynamic virtual

camera composition changes multiple times during a single generation evaluation and, as

pointed out by Schönemann (2007), such high frequency of change prevent any evolutionary

strategy to identify and track the global optimum successfully. The addition of an APF

operator allows the hybrid genetic algorithm to track the global optimum by concentrating

the search process locally as long as exploration is not necessary to avoid or escape local

optima basins.

The reminder of the section will describe a set of algorithms for virtual camera compo-

sition and it will present the hybrid Genetic Algorithm used to optimise the virtual camera

composition objective function in CamOn. The algorithms that will be described alongside

our solution will be: Artificial Potential Field, Sliding Octree, Genetic Algorithm, Particle

Swarm Optimisation and Differential Evolution. These algorithms have been selected since

they stand as state-of-the-art optimisation for virtual camera composition and they are part

of the comparative study presented in Chapter 6.

3.4.1 Artificial Potential Field

The first algorithm presented in this section is the Artificial Potential Field (APF) (Khatib,

1986). APF is an iterative technique commonly adopted in the area of robotics for control-

ling the navigation of robots in dynamic environments. Robots are modelled as particles

moving in a field of potentials attracted by low potential areas; the position to be reached

generates an attractive force (a low potential zone) and obstacles generate repulsive forces

(high potential zones). At each iteration, the particle moves along the force resulting from

the sum of all repulsive (obstacle avoidance) and attractive (goals) forces influencing the

particle’s current position; the particle continues to move until it reaches a stable state.

In automatic camera control, APF has initially been employed for simple navigation

tasks (Drucker and Zeltzer, 1994; Beckhaus et al., 2000), while we have adapted it to

solve the full camera optimisation problem. In its application to camera optimisation,

obstacle avoidance is modelled using repulsive forces and frame composition is obtained by

translating frame constraints into forces affecting both the position and the look-at point

of the camera.

Each frame constraint produces one force attracting or repulsing the camera’s position

and one force attracting or repulsing the camera’s look-at point; the system treats these two

aspects of the camera as two different particles moving into two different potential fields.

35

Chapter 3. Automatic Camera Control

(a) Target object (b) Position potential field (c) Orientation potential field

Figure 3.7: Position (b) and orientation (c) potential fields produced by a visibility con-
straint on a sphere (a). The two three-dimensional potential fields are sampled along the
XZ plane on at the Y coordinate of the sphere.

An example of the two potential fields created by a frame constraint (the target sphere has

to be fully visible in the projected frame) can be seen in Figure 3.7. The two potential fields

shown are a sample of the 3D field measured along the horizontal plane passing through

the sphere centre. The particle representing the look-at point of the camera and the one

representing its position are attracted by the low potential areas; resulting in the camera

turning towards the target sphere and moving at a sufficient distance to be able to frame

the complete object.

The Vantage Angle constraint produces one force ~Fpθ that affects the camera position

defined as follows:

~Fpθ = (1− fθ) ˆ(~c−~t)

~t =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

×
1 0 0

0 cos(β) − sin(β)
0 sin(β) cos(β)

× ~fwc|~c− ~s|
(3.7)

where ~c is the camera position, ~s is the subject position, ~fwc is the subject’s front vector

and the fθ function is the vantage angle objective function defined in Equation 3.1.

The Object Projection Size constraint also produces only a force ~Fpσ that affects the

camera position defined as follows:

~Fpσ = dp(1− fσ) ˆ(~c−~s)

dp =

{
1 if σc < σd

−1 otherwise

(3.8)

where σc is the current projections size value and σd the desired one, ~c is the camera position,

~s is the subject position and the fσ function is the projection size objective function defined

in Equation 3.2.

36

3.4. Optimisation Module

The Object Visibility constraint produces one force that affects the camera position and

one force that affects the camera look-at point. The camera position force ~Fpγ is defined as

follows:

~Fpγ = (v~uw + h~rc)|~c− ~s|(1− fγ)

v =

dp if occ(~ebottom) ∧ occ(~etop)
−dp if occ(~etop) ∧ occ(~ebottom)

0 otherwise

h =

dp if occ(~eleft) ∧ occ(~eright)
−dp if occ(~eright) ∧ occ(~eleft)
0 otherwise

dp =

{
1 if γc < γd

−1 otherwise

(3.9)

where γc is the current visible fraction value and γd the desired one, ~c is the camera position,

~s is the subject position, ~uw is the world’s up vector and ~rc is the camera’s right vector.

The ~e vectors, the fγ function and the occ() function are the ones defined in equation 3.3.

The camera orientation force ~Foγ is defined as follows:

~Foγ = do(~s− ~c− ~fwc((~s− ~c) · ~fwc))|i− γd|

do =

{
1 if i < γd

−1 otherwise

i =

∑N
i=1 infov(~vi)

N

(3.10)

where γd the desired visible fraction, ~vi is the position of the ith vertex of the subject’s mesh,

N is the number of vertices of the mesh, function infov(~x) calculates whether a point is

included in the field of view or not, ~c is the camera position, ~s is the subject position and

~fwc is the camera’s front vector.

The Object Frame Position constraint produces one force ~Fpρ that affects the camera

look-at point an it is defined as follows:

~Foρ = (1− fρ)(v~uw + h~rc)

v =

{
1 if ~ρdy > ~ρcy

−1 otherwise

h =

{
1 if ~ρdx < ~ρcx

−1 otherwise

(3.11)

where ρc is the current on screen position value and ρd the desired one, ~uw is the world’s

up vector, ~rc is the camera’s right vector and the fρ function is the ones defined in equation

3.4.

37

Chapter 3. Automatic Camera Control

The Camera Position constraint produces one force ~Fpε that affects the camera position

defined as follows:

~Fpε = (1− fε) ˆ(~ε−~c) (3.12)

where ~c is the current camera position, ~ε is the desired camera position and the fε function

is the camera position objective function defined in Equation 3.5.

The force value at each point is described as a linear combination of scalar weighted

forces, where each force corresponds to a frame constraint and each scalar value to the

relative subject importance; the resulting values define the gradients of the potential field.

The resulting force value represents the multi-dimensional derivative of the potential field;

thus, an Euler integration method can be used used to follow the slope of the potential

curve and converge to the low potential area. The initial iteration step s starts from an

arbitrary initial value and, during the optimisation, decreases according to the following

formula:

si = s0
e10(1−Fi−1) − 1

e10(1−Fi−1) + 1
(3.13)

where s0 is the initial step, Fi is the best fitness value before iteration i and si is the step

length that should be at the applied at iteration i. Note that Fi−1 can assume values

between 0 and 1, thus, the length reduction is also constrained in the same interval. Such a

fitness-based decrease is intended to speed-up the convergence when the objective function

value of the current solution is low and to stabilise the convergence when the solution is

near optimal.

3.4.2 Sliding Octree

In the second version of their camera control system, Bourne et al. (2008) introduced a

local search algorithm, the Sliding Octree (SO), that explores the search space through

cubic spaces that get smaller at each iteration step.

SO is a best-first search algorithm, following the node of the octree with the highest

fitness value. The search algorithm starts by generating an octree that contains 8 points

surrounding the current camera position. The distance between the points is equivalent to

the maximum distance the camera can move during one algorithm iteration. During each

iteration the algorithm performs a number of passes in which the octree slides towards the

point having the highest evaluated fitness value and a new evaluation of the octree nodes is

performed. At each pass, the distance of the octree points is decreased by a linear scaling

factor, so that the search process starts coarsely and becomes increasingly focused around

the solution. After all the passes have been performed, a new octree is generated around

the new solution and the execution proceeds with the next iteration.

38

3.4. Optimisation Module

pass #1

Initial solution

Potential solutions

pass #2

pass #n

Iteration solution

Figure 3.8: Example of a Sliding Octree iteration step. At each pass of the iteration, the
branch of the octree containing the best solution is explored, the distance between the
children nodes and the parent node decreases by 25% at each level of the tree.

The distance scaling factor and the number of passes are the parameters of the algorithm.

If the scaling factor is too large, the octree shrinks too quickly and large portions of the

search space may be missed. If the scaling factor is too small, the solver takes significantly

longer to converge on the optimal solution. Bourne at al. suggest a linear scaling factor as

equal to 0.75 and a number of passes Np calculated as follows:

Np = 3Ds (3.14)

where Ds is the number of dimensions of the search space.

The version of the optimisation algorithm evaluated in Chapter 6 differs slightly from

this implementation due to the dimensionality of the search space. The original version of

the search algorithm optimised only the camera position: therefore, it searched for a solution

only in a three-dimensional space. To apply the same heuristic to the five-dimensional search

space explored by the CamOn optimisation module, the number of nodes at each level of

the tree is 32 (25) instead of 8 (23).

3.4.3 Genetic Algorithm

A Genetic Algorithm (GA) (Holland, 1992) is a biologically-inspired population-based meta-

heuristic that mimics the process of evolution. It operates by generating a population of

random individuals in the search space, each encoding a possible solution. At each iteration

of the algorithm, each individual of the population is evaluated against the function that

needs to be optimised (objective function). Subsequently, a new population of individuals

is generated from the application of genetic operators such as crossover and mutation on a

selection of individuals belonging to the previous generation.

39

Chapter 3. Automatic Camera Control

x y z h v

Figure 3.9: Chromosome of an individual of the Genetic Algorithm, containing 5 real values
describing the camera position and orientation.

Despite the vast variation of GAs used in the literature, there are some common basic

algorithmic steps which are described as follows:

1. A population of chromosomes (i.e. individuals or solutions) is randomly initialised.

2. Each chromosome is evaluated and its fitness value is calculated as the objective

function value corresponding to the solution described by the chromosome.

3. A subset of parents is selected according to their fitness. Several selection schemas

can be applied such as elitism or roulette wheel.

4. Genetic operators (crossover and mutation) are applied to the previously selected

subset of chromosomes and a new generation of potential solutions is generated.

5. The new solutions are evaluated and re inserted in the initial population by substi-

tuting other solutions according a replacement strategy.

6. The algorithm re-iterates starting from step 3.

In GAs, a crossover operator is a genetic operation that generates one or more new

potential solutions from the combination of two parents. The chromosome of each new

potential solution is the result of a recombination of two parent chromosomes. A mutation

operator is a genetic operation that alters a potential solution by randomly changing the

values contained in the selected chromosome. Both operators exist in different variations

and can be applied to both binary and real valued solutions.

In the author’s initial study on the combination of APF and GA for automatic camera

control (Burelli and Yannakakis, 2010a), a GA was employed to optimise a reduced objective

function built only on occlusion requirements. Occlusion depends only on camera position;

therefore, by reducing the dimensionality of the search space, the computational cost of

the GA was significantly lower. However, due to this solution, the GA often converged to

undesirable areas of the search space with very low overall objective function value and did

not allow the local search process to converge to a better solution.

For the purpose of this thesis, a GA is employed to optimise the complete virtual cam-

era composition objective function; therefore each individual represents a possible camera

configuration. The chromosome of each individual contains 5 float values representing the

40

3.4. Optimisation Module

camera position and orientation, using 3 Cartesian coordinates for the position and 2 spher-

ical coordinates for the orientation, as displayed in Fig. 3.9. The crossover operator applied

is a uniform crossover, while the mutation operator applies a uniform random mutation.

3.4.4 Differential Evolution

Differential Evolution (Storn and Price, 1997) is an evolutionary algorithm which, similarly

to a GA, encodes the solutions as chromosomes belonging to a population of individuals

which are iteratively selected and recombined during the optimisation process. DE, how-

ever, employs a particular selection and recombination scheme: for each individual in the

population other three individuals are randomly picked and the new offspring is generated

by the combination of these individuals with probability C for each value of the chromosome.

The new values of the offspring y are given by the following equation:

yi =

{
αi +Wd(βi − γi) if r < C

xi otherwise.
(3.15)

where Wd is the weighting factor, xi is the ith value of the current individual’s chromosome,

α, β and γ are the corresponding gene values of the other three randomly selected individ-

uals, C is the crossover probability and r is a uniform random number in the range (0,1).

DE has proven to be one of the best performing evolutionary algorithms on a large number

of problems and demonstrated to be extremely robust to the parameters choice (Storn and

Lampinen, 2004; Ali and Törn, 2004). The Wd parameter controls the magnitude of the

recombination of the chromosomes, while the C parameter controls its probability.

In its implementation for virtual camera composition, DE encodes in each chromosome

a potential five dimensional camera solution defined by the same real-valued parameters

described for GA, as displayed in Fig. 3.9.

3.4.5 Particle Swarm Optimisation

Particle Swarm Optimisation (Kennedy and Eberhart, 1995) is a population-based global

optimisation algorithm, whose dynamics are inspired by the social behaviour that underlies

the movements of a swarm of insects or a flock of birds. These movements are directed

towards both the best solution to the optimisation problem found by each individual and

the global best solution. The algorithm initially generates a population of random solutions

encoded as particles. Each particle is then initialised with a random velocity. At each

iteration n, after the particles moved at the speed they have been previously assigned, the

algorithm evaluates the fitness corresponding to their new positions and recalculates their

41

Chapter 3. Automatic Camera Control

velocity according to the new global and local optima detected. The velocity vni of the ith

particle at the nth iteration is calculated according to the following formula:

vni = lvn−1i + c1r1(o
n−1
i − xn−1i) + c2r2(o

n−1
g − xn−1i) (3.16)

where r1 and r2 are two uniformly distributed random numbers in the [0, 1] range, whose

purpose is to maintain population diversity. The constants c1 and c2 are, respectively, the

cognitive and social parameters, which control the influence of the local and global optimum

on the convergence of each particle. A high c1 value favours exploration and diversity in

the population, while a high c2 value favours exploitation of the current known solutions

increasing speed of convergence, but also increasing the possibility of early convergence.

The value l is the inertia weight and it establishes the influence of the search history

on the current move. Finally, on−1i is the best configuration assumed by the ith particle at

step n−1 and is known as the particle’s local optimum, while on−1g is the best configuration

assumed by any particle at step n− 1 and is the current global optimum.

Since at each iteration a solution to the problem is available (although it is not guaran-

teed to be the optimal one), PSO belongs to the family of any-time algorithms, which can

be interrupted at any moment still providing a solution.

PSO has been first employed in camera control for off-line camera optimisation combined

with a space pruning technique (Burelli et al., 2008). In the implementation included in this

thesis, each particle moves in a 5-dimensional vector space defined by the same parameters

of the camera described for GA in Section 3.4.3.

3.4.6 Hybrid Genetic Algorithm

The optimisation module employed in the CamOn camera controller is based on a hybrid

Genetic Algorithm designed to exploit the speed of convergence of APF while maintaining

the reliability and the ability to explore the solution space of a GA. Such a hybrid meta-

heuristic extends and draws upon the author’s earlier work integrating visibility optimisation

via a GA combined with an APF based camera controller (Burelli and Yannakakis, 2010a).

However, contrarily to the aforementioned approach, in which the two algorithms were

executed as separate entities and the GA was only used to minimize occlusion, the algorithm

proposed in this article couples the two algorithms in a tighter fashion. The structure of the

hybrid meta-heuristic algorithm follows the structure of a classic GA; however, a new unary

operator is added to the classical crossover and mutation: an artificial potential field driven

mutation. Such operator is added to exploit the knowledge of the objective function by

employing an Artificial Potential Field optimisation algorithm based on an approximation

of the composition objective function derivative.

42

3.5. Animation Module

At the initial stage of its development CamOn employed purely Artificial Potential Field

to optimise the camera position and orientation; however, while the algorithm proved to

allow the controller to operate in real-time, it showed limitations caused by tendency of

APF to prematurely converge to local optima with no visibility of the targets (Burelli and

Jhala, 2009b). A specific study on this aspect of the optimisation function revealed that

GAs successfully optimise the visibility objective function (Burelli and Yannakakis, 2010b):

however, the objective function in dynamic virtual camera composition changes multiple

times during a single generation evaluation and, as pointed out by Schönemann (2007),

such high frequency of change prevent any evolutionary strategy to identify and track the

global optimum successfully. The addition of an APF operator allows the hybrid genetic

algorithm to track the global optimum by concentrating the search process locally as long

as exploration is not necessary to avoid or escape local optima basins.

As it is possible to observe in the flow chart depicted in Fig. 3.10, at every execution

iteration the flow control passes to a component name Scheduler ; this component is respon-

sible to decide when to follow two types of policies: exploitation and exploration. When

exploration is chosen the algorithm behaves exactly like a standard generational GA; there-

fore, it initialises the population up to the desired number of individuals and then applies

the standard genetic operators. On the contrary, when the Scheduler chooses to activate

exploitation, the APF based mutation operator is applied to the current optimal solution.

In the execution flow of the algorithm, the Scheduler is activated before any action is

picked; therefore, the algorithm is able to exploit or explore also during the population

initialisation phase. At the beginning of the algorithm execution, the Scheduler component

follows the exploration policy once every P exploitations, where P is an integer parameter

that defines how often the hybrid GA follows the exploitation policy. If the scheduler detects

an early convergence, the ratio between the two policies execution is inverted; therefore, the

Scheduler follows the exploitation policy only once every P explorations. Two conditions

may trigger an early convergence: all the objects (that are requested to be visible) are

completely occluded, or the optimal solution’s fitness does not increase for more than one

frame rendering time. When all the aforementioned conditions cease, the Scheduler returns

to the initial configuration.

3.5 Animation Module

This section describes the second component of the CamOn architecture; this component

is responsible of finding a path between the current camera position and the new solution

found by the optimisation module and to animate the camera. If no obstacle avoidance is

required for camera motion, this component animates the camera position along a straight

43

Chapter 3. Automatic Camera Control

Start

Scheduler

Population Full?

Explore

Apply A-MU to the optimum

Exploit

Generate a new individual

No

Apply CR to the next two individuals

Yes

Apply MU to the resulting two individuals

Evaluate and replace parents

Figure 3.10: Flowchart representing the execution flow of the proposed hybrid GA. The
labels CR, MU, A-MU are used to refer, respectively, to the crossover, mutation and APF
base mutation operators

line between the current camera position and the next one. On the other hand, if the camera

is required to avoid obstacles, the component calculates and updates a path that connects

the current camera position with the target one at each frame. This path is computed using

the Lazy Probabilistic Roadmap Method (Lazy PRM) path planning algorithm (Bohlin and

Kavraki, 2000).

In both cases, the camera rotation is animated by linearly interpolating the current

camera orientation with the target orientation. The speed movement along the calculated

path and the rotation movement are controlled according to the animation constraints

given as inputs to the camera controller. Under two conditions, the animation module does

not follow the aforementioned procedure and positions and rotates the camera directly to

44

3.5. Animation Module

the optimal solution. This happens if the path planning algorithm is unable to find valid

path in the allowed computation time or if the camera is required to perform a cut for

cinematographic reasons.

The animation component in the aforementioned architecture ensures control over cam-

era animation independently of optimisation convergence and, moreover, effectively reduces

the camera jittering problems caused by the natural oscillation in the local search conver-

gence process.

3.5.1 Lazy Probabilistic Roadmap

The path planning algorithm employed in CamOn is a Lazy Probabilistic Roadmap (Bohlin

and Kavraki, 2000), which is an evolution of the original Probabilistic Roadmap Method

introduced by Kavraki et al. (1994). In a standard PRM, the path planning process is

separated in two phases: the learning and the query phase. In the first phase, the algorithm

builds a probabilistic roadmap by randomly sampling the search space and storing the valid

solutions as nodes of a fully connected graph (see Fig. 3.11a). Each edge of the graph is

then checked for collisions and the ones for which a collision is detected are disconnected.

This way, only a graph of the possible transitions is built (see Fig. 3.11b). In the second

phase, a query asks for a path between two nodes; to process the query, any graph path

finding algorithm can be used, for instance, a Dijkstra’s algorithm (Dijkstra, 1959) can be

used if the shortest path is required.

In a dynamic problem, such as camera control where the starting and target position

change at each iteration, the two phases need to be recomputed continuously to be able to

query for a path on a constantly updated probabilistic roadmap. However, the path needs

to be re calculated at every frame; therefore the changes of the two nodes are generally

very small and we can assume that a large part of the graph and the path computed at

the previous iteration is still valid at the next one. For this reason, a Lazy PRM is used

compute the path at each iteration. The main difference between this algorithm and its

original form (Kavraki et al., 1994) is that, at each iteration of the learning phase, the

roadmap is not reconstructed but it is updated by removing the nodes which have been

already crossed and by adding a number of new nodes positioned towards the new target

configuration. The collision checks are then performed only on the edges connecting the

new nodes, thus, substantially reducing the computational cost of each iteration.

According to our implementation, a set of random (normally distributed) points is gen-

erated in the space between the two camera positions; the mean of the mixed-Gaussian

distribution is located halfway between the two positions and its standard deviation equals

half of their distance. All the generated points as well as the current camera position and

45

Chapter 3. Automatic Camera Control

Current
Position

Target
Position

(a) Graph generation

Current
Position

Target
Position

(b) Shortest path

Figure 3.11: Probabilistic Roadmap

the newly found solution define the nodes of a 3D graph which is fully interconnected. All

the point-connectors which cross an object are removed and the shortest path between the

current position and the goal position is calculated (see Fig. 3.11) and used to animate the

camera. Since our implementation is based on Lazy PRM, the graph is not recomputed

at each iteration and only a new node containing the new position is added to the graph,

thereby, reducing the computational cost of path planning and generating a more stable tra-

jectory for the camera compared to the authors’ previous solution that employed standard

PRM (Burelli and Yannakakis, 2010a).

3.6 Summary

This chapter introduced the problems of virtual camera composition and virtual camera

animation and described their characteristics from a numerical perspective. The concepts

of frame and animation constraints are defined as well as their relationship with the camera

parameters. Virtual camera composition has been defined as an optimisation problem and

its objective function has been described in all its components. Such objective function is

the linear combination of the objective functions corresponding to each frame constraint

used to describe the controller’s task. The objective functions of all constraints have also

been mathematically defined.

The second part of the chapter described our approach on the composition and anima-

tion problems by initially introducing the CamOn camera controller architecture and later

describing the algorithms used for the controller’s implementation and evaluation. The

46

3.6. Summary

CamOn controller addresses the key problems of camera composition and animation by

combining advantages from a set of algorithms with different properties. In particular, we

combine a local search algorithm with a population-based algorithm to couple the compu-

tational efficiency of the first with the robustness of the second. Finally, the solution found

through the combination of these algorithms is used as a target to guide a 3D path planning

algorithm.

The hybrid optimisation algorithm proposed is a modified Genetic Algorithm with a

new genetic operator based on an Artificial Potential Field algorithm. The path planning

algorithm used in the animation module is a Lazy Probabilistic Roadmap Method. A

set of other state-of-the-art optimisation algorithms, used for the optimisation module’s

performance evaluation (see Chapter 6), is also described in the chapter.

47

Chapter 3. Automatic Camera Control

48

Chapter 4

Adaptive Camera Control

This chapter1 describes a methodology to model the relationship between camera placement

and playing behaviour in games for the purpose of building a user model of the camera

behaviour that can be used to control camera movements based on player preferences.

An hypothetical optimal automatic camera control system should provide the right tool

to allow designers to place the camera effectively in dynamic and unpredictable environ-

ments; however, a limit of this definition is that it excludes the player from the control

loop. Tomlinson et al., in their paper on expressive autonomous cinematography (Tomlin-

son et al., 2000), quote a statement by Steven Drucker at SIGGRAPH ’99: ”It was great!

I didn’t notice it!”. Drucker was commenting Tomlinson’s work presented at SIGGRAPH

that year and, in his comment, he clearly associates the quality of a camera control system

with the lack of intrusiveness; however, the way we can achieve such a result or how it is

possible to take the control of the camera from the player but still moving the camera the

way the user would have wanted (or as close as possible) are open research questions. We

believe that, to bridge the gap between automatic and manual camera control, the camera

objective should be affected by the player. To achieve this goal, we propose a new approach

to automatic camera control that indirectly includes the player in the camera control loop.

In our view, the camera control system should be able to learn camera preferences from the

user and adapt the camera profile to improve the player experience.

For this purpose, we investigate player preferences concerning virtual camera placement

and animation, and we propose a methodology to model the relationship between camera

behaviour, player behaviour and game mechanics. Player behaviour describes the way the

player performs in the game — e.g. how many jumps she performs, while camera behaviour

describes how a player moves the camera and what she would like to frame with it. In the

proposed approach, we model camera behaviour using a combination of gaze and camera

position at each frame. Combining gaze data with camera data allows a finer analysis of the

1Parts of this chapter have been published in (Burelli and Yannakakis, 2011; Picardi et al., 2011)

49

Chapter 4. Adaptive Camera Control

Behaviour Modelling Adaptation

Collect Data

Gaze Camera

GameplayClustering

Machine Learning

Camera Behaviours

Camera Behaviour Model

 Gameplay

 Camera Behaviour Model

Camera Profile

Automatic Camera Controller

 Camera

Figure 4.1: Camera behaviour modelling and adaptation phases of the adaptive camera
control methodology. The first phase leads to the construction of a camera behaviour
model, which is used in the adaptation phase to drive the automatic camera controller and
generate the adaptive camera behaviour.

player’s visual behaviour permitting, not only to understand what objects are visualised by

the player, but also which ones are actually observed. This information permits to filter

exactly which object is relevant for the player among the ones visualised by the player

through her control of the virtual camera. A cluster analysis of the gaze data collected is

run to investigate the existence of different virtual camera motion patterns among different

players and different areas of the game.

Moreover, the relationship between player behaviour and camera behaviour is modelled

using machine learning. Artificial Neural Networks (ANNs) are employed to build predictive

models of the virtual camera behaviour on player behaviour in earlier stages of the game.

These models are used to drive the automatic camera controller and provide a personalised

camera behaviour.

The two aforementioned phases of the methodology can be seen in Figure 4.1: the step

of the first phase is required to build the camera behaviour model for a game (left diagram)

50

4.1. Camera Behaviour

Figure 4.2: A screenshot from a 3D platform game in which the objects observed by the
player are highlighted by green circles.

which is later used to detect the most appropriate camera behaviour for the player when

the game is played (right diagram).

The remainder of the chapter describes the different techniques used to build the mod-

els and the adaptation mechanism. Chapter 8 presents an experiment demonstrating the

effectiveness of the methodology on a 3D platform game.

4.1 Camera Behaviour

Camera behaviour can be modelled directly using the data about camera position relative

to the avatar. However, this approach would fail revealing which objects the player wants

to watch during play. A better approximation would be achieved by analysing the objects

present on screen through each area. The presence of a certain object on the screen, however,

does not necessarily imply an intentionality of the player; e.g. the object might be on the

screen only because it is close to an object the player is interested to. The gaze data available

permits to overcome this limitation since, using the gaze position, it is possible to understand

which object is actually observed among the ones framed by the player. Therefore, to model

the camera behaviour, we combine camera movements and gaze coordinates to identify the

objects observed by the player at each frame. Figure 4.2 shows an example of how gaze

information con help filtering the objects framed by the camera, identifying the highlighted

objects as the only ones receiving visual attention from the player.

In addition to the gaze information, a number of features regarding the dynamic camera

behaviour are required, such as the average camera speed or the maximum and minimum

51

Chapter 4. Adaptive Camera Control

acceleration. All this information combined is used to build a model describing how the

player moves the camera in a specific game under different game conditions.

To generate the camera behaviour model for a specific game, we propose to collect the

aforementioned data regarding the players’ camera behaviour while playing the game using

a manual camera controller (e.g. during an early stage of the game testing) as seen in

Figure 4.3. Subsequently, following the approach outlined by Mahlmann et al. (2010) we

propose to mine the logged data to identify a set of prototypical behaviours and then use

machine learning to build a model connecting the player in-game behaviour with the camera

behaviour types. This model is used to adapt the camera behaviour during the actual game

play based on the player’s in-game behaviour.

4.1.1 Gaze

Eye movements can be recognised and categorised according to speed, duration and direc-

tion (Yarbus, 1967). In this work, we focus on fixations, saccades and smooth pursuits.

These movements, among other, describe how a person looks at a scene and how her visual

attention is distributed between the different objects visualised. A consistent pattern of

eye movements, called ”saccade and fixate” strategy can be found in all humans; a saccade

occurs when a person is rapidly switching her attention from one point to another and a fix-

ation is an eye movement that occurs when a subject focuses at a static object. If the object

observed is moving, the fixation movement is replaced by a smooth pursuit. According to

Land and Tatler (2009), there are two reasons for those different movements: first, the area

of the eye with maximum acuity of vision, the fovea, covers only one in four-thousandth of

the retinal surface, so the eye needs to move to place the desired object’s projected image

on this area. Second, gaze must remain still on the target object for the photo-reception

process to acquire an unblurred image.

During saccadic movements the eye is effectively blind due to the motion blur and active

suppression; therefore, to model the player’s visual attention, we will focus on fixations and

smooth pursuit movements. A fourth movement that Land and Tatler (2009) identify

in the human eye movements repertoire is Vergence; however, it is not considered in this

methodology as it occurs only when looking at objects at different distances from the viewer.

This kind of movement does not occur while looking at a virtual environment on a screen,

as even objects at different virtual distances have the same physical distance to the eyes.

These two movements are not necessarily accurate indicators of cognitive processing,

since a person is able to process visual information also surrounding the gaze position and

the gaze itself can be driven by automatically towards salient image areas without an active

cognitive process. However, in a visually rich virtual environment such as a computer game,

52

4.1. Camera Behaviour

the locus of attention coincides with the gaze direction (Irwin, 2004) and, moreover, due

to the task oriented nature of games, the main reason fixations and pursuits are mainly

attention driven (Land, 2009).

The detailed characteristics of the aforementioned eye movements are as follows:

Saccade Saccades are fast, stereotyped, jump-like movements of the eyes with speeds up

to 900◦/s. Saccades can be motivated by external stimuli, such as an object appearing

in the field of view, or by internally generated instructions. These movements occur

before and after a smooth pursuit or a fixation movement to relocated the visual focus.

Fixation Fixations are pauses in the eye scanning process over informative regions of inter-

est. During these pauses the eye is able to collect visual information about the fixation

target area. They are usually intervals between two consecutive saccadic movements

and they usually have a duration of at least 100 ms. Longer fixation duration implies

more time spent on interpreting, processing or associating a target with its internal-

ized representation. During a Fixation eyes make small jittery motions, generally

covering less than 1-2 degrees. This measure is called fixation dispersion and it is one

of the measures usually calculated in order to classify a sequence of gaze records as a

fixation.

Smooth pursuit Smooth pursuits are a class of movements similar to fixations and they

can be observed when the gaze follows a moving object. During a smooth pursuit

the velocity will be similar to the target’s speed, up to 15◦/s. Above this velocity

the smooth pursuit will be interrupted by catch-up saccades, as the eye is unable to

follow the target.

We represent the virtual camera behaviour as the amount of time the player spends

framing and observing different objects in the game environment while playing the game.

This representation of behaviour is chosen over a direct model of the camera position and

motion as it describes the behaviour in terms of the content visualised by the camera and,

therefore, it is independent of the absolute position of the avatar, the camera and other

objects. The features related to the time spent observing objects are calculated as the sum

of the durations of the smooth pursuit and fixation movements of the eyes during which the

gaze position falls within an object’s projected image.

The gaze and camera behaviour described by these features is game dependent; therefore

a different model should be built for each game. To collect the data needed to build such

a model, the participants of the data collection experiment should play the game manually

controlling the camera (using either the mouse or a joypad) while a logging system records

53

Chapter 4. Adaptive Camera Control

Figure 4.3: Example of a data collection setup. The player plays a game and manually
controls the virtual camera. The game keeps track of the virtual camera placement, the
player behaviour and the gaze position on the screen; gaze position is recorded using a
gaze-tracking device. The software used in the setup portrayed in the figure is the ITU
Gaze Tracker (http://www.gazegroup.org), and the sensor is an infra-red camera.

the three-dimensional virtual camera position, the gaze position on screen and the in-game

events.

The gaze position on screen can be recorded using a gaze-tracking system; these systems

usually employ one or more cameras tracking the orientation of the eyes and the head

position. Figure 4.3 shows an example of the setup needed during the data-collection phase:

the experiment participant plays the game at a desk sitting on a chair with rigid back and

no wheels (to reduce head movements), the gaze is tracked using an infra-red camera to

detect and track eye features.

4.1.2 Behaviour Identification

To investigate and create a model of the relationship between camera behaviour, player

behaviour and game-play, we analyse the collected data through two steps: identification

and prediction. In the first step, we use a clustering technique to extract the relevant

camera behaviours and analyse their characteristics, while in the second step, we build a

model based on this categorisation able to predict the correct camera behaviour given a set

of game-play and player behaviour data.

The number of distinct camera behaviours as well as their internal characteristics can be

based, in part, on domain knowledge. One can infer camera behaviour profiles inspired by a

54

4.1. Camera Behaviour

theoretical framework of virtual cinematography (Jhala and Young, 2005) or alternatively

follow an empirical approach — as the one suggested here — to derive camera behaviour

profiles directly from data. The few existing frameworks focus primarily on story-driven

experiences with little or no interaction, thus are not applicable in our context. Therefore,

we adopt a data-driven approach and we employ clustering on the gaze-based extracted

features for the purpose of retrieving the number and type of different camera behaviours.

Before clustering can be applied to the data, the data has to be divided in records

describing each a single triple of player behaviour, gameplay and camera behaviour. De-

pending on the types of game and the length of the recorded experience the records might

vary in temporal and spatial length. The observation times describing the gaze behaviour

should be normalised for each record depending on the records length.

The granularity of the subdivision in records depends on the game characteristics and

three different criteria can guide this process: time, space and task. According to task

criterion, the logged data for each player is divided in records representing the experience

for each task completed by the player. While this solution is probably the most appropriate,

as it is based on the game characteristics, it is often inapplicable as some part of the game

might have unclear tasks or multiple ones active at the same time. The space criterion

is simpler to apply as in many games there are well defined areas, e.g. Devil May Cry

(Capcom, 2001) or Halo (Microsoft, 2001); therefore, it is easy to identify the beginning

and the end of each record. In case neither of the previous criteria can be applied, the

overall experience can be divided in time chunks of variable length depending on the game

characteristics. The player behaviour in each game chunk is described in quantitative terms

and the number and type of the factors varies depending on the game. Moreover, depending

on the complexity and variety of the game mechanics, the records might be sorted into

different groups according to the type of interaction, so that multiple gameplay specific

models can be built.

After having divided the data in records, a clustering algorithm applied on the camera

behaviour data can be used to identify the types of behaviour represented by the collected

data. The algorithm employed in the data analysis presented in this thesis is K-means (Mac-

Queen, 1967), a simple and well known algorithm for data clustering. In K-means, each

record can be thought of as being represented by some feature vector in an n-dimensional

space, n being the number of all features used to describe the objects to cluster. The algo-

rithm then randomly chooses k points in that vector space; these points serve as the initial

centroids of the clusters. Afterwards, each record is assigned to the centroid they are closest

to. Usually, the distance measure is chosen by the user and determined by the learning task.

After that, a new centroid is computed for each cluster by averaging the feature vectors of

55

Chapter 4. Adaptive Camera Control

Input 1

Hidden 1

Hidden 2

Hidden 3

Hidden 4

Input 2

Input 3

Output 1

Figure 4.4: An example of a fully connected feed-forward artificial neural network. Starting
from the inputs, all the neurons are connected to all neurons in the subsequent layer.

all records assigned to it. The process of assigning records and recomputing centroids is

repeated until the process converges.

K-means requires initial knowledge of the number of clusters k existent in the data to

minimise the intra-cluster variance. To overcome this limitation, the algorithm can be run

with progressively higher k values and the clusters generated at each run are evaluated

using a set of cluster validity indexes such as the Davies-Bouldin (1979), the Krzanowski-

Lai (1988) or the Calinski-Harabasz (1974). The number of clusters can be selected using

a majority voting mechanism; the algorithm runs for a number of times for each k and the

run with the smallest within cluster sum of squared errors is picked.

4.1.3 Prediction

Once the camera behaviour patterns are identified, we proceed by modelling the relationship

between game-play and camera behaviour types. More precisely, since the model is intended

to select the most appropriate camera behaviour that fits the player’s preferences in the

game, we attempt to approximate the function that maps the game-play behaviour of the

player to the camera behaviour. For this purpose, we use Artificial Neural Networks (ANNs)

which are chosen as a function known for its universal approximation capacity.

An ANN is a bio-inspired data structure used to model arbitrary non-linear mappings

between inputs and outputs, typically used for pattern recognition and association (Haykin,

2008). The computation is performed with a number of neurons, the neurons are connected

56

4.1. Camera Behaviour

in a graph, and typically propagate signals through the network (see Figure 4.4). The

signal’s path through the network is controlled by both the structure of the network and

the weights, w, that are placed at each connection between neurons. Each neuron in the

network transfers the input values to its output according to a transfer function fTi defined

as follows:

yi = fTi (
∑
J

wjixji + θi) (4.1)

where yi is the output of the ith neuron, xji is the jth input of the ith neuron, wji is the

weight of the jth input of the ith neuron, and θi is the bias of the ith neuron.

For the network to produce the desired association between its inputs and its outputs,

it is necessary to find the configuration of size (number of nodes and layers) and weights of

the connections that generate the desired function. The process of finding these parameters

is called learning; depending on the application of the network and the knowledge of the

function to be approximated, three types of learning can be performed: supervised, rein-

forcement and unsupervised. For the purpose of this thesis we will focus only on supervised

learning; however, the reader is advised to refer to Haykin (2008) for fundamentals on ANNs

and other learning methods.

In supervised learning, a set of valid input-output pairs, called training set, are used

to train the network. At each training iteration, an input vector is presented to the ANN

along with a corresponding vector of desired (or target) outputs, one for each neuron, at the

output layer. The discrepancies between the desired and actual response for each output

node is calculated and this error is used to correct the weight of the network according to

a learning rule.

One of the most common learning rules for training a neural network is back-propagation

(Rumelhart et al., 1986). This algorithm is a gradient descent method of training in which

gradient information is used to modify the network weights to minimise the error function

value on subsequent tests of the inputs. Using back-propagation, it is possible for a feed-

forward artificial neural network to learn the association between the inputs and the outputs

in the training set; moreover, if coupled with techniques such as early stopping (Caruana

et al., 2001), the resulting network will be able to generalise the association also to previously

unseen inputs.

ANNs and back-propagation can be used to learn the connection between the player

in-game behaviour and its camera behaviour; however, to be able to adapt the camera

behaviour, the network needs to be trained to predict the future player choice over camera

instead, so that the automatic camera controller can be instructed to generate the desired

camera behaviour exactly at the moment the behaviour is needed.

57

Chapter 4. Adaptive Camera Control

Camera Behaviour

Player Behaviour

Content

Neural Network Record N

Record 0

Record 1

 ...

Record N-1

 Record N

Figure 4.5: Camera behaviour prediction scheme. The neural network is presented with the
features describing the gameplay characteristics of the next record and the features about
the previous player behaviour as input and returns the next predicted camera behaviour
for the next record as the output.

For this purpose, the ANN should be trained to learn the association between the

camera behaviour cluster at at the ith record and the player’s in-game behaviour in the

previously recorder records (from 0 to i− 1). Moreover, if the game includes different types

of challenges, the ANN should consider also the characteristics of the gameplay at record i

(see Figure 4.5).

4.2 Adaptation

Using the model of camera behaviour built in the data collection experiment it is possible

to predict the player’s preferences on camera during the game and use this information to

instruct an automatic camera controller and personalise the cinematographic experience.

When the player performs a switch from one chunk (area, task or time frame, depending on

the subdivision criterion) to the next one, the prediction of the neural network can be used

to decide which camera profile should be assigned to instruct the camera controller for the

next chunk of the game.

The same input-output scheme depicted in Figure 4.5, used for training, should be used

for prediction. The computational model is able to predict the camera behaviour given

information about the way the player played up to a certain point of the game. Therefore,

before the right camera profile can be selected for the player it is necessary that she plays

at least one area for each area type. A variable number of previously played game chunks

58

4.3. Summary

might be necessary to achieve the best accuracy of prediction. The length of the past

tracks depends on the characteristics of the game, therefore, it is necessary to find the best

configuration trough an empirical test at the time of training.

Once the next camera behaviour is detected, a camera profile — i.e. a set of frame

and motion constraints — should be generated to instruct the automatic camera controller.

This translation process can be approached in two ways: either a designer assigns a custom

designed camera profile to each behaviour identified by the clustering algorithm — which

is then automatically picked by the adaptation mechanism — or the profile is generated

completely based on the selected behaviour’s characteristics.

Independently of the approach chosen, the translation process between gaze based cam-

era behaviours and camera profiles is hardly generalisable over different games as the number

and the quality of the objects present on screen varies considerably. In most action games

— e.g. Tomb Raider (Eidos Interactive, 1996) or Super Mario 64 (Nintendo, 1996) — the

camera can be instructed to follow the main avatar and maintain the visibility of the objects

which have received visual attention in the camera behaviour. The weights of the frame

constraints imposed on each object can be related to the amount of time spent observing

the objects of the same kind as this information is related to the amount of attention that

and objects receives.

Such an approach can be applied to virtually any game which features an avatar and

a third person camera and it is the one used in the test case presented in Chapter 8 for a

three-dimensional platform game. The constraints imposed on the avatar and on the other

objects included in the behaviour can be changed to alter the overall composition. For very

different game genres, such as strategy games or racing games, different strategies can be

developed to transform the behaviours in camera profiles.

4.3 Summary

This chapter presented a methodology to model the relationship between camera placement

and playing behaviour in games and to generate adaptive camera behaviours. The method-

ology combines player’s gaze, gameplay and virtual camera data to build a model of camera

behaviour based on the player’s in-game behaviour. The data collected is clustered using

k-means to identify relevant behaviours and the relationship between the clusters and the

game-play experience is modelled using three ANNs. Finally, an adaptation mechanism

based on the aforementioned model is presented including a method for translating the

camera behaviour clusters into camera profiles suitable for an automatic camera controller.

An application of the method described in this chapter and its evaluation is presented

in Chapter 8.

59

Chapter 4. Adaptive Camera Control

60

Chapter 5

Test-bed Environments

This chapter1 presents the virtual environment developed to evaluate the algorithms and

methodologies presented in this thesis. The test environments will be described in detail

and their choice will be motivated in terms of completeness and generality.

Two test environments are presented in this chapter with two different purposes. The

first, a virtual camera sandbox, is an application developed to test the numerical perfor-

mance of optimisation algorithms and to evaluate the characteristics of the camera com-

position problem. The sandbox will be used in Chapter 6 to test the algorithms employed

in CamOn and to analyse the complexity of different camera composition problems. The

second test environment is a 3D computer game developed to test the proposed camera con-

troller and camera adaptation method against human players and to evaluate its effect on

player experience. On this basis, this game will be used both in the experiments presented

in Chapter 7 and Chapter 8.

5.1 Virtual Camera Sandbox

The first test-bed environment presented in this thesis is a development sandbox featuring

a three-dimensional virtual environment and a series of virtual characters with whom the

environment can be populated to yield camera control problems.

The purpose of such a tool is to stand as an abstraction layer between the user and the

virtual environment allowing him to easily define camera composition problems and test

their algorithms. The long term aim of the sandbox development is to create a flexible

testing platform that contains a set of standard and replicable camera control problems

usable as common benchmarks within the research community.

At the time this manuscript is written, the sandbox is still at an early stage of devel-

opment; however, it offers already the possibility to build composition problems with any

1Parts of this chapter have been submitted for publication in (Burelli and Yannakakis, 2012b,a)

61

Chapter 5. Test-bed Environments

Figure 5.1: Interface of the virtual camera sandbox, showing the virtual environment and
the interface elements.

number of subjects and frame constraints. The sandbox allows to test the behaviour of

custom solving techniques on dynamic and static problems; moreover it allows to analyse

the complexity of such problems.

5.1.1 Functionalities

The virtual camera sandbox is a development tool designed to act as a testing platform for

virtual camera control algorithms. For this purpose, the sandbox contains a virtual envi-

ronment composed by a set of areas (see Fig. 5.1) with different geometrical characteristics.

The user can place any number of characters in the environment and assign to each of them

a set of frame constraints.

The interaction between the sandbox user and the sandbox can be described through

the three following steps:

1. The user connects to the sandbox and selects the area in which to perform the exper-

iment.

2. The user places a number of subjects in the environment and sets the frame con-

straints.

62

5.1. Virtual Camera Sandbox

(a) (b) (c) (d)

Figure 5.2: Main components of the virtual camera sandbox. From left to right: the subject,
the forest, the house and the square.

3. The user conducts the evaluation.

The sandbox supports four possible areas to pick: forest (see Fig. 5.2b), city (see

Fig. 5.2d), house (see Fig. 5.2c) and everywhere. The three first options restrict the exper-

iment to the respective area, the last option configures the sandbox in order to allow for

sampling in any point of the virtual environment.

In the second step, a number of subjects can be placed anywhere within the previously

selected area. After placement, each subject will be affected by the physical model of the

virtual environment; therefore, it will move until it reaches a stable condition. At this point,

it will be possible to assign one or more frame constraints to the subject just placed in the

environment. The sandbox supports all the constraints defined in Section 3.1, i.e. Object

Visibility, Object Projection Size, Object Frame Position and Vantage Angle.

The evaluation step can be performed with two different ends: to evaluate an algorithm’s

behaviour or to analyse the problem’s objective function. In the first case, the sandbox can

be used as a black box providing the objective function value of any camera configuration

during the optimisation process. In the second case, the sandbox provides several functions

to sample the objective function, visualize it in the virtual environment and save it to a log

file for further analysis.

The evaluation con be conducted on a static problem. In the first case, the subjects stand

still in the position they have been placed initially. In the second case, the subjects move in

random directions turning at random times and avoiding the obstacles in the environment.

The user can set the movement speed and can control the animation flow through the play,

pause and next functions.

5.1.2 Environment Elements

The sandbox allows the user to place a set of subjects (see Fig. 5.2a) within the virtual

environment to define the camera composition problem. These subjects are human-like 3D

characters approximately 1.8 meters high (the measure is defined in proportion to the rest

63

Chapter 5. Test-bed Environments

(a) (b) (c)

Figure 5.3: Maximum value of the objective function sampled for each area of the sandbox
across the X and Z axis. The position and orientation of each subject is identified by
the black marks. The composition problem evaluated in each figure contains three frame
constraints: an Object Visibility an Objective Projection Size and a Vantage Angle.

of the environment elements). Each subject can be placed anywhere in the environment

and, when placed, it will lean on the ground in standing posture. The orientation of the

subject can be selected by the user; however, the subject can be rotated only along the

vertical axis.

The virtual environment in which the subjects can be placed is a collection of three

distinct environments: forest, house and square. Each environment features different char-

acteristics and challenges in terms of camera composition and animation, and overall they

represent a selection of typical game environments. This section will present the three ar-

eas and will give a short description of the characteristics of each area, using a Long Shot

problem as a representative example, to motivate for their presence. An in depth analysis

of the camera control problem in each area will be presented in Chapter 6.

The three test environments have been selected to provide the widest possible range of

geometrical features commonly present in computer games and interactive virtual environ-

ments. Moreover, they have been designed to incorporate a wide variety of camera control

challenges with different level of complexity. They include one indoor and two outdoor

environments with different geometrical characteristics: a forest, an house and a square.

The forest environment (see Fig. 5.2b) is an outdoor virtual environment composed by

a cluster of trees; the subjects are placed between these threes which act as partial occludes

and scattered obstacles. As it is possible to observe from the sample landscape depicted in

Fig. 5.3a, such environment influences the objective function landscape by increasing the

search space modality; this is mostly due to the fact that the three trunks are thin occluders

which produce a slicing effect in the objective function landscape.

The second environment, the house (see Fig. 5.2c), is an indoor environment with closed

spaces separated by solid walls. As described by Burelli and Yannakakis (2010b), walls act

64

5.1. Virtual Camera Sandbox

User

UI

Figure 5.4: Virtual camera sandbox architecture.

as large occluders inducing large areas of the objective function landscape to have little or

no visibility gradient, as visible in Fig. 5.3b.

The last environment, the square (see Fig. 5.2d), is the simplest one from a geometrical

perspective. It is largely an empty space with one single obstacle placed in the center.

This environment is expected to be the simplest in terms of optimisation complexity, as the

lack of obstacles produced mostly landscapes with smooth gradients and a small number of

modalities. Figure 5.3c illustrates an example of such a smooth objective function landscape.

5.1.3 Architecture

The sandbox is a stand-alone application developed using the Unity 3D game engine. It con-

tains a virtual environment including the aforementioned elements and camera composition

objective function evaluation module.

As it is possible to see in Fig. 5.4, the sandbox can be controlled by the user via a

TCP socket. This communication method has been chosen for two reasons: using socket

communication allows the sandbox to run on a machine different from the one of the user

and sockets are supported by most of programming languages.

At the time this document is written, the sandbox includes libraries for both Java and

C++; these languages have been initially selected as most of the optimisation algorithms

in the literature have been implemented in either of the two. To conduct experiments on

the sandbox, a system user needs only to include the sandbox library in her project and

use the methods to connect, build the camera control problem and evaluate the objective

function.

The user can also interact with the sandbox through its user interface; however, it is

possible only to setup a problem and test a set of standard optimisation functions included

in the software.

65

Chapter 5. Test-bed Environments

(a) (b) (c) (d) (e) (f)

Figure 5.5: Main components of the Lerpz Escape game. From left to right: player’s avatar
(Lerpz), a platform, a collectible item (fuel canister), an enemy (copper), a respawn point
and Lerpz’s spaceship.

5.2 Lerpz Escape

The second test environment described in this thesis is a three-dimensional platform game

designed to evaluate the applicability and the effects of automatic camera control in com-

puter games. Within the context of this thesis, this test environment is used to evaluate

both our automatic camera control system and our approach to camera behaviour modelling

and automatic camera adaptation against human players.

5.2.1 Game Mechanics

The game is a custom version of Lerpz Escape, a tutorial game by Unity Technologies2. It

features an alien-like avatar (Lerpz, see Fig. 5.5a) trapped in a futuristic 3D environment

made of floating platforms (see Fig. 5.5b). The platforms can be flat, or be composed

by multiple smaller platforms with different heights clustered together. Each platform can

be connected to another platform through a bridge or be disconnected, in which case, the

avatar is required to jump to move from one platform to the other.

The game includes three main elements/objects that avatar can interact with: fuel

canisters, coppers and re-spawn points. Fuel canisters (see Fig. 5.5c) are floating items that

the player needs to collect to complete the game. Coppers (see Fig. 5.5d) are animated

robots which chase the avatar and hit it until it falls from a platform. Coppers are normally

static and get activated when the avatar enters the platform they are placed on. The player

can kill a copper by moving the avatar close to it and hitting it three times; killing allows

the player to collect one extra fuel canister which spawns out of the robot’s wreckage. Re-

spawn points (see Fig. 5.5e) are small glowing stands placed on some platforms. When the

avatar touches a re-spawn point this becomes activated; each time the avatar falls from a

platform it reappears on the last activated re-spawn point.

2http://www.unity3d.com

66

5.2. Lerpz Escape

(a) Tutorial level environment

(b) Main level environment

Figure 5.6: The two virtual environments employed in the user evaluation. The avatar is
initially placed at the right side of the map, close to the dome-like building, and has to
reach the space-ship at the left side of the map.

The goal of the player is to control Lerpz and make him reach his spaceship (see Fig. 5.5f)

at end of the level. However, the spaceship is surrounded by a force field which does not

allow any access. To deactivate the field, Lerpz has to collect a number of fuel canisters (2

for the tutorial level and 6 for the main level) across the virtual environment. Moreover,

the task has to be performed within a predefined time window, otherwise the current level

will stop and the game will proceed to the next level whether the goal has been achieved or

not.

The game designed for this evaluation stands as a prototypical platform game, as it

incorporates the typical aspects of the genre. According to the classification described by

Wolf (2001), the platform games are defined as “games in which the primary objective re-

quires movement through a series of levels, by way of running, climbing, jumping, and other

means of locomotion”; moreover, according to Wolf, such games often “involve the avoidance

of dropped or falling objects, conflict with (or navigation around) computer-controlled char-

acters, and often some character, object, or reward at the top of the climb which provides

narrative motivation”.

Therefore, we can reasonably assume that the results of the evaluation performed using

67

Chapter 5. Test-bed Environments

(a) Fight area (b) Jump area

(c) Collection area

Figure 5.7: The three different area types met in the test-bed game.

the aforementioned game are generalizable to the whole platform games genre. Moreover,

still according to Wolf’s classification, it is possible to hypothesise that such results would,

at least, partially, apply also to genres such as Adventure and Obstacle Course which have

a very similar interaction scheme.

Moreover, the game has been designed not only to maximise the applicability of the

evaluation results, but also to incorporate a highly interactive gameplay that minimises

narrative. The reason for this choice is our desire for the evaluation of automatic camera

control to focus on interaction rather than on story telling.

5.2.2 Stages and Areas

The game consists of two stages: a tutorial and the main level. Each level starts with the

avatar standing on the initial re-spawn point, as shown in Fig. 5.8a and Fig. 5.8b, and ends

when the avatar reaches the spaceship in the last platform. The tutorial level includes a

walk-through of the game controls and an explanation of the purpose and the effects of

the different objects available. Moreover, during the tutorial the player is presented with

all the four main challenges she will face during the main game: jumping from platform

to platform, facing and enemy (i.e. a copper), collecting items (i.e. fuel canisters) and

reaching the end of the level (i.e. the spaceship).

In the tutorial level the subjects have to face one copper, collect at most five fuel canisters

and activate two respawn points. Only one copper is present in the main level, while fuel

68

5.2. Lerpz Escape

(a) Manual camera control game (b) Automatic camera control game

Figure 5.8: Sceenshots from the game used during the evaluation displaying the different
controls schemes. The game interface displays the game controls configuration, as well as
the current number of collected canisters and the time remaining to complete the level.

canisters and respawn points are 10 and 3, respectively.

The two stages are composed by a series of sub-stages we name areas which are classified

as jump, fight or collection areas. The areas are categorised according to the game-play

experience they offer and the type of challenge they pose to the player. In case an area offers

more than one challenge type, the category is defined by the most threatening challenge.

The challenges are sorted in decreasing level of threat as follows: fight, jump and collect.

Figure 5.7a shows a fight area where the main threat is given by the opponent copper

at the center of the platform. The jump area depicted in Fig. 5.7b is composed of several

small floating platforms; the player needs to make the avatar jump across all the platforms

to complete the area. Figure 5.7c shows an area where the main task of the player is to

collect the fuel cells placed around the platform.

5.2.3 Controls

The game features two possible control schemes along with two possible camera control

schemes: manual camera control and automatic camera control. Figure 5.8a shows how the

game controls displayed when the camera is controlled manually, while Fig. 5.8b shows how

the same controls are presented when the camera is controlled automatically. Instructions

on the level objective and what action to perform next are displayed in the lower left corner.

Control of avatar movements is common to both schemes: pressing the up arrow moves

the avatar forward (with respect to its local orientation), while pressing the down arrow

moves the avatar slowly backward. The left and right arrows correspond respectively to a

leftward rotation and a rightward rotation. Pressing a horizontal arrow key at the same

time as a vertical arrow key will make the avatar curve towards the selected direction.

69

Chapter 5. Test-bed Environments

On the contrary, the buttons used to activate the punch and jumps actions differ in

the two camera control schemes. If the player controls the camera, the left mouse button

activates the punch action and the right mouse button activates the jump action. If the

camera is controlled by the automatic camera control system, the punch action is activated

by pressing the Z key and the jump action is activated by pressing the X key. The difference

of the punch and jump controls between the two camera control schemes has been introduced

after a pilot evaluation showed that the players felt uncomfortable at controlling the jump

and punch actions using the mouse buttons when not controlling the camera with it.

The last difference in the game controls between the two schemes lie in the control of

the camera. When the camera is not automatically animated by the automatic camera

controller, the player controls the camera position and orientation using the mouse. In such

case, the camera automatically follows the avatar at a fixed distance and angle: the player

can control the angles by moving the mouse and the distance suing the mouse scroll wheel.

Moving the mouse forward increases the vertical angle, while moving it backward decreases

it; the same applies for leftward and rightward mouse movement.

The choice of a mouse plus keyboard control scheme for the game, although not ideal

for the genre, is motivated by the necessity to make the game playable in a browser. Such a

choice allows to conduct experiments with wider audiences, reduced experimentation effort

and a more believable playing environment (the participants play in a location of their

choice) which leads possibly to a more genuine experience.

5.2.4 Technical Characteristics

The game has been developed using the Unity 3D game engine and built for the web player

platform, in order to be played via a web browser. The avatar model is composed of

3334 triangles, platforms are composed on average of 400 triangles each, enemies of 1438

triangles each, fuel canisters of 260 triangles each, respawn points of 192 triangles each

and the spaceship of 1548 triangles. Overall, the tutorial level geometry is comprises of

approximately 15500 triangles with 5 light sources, while the main level of approximately

20000 triangles with 6 light sources. All objects are skinned with one or more texture and

both the stages contain approximately 86.2 MB of textures.

5.3 Summary

The chapter presented the two 3D applications that will be used in the experiments pre-

sented in Chapter 6, Chapter 7 and Chapter 8. The two environments have been developed

to be able to evaluate both the algorithmic performance of camera controller and the effect

of automatic camera control and adaptation on human players.

70

5.3. Summary

In summary, the first test environment is a development tool (a sandbox) that allows

to easily create a wide variety of camera composition problems, to evaluate the resulting

objective function and to test different camera control algorithms. The second test environ-

ment is 3D platform game integrating all the typical gameplay elements of the game genre.

It has been developed to support both automatic and manual camera to assist the design of

comparative user survey experiments that aim to evaluate the differences between camera

control paradigms.

71

Chapter 5. Test-bed Environments

72

Chapter 6

Hybrid Genetic Algorithm
Evaluation

This chapter1 intends to evaluate the optimisation algorithm at the core of the automatic

camera control architecture described in Chapter 3. For this purpose, we propose an analysis

of the real-time virtual camera composition problem from a dynamic optimisation perspec-

tive and, based on this analysis, we present a comparative study of the proposed solution

against a set of state-of-the-art algorithms in automatic camera control. The performance

of this hybrid GA is evaluated on its ability to generate well composed shots in real-time in

a set of unpredictable dynamic problems. The results obtained are compared against the

optimisation algorithms described in Chapter 3: Genetic Algorithm, Differential Evolution,

Particle Swarm Optimisation, Sliding Octree and Artificial Potential Field. The compar-

ative study is conducted on a set of scenarios representing the different challenges usually

met in virtual camera optimisation. In each scenario, the algorithms are evaluated on their

reliability and accuracy in the optimisation of four different problems: optimising the visi-

bility, optimising the projection size, optimising the vantage angle and the combination of

these problems. Moreover, each problem in each scenario is tested with one, two or three

subjects. To describe these test problems and to better understand the performance of the

algorithms, the objective functions connected to each test problem are analysed and a set

of complexity measures are suggested. The problems are evaluated on their optimisation

complexity both as static and dynamic optimisation problems.

6.1 Test-bed Problems

This section presents the set of 36 dynamic virtual camera problems designed to evaluate

the proposed hybrid GA. This study includes 12 dynamic composition problems tested in

1The content of this chapter is currently at the second stage of review for the Computer Graphics Forum
journal (Burelli and Yannakakis, 2012b)

73

Chapter 6. Hybrid Genetic Algorithm Evaluation

the 3 virtual environments described in Section 5.1.2. The 12 composition problems include

the optimisation of a Vantage Angle constraint, a Projection Size constraint, a Visibility

Constraint and the combination of all three constraints. These four conditions are evaluated

with one, two and three subjects. In each test problem, the subjects are positioned and

move around the environment in a random fashion. The subjects speed is also randomised

and varies from 0 to the average human walking speed (1.38 m/s). The subjects are shaped

as stylized human beings, and have human-like proportions and height (approx. 1.8 m tall).

The test problems include up to three moving subjects, with up to three frame constraints

imposed on each subject. We believe that such a range of problems covers a large number of

the possible virtual camera composition tasks in terms of optimisation challenges, making

them an ideal benchmark to evaluate and compare the performances of the algorithms

included in this thesis.

6.2 Complexity

The choice of appropriate case studies is a key aspect of any comparative analysis since those

affect both the validity and the extensibility of any conclusions derived. Moreover, to analyse

and compare the performance of the proposed algorithm fairly, it is necessary to define

common complexity measures (Törn et al., 1999) within common test problems (Floudas

and Pardalos, 1990). Such measures should express how hard is to find and track the global

optima of a certain optimisation problem.

In our effort to measure the complexity of each scenario examined we identified four

different complexity heuristics: one fitness-based measure and three measures inspired by

the complexity analysis of Törn et al. (1999). Moreover, since we aim to analyse a set of

dynamic virtual camera composition problems and to evaluate the algorithms on them, we

include also a measure of the problem’s dynamism, on top of these four measures.

6.2.1 Fitness-based Measures

The average fitness of a population of solutions has been used as a complexity measure

for occlusion minimisation test problems (Burelli and Yannakakis, 2010b). This measure,

however, did not prove to be fully reliable as the algorithms tested did not perform according

to the estimated problem complexity. Moreover, the average fitness does not consider any

topological aspect of the fitness landscape, so it gives limited space for analysis and is is

not considered in this thesis.

Jones and Forrest (1995) proposed the correlation between fitness and distance to a

global optimum as a statistical measure of complexity. Fitness Distance Correlation (FDC)

is generally considered a valid complexity measure but, as Jones and Forrest point out,

74

6.2. Complexity

it fails to capture the complexity of problems that exhibit scattered fitness landscapes —

i.e. landscapes that contain multiple and densely distributed local optima, separated by

areas with little or no gradient. As seen in Figure 5.3, the objective functions we consider

clearly showcase a scattered fitness landscape, potentially with a large number of sparse

local optima. The complexity of such landscapes is only poorly represented by a linear

correlation. Even though the above disadvantages limit the use of FDC for the description

of virtual camera control complexity, FDC is included in this study as a reference.

6.2.2 Complexity Measures by Törn et al.

Törn et al. (1999) place global optimisation problems into four categories (unimodal, easy,

moderate and difficult) by analysing four key aspects of the problem:

• The size of the region of attraction of global optima, p∗. The p∗ region is defined as

“the largest region containing global optima, xm, such that when starting an infinitely

small step strictly descending local optimisation from any point in p∗ then xm will be

found each time.”

• The number of affordable objective function evaluations in a unit of time.

• If and how embedded are the global optima. I.e. if there exists local optima near

the global optima region of attraction, so that sampling around these leads to the

detection of better solution and, eventually, of a global optimum.

• The number of local optima.

The above-mentioned aspects may be transposed to three complexity measure values:

P , E and NoL (number of local optima). The P value represents the probability that the

region of attraction is missed when randomly sampling the solution space for one frame

time (16.6 ms) and is defined as follows:

P = (1− p∗)Nf (6.1)

where P ∗ is the percentage the whole search space being a region of attraction of global

optima and Nf denotes the affordable number of objective function evaluations within 16.6

ms.

The E value measures the degree of how embedded are the global optima within local

optimal solutions, which further implies that search near those local optima may lead to

optimal solutions. The value of E is given by:

E = 1− 1

nDmax

n∑
i=1

Dmin(xi) (6.2)

75

Chapter 6. Hybrid Genetic Algorithm Evaluation

where Dmin(x) is the distance to the closest global optima region of attraction from each

solution x and Dmax is the maximum distance between two points in the search space.

In the experiment’s search space, this distance equals to the length of the parallelepiped’s

diagonal. While this formula is not defined mathematically by Törn et al., the proposed

formalisation is as close as possible to their description.

The last complexity measure considered, NoL, is the relative size of the areas of the

search space containing local optima and it is defined as follows:

NoL =
Alo
Ago

(6.3)

where Alo and Ago are the sizes of the areas of space containing respectively local optima

and global optima.

The measures derived by the study of Törn et al. (1999) appear to be appropriate for

capturing problem complexity of virtual camera control. The three measures, collectively,

draw a broader picture of problem complexity than FDC and, moreover, P considers the

evaluation time as a key component of problem complexity. The latter is an important

aspect within the analysis of the camera control paradigm since execution time plays a

central role for this optimisation problem.

6.2.3 Dynamism

Since the problems presented in this study incorporate a set of dynamic elements the op-

timisation complexity cannot be only analysed in static terms. We need, therefore, to

define a measure of how complex the problems are in terms of dynamism. Such a measure

should capture the speed and the magnitude of the changes in the objective function and

should give a comprehensive measure for the whole landscape. For this purpose, we define

a measure D of the landscape dynamism calculated as follows:

D =
1

K

1

T

K∑
i=0

N−1∑
j=0

|f(xi, tj+1)− f(xi, tj)| (6.4)

where K is the number of samples taken from the landscape at each sampling, T is the

duration of the animation, N is the number of times the landscape is sampled during the

animation, f(xi, tj) is the objective function value of the sample xi at jth sampling time

and f(xi, tj) is the objective function value of the sample xi at time j + 1.

This measure is a discrete approximation of the average absolute change in the objective

function for all the points in the solutions space over unit of time. High D values correspond

to highly dynamic problems, while a D value equal to 0 corresponds to a static optimisation

problem.

76

6.2. Complexity

P E NoL FDC D

Forest

Angle 1 0.00 1.00 0.47 -0.87 1.34
Angle 2 0.02 1.00 0.45 -0.68 0.94
Angle 3 0.10 1.00 3.45 -0.73 0.77

Size 1 0.64 0.91 823.63 -0.01 0.14
Size 2 0.96 0.71 8401.20 0.00 0.15
Size 3 0.94 0.73 6382.89 -0.01 0.09

Visib. 1 0.52 1.00 46.10 -0.16 0.04
Visib. 2 0.84 0.59 158.48 -0.20 0.05
Visib. 3 0.97 0.56 17439.26 -0.06 0.03

All 1 0.47 0.85 879.82 -0.03 0.49
All 2 0.53 1.00 1267.34 -0.07 0.20
All 3 0.78 0.95 3343.36 -0.09 0.33

House

Angle 1 0.00 1.00 0.00 -0.86 1.15
Angle 2 0.12 1.00 3.23 -0.70 0.93
Angle 3 0.14 1.00 5.57 -0.70 0.89

Size 1 0.63 0.93 131.96 -0.03 0.18
Size 2 0.94 0.69 2773.30 -0.02 0.09
Size 3 0.94 0.67 4017.58 -0.02 0.09

Visib. 1 0.63 0.95 95.04 -0.16 0.05
Visib. 2 0.95 0.79 3186.23 -0.07 0.03
Visib. 3 0.97 0.81 14262.47 -0.05 0.04

All 1 0.64 0.99 2912.77 -0.05 0.44
All 2 0.84 0.99 6249.59 -0.09 0.31
All 3 0.89 0.75 8614.36 -0.06 0.33

Square

Angle 1 0.00 1.00 0.39 -0.92 1.08
Angle 2 0.15 0.88 11.40 -0.63 0.90
Angle 3 0.13 0.91 3.99 -0.74 0.85

Size 1 0.57 0.94 221.38 -0.05 0.17
Size 2 0.93 0.77 696.86 -0.04 0.11
Size 3 0.95 0.55 1902.31 -0.03 0.10

Visib. 1 0.49 0.98 54.32 -0.21 0.06
Visib. 2 0.80 0.92 533.79 -0.24 0.06
Visib. 3 0.90 0.88 1445.53 -0.18 0.06

All 1 0.35 0.94 631.58 -0.04 0.41
All 2 0.69 0.89 1633.66 -0.09 0.34
All 3 0.82 0.95 2497.88 -0.08 0.34

Table 6.1: Complexity measures for each scenario.

77

Chapter 6. Hybrid Genetic Algorithm Evaluation

6.2.4 Scenario categorisation by problem complexity

Table 6.1 presents the values of the aforementioned complexity measures for each test prob-

lem investigated. All the values have been calculated by sampling the solution space with

a resolution of 0.5 meters on the X and Z axis, 1 m on the Y axis and by sampling linearly

32 rotations per position. All the problems have been evaluated by sampling the land-

scape each half second for 10 seconds, this process has been repeated 20 times for each test

problem to minimise the effects of the initial random placement of the subjects. Each mea-

surement contains 28000 samples, for a total of 560000 samples per repetition. The static

complexity values contained in Table 6.1 are averaged over the whole number of samples

and repetitions, while the dynamism measure is an average of the dynamism calculated in

every repetition. The FDC values are also presented in Table 6.1 for comparison purposes.

It is clearly shown that FDC follows the trend of the other static complexity measures

proposed in most scenarios; however, the value becomes non representative of the problem

complexity in the most complex cases, in which the correlation value is always close to 0

despite of the complexity differences revealed by the measure defined by Törn et al. This

problem is expected, as FDC is known to be inaccurate for scattered fitness landscapes and

it does not consider the objective function evaluation complexity.

From a static optimisation perspective, the test problems are sorted into 4 categories

following the ranges proposed by Törn et al. (1999). According to this categorisation, the

vantage angle test problems with one subject are categorised as unimodal since their P

value equals to 0. The other two vantage angle test problems are categorised as easy. These

scenarios have a smaller global optima attraction area and higher evaluation times resulting

in P values greater than 0. All of the aforementioned scenarios are also highly embedded

(high E values), meaning that, even if the search algorithm ends in a local optimum,

there are high chances that it can still converge to a global optimum if a small random

perturbation is applied. The projection size and visibility test problems with one subject

also fall in the easy category in all test environments; these problems have all an average

probability to miss the global optima attraction space around 50-60% and have highly

embedded local optima (E > 0.91); however, the number of local optima is more than an

order of magnitude higher than the previous problems, identifying these problems as slightly

more complex than the previous ones. More precisely, according to the categorisation by

Törn et al., the first problems fall in the E1 category while the second ones in the E2.

The projection size and visibility test problems with more than one subject are categorised

as moderate in the square virtual environment, since they demonstrate a high P value and

embedded local optima, while they are categorised as difficult in the other two environments

78

6.2. Complexity

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D

P

●

●

●

●

Visibility
ProjectionSize
Angle
All
Non dominated problems

Forest−Angle−1Forest−Angle−2

●

●

Forest−ProjectionSize−2
●

●

●

Forest−Visibility−3

Forest−all−1

●

●

●

House−Angle−2●

●

●●

●

●

House−Visibility−3

House−all−1

●

House−all−3

●

Square−Angle−2
●

●

●
●

●

●

●

●

●

Square−all−3

Figure 6.1: Test problems sorted in a scatter plot according to their dynamism factor D
and their landscape complexity P . The Pareto front identified by the squares contains all
the non dominated problems in terms of complexity and dynamism.

due to the lower E value. Interestingly, the combined problems do not stand as the most

complex ones; on the contrary, they exhibit a complexity that varies from easy to moderate.

When analysing the problems according to their dynamism, a different picture emerges:

the visibility and projection size problems have all a significantly lower D value than the

angle problems, revealing that the latter are the most complex set of problems from a

dynamic optimisation perspective. The reason for such a difference in terms of dynamism

is expected, as the angle objective function, depends on the subjects orientation; therefore,

even a little orientation change in terms of degrees, has an amplified effect on the objective

79

Chapter 6. Hybrid Genetic Algorithm Evaluation

function landscape proportional to the distance to the subject.

Due to the contradiction between static and dynamic complexity, we need to sort the

problems in a two dimensional space, defined by these two measures. Figure 6.1 shows the

problems sorted according to P on the Y axis and D on the X axis; it is apparent how

the combined problems — i.e. the ones including all the three frame constraints — stand

in the middle of the graph, demonstrating to have an average complexity in terms of both

dynamism and static optimisation complexity. The problems identified by a square symbol

in Fig. 6.1 belong to the Pareto front; a solution belongs to the Pareto front if it is not

dominated by any other solution in the solution space. A Pareto optimal solution cannot

be improved with respect to any objective without worsening at least one other objective;

thus, this group of problems is the one that can be identified as the most complex both

in terms of dynamism and static optimisation complexity. We identify this group as the

most representative sub set of problems and, therefore, we concentrate the evaluation of the

algorithms on these 11 problems:

1. A visibility constraint on 3 subjects in the forest

2. A visibility constraint on 3 subjects in the house

3. A projection size constraint on 2 subjects in the forest

4. All frame constraints on 3 subjects in the house

5. All frame constraints on 3 subjects in the square

6. All frame constraints on 1 subject in the house

7. All frame constraints on 1 subject in the forest

8. A vantage angle constraint on 2 subjects in the square

9. A vantage angle constraint on 2 subjects in the house

10. A vantage angle constraint on 2 subjects in the forest

11. A vantage angle constraint on 1 subject in the forest

The first three problems (1,2,3) are among the ones categorised as difficult in terms of

static optimisation complexity, while they have extremely low dynamism. We name these

problems as difficult-slow. Following the same principles, problems 4,5,6,7 are labelled as

average, problems 8,9,10 as easy-fast and problem 11 as easy-faster.

80

6.3. Algorithms Configurations

6.3 Algorithms Configurations

The algorithms employed in the comparative study have all been configured based on ex-

tensive experimentation and know successful settings.

Differential Evolution is extremely robust to the parameters choice (Storn and Lampinen,

2004; Ali and Törn, 2004); therefore, the algorithm has been configured for this study follow-

ing the parameter settings suggested by Storn (1996) as the ideal ones for a 6-dimensional

optimisation problem: the population consists of one 60 individuals, the crossover proba-

bility C is 0.8 and the differential weight Wd is 0.9.

Particle Swarm Optimisation has been employed in camera control for off-line camera

optimisation combined with a space pruning technique (Burelli et al., 2008). Based on the

results of that study, the algorithm has been implemented using a population of 64 particles,

a cognitive factor of 0.75, a social factor of 0.5 and an inertia linearly decreases from an

initial value of 1.2 to 0.2. The cognitive factor has been increased to 0.75 to increase the

diversity in the population and improve the algorithm’s ability to deal with a dynamic

objective function.

The settings of both Genetic Algorithm and hybrid genetic algorithm have been chosen

based on the successful parameter settings of our previous study on occlusion minimisa-

tion (Burelli and Yannakakis, 2010b): the population consists of 80 individuals, the crossover

probability is 100%, the mutation probability is 30% and the selection scheme is ranking

with all individuals selected for breeding. The main difference lies in the replacement policy,

which is generational as it is better suited for dynamic optimisation.

The configuration of the Artificial Potential Field follows the settings described in the

authors’ previous work on automatic camera control using Artificial Potential Field (Burelli

and Jhala, 2009b). The configuration of the Sliding Octree Algorithm follows the suggestions

described in (Bourne et al., 2008); therefore, the scaling factor at each pass is equal to 0.75

and the number of passes is equal to 15 and the maximum movement distance is equal to

1.

6.4 Results

The experiment consists of a comparative analysis of the performance of the six optimisation

algorithms. Each algorithm is run to find and track the optimal solution on the 11 dynamic

virtual camera composition problems described in Section 6.2. All algorithms are evaluated

on each problem for 10 seconds, during which, the subjects move in the environment as

described in Section 6.2. The best solution found by the algorithms is recorded at each

81

Chapter 6. Hybrid Genetic Algorithm Evaluation

Hyb. GA DE PSO APF SO

Difficult-Slow

F. Visib. 3 0.61 0.27 0.56 0.43 0.14 0.25
H. Visib. 3 0.51 0.23 0.35 0.30 0.07 0.14

F. Size 2 0.10 0.32 0.31 0.24 0.16 0.22

Average

H. All 3 0.38 0.28 0.35 0.35 0.21 0.30
S. All 3 0.43 0.28 0.41 0.39 0.23 0.32
H. All 1 0.72 0.34 0.40 0.31 0.28 0.23
F. All 1 0.89 0.35 0.38 0.32 0.43 0.25

Easy-Fast

S. Angle 2 0.65 0.46 0.47 0.51 0.66 0.46
H. Angle 2 0.65 0.53 0.49 0.48 0.66 0.49
F. Angle 2 0.66 0.51 0.50 0.52 0.63 0.48

Easy-Faster

F. Angle 1 0.49 0.52 0.49 0.47 0.49 0.48

Table 6.2: Average best function values (ABFV) reached by each search algorithm. The
first column indicates the test environment. The best values are highlighted.

algorithm iteration. All the evaluations are repeated 50 times to to minimise the effects of

the initial random placement and the random movements of the subjects.

In this section, we showcase the performance of the proposed optimisation method in

comparison with the other five search algorithms. The algorithms are compared with respect

to the complexity of the task to be solved and the time taken for the algorithm to reach a

solution. All experiments are executed on a Intel Core i7 950 3.06 GHz (the implemented

algorithms use only one core) with 4 GB of RAM at 1333 MHz. The performance of the

algorithms is compared for accuracy and reliability. Accuracy is measured using the average

best function value measure suggested by Schönemann (2007), while reliability is measured

as the average amount of time in which the algorithm is unable to find a solution with an

objective function value higher than 0.25.

6.4.1 Accuracy

The average best function value (ABFV), obtained by each algorithm across 50 runs on

each test problem is used to measure how accurately the algorithm finds and tracks a global

optimum. This value is calculated as the mean of the median run, which is defined as the

list of median values between all the runs at each moment of the computation.

Table 6.2 contains the accuracy values of the hybrid GA opposed to the accuracy values

of the other 5 algorithms on all test problems. The values highlighted in bold in each table

row have no significant difference in accuracy between them — i.e. the result of the pairwise

82

6.4. Results

Time (s)

O
bj

ec
tiv

e
F

un
ct

io
n

0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Hybrid
GA
DE

PSO
APF
SO

(a) Forest - Projection Size - 2

Time (s)

O
bj

ec
tiv

e
F

un
ct

io
n

0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Hybrid
GA
DE

PSO
APF
SO

(b) Forest - Angle - 1

Figure 6.2: Median best solution value over time (median run) for each algorithm on the
problems in which the proposed hybrid GA fails to achieve the best results.

t-test with the other highlighted algorithms yields a p value greater than 0.01 — but they

show a significantly higher accuracy when compared to the non-highlighted values.

From the presented results, it is evident that the hybrid GA is capable of finding and

tracking the best solution across the vast majority of the test problems. In particular, the

algorithm appears to constantly achieve the best accuracy in the visibility tasks in all virtual

environments. Moreover, it also demonstrates the best accuracy in the optimisation of the

problems including all the frame constraints, independently of the number of subjects and

the type of virtual environment.

If we focus the analysis on a comparison between the hybrid GA and the two algorithms

on which this algorithm is based (GA and APF), we can observe two facts: in the average

and difficult-slow problems, the hybrid GA is able to achieve accuracy often more than two

times higher than the classical GA and the APF, while in the easy-fast and easy-faster the

hybrid GA and the APF achieve similar results. This behaviour reveals that the scheduler

and the early convergence detection method described in Section 3.3 are effectively able

to accelerate the convergence of a classical GA while maintaining a sufficient population

diversity to adapt to the changes of the objective function. However, in one of the difficult-

slow optimisation problems and in the easy-faster problems, the classical GA achieves higher

accuracy. This happens for two distinct reasons: inaccuracy of the approximated projection

size derivative and the high dynamism of the problems.

83

Chapter 6. Hybrid Genetic Algorithm Evaluation

Hyb. GA DE PSO APF SO

Difficult-Slow

F. Visib. 3 1.07 4.48 1.03 2.38 7.96 5.02
H. Visib. 3 0.77 4.63 3.49 3.62 8.61 6.85

F. Size 2 9.14 4.43 4.33 6.11 8.15 6.52

Average

H. All 3 2.27 4.66 2.88 2.63 6.95 3.75
S. All 3 1.85 4.67 2.01 2.41 6.37 3.89
H. All 1 1.28 4.12 3.84 4.99 4.66 6.36
F. All 1 0.17 4.38 4.05 5.62 4.05 6.11

Easy-Fast

S. Angle 2 0.78 1.48 2.12 1.52 0.72 1.92
H. Angle 2 0.60 1.42 1.89 1.73 0.73 1.07
F. Angle 2 0.78 1.25 1.88 1.38 0.88 1.82

Easy-Faster

F. Angle 1 3.66 2.45 2.74 2.85 2.66 3.15

Table 6.3: Average time in which the algorithms produces a solution with an objective
function value lower than 0.25. The time is expressed in seconds, the duration of each run
is 10 seconds. The best values — i.e. the lowest times — are highlighted.

In the projection size optimisation problems, the algorithm fails to accurately optimise

the function when more than one subject is included in the problem. The approximated

derivative becomes inaccurate when dealing with more than one subject, misleading the

search algorithms, as it is possible to observe in the median run of both GA and APF

depicted in Fig.6.2a. This is even more evident if we consider that the same algorithm with

only one subject achieves the best accuracy in all environments (these problems are not

part of the Pareto front in Fig. 6.1; therefore, they have not been included in the tables).

In the vantage angle problem with one subject (easy-faster), the hybrid algorithm is

unable to track optimum due to the high dynamism of the problem and the scheduler is

unable to effectively detect the early convergence of the algorithm. This results in the

oscillating behaviour of both the hybrid GA and APF visible in Fig. 6.2b. The latter

aspect, in particular, requires future investigation, as the detection of early convergence, in

a highly dynamic environment in which it is impossible to rely on value stagnation, is still

an open research problem.

6.4.2 Reliability

We define the concept of reliability as the ability of the algorithm to find and keep track

of an acceptable solution over time and it is measured as the average amount of time in

which the algorithms are unable to provide an acceptable solution during each run of the

84

6.5. Summary

dynamic experiment; the lower this time is, the more reliable is the algorithm. A solution

is considered acceptable if its fitness is above a certain fraction of the ideal value of the

objective function (f = 1); for this experiment, we compare the algorithms’ reliability with

the following threshold: F ≥ 0.25. To measure this value, we run each algorithm 50 times,

measure the amount of time each algorithm provides a solution with a value lower than

0.25 for each run and we calculate the average of all the runs on each test problem. Table

6.3 shows the values of the reliability measure for each algorithm across the different test

problems.

The reliability findings exhibit a pattern very similar to the accuracy results, in which

the hybrid GA appears to perform best on all average and easy-fast problems, with fail

times down to 1.7% of the total experiment time. Also similarly to the accuracy results,

the performance decrease drastically in two problems: the projection size problem with two

subjects and the vantage angle problem with one subject. It is clear that also reliability is

affected by the imprecise approximation of the projection size derivative and by the failure

of the early convergence detection method.

6.5 Summary

This chapter presented an experimental evaluation of the optimisation algorithm at the core

of the automatic camera control architecture described in Chapter 3.

To test this algorithm, we identify the building blocks of the camera control problem and

we study the complexity of each block. In particular, we identify three principal objective

functions, we relate these to the state-of-the-art definition of frame constraints and we

systematically analyse the complexity of each objective function and their combination.

As a result of this analysis, we identify 11 test problems which represent a wide range of

problem complexity values in terms of both static and dynamic optimisation.

These problems compose a benchmark on which we evaluate the performance of the

proposed hybrid meta-heuristic algorithm and compare it with other five search algorithms

widely used in automatic camera control. The algorithms are compared on two aspects: ac-

curacy and reliability. Accuracy is evaluated using the average best function value (ABFV)

measure suggested by Schönemann (2007), while reliability is measured as the average

amount of time in which the algorithm is unable to find a solution with an objective func-

tion value higher than 0.25.

The proposed search algorithm is able to find and track solutions with the highest ac-

curacy and reliability on most test problems; however, the results achieved in two test

problems reveal the main limitations of the proposed algorithm. The accuracy and reliabil-

ity demonstrated by the algorithm in the optimisation of projection size for more than one

85

Chapter 6. Hybrid Genetic Algorithm Evaluation

subject are low, as the algorithm is unable to provide an acceptable solution, on average, for

91% of the time. Similar performance is manifested also by the standalone APF algorithm,

suggesting that the approximated projection size objective function derivative used by the

APF operator misleads the search process. The hybrid GA appears also unable to accu-

rately and reliably optimise the most dynamic of the problems considered: a vantage angle

constraint on one subject in the forest environment. We believe that such a behaviour is

the consequence of an imprecise detection of early convergence, which induces the scheduler

to constantly switching between the two policies.

However, the results emerging from the optimisation of the problems including all the

frame constraints are very positive: the algorithm shows the best accuracy and reliability

independently of the number of subjects and the type of virtual environment. This kind

of problem is the most realistic and the most common encountered in interactive virtual

environments, where most of the times the camera needs to follow an avatar and a number

of other objects.

86

Chapter 7

Controller Evaluation

In this chapter1, we intend to evaluate the automatic camera control architecture described

in Chapter 3 and, in general, test the suitability of automatic camera control to three dimen-

sional computer games with respect to its impact on player experience. For this purpose,

an implementation of the automatic camera control architecture has been integrated into

a custom built three-dimensional platform game including all the stereotypical aspects of

the game genre. The game has been published as an on-line experiment on the author’s

web page2 attracting 22 subjects as participants of the experiment, among which 16 were

males, 13 declared to be regularly playing games and 9 declared to be regularly playing

three-dimensional platform games. The age of the subjects is between 26 and 37 years.

Each participant was asked to play a custom version of the game presented in Section 5.2.

The players initially plays a tutorial level (see Fig. 5.6a) to familiarize with the game, the

tutorial level was followed by two instances of the main level (see Fig. 5.6b), alternatively

with automatic camera control and manual camera control. At the end of each pair of

games, we collect information about the players preferences and their performance in the

games. The remainder of the chapter describes the experimental protocol followed (see

Section 7.1), the experimental setup (see Section 7.2), the extracted features (see Section

7.3) and the analysis of the data collected (see Section 7.4).

7.1 Experimental Methodology

Our experimental hypotheses are that players prefer to play without controlling the camera

and that players who play with an automatically controlled camera will achieve better

results in the game (e.g. more collected items, shorter time). To test these hypotheses we

have conducted a within subject experimental evaluation, in which each subject plays the

1The content of this chapter has been submitted to the ACM Transactions On Graphics journal (Burelli
and Yannakakis, 2012a)

2http://www.paoloburelli.com/experiments/CamOnLerpzEscapeEvaluation/

87

Chapter 7. Controller Evaluation

(a) Opening screen. (b) Demographic questionnaire.

(c) 4-AFC questionnaire of preference. (d) Motivations questionnaire.

Figure 7.1: Screen-shots of the game menus introducing the experiment and gathering
information about the subject and her experience.

main level with and without automatic camera control and, at the end of the second level

played, she or he expresses her or his preference between the two. The order of the levels

presented is randomised to eliminate potential order effects.

The participant is initially presented with a short description of the experiment and the

game objectives (see Fig. 7.1a). The subject chooses to start the game, by clicking on the

start button on the screen. The game then goes in full screen mode and the subject is asked

to fill in the following information (see Fig. 7.1b): age, gender, whether she normally plays

computer games, whether she normally plays 3D platform games and how often she plays

games in a week (e.g. from 0 to 2 hours per week or from 2 to 5 hours per week).

88

7.1. Experimental Methodology

At completion of the questionnaire, the subject starts to play the tutorial level (see

Fig. 5.6a). During this phase of the experiment, the player plays a short version of the

main game level, in which she can familiarise with the controls. To minimise the impact

of the learning effect, the camera control paradigm is randomised during the tutorial stage.

After the tutorial, the participant proceeds to the main part of the experiment, in which

she plays two times through the main game level (see Fig. 5.6b) with or without automatic

camera control.

At the end of this phase, the subject is asked to express a preference between the two

main game levels (Game A and Game B) just played (see Fig. 7.1c) and subsequently to

provide a motivation for the preference (see Fig. 7.1d). The preference is expressed through

4-alternative forced choice (4-AFC) questionnaire scheme. The preference questionnaire

includes four alternative choices: Game A, Game B, Neither or Both Equally. This scheme

has been chosen over a rating scheme for a number of advantages including the absence

of scaling, personality, and cultural biases as well as the lower order and inconsistency

effects (Yannakakis and Hallam, 2011). Moreover, a 4-AFC scheme, opposed to a 2-AFC

scheme, accounts also for cases of non-preference.

The motivations for preference can be picked out of six predefined options (labels) which

are as follows:

• It was simpler to play.

• I felt more immersed.

• I dislike loosing control of the camera.

• The game looked more aesthetically pleasing.

• The camera was pointing in the wrong direction.

• The camera was moving oddly.

The first three motivations have been included to allow us to analyse the magnitude

of the impact of the camera control scheme on gameplay. The fourth motivation has been

included to gather more information about the role of aesthetics in camera control. The

last two motivations have been included to allow the participant to report for any undesired

behaviour of the automatic camera controller.

89

Chapter 7. Controller Evaluation

7.2 Experimental Setup

Since subjects participated in the experiment directly on their computers by loading and

running the game in a web browser, there is no obvious physical experimental setup. How-

ever, we can identify some common conditions among the subjects: all of them played the

game through a web browser and the game was played in full screen. All subjects played

a custom version of the game presented in Section 5.2: the game features one tutorial level

and two main levels. The two main stages differ in terms of the camera control paradigm:

in one stage, the player controls the camera manually and, in the other one, the camera is

controlled automatically.

In the stage featuring automatic camera control, the controller is instructed to position

and animates the camera so to the generated images display the following properties for the

avatar:

• The avatar should be fully visible; to achieve this, the Object Visibility property should

be equal to 1.0.

• The projection image of the avatar, either horizontally or vertically, should cover

approximately one third of the screen length; that means the Object Projection Size

property should be equal to 0.3.

• The avatar should be shot from above its right shoulder; that means the Object View

Angle property should be equal to 170 degrees horizontally and 25 degrees vertically.

• The avatar should appear at the crossing point of the lower horizontal line and the

left vertical line according to the rule of the thirds in photography; that means the

Object Frame Position property coordinates should be equal to (0.33,0.66).

All together, these properties describe an over-the-shoulder shot, which places the avatar

in the lower left quadrant of the screen. This quadrant has been chosen to balance the

image, since the controls are depicted on the right side of the screen, and to grant to the

player a good view of the horizon. Figure 5.8b displays and example of how the game

is framed by the automatic camera controller. The numerical constraint parameters have

been selected after a testing phase in which we have searched the values that matched the

desired composition principles.

7.3 Collected Features

As already mentioned, the player preference and the motivation for such a preference are

asked to the player upon the completion of the two gaming sessions. Given that the two

90

7.4. Results

games differ only in the way the camera is controlled, the self-reported preferences pro-

vide a valid indicator of the preferred camera control scheme and a set of arguments for

justifying this preference. Moreover, we can evaluate whether the implementation of the

camera control architecture presented in this thesis is able to provide a satisfactory camera

experience to the player in a real game context. To evaluate this aspect, we triangulate the

preference information with the average frame-rate and the number of algorithm iterations

per second. Statistical features of the in-game performance of the experiment participants

are also recorded and include the following:

• Level completion time.

• Number of collected canisters.

• Amount of damage inflicted.

• Amount of damage received.

• Number of falls from the platforms.

• Number of jumps performed.

• Number of respawn points activated.

The performance holds important information about which aspect of the gameplay is af-

fected more by the camera control paradigm and what is the magnitude of such impact.

7.4 Results

As a first step in the analysis of the results, we test if the order of play affects the reported

preferences and a number of key gameplay features. The section follows with an analysis of

the effect of the order of play on the player performance and preferences (see Section 7.4.1),

and an analysis of the impact of the proposed camera controller on player preferences (see

Section 7.4.2) and performance (see Section 7.4.3).

7.4.1 Order Of Play

To check whether the order of playing game levels affects the user’s performances, we test

the statistical significance of the difference between the features collected in the first game

level and in the second game level played. Table 7.1 contains the results of a paired two-

sample t-test between each feature collected in the first and in the second game. The

statistical test shows that the order of play does not significantly affect any of the features

91

Chapter 7. Controller Evaluation

Feature (F) First (F1) Second (F2) p-value

Completion time 187.47 170.81 0.100
Canisters collect. 6.86 7.32 0.094
Damage inflicted 0.54 0.68 0.164
Damage received 0.59 0.86 0.233
Falls 1.22 1.45 0.277
Jumps 57.18 55.54 0.278
Respawns activ. 2.86 2.77 0.164

Table 7.1: Average features of the players with respect to the order of play and test of order
of play effect on the features. The p-value is the result of a paired-sample t-test between
the values recorded in the first game level and the values recorded in the second game level.
Features for which the null hypothesis can be rejected with a 5% threshold (i.e. there is a
significant effect of order of play on the feature) are highlighted.

describing the player user’s performance, as the null hypothesis can be rejected in all cases

(p-value < 0.05).

The p-value for the number of collected canisters is very close to the 5% threshold,

suggesting the presence of a weak influence of the order of play. Such influence can also be

seen in Fig. 7.3b where, in most cases, the fuel canisters difference is negative when the level

featuring the automatic camera controller is played as the second game. Such a difference

is most likely a learning effect caused by the canister positions which are the same in both

games; players appear to be more efficient in collecting them in the second game.

To check the effect of the order of play on the user’s preferences, we follow the procedure

suggested in (Yannakakis et al., 2008) and we calculate the correlation ro as follows:

ro =
K − J
N

(7.1)

where K is the number of times the users prefer the first game level, J is the number of

times the users prefer the second game level and N is the number of games. The statistical

test shows that no significant order effect emerges from the reported preferences (ro = 0.000,

p-value = 0.500).

7.4.2 Preferences

Figure 7.2a displays the total number of selections for each of the four options of the 4-AFC

questionnaire. The first noticeable fact is that 18 subjects (81.8%) have expressed a clear

preference between the two camera types. Nearly all of these subjects (17 out of 18) have

stated that they prefer playing the level in which the camera was automatically controlled

by our system. Therefore, the vast majority of the players prefer the automatic camera

scheme over the manual one, confirming our fist initial hypothesis. The significance of this

92

7.4. Results

Automatic Manual Both Neither
0

2

4

6

8

10

12

14

16

18

20
N

u
m

b
e
r

o
f
in

s
ta

n
c
e
s

(a) Preferences

Difficulty Immersion Control Aesthetics Other
0

2

4

6

8

10

12

14

16

18

20

N
u
m

b
e
r

o
f
in

s
ta

n
c
e
s

(b) Motivations

Figure 7.2: Expressed preferences (7.2a) and corresponding motivations (7.2b). The bar
colours in the motivations chart describe which preference the motivations have been given
for.

choice is tested using the same formula employed to test the order effect with different K, J

and N values: K is the number of times the level featuring the automatic camera controller

was picked, whereas J is the number of times the level with manual camera control was

picked; N is the number of of games where subjects expressed a clear preference (either

A < B or A > B; 2-AFC). The test reveals a strong positive correlation (ro = 0.889,

p-value = 0.001) confirming the presence of a significant influence of the camera control

scheme on the users’ preference.

The most common motivation, given by 15 subjects out of 17, is that the level with auto-

matic camera control was “simpler to play”, two of these subjects have explicitly stated that

93

Chapter 7. Controller Evaluation

Feature (F) Automatic (Fa) Manual (Fm) p-value

Completion time 167.70 191.05 0.032
Canisters collect. 7.09 7.09 0.500
Damage inflicted 0.55 0.68 0.164
Damage received 0.82 0.64 0.314
Falls 1.59 1.09 0.093
Jumps 58.27 54.45 0.081
Respawns activ. 2.82 2.82 0.500

Table 7.2: Average features of the players with respect to camera control type. The third
column contains the p-values of a paired two sample t-test between the two measurements
across camera control type. The features for which the null hypothesis can be rejected with
a 5% of significance (i.e. there is a significant effect of the camera control scheme on the
feature) appear in bold.

the game was made simpler by the fact that the camera was controlled automatically. Such

results validate our initial hypothesis that players would prefer an automatically controlled

camera to a manually controlled camera in a virtual environment such as a 3D platform

game.

A very interesting fact that emerges from the subjects’ motivations (see Fig. 7.2b) is that,

although the automatic camera controller provided a well composed shot according to the

rule of the thirds, only one subject stated that she perceived the level with automatic camera

as “more aesthetically pleasing” and only four “felt more immersed”. Considering that the

automatic camera controller was explicitly instructed to provide properly composed shots,

such results might question the applicability of classical photography and cinematography

rules to computer games.

The four subjects (18.2%) that have expressed no preference between the two games

motivated the fact by stating that they did not like the control in general and found both

games frustrating. It is worth noticing that one of these four subjects, despite having

expressed no preference between the two levels, she stated in the motivations that she

preferred the camera to be automatically controlled.

The subject which stated that prefers the level featuring manual camera control, moti-

vated her choice by saying that she personally “prefers a mouse+keyboard control for PC

games”. This answer, along with the fact that no subject reported any kind of unexpected

or annoying behaviour of the camera, allows us to state that the camera control system

is able to successfully position and animate the camera in a real game environment with

dynamic geometry and interactive events.

94

7.4. Results

Feature (F) c(~z) p-value

Completion time -0.389 0.037
Canisters collect. -0.111 0.311
Damage inflicted 0.056 0.403
Damage received 0.111 0.311
Falls 0.167 0.229
Jumps 0.222 0.160
Respawns activ. 0.000 0.500

Table 7.3: Correlation between collected features and reported preferences. Features for
which the null hypothesis can be rejected with a 5% threshold (i.e. there is a significant
correlation between preference and the feature) are highlighted.

7.4.3 Gameplay

Our second hypothesis is that, when players play with the automatic camera controller their

performance in the game will increase. As described earlier in Section 7.3, we have extracted

and collected seven features to describe the players’ performance during the game. The

collected features have been sorted according to the camera control scheme (see Table 7.2)

and the two groups of measurements have been tested to assess whether their means differ

significantly. The first two columns of Table 7.2 contain the mean values of each feature

in the levels featuring the automatic camera controller and the ones in which the player

is requested to manually control the camera. The last column displays the p-values of a

two-sample paired t-test between the two groups of features.

These statistics reveal that only completion time is affected by the camera control scheme

as it is the only feature for which it is possible to reject the null hypothesis. In other words,

between the games played with the automatic camera controller and without it, only one

feature significantly differs (with a 5% threshold), while no significant difference emerges for

the other features; this feature is completion time. Figure 7.3a shows how the difference of

completion time between the automatically controlled and the manually controlled stages is

constantly equal or below 0, except from 3 instances, further confirming that the automatic

camera controller helps reducing the time required to complete the game.

Other two features worth observing are the number of falls and the number of jumps.

In both tests (see Tables 7.1 and 7.2), the p-values are slightly above the 5% significance

level, meaning that these features are probably also mildly affected by the camera control

scheme. The average number of jumps is about 9% lower in the games played with automatic

camera control and the number of falls is about 32% lower. Moreover, the trend depicted in

Figure 7.3 shows that, for both features, the difference between the level with the automatic

camera controller and the one with a manually controlled camera is positive more than half

95

Chapter 7. Controller Evaluation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

−150

−100

−50

0

50

100

150

Instance

F
a

 −
 F

m

Oder Of Play

Preference

Completion Time

(a) Completion time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
−5

−4

−3

−2

−1

0

1

2

3

4

5

Instance

F
a

 −
 F

m

Oder Of Play

Preference

Fuel Canisters

(b) Fuel canisters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

−40

−30

−20

−10

0

10

20

30

40

Instance

F
a

 −
 F

m

Oder Of Play

Preference

Jumps

(c) Jumps

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Instance

F
a

 −
 F

m

Oder Of Play

Preference

Falls

(d) Falls

Figure 7.3: Differences ∆F = Fa − Fm of completion time (7.3a), number of canisters
collected (7.3b), number of jumps (7.3c) and number of falls (7.3d) between the games
played with the automatic camera controller and the ones with manual camera control.
The background color pattern shows which level was preferred and which level was played
first for each game played. If the dark grey bar is in the upper half of the plot the level
featuring the automatic camera controller was preferred and vice versa. If the light grey bar
is in the upper half of the plot the level featuring the automatic camera controller was played
first and vice versa. The four features displayed have a significant or close-to-significant (i.e.
p-value < 0.10) correlation with either the order of play or the camera control paradigm.

of the times. An explanation for these findings could be that the automatic camera controller

did not support adequately the jump action and, therefore, it did not provide the optimal

view point for the player to jump between platforms, resulting in more attempts and more

falls.

Finally, an analysis of statistically significant correlations between subject expressed

preferences and collected gameplay features has been carried out. Correlation coefficients

c(~z) are calculated according to the following equation:

c(~z) =

Np∑
i=1

(zi/Np) (7.2)

96

7.5. Summary

where Np is the total number of games where subjects expressed a clear preference and

zi = 1, if the subject preferred the level with the larger value of the examined feature

and zi = −1, if the subject chose the other level. A significant negative correlation is

observed between average completion time and reported preference (see Table 7.3), further

validating the results of the survey; since shorter completion times can be seen as signs

of lower gameplay difficulty; decreased difficulty was widely reported as a motivation for

preferring the automatic camera over the manual one.

7.5 Summary

The chapter presented a user evaluation of the automatic camera control architecture de-

scribed in Chapter 3 in a commercial-standard three-dimensional computer game. Through

this experiment, the performance of the camera control system and the impact of automatic

camera control in third-person computer games are evaluated.

The pairwise preferences reported by the participants indicated that automatic camera

control is perceived as an enhancement to the game by simplifying the interaction. Fur-

thermore, the subjects reported no complaints on the camera behaviour, which, along with

the dominating preference for automatic camera control, suggests that the camera control

system was able to elicit a satisfactory experience without noticeable issues on the quality

of the generated images and camera motion. The analysis of the features describing player

performance in the game revealed that when players did not control the camera, they com-

pleted the level in less time, confirming our hypothesis that the automatic camera controller

would positively influence their performance.

However, when playing the level with the automatic camera controller, a large amount

of players had more difficulty to perform jumps. The reason for such a negative impact is

most likely due to the camera profile chosen which did not support all the types of actions

the player had to perform.

97

Chapter 7. Controller Evaluation

98

Chapter 8

Evaluation of Adaptive Camera

In this chapter1 we investigate player preferences concerning virtual camera placement and

animation, by applying the methodology described in Chapter 4 to a 3D platform game. We

build a model of the relationship between camera behaviour, player behaviour and game-

play and we evaluate the performance of this model. For this purpose, data from player

gaze and the virtual camera motion is collected in a data-collection experiment and used

to identify and describe the players’ camera behaviours.

The obtained model is then employed to adjust in real-time the behaviour of an auto-

matic camera controller at the same 3D platform game. This camera adaptation process

is tested through a user evaluation experiment in which a set of participants are asked to

express their preference between a level of the game played featuring automatic camera

control with a static camera profile (identical to the controller employed in the evaluation

study of Chapter 7) and a level that features the adaptive camera profile approach.

The reminder of this chapter presents the models obtained from the first experiment,

discusses their accuracy and finally presents the results of the user evaluation of the adap-

tation mechanism.

8.1 Camera Behaviour Models

Our first hypothesis is that camera behaviour depends on player’s actions and the game

context and that it is possible to predict the current camera behaviour given a description

of the current game situation and a track of the previous player actions. Therefore, we

expect that different players will focus on different object types in the same game situation

and that the same player will observe different types of object in different game situations.

Moreover, we expect to find a function that relates these differences to the game situation

and the previous actions of the players.

1Parts of this chapter have been published in Burelli and Yannakakis (2011) and Picardi et al. (2011)

99

Chapter 8. Evaluation of Adaptive Camera

To evaluate this hypothesis, we conducted an experiment in which we collected eye gaze,

camera and game-play data from subjects playing a 3D platform game. In this experiment,

the participants play a three-dimensional platform game featuring all the stereotypical as-

pects of the genre’s mechanics.

The player controls, using keyboard and mouse, a humanoid avatar and the camera

through the game while jumping on platforms, fighting with enemies and collecting objects

(see Section 5.2). Camera behaviour is modelled using the combination of gaze and camera

position at each frame. Combining gaze data with camera data allows a finer analysis of the

player’s visual behaviour permitting, not only to understand what objects are visualised by

the player, but also which ones are actually observed. This information permits to filter

exactly which object is relevant for the player, among the ones visualised by the player

through her control of the virtual camera. A cluster analysis of the gaze data collected is

run to investigate the existence of different virtual camera motion patterns among different

players and different areas of the game. Moreover, the relationship between game-play and

camera behaviour is investigated through a linear analysis but also modelled using artificial

neural networks. Results obtained support the initial hypothesis: relevant differences in the

camera behaviour were found among groups of players and among game situations, and the

models built are accurate predictors of the camera behaviour.

8.1.1 Experiment

A custom version of the three-dimensional platform game presented in Section 5.2 has been

developed as a test-bed for this study. Similarly to the original game, it features an alien-

like avatar in a futuristic environment floating in the open space. The player controls the

avatar and the camera using keyboard and mouse. Avatar movements, defined in camera-

relative space, are controlled using the arrow keys, and jump and hit actions are activated

by pressing the left and right mouse buttons, respectively. The camera orbits around the

avatar at a fixed distance; the player can change the distance using the mouse wheel and

can rotate the camera around the avatar by moving the mouse. The only difference between

the game used in this experiment and the original test-bed environment lies in the structure

of the main game level. For the purpose of this study, the main game comprises 34 areas

containing 14 collection areas, 11 fight areas and 9 jump areas. The length of the main

level is longer than the original game to maximise the amount of data collected from each

participant. This is possible for two reasons: first, in this experiment the participants are

expected to play only one instance of the main level, so the total duration of the experiment

is shorter; and, second, the participants play the game in a controlled environment, so it is

much less likely for them to drop the experiment before its conclusion.

100

8.1. Camera Behaviour Models

Figure 8.1: Experimental setup used for the data collection experiment.

We represent the virtual camera behaviour as the amount of time the player spends

framing and observing different objects in the game environment while playing the game.

This representation of behaviour is chosen over a direct model of the camera position and

motion as it describes the behaviour in terms of the content visualised by the camera

and, therefore, it is independent of the absolute position of the avatar, the camera and

other objects. To get information about the objects observed by the player during the

experiment, we used the Eyefollower2 gaze tracker. The Eyefollower is a device able to

locate the player’s gaze position on a computer screen through a combination of three

cameras. The first camera, placed on top of the screen, tracks the head position, while two

other motorised infra-red cameras, placed at the bottom of the screen, follow the player’s

eyes and track the point of regard (Fig. 8.1).

The Eyefollower necessitates an environment with fluorescent lighting and no daylight or

incandescent lights as ambient infra-red light or incandescent lights would interfere with the

infra-red light emitted by the gaze tracker. In order to provide the best possible operational

environment for the gaze tracker, the experiment is set in a room without windows.

The room contains a desk, a chair and two computers (see Fig. 8.1): the first computer

runs the computer game, while the second one collects the data from the game and the

player’s gaze, and synchronises the two streams into one log. The first computer is connected

to a 17” screen, a keyboard and a mouse; the second computer is only connected to the

gaze tracker and, through a network cable to the first computer. Running the gaze-tracking

process and the game on different machines guarantees the necessary resources for both and

minimizes the risk of data loss due to heavy computation.

2developed by LC Technologies, Inc. - www.eyegaze.com

101

Chapter 8. Evaluation of Adaptive Camera

Twenty-nine subjects participated in the experiment. Twenty-four were male and the

age of the participants ranged between 23 and 34 years (mean=26.7, standard devia-

tion=2.41). Statistical data about game-play behaviour, virtual camera movement and

gaze position is collected for each participant. The collection of the data is synchronised

to the Eyefollower sampling rate, therefore, both data from the game and from the gaze

tracker are sampled 120 times per second. Each data sample contains: information about

the game-play, position and orientation of the camera, coordinates of the gaze position on

the screen and the number and the type of objects around the avatar. The objects are

classified into two categories: close and far. All the objects reachable by the avatar within

the next action are labelled as close, otherwise as far.

The data is logged only during the time the participants play the game; this phase is

preceded by the calibration of the gaze-tracking system, a tutorial level and a demographics

questionnaire. However, this is only a step of the whole experimental procedure, which is

structured as follows:

1. The participant enters the experiment room and sits at the desk in front of the screen.

2. The screen and the cameras are placed at 60 cm away from the participants’ head

and just below her line of sight.

3. The experimenter guides the participant through the gaze tracker calibration process.

4. The experimenter leaves the room and the participant starts the experiment by click-

ing on the start button on the screen.

5. The participant is presented on-screen instructions about the game controls and pro-

ceeds to the tutorial level of the game.

6. After the tutorial, the participant is asked to answer few demographic questions.

7. The participant plays through the game during which data is logged.

8. Once the game is over, the player exits the experiment room.

The total amount of time needed to complete the experiment is, on average, 13 minutes.

A time limitation is intentionally not considered in order to give the players the possibility

to familiarise well with the game and choose the game style they prefer.

102

8.1. Camera Behaviour Models

8.1.2 Collected Data Types and Feature Extraction

The data collected for each game is sorted into three datasets according to the three area

types described in Section 5.2. Each time a player completes an area two types of statistical

features are extracted from that area: game-play and camera related features. The features

of the first type are the experiment’s independent variables and encapsulate elements of

the player’s behaviour in the area. The features of the second type describe the camera

behaviour for each platform, therefore, they define the experiment’s dependent variables.

The player’s behaviour is defined by the actions the player performs in each area or,

more precisely, by the consequences of these actions. Hence, the features extracted describe

the interaction between the player and the game though the avatar’s actions, rather than

the sequences of pressed keys. For each area the following features have been extracted: the

numbers of fuel cells collected, damage given, damage received, enemies killed, re-spawn

points visited and jumps. The features are normalised to a range between 0 and 1 using a

standard min-max normalisation.

To model the camera behaviour, we analyse the content visualised by the camera instead

of the camera absolute position and rotation. The presence of a certain object on the screen,

however, does not necessarily imply an intentionality of the player; e.g. the object might be

on the screen only because it is close to an object the player is interested to. The gaze data

available permits to overcome this limitation since, using the gaze position, it is possible

to understand which object is currently observed among the ones framed by the player.

Therefore, we combine camera movements and gaze coordinates to identify the objects

observed by the player at each frame and we extract the following statistical features: the

relative camera speed as well as the time spent observing the avatar, the fuel cells close

to the avatar, the enemies close to the avatar, the re-spawn points close to the avatar, the

jump pads close to the avatar, the platforms close to the avatar and the far objects.

The seven features related to the time spent observing objects are calculated as the sum

of the durations of the smooth pursuit and fixation movements of the eyes (Yarbus, 1967),

during which the gaze position falls within an object’s projected image. These values are

normalised to [0, 1] via the completion time of each area. The first feature is the average

speed S of the camera relative to the avatar and it is defined as S = (Dc−Da)/T , where Dc

is the distance covered by the camera during the completion of an area, Da is the distance

covered by the avatar and T is the time spent to complete the area.

Each time the avatar leaves an area, the aforementioned features are logged for that

area. The data is then cleaned from experimental noise by removing all the records with a

duration inferior to 3 seconds and the ones with no platforms or no enemies and fuel cells

left. The remaining records are sorted into three separate groups according to the area type

103

Chapter 8. Evaluation of Adaptive Camera

Area Type
Index Collection Fight Jump

Davies-Bouldin 3 3 8
Krzanowski-Lai 2 3 3
Calinski-Harabasz 2 3 3
Dunn 2 2 2
Hubert-Levin 3 3 3

Table 8.1: Optimal K-values for the five validity indexes used to chose the number of
clusters. The K-value is selected according to a majority voting scheme; the selected value
is highlighted in the table for each area type.

and stored into three datasets, containing 239 records for the collection areas, 378 records

for the fight areas and 142 records for the jump areas.

8.1.3 Behaviour Models

As described in Chapter 4, we adopt a data-driven approach to the definition of the cam-

era behaviour; therefore, we employ the k-means clustering algorithm on the gaze-based

extracted features to isolate the different types of camera behaviour present in the data.

Unsupervised learning allows us to isolate the most significant groups of samples from

each dataset. However, k-means requires the number of clusters k existent in the data to

minimise the intra-cluster variance. To overcome this limitation, the algorithm runs with a

progressively higher k value — from 2 to 10 — and the clusters generated at each run are

evaluated using a set of five cluster validity indexes. The algorithm runs 50 times for each

k and the run with the smallest within cluster sum of squared errors is picked. Each se-

lected partition is evaluated against 5 validity indices: Davies-Bouldin (1979), Krzanowski-

Lai (1988), Calinski-Harabasz (1974), Dunn (1973) and Hubert-Levin (1976). As displayed

in Table 8.1, the smallest k value that optimises at least 3 validity measures out of five is

used for the clustering; the chosen k value is 2 for the collection type areas and 3 for the

fight and jump type areas.

Clusters Characteristics

As seen in Table 8.2, the camera behaviour is described with a different feature set for

each area type. The features are selected to match the visual stimuli offered by each area;

thus, only the features describing observation of objects which are present in the area

type are included in the set. Moreover, for each area type the features are sorted into 5

categories: camera speed and time spent observing the avatar, the primary task objects,

other close objects and far objects. The primary task objects highlighted in dark grey

colour in Table 8.2, represent the time spent observing objects relative to the main task of

104

8.1. Camera Behaviour Models

Collection Areas (k = 2)

Records Avatar Fuel Cells Jump Pads Re-spawn Points Far Objects Speed

150 0.595 0.108 0.034 0.113 0.021 3.338
89 0.361 0.125 0.056 0.072 0.012 8.852

Fight Areas (k = 3)

Records Avatar Fuel Cells Coppers Jump Pads Re-spawn Points Far Objects Speed

137 0.674 0.042 0.095 0.049 0.034 0.036 3.283
99 0.676 0.032 0.478 0.044 0.056 0.025 5.293
142 0.250 0.029 0.069 0.030 0.052 0.013 5.927

Jump Areas (k = 3)

Records Avatar Fuel Cells Platforms Far Objects Speed

33 0.759 0.464 0.795 0.202 2.1293
80 0.736 0.166 0.658 0.059 2.7593
29 0.450 0.113 0.559 0.012 5.5854

Table 8.2: Camera behaviour features of the centroid of each cluster and the number of
records in each cluster. Speed indicates the average camera speed with respect to the
avatar. The remaining features express the time spent observing each object of a type in an
area divided by the time spent completing the area. Highlighted in dark grey colour is the
feature related to the main task of the area type. The features related to the other objects
close to the avatar are highlighted in light grey colour.

each area type; all other objects are categorised as secondary. The time spent observing the

avatar, the far objects and the camera speed are sorted separately since they represent type-

independent features. According to this feature categorisation, it is possible to observe four

main behaviour types: task focused, including the clusters spending more time observing

the task related objects, avatar focused, including the clusters mostly observing the avatar,

overview, which includes the clusters evenly observing all the objects in each area, and look

ahead, which includes the clusters that reveal a higher time spent observing the far objects.

Each of these categories is divided according to the camera speed as slow of fast according

to whether the speed is higher or lower than the overall average speed, 4.667.

The two clusters emerging from the gaze behaviour data of the collection areas show two

very distinct behaviours in terms of camera speed and time spent observing the avatar and

the fuel cells. The first cluster of players spend, on average, almost twice as much time as

the players of the second cluster observing the avatar. Moreover, the players belonging to

the first cluster spend on average 20% less time observing fuel cells and move the camera at

less than half of the speed, compared to the players belonging to the second cluster. These

values suggest that the camera for the first cluster should move slowly and focus primarily

on the avatar, while the behaviour exhibited by the second cluster would be better modelled

with a fast camera with an equal focus on the avatar and the other relevant items in the

area. We label these behaviour patterns, respectively, as slow avatar focused and fast task

105

Chapter 8. Evaluation of Adaptive Camera

focused.

The first and the second cluster of behaviours in the fight areas exhibit a pattern match-

ing, respectively, the slow avatar focused and the fast task focused types. The third cluster

of behaviours, on the other hand, exhibits a very short time for all the objects, suggesting

a far camera moving at high speed. We label this behaviour as fast overview.

In the jump areas, as expected, all the players spend a large amount of time observing

the platforms; however, their camera behaviour differs on all the other parameters. The

centroid of the first cluster evenly spends a large amount of time focusing on all the objects

in the area and moves the camera at very low speed (2.1293). Moreover, the time spent

looking at far objects is more than four times larger than all the other clusters. Such values

suggest that the camera for this cluster should stay at a longer distance in order to frame

all the objects of each platform and should move at a low speed. We label this behaviour

as slow look ahead. Both the second and the third clusters of players focus primarily on

the avatar and the platforms, but differ on the camera speed. Since the platforms are the

primary task objects in these areas, we label the two clusters as slow task focused and fast

task focused, respectively.

Behaviour Prediction

Once the relevant camera behaviour types are identified, we proceed by modelling the

relationship between game-play and camera behaviour types. More precisely, since the

model is intended to select the most appropriate camera behaviour that fits the player’s

preferences in the game, we attempt to approximate the function that maps the game-play

behaviour of the player to the camera behaviour. For this purpose, we use Artificial Neural

Networks (ANNs) which are chosen as a function known for its universal approximation

capacity. In particular, we employ a different ANN for each area type, instead of one for

the whole dataset, to be able to base each model on the best features necessary to describe

the game-play in that area.

The three fully connected feed-forward ANNs are trained using Resilient Backpropa-

gation (Riedmiller and Braun, 1993) on the game-play data (ANN input) and the camera

behaviour clusters (ANN output) using early stopping for over-fitting avoidance. The net-

works employ the logistic (sigmoid) function at all their neurons. The performance of the

ANNs is obtained as the best classification accuracy in 100 independent runs using 3-fold

cross-validation. While the inputs of the ANN are selected algorithmically from the set

of game-play features the ANN outputs are a set of binary values corresponding to each

cluster of the dataset.

106

8.1. Camera Behaviour Models

The exact ANN input features, the number of hidden neurons and the number of pre-

vious areas considered in the ANN input are found empirically through automatic feature

selection and exhaustive experimentation. Sequential Forward Selection (SFS) (Kittler,

1978) is employed to find the feature subset that yields the most accurate ANN model.

SFS is a local-search procedure in which a feature is added at a time to the current feature

(ANN input) set until the accuracy of the prediction increases. The feature to be added is

selected from the subset of the remaining features, such that the new feature set generates

the maximum value of the performance function over all candidate features for addition.

The performance of a feature set is calculated as the best classification accuracy of the

model in 100 independent runs using 3-fold cross-validation. The network used for the

feature selection process has one hidden layer containing a number of neurons equal to two

times the number of inputs. Once the best feature set is selected, the best ANN topology

is calculated through an exhaustive search of all possible combinations of neurons in two

hidden layers with a maximum of 30 neurons per layer.

The combination of automatic feature and topology selection is tested on three different

feature sets representing different time horizons in the past: input (game-play features) from

one (one step) previous area visited in the past, input from the previous two areas visited

(two step) and the combination of one previous area in the past with the average features

of the rest of the previous areas visited (one step + average). Each area is represented by

the 6 features describing player behaviour introduced in section 8.1.3 and other 3 values

describing the number of fuel cells, coppers and re-spawn points present in the area.

8.1.4 Models Evaluation

In this section, we present and discuss the results in terms of prediction accuracy of the

camera behaviour models created. First, a statistical analysis of the data is performed to

check the existence of a relationship between camera behaviours and game-play features and

to identify the significant ones. Then, the prediction accuracy of the models is evaluated

with respect to the length of the time-series expressing the past which is considered in the

ANN input, the selected feature set and the network topology.

To isolate the significant features among the ones logged, we perform an inter-cluster

one-way ANOVA (Snedecor and Cochran, 1989) for each game-play feature to identify for

which features we can reject the null hypothesis (no statistical difference exists).

As it is possible to see in Table 8.3, for each area type, at least one feature demonstrates

a significant difference revealing the existence of significant linear relationships. In the fight

areas dataset, there is a significant difference in terms of damage (both given and taken),

107

Chapter 8. Evaluation of Adaptive Camera

Area Fuel Damage Damage Enemies Re-spawn
Type Cells Given Received Killed Points Jumps

Collection 5.02 - - - 1.23 0.76
Fight 1.63 12.42 10.89 24.03 0.49 9.64
Jump 11.98 - - - - 0.53

Table 8.3: F-distribution values of the inter-cluster ANOVA test on the game-play features.
The threshold for a 5% significance level is F > 3.85 for the collection areas and F > 2.99
for the jump areas. Values above the threshold appear in bold.

number of killed enemies and number of jumps. In the other two area datasets, the clusters

differ significantly in the number of fuel cells collected.

The features highlighted by the ANOVA test reveal the existence of a linear relationship

between the current camera behaviour and those features. However, variable relationships,

in general, are most likely more complex, given that linearly separable problems are ex-

tremely rare. Thus, the aim of the analysis presented below is the construction of non-linear

computational models of camera behaviour via the use of ANNs described in Section 8.1.3.

Figure 8.2 depicts the best performance (3-fold cross validation) of 100 runs for each feature

set on the three representations of the past events described in Section 8.1.3. The best value

over 100 runs is picked to minimise the impact of the initial randomisation of the network

weights on the backpropagation performance.

Each value shown in Figure 8.2 corresponds to the best topology found. It is noteworthy

that all the selected topologies have at least one hidden layer, confirming the non linear

nature of the relationship. This aspect is also highlighted, in Figure 8.2, by the difference in

prediction accuracy between the ANNs that use the subset of significant features identified

through the ANOVA test and the ANNs using the subset identified through SFS. The

latter type of ANNs, yield a better accuracy regardless of the past representation and game

areas. The best 3-fold cross-validation performances achieved for the fight, the jump, and

the collection areas are, respectively, 70.04%, 76.43% and 82.29%. It is worth noting that

in the collection areas, while the first type of ANNs, built solely on the features that are

found significant by ANOVA, perform even worse than the ones using the full feature set,

indicating that the linear analysis does not capture the relationship between game-play and

camera behaviour accurately.

While, in the collection and jump areas, the ANOVA test indicates the number of fuel

cells collected as the only significant feature, SFS selects the number of jumps and the

number of re-spawn points activated as additional features for the ANN input. On the

other hand, in the collection areas, SFS does not only select features not indicated by

108

8.2. User Evaluation

1S 2S 1S+A

Fight Areas

A
cc

u
ra

cy
%

1S 2S 1S+A

Jump Areas

All Features Significant Features SFS

1S 2S 1S+A
0

20

40

60

80

100

Collection Areas

Figure 8.2: Best 3-fold cross-validation performance obtain by the three ANNs across dif-
ferent input feature sets and past representations. The bars labelled 1S refer to the one step
representation of the past trace, the ones labelled 2S refer to the two step representation
and 1S+A to the representation combining one previous step and the average of the whole
past trace.

ANOVA (the number of re-spawn points activated), but it also discards the number of

jumps performed.

The results shown in Figure 8.2 confirm also our supposition that a more extensive

representation of the past events would lead to a better accuracy. In fact, the best accuracies

are achieved when the ANNs use the most extensive information about the past game-play

events. All ANN models predicting camera behaviour in the collection type areas have two

hidden layers suggesting a more complex function between game-play and camera behaviour

in the collection areas. The non-linearity of the models emerges also from the difference,

in terms of performance, between the models based on significant features and the ones

based on the features selected with SFS. The first models exhibit always an accuracy lower

than the corresponding models assisted by SFS and, for the collection type areas, they even

perform worse than the models based on the full feature set. This confirms further our

conjecture on the complexity of the function between game-play and camera behaviour in

the collection type areas, as a selection based on linear relationships discards very important

information.

8.2 User Evaluation

The second step towards adaptive camera control requires the adaptation of the camera

behaviour based on the models just evaluated. Following the methodology described in

Chapter 3, we need to define a camera profile corresponding to each behaviour identified

and to employ the predictive models to choose the right behaviour at the right moment in

109

Chapter 8. Evaluation of Adaptive Camera

the game. In this section, we present an experiment in which we apply such a methodology

to the 3D platform game described in Chapter 5 and we test the effects of the adaptive

camera control on human players. Through this experiment, we evaluate the effectiveness

of the proposed methodology beyond the numerical accuracy of the models and we analyse

the impact of adaptivity on player preferences and in-game performance.

The remainder of the section describes the experiment, the mechanism used to select

and activate the behaviours, the profiles associated to each camera behaviour identified in

Section 8.1.3 and it concludes with a discussion on the evaluation results obtained.

8.2.1 Experiment

Our experimental hypothesis is that the camera behaviour models built on the combination

of gameplay, gaze and camera information can be successfully used to adapt the camera

behaviour to the player’s preferences. To test this hypothesis, we have conducted a within-

subject evaluation in which each subject plays the same level with two camera control

schemes (conditions): (a) the camera is controlled automatically with a static profile or (b)

the camera is controlled by the player profile that is influenced by the player behaviour. At

the end of the second experiment each subject expresses her or his preferences between the

two camera control schemes.

This experiment has been conducted in parallel with the evaluation presented in Chap-

ter 7 and it shares the same protocol structure and the same game mechanics; therefore,

the rest of the section will only highlight the main differences with that experiment. For

details about the game and the experimental setup please refer to Chapter 7.

More precisely, the two experiments share the following aspects:

• The experiments have been conducted on-line; therefore the players have participated

to the experiment on a web browser though the Unity 3D web player.

• The game used in the evaluation is the one described in Section 5.2.

• In both experiments, the players are asked to answer to a demographic questionnaire,

play a tutorial level followed by two main levels with different experimental conditions

and they finally are asked for their preference between the two last games and the

motivations for their choice.

• The order of the two camera control conditions is randomised to minimise learning

effect.

110

8.2. User Evaluation

• The preference is expressed, in both experiments, using a 4-AFC scheme. The mo-

tivations can be chosen from a list of suggestions or expressed freely using a text

box.

• The data collected includes both the player preferences and the following seven fea-

tures from the gameplay: level completion time, number of collected canisters, amount

of damage inflicted, amount of damage received, number of falls from the platforms,

number of jumps performed and number of respawn points activated.

The primary difference between the two experiments lies in the experimental conditions

as this experiment aims to evaluate the improvements given to automatic camera control

by adapting the camera profiles to the player behaviour. Therefore, in both conditions the

player controls only the avatar movements while the automatic camera controller animates

the camera according to the camera profile: in one condition the camera profile is static,

while in the other condition the camera profile is selected from a list of behaviours according

to the way the player plays. Furthermore, as no experimental condition features direct

manual camera control, during the tutorial, the player controls manually the camera to

eliminate any possible learning effect on the camera control scheme.

Adaptation

In the level featuring adaptive camera control, the camera profile depends on the way the

player performed in the game and on the type of area in which the player is currently

playing. At the instant in which the player enters an area, the game takes the gameplay

data collected up until that moment, selects the most appropriate prediction model and

activates it using the collected data as input. The output of the model indicates which

camera behaviour should be selected from that moment until the player enters another

area. Figure 8.3 displays an example of a camera profile transition that happens between

a collection area and a fight area. The new profile is activated two seconds after the player

enters the new area, to avoid multiple repetitive changes if the player moves in and out of

the area.

A new camera profile can be activated also in the case the current area changes category,

and this could happen in two cases: if the current area is a collection area and the last

collectible item is taken or if the area is a fight area and the last enemy present is killed.

This event is considered as an area transition by the game, therefore, the area is considered

completed and the player enters a new area. The new area type depends on the type

of elements present in the area and it is categorised according to the most threatening

challenge. The challenges are sorted in decreasing level of threat as follows: fight, jump

111

Chapter 8. Evaluation of Adaptive Camera

Fight Area Collection Area
select next camera profile

Figure 8.3: Example of a transition from one camera profile to another. As soon as the
avatar enters the bridge, the neural network relative to the fight area is activated using the
player’s gameplay features, recorded in all the previously visited fight areas, as its input.
The camera profile associated to the behaviour cluster selected by the network is activated
until the avatar moves to a new area.

and collect. If the area offers none of these challenges, it will have no category; therefore,

no prediction model is activated to identify the behaviour and a neutral camera profile is

selected.

The models of camera behaviour presented in Section 8.1.3 are able to predict the

camera behaviour cluster each player belongs to in each area based on two inputs: the area

type and a set of features describing the player behaviour in the previous platform of the

corresponding type. Therefore, before the right camera profile can be selected for the player

it is necessary that she plays at least one area for each area type. Moreover, as it emerges

from the results presented in Section 8.1.4, the more areas are used by the model to predict

the behaviour, the more accurate the model will be.

For this reason, in this experiment, the data about the player in-game behaviour is

collected starting from the tutorial game. The tutorial includes at least one area of each

type (2 collection, 1 jump, 1 fight), allowing the model to predict the camera profile starting

from the first area of the level played with adaptive camera control. The in-game player

behaviour is recorded throughout the game so that, each time the model is requested to

predict which camera behaviour cluster to select, the inputs are updated to the way the

player plays up until that moment. This means that a player playing twice the same area

might experience two different camera behaviours, either because its behaviour changed

during the game or because a more accurate model (with more inputs) can be used.

After the tutorial game, the player has crossed at least two collection areas, one fight

area and one jump area. The next time the player enters an area, the game selects the

most appropriate prediction model according to the area type and the number of areas

previously explored. For instance, when the player enters a jump area for the first time

112

8.2. User Evaluation

after the tutorial, the game will activate the behaviour prediction model that uses only one

previous area in its inputs. As displayed in Figure 8.2, the behaviour will be predicted with

approximately 62% accuracy. The following time a jump area will be visited, two previous

areas will be used for the prediction and the accuracy will increase up to the maximum

prediction accuracy of 76.43%.

Camera Profiles

In the level featuring no adaptivity, the controller is instructed to position and animate the

camera so that the generated images display the following properties for the avatar:

• The Object Visibility property should be equal to 1.0, meaning that the avatar should

be fully visible.

• The Object Projection Size property should be equal to 0.3, meaning that the projec-

tion image of the avatar, either horizontally or vertically, should cover approximately

one third of the screen along.

• The Vantage Angle property should be equal to 170 degrees horizontally and 25 de-

grees vertically.

• The Object Frame Position property coordinates should be equal to (0.33,0.66), mean-

ing that the avatar should appear at the crossing point of the lower horizontal line

and the left vertical line according to the rule of the thirds in photography.

All together, these properties describe an over the shoulder shot, which places the avatar in

the lower left quadrant of the screen. This quadrant has been chosen to balance the image,

as in the experiment presented in Chapter 7. Figure 5.8b displays and example how the

game is framed by the automatic camera controller.

The profiles used in the level featuring adaptive camera control are built on top of this

profile. Each profile differs on three aspects: the weight given to the frame constraints on

the avatar, the desired angle and projection size of the avatar and the other objects on

which a frame constraint is imposed. The basic profile is also used in the level featuring

adaptive camera control, when the current area cannot be placed in any category.

A different camera profile corresponds to each behaviour identified in Section 8.1.3. Each

camera profile includes the frame constraints of the basic profile plus one Object Visibility

constraint for each object present in the platform that belongs to a category observed for

more than 5% of the time (e.g. the profile corresponding to the first behaviour cluster of the

collection areas will contain an Object Visibility frame constraint for each re-spawn point

and one for each fuel cell). The 5% threshold has been introduced to deal with possible noise

113

Chapter 8. Evaluation of Adaptive Camera

in the collected data; the objects observed for a time windows shorter than the threshold

are considered not important.

The time spent observing the far objects is considered separately and it affects the

vertical angle value of the Object View Angle constraint imposed on the avatar. The vertical

angle β will be equal to 45◦, if the time spent far objects is equal to 0 and it will decrease

down to 0 as the time increases according to the following formula:

β = 45 ∗
(tmax − tfo)

tmax
(8.1)

where tmax is the maximum fraction of time spent observing far objects in all behaviour

clusters and equals 0.202 and tfo is the fraction of time spent observing the far objects in

the current cluster.

The weight of the frame constraints imposed on the avatar is equal to the fraction of

time the avatar is observed, while the weight of the Object Visibility constraints for the

other objects is equal to the fraction of time in which object of the same type are observed

in the cluster divided by the number of objects present in the area (e.g. if there are 3 fuel

cells in the area and the current active camera profile corresponds to the second collection

behaviour, each Object Visibility constraint will have a weight equal to 0.125/3). The weight

of each object is assigned according to this scheme because the observation time of each

cluster is independent of the number of objects present in each area.

At the time the player enters a new area, the game queries the most appropriate be-

haviour prediction model (given the number of previous areas played and the type of area)

and builds an initial camera profile; when the player collects an item or kills an enemy, the

profile is updated. If such an action triggers an area type change, a complete new profile

is selected, otherwise, the current profile is updated according to the remaining number

of objects in the area. Figure 8.4 shows an example of the update of a camera profile in

a collection area. The camera behaviour remains unaltered as the type of area does not

change, but two frame constraints are dropped from the camera profile and the weight of

the Object Visibility constraint on the remaining fuel canister is doubled.

8.2.2 Results

Twentyeight subjects participated to the experiment, among which 21 were males, 20

declared to be regularly playing games and 14 declared to be regularly playing three-

dimensional platform games. The age of the participants ranged between 18 and 40 years

(mean=27.04, standard deviation=4.63). Before the analysis, the data has been filtered to

remove the logs of the experimental sessions in which the average frame-rate was lower than

30 frames per second. The data about these subjects have been removed to guarantee that

114

8.2. User Evaluation

• Object Visibility on Avatar:
visibility=1, weight=0.36
• Object Projection Size on Avatar:

size=0.3, weight=0.36
• Vantage Angle on Avatar:
α = 170, β = 42, weight=0.36
• Object Frame Position on Avatar:
x = 0.33, y = 0.66, weight=0.36
• Object Visibility on Avatar:

visibility=1, weight=0.36
• Object Visibility on Fuel Canister:

visibility=1, weight=0.06
• Object Visibility on Fuel Canister:

visibility=1, weight=0.06
• Object Visibility on Re-spawn:

visibility=1, weight=0.07

a: Profile for two fuel canisters and one active
re-spawn point.

• Object Visibility on Avatar:
visibility=1, weight=0.36
• Object Projection Size on Avatar:

size=0.3, weight=0.36
• Vantage Angle on Avatar:
α = 170, β = 42, weight=0.36
• Object Frame Position on Avatar:
x = 0.33, y = 0.66, weight=0.36
• Object Visibility on Avatar:

visibility=1, weight=0.36
• Object Visibility on Fuel Canister:

visibility=1, weight=0.12

b: Profile for one fuel canister.

Figure 8.4: Changes in a camera profile before and after the collection of one fuel canister
and the activation of one re-spawn point. The screen-shots above each profile depict the
camera configuration produced by the two profiles for the same avatar position.

115

Chapter 8. Evaluation of Adaptive Camera

all the participants included in the study have been exposed to the same experience. After

this selection, the number of subjects considered is 23 in this experiment.

Due to the similarities in the structure between the experiment presented in this section

and the experiment protocol presented in Chapter 7, the analysis of the results follows the

same steps. We first control the effect of the order of play on the participants performance

and on their preferences. The section ends with an analysis of the impact of the adaptive

camera behaviours on the participants’ preferences and performance.

Order Of Play

To check whether the order of playing the levels affects the user’s performances, we test for

the statistical significance of the difference between the features collected in the first level

and in the second level played. Table 8.4 contains the results of a paired two-sample t-test

between each feature collected in the first and in the second game.

The statistical test shows that the order of play affects one of the features describing

the players’ performance: completion time. Moreover, similarly to what happened in the

evaluation of the automatic camera controller, the p-value for the number of collected

canisters is very close to the 5% significance level, suggesting the presence of a weak influence

of the order of play on this feature. Both influences can be observed also in Figure 8.7a and

in Figure 8.7b. In the first case, the completion time difference between the level featuring

an adaptive camera behaviour is almost always positive when the adaptive level is played

first. The opposite behaviour can be seen for the fuel canisters where, in several cases, the

difference is positive when the level featuring the adaptivity is played as the second game.

Similarly to what emerged in the automatic camera controller evaluation experiment, such

an influence most likely occurs since players can remember the positions of the objects and

the directions to reach the end of the level.

To check the effect of the order of play on the user’s preferences, we follow the procedure

suggested by Yannakakis et al. (2008) and we calculate the correlation ro as follows:

ro =
K − J
N

(8.2)

where K is the number of times the users prefer the first level, J is the number of times the

users prefer the second level and N is the number of games. The greater the absolute value

of ro the more the order of play tends to affect the subjects’ preference; ro is trinomially-

distributed under the null hypothesis. The statistical test shows that no significant order

effect emerges from the reported preferences (ro = −0.22, p-value = 0.46).

116

8.2. User Evaluation

Feature (F) First (F1) Second (F2) p-value

Completion time 172.00 148.24 0.01
Canisters collected 7.09 7.78 0.07
Damage inflicted 0.57 0.57 0.50
Damage received 0.30 0.35 0.61
Falls 2.83 2.09 0.20
Jumps 58.87 53.04 0.15
Respawns activated 2.65 2.74 0.29

Table 8.4: Average performance values of the players with respect to the order of play and
test of order of play effect on the features. The p-value is the result of a paired-sample t-test
between the values recorded in the first level and the values recorded in the second game.
Features for which the null hypothesis can be rejected with a 5% threshold (i.e. there is a
significant effect of order of play on the feature) are highlighted.

Adaptive Automatic Both Neither

N
um

be
r

of
 in

st
an

ce
s

0
2

4
6

8

(a) Preferences

Difficulty Immersion Control Aesthetics Wrong Other

N
um

be
r

of
 in

st
an

ce
s

0
2

4
6

8
10

(b) Motivations

Figure 8.5: Expressed preferences (a) and corresponding motivations (b). The bar colours
in the motivations chart describe which preference the motivations have been given for.

Preferences

Figure 8.5a displays the total number of selections for each of the four options of the 4-AFC

questionnaire. The first noticeable fact is that 18 subjects (78.3%) have expressed a clear

preference between the two camera types. Among these, half of the subjects (9 out of 18)

have stated that they prefer playing the level in which the camera profile was adapted and

the same amount preferred the level without adaptation.

The significance and the magnitude of the correlation between preference and camera

control paradigm can be tested using the same formula employed to test the order effect

with different K, J and N values: K is the number of times the level featuring the adap-

tive camera controller is preferred, J is the number of times the level without adaptivity is

117

Chapter 8. Evaluation of Adaptive Camera

●

●

●●

●●●

●

●

●

100 150 200 250 300

2
4

6
8

10

Completion time

F
ue

l c
an

is
te

rs

Figure 8.6: Subjects sorted according to their average completion time and average number
of collected canisters. The subjects indicated with a cross symbol belong to the expert
players cluster, the ones indicated with a triangle symbol belong to the average players
cluster, while the subjects indicated with a circle symbol belong to the novices cluster.

preferred and N is the number of games. A positive correlation value expresses a stronger

preference for the levels featuring the adaptive camera behaviour, while a negative correla-

tion expresses a stronger preference for the levels without adaptation.

Even by considering the Both equally preferences as positive (assuming that the adap-

tation process is successful also when not noticeable), the test reveals only a very mild

correlation (ro = 0.14), with no statistical significance (p-value = 0.51). These results in-

dicate that the adaptivity has not been clearly preferred by all participants; however, if

we sort the subjects according to their performances, it appears that there are two dis-

tinct groups of players among the participants with different preferences about the camera

control paradigm.

To identify such groups, we clustered the subjects, according to the completion time and

the number of collected canisters, into three groups using k-means: the expert players, the

intermediate players and the novice players (see Figure 8.6). The first group contains the

9 players which, on average, have completed each level in approximately 106 seconds and

have collected approximately 8.1 canisters. The second group contains the 9 players which,

on average, have completed each level in approximately 154 seconds and have collected ap-

proximately 8.3 canisters, while the last group contains 5 subjects which completed the level

118

8.2. User Evaluation

in approximately 276 seconds and have collected approximately 4.6 canisters on average.

The main difference between the expert players and the intermediate player groups is the

completion time. In addition, the novices group differs from the other two in both features

considered (completion time and canisters collected). The novice players were often unable

to complete the level and, when they did complete it, it took them significantly more time

than the other players.

As displayed in Table 8.5, the correlation coefficient ro for the first group of subjects

equals −0.55 and it clearly indicates that the expert players preferred the level without

adaptation. The same analysis carried out on the two non-expert groups reveals, instead, a

significant positive correlation between preference and adaptivity (ro = 0.71 for the inter-

mediate players and ro = 0.6 for the novice players), indicating that the non expert-players

preferred the level played with adaptation.

The motivations given by the players for their preferences (see Figure 8.5b) can partially

motivate these results; in fact, the main motivation given when the level without adaptation

is preferred is the lack of sense of control. The answer ”I dislike loosing control of the

camera” has been given 5 times in total (4 times by the expert players). Moreover, 3

subjects reported that the camera pointed in the wrong direction while playing the level

with adaptive camera control, suggesting that the camera behaviour models are either not

accurate enough or not general enough. The two subjects that have expressed a dislike for

both levels motivated the fact by stating that they did not like automatic camera control

in general and found both controls frustrating.

Gameplay

Our second hypothesis is that adaptive camera control will positively affect the player. As

described earlier, we have extracted and collected seven features to describe the players’

performance during the game. The collected features have been sorted according to the

camera control scheme (see Table 8.6) and the two groups of measurements have been

Player group ro p-value

All players 0.14 0.51
Experts -0.55 0.04
Intermediate 0.71 0.01
Novices 0.6 0.05

Table 8.5: Correlation between expressed preference and camera type for all players and
for the players sorted according to their skill. A positive correlation expresses a positive
preference towards the adaptive camera control experience.

119

Chapter 8. Evaluation of Adaptive Camera

Feature (F) Adap. Auto. p
(Fad) (Fau)

Completion time 156.54 163.70 0.25
Canisters collected 7.96 6.91 0.01
Damage inflicted 0.61 0.52 0.08
Damage received 0.35 0.30 0.61
Falls 1.83 3.09 0.05
Jumps 54.70 57.22 0.54
Respawns activated 2.78 2.61 0.13

a: All players

Feature (F) Adap. Auto. p
(Fad) (Fau)

Completion time 115.07 98.28 0.90
Canisters collected 8.20 8.00 0.31
Damage inflicted 0.70 0.60 0.17
Damage received 0.40 0.10 0.96
Falls 0.80 0.30 0.84
Jumps 53.20 46.80 0.11
Respawns activated 2.80 2.90 0.70

b: Expert players

Feature (F) Adap. Auto. p
(Fad) (Fau)

Completion time 146.12 161.92 0.19
Canisters collected 8.50 8.25 0.26
Damage inflicted 0.75 0.75 1.00
Damage received 0.25 0.75 0.05
Falls 1.50 1.88 0.29
Jumps 57.50 62.25 0.45
Respawns activated 3.00 3.00 1.00

c: Intermediate players

Feature (F) Adap. Auto. p
(Fad) (Fau)

Completion time 256.15 297.38 0.10
Canisters collected 6.60 2.60 0.01
Damage inflicted 0.20 0.00 0.19
Damage received 0.40 0.00 0.91
Falls 4.40 10.60 0.04
Jumps 53.20 70.00 0.27
Respawns activated 2.40 1.40 0.04

d: Novice players

Table 8.6: Average performance values of the players with respect to camera control type.
The third column contains the p-values of a paired two sample t-test between the two
measurements across camera control type. The features for which the null hypothesis can
be rejected with a 5% of significance (i.e. there is a significant effect of the camera control
scheme on the feature) appear in bold.

tested to assess whether their means differ significantly. Moreover, the same analysis has

been separately applied to the three groups of subjects introduced in the previous section.

The first two columns of Table 8.6 contain the mean values of each feature in the levels

featuring the adaptive camera behaviour and the levels without. The last column displays

the p-values of a two-sample paired t-test between the two groups of features.

These statistics reveal that, overall, the number of collected canisters and the number

of falls is affected by the camera control paradigm as these are the only features for which

it is possible to reject the null hypothesis.

It is worth noting how both these features are not affecting the player preference, as

displayed in Table 8.7; this appears to be another reason for the lack of a clear preference

towards the adaptive version of the game. Completion time is, overall, the only feature

affecting the players’ preference (the players tended to prefer the level that took them less

time to complete) and adaptivity did not affect this aspect of the players performances.

Within the group of novice players, two different performance features yield a significant

120

8.2. User Evaluation

Feature (F) Pref. Other p

Completion time 149.57 170.66 0.02
Canisters collected 7.78 7.09 0.07
Damage inflicted 0.57 0.57 0.50
Damage received 0.39 0.26 0.81
Falls 2.04 2.87 0.17
Jumps 53.13 58.78 0.16
Respawns activated 2.83 2.57 0.04

a: All players

Feature (F) Pref. Other p

Completion time 93.18 120.17 0.01
Canisters collected 8.10 8.10 0.50
Damage inflicted 0.60 0.70 0.83
Damage received 0.20 0.30 0.30
Falls 0.20 0.90 0.08
Jumps 45.20 54.80 0.01
Respawns activated 2.90 2.80 0.30

b: Expert players

Feature (F) Pref. Other p

Completion time 137.43 170.61 0.02
Canisters collected 8.38 8.38 0.50
Damage inflicted 0.75 0.75 1.00
Damage received 0.62 0.38 0.77
Falls 1.38 2.00 0.18
Jumps 55.50 64.25 0.14
Respawns activated 3.00 3.00 1.00

c: Intermediate players

Feature (F) Pref. Other p

Completion time 281.79 271.74 0.61
Canisters collected 6.20 3.00 0.05
Damage inflicted 0.20 0.00 0.19
Damage received 0.40 0.00 0.91
Falls 6.80 8.20 0.37
Jumps 65.20 58.00 0.66
Respawns activated 2.40 1.40 0.04

d: Novice players

Table 8.7: Average performance values of the players with respect to preference. The third
column contains the p-values of a paired two sample t-test between the two measurements
across camera control type. The features for which the null hypothesis can be rejected with
a 5% of significance (i.e. there is a significant effect of the camera control scheme on the
feature) appear in bold.

difference between the level types: the number of collected canisters and the number of falls.

The number of canisters is significantly higher (154%) in the levels featuring adaptation and

the number of falls decreases by 72% between the two types of levels. This finding reveals

that, for a part of the subjects, the adaptation mechanism allowed the automatic camera

controller to overcome the limitations emerged in Chapter 7. Moreover, if we compare the

average values for these two features, it is worth noticing how the adaptation mechanism

improves the performance of the novice players getting them closer to the performances of

the other players and, above all, it allows the novice players to complete the level as the

average number of canisters increases above 6 (the minimum number of canisters required

to complete a level) and the completion time is approximately 40 second lower than the

maximum level duration. Such an improvement is not noticeable for the expert players.

Moreover, when comparing the significant features that are presented in Table 8.6d and

Table 8.6d, it appears that the adaptation of the camera behaviour supported the collection

of fuel canisters and lead to a stronger preference of the novice players for the levels featuring

adaptivity.

121

Chapter 8. Evaluation of Adaptive Camera

Instance

F
a

d
 −

 F
a

u

−
1

0
0

−
5

0
0

5
0

1
0

0

(a) ∆ Completion time

Instance

F
a

d
 −

 F
a

u

−
6

−
4

−
2

0
2

4
6

(b) ∆ Number of fuel canisters collected

Instance

F
a

d
 −

 F
a

u

−
6

0
−

4
0

−
2

0
0

2
0

4
0

6
0

(c) ∆ Number of jumps performed

Instance

F
a

d
 −

 F
a

u

−
1

0
−

5
0

5
1

0

(d) ∆ Number of falls

Figure 8.7: Differences ∆F = Fad−Fau of completion time (a), number of canisters collected
(b), number of jumps (c) and number of falls (d) between the levels played with the adaptive
camera behaviours and the ones without. The background color pattern shows which level
was preferred and which level was played first for each game played. If the dark grey bar is
in the upper half of the plot the level featuring the adaptive camera controller was preferred
and vice versa. If the light grey bar is in the upper half of the plot the level featuring the
adaptive camera controller was played first and vice versa.

8.3 Summary

The chapter presented a case study that evaluated the applicability of the adaptive camera

control methodology described in Chapter 4.

The camera behaviour is modelled using a combination of information about players’

122

8.3. Summary

gaze and virtual camera position collected during a game experiment. The data collected

is sorted into three sets of areas according to the game-play provided to the player. For

each group, the data is clustered using k-means to identify relevant behaviours and the

relationship between the clusters and the game-play experience is modelled using three

ANNs.

The evaluation of the ANN accuracy in predicting camera-behaviour is analysed with

respect to the number and type of features used as input to the model. The analysis reveals

that the best prediction accuracies (i.e. 76.43% for jump, 82.29% for collection and 70.04%

for fight) are achieved using a representation of the past events which includes the previous

area and the average features of the other previously visited areas. Moreover, sequential

feature selection reduces vector size which results in higher accuracies for all ANNs.

The chapter concluded with the presentation of a user evaluation of the adaptive camera

control architecture methodology. Through this experiment, the performance of the adap-

tivity and the impact of adaptivity on automatic camera control in third-person computer

games are evaluated.

While the results show no clear preference for the levels featuring adaptivity, it appears

that the adaptive camera controller is able to overcome some of the limitations emerged in

the evaluation of the automatic controller. Moreover, the adaptation mechanism showed to

be able to provide a satisfactory experience for most of the non-expert participants.

123

Chapter 8. Evaluation of Adaptive Camera

124

Chapter 9

Discussion and Conclusions

This thesis aimed to answer three main research questions: how to effectively solve the

camera composition and animation problems in real-time in dynamic and interactive envi-

ronments; how automatic camera control affects the player experience in three-dimensional

computer games; and, within the framework of automatic camera control, how the player

can affect the cinematographic experience. In order to answer these research questions,

this thesis pursued two objectives: develop and evaluate a real-time automatic camera con-

troller, and design and evaluate a methodology for adaptive camera control. The rest of

the chapter summarises the results presented in the thesis and discusses the extents of its

contributions and its limitations.

9.1 Contributions

This section summarises this thesis’ main achievements and contributions that advance the

state-of-the-art in automatic camera control for interactive and dynamic virtual environ-

ments. To a lesser degree, results of this thesis can be of used to the fields of dynamic

optimisation, animation and human-computer interaction. More specifically, the contribu-

tions of this thesis can be described as follows.

9.1.1 Dynamic Virtual Camera Composition

This thesis introduces a hybrid search algorithm, combining local and population-based

search, for virtual camera composition in real-time dynamic virtual environments. The al-

gorithm is a composite of a Genetic Algorithm employing an APF-based mutation operator.

The proposed algorithm is evaluated and compared against state-of-the-art algorithms for

optimisation in automatic virtual camera control.

To test this algorithm, we identify the building blocks of the camera control problem

and we study the complexity of each. In particular, we identify three principal objective

125

Chapter 9. Discussion and Conclusions

functions, we relate these to the state-of-the-art definition of frame constraints and we

systematically analyse the complexity of each objective function and their combination.

As a result of this analysis we identified 11 test problems which represent a wide range of

problem complexity values in terms of both static and dynamic optimisation.

These problems (see Section 6.2) compose a benchmark on which we evaluate the per-

formance of the proposed hybrid meta-heuristic algorithm and compare it with other five

search algorithms widely used in automatic camera control. The algorithms are compared

on two aspects: accuracy and reliability. Accuracy is evaluated using the average best func-

tion value (ABFV) measure suggested by Schönemann (2007), while reliability is measured

as the average amount of time in which the algorithm is unable to find a solution with an

objective function value higher than 0.25.

The proposed search algorithm is able to find and track solutions with the highest

accuracy and reliability on most test problems (see Section 6.4). Moreover, the results

obtained by the hybrid Genetic Algorithm in the optimisation of the test problems including

all the frame constraints are very positive: the algorithm shows the best accuracy and

reliability independently of the number of subjects and the type of virtual environment.

Such test problems are the most realistic and the most common encountered in interactive

virtual environments, where most of the times the camera needs to follow an avatar and a

number of other objects.

Moreover, the performance measures and the test problems employed in the evalua-

tion of the hybrid Genetic Algorithm stand, to the best of the author’s knowledge, as the

first systematic benchmark for virtual camera composition in dynamic environments (see

Section 6.2).

9.1.2 Real-Time Automatic Camera Control

The thesis introduces a novel automatic camera control architecture (see Chapter 3), that

combines the aforementioned hybrid Genetic Algorithm and a lazy probabilistic roadmap

to effectively solve the problems of composition and animation of the camera in dynamic

and interactive virtual environments. The proposed approach employs the hybrid Genetic

Algorithm to iteratively search the camera configuration that optimises the composition

requirements at each frame. The lazy probabilistic roadmap algorithm is used to animate

the camera to the new solution found at each iteration of the system. We evaluated the

system’s quality and impact on player experience by conducting a user study in which

participants play a game featuring alternatively manually controlled camera and a camera

automatically controlled by system presented in this thesis.

126

9.1. Contributions

The thesis presented a user evaluation of the proposed automatic camera control system

in a commercial-standard three-dimensional computer game (see Chapter 7). Through this

experiment, the performance of the camera control system and the impact of automatic

camera control in third-person computer games were evaluated.

The pairwise preferences reported by the participants indicate that automatic camera

control is perceived as an enhancement to the game by simplifying the interaction. Fur-

thermore, the subjects reported no complaints on the camera behaviour, which, along with

the dominating preference for automatic camera control, suggests that the camera control

system was able to elicit a satisfactory experience without noticeable issues on the quality of

the generated images and camera motion. The analysis of the features representing aspects

of player performance in the game revealed that when players did not control the camera,

they completed the level in less time, confirming our hypothesis that the automatic camera

controller would positively influence the players’ performance.

9.1.3 Adaptive Camera Control

This thesis introduced a methodology to build adaptive virtual camera control in computer

games by modelling camera behaviour and its relationship to game-play (see Chapter 4).

Camera behaviour is modelled using a combination of information about players’ gaze and

virtual camera position collected during a game experiment. The data collected is clustered

using k-means to identify relevant behaviours and the relationship between the clusters

and the game-play experience is modelled using three ANNs. These models of camera

behaviour are then used to select — at specific times in the game — which camera profile

to select in order to instruct the automatic camera controller and provide a personalised

cinematographic experience.

The methodology is evaluated on a three-dimensional platform game and the model

accuracy in predicting camera-behaviour is analysed with respect to the number and type

of features used as input to the model (see Chapter 8). The analysis reveals that the best

prediction accuracies are around 76% for areas in which the main task is to jump, 82%

for the ones in which items collection is the main task, and around 70% for fight areas.

Such results are achieved using a representation of the past in-game events which includes

game and player features of the previous area as well as the average features of the other

previously visited areas. Moreover, sequential feature selection reduces the input space of

the models which results in higher accuracies for all ANNs.

The models built from this data are employed for camera behaviour adaptation in the

same game and the adaptation mechanism is evaluated in a user study. The pairwise pref-

erences reported by the participants do not indicate a strong preference towards adaptive

127

Chapter 9. Discussion and Conclusions

camera control which is, in general, not perceived as an enhancement to the game. How-

ever, if the subjects are sorted by their playing skill level, it appears that the two groups

of players with lower in-game performance significantly prefer adaptive camera control over

simple automatic camera control, while the opposite effect is present for the expert play-

ers. Moreover, for the novice players the number of falls significantly decreases (by 106%)

when the adaptive camera control is used. Such findings suggest that, for a part of the

subjects, the adaptation mechanism allowed the automatic camera controller to overcome

its limitations and to support a wider set of player actions.

9.2 Limitations

The limitations of the proposed approach to virtual cinematography, as appeared through-

out the experiments of this thesis, are summarized in this section. Moreover, the generality

of the obtained experimental results is also discussed.

9.2.1 Methods

The first limitation of the camera control approach proposed emerges from the hybrid

optimisation algorithm per se. The accuracy and reliability demonstrated by the algorithm

in the optimisation of the projection size frame property for more than one subject are low

as the algorithm is unable to provide an acceptable solution, on average, in 91% of the

time. As shown in Section 6.4, similar performance is manifested also by the standalone

APF algorithm, suggesting that the approximated derivative of the projection size objective

function used to drive the APF operator misleads the search process. This aspect requires a

further investigation, and a more precise force function needs to be designed. The hybrid GA

appears also unable to accurately and reliably optimise the most dynamic of the problems

considered: a vantage angle constraint on one subject in the forest environment. We believe

that such a behaviour is the consequence of an imprecise detection of early convergence,

which induces the scheduler to constantly switch between the application of the standard

operators and the APF-based operator. A better early convergence detection mechanism

would probably allow the algorithm to achieve better accuracy and reliability. This is a

direction that should be considered in order to shed further light on the potential of hybrid

optimisation for real-time camera composition.

A second limitation emerges from the user evaluation of the automatic camera controller

presented in Chapter 7: a large amount of players had more difficulty to perform jumps.

The reason for such a negative impact is probably the camera profile chosen, which did not

support all the types of actions the player had to perform. This issue has been addressed

by adapting the camera profile to the player’s preferences and the type of interaction; as it

128

9.2. Limitations

appears from the results of the evaluation of the adaptive camera controller, the number of

falls decreases significantly when the game is played with a personalised camera.

While the incorporation of adaptation elements to automatic camera control appears

to improve, to some extent, the performances of the players, the preferences expressed in

the user evaluation reveal that the proposed adaptive camera controller is not successful in

improving the experience for a large number of players. The data collected in the experi-

ment presented in Chapter 8 suggest that the expert players systematically preferred the

game without adaptation and their performance is mostly unaffected by the camera control

scheme.

The reasons for such results are manifold and can probably be identified in all three

stages of the adaptation methodology: the data collection experiment, behaviour modelling

and camera profile adaptation.

The analysis of the data collected to build the camera behaviour models (see Section 8.1)

suggests that the game used in the collection experiment is visually very complex and a

multitude of objects have high visual saliency and compete for the player’s attention. This

is especially evident in the camera behaviour clusters in which the players do not focus

primarily on the task-related objects but spend a large amount of time observing the virtual

environment. This effect could be minimized using a different version of the game during

the data collection phase, which incorporates textures with low saliency values.

While the accuracy of the models evaluated in Section 8.1.4 is relatively high, none of the

models used in the evaluation has a prediction accuracy higher than 85%. This means that

there is a substantial number of cases for which the models are unable to predict the right

behaviour leading to a selection of incorrect camera profiles during the adaptation phase.

Different directions could be pursued to increase these results, such as other representations,

a larger data set, a global search based feature selection. A different clustering algorithm

could also be employed, as the error might be a consequence of a wrong cluster separation.

However, considering also that building generalised human behaviour models is a hard

problem, it might be impossible to obtain better prediction results; therefore, the model

itself could be adjusted during the gameplay, to better match the behaviour of each specific

player.

Finally, the camera profile adaptation process employs an arbitrary method to translate

the behaviours emerging from the data collected to camera profiles; the same criterion,

probably, cannot be used for all the players.

129

Chapter 9. Discussion and Conclusions

9.2.2 Experiments

The algorithms presented in Chapter 3 represent the state-of-the-art in optimization for au-

tomatic camera control. Such a selection limits the scope of the results as it does not allow

to extend the results drawn from the presented experiment beyond the problem of virtual

camera composition. However, such an analysis was necessary to position the proposed so-

lution within the field and to suggest a systematic methodology to run future comparisons.

Given the results of the comparative study and the analysis of the virtual camera compo-

sition objective function, a comparison against the state-of-the-art algorithm in dynamic

optimization is a natural future step.

The game used for the evaluation of the proposed automatic camera controller and the

adaptive camera control methodology has been designed to represent a large number of

games and, therefore, allow the generalisation of the findings to other games. However,

aspects such as the number of participants and the specific characteristics of the games

need to be covered to evaluate the extent of the generality of the evaluation results.

In the evaluation presented in Chapter 7, the participants were asked to state their

preference between a game played using automatic camera control and a game in which

they were required to manually control the camera. In order to maintain a coherent control

scheme, the participants are required to change the hand they use to control the avatar (the

left one when the camera is controlled manually and the right one when the camera is auto-

matically controlled). While this lack of symmetry might have influenced the participant’s

judgement, this scheme appeared the most natural during the pilot study conducted previ-

ous to the experiment. Other options would have required to participants to either change

the controls completely or to interact from very uncomfortable positions. Moreover, only

one participant mentioned the avatar control key mapping as uncomfortable and suggested

the use of W,A,S,D keys.

Another limitation of the experiment presented in Chapter 7 comes from the base-line

condition: a comparison of the proposed automatic controller against a simple manual

controller limits the scope of the results. Nonetheless, we believe that the comparison was

necessary as, to the best of my knowledge, there is no previous evidence in the literature

that players would prefer automatic camera over manual camera. Therefore, this needed to

be tested since a negative answer would have undermined the core motivations of this thesis.

Moreover, a preference towards CamOn in such experiment, does not only demonstrate that

automatic camera is preferred over manual, but it also demonstrates that CamOn is capable

of providing an acceptable automatic camera experience.

The game interaction consists of four main activities: jump, fight, collect and explore.

It is therefore possible to assume that the findings can be applied to any three-dimensional

130

9.3. Extensibility

game in which the gameplay is based primarily on these aspects (e.g. platform games,

action games or fighting games). Although these games often include a strong narrative

component, which is almost completely absent on the test game, we still assume our findings

to be valid for the rest of the game interaction. Moreover, the impact of automatic camera

on narrative is largely assumed to be positive in the literature (Drucker et al., 1992; Charles

et al., 2002; Christie et al., 2002) and a user survey by Jhala and Young (2010) confirms

such an assumption.

Another critical aspect to estimate the validity of the findings is the size of the par-

ticipants’ sample. The number of subjects in our user studies is relatively small; however,

considering that only one independent variable has been tested, that the findings are re-

stricted to a specific typology of games and that the results appear to be largely in favour

of automatic camera control, we believe the sample size to be sufficient. One or more larger

user survey studies will be required to evaluate automatic camera control across more game

genres.

9.3 Extensibility

The experiments evaluating the different aspects of this thesis work have demonstrated the

solidity of the proposed solutions. Here, we discuss a number of research directions that

could benefit from the findings of this thesis. Moreover, on the basis of the results obtained,

we suggest new research objectives and possible solutions.

9.3.1 Benchmarking

One of the challenges encountered during this thesis work consisted of designing the eval-

uation of the methodologies proposed. In automatic camera control, in contrast to other

fields such as computer vision, there is a lack of standard data corpora and measures which

would allow to fairly evaluate and compare different approaches. This thesis proposes an

initial benchmark and suggests a set of performance measures for the evaluation of virtual

camera composition algorithms in dynamic environments. We believe that, starting from

this initial experiment, a complete camera control benchmark can be developed and that

this would be beneficial for future advancements in the field of both automatic camera

control and dynamic optimisation.

9.3.2 Optimisation

The results demonstrated by the hybrid Genetic Algorithm proposed in this thesis are an

encouraging starting point in the development of hybrid optimisation algorithms for dy-

namic camera composition. This aspect deserves further empirical analysis to identify the

131

Chapter 9. Discussion and Conclusions

ideal combination of algorithms. Considering the high dynamism of the camera control

objective function and its very rough landscape (see Chapter 6), an algorithm that suc-

cessfully optimises this function could prove very effective in other dynamic optimisation

problems (Branke, 2001): . For this purpose it will be necessary to analyse the virtual

camera composition problem with respect to the existing benchmarks in dynamic optimi-

sation and test the proposed hybrid optimisation algorithm on these benchmarks against

the state-of-the art algorithms for dynamic optimisation.

Furthermore, investigating mechanisms for dynamic population handling during the

optimisation, could improve the start up performance and the problem of early convergence.

This mechanism, as well as the best pattern of application of the genetic operators, could

be learned using machine learning. For this purpose, the benchmark problems introduced

in this thesis could be employed as a training set.

Finally, since the intrinsic shape of the camera composition objective function contains

multiple alternative solutions often visually different, such solutions can be used to gener-

ate multiple different shots from the same description. It is already known that from an

optimization standpoint, these problems are usually multi-modal so that algorithms with

restart and/or niching components are needed as we may otherwise miss the best optima.

Supported by some initial results (Preuss et al., 2012; Burelli et al., 2012), we believe it

is worth to explore the objective function landscapes and see how the difficulty of finding

multiple good shots varies across different scenes and problems in both static and dynamic

environments.

9.3.3 Manual Control

The automatic camera controller’s evaluation presented in Chapter 7, compares the impact

of two camera control schemes on player preferences and performances. While, the results

clearly show a strong preference of the players towards automatic camera control, it would

be interesting to compare the proposed camera controller against manual camera control

schemes other than the one used in this thesis (orbit camera). Such an extended study

could lead to an empirical taxonomy of camera control schemes in different game genres.

9.3.4 Aesthetics

The evaluations of the automatic camera controller and the adaptation methodology have

both revealed a very low number of subjects identifying aesthetics as a motivation for their

preference. In particular, the lack of a reported aesthetic improvement between the game

featuring manual camera control and the one employing the automatic camera controller

132

9.4. Summary

suggests the necessity to extend the authors’ evaluation of the ability of the system to

provide well composed shots in dynamic environments (Burelli and Yannakakis, 2010a).

Furthermore, it appears very important to investigate the role of image composition and

virtual camera control in computer game aesthetics it differs from photography and classing

cinematography. For this purpose, an evaluation of the impact of different directorial styles

on player experience in different game genres should be carried out; such a study could lead

to the design of a structured taxonomy of interactive virtual cinematography.

9.3.5 Animation

The animation capabilities of the camera control architecture presented in this thesis are

limited to the control of a few dynamic parameters of the camera, such as speed and accel-

eration. These parameters showed to be sufficient as control attributes for a virtual camera

of a 3D platform game; however, in order to generate more cinematographic experiences, we

believe it is necessary to explore new virtual camera animation methods and the integration

of trajectory prediction (Halper et al., 2001) algorithms in the path planning process, to

reduce undesired discontinuities in the animation.

9.3.6 Adaptation

In the proposed methodology of camera behaviour adaptivity, the user models are built

a-priory and do not change during the experience. By integrating a form of feedback about

the user cognitive state would allow to adapt, not only the camera profile, but the model

itself. Investigating the use of multiple input modalities, such as computer vision, electroen-

cephalogram (EEG), electromyogram (EMG) and other physiological signals appears also

a promising way to detect and model the user’s affective state (Yannakakis et al., 2010),

allowing to better understand the relationship between virtual cinematography and the

player.

9.4 Summary

This dissertation has presented an approach to interactive virtual cinematography address-

ing the problems of efficient and effective camera placement and implicit camera interaction.

The presented approach includes a novel architecture for automatic camera control, a novel

hybrid optimisation algorithm and a methodology to design adaptive virtual camera expe-

riences. These approaches have been described in detail and each one of the architecture’s

components has been evaluated in terms of both numerical performance and its effect on

player experience. The key findings of the thesis suggest that, by embedding domain knowl-

edge into a global optimisation algorithm through the Artificial Potential Field operator, the

133

Chapter 9. Discussion and Conclusions

algorithm is able to deal with highly dynamic and multi-modal fitness functions. Moreover,

the user evaluation of the proposed automatic camera control architecture, shows that the

combination of hybrid optimisation and path planning allows to accurately and smoothly

control the camera. Finally, the suggested methodology for camera behaviour modelling

and adaptation, proved to be able to overcome some of the limitations of pure automatic

camera control.

134

Bibliography

(1990). A Monte-Carlo algorithm for path planning with many degrees of freedom. — Cited

on page 10.

Ali, M. M. and Törn, A. A. (2004). Population set-based global optimization algo-

rithms: some modifications and numerical studies. Computers & Operations Research,

31(10):1703–1725. — Cited on pages 41 and 81.

Arijon, D. (1991). Grammar of the Film Language. Silman-James Press LA. — Cited on

pages 3, 6, 11, and 24.

Bares, W. H. and Lester, J. C. (1997a). Cinematographic User Models for Automated

Realtime Camera Control in Dynamic 3D Environments. In International Conference on

User Modeling, pages 215–226. Springer-Verlag. — Cited on pages 4, 12, and 19.

Bares, W. H. and Lester, J. C. (1997b). Realtime Generation of Customized 3D Animated

Explanations for Knowledge-Based Learning Environments. In Conference on Innovative

Applications of Artificial Intelligence. — Cited on page 12.

Bares, W. H. and Lester, J. C. (1999). Intelligent multi-shot visualization interfaces for

dynamic 3D worlds. In International Conference on Intelligent User Interfaces, pages

119–126, Los Angeles, California, USA. ACM Press. — Cited on page 13.

Bares, W. H., McDermott, S., Boudreaux, C., and Thainimit, S. (2000). Virtual 3D camera

composition from frame constraints. In ACM Multimedia, pages 177–186, Marina del

Rey, California, USA. ACM Press. — Cited on pages 2, 6, 12, 13, 24, 25, 26, 27, 30,

and 31.

Bares, W. H., Zettlemoyer, L. S., Rodriguez, D. W., and Lester, J. C. (1998). Task-Sensitive

Cinematography Interfaces for Interactive 3D Learning Environments. In International

Conference on Intelligent User Interfaces, pages 81–88, San Francisco, California, USA.

ACM Press. — Cited on pages 4 and 12.

135

Bibliography

Baumann, M. A., Dupuis, D. C., Leonard, S., Croft, E. A., and Little, J. J. (2008).

Occlusion-free path planning with a probabilistic roadmap. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 2151–2156. IEEE. — Cited on

page 15.

Beckhaus, S., Ritter, F., and Strothotte, T. (2000). CubicalPath - Dynamic Potential Fields

for Guided Exploration in Virtual Environments. In Pacific Conference on Computer

Graphics and Applications, pages 387–459. — Cited on pages 15, 18, and 35.

Bernhard, M., Stavrakis, E., and Wimmer, M. (2010). An empirical pipeline to derive gaze

prediction heuristics for 3D action games. ACM Transactions on Applied Perception,

8(1):4:1—-4:30. — Cited on page 21.

Blinn, J. (1988). Where Am I? What Am I Looking At? IEEE Computer Graphics and

Applications, 8(4):76–81. — Cited on page 11.

Bohlin, R. and Kavraki, L. (2000). Path planning using lazy PRM. In IEEE International

Conference on Robotics and Automation., volume 1, pages 521–528. IEEE. — Cited on

pages 44 and 45.

Bourne, O., Sattar, A., and Goodwin, S. (2008). A Constraint-Based Autonomous 3D

Camera System. Journal of Constraints, 13(1-2):180–205. — Cited on pages 13, 14, 15,

17, 18, 38, and 81.

Branke, J. (2001). Evolutionary Optimization in Dynamic Environments. Kluwer Academic

Publishers. — Cited on pages 18 and 132.

Burelli, P., Di Gaspero, L., Ermetici, A., and Ranon, R. (2008). Virtual Camera Composi-

tion with Particle Swarm Optimization. In International symposium on Smart Graphics,

pages 130–141. Springer. — Cited on pages 13, 14, 18, 42, and 81.

Burelli, P. and Jhala, A. (2009a). CamOn: A Real-Time Autonomous Camera Control Sys-

tem. In AAAI Conference On Artificial Intelligence In Interactive Digitale Entertainment

Conference, Palo Alto. AAAI. — Cited on pages 5 and 23.

Burelli, P. and Jhala, A. (2009b). Dynamic Artificial Potential Fields for Autonomous

Camera Control. In AAAI Conference On Artificial Intelligence In Interactive Digitale

Entertainment Conference, Palo Alto. AAAI. — Cited on pages 5, 23, 34, 35, 43, and 81.

Burelli, P., Preuss, M., and Yannakakis, G. N. (2012). Optimising for Multiple Shots: An

Analysis of Solutions Diversity in Virtual Camera Composition. In FDG Workshop On

Intelligent Camera Control and Editing. — Cited on page 132.

136

Bibliography

Burelli, P. and Yannakakis, G. N. (2010a). Combining Local and Global Optimisation for

Virtual Camera Control. In IEEE Conference on Computational Intelligence and Games,

page 403. — Cited on pages 5, 23, 34, 40, 42, 46, and 133.

Burelli, P. and Yannakakis, G. N. (2010b). Global Search for Occlusion Minimisation in

Virtual Camera Control. In IEEE Congress on Evolutionary Computation, pages 1–8,

Barcelona. IEEE. — Cited on pages 5, 23, 35, 43, 64, 74, and 81.

Burelli, P. and Yannakakis, G. N. (2011). Towards Adaptive Virtual Camera Control In

Computer Games. In International symposium on Smart Graphics. — Cited on pages 5,

49, and 99.

Burelli, P. and Yannakakis, G. N. (2012a). Automatic Camera Control in Computer Games:

Design And Evaluation. Under Journal Review. — Cited on pages 5, 15, 61, and 87.

Burelli, P. and Yannakakis, G. N. (2012b). Real-Time Virtual Camera Composition In

Dynamic Environments. Under Journal Review. — Cited on pages 5, 15, 18, 23, 61,

and 73.

Calinski, T. and Harabasz, J. (1974). A Dendrite Method For Cluster Analysis. Commu-

nications in Statistics, 3(1):1–27. — Cited on pages 56 and 104.

Cardamone, L., Loiacono, D., and Lanzi, P. L. (2009). On-line Neuroevolution Applied to

The Open Racing Car Simulator. In IEEE Congress on Evolutionary Computation. —

Cited on page 19.

Caruana, R., Lawrence, S., and Giles, L. (2001). Overfitting in Neural Nets : Backprop-

agation, Conjugate Gradient and Early Stopping. In Advances in Neural Information

Processing Systems, pages 402–408. MIT Press. — Cited on page 57.

Charles, D. and Black, M. (2004). Dynamic Player Modelling : A Framework for Player-

centred. In International Conference on Computer Games: Artificial Intelligence, Design

and Education, pages 19–35. — Cited on page 19.

Charles, F., Lugrin, J.-l., Cavazza, M., and Mead, S. J. (2002). Real-time camera con-

trol for interactive storytelling. In International Conference for Intelligent Games and

Simulations, pages 1–4, London. — Cited on pages 12 and 131.

Christianson, D., Anderson, S., He, L.-w., Salesin, D. H., Weld, D., and Cohen, M. F.

(1996). Declarative Camera Control for Automatic Cinematography. In AAAI, pages

148–155. AAI. — Cited on page 12.

137

Bibliography

Christie, M. and Hosobe, H. (2006). Through-the-lens cinematography. In Butz, A., Fisher,

B., Krüger, A., and Olivier, P., editors, International symposium on Smart Graphics, vol-

ume 4073 of Lecture Notes in Computer Science, pages 147–159–159, Berlin, Heidelberg.

Springer Berlin Heidelberg. — Cited on page 11.

Christie, M., Languénou, E., and Granvilliers, L. (2002). Modeling Camera Control with

Constrained Hypertubes. In International Conference on Principles and Practice of Con-

straint Programming, pages 618–632, London, UK. Springer-Verlag. — Cited on page 131.

Christie, M. and Normand, J.-M. (2005). A Semantic Space Partitioning Approach to

Virtual Camera Composition. Computer Graphics Forum, 24(3):247–256. — Cited on

pages 13 and 18.

Christie, M., Olivier, P., and Normand, J.-M. (2008). Camera Control in Computer Graph-

ics. In Computer Graphics Forum, volume 27, pages 2197–2218. — Cited on pages 3, 10,

13, and 15.

Cobb, H. G. (1990). An investigation into the use of hypermutation as an adaptive operator

in genetic algorithms having continuous, time-dependent nonstationary environments.

Technical report, NAVAL RESEARCH LAB WASHINGTON. — Cited on page 18.

Corke, P. I. (1994). Visual Control Of Robot Manipulators – A Review. In Visual Servoing,

pages 1–31. World Scientific. — Cited on page 9.

Davies, D. L. and Bouldin, D. W. (1979). A Cluster Separation Measure. Pattern Analysis

and Machine Intelligence, (2):224–227. — Cited on pages 56 and 104.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271. — Cited on page 45.

Drachen, A., Canossa, A., and Yannakakis, G. N. (2009). Player modeling using self-

organization in Tomb Raider: Underworld. In IEEE Symposium on Computational In-

telligence and Games, pages 1–8. IEEE. — Cited on page 20.

Drucker, S. M., Galyean, T. A., and Zeltzer, D. (1992). CINEMA: a system for procedu-

ral camera movements. In ACM SIGGRAPH Symposium on Interactive 3D Graphics,

page 67. — Cited on page 131.

Drucker, S. M. and Zeltzer, D. (1994). Intelligent camera control in a virtual environment.

In Graphics Interface, pages 190–199. — Cited on pages 11 and 35.

138

Bibliography

Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting

Compact Well-Separated Clusters. Cybernetics and Systems, 3(3):32–57. — Cited on

page 104.

El-Nasr, M. S. and Yan, S. (2006). Visual Attention in 3D Video Games. In ACM SIGCHI

international conference on Advances in computer entertainment technology. — Cited on

page 20.

Filliat, D. and Meyer, J.-A. (2002). Global localization and topological map-learning for

robot navigation. In From Animals to Animats. — Cited on page 10.

Floudas, C. A. and Pardalos, P. M. (1990). A collection of test problems for constrained

global optimization algorithms. Springer-Verlag New York. — Cited on page 74.

Frazzoli, E., Dahleh, M., and Feron, E. (2000). Robust hybrid control for autonomous

vehicle motion planning. In IEEE Conference on Decision and Control, volume 1, pages

821–826. IEEE. — Cited on page 9.

Gleicher, M. and Witkin, A. (1992). Through-the-lens camera control. In ACM SIGGRAPH,

volume 26, page 331. — Cited on page 11.

Glover, F. W. and Laguna, M. (1997). Tabu Search. Springer. — Cited on page 18.

Goldberg, D. and Smith, R. (1987). Nonstationary function optimization using genetic algo-

rithms with dominance and diploidy. In Inernational Conference on Genetic Algorithms,

pages 59–69. — Cited on page 18.

Hadley, G. (1962). Linear programming. Addison-Wesley. — Cited on page 18.

Hagelbäck, J. and Johansson, S. J. (2009). A Multi-agent Potential Field based bot for a

Full RTS Game Scenario. In AAAI Conference On Artificial Intelligence In Interactive

Digitale Entertainment Conference. — Cited on page 19.

Halper, N., Helbing, R., and Strothotte, T. (2001). A Camera Engine for Computer Games:

Managing the Trade-Off Between Constraint Satisfaction and Frame Coherence. Com-

puter Graphics Forum, 20(3):174–183. — Cited on pages 14, 16, and 133.

Halper, N. and Olivier, P. (2000). CamPlan: A Camera Planning Agent. In International

symposium on Smart Graphics, pages 92–100. AAAI Press. — Cited on pages 13 and 18.

Hamaide, J. (2008). A Versatile Constraint-Based Camera System. In AI Game Program-

ming Wisdom 4, pages 467–477. — Cited on page 16.

139

Bibliography

Hart, P. E., Nilsson, N. J., and Bertram, R. (1968). A formal basis for the heuristic determi-

nation of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics.

— Cited on page 10.

Hastings, E. J., Guha, R. K., and Stanley, K. O. (2009). Automatic Content Generation in

the Galactic Arms Race Video Game. IEEE Transactions on Computational Intelligence

and AI in Games, 1(4):1–19. — Cited on page 19.

Haykin, S. (2008). Neural Networks and Learning Machines. Number v. 10 in Neural

networks and learning machines. Prentice Hall. — Cited on pages 56 and 57.

He, L.-w., Cohen, M. F., and Salesin, D. H. (1996). The virtual cinematographer: a

paradigm for automatic real-time camera control and directing. In ACM SIGGRAPH,

pages 217–224. ACM Press. — Cited on page 12.

Holland, J. H. (1992). Genetic Algorithms. Scientific American, 267:66–72. — Cited on

pages 6, 18, and 39.

Houlette-Stottler, R. (2004). Player Modeling for Adaptive Games. In AI Game Program-

ming Wisdom 2, pages 557–566. Charles River Media, Inc. — Cited on page 19.

Hubert, L. J. and Levin, J. R. (1976). Evaluating object set partitions: Free-sort analysis

and some generalizations. Journal of Verbal Learning and Verbal Behavior, 15(4):459–470.

— Cited on page 104.

Irwin, D. E. (2004). Fixation Location and Fixation Duration as Indices of Cognitive

Processing. In The interface of language, vision, and action: Eye movements and the

visual world, chapter 3, pages 105–133. Psychology Press, New York. — Cited on page 53.

Jardillier, F. and Languénou, E. (1998). Screen-Space Constraints for Camera Movements:

the Virtual Cameraman. Computer Graphics Forum, 17(3):175–186. — Cited on pages 12

and 13.

Jhala, A. and Young, R. M. (2005). A discourse planning approach to cinematic camera

control for narratives in virtual environments. In AAAI, number July, pages 307–312,

Pittsburgh, Pennsylvania, USA. AAAI Press. — Cited on pages 12 and 55.

Jhala, A. and Young, R. M. (2009). Evaluation of intelligent camera control systems based

on cognitive models of comprehension. In International Conference On The Foundations

Of Digital Games, pages 327–328. — Cited on page 12.

140

Bibliography

Jhala, A. and Young, R. M. (2010). Cinematic Visual Discourse: Representation, Gen-

eration, and Evaluation. IEEE Transactions on Computational Intelligence and AI in

Games, 2(2):69–81. — Cited on pages 12, 24, and 131.

Jones, T. and Forrest, S. (1995). Fitness Distance Correlation as a Measure of Problem

Difficulty for Genetic Algorithms. In International Conference on Genetic Algorithms,

pages 184–192. Morgan Kaufmann. — Cited on page 74.

Kavraki, L., Svestka, P., Latombe, J.-c., and Overmars, M. (1994). Probabilistic Roadmaps

for Path Planning in High-Dimensional Configuration Spaces. In IEEE International

Conference on Robotics and Automation, page 171. — Cited on pages 6, 10, and 45.

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. In IEEE Conference

on Neural Networks, pages 1942–1948. — Cited on page 41.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The

International Journal of Robotics Research, 5(1):90–98. — Cited on pages 6, 9, and 35.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated an-

nealing. Science, 220:671–680. — Cited on page 18.

Kittler, J. (1978). Feature Set Search Algorithms. Pattern Recognition and Signal Process-

ing, pages 41–60. — Cited on page 107.

Krzanowski, W. J. and Lai, Y. T. (1988). A criterion for determining the number of groups

in a data set using sum-of-squares clustering. Journal of Biometrics, 44(1):23–34. —

Cited on pages 56 and 104.

Kyung, M. and Kim, M. (1995). Through-the-lens camera control with a simple jacobian

matrix. In Graphics Interface. — Cited on page 11.

Land, M. F. (2009). Vision, eye movements, and natural behavior. Visual neuroscience,

26(1):51–62. — Cited on page 53.

Land, M. F. and Tatler, B. W. (2009). Looking and Acting: Vision and Eye Movements in

Natural Behavior. Oxford University Press. — Cited on page 52.

Lino, C., Christie, M., Lamarche, F., Schofield, G., and Olivier, P. (2010). A Real-time

Cinematography System for Interactive 3D Environments. In Eurographics/ACM SIG-

GRAPH Symposium on Computer Animation, pages 139–148. — Cited on pages 14

and 32.

141

Bibliography

Lucas, S. M. (2005). Evolving a Neural Network Location Evaluator to Play Ms . Pac-Man.

In IEEE Symposium on Computational Intelligence and Games. — Cited on page 19.

Lucas, S. M. (2008). Computational intelligence and games: Challenges and opportunities.

International Journal of Automation and Computing, 5(1):45–57. — Cited on page 19.

Mackinlay, J. D., Card, S. K., and Robertson, G. G. (1990). Rapid controlled movement

through a virtual 3D workspace. In ACM SIGGRAPH, volume 24, pages 171–176, Dallas.

— Cited on page 10.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate obser-

vations. In Berkeley Symposium on Mathematical Statistics and Probability, volume 233,

pages 281–297. — Cited on page 55.

Mahlmann, T., Drachen, A., Togelius, J., Canossa, A., and Yannakakis, G. N. (2010).

Predicting Player Behavior in Tomb Raider: Underworld. In IEEE Conference on Com-

putational Intelligence and Games. — Cited on page 52.

Mahlmann, T., Togelius, J., and Yannakakis, G. N. (2011). Towards Procedural Strategy

Game Generation : Evolving Complementary Unit Types. In European Conference on

Applications of Evolutionary Computation. — Cited on page 19.

Marchand, E. and Courty, N. (2002). Controlling a camera in a virtual environment. The

Visual Computer, 18:1–19. — Cited on page 14.

Martinez, H. P., Jhala, A., and Yannakakis, G. N. (2009). Analyzing the impact of camera

viewpoint on player psychophysiology. In International Conference on Affective Comput-

ing and Intelligent Interaction and Workshops, pages 1–6. IEEE. — Cited on page 6.

Moravec, H. and Elfes, A. E. (1985). High Resolution Maps from Wide Angle Sonar. In

IEEE International Conference on Robotics and Automation, pages 116 – 121. — Cited

on pages 9 and 10.

Munoz, J., Yannakakis, G. N., Mulvey, F., Hansen, D. W., Gutierrez, G., and Sanchis, A.

(2011). Towards Gaze-Controlled Platform Games. In IEEE Conference on Computa-

tional Intelligence and Games, number Section V, pages 47–54. — Cited on page 20.

Nacke, L., Stellmach, S., Sasse, D., and Lindley, C. A. (2009). Gameplay experience in a

gaze interaction game. In Communication by Gaze Interaction, pages 49–54. — Cited on

page 20.

142

Bibliography

Nieuwenhuisen, D. and Overmars, M. H. (2004). Motion Planning for Camera Movements

in Virtual Environments. In IEEE International Conference on Robotics and Automation,

pages 3870 – 3876. IEEE. — Cited on page 15.

Olivier, P., Halper, N., Pickering, J., and Luna, P. (1999). Visual Composition as Optimi-

sation. In Artificial Intelligence and Simulation of Behaviour. — Cited on pages 12, 13,

18, and 25.

Oskam, T., Sumner, R. W., Thuerey, N., and Gross, M. (2009). Visibility transition planning

for dynamic camera control. In ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, pages 55–65. — Cited on page 15.

Phillips, C. B., Badler, N. I., and Granieri, J. (1992). Automatic viewing control for 3D

direct manipulation. In ACM SIGGRAPH Symposium on Interactive 3D graphics, pages

71–74, Cambridge, Massachusetts, USA. ACM Press. — Cited on page 11.

Picardi, A., Burelli, P., and Yannakakis, G. N. (2011). Modelling Virtual Camera Be-

haviour Through Player Gaze. In International Conference On The Foundations Of

Digital Games. — Cited on pages 5, 49, and 99.

Pickering, J. (2002). Intelligent Camera Planning for Computer Graphics. PhD thesis,

University of York. — Cited on pages 13, 14, and 18.

Pinelle, D. and Wong, N. (2008). Heuristic evaluation for games. In CHI, CHI ’08, page

1453, New York, New York, USA. ACM Press. — Cited on page 2.

Pontriagin, L. S. (1962). Mathematical Theory of Optimal Processes. Interscience Publishers.

— Cited on page 11.

Preuss, M., Burelli, P., and Yannakakis, G. N. (2012). Diversified Virtual Camera Composi-

tion. In European Conference on the Applications of Evolutionary Computation, Malaga.

— Cited on page 132.

Ramsey, C. and Grefenstette, J. (1993). Case-based initialization of genetic algorithms. In

International Conference on Genetic Algorithms, pages 84–91. — Cited on page 18.

Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster backpropagation

learning: the RPROP algorithm. IEEE. — Cited on page 106.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representa-

tions by error propagation. Nature, 323:533–536. — Cited on page 57.

143

Bibliography

Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd Edition).

Prentice Hall, 3 edition. — Cited on page 17.

Salichs, M. A. and Moreno, L. (2000). Navigation of mobile robots: open questions. Robot-

ica, 18(3):227–234. — Cited on page 9.

Schmalstieg, D. and Tobler, R. F. (1999). Real-time Bounding Box Area Computation.

Technical Report Figure 1, Vienna University. — Cited on page 27.

Schönemann, L. (2007). Evolution Strategies in Dynamic Environments. In Yang, S.,

Ong, Y.-S., and Jin, Y., editors, Evolutionary Computation in Dynamic and Uncertain

Environments, volume 51 of Studies in Computational Intelligence, pages 51–77. Springer

Berlin Heidelberg, Berlin, Heidelberg. — Cited on pages 35, 43, 82, 85, and 126.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. — Cited on page 18.

Shaker, N., Yannakakis, G. N., and Togelius, J. (2010). Towards automatic personalized

content generation for platform games. In AAAI Conference On Artificial Intelligence In

Interactive Digitale Entertainment. — Cited on pages 16 and 19.

Snedecor, G. W. and Cochran, W. G. (1989). Statistical Methods. Number vb. 276 in

Statistical Methods. Iowa State University Press. — Cited on page 107.

Soanes, C. and Stevenson, A. (2005). Oxford Dictionary of English. Oxford University

Press. — Cited on page 1.

Storn, R. (1996). On the usage of differential evolution for function optimization. In North

American Fuzzy Information Processing, pages 519–523. IEEE. — Cited on page 81.

Storn, R. and Lampinen, J. A. (2004). Differential Evolution. In New Optimization Tech-

niques in Engineering, chapter 6, pages 123–166. Springer-Verlag. — Cited on pages 41

and 81.

Storn, R. and Price, K. (1997). Differential Evolution A Simple and Efficient Heuristic for

global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4):341–

359–359. — Cited on page 41.

Sundstedt, V., Stavrakis, E., Wimmer, M., and Reinhard, E. (2008). A psychophysical

study of fixation behavior in a computer game. In Symposium on Applied perception in

graphics and visualization, pages 43–50. ACM. — Cited on page 21.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction (Adaptive

Computation and Machine Learning). The MIT Press. — Cited on page 10.

144

Bibliography

Tesauro, G. (1994). TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-

Level Play. Neural Computation, 219:215–219. — Cited on page 19.

Thawonmas, R., Kurashige, M., Keita, I., and Kantardzic, M. (2006). Clustering of Online

Game Users Based on Their Trails Using Self-organizing Map. In International Conference

on Entertainment Computing, number 16500091, pages 366–369. — Cited on page 20.

Thrun, S. (1995). Learning To Play the Game of Chess. Advances in Neural Information

Processing Systems, 7. — Cited on page 19.

Thue, D., Bulitko, V., Spetch, M., and Wasylishen, E. (2007). Interactive Storytelling : A

Player Modelling Approach. In AAAI Conference On Artificial Intelligence In Interactive

Digitale Entertainment, number July, pages 43–48, Stanford, CA. — Cited on page 20.

Thurau, C., Bauckhage, C., and Sagerer, G. (2003). Combining Self Organizing Maps and

Multilayer Perceptrons to Learn Bot-Behavior for a Commercial Game. In GAME-ON,

pages 119–123. — Cited on page 20.

Thurau, C., Bauckhage, C., and Sagerer, G. (2004). Learning human-like movement behav-

ior for computer games. In International Conference on Simulation of Adaptive Behavior,

pages 315–323. — Cited on page 20.

Togelius, J., Karakovskiy, S., and Koutn, J. (2009). Super Mario Evolution. In IEEE Sym-

posium on Computational Intelligence and Games, pages 156–161. — Cited on page 19.

Togelius, J., Nardi, R. D., and Lucas, S. M. (2006). Making Racing Fun Through Player

Modeling and Track Evolution. In SAB Workshop on Adaptive Approaches to Optimizing

Player Satisfaction. — Cited on page 19.

Togelius, J., Yannakakis, G. N., Stanley, K. O., and Browne, C. (2010). Search-based

Procedural Content Generation. In European Conference on Applications of Evolutionary

Computation, pages 1–10. — Cited on page 19.

Tomlinson, B., Blumberg, B., and Nain, D. (2000). Expressive autonomous cinematography

for interactive virtual environments. In International Conference on Autonomous Agents,

page 317. — Cited on pages 4, 12, and 49.

Törn, A., Ali, M., and Viitanen, S. (1999). Stochastic Global Optimization: Problem

Classes and Solution Techniques. Journal of Global Optimization, 14(4):437–447–447. —

Cited on pages 74, 75, 76, and 78.

145

Bibliography

Ursem, R. K. (2000). Multinational GAs: Multimodal Optimization Techniques in Dy-

namic Environments. In Genetic and Evolutionary Computation Conference. — Cited

on page 18.

Vavak, F., Jukes, K., and Fogarty, T. (1997). Learning the local search range for genetic

optimisation in nonstationary environments. IEEE International Conference on Evolu-

tionary Computation, pages 355–360. — Cited on page 18.

Ware, C. and Osborne, S. (1990). Exploration and virtual camera control in virtual three

dimensional environments. ACM SIGGRAPH, 24(2):175–183. — Cited on page 10.

Wirth, N. and Gallagher, M. (2008). An influence map model for playing Ms. Pac-Man.

In IEEE Symposium On Computational Intelligence and Games, pages 228–233. Ieee. —

Cited on page 19.

Wolf, M. J. P. (2001). Genre and the video game. In Wolf, M. J. P., editor, The medium of

the video game, chapter 6, pages 113–134. University of Texas Press. — Cited on page 67.

Yannakakis, G. N. and Hallam, J. (2011). Rating vs. Preference: A comparative study of

self-reporting. In Affective Computing and Intelligent Interaction Conference. Springer-

Verlag. — Cited on page 89.

Yannakakis, G. N., Hallam, J., and Lund, H. H. (2008). Entertainment capture through

heart rate activity in physical interactive playgrounds. User Modeling and User-Adapted

Interaction, 18(1-2):207–243. — Cited on pages 92 and 116.

Yannakakis, G. N. and Maragoudakis, M. (2005). Player modeling impact on players en-

tertainment in computer games. In Ardissono, L., Brna, P., and Mitrovic, A., editors,

International Conference on User Modeling, volume 3538 of Lecture Notes in Computer

Science, pages 74–78, Berlin, Heidelberg. Springer Berlin Heidelberg. — Cited on pages 19

and 20.

Yannakakis, G. N., Martinez, H. P., and Jhala, A. (2010). Towards Affective Camera

Control in Games. User Modeling and User-Adapted Interaction. — Cited on pages 20

and 133.

Yannakakis, G. N. and Togelius, J. (2011). Experience-driven procedural content generation.

IEEE Transactions on Affective Computing, pages 1–16. — Cited on pages 16 and 20.

Yarbus, A. L. (1967). Eye movements and vision. Plenum press. — Cited on pages 20, 52,

and 103.

146

	Introduction
	Problem Definition and Motivation
	Objectives and Key Contributions
	Automatic Camera Control
	Adaptive Camera Control
	Thesis Structure

	Related Work
	Navigation and Control
	Virtual Camera Control
	Automatic Camera Control
	Camera Planning
	Virtual Camera Composition
	Camera Animation

	Camera Control in Games
	Artificial Intelligence
	Optimisation
	Artificial Intelligence in Games
	Player Modelling

	Gaze Interaction in Games
	Summary

	Automatic Camera Control
	Frame constraints
	Vantage Angle
	Object Projection Size
	Object Visibility
	Object Frame Position
	Camera Position
	Composition Objective Function

	Animation Constraints
	Controller's Architecture
	Optimisation Module
	Artificial Potential Field
	Sliding Octree
	Genetic Algorithm
	Differential Evolution
	Particle Swarm Optimisation
	Hybrid Genetic Algorithm

	Animation Module
	Lazy Probabilistic Roadmap

	Summary

	Adaptive Camera Control
	Camera Behaviour
	Gaze
	Behaviour Identification
	Prediction

	Adaptation
	Summary

	Test-bed Environments
	Virtual Camera Sandbox
	Functionalities
	Environment Elements
	Architecture

	Lerpz Escape
	Game Mechanics
	Stages and Areas
	Controls
	Technical Characteristics

	Summary

	Hybrid Genetic Algorithm Evaluation
	Test-bed Problems
	Complexity
	Fitness-based Measures
	Complexity Measures by Törn et al.
	Dynamism
	Scenario categorisation by problem complexity

	Algorithms Configurations
	Results
	Accuracy
	Reliability

	Summary

	Controller Evaluation
	Experimental Methodology
	Experimental Setup
	Collected Features
	Results
	Order Of Play
	Preferences
	Gameplay

	Summary

	Evaluation of Adaptive Camera
	Camera Behaviour Models
	Experiment
	Collected Data Types and Feature Extraction
	Behaviour Models
	Models Evaluation

	User Evaluation
	Experiment
	Results

	Summary

	Discussion and Conclusions
	Contributions
	Dynamic Virtual Camera Composition
	Real-Time Automatic Camera Control
	Adaptive Camera Control

	Limitations
	Methods
	Experiments

	Extensibility
	Benchmarking
	Optimisation
	Manual Control
	Aesthetics
	Animation
	Adaptation

	Summary

	Bibliography

