

VisTool

A user interface and visualization development
system

Shangjin Xu

IT University of Copenhagen

Rued Langgaards Vej 7, DK-2300 Copenhagen S

Abstract

Although software usability has long been emphasized, there is a lot of

software with poor usability. In Usability Engineering, usability professionals

prescribe a classical usability approach to improving software usability. It is

essential to prototype and usability test user interfaces before programming.

However, in Software Engineering, software engineers who develop user

interfaces do not follow it.

In many cases, it is desirable to use graphical presentations, because a

graphical presentation gives a better overview than text forms, and can

improve task efficiency and user satisfaction. However, it is more difficult to

follow the classical usability approach for graphical presentation

development.

These difficulties result from the fact that designers cannot implement user

interface with interactions and real data. We developed VisTool – a user

interface and visualization development system – to simplify user interface

development. VisTool allows user interface development without real

programming. With VisTool a designer assembles visual objects (e.g.

textboxes, ellipse, etc.) to visualize database contents. In VisTool, visual

properties (e.g. color, position, etc.) can be formulas that compute appearance

values, access records from the database, etc. This is a new way of

development different from programming. So the designer does not program

an object-relational mapping layer, which requires in-depth knowledge about

programming and database. He directly maps relational data to user interface

objects and properties.

We built visualizations such as Lifelines, Parallel Coordinates, Heatmap, etc.

to show that the formula-based approach is powerful enough for building

customized visualizations. The evaluation with Cognitive Dimensions shows

that the formula-based approach is cognitively simpler than the state-of-art

tools. Usability test shows that VisTool is accessible to designers.

Furthermore, it indicates that expert designers can do faster than with other

tools. Our comparison with the traditional rapid development approach shows

that VisTool reduces development time about 80%. A performance test shows

that VisTool performance is adequate.

Keywords: user interface development, graphical presentation, visualization,

usability, the formula-based approach

3

Table of Contents
Abstract .. 2
Table of Contents ... 3
Acknowledgements .. 6
Chapter 1 Introduction ... 7

1.1 Problems ... 7
1.2 Why a user interface development tool is important 10
1.3 Solution .. 16

Chapter 2 Background ... 18
2.1 What is usability and why is it important? ... 18
2.2 What usability specialists suggest – a classical approach 21
2.3 What are appropriate prototypes? ... 23
2.4 Difficulties with prototyping .. 26
2.5 Problems with ensuring usability in the waterfall model 29
2.6 Difficulties with ensuring usability in agile methods 32
2.7 Graphical presentation – a problem amplifier 35
2.8 Research goal ... 40

Chapter 3 Previous research and tools ... 42
3.1 State-of-the-art tools ... 44
3.2 Tools for developing graphical presentations 52

3.2.1 Protovis – a component-based toolkit ... 52
3.2.2 Prefuse – a development toolkit for visualizations with realistic

data ... 56
3.3 Model-based prototyping tools ... 62

Chapter 4 VisTool Introduction ... 65
4.1 An example scenario .. 65

4.1.1 The design phase ... 66
4.1.2 The first prototype ... 73
4.1.3 Improve the prototype ... 73
4.1.4 The first release ... 78
4.1.5 Deployment ... 79
4.1.6 After the deployment of the first release 79

4.2 The theory behind the story .. 81
4.3 Design rationale .. 82

4.3.1 Formula Language .. 83
4.3.2 Formula usability .. 84
4.3.3 Templates .. 86
4.3.4 Interface builder .. 87

4

Chapter 5 How VisTool works .. 89
5.1 Basic Concepts ... 89

5.1.1 Control instance .. 89
5.1.2 Control template ... 91

5.2 Multiple instances of a control ... 94
5.3 Property formulas... 95

5.3.1 Walking from one data entity to another 96
5.3.2 Walking from control to data (>-) .. 97
5.3.3 Walking from data to control (-=)... 97
5.3.4 Interaction ... 99
5.3.5 An example of complex interaction .. 100

5.4 Implementation rationale ... 104
5.4.1 Integrate database query into Formula Language 104

5.5 Formula Language Semantics .. 113
5.5.1 Notation .. 113
5.5.2 Join-many (-<) .. 114
5.5.3 Join-one (>-) ... 115
5.5.4 Control-join (-=) ... 117
5.5.5 Dot (.) ... 118
5.5.6 Bang (!) ... 119
5.5.7 Control indexing ([]) .. 119

5.6 DataSource semantics .. 119
Chapter 6 VisTool Implementation ... 122

6.1 Formula Language syntax .. 122
6.2 Path compilation .. 124
6.3 Dynamic Typing .. 127
6.4 VisTool user interface description language 128

Chapter 7 Evaluation ... 132
7.1 An evaluation of expressive power .. 134

7.1.1 Expressive power .. 149
7.2 Cognitive Dimensions .. 153

7.2.1 Closeness of mapping ... 154
7.2.2 Hidden dependencies .. 162
7.2.3 Abstraction gradient ... 164
7.2.4 Viscosity ... 167
7.2.5 Error-proneness .. 169
7.2.6 Hard mental operations ... 172
7.2.7 Premature commitment ... 174
7.2.8 Secondary notation ... 177

5

7.2.9 Diffuseness .. 178
7.2.10 Juxtaposability .. 179
7.2.11 Summary ... 180

7.3 Usability tests of VisTool interface builder 181
7.3.1 Usability test with a tutorial and non-programmers 182
7.3.2 Usability test with designers working in the domain 183
7.3.3 Usability test with expert designers .. 185

7.4 Comparative development effort .. 186
7.4.1 The background ... 187
7.4.2 ThermoVis .. 188
7.4.3 TreemapVis ... 190
7.4.4 Summary ... 192

7.5 Performance test ... 194
Chapter 8 Discussion and Conclusion ... 195

8.1 Conclusion .. 198
Chapter 9 Future Research ... 200
Appendix A A syntax tree example ... 201
Appendix B Comparison source code ... 205

6

Acknowledgements

Shangjin Xu was enrolled as a Ph.D. student at IT University of Copenhagen

and joined the Electronic Health Record project and VisTool for data

visualization in 2009.

Soren Lauesen invented the basic VisTool principles, including the basic

formula principle. The rest of the VisTool ideas, the implementation

architecture and the implementation itself are the joint intellectual work of

Mohammad A. Kuhail, Soren Lauesen, Kostas Pantazos and Shangjin Xu (in

alphabetical sequence).

My research is supported by many people, and I record my work and

experience in this thesis. First of all, I thank the Danish Strategic Research

Council (NABIIT) and IT University of Copenhagen. Secondly, I thank my

mentor and friend Professor Soren Lauesen. His rich knowledge, scientific

attitudes for solving practical problems, and the meticulous way of working

impress me. I believe that I have learned some of these, and this experience

has a far-reaching effect on my future work. I also enjoyed the work with our

Vis-teammates: Mohammad A. Kuhail, Soren Lippert, and Kostas Pantazos.

We had candid talks, fruitful discussions, effective collaborations, and

interesting tiredness-killers e.g. football. All of you helped me realize some

blind spots in my research, and made my work "alive".

In the end, I thank my family and wife. Sometimes, I may give you the

impression that I was a robot who focused only on work. I may answer your

request after one minute or even longer, because I was thinking about my work

and a spark was just firing. Sorry, a single-threaded robot. I am so lucky to

have all of you. You understand and support my work, and make my life vivid.

In the future this "robot" will be much more intelligent!

7

Chapter 1 Introduction

Software usability has long been emphasized. People in Usability
Engineering and Software Engineering seek many ways [Abras
2004][Barnum 2001][Baecker 1993] and invent tools [Carroll
1992][Pyla 2006][Arroyo 2006] to improve software usability, but few
tools can be used by user interface designers with limited
programming skills. Usability Engineering specialists prescribe the
classical usability approach to improving software usability.
However, software engineers do not follow it, because contemporary
development tools do not support it in the waterfall model and
prototyping tools do not fulfill needs for agile methods.

1.1 Problems

In Usability Engineering, a lack of suitable user interface prototyping
tools is a major problem. The classical usability approach relies on
user interface prototyping and usability testing. In general, there are
two kinds of prototyping techniques: low-fidelity prototyping and
high-fidelity prototyping [Nielsen 1993][Preece 2002].

Low-fidelity prototypes (e.g. screen mock-ups) are easy to make, but
lack functions, and thus cannot test interactions. It is also
cumbersome for designers to show realistic data with low-fidelity
prototypes. Some applications (e.g. the Gantt chart) may even require
domain expertise for imagining realistic data, so user interface
designers usually fill in imaginary data.

A high-fidelity prototype has functions and is close to the final user
interface. However, programming is needed to develop a
high-fidelity prototype. The cost of high-fidelity prototyping is as
expensive as the eventual user interface development [Rudd 1996]. In
addition, software engineers rarely reuse the prototypes that are
developed by user interface designers. Instead, they build real user
interfaces from scratch. So user interface designers do not directly

1.1 Problems

8

contribute to the eventual application, and their efforts are wasted in
this sense.

Hence, user interface designers need a low-cost prototyping tool that
requires little programming and can implement high-fidelity user
interfaces with most of interactions and real data.

In Software Engineering, the classical usability approach from
Usability Engineering might not be followed. The result is that
software functionality meets the user's needs, but usability might be
poor. That is because "the way in which the functions are
implemented will have a significant impact on system
usability"[Goodwin 1987]. The current tools do not support the
classical usability approach in Software Engineering. For example, in
the design phase of the waterfall model, classes are not designed yet.
So user interface designers do not know what kinds of data they have,
and cannot design the user interface. Furthermore, functionality for
interactions and real data requires programming. Consequently,
designers cannot usability test user interfaces before programming,
and thus the classical usability approach is not followed in the
waterfall model. In agile methods, traditional prototypes turn out to
be outdated. They are not suitable for rapid software development.
For instance, nowadays mainstream prototyping tools are still art
design tools such as Adobe Photoshop, etc. [Carter 20120]. Those
prototypes do not implement interactions and are not deployable. In
addition, software is developed in a rapid pace in agile methods.
However, the traditional prototyping tools do not develop prototypes
fast enough, in particular, for graphical presentations. As a result, the
classical usability approach is not followed in agile methods either.
Graphical presentations show data by means of visual properties such
as color, size, shape, etc. Examples are Lifelines, Scatterplot, etc.
Because our retina is quite sensitive to those visual properties [Mazza
2009], graphical presentations give a better overview than text forms
[Keim 2001], and it can improve users' task efficiency. However,
graphical presentations amplify the problems. It is more
time-consuming and more error-prone for user interface designers to
draw low-fidelity visualization prototypes. It is also more

1.2 Why a user interface development tool is important

9

programming-intensive to implement a graphical presentation than a
simple user interface presentation. Even a seasoned software engineer
feels it difficult to program a graphical presentation such as Lifelines.
Consequently, user interface designers cannot implement functional
graphical presentations, and cannot determine if the presentation in
the software product is useful and usable. Nor do software engineers
tend to utilize graphical presentations in software products.

1.2 Why a user interface development tool is important

10

1.2 Why a user interface development tool is important

User interface designers design user interfaces, but do not implement
them. They have good knowledge about user interface design and
know the principles for ensuring usability. However, user interface
designers have limited knowledge of programming. As a result, they
cannot use development tools that require intensive programming.

Nowadays, there are many tools that can be used for drawing screens
(low-fidelity prototyping) such as Adobe Photoshop, Microsoft
Expression Blend, etc. However, those screens are non- functional.
Programmers have to program to make the screens "alive" so that the
screens can respond to user interactions, show real data from the
database, and so forth. Microsoft Expression Blend is one of the
state-of-the-art tools. It facilitates a user interface designer to draw
aesthetic screens like in Adobe Photoshop. To some extent it also
makes the programmers' work easy, because programmers can reuse
the user interface specification code that has been drawn by the
designers. Based on the designer's work, the programmers integrate
programming code such as C# to make the screen functional. In short,
Expression Blend supports the division of work: user interface
designers design a non-functional user interface, and programmers
program functions later.

However, in the author's opinion, this division of work sounds nice
for user interface development, but performs awfully for ensuring
usability. The fact that designers cannot implement functional user
interfaces for early usability testing is an obstacle to improving
usability. With the current tool, functions for real data and
interactions are overlooked in usability testing. For instance,
designers might usability test non-functional screens, and thus cannot
test interaction details. More severely, usability tests might not be
carried out until the end of programming. At that time, it is too
difficult to fix critical usability problems.

1.2 Why a user interface development tool is important

11

Figure 1–Many properties are not easy to use for non-programmers.

1.2 Why a user interface development tool is important

12

The feasible way of ensuring usability is that, before programming
the system, user interface designers design the screens with most of
the functionality, and also usability test and improve them iteratively
[Lauesen 2005]. With state-of-the-art tools, can user interface
designers do it? We will take Microsoft Expression Blend as an
example to show.

Expression Blend is a user interface development tool on Windows
Presentation Foundation (WPF) and Silverlight. Designers use the
drawing tools to draw user interfaces on the Design Panel. The way of
drawing the screen is similar to many other professional
picture-drawing tools such as Photoshop. But unlike those drawing
tools, Expression Blend generates code behind the scene rather than a
picture. During the design, the designers switch among various
panels to configure appearance and position of the user interface.

Designers configure appearance and position in the graphical
components' properties. Some properties are intuitive to set such as

BackColor. Some require in-depth knowledge about WPF or

Silverlight. For example, to show data on the user interfaces, the

designer should find out the suitable control for the DataContext

property. Before setting a DataContext, the designer has to prepare

data in the Data Panel. These are the steps where a non-programmer
is hindered. Figure 1 shows the Data Panel. There are many objects
that can be used. However, can a non-programmer figure out which
objects to use and how to use? The difficulties do not stem from
configuring them with Expression Blend but from the concepts

themselves e.g. what DataContext is, which control's DataContext

to set, and how to set, etc. Note that DataContext is merely an

example, and there are many other properties and concepts that the
designer should be familiar with.

1.2 Why a user interface development tool is important

13

Figure 2–Programming is unavoidable.

1.2 Why a user interface development tool is important

14

Even with this state-of-the-art tool, programming is unavoidable for
implementing a functional user interface. For example, in Figure 2 we
show that the designer specifies the name of the Click event handler
for the button. Behind the scene, Expression Blend generates code for
the user interface specification. The user interface specification is an
Extensible Application Markup Language (XAML) file. Frequently,
the designer has to switch between the graphical design on the
Design Panel and the XAML user interface specification. Even worse,
where is the content of that event handler? Expression Blend
generates the code in another C# programming file. We show the C#
code in Figure 3. The designer should grasp solid programming
knowledge to understand the event handler and change it.

In conclusion, there are large cognitive gaps between graphical
appearance on the Design Panel, user interface specification (XAML)
and functional code (e.g.: C#, VisualBasic.NET, C++, etc.). The
designer has to switch among various panels and gain substantial
knowledge to develop a functional user interface. Few designers are
able to use those tools.

We should free user interface designers from the programming
bondage, and help them devote more efforts to user interface design
rather than the programming details and tricks. Most important of all,
the user interface designers have insufficient programming
knowledge to use those complex tools.

1.2 Why a user interface development tool is important

15

Figure 3–Another generated C# file for the content of the event handler

1.3 Solution

16

1.3 Solution

We propose a formula-based approach to develop user interfaces and
visualizations. We also implemented VisTool – a user interface and
visualization development system – to test if the formula-based
approach can be used for user interface development without
introducing extra programming. VisTool has two groups of users.

(1) User interface designers working in the application domain such
as hospitals, insurance companies, etc. can use VisTool to design and
implement user interfaces for the domain users' daily work.
Designers have great knowledge about user interface design and
some knowledge about usability, but they have limited programming
experience. For example, they can write some spreadsheet formulas,
but they cannot write scripts for creating visualizations, and cannot
program classes for data transformation, database programming, etc.

(2) The end user, such as domain users, uses the VisTool application
to do their daily tasks. The VisTool application is developed by user
interface designers. Some of the domain users are also the test users,
when the designer designs the user interface and carries out usability
testing.

VisTool supports the classical usability approach: the user interface
designer first does rapid prototyping with real data and interaction.
Then the designer carries out usability testing with real users and
improves the user interface iteratively.

With VisTool the designer combines various visual objects e.g. label,
bar, spline, etc. to visualize database contents. The designer can
implement most of the functionality such as screen update, form
navigation, etc. Some advanced functions require programming.
Programmers implement those specialized functions, and the
designer integrates them into the VisTool application.

1.3 Solution

17

VisTool provides a high-level approach to user interface
development. Four improvements contribute to the high-level
approach.

 A system with an interface builder for constructing graphical
presentations such as 2D visualization.

 The elimination of low-level programming primitives while
retaining direct manipulation on user interface "pragmatics"

 Formula Language – a new approach to mapping relational data
onto user interface objects

 The avoidance of intermediate steps and data in the visualization
pipeline during the design process

18

Chapter 2 Background

Usability professionals propose several approaches to ensure
usability, such as user-centered design [Baecker 1999], usage-centered
design [Constantine 1999], Usability Engineering life cycle [Nielsen
2002], participatory design [Schuler 1993][Ellis 2000], etc. However,
there is still an abundance of software with poor usability, although
the software products meet functional requirements [Göransson
2004]. It is because software engineers who develop the software
product do not follow them.

2.1 What is usability and why is it important?

There are several usability definitions. A frequently referenced one is
ISO 9241-11 [ISO 1998] [Stewart 2000].

Usability: the extent to which a product can be used by specified

users to achieve specified goals with effectiveness, efficiency and

satisfaction in a specified context of use.

Usability professionals define usability as factors including
learnability, efficiency, memorability, satisfaction, and
understandability [Lauesen 2005][Nielsen, 1993][Ferre 2001].

Learnability: How easy is the system to learn for various groups

of users?

Efficiency: How efficient is it for the frequent user?

Memorability: How easy is it to remember for the occasional

user?

Satisfaction: How satisfied is the user with the system?

Understandability: How easy is it to understand what the system

does?

Errors: How many errors do users make, how severe are these

errors, and how easily can they recover from the error?

2.1 What is usability and why is it important?

19

Figure 4–An example of good usability in formatting paragraphs

Software Engineering defines usability as a quality of a system. In the
Software Engineering standard ISO/IEC FDIS 9126-1, usability is
defined in this way.

Usability: the capability of the software product to be understood,

learned, used and attractive to the user, when used under

specified conditions.

Usability is important to users. A user grapples with software that is
hard to learn. For example, Microsoft Word shows poor learnability
in formatting paragraphs. Can an inexperienced user figure out
where to set the paragraph indentation, hanging, and the spacing
between paragraphs? It is not so easy. The user has to ask an expert
for help, or may give up and try another word processor, or has to
learn how to use it by scrutinizing how-to documents.

Software that rates low in efficiency is cumbersome to use. For
instance, it is cumbersome to set a paragraph format using Microsoft
Word. The user has to open the paragraph option dialog and change
the settings. If the user is not satisfied with the change, he has to
repeat the same steps, which degrades task efficiency. The
cumbersome steps of setting paragraph formats are also difficult to
remember. Figure 4 shows a screenshot of another word processor as
an example of good usability. A user can intuitively figure out how to
do formatting. This design improves task efficiency in formatting
paragraphs and it is easy to learn for an occasional user.

Usability is important to business. It pays in many ways such as

2.1 What is usability and why is it important?

20

reducing training costs [Lund 1997][Nielsen 1993][Mayhew 1994],
enhancing customer adherence, increasing the product market share
and sales [Boehm 1994][Mayhew 1994]. Software that is easy to learn
reduces training costs for employers [Constantine 1999][Mayhew
1994]. For example, usability improvement spared AT&T $2.5 million
that were used for training employees [Mayhew 1994][Donahue
2001]. A highly usable website is a necessity for e-business to survive
[Nielsen 2008][Chi 2002]. A customer will stay long on a website that
guides him to find the intended products, and the immediate benefits
are increased sales. In the mobile market, Orlowski argues that Apple
iPhone surpasses Nokia Symbian because the iPhone operating
system has much better usability [Orlowski 2011].

However, software engineers do not develop software in a way that
ensures usability. The next sections explain what usability specialists
suggest and why software engineers do not follow them.Roles in
software development

We define three typical roles involved in user interface development:
usability specialists, user interface designers and software engineers.
Figure 5 shows those roles. A user interface designer overlaps a few
tasks that the other two roles do. Usability specialists, user interface
designers and software engineers work together to produce software
that serves the user's needs.

Figure 5–Roles in developing user interface

2.1 What is usability and why is it important?

21

Usability specialists are excellent at analyzing users, doing field
studies, and carrying out usability activities such as usability testing
[Barnum 2001] and heuristic evaluation [Nielsen 1990]. Usually,
usability specialists do not design user interfaces and cannot program
software either. Some usability specialists may have knowledge of
programming and user interface design, but user interface
development is not their job.

User interface designers are good at designing user interface. They
are aware of graphical design and interaction design techniques, and
often know usability. For instance, they are aware of usability testing
and user interface design guidelines for improving usability. User
interface designers have limited programming background. For
instance, they are able to write HTML and program a few java scripts,
but they rarely program system functions such as committing a
payment transaction, sending an email, etc.

Software engineers develop programs, but know little about usability.
They focus on software design, programming, and software testing
e.g.: unit testing, functional testing, etc.

2.2 What usability specialists suggest – a classical
approach

Usability specialists suggest a classical approach to ensure usability
[Lauesen 2005]. As shown in Figure 6, the classical usability approach

Figure 6–a classical approach to ensure usability

2.2 What usability specialists suggest – a classical approach

22

consists of analysis, user interface design, usability testing, and
programming. The essential idea is that the user interface is designed
and usability tested before programming and testing.

Next, we will see what user interface designers do in each step.

In the analysis phase, usability specialists analyze users and learn
user tasks. Usability specialists propose many ways to do it such as
Hierarchical Task Analysis [Hollnagel 2003], essential use case
[Constantine 1999], etc.

In the user interface design phase, usability specialists suggest that
user interface designers should build user interface prototypes
[Nielsen 1993][Preece 2002][Lauesen 2005]. The prototype should be
developed for a full system rather than only a part of the system.
Researchers working in both Usability Engineering and Software
Engineering propose systematic ways such as the Virtual Window
technique [Lauesen 2005] and the usage-centered design approach
[Constantine 1999] to design user interfaces for a full system that can
sufficiently support the user’s tasks with high usability.

Usability specialists suggest that usability testing should be done after
each user interface prototype is made [Lauesen 2005]. Based on the
test results, user interface designers or usability specialists revise the
user interface prototype to remove usability problems. User interface
designers should work in several rounds of the
designing-testing-redesigning cycle to find and fix usability problems.
This process is known as iterative design [Gould 1985].

After the user interface is usability tested and several revisions are
made, software engineers program the user interface.

In the classical usability approach, usability testing plays a crucial role
to ensure usability. Usability testing is an effective technique to reveal
usability problems. It does not require a finished software product
and it can be carried out at any phase of the development. Before the
usability test, usability specialists plan the tasks to be tested and select
test users. Ideally, these tasks have been specified in the analysis

2.2 What usability specialists suggest – a classical approach

23

phase, and should be related to the test users’ background. During
the test, usability specialists collect feedback from the test users and
record usability problems. If the user interface prototype is
non-functional, a human facilitator simulates the computer response.
The facilitator knows the system thoroughly. On the way of usability
testing, he must not guide the user to use the system, because any
hint may hide usability problems. After the test, usability specialists
analyze test results and may suggest solutions.

2.3 What are appropriate prototypes?

In the classical usability approach, prototypes are the artifacts
produced and tested. "A prototype is a tangible artifact, not an
abstract description that requires interpretation"[Beaudouin-Lafon
2003]. Usability specialists have various ways of classifying
prototypes. For instance, Nielsen categorizes prototypes into
horizontal and vertical prototypes [Nielsen 1993]. A horizontal
prototype covers a wide range of features, but those features can be
simulated. A vertical prototype realizes only a few features, but those
features are functional and realistic. Some features in a high-fidelity
prototype will be reused in the final product. Beaudouin-Lafon
categorizes prototypes into off-line and on-line prototypes
[Beaudouin-Lafon 2003]. Off-line prototypes are paper prototypes,
and on-line prototypes are functional prototypes. Usability specialists
also use fidelity to categorize prototypes [Nielsen 1993][Preece 2002].
Fidelity means "the degree to which the prototype accurately
represents the appearance and interaction of the product"[Rudd
1996].

In this thesis, we will discuss prototypes with different fidelities.
Generally, functions in a low-fidelity prototype are simulated.
Hand-drawn sketches are an example of the prototype with the
lowest fidelity. Low-fidelity prototypes are fast to make and cheap to
throw away. They are non-functional. While a high-fidelity prototype
is functional and can be close to the final system, but it is quite
expensive to develop. The effort for developing a high-fidelity
prototype can be as costly as the final product [Rudd 1996]. The final

2.3 What are appropriate prototypes?

24

software product has the highest fidelity. Between low-fidelity and
high-fidelity, there are prototypes in various degrees of fidelity. A
clickable user interface can be in the medium-fidelity. They can be
produced with presentation tools such as PowerPoint. Designers use
them to show the flow of screens.

Usability specialists suggest low-fidelity prototypes in the analysis
phase [Rudd 1996][Beaudouin-Lafon 2003][Lauesen 2005][Nielsen
1993]. In this phase, usability specialists and designers use prototypes
to elicit requirements and explore design directions [Rudd 1996]. A
case study shows that, in the analysis phase, low-fidelity prototypes
facilitate better communication with the user than high-fidelity
prototypes [Bryan-Kinns 2002].

Many usability researchers suggest that the first user interface design
should be low-fidelity prototypes [Nielsen 1993][Lauesen 2005][Rudd
1996]. A designer may compare several prototypes for the same task
side by side. Or they may demonstrate the prototypes to users to
obtain their feedback. For example, they may see if the screens meet
the user's needs. Usually radical changes will be made. So prototypes
should be produced in an easy and fast way. Low-fidelity prototypes
are suitable for those purposes.

Usability specialists have much debate on the prototype fidelity for
the iterative design (i.e. the design-test-redesign cycle). Some
specialists suggest that high-fidelity prototypes should be used to
discover problems, because low-fidelity prototypes miss many details
such as interactions, error checking, etc. [Rudd
1996][Beaudouin-Lafon 2003]. Some claim that low-fidelity prototypes
should be sufficient to test the system [Constantine
1999][Sommerville 2006].

2.3 What are appropriate prototypes?

25

Usability specialists agree that usability testing should reveal
usability problems with interactions. However, a low-fidelity
prototype cannot show interaction details. When usability specialists
carry out usability tests with low-fidelity prototypes, a facilitator
simulates the computer's responses. Some interactions are so
sophisticated that a facilitator is unable to simulate. As a consequence,
usability problems with interactions may not be revealed in usability
tests. Therefore, a high-fidelity prototype should be used when such
interactions are needed [Beaudouin-Lafon 2003].

High-fidelity prototypes are useful for checking if particular usability
problems can be removed [Lauesen 2005]. Usually, high-fidelity
prototypes are developed in the later iterations. Usability specialists

The development

progress

Prototype

Fidelity
Examples

Analysis Low-fidelity Sketches

Design (the 1
st

round)

Low-fidelity

or

medium-fidelity

(1) Hand-drawn screens

(2) Photoshop-drawn screens

(3) Clickable mock-ups

produced with PowerPoint,

HTML, etc.

Iterative design High-fidelity
Prototypes created by Adobe

Flash

Entering the

programming

phase

High-fidelity
Prototypes created by

Microsoft Visual Basic

Figure 7–An overview of the suggested prototypes in the classical approach

2.3 What are appropriate prototypes?

26

suggest that designers should develop incomplete functions for
testing, since it is cheaper and faster to program a function just
enough for testing than the full-featured function in the final software
product.

When the development is entering the programming phase, user
interface prototypes are handed over to software engineers. Usability
specialists suggest that high-fidelity prototypes should be used at this
time. Software engineers will program the user interface based on
those high-fidelity prototypes. Why high-fidelity prototypes? It is
because with low-fidelity prototypes software engineers have to
personally decide how to implement interaction details [Rudd 1996].
If these decisions are not usability tested, usability cannot be ensured.

In summary, prototypes in only one level of fidelity are not good
enough in the classical usability approach. "HCI literatures report that
low fidelity prototypes are generally more appropriate in the early
stages of design, and that high-fidelity prototypes are more
appropriate in the later stage of design" [Carter 2010][Precce
2011][Rudd 1996]. Figure 7 shows an overview of suggested
prototypes for each phase. The prototypes are initially low-fidelity.
When the user interface development progresses, high-fidelity
prototypes become more and more desirable.

2.4 Difficulties with prototyping

Although usability specialists suggest the classical usability approach
and the appropriate prototypes in the approach, they do not suggest
tools to follow it. There are some difficulties with prototyping.

First, it is time-consuming to develop data presentations with both
low-fidelity and high-fidelity prototypes. Some applications are data
presentations such as Gantt charts for scheduling project activities, a
screen showing room status for hotel reservation application, and a
word processor for showing formatted texts in hundreds of pages.
These kinds of user interfaces usually involve a significant amount of
data.

2.4 Difficulties with prototyping

27

Nowadays graphical editing tools such as Adobe Photoshop are still
the most preferred tools for low-fidelity prototyping [Carter 2010].
With those tools, it is error-prone and time-consuming for a designer
to draw data presentations. For instance, to draw a Gantt chart, a user
interface designer has to convert an activity date into the position on
the mock-up, and to convert the activity duration to the activity box's
width on the screen, and so forth. Because data may be numerous, it
is overwhelming to draw a graphical presentation.

It is much more time-consuming to develop data presentations with
high-fidelity prototypes than low-fidelity ones. For example, a case
study shows that a low-fidelity mockup takes 15-30 minutes to draw,
while a high-fidelity prototype takes 8 hours per screen [Lauesen
2005]. If the designer overdevelops the functions required in usability
tests, for instance, by making the functions more maintainable for
future tests, it takes more time.

Second, programming is required to develop high-fidelity prototypes.
Designers should gain solid programming skills to implement
high-fidelity prototypes. Most designers rarely program
sophisticated prototypes themselves [Myers 2008]. They have to ask
for help from software engineers. In particular, designers report that
it is much more difficult to prototype interactions than user interface
appearance [Myers 2008].

Furthermore, some high-fidelity prototypes cannot be developed
before the programming phase, because required system functions
are unavailable. A system function will be programmed later by
software engineers. For instance, the system function for calculating
the critical path is not implemented yet when a user interface
designer is designing the Gantt chart user interface.

Third, programming is required to show real data. Realistic data
presentation requires real data. It is important to fill realistic data on
prototypes for testing.

Researchers show that using real data in usability tests reveals
usability problems much earlier than using artificial data. It is because

2.4 Difficulties with prototyping

28

users may encounter some real but extreme data [Genov 2009]. For
example, a company name with 35 characters is extreme, but it
happens in reality. Artificial data may not cover those extreme cases.
Another reason is that the participants in the usability tests feel
burdened by remembering fictional scenarios such as typing faked
credit card numbers, etc, but they feel much comfortable with real
data [Genov 2009].

Real data is necessary for testing whether the prototypical data
presentation is suitable for the domain. For instance, with a hotel
application, users need to see the relationship between room price
fluctuation and room occupancy. Without real data, designers are
unable to see if the prototype shows it in a usable way. Data can be
presented in different ways. Should the designers present data in text
forms, or curves, or bar charts, or other means? Designers should
show real data on the prototype and conduct usability tests to decide
the suitable presentation.

However, programming is required to show real data, and it is
unrealistic for a designer to imagine all real data, especially some
extreme data. Consequently, the user interface designer usually
shows imaginary data on prototypes.

Last, prototypes with different fidelities are developed with different
tools [Carter 2010]. Designers can produce low-fidelity prototypes
with paper and pencils. More formally, graphical editing tools such as
Adobe Photoshop are used to produce low-fidelity prototypes with
realistic appearance [Carter 2010]. Designers use presentation
software such as Microsoft PowerPoint to develop medium-fidelity
prototypes [Carter 2010]. Medium-fidelity prototypes are clickable to
show the flow of screens. High-fidelity prototypes are functional.
Designers have to program to develop high-fidelity prototypes
[Carter 2010][Myers 2008]. The most preferred programming
environment for prototyping is Adobe Flash and Microsoft
Expression Blend [Carter 2010].

Those difficulties are also barriers for software engineers to follow the
classical usability approach. We will explain how software engineers

2.4 Difficulties with prototyping

29

develop software and why they do not follow the approach in
practice.

2.5 Problems with ensuring usability in the waterfall
model

In this section, we will explain why software engineer working in the
waterfall model cannot follow the classical usability approach. The
waterfall model is a widely used software development process
[Sommerville 2006]. Figure 8 shows that the model consists of several
phases including analysis, design, programming, integration, testing
and operation. In the waterfall model, the development process does
not enter into the next phase until the current phase is completed. We
will explain how software engineers deal with usability and the
problems in design, programming, and testing.

In the system design phase, software engineers may not carry out
usability tests. In this phase, software engineers design the system in
terms of functions and data rather than the user interface. For
instance, they decompose a system solution into the functions and
objects that will be implemented rather than the user interface
components, because many functions do not need user interfaces.
Software engineers tend to think that it is unrealistic to design the
user interface if functions are not implemented yet [Bä umer 1996].
Thus, user interfaces for a full system are either designed in parallel
with other system development [Sommerville 2006], or is delayed to

Figure 8–the waterfall model

2.5 Problems with ensuring usability in the waterfall model

30

the end of development. Some software engineers may argue that
prototypes are produced in this phase. However, those Software
Engineering prototypes are low-fidelity. They show only a few
screens of the system rather than the full system. The purpose of
producing those prototypes is to elicit user requirements [Bygstad
2008] and to explore design directions, rather than making user
interfaces. Moreover, software engineers might be unaware that
prototypes should also be usability tested in this phase. It is widely
known that prototypes are used to collect requirements and solicit
user feedbacks in the early development phases, but few software
engineers know that prototypes can reveal many usability problems
with usability testing.

The object-oriented programming approach may inhibit an early user
interface design, because objects are obstructs between data and its
presentation. In object-oriented programming, software engineers do
not directly access data from the database. Instead, they access data
from objects, because the database contents are encapsulated in
objects. In the system design phase, software engineers do not have a
complete class design. It is usually enriched and designed in the
programming phase. Due to this encapsulation, it is not
straightforward to see the data and data relationships, because some
objects can be directly mapped to the underlying data such as data
from a database. User interface design in an object-oriented
background is to explore the ways of mapping objects on the user
interface. There are some design patterns for data presentation. For
example, single-axis scatterplots and bar charts are common
techniques to visualize linear data. If data is in a networked structure,
graphs such as concept maps and mind maps are possible ways. If
data is hierarchical e.g. File System, a tree view is a common
presentation. With an incomplete class design, it is difficult to map
data on the user interface. Furthermore, intermediate objects further
obscures mapping between data and user interface. For instance,
some objects transform raw data into intermediate structures. Those
intermediate data deviates from the original structure and format.
The designer must decide which data he should map, the original or

2.5 Problems with ensuring usability in the waterfall model

31

the intermediate one. As a result, software engineers may not design
user interface early in the object-oriented approach.

As a result, software engineers may not design user interface early,
and usability testing is ignored in the design phase.

During the phases of programming, software engineers may not
conduct usability testing, due to prototyping difficulties that
programming is required for interaction and real data. In this phase,
software engineers program user interfaces based on designers'
deliverables. Designers report that current tools are
programming-intensive to use [Myers 2008]. Nowadays, the most
preferred deliverables for user interface design are still low-fidelity
prototypes with length documents [Myers 2008][Carter 2010]. Usually
low-fidelity prototypes describe user interface screens. Those screens
are static, and thus cannot respond to user's interactions. Designers
write documents to explain how software behaves when the user
manipulates the screens [Myers 2008]. Those deliverables cannot be
used for testing interactions. The situation is that many interactions
are not prototyped until the end of programming [Myers 2008].

As a result, software engineers cannot prototype user interface with
real data and interactions, and usability testing is ignored in the
programming phase.

During the phases of testing, usability testing may be ignored either.
Software engineers carry out various tests, such as unit testing and
release testing, to ensure that functions work properly and few bugs
exist, but these tests can seldom reveal usability problems.

At the end of development, software engineers rarely consider
usability testing. If someone asks usability specialists to perform
usability tests in this phase, the result is that plenty of usability
problems are found [Lauesen 2005]. Few people know how to fix
these usability problems, except some problems that can be fixed by
changing texts, restructuring screens, etc. [Lauesen 2005]. Software
engineers would have to redesign the software product to correct

2.5 Problems with ensuring usability in the waterfall model

32

some of the critical usability problems. It is too costly to correct
usability problems at this point of time, and time is running out.

In summary, the classical usability approach is not followed in the
waterfall model. Software engineers may delay user interface design
until the other work is finished. For example, in the object-oriented
programming, the user interface design cannot be started until the
class design is finished. Moreover, it requires programming to
prototype user interface with real data and interaction. As a result,
usability testing is carried out just before the software product
delivery. The result is poor software usability.

2.6 Difficulties with ensuring usability in agile methods

In this section, we will explain why software engineer working in
agile methods cannot follow the classical usability approach. Agile is
an umbrella term. There are many variants of agile methods. Some
say that requirements, design and programming are concurrent in
agile methods [Sommerville 2006]. Some say that the requirements
phase may be missing and the others are carried out in sequence
[Blomkvist 2005]. But all agile methods share some core principles
such as incremental development, customer involvement for testing,
etc.

Incremental development produces a serious of software releases
before the entire system delivery [Sommerville 2006]. Each release has
full functionality and may be put into use, but a release is only a
subset of the final system. Users test the release and give feedback for
the future releases. A later release is built on previous ones. The last
release covers all features and functions. Software engineers may
follow the waterfall model to develop each small release [Lauesen
2005].

Many researchers investigated how to improve software usability in
the agile field. They agree on many development principles such as
incremental development. However, they have much debate on
whether prototypes should be built. Some researchers suggest that, in
agile methods, iterative user interface design should be done before

2.6 Difficulties with ensuring usability in agile methods

33

any programming [Ferreira 2007], which is the same as the classical
usability approach from Usability Engineering. Other researchers
suggest that the agile team produces working software with minimal
functionality, and do not produce prototypes [Ferreira 2007]. Then the
team tests the working software with the users to gather feedback.
Problems will be corrected in the next iteration. Researchers explain
that it is to avoid "Big Design Up Front, suggesting that the more the
design is determined up front, the more difficult it is to change later
on" [Ferreira 2007].

The cause of the debate on whether to build prototypes is that
traditional prototyping techniques are not suited to the agile methods.
There are two reasons.

First, prototypes are not intended for deployment, but agile methods
deploy software products very early. Most agile methods such as
Scrum, eXtreme Programming (XP), etc. reuse previous software
releases in the incremental development. However, in the classical
approaches, user interface prototypes rarely evolve into the final user
interface [Sommerville 2006][Constantine 1999][Lauesen 2005]. Some
sensible parts of the prototypes should be reusable, but are not reused
in practice. Prototypes are usually thrown away or reprogrammed.
For instance, with a data presentation, engineers should reuse the
functionality for representing data. But prototypes do not connect to a
database for real data. Instead, designers draw some artificial data on
the prototypes. Consequently, prototypes are not reused in the actual
software.

The waste of prototypes results from a prototyping difficulty –
different tools for developing prototypes in different fidelities. For
low-fidelity prototypes, programmers transform the prototypes, such
as paper prototypes, into code. For high-fidelity prototypes,
programmers usually reprogram the functions to make the software
stable, secure, maintainable, etc. Or prototypes are developed in a
different platform, and it is difficult to implement the same
appearance and interaction. For example, high-fidelity prototypes are
usually developed in Adobe Flash [Carter 2010]. In Adobe Flash, it is
very easy to realize a shape transformation from a rectangle to a

2.6 Difficulties with ensuring usability in agile methods

34

circle. However, such shape transformations are quite difficult to
implement in .NET Windows Forms. Usually much code in
high-fidelity prototypes is wasted.

As a result, software engineers start user interface development from
scratch, or they redo parts of the work that designers have done
[Chatty 2004].

Second, in agile methods, a working software product is developed in
short iterations. For example, in Scrum, an iteration lasts 30 days. In
UP, an iteration lasts 2-6 weeks. In XP, it takes one week. It means
that, for example in XP, a working software release should be
produced in one week. So in agile methods, prototypes should be
produced rapidly so that usability tests can be carried out early, but,
as we discussed in the prior section, it is time-consuming to prototype
data presentations with both high- and low-fidelity prototypes.

Due to those two difficulties, the traditional prototyping techniques
turn out to be insufficient in the agile approach.

Apart from the insufficient prototyping techniques, usability testing is
missing in agile methods. Researchers point out that software
engineers working in the agile methods should be easier to do
usability testing than in the traditional waterfall model. "The
completion of iterations and releases were seen as valuable
opportunities to test the usability of the real working software"
[Ferreira 2007]. Unfortunately, typical agile tests are not usability
tests, because expert users participate in agile tests. Expert tests are
not typical users [Bygstad 2008]. The purpose of typical agile tests is
to find problems with functionality such as finding bugs, acceptance
testing for features, etc. Expert users are good candidates for typical
agile tests. However, expert users should not participate in usability
tests. "Testing with real users is the most fundamental usability
method and is in some sense irreplaceable, since it provides direct
information about how people use computers and what their exact
problems are with the concrete interface being tested"[Nielsen 1993].
Why cannot an expert replace a real user? It is because an expert user
is aware of what functions the system provides and how to use them.

2.6 Difficulties with ensuring usability in agile methods

35

A real user does not know that. If a system is intended for novice
users, usability testing with expert users will miss some usability
problems because of their familiarity with the system. Some expert
users may participate in the system development and they know
what the system is doing. As a result, when testing the system, an
expert user may not observe the problems that a real user encounters.
For example, payment processing in an e-commerce website usually
takes longer time than ordinary operations. If the system gives no
response for some time and does not give any hints about the
payment processing status, a real user may mistakenly click the pay
button several times, which results in duplicate billings. An expert
user may not observe that usability problem, since the expert user
knows that it is a long operation. For instance, the system may
communicate with the server on another continent, back up the
transaction, etc.

In summary, in agile methods software is deployed and produced
rapidly. Traditional prototypes are not intended for deployment and
may not be created fast enough in the agile background. Apart from
those, expert users' involvement in the tests cannot reveal usability
problems with typical users. Therefore, software with good
functionality can be still unusable to use [Lee 2007].

2.7 Graphical presentation – a problem amplifier

2.7 Graphical presentation – a problem amplifier

36

Graphical presentations are a problem amplifier. In this section, we
explain the difficulties with following the classical usability approach
for developing graphical presentations. Simple user interfaces are
tables and forms with texts. For example,

Figure 9 shows screenshots from commercial systems. One shows lab
results in text-based presentations. The other shows medication
records as a simple user interface by means of a table with texts.

Graphical presentations show data by means of color, size, shape, etc.
Figure 10 shows medicine prescription records with a graphical
presentation. The medicine overview utilizes a timescale metaphor
and resembles the famous LifeLines [Plaisant 1996]. There are white

Figure 9–An example of simple UIs

2.7 Graphical presentation – a problem amplifier

37

Figure 10–An example of advanced visualizations developed in VisTool

boxes below the timescale. Each box corresponds to a medicine
prescription. To show which medicine a box represents, the form
aligns the box to its respective medicine name. The left position of a
medicine box is aligned to the starting date according to the timescale.
The width of a medicine box indicates the length of the prescription.

Graphical presentations help the user derive information from data.
Data alone is not information and lacks meaning [Green 1996][Mazza
2009]. "Data must be presented in a usable form before it becomes
information, and the choice of representation affects usability"[Green
1996]. Graphical presentations are a good choice to present data, as it

2.7 Graphical presentation – a problem amplifier

38

can boost the cognitive process of developing mental models of data
[Card 2005]. Cognitive psychology uses the term mental model to
describe how we build knowledge [Mazza 2009]. In a broad sense the
term mental model is something in our mind about the external world
[Lauesen 2005]. Research shows that visual properties such as color,
shape, etc. help us build a mental model of data, and we expand the
mental model and then produce the information [Spence 2000].
Research also confirms the graphical presentations' effectiveness in
boosting cognitive processes. An empirical study shows that
diagrams are more expressive than textual descriptions [Larkin
1987][Mazza 2009]. As an example, previous research shows that the
Lifelines has many advantages over the text-form presentation such
as "Reduce the chances of missing information", "Facilitate the
spotting of anomalies and trends", "Streamline the access to details",
etc [Plaisant 1996]. In this sense, graphical presentations can be an
effective means of improving a user’s task efficiency. Note that task
efficiency is a usability factor.

Furthermore, a graphical presentation can better present an overview
than textual descriptions. Psychologists find that some activities
require our full attention [Lauesen 2005][Baumeister 2010], which
means that when we are doing them, we cannot do other things that
also require full attention. For instance, reading texts and talking are
activities that require our full attention. We cannot read texts and talk
at the same time. Nygren observed activities that “we can do while
doing something else” [Lauesen 2005]. Nygren defined them as
automatic activities. For instance, walking is an automatic activity,
because we do not consciously control the movements of our legs and
feet [Baumeister 2010]. Reading a graphical presentation is an
automatic activity, since our retina is quite sensitive to visual
properties e.g. shapes, color, etc. [Mazza 2009]. We can see a graphical
presentation at a glance.

Graphical presentations take many forms. The simplest form is
traditional business graphics such as pie charts, line graphs, radar
views, etc. They can be easily created by means of spreadsheet
applications, business report systems such as CrystalReport, etc. More

2.7 Graphical presentation – a problem amplifier

39

sophisticated graphical presentations are within the Information
Visualization field. Researchers in the field invent many techniques to
visualize data. The techniques improve a user's task efficiency of
exploring and analyzing data [Ahlberg 1994][Shneiderman 1994]. For
example, the dynamic querying technique allows a user to adjust "a
query (with sliders, buttons, and other filers) while continuously
viewing the changing results" [Ahlberg 1994]. Research proves that it
improves a user's performance significantly and results in a high level
of user's satisfaction when a user is exploring database contents
[Ahlberg 1994][Shneiderman 1994].

However, after introducing graphical presentations into the design,
the difficulties with following the classical usability approach become
more severe and acute. The root cause is that it is costly to prototype
and program graphical presentations.

First, it is hard to implement graphical presentations. Unlike
traditional user interfaces, a graphical presentation can be highly
interactive. For instance, in the medicine overview example (Figure
10), a user can drag on the timescale to expand and shrink the period
on the timescale. When the user is dragging, medicine boxes are
realigned and the sizes of the boxes are changed by means of the
timescale. When the user prefers a narrow span of period (e.g. one
week), medicine boxes scatter sparsely on the screen. When the user
prefers a wide span of period (e.g. one year), many boxes can clutter
the screen. This dragging interaction enables the user to see the
changing density of the medicine boxes on the available screen. The
user will be able to stop dragging when he feels satisfied with the
density. This kind of interactions is non-trivial and requires
substantial efforts to implement.

Second, it is more programming intensive to develop a high-fidelity
prototype with a graphical presentation than a simple user interface.
Graphical presentation development usually requires solid
programming skills. Some development work is low-level graphical
programming such as drawing pixels for the presentation e.g.: arc,
shape, etc [Tissoires 2011]. Apart from those, it requires that the
developer should be aware of accessing data, processing data, data

2.7 Graphical presentation – a problem amplifier

40

structure, algorithm design, etc. to develop a realistic presentation for
data [Tissoires 2011]. Graphical presentations make this programming
requirement more demanding, because they make the code more
complex. If the prototype with graphical presentations will be
intended for deployment, programmers should apply suitable
programming patterns. Otherwise, the code will be unmanageable
[Beaudouin-Lafon 2003]. Such skilled programming is done by
seasoned software engineers.

Consequently, the difficulty with developing graphical presentations
may inhibit usability testing, because user interface designers are
incapable of developing a graphical presentation. Note that many
designers have limited programming knowledge [Tissoires 2011].
Some designers may be willing to program, but their role is to design
rather than implement it [Carter 2010]. Thus, designers cannot
determine if the preferred graphical presentation is useful and usable
for the specific domain and users. However, "visualizations are often
a critical presentation method for complex information systems.
There is a need, therefore, to study the usability of specific ways of
visually representing specific types of data for specific types of
users"[Redish 2007].

Some readers may argue that systems such as Microsoft Expression
Blend provides common graphical library to support some kinds of
graphical presentations. However, the designers cannot develop a
non-built-in presentation with such tools. After usability testing, the
designer cannot make radical changes on the presentations either.
Usually, software engineers program their own graphical library to
fulfill their needs, which is beyond a designer's ability.

2.8 Research goal

Researchers conclude that user interface development tools are
important to the success of developing usable user interfaces, because
development tools reduce the time of user interface development, and
hereby allow for more iterations for iterative design [Myers 2000].
Research confirms that in practice designers desire a tool that enables

2.9 Research goal

41

rapid prototyping and interaction [Carter 2010][Myers 2000][Myers
2008].

We outlined that there is a large gap between low-fidelity prototyping
tools and programming tools. Designers can use low-fidelity
prototyping tools, but cannot develop user interfaces with
interactions and real data. Programming tools used by software
engineers are powerful, but designers cannot use them. More
precisely, this is a gap between what a designer needs to do and what
a designer can do.

My research goal is to invent a tool to bridge this gap. The research
questions are

(1) Is it possible to develop user interfaces and
customized visualizations with spreadsheet-like
formulas?

(2) Is this formula-based approach accessible to user
interface designers?

42

Chapter 3 Previous research and tools

There is little research in development tools that allows for the
classical usability approach in Software Engineering. Many tools
[Kieras 1995][Brinck 2002][Arroyo 2006] proposed from usability
research are used for usability evaluation rather than user interface
development. There are many user interface development and
prototyping tools [Sa 2008][Signer 2007][Klemmer 2000][Bostock
2009] invented from research and industry. However, these tools are
generally programming-intensive or build non-functional prototypes.
It is quite difficult to integrate non-functional prototypes into the
software product. So we do not discuss those tools here.

In this chapter, we will review tools and development methods that
can be used to support the classical usability approach. Some tools are
programming-free, but they generate poor user interfaces. In general
we can categorize them into model-based and programming-based
approaches. Both of them provide means of reducing development
efforts.

3 Previous research and tools

43

Figure 11–Expression Blend user interface

3.1 State-of-the-art tools

44

3.1 State-of-the-art tools

Microsoft Expression Blend is the state-of-art tool based on the
scripting+component+interface builder approach. It is a user interface
development tool on Silverlight and Windows Presentation
Foundation (WPF). It is one of the mainstream user interface
development tools. Silverlight and WPF separate user interface
specifications from programming. The platform combines user
interface specification files (XAML) and functional code files (e.g. C#
files) to produce software. XAML is an extensible scripting language.

The user interface of Expression Blend is shown in Figure 11.
Expression Blend provides existing components e.g. Border,
BulletDecorator, Button, etc. and some drawing tools such as the
brush tool, the timeline panel, the color pallets, etc. In Expression
Blend, a designer drag-and-drops components to paint the screen,
and uses drawing tools to specify user interface properties such as
Color. Expression Blend generates user interface specification
(XAML) behind the scene. For instance, a designer can specify a
background in gradient colors by means of the Brush tool and the
color pallets. The designer can drag the user interface on the design
surface to change the component's size and position, and Expression
Blend modifies the XAML behind the scene.

Figure 12–An example of a simple UI

3.1 State-of-the-art tools

45

With the interpretive user interface specification language (i.e.
XAML) and the interface builder, a designer can see the resulting user
interface appearance when he is designing. Functional code (e.g. C#)
programs interactions. This separation of user interface specification
and functional code allows user interface designers and software
engineers to work independently. With Silverlight and WPF, user
interface designers focus on graphical design such as drawing
screens. It means that, in principle, user interface designers can ignore
interactions. Programming the interactions can be left to the software
engineers.

An interesting approach in Expression Blend is data templating for
presenting data. In Silverlight and WPF, data is objects. With
Expression Blend, the designer should know two concepts to build a
data presentation: data templates and data binding. A data template
"describes the visual structure of a data object" [Microsoft Data
Template]. Data binding binds data to the control properties.

We will show an example to explain data templates and data binding.
Figure 12 is the screen that we develop. It presents several objects
for medicine prescription. A row corresponds to a prescription
object. The code for the prescription class is shown in Figure 13.
Expression Blend does not generate this code. Usually software
engineers design this kind of classes for data in software design
phase.

3.1 State-of-the-art tools

46

The essential step is to create a data template. With Expression Blend,
a designer can define a data template to combine various controls to
present an object. The author does not find a way to draw a data
template automatically with Expression Blend, so he manually writes
the code for the data template. The template code is shown in Figure
14. The result screen for that data template is Figure 12. This template
specifies a grid to present a prescription object. The grid holds
columns for showing medicine IDs, the starting dates and the
prescription lengths. The first column holds a label control to show
the medicine ID. The second column holds a date time picker to show
the prescription length. The third column holds a label to show the
starting date. Note that a data template does not contain functional
code. For example, it does not include the functions such as accessing
data, transforming data, etc.

Data binding is used to present object properties by means of user

interfaces. The code in line 1 Content="{Binding medID}" binds medID of

the class Prescription (Figure 13) to the Content property of the label.

So the label shows Prescription medID. Similarly, line 2 binds length

to the Slider's Value, and line 3 binds startTime to the DatePicker's

SelectedDate. However, if the designer needs more complex data

binding such as binding to an arithmetic expression, he has to
program.

To show multiple objects, the designer has to use a control that
creates multiple instances and attaches the data template to that
control. With WPF and Silverlight, only a few controls support the

 public class Prescription {
 public string medID;// medicine ID
 public int length;
 public DateTime startTime;
 }

Figure 13. An example of the class for data

3.1 State-of-the-art tools

47

multiple-instance feature. To implement the screen shown in Figure
12, we used an item control. An item control presents objects
vertically. The designer may program an ObjectDataProvider to
access data from the database, and sets the provider to the item
control. As a result, data templating shows several Prescription
objects.

Next, we discuss with Expression Blend what a designer can do in the
waterfall model and agile methods.

Expression Blend to some extent reduces programming cost by means
of code generation. However, the generated code is for static user
interfaces. For example, the user clicks a button, but the application
does not respond. To build an interactive user interface, someone e.g.
a programmer has to program.

 1 <Grid><Label Content="{Binding medID}" Grid.Row="0" Grid.Column="0"
/>
 2 <Slider Value="{Binding length}" Grid.Row="0" Grid.Column="1"
Width="126" SelectionEnd="0" SelectionStart="20" />
 3 <DatePicker SelectedDate="{Binding startTime}" Grid.Row="0"
Grid.Column="2"></DatePicker>
 4 <Separator Grid.Row="1" Grid.ColumnSpan="3" Height="15" />
 5 <Grid.ColumnDefinitions><ColumnDefinition /><ColumnDefinition />
<ColumnDefinition /></Grid.ColumnDefinitions>
 6 <Grid.RowDefinitions><RowDefinition /><RowDefinition />
</Grid.RowDefinitions>
 7 </Grid>

Figure 14 an example of data template

3.1 State-of-the-art tools

48

Data templating and data binding allows a designer to develop
several presentations for the same data. This approach may reduce
programming effort, if the designer reuses the same functional code
for accessing data, processing data, etc. For example, if we want to

show the startTime by means of Labels rather than the DatePickers

in Figure 12, we can simply change the data template and reuse the
code for the ObjectDataProvider. However, the separation of user
interface specification (XAML) and interaction code (C# code) still
requires programming.

Expression Blend does not generate code for basic interaction. A
designer has to program event handlers. For instance, Figure 15
shows stock data only in five days. The designer should program an
event handler for the interaction that shows the data in the next five
days. In the author's opinion, this is a cognitive barrier to designers.
Expression Blend usually generates another program file for event
handlers. Microsoft calls them code-behind files. Those event
handlers are programmed in general purpose languages such as C#,
Visual Basic .NET, etc.

Figure 15–A Scatterplot example developed in Expression Blend

3.1 State-of-the-art tools

49

Conclusion: Interactions cannot be built in the design phase of the
waterfall with Expression Blend. Interaction development still
requires programming. The separation of user interface specification
and functional code only allows the designer to build static user
interfaces.

A designer also programs to access real data, for example, data from a
database. Let us see an example. Figure 15 shows a Scatterplot for
showing stock data. A bubble represents a stock record. The size of a
bubble presents the stock volume. The time line shows the time. A
bubble's horizontal position represents the corresponding date
according to the time line. Vertically, bubbles are aligned to an axis
showing the prices. The data for that Scatterplot is artificial. In this
example data is hardcoded in the program as shown in Figure 16. It
shows only five StockData objects. Each object has properties date,

 public class StockDataCollection : Collection<StockData> {
 public StockDataCollection() {
 Add(new StockData { Date = new DateTime(2008, 8, 4), Price=25.25,
Volume=30 });
 Add(new StockData { Date = new DateTime(2008, 8, 5), Price=26.25,
Volume=70 });
 Add(new StockData { Date = new DateTime(2008, 8, 6), Price=27,
Volume=90 });
 Add(new StockData { Date = new DateTime(2008, 8, 7), Price=27.5,
Volume=20 });
 Add(new StockData { Date = new DateTime(2008, 8, 8), Price=28.25,
Volume=60 });
 }
 }

public class StockData{
public DateTime Date { get; set; }
public double Price { get; set; }
public int Volume { get; set; }
}

Figure 16–Programming code for the sample data

3.1 State-of-the-art tools

50

price, and volume. If the designer wants to show real data from the
database, more complex code is needed.

Some readers may argue that designers can create sample data by
importing an XML file. However, sample data is not real data, unless
it can reach the same size as the real data. In other words, sample data
approximates the real data but loses details.

With Expression Blend, programming is also required for processing
data such as filtering, sorting, etc. For example, suppose that the
designer has programed the application to retrieve data from the
database for the Scatterplot (Figure 15). Now the designer wants to
order bubbles according to the prices rather than in the chronological
way. In that case, the designer needs to program to order the data.

Conclusion: realistic data presentations cannot be built in the design
phase with Expression Blend, because programming is still needed.

As a result, designers cannot usability test interactions with
realistic data in the design phase. So with Expression Blend, the
classical usability approach cannot be ensured in the waterfall
model.

In the author's opinion, the cost of developing an interactive user
interface with Expression Blend is very high to a non-programmer.
There are large cognitive gaps between the screen, the user interface
specification, and the interaction code. The designer must grasp many
technical details to develop an interactive user interface.

Conclusion: Expression Blend does not support rapid-prototyping in
agile methods due to much programming needed. It is quite dubious
whether the prototypes are deployable, as interactions are not
implemented.

3.1 State-of-the-art tools

51

With Expression Blend a designer can develop simple user interfaces
as well as a few advanced graphical presentations. The platform
provides built-in controls for popular graphical presentations such as
pie charts, Scatterplot, etc. For example, to implement the Scatterplot
in Figure 15, a designer drags a Scatterplot control from the drawing
tools. Then he switches to the property panels to configure some
properties in the property panel to bind the data to the BubbleSeries'
properties. The generated XAML for that Scatterplot is shown in

Figure 17. For example, the code at line 6 in Figure 17 binds the Price

property to the bubble's horizontal position. The designer can either
configure the data binding in the property panel or write the XAML
code in the XAML view panel. Although the tool allows a designer to

 1 <chartingToolkit:Chart Title="Stock Performance"

Background="White">

 2 <!-- Stock price and volume -->

 3 <chartingToolkit:BubbleSeries

 4 Title="Stock"

 5 ItemsSource="{StaticResource

StockDataCollection}"

 6 IndependentValueBinding="{Binding Date}"

 7 DependentValueBinding="{Binding Price}"

 8 SizeValueBinding="{Binding Volume}"

 9 DataPointStyle="{StaticResource

CustomBubbleDataPointStyle}" Background="White" />

 10

 11 <chartingToolkit:Chart.Axes>

 12 <Axis for custom labels -->

 13 <chartingToolkit:DateTimeAxis Orientation="X"

/>

 14 </chartingToolkit:Chart.Axes>

 15 </chartingToolkit:Chart>

Figure 17. a Scatterplot example code

3.1 State-of-the-art tools

52

create graphical presentations by means of built-in controls, the
designer cannot customize visualizations without programming. For
example, in the example, it is not easy to bind a bubble’s color to data.
For instance, with Expression Blend, a designer cannot specify that a

bubble color is red if the stock price is larger than 27 and the stock

volume is larger than 65. He has to learn the BubbleSeries control and
program to add this new feature. It requires advanced GUI
programming. Usually a user interface designer cannot do it.

Conclusion: designers are limited to the built-in graphical
presentations. The designer cannot use Expression Blend to invent
new graphical presentations, since it also requires much
programming.

3.2 Tools for developing graphical presentations

3.2.1 Protovis – a component-based toolkit

Protovis is a graphical programming toolkit from research [Bostock
2009]. Protovis is not a platform that covers the software development
phases including designing, prototyping, and programming. We
introduce it here, because Protovis can be used for rapid-prototyping
for graphical presentations. Furthermore, the domain-specific
language provided by Protovis is declarative, which is similar to
VisTool formulas.

3.2.1 Protovis – a component-based toolkit

53

The toolkit provides a domain-specific language (DSL) to construct
“custom views of data”[Protovis Website]. With some training in
using the toolkit, a programmer can create interactive advanced
visualization such as scatterplots, pie charts, Job Voyager, etc.
Protovis is a component-based toolkit. The approach is to decompose
a graphical presentation into primitive graphical components. For
instance, polygons are graphical components used in the
visualizations.

There are three aspects that are interesting in the Protovis approach:
(1) Protovis provides graphical components called marks. (2) Protovis
can create multiple-instance of any kind of marks. (3) Protovis
provides a domain specific language (DSL) that eliminates loops in
code. We will explain them one by one.

Protovis marks encapsulate mechanisms for drawing rectangles
(bars), circles (dots), lines, wedges, etc [Bostock 2009]. A Protovis
mark has several variants. For instance, as shown in Figure 18, a dot
mark can be solid or hollow. A dot with size 1 is a pixel on screen. A
hollow dot with a large radius is a circle. A user interface designer
reuses variants of marks and combines other marks to construct
advanced visualization. Mark position also varies. How does a
programmer configure a mark's appearance, position, etc.? A mark
has properties. The programmer specifies appearances and positions
of a mark in its properties. For example, in Figure 18, the property
size of the solid dot is 5; the property size of the solid round is 600.

Figure 18–variants of the mark dot

3.2.1 Protovis – a component-based toolkit

54

Protovis supports the multiple-instance concept. A mark has a

property called Data. This property accepts an array of objects. A user

interface designer can set the Data property, and Protovis creates one

mark instance for each element in the data source array. For example,
Figure 19 shows a snippet of Protovis code. Figure 20 shows the
resulting visualization. The code in line 2 means to create a mark bar.
The code in line 3 declares an array of numbers and sets the array as
the data source. The array [1, 1.2, 1.7, 1.5, .7, .3] consists of six numbers.
So six instances of the mark bar are created. Each instance represents
a number in that array.

The multiple-instance concept differs from the similar concepts in the
programming tools such as WPF ItemsSource. Protovis generates
multiple instance of the mark itself. In WPF and Silverlight,
ItemsSource automatically generates multiple instances of a container

after the designer configures DataContext. The container may consist

of multiple (zero to many) controls.

A contribution from Protovis is its domain specific language (DSL) in
JavaScript for specifying advanced data visualization [Bostock 2009].
Using the DSL, a programmer defines an anonymous function to
compute a property value. The DSL is in the declarative
programming style. There are no loops and variable declarations. For

1 var vis = new

pv.Panel().width(150).height(150);

2 vis.add(pv.Bar)

3 .data([1, 1.2, 1.7, 1.5, .7, .3])

4 .width(20)

5 .height(function(d) d * 80)

6 .bottom(0)

7 .left(function() this.index * 25);

Figure 19–a Protovis code example for data Figure 20–the

resulting visualization

3.2.1 Protovis – a component-based toolkit

55

example, in Figure 19, the code in line 5 shows that the height
property is computed by an anonymous function. The parameter d
means the data that the instance has. For the first bar instance, d is
number 1, the second is 1.2, and so forth. At runtime, the function is
evaluated for each instance. So each instance has its own property
value. As a result, the evaluation result of the first bar instance's
height is 80, the second bar's height is 96, and so forth.

Next, we see what Protovis can support in the waterfall and agile
methods.

The Protovis DSL is a declarative language, which avoids writing
loops for setting property values. For example, the formula in Figure
19 line 5 height(function(d) d * 80) can be translated into the following
pseudo code:

for each bar-instance created according to data {

 set bar-instance height = the number (d) that the

bar-instance has * 80

}

Similarly, Protovis' multiple-instance feature also avoids loops for
creating mark instances. However, simple user interface development
is out of Protovis' scope. Protovis does not provide marks for simple
user interface controls. Programmers have to find a way to integrate
simple user interfaces (e.g. a TextBox) into the toolkit.

Accessing domain data such as data from the database is out of
Protovis' scope. In Protovis tutorials, data is artificial. A user interface
designer has to solicit help from programmers for data retrieval.

Protovis provides built-in methods for processing data. Some are
used for transforming a data structure. For instance, the method Tree
transforms a one-dimensional array into a tree structure. Some are
used for mathematical operations such as Min, Avg, etc. However,
Protovis does not provide a way of changing data.

3.2.1 Protovis – a component-based toolkit

56

In conclusion, Protovis made much progress in visualization
development. It to some extent reduces programming efforts, but the
visualizations cannot change data. Realistic data presentation and
interactions for changing data still require programming. As a result,
designers can use it to build only a few interactive prototypes in the
design phase of the waterfall model. In the agile methods, designers
can use it for rapid prototyping. However, the prototypes are not
deployable, as many functions are missing. Furthermore, it falls into
the dilemma like Flex, Macromedia Director, etc, because it is difficult
to integrate it with mainstream user interface development systems.
For example, it does not provide user interface objects e.g. Textbox.

3.2.2 Prefuse – a development toolkit for visualizations with
realistic data

Prefuse is a toolkit for information visualization development using
Java [Heer 2005]. Again, Prefuse is not a platform for user interface
prototyping and development. But Prefuse is dedicated to
visualization development. It supports table, graph, and tree data
structures. Prefuse goal is to simply the visualization creation [Heer
2005].

Prefuse is based on the Data State Reference Model [Chi 2000]. A
contribution of the Data State Reference Model is to classify operators
that can be applied on the data or the presentation. For example,
filtering can be an operator applied in the source data set. Rotating
can be applied in the presentation, and produces a rotated
presentation. With the classification of operators, the designer can
apply appropriate operators to design the desired visualization [Chi
2000]. The model breaks up the visualization process into three steps
including data transformation, visualization transformation, and
visual mapping transformation [Chi 2000]. During the steps, raw data
is transformed into Analytical Abstraction, Visualization Abstraction,
and View respectively. With those intermediate data, the model
describes various operators in the visualization pipeline [Chi 2000].

3.2.2 Prefuse – a development toolkit for visualizations with realistic data

57

We will use an example to show what Prefuse produces, and what a
programmer should do with Prefuse according to the Data State
Reference Model. The example is from Prefuse tutorial [Prefuse].
Figure 21 shows the visualization that we will build with Prefuse. It
visualizes a simple social network. Figure 22 shows a little part of the
XML data for that visualization. The XML fragments describe two
person records and a relationship record. In Figure 21, a person
record is presented by a box, and a relationship is presented by a line.

Data Transformation: A programmer should load data from a data
source.

Load data from an XML file

Graph graph = null;

try {

 graph = new

GraphMLReader().readGraph("/socialnet.xml");

} catch (DataIOException e) {

 e.printStackTrace();

 System.err.println("Error loading graph.

Exiting...");

 System.exit(1);

}

Visualization vis = new Visualization();

vis.add("graph", graph);

The data source is an XML file. Prefuse first transforms records from
that XML file into name-value pairs called Entity. Those Entities are
hidden to programmers. They are Prefuse internal structures. Then
person Entities are arranged in Prefuse Nodes, and relationship
Entities are arranged in Prefuse Edges. Nodes and Edges are
Analytical Abstraction in the Data State Reference Model.

In this example, the programmer does not apply operators in this
step. Prefuse applies operators such as data transformation behind
the scene.

3.2.2 Prefuse – a development toolkit for visualizations with realistic data

58

Visualization Transformation: the programmer should provide
Render objects for Visual Items.

Create renders

LabelRenderer r = new LabelRenderer("name");

r.setRoundedCorner(8, 8); // round the corners

vis.setRendererFactory(new DefaultRendererFactory(r));

Prefuse extends the internal structure in this step. For instance, visual
properties such as Color, Position, etc. are appended to Entities (i.e.
the name-value pairs created in Data Transformation). Those
extended data with visual properties are called Visual Items in
Prefuse. They are the underlying data that will be visualized. Prefuse
provides three kinds of Visual Items: NodeItems for Entities,
EdgeItems for relationship Entities, and Aggregate Items for
aggregate Entities [Heer 2005]. Visual Items are Visualization
abstraction in the Data State Reference Model.

3.2.2 Prefuse – a development toolkit for visualizations with realistic data

59

In this example, the programmer applied an operator to the
presentation. It rounds the corners of personal boxes. Prefuse
performs some other operations on the data such as generating Visual
Items.

Visual Mapping Transformation: the programmer should specify
Action objects in this step.

1. int[] palette = new int[] {

ColorLib.rgb(255,180,180), ColorLib.rgb(190,190,255) };

// map nominal data values to colors using our provided

palette

2. DataColorAction fill = new

DataColorAction("graph.nodes", "gender",

 Constants.NOMINAL, VisualItem.FILLCOLOR, palette);

<!-- nodes -->
<node id="1">
 <data
key="name">Jeff</data>
 <data
key="gender">M</data>
</node>
<node id="2">
 <data
key="name">Ed</data>
 <data
key="gender">M</data>
</node>
……
<!-- edges -->
<edge source="1" target="2"
/>
……

Figure 21–A social network visualization Figure 22–A snippet of the

XML data

3.2.2 Prefuse – a development toolkit for visualizations with realistic data

60

// use black for node text

3. ColorAction text = new ColorAction("graph.nodes",

 VisualItem.TEXTCOLOR, ColorLib.gray(0));

// use light grey for edges

4. ColorAction edges = new ColorAction("graph.edges",

 VisualItem.STROKECOLOR, ColorLib.gray(200));

// create an action list containing all color assignments

5. ActionList color = new ActionList();

6. color.add(fill);

7. color.add(text);

8. color.add(edges);

9. ActionList layout = new

ActionList(Activity.INFINITY);

10. layout.add(new ForceDirectedLayout("graph"));

11. layout.add(new RepaintAction());

// create a new Display that pull from our Visualization

12. Display display = new Display(vis);

13. display.setSize(720, 500); // set display size

14. vis.putAction("color", color);

15. vis.putAction("layout", layout);

16. JFrame frame = new JFrame("prefuse example");

// ensure application exits when window is closed

17.

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

18. frame.add(display);

19. frame.pack(); // layout components in

window

20. frame.setVisible(true); // show the window

21. vis.run("color"); // assign the colors

22. vis.run("layout"); // start up the animated layout

3.2.2 Prefuse – a development toolkit for visualizations with realistic data

61

Prefuse actions are operators. Some operators are applied on Visual
Items (i.e. Visual Abstraction). For instance, at line 2, fill is an operator
applied on Visual Items to change background colors. Some operators
are applied in the presentation. For example, ForceDirectedLayout at
line 10 and RepaintAction at line 11 are applied on the presentation.
According to the Data State Reference Model, another important step
is to show the presentation of Visual Abstraction. With Prefuse, this is
done by creating a display object at line 12 and adding the display
into a frame at line 18.

In summary, Prefuse eases visualization programming. A
programmer composes operators in the visualization pipeline to
implement the desired visualization.

Next, we see what Prefuse can support in Software Engineering.
Prefuse applies the operator-centric approach from the Data State
Reference Model. In principle, a clear classification of operators
reduces some code. It is because "between two operators, the more
operationally similar they are to each other, the more actual code they
can share" [Heer 2005]. Furthermore, Prefuse simplifies data
transformations. For example, it automatically converts the source
data to Entitles and further converts them to Visual Items for
presentation.

Interactions are implemented by programming Java event handlers.
Furthermore, Prefuse provides many useful operators for interactions
such as zooming, animation, etc. Prefuse handles real data. It
provides APIs to access databases and a SQL-like query language to
process data locally.

Prefuse is designed for visualization development. It provides some
built-in visualization patterns for graph, tree, and table. More
visualization can be extended by programming. Apparently, the
programming cost is less than general programming approaches.

However, programming is non-trivial and expensive. It requires solid
knowledge about Java and Prefuse library. As a result, it does not
support the creation of prototypes in the design phase of the

3.2.2 Prefuse – a development toolkit for visualizations with realistic data

62

waterfall. Nor does it support rapid prototyping in agile methods. So
the classical usability approach cannot be followed in Software
Engineering

3.3 Model-based prototyping tools

Volere is a model-driven prototyping tool [Memmel 2008]. The tool
supports user interface designers, programmers, and domain experts
to collaborate on the user interface development. User interface code
is generated from various models. The tool provides a GUI-layout
model for specifying the user interface, Content model for specifying
data that are shown, and Behavior model for user interface
interaction. User interface designers and domain experts work
together on the GUI-layout model and the Content model. The tool
provides a visual domain specific language for specifying the
GUI-layout model and the Content model. The language is used by
domain experts. The language uses the concepts that domain experts
are familiar with. Programmers define the Behavior model.

Volere tries to solve the problem with user interface development
from the requirement engineering perspective [Memmel 2008]. It
proposes incremental development with the tool. However, the main
purpose of Volere is to check if requirements are fulfilled rather than
early usability testing. Thus, it may still be expensive to fix usability
problems such as changing the screen details, because it requires
changes in different models. Probably, user interface designers,
programmers and domain experts will all be involved for making the
changes.

Elkoutbi proposed user interface prototyping by means of UML
scenarios [Elkoutbi 2006]. The approach is to generate user interface
code from UML artifacts such as class diagram, use case diagram,
collaboration diagram, etc. The idea is to find user interface-related
objects such as interface object, interface message, and constraints in
the class diagram. The tool generates the screen based on some rules.
For instance, a rule defines that the tool generates a textfield widget if
"an input Data constraint with a dependency to an attribute of type
String, Real, or Integer" [Elkoutbi 2006]. The screen navigation is

3.3 Model-based prototyping tools

63

generated by means of pre- and post- conditions of class methods,
which involves several UML diagrams such as a use case diagram
and a collaboration diagram.

This prototyping tool reduces the efforts of user interface
programming. However, the usability of the generated user interfaces
is quite problematic. It is because the tool relies on user
interface-generation rules to generate user interfaces automatically,
but those "one-size-fits-all" rules cannot ensure usability in a specific
case. If the user wants to modify the generated user interfaces, he has
to change the rules rather than the user interface. It can take more
effort to do it in an iterative design.

In summary, the model-based approaches raise the level of user
interface development. A user interface developer uses high-level
models such as UML diagrams to develop a user interface instead of
low-level programming. Most tools provide basic functionality such
as screen navigation, and can integrate more functions by revising the
model. Some approaches provide support for real data, some do not.
User interface developers may need to find a way to program and
integrate code for handing real data with the tool. For the first time
use, the cost is low. However, it is quite problematic the approaches
generate usable user interfaces. "Model-driven approaches represent a
move away from the user-centered design, reducing user
involvement to that of the users being informants rather than
co-designers"[Bengt 2003].

Another problem is that it is expensive to fix usability problems. After
usability testing, the designer must find usability problems. However,
it is difficult to revise the generated user interface in the model-based
approach. The user interface developer has to change user interface
generation rules or high-level models. The complexity of models
themselves hinders developers to make changes easily, because
"changing a specific model must consistently affect dependent
models"[Memmel 2008].

To the author's knowledge, no model-based or model-driven
approach provides support for advanced visualization development.

3.3 Model-based prototyping tools

64

Consequently, it is problematic to use model-based approaches to
design and implement prototypes in the design phase of the waterfall
model. Rapid prototyping might be supported in the agile methods.
However, the generated user interfaces cannot fulfill all needs from
software engineers, and it is quite difficult to change the generated
user interfaces.

65

Chapter 4 VisTool Introduction

4.1 An example scenario

We will use an example to show how a designer uses VisTool to
develop an application.

A hospital has an existing patient health record system, but they want
a better user interface. The designer knows Shneiderman's Lifelines
[Plaisant 1996]. Lifeline is a renowned visualization that presents an
overview of patient records. It is shown in Figure 23. The designer is
inspired by it and wants to make something like it.

Figure 23–Lifelines visualization

4.1 An example scenario

66

The existing database contains four essential tables, tblPatient,

tblMedOrder, tblMedIntake, and tblMedType. Figure 24 shows the ER

model. TblPatient stores personal information about patients.

TblMedOrder stores prescribed medicine treatments. TblMedIntake

stores records of medicine intakes. TblMedType stores a record for
each type of medicine.

A software engineer or the designer has prepared a data map. The
data map is a plain text file that tells VisTool the table relationships in
the database and where the database is. For instance, in the data map
the relationship relMedOrder tells VisTool that it corresponds to the

one-to-many relationship from tblPatient to tblMedOrder in the ER
model (Figure 24).

The designer decides to develop a functional user interface prototype.
He will review it with the end users and improve it iteratively.

4.1.1 The design phase

The designer selects the data map and opens it. VisTool Studio opens
and the screen looks like Figure 25, but the Lifeline form is not there
yet. The Lifeline is the screen that the designer will develop

Figure 24–ER model of the example scenario

4.1.1 The design phase

67

iteratively. VisTool Studio contains several panels. The Design Panel
shows what the end user will see. The Toolbox shows available
controls. The Property Grid shows properties and formulas. The
Solution Explorer shows project files.

The first steps of using VisTool are similar to other mainstream tools
for user interface development such as Visual Studio and Eclipse.

Figure 25–VisTool Studio

4.1.1 The design phase

68

Step 1. Create a form: The designer drags a form item from the
Toolbox, and drops it on the Design Panel. As a result, VisTool creates
an empty form and shows it in the Design Panel. The designer uses

the Property Grid to set the Text property, which defines the heading

of the form:

Form

Text: "Health overview"

VisTool updates the screen immediately when the property is
changed, and the designer can see the heading text.

Step 2. Bind the form to a patient record: The designer sets the form's

DataSource property to get a patient from tblPatient in the database:

Form

DataSource: tblPatient where ptID = 1

PtID is a tblPatient field. In the first prototype, the designer uses
patient 1. In the later versions, the user should be able to select the

patient. When the DataSource is specified, VisTool retrieves the

corresponding records from the database and creates a form per
record. In this example, only one form is created. The Design Panel
refreshes the screen immediately, but in this case the screen does not
change.

Step 3. Insert the patient name: The designer drags and drops a label

item on the form, and sets the Text formula:

Patient label

Text: parent.ptName

The label becomes a child of the form. The Text formula tells VisTool

to first get the form's record (parent) and then access the record's

ptName. Now the screen shows the patient name on the top-left corner
of the form.

4.1.1 The design phase

69

Step 4. Create a timescale: The designer drags and drops a timescale
item on the form. He will refer to the timescale from other controls, so
he renames it:

Timescale

Name: timeScale

Until step 4, VisTool is similar to the mainstream tools for user
interface development. However, the next steps show something new.

Step 5. Show medicine names: The designer wants to show the
medicine names prescribed to the patient. He drags and drops a label
item on the form. The designer will refer to it in later steps, so he
renames it:

Medicine label

Name: lblMedName

The designer knows that medicine records are in tblMedOrder, and

medicine names are in another table tblMedType. He needs that the
label repeats itself for each medicine record. To achieve it, he sets the

DataSource formula:

Medicine label

DataSource: parent -< relMedOrder >- relMedType

The formula tells VisTool to start from the patient record (parent) and

then select all tblMedOrder records that belong to that patient (-<).

Then for each medicine record append tblMedType fields (>-) to the
record. These medicine records make up a bundle. As a result,
VisTool creates one label for each medicine record. Parent means the
form's record. RelMedOrder is a one-to-many relationship from

tblPatient to tblMedOrder. The join-many (-<) symbolizes the
one-to-many. RelMedType is a many-to-one relationship from

tblMedOrder to tblMedType. The join-one (>-) symbolizes the
many-to-one.

The designer can use dot (.) operators instead of the join-many (-<)
and the join-one (>-), but it makes the formula difficult to read.

4.1.1 The design phase

70

VisTool shows all medicine names on top of each other, so the
designer can see only one of them. It is because the designer has not
specified the position yet.

Step 6. Set medicine label position and content: The designer specifies

the Top formula, which is the pixel position of the label:

Medicine label

Top: 80 + Index * (Height + 5)

A control has an index inside the bundle. The first control has index

zero, the second is one, and so forth. VisTool evaluates the Top

formula for each medicine label. Now the screen shows them as a
column of labels.

The labels must show medicine names. The designer knows that

medicine names are from the field medName in tblMedType. So he
specifies the Text formula:

Medicine label

Text: medName

VisTool automatically figures out which table medName is from. We
show the resulting screen in Figure 26.

Step 7. Show medicine boxes: The designer creates a box. There
should be one box for each medicine label. So the designer leaves

DataSource unspecified, and specifies that Parent is lblMedName.

Medicine box

Parent: lblMedName

DataSource:

4.1.1 The design phase

71

In this case, the box refers to the medicine labels that have medicine
order records. VisTool automatically repeats the box for each parent,
but at present the boxes are on top of each other. Each box represents
a medicine order.

Step 8. Bind box position to the label: To show which medicine order

a box represents, the designer aligns the medicine box Top to the
corresponding medicine label (parent).

Medicine box

Top: parent!Top

This formula tells VisTool to select the medicine label (parent) and
then selects its Top value. The bang (!) indicates that Top is a
property. Now the screen shows the boxes as a column.

The designer aligns the boxes by means of the timescale. He specifies

the Left formula:

Left: timeScale!HPos(startTime)

Figure 26–Medicine name labels

4.1.1 The design phase

72

The formula tells VisTool to select the timescale and then call the
method HPos. The bang (!) calls HPos, which transforms the starting

date (startTime) to a pixel value on the screen. As a result, VisTool

aligns the left position (Left) of the medicine box to the starting date

(startTime) according to the timescale. Starttime is a tblMedOrder field.
It records the start time for each medicine order.

The designer uses the medicine box width to show the length of the

treatment. He specifies the Width formula:

Medicine box

Width: timeScale!HPos(length + startTime) - Left

Length is a tblMedOrder field. It records prescription length for each
medicine order. The formula length + startTime calculates the
termination time of the medicine order. HPos transforms the
termination time into the pixel position on screen. The width is the

subtraction of that pixel from Left position.

The Windows platform only allows the designer to specify Top,

Left, Height, and Width. Right and Bottom exist, but they are
read-only.

Figure 27–The first prototype

4.1.1 The design phase

73

The designer also paints the medicine box blue:

Medicine box

BackColor: "Blue"

4.1.2 The first prototype

The designer has already finished the first prototype. The screen is
shown in Figure 27.

He reviews the prototype with users and checks that they understand
it. During the review, the user wants to see another patient with more
complex medicine prescriptions. The designer changes the constant

for the health overview form's DataSource which was specified in

step 2. The review result is that the prototype presents a good
overview for medicine orders, but there are some problems. For
example:

No medicine intakes: A doctor complains that he cannot see the
intakes for the medicine orders. Actually, the intake records are in the
existing database.

No way to select the patient: The prototype shows only one patient. A
doctor cannot select the other patients.

4.1.3 Improve the prototype

The designer decides to add the medicine intakes. He opens the
prototype with VisTool Studio.

Step 9. Create intake bars: The designer wants to use small bars inside
a medicine box to show intakes for that medicine. He creates a box
and drags it to make it narrow. He knows that the intake records are

in tblIntake, and there will be several intake bars inside each medicine
box, because a patient takes the medicine several times during the
treatment. So he sets Parent and DataSource:

Intake bar

Parent: medicineBox

4.1.3 Improve the prototype

74

DataSource: parent -< relIntake

This formula tells VisTool that for each medicine box (parent) start in

the tblMedOrder record and then select tblIntake records that are

related to that tblMedOrder record. These intakes make up a bundle.
So there is one bundle for each medicine box (parent). As a result,
boxes are created, one box per medicine intake record.

Step 10. Set intake bar position and appearance: The intake bars
should also be aligned to the timescale. The designer knows that

intake time is stored in the field time. So the designer sets Left:

Intake bar

Left: timeScale!HPos(time)

Afterwards, the designer aligns the intake bar to the medicine box:

Intake bar

Top: parent!Bottom – Height

The designer uses the bar's Height to present the intake dosage:

Intake bar

Height: amount * 6

Amount is a tblIntake field.

Figure 28–The patient-search form

4.1.3 Improve the prototype

75

The designer uses different colors to show intake states:

Intake bar

BackColor: state = 1 ? "Green" : state = 2 ? "Yellow" :

state = 3 ? "Red" : "Black"

State is a tblIntake field. It records whether an intake is taken, planned
or canceled. The screen now shows intake bars inside medicine boxes.

Next, the designer will fix the problem with selecting the patient. The
designer creates a patient-search form for selecting a patient. The
screen is shown in Figure 28. It shows a list of patients whose name
contains the text jo. The list shows patient names and addresses. The
end user types in the textbox to search the patient, and clicks the
button to see the health record for that patient.

Step 11. Create the patient-search user interface: In the same way that
we have seen, the designer creates the form, a text box for searching
patients, a label for showing patient information, and a "See" button
for selecting a patient. The designer knows the patient information is

in tblPatient and the label must repeat itself to show different
patients, so he sets the patient label DataSource and Name:

Patient label

DataSource: tblPatient where ptName like "'%" &

txtName!Text & "%'"

Name: PatientLabel

This formula is a wildcard search for tblPatient records based on

the user's input. PtName is a tblPatient field. TxtName is the text box
for searching patients. TxtName!Text selects the value of the textbox
txtName, which is the text the user has typed. The percent (%)
matches any text. The ampersand (&) appends texts.

Behind the scene VisTool generates a SQL query for the DataSource.
In this case:

SELECT tblPatient.ptName , tblPatient.address1 ,

tblPatient.ptID FROM tblPatient WHERE ptName like '%jo%'

4.1.3 Improve the prototype

76

The "See" button has no DataSource, but its parent is the patient label.

As a result, each "See" button refers to a patient record (tblPatient).

The designer also sets various properties such as Text, Top, etc. to
specify the label's content and position.

Step 12. Set Click event: When the user clicks a "See" button, the
health overview must open and show the corresponding patient.
To achieve this, the designer sets the Click event handler for the
"See" button:

"See" button

Click: openform("frmOverview", ptID)

Parent: PatientLabel

This formula tells VisTool that when the user clicks, it must open

frmOverview and pass ptID to the form.

Step 13. Rename the health overview form and revise the

DataSource:

The health overview form

Form Name: frmOverview

DataSource: tblPatient where ptID = param[0]

Param[0] refers to the first parameter passed to the form. In this case,

there is only one parameter, which is ptID. When the form opens,

param[0] is the value of ptID. As a result, the form shows the
corresponding patient.

The user can click several "See" buttons to show several patients'
health records at the same time.

4.1.4 The first release

77

Figure 29–The first release

4.1.4 The first release

78

4.1.4 The first release

The designer reviews each prototype with the end users, and
improves them iteratively with VisTool. The designer fixes usability
problems in several rounds. Finally, he has the first release.

The first release consists of three forms, the patient search form, the
medication overview form, and the biopsy testing form. The screens
are shown in Figure 29.

An end user types a patient name in the textbox at the top of the
patient-search form. The form shows the search result immediately
when he presses a key. He clicks a patient name to show the overview
form.

The medication overview is inspired by the Lifelines and gradually
improved through usability testing. It shows an overview of all
medication information from a patient's birthdate to some time in the
future. Apart from medication records that we have introduced, it
also shows notes and diagnosis for the selected patient. A grid panel
separates the screen into three segments, one for notes, another for
diagnosis, and another for medication records. Each segment
arranges its items in a tree. An end user clicks to expand or collapse
the tree. This interaction shows and hides the items respectively. In
Figure 29, the overview form shows a patient with chronic diseases.
In the middle part of the screen, we can see the diagnoses for that
patient. In the top area, the shape icons represent notes. Icon colors
indicate warning levels. Red means severe, yellow means warning
and green means OK. The user such as a doctor clicks an icon to
display note details in a box next to that icon. For example, on Jan 16,
2011, this patient got severe infection. In the bottom area, the screen
shows medications that the patient received. The end user can drag
the timescale to zoom-in and zoom-out, and all boxes, bars and icons
will accordingly change their position and size, and align to the new
position on screen.

4.1.5 Deployment

79

The biopsy testing form shows the lab results that the patient got. The
end user can also record bronchoscopy results. He first marks the
position where he takes a biopsy, and then changes the color of marks
when he receives the testing results.

4.1.5 Deployment

A designer uses VisTool Studio to develop the user interface. As we
have shown, VisTool Studio is the development environment. VisTool
Studio saves the screens developed by the designer in form files (.vis)
and a data map file (.vism). This health record application consists of
three form files (FindPatient.vis, Overview.vis, and Bronchia.vis) and
a data map file (EHR.vism). One form corresponds to one form file.

To deploy the health record application, the designer distributes the
application files (i.e. form files and a data map file) on the
department's machines. Those machines already have the VisTool
Kernel installed, but VisTool Studio is not installed. VisTool Kernel is
the runtime environment for VisTool applications.

A user double-clicks the data map (EHR.vism) like ordinary
applications, and the VisTool Kernel reads the application files and
shows the patient-search form. The form responds to user actions,
shows real data, etc.

4.1.6 After the deployment of the first release

Some departments in the hospital may request different user
interfaces. Usually, these requests are easy to make for a designer. To
meet their requirements, the designer may rewrite a few formulas,
and the user interface is changed.

Meanwhile, programmers implement advanced functionality such as
importing data from other systems, because it requires programming
to implement it. The designer can integrate programmer-supplied
methods later.

4.1.6 After the deployment of the first release

80

Next, we show an example of function integration with VisTool. After
this first release is put into operation, programmers will develop the
Service-Oriented Architecture for the hospital. The SOA is used to
integrate various existing systems in the hospital. Furthermore, the
system developers are concerned with data integrity. They restrict
direct modification on the database. So the systems in the hospital can
only read records from the database, but cannot modify (update,
delete and add) them. The modification can only be done by means of
a SOA service, and that service ensures security.

Suppose that the designer plans to implement new functionality
when SOA is ready for use. The new functionality is to add new
medicine orders using SOA. The user clicks a button to add new
orders, and a dialog form shows. The form shows medicine names,
the default amount, and the start date for the new order. The user can
change them in the dialog and click the "New" button to add a new
record.

Step 1. The designer develops the dialog form. In that form there are
three interesting controls. The combo-box MedType represents the
medicine names. The user can select a medicine from that combo-box.
The textbox StartDate represents the start date. The Length shows the
order amount. The user can click the numeric-down buttons to
increase or decrease the length for the prescription.

Step 2. The designer sets the "New" button's Click in that dialog form:

Click: AddMedOrder (MedType!SelectedItem,

StartDate!Text, Length!Value, param[0])

AddMedOrder is a web service method. This method is supplied by a

programmer. It accepts four parameters: a medicine ID, a start date, a
length, and a patient ID. In the formula, param[0] is the patient ID.
Now when the user clicks the button, the new record is saved in the
database by means of the SOA.

4.2 The theory

81

4.2 The theory behind the story

VisTool provides tool support for the Virtual Window technique. "A
Virtual Window is a user-oriented presentation of persistent data"
[Lauesen 2005]. A user-oriented presentation is the screens that the
user sees. Persistent data does not vanish after a user closes the
application or turns down the computer. It is stored in a file, a
database, etc. The Virtual Window technique guides a designer to
design a good data presentation.

The goals of the Virtual Window technique are to ensure "(1) all data
is visible somewhere and (2) important tasks need only a few
windows."[Lauesen 2005] The health record overview achieves the
goals. It visualizes data from four tables in only one screen, and
supports the user to perform the tasks – select the patient and see the
patient's health state.

Lauesen proposes three steps using the Virtual Window technique
[Lauesen 2005]:

First we make a plan for what should be in each window, and next

we make a detailed graphical design of the windows. Finally we

check with users that they understand the window, and we check

against the task descriptions and the data model that everything

is covered.

We will see what VisTool can support in these steps.

Plan what to show. In this step, the designer applied a design rule
from the technique – rooted in one object. This rule suggests that a
virtual window should show "data about this object and objects
related to the object" [Lauesen 2005]. The health overview follows this

rule. Its data originates from the patient (tblPatient), and the overview

shows the medicine orders (tblMedOrder) and intakes (tblIntake) that
are related to that patient. With VisTool the designer applies that
design rule by means of the parent keyword and the relationships.
For example, the formula parent -< relMedOrder >- relMedType means that

4.2 The theory behind the story

82

the data originates from the parent (tblPatient) and includes records

from tblMedOrder and tblIntake that are related to the parent.

Make a detailed graphical design. The designer made a detailed
graphical design from the beginning, because he had an idea what the
screen should look like. When the graphical design is done, the
designer should fill in the screen with extreme but realistic data,
which is another rule from the technique. Without VisTool it is a
challenge for most designers, because some extreme but realistic data
e.g. data for a Gantt diagram may require domain expertise. With
VisTool the designer uses formulas to access data from the existing
database. So data is realistic.

Check against tasks and the data model. The designer should ensure
that tasks are sufficiently supported by the screens and the screens
should show all necessary data from data entities (tables). For the
time being, VisTool does not check this automatically.

4.3 Design rationale

The basic trick in user interface design is to find a starting place

that is somewhat recognizable, and then help the user grow into

the strongest set of tools possible.

— Alan Kay,1998 CHI Conference

Keynote Speech[Chi 2010]

Considering the limited programming skills of user interface
designers, we did some studies on previous approaches. We decided
to start from the traditional approach that is proved to be powerful.

Combining scripting capabilities with components and an

interface builder has proven to be a particularly powerful

approach [Myers 2000].

VisTool approach consists of three building blocks: Formula
Language, templates, and an interface builder. Formula Language
originates from the spreadsheet paradigm, and the template idea is
inspired from component systems such as toolkit-based systems.

4.3 Design rationale

83

In our case, the strongest set of our tool is the concept of applying
formulas in user interface development.

4.3.1 Formula Language

Previous research reveals that scripting languages are successful in
raising the level of user interface development [Myers
2000][Ousterhout 1998]. It allows a designer to combine existing user
interface components to develop a user interface.

However, the level of script programming for user interface
development is not high enough. Scripting is still in the programming
paradigm. Many scripting languages retain some characteristics from
system languages such as C, etc. They are not intuitive for user
interface design. A designer has to go through several programming
intermediates such as variable declaration, loops, etc. to reach the goal
for user interface design such as changing colors, positions, etc.
Furthermore, the learning curve of a scripting language is not gentle.

For the learner, one of the most important requirements is to

suppress the 'inner world' of programming, the world of variable

declarations, loops and input/output. The spreadsheet may be the

model of the future [Green 1990].

Inspired from the spreadsheet paradigm, we invented the
formula-based approach for user interface development.

Previous studies on user interface tools recommend that "it is
important to control the low level pragmatics of how the interactions
look and feel" [Myers 2000]. From the user interface design point of
view, the low-level "pragmatics" is user interface property values.
Property values are fundamental to appearance and interaction.
Color, position, texture, size, shape, and so on, are values in
properties. A value change results in the respective change on the
appearance. Conversely, if an interaction changes the user interface,
that interaction must change some property values. For example,
scrolling a page is an interaction, which changes the value of the
scroll bar position. Moreover, research shows that our eyes are quite

4.3.1 Formula Language

84

sensitive to visual properties such as position, length, color, size, and
texture, etc. [Mazza 2009]. Therefore, it would be effective for
designers to directly define property values of visual objects e.g.
textbox, button, arc, etc.

4.3.2 Formula usability

In the user interface design world, data is not purely from a database.
When a designer is constructing a data presentation, he will deal with
data from various places. In general, we can categorize data into two
types: data from the user interface itself and data from a database. For
instance, in the health overview example (Figure 30), the timescale's
position is dependent on the data from the user interface (i.e.: the
name label's right). The position of a medicine box is dependent on
the field from the database and the user interface data (i.e. Timescale's
position). Formulas must be capable of expressing those two kinds of
data:

(1) User interface data

 User interface objects such as textboxes, buttons, arcs, boxes,
lines, etc.

 Properties of user interface objects such as Color, Height, Width,
etc.

(2) Database data

 Database fields.

 Database tables.

 Relationships between database tables.

Formula Language unifies data from the user interface world and the
database world. In principle, a designer can use only one operator
such as dot (.) to access data. However, with only one operator such
as dot (.), the designer cannot easily know from the name whether the
data is from user interface or database. For instance, he cannot know
whether the ID is a database field or a property:

Me . ID

4.3.2 Formula usability

85

Our early usability tests show that the readability of using only dot is
poor, because it is difficult to deprogram the formulas as Green calls
it.

Comprehension has been shown to be a complex task,…, of which

one facet is conveniently labeled 'deprogramming', meaning that

after a portion of the mental representation of the problem has

been translated into code …, it is then translated back again into

mental representation language, as a check [Green 1990].

As a result, the language syntax must precisely indicate where data is
from. We suggest that designers should use a dot (.) operator to
access a database field and use a bang (!) to access a user interface
property. Those operators tell where data is from. Likewise, with only
one operator, the language does not show the cardinality of a
relationship. The essence to constructing a data presentation is to
reveal data relationships for the end user. Relationship cardinality is a
useful facility for data presentation design. It tells whether one or
more user interface objects might be created, and can also indicate
what belongs to what. So we invented a join-many (-<) operator to
symbolize a one-to-many relationship and a join-one (>-) operator to
symbolize a many-to-one relationship.

Furthermore, as VisTool unifies the two worlds, naming conflicts
inevitably arise. Keywords, table name prefixes, and operators are
used to resolve naming conflicts. We have two kinds of naming
conflicts: (1) the naming conflict between the database world and the
user interface world, and (2) the naming conflict inside the database
world.

First, let's see the first kind of naming conflicts. For instance, assume

that we have a table Parent. The formula is Parent. VisTool cannot

know whether the name Parent refers to the table Parent or the

property Parent. A designer should use a keyword such as Me and

Map to clarify the meaning. Me is the current control. The designer can

write Me first, and further accesses a property or a field in the current

control. For instance me!Parent refers to the property Parent. Map is

4.3.2 Formula usability

86

the VisTool data map. The designer uses the keyword Map to access a

table. For instance Map.Parent refers to the table Parent.

Bang (!) and dot (.) are useful for resolving naming conflicts
between user interface properties and database fields. For
instance, assume that the current control contains a field called

text. The designer writes the formula: text & “Hello”. In this example,
VisTool does not know whether the name text refers to a field or a
property, but it interprets text as a field by default, because a field
has a high priority. The designer should use a dot (e.g. me.text) to

mean the field text and a bang (e.g. me!text) to mean the property

Text.

Second, a table-name prefix is used to resolve naming conflicts
resulting from relationships and fields. A full relationship name
consists of a table and a relationship. The same table can be involved
in joins defined by many relationships. For example,

tblPatient.relMedOrder is a relationship from tblPatient to tblMedOrder,
where tblPatient is the table and relMedOrder is the relationship.

Another relationship tblMedType.relMedOrder is from tblMedType to

tblMedOrder. In this case, the name tblMedType must be stated. Hence,
a table-name prefix is optional only when no relationship naming
conflict arises. Likewise, the same field may exist in several tables. A
full field name consists of a table and a field. Hence, a table-name

prefix is optional, only when the DataSource does not entail more

than one table where the field might be from.

To improve usability, keywords are optional and VisTool is fault
tolerant with mistyping operators (e.g. bang, join-many, etc.). The
interpreter checks a name and its subsequent operator, and can
recover from the mistyping. VisTool interface builder also
auto-corrects mistakes for the designer.

4.3.3 Templates

Component systems are proved successful, and are widely applied in
industry [Myers 2000]. Traditionally, a component system provides

4.3.3 Templates

87

several built-in graphical presentation components. For example, one
component visualizes data in a scatterplot, another one for treemap,
and so on. However, the traditional way limits the kinds of graphical
presentations that a designer can build. Thus, he cannot build novel
user interfaces unless a new component is embed in the system.
However, because of the popularity of component systems, designers
are familiar with them. We do not completely discard the component
concept, because it will be more productive for designers to learn and
use a familiar tool than an unknown one [Beaudouin-lafon 2003].

Our approach differs from traditional component systems. VisTool
provides many kinds of visual objects. This is the same as many other
component systems such as toolkit- or widget-based systems. But in
our approach, a graphical presentation is assembled by various
primitive visual objects, unlike the traditional way with one
component for each kind of presentation.

VisTool lets a designer assemble templates to create visual objects. For
example, in our example scenario, the designer dragged an item from
the Toolbox. In fact, he created a template. Behind the scene, a
template creates visual objects. Those visual objects are fragments of a
full picture. When the visual objects are combined on screen, the
resulting presentation becomes meaningful. This assembling strategy
is also adopted by Protovis. However, Protovis lacks ordinary user
interface components such as textbox, button, etc.

4.3.4 Interface builder

Indeed, the relationship between the notation and the environment

is such that the notation cannot be used except in some kind of

environment of use…The fundamental principle is that the way

the user behaves is determined by both the notation and the

environment. A satisfactory system demands an environment that

supports the notation and vice versa [Green 1989].

The successful environment for user interface design is interface
builders. Previous research shows that interface builders enable
domain experts to implement user interfaces by "moving some

4.3.4 Interface builder

88

aspects of user interface implementation from conventional code into
an interactive specification system" [Myers 2000]. So an interface
builder is effective to improve a usability factor – learnability. It
benefits inexperienced users. User interface designers do not have
solid programming skills. A system with a smooth learning curve will
be easy to learn. However, we should tailor the builder for our needs.
First, designers operate on templates. For example, a designer drags
an item from the toolbox and drops it on the design panel. In effect,
he creates a template. Second, to help a designer with data
presentation design, we need to provide an overview of data model.
Entity Relationship diagram is an example. Third, the interface
builder should provide intelli-sense for formula suggestions. A
full-fledged intelli-sense shows a list of available names e.g.
relationship, fields, etc. and methods, and so on. Ideally, it would
improve another usability factor – the memorability for Formula
Language. The intelli-sense reduces the likelihood of misspellings and
speeds up formula writing, which improves the other two factors –
reducing errors and task efficiency. Last, it would also be necessary
for a designer to see the resultant screen when he is writing formulas
and creating templates. This might help the designer understand
what he has specified, which improves the usability factor –
understandability.

An interface builder also benefits experienced users. It increases the
speed of constructing user interfaces, which allows for more iterations
of user interface design [Myers 2000]. As we discussed before, rapid
user interface development is desirable in agile methods. In short, in
order for a satisfactory system, we should provide an interface
builder.

89

Chapter 5 How VisTool works

In the previous chapter we used an example scenario to show how to
use VisTool Studio to design a user interface iteratively and we
explained a few formulas. In this chapter, we will unravel the
concepts and principles. For example, we will explain what happens
when a designer is dragging and dropping on the Design Panel, what
generates multiple instances of a control and how they are generated,
etc. We will also introduce more advanced formulas, and elaborate on
the Formula Language semantics.

5.1 Basic Concepts

5.1.1 Control instance

An end user sees and interacts with control instances such as forms,
timescale, labels, boxes, etc. A control instance has properties such as
Left, Top, Color, etc. Control instances show in various positions,
colors, sizes, etc., because the property values vary. For instance, in
Figure 30 the health overview, the medicine labels have different Top
values. So labels locate in different Top positions.

5.1.1 Control instance

90

Figure 30–Templates that create the health overview form

5.1 Basic Concepts

91

5.1.2 Control template

A control template is not visible on the user interface, but it creates
one or more control instances that are visible on the screen. For
instance, Figure 30 shows the templates that create the health

overview. The overview is created by six templates: frmOverview,
lblPatientName, timescale, medOrderBox, medIntake, orderInfo.

FrmOverview is a FormTemplate and it creates a form. TimeScale is a
TimeScaleTemplate and it creates a timescale. LblPatientName is a
LabelTemplate and it creates several labels that show medicine
names, and so forth.

Control templates have properties that are constants or formulas.
Templates and formulas are visible only to designers. An end user
does not see them. In VisTool Studio (Figure 25), the designer drags
an item from the ToolBox to create a control template, and specifies
formulas in the Property Grid. At runtime when a form is opened or
the screen is refreshing, VisTool evaluates formulas for each control
instance.

VisTool organizes templates in a tree structure. The root of a template
tree must be a form template. A template can have child templates. A

parent-child relation is defined by the template property Parent. If

Parent is unspecified, the default Parent is the form template. Form

Figure 31–The template tree of the patient health record example

5.12 Control template

92

templates are special. A form template cannot have a Parent. For
example, Figure 31 shows the template tree that creates the health

overview. FrmOverview is the root of the template tree. The Parent of

LblPatientName, timescale, medOrderBox, and orderInfo is frmOverview.

As a result, they are child templates of frmOverview. Similarly,

medIntake is a child template of medOrderBox.

5.1.2 Control template

93

Figure 32–The DataSources for the first release in the example

scenario

94

5.2 Multiple instances of a control

DataSource is a special template property. It has a formula for

retrieving a record set from a database. When DataSource is
specified, the template retrieves the record set and creates a control

instance for each record in that record set. For instance, in the health
overview, frmOverview refers to a record set consisting of one

tblPatient record, so one form is created. OrderInfo refers to a record
set containing medicine names, so several labels are created to
present the records.

The designer can write a where clause in the DataSource. Figure 32

shows DataSource formulas in the patient-search form and the

health overview form. Unlike SQL, DataSource formulas can refer
to the value of a property, a method, etc. For example, in the

patient-search form, the designer creates labels (lblPatientNames)

for showing patient names and addresses. The DataSource
formula is :

Patient name labels

Label Name: lblPatientNames

DataSource: tblPatient where ptName like "%" &

txtName!Text & "%"

In the formula, txtName!Text refers to the Text value for the search
criteria. The two % characters are wild-card search characters that
match any string.

At runtime, VisTool translates a DataSource formula into a SQL
query. For instance, if the user types "jo" in the patient-search

form, the lblPatientName DataSource is translated into this SQL:

SELECT tblPatient.ptName , tblPatient.address1 ,

tblPatient.ptID FROM tblPatient

5.2 Multiple instances of a control

95

WHERE ptName like "%jo%"

The designer does not write fields in a DataSource formula. VisTool
collects the fields that are used in the formulas.

The designer can also write group-by, order-by and other SQL-style
clauses to process data. For example, in the health record (Figure 27)
introduced in the previous chapter, there are two repeating
chloramphenicol lines on the screen. It is because the patient got
chloramphenicol twice. To solve that problem, we rewrite the
DataSource and add the group-by clause:

Medicine name labels in the health overview

Label Name: orderInfo

DataSource: parent -< relMedOrder >- relMedType group by

tblMedType.medName,tblMedOrder.ptID,tblMedType.medID,

 tblMedOrder.medID

After VisTool retrieves data based on the generated SQL, the
template creates one control for each record. For example, in the

health overview form, frmOverview DataSource retrieves one

patient record. As a result, frmOverview creates only one form.

MedOrderBox DataSource retrieves that patient's medicine order

records. As a result, medOrderBox creates several medicine boxes.

5.3 Property formulas

A formula is an expression that may contain operators, data
references, constants, etc. A formula specifies how to compute a
property value.

5.3 Property formulas

96

5.3.1 Walking from one data entity to another

In Figure 32, we use gray boxes to present medicine orders.
MedOrderBox creates those gray boxes:

Medicine box in the health overview

Label Name: medOrderBox

Parent: frmOverview

DataSource: parent -< relMedOrder

MedOrderBox Parent is the form template frmOverview. In the

DataSource formula, parent means the record in the parent template.

RelMedOrder is a relationship from tblPatient to tblMedOrder. The

join-many operator (-<) walks from the patient record in frmOverview

(parent) to tblMedOrder records that are related to that patient
record. As a result, the records of medicine orders for that particular
patient in the form are produced.

In Figure 32, we use labels to show names of the medicine orders.

OderInfo creates those medicine labels:

Medicine name label in the health overview

Label Name: orderInfo

DataSource: parent -< relMedOrder >- relMedType group by

tblMedType.medName,tblMedOrder.ptID,tblMedType.medID,

 tblMedOrder.medID

OderInfo Parent is unspecified. By default, the parent is the form

template frmOverview. The join-many operator (-<) walks from the

patient record (parent) to tblMedOrder records that are related to

that patient record. RelMedType is a relationship from tblMedOrder to

tblMedType. The join-one operator (>-) walks from the tblMedOrder

records produced by the join-many (-<) to tblMedType records that

are related to those tblMedOrder records. The records are also

5.3 Property formulas

97

processed by the group-by clause, so there are no repeating medicine
names

5.3.2 Walking from control to data (>-)

In the Lifelines [Plaisant 1996], medicine names are shown next to the
medicine boxes. We show how to do it with VisTool. We create a label

template and set some formulas. The Parent is medOrderBox. The

formulas and the screen are shown in Figure 33. An interesting
formula is Text:

Medicine names besides the medicine boxes

Label Name: medOrderBox_Name

Text: Me >- relMedType.medName

In this example, the join-one operator (>-) walks from a control (Me)

to a tblMedType record bound to Me. The dot (.) accesses the field

medName.

The right operand of the join-one operator (>-) must be a
many-to-one relationship. It means that the join-one operator (>-)
walks to at most one record. If no record is found, the join-one (>-)

generates a null record.

5.3.3 Walking from data to control (-=)

In the health overview, medicine boxes are aligned to the

corresponding medicine names. MedOrderBox Top is calculated by the
formulas:

Medicine box

Box Name: medOrderBox

Top: Me >- relMedType -= orderInfo!Top

5.3.3 Walking from data to control (-=)

98

In the Top formula, relMedType is a many-to-one relationship from

tblMedOrder to tblMedType. The join-one operator (>-) walks from

the current control (Me) to a tblMedType record bound to Me.

Figure 33–A newly created template for showing join-one (>-) usage

5.3.3 Walking from data to control (-=)

99

The control-join operator (-=) walks from that tblMedType record to an

orderInfo control whose record is bound to that tblMedType record.
The bang operator (!) accesses the Top property.

The right operand of the control-join operator (-=) must be a
template name. The left operand of the control-join operator must
be a record reference. The control-join operator (-=) navigates to at
most one control. If no control is found, the control-join (-=)
generates a null control.

5.3.4 Interaction

The designer specified statements for interaction. Common event
properties are Click, DoubleClick, KeyDown, etc. VisTool provides
system methods for basic functionality. We will show two examples.

Live search: In the patient-search form (Figure 34), the user can type

Figure 34–The live search

5.3.4 Interaction

100

in the textbox, and the results are shown immediately. The designer

specified the textbox Keyup event.

Textbox for searching

TextBox Name: txtName

Keyup: Requery()

Requery is a system method. It enforces a database query. After the
user presses a key, VisTool retrieves data from the database, and
recalculates formulas. As a result, the screen updates.

Change the timescale zooming factor: The user can drag on the
timescale to change the time zooming factor. Medicine boxes and
intake bars have to be realigned by the timescale after the user’s
dragging. Figure 34 shows the original presentation and the one after
user interaction. In the original presentation, boxes and bars are
cluttered. After the user’s drag, the date interval on screen is wider,
and bars and boxes are wider than the original one.

The designer specified the timescale BordersChanged event:

Change the timescale zooming factor

TimeScale Name: timeScale

BordersChanged: Refresh()

BordersChanged is an event property. It fires after the user drags on

the time scale. Refresh is another VisTool system method. It

evaluates formulas and sets property values when a property gets a
new value, and the screen updates accordingly.

5.3.5 An example of complex interaction

Figure 36 is the screen showing a patient's biopsy testing samples. The
screen is invented in the first release introduced in Chapter 4.1.6.

5.3.5 An example of complex interaction

101

The testing samples are shown by glyphs. In this example, the patient
got four biopsy tests. We create a Glyph template for biopsy samples.

The template for samples

Glyph Name: Sample

DataSource: parent -< Bronchial

The DataSource collects a specific patient's Bronchial records. As a

result, several glyphs are created for sample records.

An end user clicks a glyph, and a rectangle marks the glyph to inform
the user what has been clicked. This interaction requires dialog data
to represent what the end user clicks. Notice that dialog data is not
persisted in the database.

Figure 35–Change the timescale zooming factor

5.3.5 An example of complex interaction

102

Figure 36–Select, modify and persist samples

5.3.5 An example of complex interaction

103

Create dialog data: We first create a template to represent a marker,
and then create a property Selected to represent the dialog data.

The marker template

Glyph Name: Marker

Selected: Init -1 ' The sample selected

Visible: Selected >= 0

Initially, the Selected is -1, because a user has not clicked a sample
glyph yet. The Visible formula specifies that the maker is visible only
when a sample is selected. This dialog data (i.e. Selected) helps us
find the selected glyph.

The formula for searching the selected glyph

Sample[Marker!Selected]

The formula Marker!Selected is the index of that selected glyph. Then
we can show detailed information for that sample. For example, at the
top right corner, textboxes show sample details.

The textbox showing the testing date

Text: Sample[Marker!Selected].splDate Default ""

The textbox showing the testing ID

Text: Sample[Marker!Selected].splNumber Default ""

The textbox showing the remark

Text: Sample[Marker!Selected].remark Default ""

Set dialog data: The user clicks a glyph to select that sample. This
interaction should change the dialog data (i.e. Selected) in Marker.

Glyph: Sample

Click: Marker!Selected = me!Index, Refresh()

Click is an event property, which fires when a user clicks. The
formula tells that it first sets Selected as the current Index and then
refreshes the screen to show the marker.

To record a test result, the end user first marks the position where he
takes a biopsy for that patient. When she gets the testing results e.g.

5.3.5 An example of complex interaction

104

Benign, Indeterminate, Malignant, etc., she then changes the color
accordingly. This interaction changes the local data.

Modify records locally: for example, the user clicks the light-green
box representing Benign. It modifies the selected sample. Note that
this interaction only modifies a record locally. The change has not
been committed to the database yet.

A glyph template for showing the Benign box

Glyph Name: Ben

Click: Sample[Marker!Selected]. bronchial.result = 1,

Refresh()

Bronchial.result is a field. The formula sets the field in that selected
glyph, and then refreshes the screen to show the change that has been
made.

Commit changes to the database: Changes should be persisted in the
database. For example, we design that changes are committed in the
database when the user closes the form.

Commit changes to the database

FormClosing: Commit()

Commit is a system method. VisTool commits local changes e.g. row
creation, deletion, and modification made in the records to the
database. VisTool generates the SQLs accordingly.

5.4 Implementation rationale

5.4.1 Integrate database query into Formula Language

Next we will show the design decisions for integrating data query
into formulas. Cook discussed some design issues for solving the
problem of integrating database query languages and programming
languages, known as impedance mismatch [Cook 2006]. We will
discuss how the formula-based approach solves them.

5.4 Implementation rationale

105

Data typing. The first issue with data typing is that a primitive type in
a programming language may not exist in a database, or vice versa
[Cook 2006]. For example, Microsoft SQL 2000 defines a Unicode char
type (i.e. nvarchar). We cannot find a type for Unicode strings in C#.
A programmer usually does type conversions to make types
compatible in the programming language and the database. We
consider that type conversion is irrelevant to user interface design
and distracts designers. Hereby, the interpreter performs type casting
when generating a SQL.

The second issue with data typing is object-relational impedance
mismatch [Cook 2006]. In a relational database, data is organized in
rows and columns. In practice, data can be so complex that a single
table can hold only a part of data, and a new table is created to hold
additional data [Fin 2001]. For example, if we model that a bundle of
medicine records belongs to a patient record, we do not store
medicine records in a patient table. Rather we create a new table to
hold medicine records.

The user interface is within the object paradigm. It is not limited to
hold data in rows and columns [Fin 2001]. An object can hold other
objects by referencing. For instance, a form is an object. It can be the
placeholder of other user interface components such as textboxes,
buttons, etc.

The problem of addressing data between those two disparate
paradigms is known as object-relational impedance mismatch. The
design of a data presentation is to map relational data onto user
interface objects.

We have shown that Formula Language is a new way of solving
object-relational impedance mismatch.

Interpretation of Null values. "In SQL, null represents 'unknown'"
[Cook 2006]. For instance, with a null value in arithmetic operations,
null is returned. In many programming languages, the involvement
of a null value in calculations results in an exception. To avoid system
crash, programmers have to write exception handling in try-catch
blocks. However, exception handling is tedious in user interface

5.4 Implementation rationale

106

design, because property calculations are widely performed.
Considering that any exception handling would interrupt the design
process, we decided to make null interpretation consistent with SQL.
In Formula Language, null represents "unknown".

Static typing. Static typing means that the type of a value is
determined at compile time. It in principle improves system
performance, because some optimizations can be made at compile
time. However, it makes user interface design difficult. A designer
has to keep types in mind and produce values in the correct type.
Even worse, a designer might spend plenty of time in
trouble-shooting with types rather than user interface design. For the
sake of removing these complexities with types, Formula Language
has dynamic typing. The principle is that the interpreter detects the
type for the target property, and does type conversion when a
resulting value does not match the type.

Explicit Query Execution. Explicit Query Execution means that a
programmer writes and executes SQLs by programming APIs. For
example, with Java language, a programmer can embed a SQL query
in the java code, and sends the query to the database engine. Explicit
query execution improves a programmer's flexibility about
interaction with database. For example, the designer can rename a
field in the query. But Explicit Query Execution makes a query
difficult to compose. For instance, a designer has to collect all field
names and find out keys used in a join. This should not be done by a
designer and is irrelevant to user interface design. It contradicts our
goal of alleviating design complexities. So Formula Language does
not require explicit query execution.

However, some SQL clauses such as where, order-by, group-by, and
having are useful for data processing such as filtering, sorting, etc.
They are intuitive to learn and read. So they are applied in many
other query languages such as LINQ, SPASQL, etc. Similarly,
Formula Language provides those clauses to support data processing.

Prefetching Related Objects. This problem is also known as N+1
problem. Let's use an example to explain. In the patient heath record

5.4 Implementation rationale

107

overview (Figure 32), medOrderBox creates medicine boxes. The

DataSource formulas for frmPatient and medOrderBox are these:

FrmPatient

DataSource: tblPatient where ptID = param[0]

MedOrderBox

Parent: frmPatient

DataSource: parent -< relMedOrder

Semantically, the medOrderBox DataSource means that, for each
parent component, start from the parent record and then select

tblMedOrder records that are related to that parent record. Behind the
scene, VisTool generates a SQL query to retrieve records for the

DataSource. If we strictly follow the semantics, it means that if there

are N records in frmPatient, we would have N + 1 times database

queries to retrieve medOrderBox records. N is for the child-template

e.g. medOrderBox, and one is for the parent-template e.g. frmPatient.
The N+1 problem imposes a great overhead on performance.

David Maier stated a key requirement for solving impedance

mismatch: 'Whatever the database programming model, it must

allow complex, data-intensive operations to be picked out of

programs for execution by the storage manager, rather than

forcing a record-at-a-time interface [Cook 2006].

We deal with it by optimizaing the SQL generation. We can reduce
the database queries to two. One is for the parent template, the other
for the child template. VisTool first analyzes and processes the SQL

query in the parent (frmPatient). Clauses such as order-by and
group-by are removed, because some SQL engines do not accept
those clauses in a nested SQL. Then, VisTool embeds the processed

parent SQL in the child template (e.g. medOrderBox) SQL, and
appends the used fields and the other SQL-like clauses such as Top,
where, etc. Our solution is this:

The parent-template's SQL

SELECT tblPatient.ptName , tblPatient.ptID FROM

tblPatient WHERE ptID=1

5.4 Implementation rationale

108

The child-template's SQL

SELECT tblMedOrder.ptID , tblMedOrder.startTime ,

tblMedOrder.length , tblMedOrder.medID ,

tblMedOrder.orderID FROM ((SELECT tblPatient.ptID FROM

tblPatient WHERE ptID=1) AS NESTED1) LEFT join

tblMedOrder on NESTED1.ptID = tblMedOrder.ptID

Multilevel Iteration. Multilevel iteration means that "several levels of
multi-valued relationships are included in the results of a query"
[Cook 2006]. The cardinality of a multi-valued relationship is
one-to-many. Figure 37 shows Cook's pseudo-code for demonstrating
multilevel iteration [Cook 2006]. It is awkward to express multiple
navigation with one-to-many relationships in SQL [Cook 2006].
Figure 38 is the corresponding ER model. The Department has a

one-to-many relationship to Employee. The Employee has a

one-to-many relationship to Project. Cook explained that "If there are
n departments in Austin and on average m employees per
department in Austin, 1+ n +nm queries would be executed" [Cook
2006].

foreach (Department d in DB.GetDepartments().OrderBy(d =>
d.name)) {
 if (d.city == "Austin") {
 print(d.name);
 foreach (Employee e in d.employees.OrderBy(e =>
e.name)) {
 print(e.name);
 foreach (Project p in e.projects.OrderBy(p =>
p.name))
 print(p.name);
 }
 }
}

Figure 37–Pseudo code for showing multilevel iteration

5.4 Implementation rationale

109

When we were analyzing this problem, we found that our
improvement in Prefetching Related Objects was sufficient for solving
the Multilevel Iteration. So we did not introduce extra concepts into
Formula Language to solve this particular problem. We create three
templates to show our solution.

txtDepartment

Parent:

DataSource: department where city = "Austin"

TxtDepartment's parent is not specified. By default, the second

template will be rooted in txtDepartment. The DataSource indicates

that it collects the Department records whose city matches "Austin".

txtEmployee

Parent: txtDepartment

DataSource: parent -< relEmployee order by Employee.name

Text: name

The DataSource symbolizes a walk from the rooted table Department

to the table Employee. Furthermore, the records are sorted by

Employee name. The Text shows Employee name.

txtProject

Parent: txtExployee

DataSource: parent -< relProject order by Project.name

Text: name

TxtProject's parent is txtEmployee. For each txtExployee, the

DataSource walks to Project records. The records are sorted by

Project name. The Text shows Employee name.

With our improvement in Prefetching Related Objects, the interpreter
generates three SQLs to retrieve records, one for each template.
Furthermore, VisTool manages the parent-child hierarchy. Children
sharing the same parent are grouped in a bundle referring to that
parent.

5.4 Implementation rationale

110

Parameterized Queries. Parameterized queries means that parts of a
SQL query can be composed by an end user interaction. For example,
Figure 39 shows the patient-search form. An end user can type in the
textbox to perform a live search. Those screens in Figure 39 are the
first release introduced in Chapter 4.1.4. Let's see the generated SQLs
for the patient-search form when the end user interacts.

VisTool generates

SELECT Patient.ptname, Patient.ptid, Patient.address1

FROM Patient WHERE [ptname] like "%j%"

Figure 38–The ER model for multilevel iteration

5.4 Implementation rationale

111

VisTool generates

SELECT Patient.ptname, Patient.ptid, Patient.address1

FROM Patient WHERE [ptname] like "%jo%"

Most parts of the SQLs remain the same. Only the like operand is
changing. For instance, when an end user is typing 'j', the resulting
like operand is "%j%". Hereby, the like operands are parameters.

Cook points out that "query parameters are awkward to specify" with
Explicit Query Execution [Cook 2006]. Although VisTool does not
support Explicit Query Execution, Formula Language supports
parameterized queries. A designer can define query parameters in the
where clause. For instance, a designer can use property names as
query parameters. He can write this formula:

Patient where ptName = txt!Text

The interpreter replaces txt.Text with its runtime value and generates
the SQL.

Figure 39–The patient-search form

5.4 Implementation rationale

112

Normally, parameters are property values. However, a form is an
exception. It cannot have query parameters based on itself and its
controls. That's because controls cannot provide values until they
come into existence. When a designer defines query parameters for a
form, the form as well as its child controls are not created yet. So
query parameters for a form must be from the external world, for
instance, from another form. What is missing is how a form accepts
query parameters from elsewhere. We must provide a new concept to
help the designer out of this situation. So we designed a keyword

Param so that a form can accept parameters. As we introduced

before, Param is an object array, and can be used like a property
value. The designer can write this formula:

Patient where ptID = param[0]

Dynamic Queries. Dynamic queries mean that SQL queries are
constructed at run-time [Cook 2006]. For example, a database usually
contains a large amount of data, but the end user's screen cannot
show all of them. A popular way is to split the database contents in
pages. Each time the screen shows only one page. To support the
paging, a designer can bind a page number to the scrolling position of
a scroll bar. When an end user scrolls the bar, the page number is sent
to a SQL procedure and contents for a new page are retrieved from
the database. The application re-renders the screen to show the new
contents. Shneiderman shows that the dynamic query technique
significantly improves some usability factors such as task efficiency
and satisfaction [Shneiderman 1994]. The live search that we have
shown is another example of dynamic queries.

From the formula point of view, each round of a dynamic query is a
formula recalculation, because formulas are the same and what
changes are the resulting SQL queries. Several design steps are
needed to support dynamic queries:

 First, the designer creates a user interface component for
providing query parameters. For example, in that live search, the

textbox provides a query parameter for ptName.

 Second, the designer writes a dynamic expression in

DataSource.

5.4 Implementation rationale

113

 Third, the designer needs a mechanism of re-querying the
database and recalculating property values. This is realized by

calling the Requery method in an appropriate event property.

For example, in that live search, Requery is specified in the

KeyUp property. As a result, whenever an end user types in the

textbox, new SQLs are constructed by a typing interaction and
property values are re-calculated, which re-renders the
patient-search form.

Based on this principle, a designer can implement more sophisticated
dynamic queries.

5.5 Formula Language Semantics

5.5.1 Notation

 Rst is a record set. A record set contains one or more tables. Trst is
the set of tables in rst. Prirst is the primary table in Trst.

 Ctl is a control. Recctl is ctl’s associated record. Tctl is the set of
tables in recctl. Prictl is the primary table in Tctl. If ctl has no
record, recctl and prictl are null, and Tctl is empty.

 Rel is a relationship. The relationship rel defines a start table
startrel , a target table targetrel , and the key fields in startrel and
targetrel to join on. If startrel key fields are a primary key, the rel
cardinality is 1:m. If targetrel key fields are a primary key, the rel
cardinality is m:1.

 Recref is a record reference. The reference recref contains a
reference to the target table targetrecref and contains the key fields
and the key values.

 Tpl is a template.

 Fld is a field. Tfld is the table that fld belongs to.

 Aggr is an aggregate.

5.5 Formula Language Semantics

114

5.5.2 Join-many (-<)

 ctl -< rel : Record set

The result is a record set . Ctl must be Parent. Parent is a
keyword meaning the parent control. The rel start table must
be one of the ctl tables. The rel start key fields are a primary
key, because the rel cardinality is 1:m. The join-many operator
(-<) left-joins the ctl record with the related target table

records. If the rel start table is the ctl primary table, the
primary table in the new record set is the target table,
otherwise the primary table is null and the result records are
the Cartesian product between the ctl record and the target
table records that are related to that ctl record.

Example: Parent -< relIntake. The parent control record is a medicine
order. The formula produces a record set consisting of intakes that are
related to the parent control record. Each result record contains fields

from tblIntake and from the parent control record. If there is no
related intake, the result record set has one record with fields from

the parent control record and null for tblIntake fields. The primary

table in the new record set is tblIntake.

 rst -< rel : Record set
The result is a record set . The rel start table must be one of
the rst tables. The rel start key fields are a primary key,
because the rel cardinality is 1:m. The join-many operator (-<)
selects a record from the original record set, and left-joins the
record with the rel target table records. This process occurs for
each record in rst. The individual record sets are merged. If the
rel start table is the rst primary table, the primary table in the

Expression Result Condition Cardinality Example

ctl -< rel Record set startrel ∈ Tctl 1:m Parent -< relIntake

rst -< rel Record set startrel ∈ Trst 1:m
tblPatient -<

relMedOrder

5.5.2 Join-many (-<)

115

new record set is the target table, otherwise the primary table
is null and the result records are the Cartesian product
between the rst records and the target table records that are
related to those rst records.

Example: tblPatient -< relMedOrder. TblPatient is a set of patient records.
The formula produces a record set consisting of medicine orders that
are related to the patient records. Each result record contains fields

from tblMedOrder and from tblPatient. If a patient record does not
have a medicine order, the result record set has one record with fields

from tblPatient and null for tblIntake fields. The primary table in the

new record set is tblMedOrder.

Example: tblPatient -< relMedOrder -< relNotes. The start table of relNotes
is tblPatient. As a consequence, the result is the Cartesian product

among tblPatient, tblMedOrder, and tblNotes.

5.5.3 Join-one (>-)

 rst >- rel: Record set

The result is a record set. The rel start table must be one of
the rst tables. The rel targetrel key fields are a primary key in
the rel target table. The join-one operator (>-) selects a record
from the original record set , and left-joins the record with the
rel target table record. This process occurs for each record in

Expression Result Condition Cardinality Example

rst >- rel Record set
startrel ∈
Trst

m:1
tblMedOrder >-

relMedType

ctl >- rel RecordRef
startrel ∈
Tctl

m:1 me >- relMedType

recref >- rel RecordRef
startrel ∈
Trecref

m:1
Me >- relMedOrder >-

relMedType

5.5.3 Join-one (>-)

116

rst. The individual records are merged. The primary table is
the rst primary table.

Example: tblMedOrder >- relMedType. TblMedOrder is a set of medicine
order records. The formula produces a record set consisting of
medicine type records that are related to the medicine order records.

Each result record contains fields from tblMedType and from

tblMedOrder. If a medicine record does not have a related medicine

type, the result record set has one record with fields from tblMedOrder

and null for tblMedType fields. The primary table in the new record

set is tblMedType .

 ctl >- rel : RecordRef
The result is a record reference. The rel start table must be
one of the ctl tables. The rel target key fields must be a

primary key, because the rel cardinality is m:1. The join-one

operator (>-) creates a record reference to the rel target table. .

Example: me >- relMedType. The current control record is a medicine

order record (tblMedOrder). The formula produces a record reference

to tblMedType.

 recref >- rel : RecordRef
The result is a record reference. The rel start table must be the
recref target table. The rel target key fields must be a primary
key, because the rel cardinality is m:1. The join-one operator
(>-) selects the recref record, and creates a record reference to
the rel target table record.

Example: Me >- relMedOrder >- relMedType. The formula produces a

reference to tblMedType.

5.5.4 Control-join(-=)

117

5.5.4 Control-join (-=)

 ctl -= tpl : Control
The result is a control. The ctl primary table must be the tpl
primary table. The control-join operator (-=) selects the ctl
record primary keys, and finds a tpl control by matching the
equal tpl primary key values. If there is no matched tpl
control, the result is null.

Example: Me >- tplMedOrderType. The Me DataSource is parent -<

relMedOrder. The current control primary table is tblMedOrder.

The template tplMedOrderType DataSource is parent -<

relMedOrder >- relMedType. The tplMedOrderType primary table is
tblMedOrder. The formula produces a tplMedOrderType control
sharing the same medicine order record with the current control

(Me).

 recref -= tpl : Control
The result is a control. The recref target table must be the tpl
primary table. The control-join operator (-=) selects the recref
keys, and finds a tpl control by matching the tpl primary key
values. If there is no matched tpl control, the result is null.

Example: Me >- ctlJoinMedOrder -= orderInfo. The ctlJoinMedOrder

target table is tblMedOrder. The template orderInfo DataSource is

parent -< relMedOrder >- relMedType. So the orderInfo primary table
is the ctlJoinMedOrder target table. The formula produces the

Expression Result Condition Cardinality Example

ctl -= tpl Control
Prictl =
Pritpl

m:1
Me >-

tplMedOrderType

recref -= tpl Control
targetrecref
= Pritpl

m:1
Me >-

ctlJoinMedOrder -=

orderInfo

5.5.4 Control-join(-=)

118

orderInfo control containing the same record reference (Me >-

ctlJoinMedOrder) key values.

5.5.5 Dot (.)

 ctl . fld : Field value
The result is a field value. The fld table must be one of the ctl
tables. The dot operator (.) first selects the ctl record and then
selects the fld value.

Example: Me . ptName. The current control (Me) record is a patient
record. The dot operator (.) selects the Me record, and then

selects ptName value.

 recref . fld : Field value
The result is a field value. The fld table must be the recref
target table. The dot operator (.) first transforms the record
reference recref into a record, and then selects the fld value in
that record.

Example: Me >- relMedOrder . medName. Assume that the current record
is a patient record. The dot operator (.) produces The formula

produces the medName value.

 ctl . aggr : Aggregation value
The result is an aggregate value.

Example: Me . count(*). Assume that the current control (Me)
record is a medicine order record. The dot operator (.) selects

Expression Result Condition Example

ctl . fld Field value Tfld ∈ Tctl Me . ptName

recref . fld Field value Tfld = targetrecref
Me >- ctlJoinMedOrder .

medName

ctl . aggr
Aggregation

value
 Me . count(*)

5.5.5 Dot (.)

119

the Me record, and then selects the count value. It tells the
number of medicine orders.

5.5.6 Bang (!)

 ctl ! prop : Property value
The result is a property value. The bang operator (!) selects the
ctl and then selects the prop value.

Example: Me ! Left. Me is the current record. The bang operator (!)

selects Left value.

5.5.7 Control indexing ([])

 ctl [expr] : Control
The result is a control. The expr result must be an integer n.

The control indexing operator ([]) first selects the ctl bundle
and then selects the nth control in that bundle.

Example: me [Index - 1] returns the previous control of Me in Me
bundle.

5.6 DataSource semantics

DataSource is a template property. It must be a record set or a record

reference. The evaluation result is a record set.

 ctl >- rel

DataSource evaluates ctl >- rel for each control created by the
ctl template. In each iteration, the evaluation result is a record

Expression Result Example

ctl ! prop Property value Me ! Left

Expression Result Condition Example

ctl [expr] Control expr returns an integer Me . ptName

5.6 DataSource semantics

120

reference. DataSource merges the record references as one
record set.

 recref >- rel

DataSource evaluates it for each control created by the ctl
template, and the evaluation result is a record set.

 ctl -< rel

DataSource evaluates ctl -< rel for each control created by the
ctl template. In each iteration, the evaluation result is a record
set.

 rst

The DataSource evaluation result is the record set rst.

DataSource defines some operations.

(1) Collect fields. DataSource collects the fields that are used in all

formulas that refer to the current template. The collected fields are
used in the SQL select clause. For example, in the health overview

(Figure 29), the template frmOverview collects the field ptName,

because ptName is used in the Text formula. Note that fields may

be referred by other templates. For example, the ptName is referred
by another template lblPatientName. The text formula refers to

ptName in its parent template (frmOverview):

LblPatientName

Text: "Patient: " & parent.ptName

Parent: frmOverview

(2) Collect relationships and tables. DataSource collects the
relationships that refer to the current template. The collected
relationships are used for joining tables in the SQL. For instance,
in the previous section we created a new template to show
medicine names next to the medicine orders in the health
overview (Figure 33). The text formula was:

5.6 DataSource semantics

121

Medicine name labels showing next to the medicine boxes

Label Name: medOrderBox_Name

Text: me >- relMedType.medName

The relationship relMedType is collected in the medOrderBox_Name

DataSource. Note that the relationships should be collected in the

target template DataSource, because a relationship may be
referred by other templates. In that example, the target template is

medOrderBox_Name.

From the collected relationships, DataSource derives a list of
tables to which the record set refers. For instance, for the formula
tblPatient -< relMedOrder -< relIntake, the table list to which the

DataSource refers is tblPatient, tblMedOrder and tblIntake.

(3) DataSource creates a child control for each record.

122

Chapter 6 VisTool Implementation

In this chapter, we will explain the formula interpretation. We will

also explain how we generate a SQL for DataSource and show an

algorithm for the formula calculation.

6.1 Formula Language syntax

Here is an overview of the Formula Language grammar in Backus–
Naur Form (BNF).

6.1 Formula Language syntax

123

Figure 40–Overview of the Formula Language grammar

Constant is integer constants, double constants, string constants and
date time constants. Ident is a name that can refer to a property, a
field, a relationship, etc. For example, a designer can write the name
Text to refer to the property Text.

SqlExpr accepts anything and produces a string. However, in a
SQLExpr if a token is an identifier and is recognized as a property or
method, that identifier is substituted with its runtime value.

6.1 Formula Language syntax

124

Otherwise, the token is compiled into a string. We show some
examples:

Formula
Expr

evaluation

SQLExpr

evaluation
Comments

1 + 2 3 1+2

1 +
me!Height

3 1+2

(1) The value of Height is 2.

(2) In the SQLExpr, me!Height

is recognized as a property.

1 + N Error 1+N N is not a property or method.

1 *% 6^^ Error 1 *% 6^^

(1) The Expr does not accept

that formula.

(2) SQExpr accepts anything,

and none of the tokens is a

property name or a method

name. So SQLExpr takes the

formula as it is, and compiles it

into a string.

6.2 Path compilation

A challenge of the Formula Language compiler is the state machine.
In the Formula Language, an identifier can be a table name, a
relationship name, a property name, a method name, a field name,
etc. Each identifier is compiled into an expression object.
Furthermore, the Formula Language supports walking from one
object (e.g. a control) to another (e.g. a record reference). For instance,
the formula me >- rel walks from a control to a record reference
following the relationship rel. The compilation of those kinds of
walking links expression objects as an expression tree.

6.2 Path compilation

125

Figure 41 shows the state transition diagram for compiling a Path
(Figure 40). A rounded box is a state. An arrow is a state transition.
The text along an arrow is the expression that enables a transition.

 Field: VisTool collects fields for the SQL select in this state. The
state that walks to Field must be Control. In the Control state, we
have a control. The template that creates the control is the target
template. The target template collects the field.

For example, in the health overview, the Text formula of the patient

label (lblPatientName) is this:

Label Name: lblPatientName

Text: parent.ptName

Parent: frmOverview

In Text, parent indicates that frmOverview is the target template and

frmOverview collects ptName.

 Aggregate: Similar to Field, the target template collects
aggregates in this state. VisTool populates the collected
aggregates in the select query.

 Record: VisTool collects relationships in this state. The state that
walks to Record must be Control. The target template collects the
relationship in this state. VisTool generates the SQL based on
those relationships.

6.2 Path compilation

126

Figure 41–The state transition diagram for compiling Path

6.2 Path compilation

127

 Recordset: VisTool collects relationships in this state. If there is a
Control involved in the transition, the target template is the one
that creates that control. Alternatively, the designer should write
map.setName to walk to RecordSet. In this case the target
template is the current template that the formula belongs to. The
target template collects the relationship in this state. VisTool
generates the SQL based on those relationships.

VisTool allows table-name prefixes for fields and relationships. It
distinguishes if a table name is a record set or a prefix. VisTool also
makes use of operators to resolve naming conflicts. For instance, bang
(!) accesses a property when the following name is a property.

6.3 Dynamic Typing

Programming languages e.g. C#, VB.NET, etc. are strongly typed. In

Windows Forms, any control property has a type. For example, Text

is of string, Width is of 32-bit integer, and Background is of Color. If a

programmer assigns a string to Width, an exception will be thrown,

and the screen will not show correctly. The application may even
crash. So programmers usually have to cast the result to the correct
type.

If a user interface designer considers type casting, the system is
cumbersome to use. To overcome it, VisTool is a dynamic typing
system. It automatically converts a formula result to the type that a
property accepts. For example, the designer writes the formula:

BackColor: "Green"

The BackColor result is an expression tree. It is shown in Figure 42.
VisTool detects that BackColor is of Color but the formula is a string,
so VisTool attaches a ColorConverter as the tree root. ColorConverter
takes an expression object as input and converts its evaluation result to

Color. In this example, ColorConverter takes an ExpressionList, and
the ExpressionList has only one element referring to a constant string.

6.3 Dynamic Typing

128

Alternatively, the designer can specify green in the Red-Green-Blue
(RGB) model:

BackColor: 0, 255, 0

In this case, the formula consists of three integers which correspond
to red, green, and blue. Those three additive colors mix together to
produce the intended color. The evaluation result of that formula is
shown in Figure 43. In this example, the ExpressionList consists of an
array. Each element in that array is a constant. The ColorConverter
takes the ExpressionList as input and transforms them into the color.

6.4 VisTool user interface description language

As we introduced in the section 4.1.5 Deployment, the designer's user
interface is saved in a vis file. A vis file is a user interface description
file. It specifies the formulas and the templates created by the
designer.

Figure 42–Color converter

for string

Figure 43–Color converter for an integer array

6.4 VisTool user interface description language

129

Many advanced HTML designers do not use sophisticated HTML
design tools such as Dreamweaver. Instead they like to write HTML
directly. Similarly, advanced VisTool designers may not use VisTool
Studio, but use a text editor (e.g. Notepad in Windows) to design the
user interface. So the readability of the VisTool user interface
description language is important to those advanced designers.

Many user interface description languages are XML-based such as
Extensible Application Markup Language (XAML), User Interface
Markup Language (UIML) [Abrams 1999], USer Interface eXtensible
Markup Language (USIXML) [Limbourg 2004], etc. XML is suitable
for a computer to process. However, XML is quite difficult to read for
humans. It contains many noisy mark-ups such as opening and
closing brackets, quotes, etc. The user has to match brackets and
terms carefully when writing the user interface description in an
XML-based language.

6.4 VisTool user interface description language

130

We will take XAML as an example. Figure 46 is the screen that we
will make with XAML and with VisTool. Figure 44 shows the user
interface description in XAML. It starts with complex declarations of
namespaces. Those namespaces must match for creating a control. It
is quite user unfriendly to non-programmers. It is also error-prone

and cumbersome for a programmer to write those kinds of

Figure 46–The screen for comparing user interface description languages

Figure 44–XAML Figure 45–VisTool

6.4 VisTool user interface description language

131

description. Figure 45 is our solution to the same screen. We
deliberately align VisTool code to the XAML version so that readers
can compare. We show the grammar of VisTool user interface
description language in Figure 47. The grammar is straightforward.
So unlike XML-based user interface description languages such as
Extensible Application Markup Language (XAML), VisTool user
interface description language has a high readability.

Vis ::= { identifier <!— A form property -->

 :" ANYButNewLine } <!— A formula -->

 { NewLine "-" {"-"}

 NewLine <!— A template separator -->

identifier <!— A template type -->

 ":" identifier <!— A template name -->

 { NewLine

identifier <!— A template property -->

 ":"

ANYButNewLine } <!— A formula -->

 }

Figure 47–The grammar of the VisTool user interface language

132

Chapter 7 Evaluation

In Chapter 2.9, we defined the research questions:

 (1) Is it possible to develop user interfaces and customized
visualizations with spreadsheet-like formulas?

 (2) Is this formula-based approach accessible to user
interface designers?

To answer these questions we will evaluate VisTool in these ways:

 (1) VisTool expressive power – what kinds of graphical
presentations VisTool can build.

 (2) VisTool usability.

 (3) VisTool performance (speed).

The expressive power shows how much a designer can do with
VisTool. For instance, can they make customized visualizations and
create new visualizations?

To evaluate VisTool usability, we first use Cognitive Dimensions and
compare VisTool with the other state-of-art tools. We use Cognitive
Dimensions, because Cognitive Dimensions can be used to evaluate
artifacts in the early development phase [Green 1998] at which time
VisTool was not stable for usability testing. Furthermore, Cognitive
Dimensions are useful for evaluating a system that must consist of
notation and its environment [Kutar 2000]. Second, we conducted
usability tests. When the author left the project, VisTool was unstable
for usability testing. For instance, the system crashed when formulas
were wrong and gave no useful error messages. The other team
members continued development and conducted usability tests. We
will summarize their results. Third, we compare development efforts
with VisTool and with the traditional rapid application development.
It indicates to what extent VisTool improves development time (i.e.
task efficiency).

Chapter 7 Evaluation

133

Software with inadequate performance will never be usable to the
end user. For this reason we also evaluate VisTool performance.

Figure 48–The Data State Reference Model [Chi 2000]

7.1 An evaluation of expressive power

134

7.1 An evaluation of expressive power

In this section, we will utilize a taxonomy of visualization techniques
to evaluate VisTool expressive power – what kinds of graphical
presentations that VisTool can build. The taxonomy is based on the
Data State Reference Model [Chi 2000]. Figure 48 shows a data flow
diagram of the model [Chi 2000]. The model decomposes the
visualization pipeline into three data processing steps – Data
Transformation, Visualization Transformation and Visual Mapping
Transformation, and four data stages – Within Value, Within
Analytical Abstraction, Within Visualization Abstraction and Within
View. The first data stage (i.e. Value) is raw data. The last stage (i.e.
View) is a data presentation that an end user sees. The other data
stages are intermediate data between the raw data and the
presentation.

A contribution of the taxonomy is that it lists the required operators
in each step for various visualizations. There are two kinds of
operators: (1) operators that change underlying data structure and (2)
the ones that do not [Chi 2000].

 The operators that do not change underlying data structure are
Within Stage Operators – Within Value, Within Analytical
Abstraction, Within Visualization Abstraction, and Within View.
Each kind of operators corresponds to one data stage. They take
data in corresponding stage and produce another data. For
example, filtering and sorting are Within Analytical Abstraction
operators, and do not change data structures.

 The operators that change underlying data structures are
Transformation Operators, which correspond to three data
process steps respectively. For example, parsing information into
records creates a set of records, and data structures are changed.

The table shows the stage descriptions from the Data State Model. We
also show what each stage is for VisTool.

7.1 An evaluation of expressive power

135

Stage
Description from the

Data State Model

Description in the context

of VisTool

Value
The raw data [Chi

2000].
Database rows

Analytical

Abstraction

Data about data, or

information [Chi 2000]

ADO.NET rows

representing database

rows, table and field

descriptions.

Visualization

Abstraction

Information that is

visualizable on the

screen using a

visualization technique

[Chi 2000]

ControlInstance objects. A

ControlInstance

encapsulates .NET

controls (i.e. visual

objects) with the

corresponding Analytical

Abstraction (i.e.

ADO.NET rows).

View

The end-product of the

visualization mapping,

where the user sees and

interprets the picture

presented to her [Chi

2000].

Visual objects on screen

Similarly, we show the processing steps from the Data State Model
and what they mean to VisTool.

7.1 An evaluation of expressive power

136

Processing Step
Description from the

Data State Model

Description in the

context of VisTool

Data

Transformation

Generates some form

of analytical abstraction

from the value [Chi

2000].

Queries the database.

Visualization

Transformation

Takes an analytical

abstraction and further

reduces it into some

form of visualization

abstractions, which is

visualizable content

[Chi 2000].

Creates a

ControlInstance object

for each row. A

ControlInstance contains

fields, properties for

analytical purposes (e.g.

Index), and visual object

properties. Formulas

specify those values.

Visual Mapping

Transformation

Information that is

visualizable on the

screen using a

visualization technique

[Chi 2000].

Creates zero or more

visual objects based on

the template selected by

the designer.

We cannot directly apply the Data State Reference Model in user
interface design.

First, the model assumes that each visual object in a View represents a
data item from the Value (i.e. raw data). But this is not completely
true in user interface design. A user interface object might not
represent data, but represents a function. For example, a button
represents a function for opening a file. As a result, some visual
objects will become a View without going through Data
Transformation and Visualization Transformation.

7.1 An evaluation of expressive power

137

Second, the model does not take dependency into account. For
example, the position of a View might depend on another View's
position. Data Transformation, the 1st processing step in the
visualization pipeline, might need the View's data for an end user's
input.

Third, although the model describes some interaction operators such
as dynamic-querying, it does not suggest the impact of interactions on
the Value (i.e. raw data). For example, an interaction might change
the raw data such as database contents, images on the disk, etc. The
model does not suggest what should happen to the visualization
pipeline after such changes are made.

So we make some assumptions in the model for evaluation.

 Each template has its own visualization pipeline.

 If a template has an unspecified DataSource, it creates a visual

object without Data Transformation and Visualization
Transformation.

 If a property depends on another template's property, the
formula calculation might start the visualization pipeline of the
dependency template.

 A user interaction might result in new visualization pipelines to
re-generate the final presentation (i.e. View).

We will show what operators VisTool provide. After that, we
introduce what operators in the taxonomy are supported by VisTool
operators. Because the taxonomy classifies operators for various
visualizations, we can conclude the VisTool expressive power. This
evaluation can also give hints on how to implement various graphical
presentations by combining operators, and what operators we can
provide in the future to support novel graphical presentations.

7.1 An evaluation of expressive power

138

Operator
An Example of operator

specification
Comments

Within Value (Database rows)

Query the database N/A
This is managed by

VisTool.

Commit changes

into the database
Click: Commit()

In the example, the

current template is a

Button.

Data Transform (Database query)

Sort records
DataSource: tblPatient

order by ptID

In the example, tblPatient

is a table. PtID is a field

of tblPatient.

Sort records with

new pipelines

DataSource: tblPatient

order by txt!Text

In the example, txt is

another template. Its

DataSource is

unspecified.

Filter out records
DataSource: tblPatient

where ptID=1

Filter out records

with new pipelines

DataSource: tblPatient

where ptName = txt!Text

In the example, ptName

is a field,

Group records
DataSource: tblPatient

group by age

In the example, age is a

field,

Re-query Click: Requery()

All records are deleted

first. Re-query the

database and create new

records.

In the example, the

7.1 An evaluation of expressive power

139

current template is

Button. Click is an event

property.

Join a table
DataSource: tblPatient -<

relMedOrder

RelMedOrder is a

relationship from

tblPatient to

tblMedOrder.

Create a one-level

parent-child

hierarchy

Parent: chartBox

This operator applies for

data hierarchy.

In the example, chartBox

is a template.

Concatenate fields

from a new table

Text: me >- relNote .

Decription

In the example, the

current DataSource is

tblMedOrder. RelNote is

a relationship from

tblMedOrder to tblNote.

Within Analytical Abstraction (Row)

Access a field or

an aggregate field
Text: me . Count(*)

In the example, the Text

formula creates an

aggregate field. The result

is a total number of

records.

Access a field or

an aggregate field

with new pipelines

Text: lblPatient . Count(*)
In the example, lblPatient

is a template.

Change a field

value in a row
Click: Sample . result = 1

In the example, sample is

a template. Result is a

field in the sample. Click

is an event property.

7.1 An evaluation of expressive power

140

Delete/Create a

row

Visualization Transformation

Transform a

domain value into

a presentation

value

BackColor: state = 1 ?

"Green" : state = 2 ?

"Yellow" : state = 3 ?

"Red" : "Black"

In the example, state is a

field.

Transform a

domain value into

a presentation

value by a built-in

method with new

pipelines

Left:

timeScale!HPos(startTime)

In the example, timeScale

is a template. HPos is a

built-in method to

transform a DateTime

value into the pixel

position on screen.

Calculate a

presentation value
Height: Me!Index * 10

Calculate a

presentation value

with new pipelines

Height: Me!Index * 10 +

txt!Left

In the example, txt is a

template.

Set z-Order ZOrder: 10

Z-Order is a special

operator. Changes on

z-Order results in a new

parent-child hierarchy of

visual objects. This

operator applies for the

visual hierarchy.

Set z-Order with

new pipelines
ZOrder: txt ! Zorder

7.1 An evaluation of expressive power

141

Within Visualization Abstraction (Row + Visual object properties)

Set container Container: panel
This operator will result

in a new pipeline.

Find a visual

object

Example 1: Me -=

StationLabel

Example 2: Me ! Find

("ptID = 1.2")

This operator will result

in a new pipeline.

In the second example,

Find is a method provided

by a template.

Refresh screen Click: Update()

This operator might result

in a new screen, because

formulas will be

re-calculated and visual

object properties will be

reset. But the operator

does not change the

underlying row.

Visual Mapping Transformation

Create visual

objects based on

the template

N/A
This operator is managed

by VisTool.

Set presentation

values e.g. color,

left, etc.

N/A
This operator is managed

by VisTool.

Within View

Rotate
This operator is supported

by some visual objects.

Open a new

form/dialog

This operator starts

pipelines for the new

form.

7.1 An evaluation on expressive power

142

We will give a broad-brush introduction on what taxonomy operators
VisTool supports. There are several reasons that we cannot show a
comprehensive evaluation for each operator. First, the operators
explained in the taxonomy take many forms in VisTool. Some require
a designer's specification, some don't. Some are applied by formulas;
some are done by templates. Some are realized by VisTool operators
(e.g. -<, -=, etc.), some by template methods, and so forth. Second, a
designer might combine several VisTool operators to implement a
taxonomy operator, or vice versa. For instance, to implement an
operator for TileBars "each rectangle corresponds to a document" [Chi
2000], the designer first applies VisTool operator "create a one-level
parent-child hierarchy" and then applies "join a table". To do these, he

should specify Parent and write something like this: parent -< relName.

Last, some Visual Mapping operators in the taxonomy are based on
the traditional component-based approach. This differs from VisTool
notion of assembling graphical primitives. Hereby, we cannot simply
map VisTool operators to taxonomy operators.

Data Transformation operators. If the records are already stored in a
relational database, VisTool supports most taxonomy operators.
Otherwise, VisTool supports none of them at the time being. Some
taxonomy operators are directly supported such as "parse information
into records", "parse into feature records", "extract into graph", etc.
Those records are widely used in 2D visualizations, and are
supported by VisTool. Some taxonomy operators require that the
records are structured in a way that supports the visualization. For
example, "create graph from web structure by crawling the website"
requires that database tables store nodes and edges for a directed
graph describing a web structure. Some operators such as "create text
frequency vector" can be realized by aggregate functions.

Within Analytical Abstraction operators. VisTool supports a few
taxonomy operators such as "allow multiple attributes to be chosen
for several ValueBars", "choose variables of displayed statistics", etc.
Those operators read fields from rows. Some other taxonomy
operators are supported by the VisTool Data Transformation

7.1 An evaluation on expressive power

143

operators such as sorting, filtering, etc. For example, "choosing a
subset of records using dynamic value-filtering" is supported by the
VisTool operator "filter out records". Other taxonomy operators such
as the operator "normalize sample" are supported by SQL procedures.

Some Analytical Abstractions are not data, but functions. For
instance, "mathematical functions" are an Analytical Abstraction for
FINESSE. VisTool does not support them.

Visualization Transformation operators. Some taxonomy operators
such as "create linear list of records", etc. do not have
correspondences in VisTool. That is because in previous steps VisTool
has already made the records available. The taxonomy operators such
as "do breadth first traversal" are supported without a designer's
specification. VisTool automatically enumerates those records when
calculating formulas. Many taxonomy operators such as "each
rectangle corresponds to a document", "create lines on 2D spot",
"create multi-dimensional point sets", etc. can be implemented by the
combination of VisTool operators "create a one-level parent-child
hierarchy" and "join a table".

VisTool does not support operators that require an algorithm such as
"form nested graphs from earlier extracted graphs", "transform into
graphs and networks", "create breadth first traversal tree", "form
navigation spanning trees", etc. However, please note that those
operators can be supported by template methods or
programmer-supplied functions. VisTool team does not provide
standard implementation for those operators.

7.1 An evaluation on expressive power

144

Figure 49–Operators for aggregations

7.1 An evaluation on expressive power

145

Within Visualization Abstraction operators. The taxonomy operator
"apply unmapped variable filtering" does not require formula
specification in VisTool, because VisTool does not generate
unmapped variables. For example, if a field is not mapped to the
View, that field is not created by VisTool Data Transformation
Operators. The "dynamic value-filtering" can be supported by VisTool
template functions.

The other taxonomy operators are not supported by VisTool. They
locally create datasets based on the previous step (i.e. Visualization
Transformation).

Visual Mapping Transformation operators. Those operators create
visual objects and map Visualization Abstraction onto the View. As
we introduced before, VisTool stores property values only in visual
objects. Hence, there is not a transformation step. In VisTool, Visual
Mapping Transformation operators show View. As a result, many
operators in the taxonomy can be implemented in the same way by
writing formulas.

VisTool provides a number of visual building blocks (e.g. arcs, bars,
etc.). For example, for Lifelines, "creating lines on 2D spot" is a
Visualization Transformation operator [Chi 2000]. With VisTool, a
designer creates a bar template to represent those lines. For Parallel
Coordinates (e.g. Figure 50), the Visualization Transformation
operator "plot point set using parallel coordinates" is realized by a
line template.

Some taxonomy operators calculate values for visual properties. They
transform a domain value into a presentation value. A designer can
do a value transformation by a template built-in method. Usually,
those template built-in methods are not developed by designers.
Alternatively, a designer defines how a domain value is transformed
using formulas, for example, he defines it by means of arithmetic
calculations. Many other operators such as "line colors and thickness
indicate relation or significance" are realized by formulas as well.

7.1 An evaluation on expressive power

146

VisTool does not support 3D operators such as "Create surface in 3D",
"Plot using 3D bar charts", etc.

Within View operators. Those operators do not change the View
structure (i.e. visual parent). VisTool supports only two operators:
Rotation and Scroll.

7.1 An evaluation on expressive power

147

Figure 51–Two presentations for the same data

Figure 50 – Parallel coordinates

7.1 An evaluation on expressive power

148

Figure 52 – a tree view presentation

-=
 is

 u
se

d
 f

o
r

fi
n

d
in

g
tw

o
 b

o
x

en
d

s
fo

r
a

lin
e

-=
 is

 u
se

d
 f

o
r

fi
n

d
in

g
tw

o
 b

o
x

en
d

s
fo

r
a

lin
e

7.1 An evaluation on expressive power

149

7.1.1 Expressive power

VisTool relies on a relational database for Data Transform operators.
So VisTool depends on the expressive power of relational databases
to build graphical presentations.

Within Analytical Abstraction operators such as data aggregation
(e.g. sum, count, etc.) are supported by database aggregation
functions and VisTool methods (e.g. template methods or
programmer-supplied methods). Those operators are useful for
calculating aggregated values in visualizations such as TileBars,
Histograms, etc. For example, Figure 49 is a heat-map visualization
developed with VisTool. It visualizes player performances. Each row
represents a player. A column is a performance criterion. A cell
represents a criterion for the patient. The darker is a cell color, the

better is the performance. Color darkness (i.e. Alpha) is transformed

from criterion values in the database. The aggregation Sum is used to
calculate the percentage of a criterion relative to all players.

7.1 An evaluation on expressive power

150

Templates determine what Visualization Transformation operators
(e.g. Color, Rotation, etc.) a designer can apply. Many Visualization
Transformation operators transform a domain value into a
presentation value.

Figure 53–Templates for train schedule

7.1 An evaluation on expressive power

151

Templates also determine what kinds of Visual Mapping operators
(e.g. arcs, lines, etc.) a designer can use. VisTool provides many
templates for visual mapping. For example, Figure 53 shows a
graphical presentation for train schedules. Several templates for
Visual Mapping operators are used. For instance, an Ellipse template
is created for representing train stations. A Spline template is created
for schedule lines connecting two stations.

Within Visualization Abstraction operators for searching for a visual
object are particularly powerful. Many graphical presentations can be
built with its help. For example, in Figure 53, -= is used for finding a
start and a destination station. A line connects those two stations. This
pattern can be used for graphical presentations with lines connecting
two visual objects, such as Parallel Coordinates, MindMap, some
network visualizations, etc. For example, Figure 52 is a tree view
visualizing book categories. -= is used for looking for box nodes that a
line connects to. Note that the searching operator can also be realized
by templates rather than Formula Language. For instance, Figure 50 is
parallel coordinates. Each axis represents a dimension. Dots are

aligned on axis. A dot Top represents its value in that dimension. A

line connects a dot on one axis to another on a neighbor axis. The
searching operator is used for finding two ends of a line. In this
visualization, this operator is realized by the Find method provided
by the template.

With different combinations of Visualization Transformation
operators and Visual Mapping operators, a designer can create
different presentations for the same data. For example, Figure 51
shows two different presentations developed in VisTool, but they
visualize the same data. The templates serving as Visual Mapping
operators in the two presentations are the same, but are combined in
different ways. The Visualization Transformation operators in the two
presentations are slightly different. For example, in the left
presentation, a pie representing male data draws from the angle of
the previous pie representing female data. In the right presentation, a
pie for male data draws from the angle of the corresponding pie
representing unisex data.

7.1 An evaluation on expressive power

152

VisTool can implement some tree and network visualization. But if
the data is in a parent-child hierarchy, the designer should know in
advance the depth of parent-child hierarchy. For instance, the
presentation showed in Figure 52 visualizes book categories in three
levels. The category boxes are built by three box templates, one
template for one level. So the designer assumed that there were no
more than three levels of categories in that tree view.

VisTool provides few Within View operators for novel visualizations
such as "zoom" [Chi 2000], fade-in, fade-out, etc.

In conclusion, VisTool supports the creation of graphical
presentations from traditional business graphics (e.g. bar charts, pie
charts, etc.) to 2D visualizations in the taxonomy [Chi 2000] including
Profit Landscape, TileBars, ValueBars, Information Mural and
Lifelines, some Multi-dimensional Plots such as Parallel Coordinates,
etc., and one Web Visualization WebMap. The requirement is that
data is stored in a relational database. Some functionality in
visualization is not supported, because of missing operators. For
example, Trees can be built in VisTool, but the depth of the tree must
be determined at the design time. In the end, VisTool does not
support 3D visualizations.

7.2 Cognitive Dimensions

153

7.2 Cognitive Dimensions

We evaluate VisTool usability with the framework of Cognitive
Dimensions [Green 1996]. We will compare VisTool with Protovis and
XAML to show how the state-of-art approaches address the same
problems and reveal which is cognitively simpler.

We evaluate Protovis for several reasons. First, as we introduced in
the Chapter 3 Previous research and tools, Protovis is suitable for
rapid visualization prototyping. The programming efforts with
Protovis are much less than traditional programming. Second,
Protovis has some similarities with our approach such as declarative
programming, the concept of multiple instances and data source, etc.

XAML is a declarative language for user interface specification on
WPF and Silverlight. We evaluate XAML for several reasons. First of
all, XAML supports user interface and visualization development. In
Software Engineering, it is a state-of-art approach to software
development. Second, for some functionality such as drawing Bezier
lines, animations, etc., it is much easier to implement with XAML
than programming such as C#, Visual Basic, etc. The platform also
provides some features such as data binding to avoid programming.
Third, the platform provides interface builders to ease XAML
creation. Last, with only XAML, a designer can implement 3D
visualizations, animations, etc. that cannot be done with VisTool and
Protovis. It is interesting to see the accessibility of XAML to typical
designers.

We have to state that the same functionality specified with XAML can
also be implemented by procedure code (e.g. C#, C++, etc.), but not
vice versa. The discussion of other procedure code is out of our
evaluation. So we consider that it is a lack of functionality, if some
functionality cannot be done with only XAML.

7.2.1 Closeness of mapping

154

7.2.1 Closeness of mapping

Definition:

Closeness of representation to domain [Green 1996].

This dimension describes the closeness of "mapping between a
problem world and a program world"[Green 1996]. A close mapping
means that an entity in the problem domain should have a
corresponding entity in the program domain [Green 1996]. Green also
explains that low-level programming primitives are a cognitive
barrier, since a low-level primitive is an intermediate step to achieve a
goal in the problem world [Green 1996].

For user interface design, the closeness of mapping means

 (1) How easy is the mapping from visual objects (i.e. the
problem world) to the specification such as formulas, templates,
etc. (i.e. the program domain) ?

 (2) How easy is the mapping from domain data (i.e. the
problem world) to the specification (i.e. the program domain) ?

Interface builders improve the closeness of mapping. First, with
interface builders, the designer can directly manipulate the problem
domain without touching the program domain. For example,
Microsoft Expression Web is an interface builder for building HTML
pages. With it, a designer directly creates, modifies, and deletes
HTML elements without writing HTML code. Second, many interface
builders allow designers to see the result of the specification in the
What-You-See-Is-What-You-Get style. This helps a designer build a
mental model to link the problem world and the program world.

7.2.1 Closeness of mapping

155

7.2.1.1 The mapping from visual objects to the specification

 VisTool

In VisTool, templates are directly related with visual objects called
controls on the screen. Properties are directly related with control
look and feel. A designer writes formulas in the properties, and uses a
name to refer to that property value in a formula.

The Formula Language provides the control-join operator (-=) to refer
to a control by means of a record. The control-join operator brings the
mapping close, as it eliminates some low-level primitives in user
interface programming. For instance, in the programming way, a
programmer may compare records in a for-loop or create a data
holder (e.g. a dictionary) to look for the expected control.

The designer can refer to a control by means of VisTool indexing. For
example, me[index-1] means the previous control of the current control

bundle (Me). Indexing is used for referring to a particular control
among a bundle of controls created by the same template. For
instance, the designer can assign a background color based on the
previous control. Similarly, indexing eliminates some low-level
primitives for accessing individual controls. In the programming way,
a programmer needs a variable to represent the index and accesses
controls in a loop.

VisTool interface builder helps a designer with template creation by
the traditional drag-and-drop feature. When a template is selected,
the builder shows a list of properties. This reminds the designer
available properties. It might improve usability factors – learnability
and memorability. The intelli-sense shows a list of names (e.g.
properties, fields, relationships, etc.), when the designer is writing a
formula. This brings close the mapping from visual objects to
formulas.

7.2.1 Closeness of mapping

156

 Protovis

In Protovis, marks are the visual objects on screen. Similar to VisTool,
Protovis properties are related with look and feel. However, a
designer creates marks and manipulates appearance by coding. From
the user interface design point of view, coding is not as close as direct
manipulation on visual objects.

Apart from visualization operators, Protovis provides some
animation operators. A designer can use them to implement
pre-defined animations. But it does not provide operators to search
for a mark by means of data. Nor does it provide an indexing
mechanism to find a particular mark. However, those functions can
be extended in JavaScript.

The lack of functionality of addressing individual marks makes some
specifications indirect. Protovis supports that a property is dependent
on the mark's own or parent property. However, this kind of
dependencies is not as powerful as VisTool. Protovis itself does not
support the dependency on arbitrary marks. To address other marks,
a programmer can program in JavaScript to extend Protovis.

Protovis does not provide an interface builder.

 XAML

With XAML, a designer directly manipulates visual objects and
properties. A visual object has many properties for appearance. This
is the same as VisTool and Protovis. But the notion of creating visual
objects and setting properties differ from VisTool and Protovis. With
XAML, a visual object (e.g. ellipse, arc, etc.) is created by several WPF
objects. Some WPF objects are intermediate objects for appearance
settings. Usually, an appearance property is set by combining or
linking several WPF objects together. For instance, a border color can
be implemented by three objects: Pen, SolidColorBrush, and Color.
The upside is that it enhances the scalability of expressing various
kinds of visual objects and appearances. For instance, the designer
can create an irregular shape by a combination of objects such as

7.2.1 Closeness of mapping

157

PathSegment, PathGeometry, etc. The downside is that it is difficult to
specify the presentation. First, with XAML, the objects must be
combined in a correct sequence. Second, many objects do not have a
graphical presentation, but are specified by a designer. They are
intermediate steps between the problem world and the program
world. For instance, PathSegment produces segments for a shape.
They are intermediate objects holding geometrics. In short, the large
number of objects and different ways of combining objects make the
mapping quite distant.

The platform provides ordinary properties, attached properties, and
dependency properties. An ordinary property is the same as
properties in VisTool and Protovis. An attached property takes effect
only when a visual object is placed on a certain placeholder. For

instance, a designer should set Left only when the visual object is

placed on a Canvas. If a visual object is placed on a Grid, the designer

should use Row, Column, etc. A dependency property can keep in sync

with another dependency property. It means that data binding only
applies in dependency properties. Due to this restriction, in WPF

many appearance properties such as Content must be dependency

properties.

Attached properties make specification consistent with the user
interface concepts, and hereby improve the mapping. For instance, a

Grid makes use of Row and Column to locate a visual object rather

than coordinates (i.e. Left and Top) on a Canvas. Intuitively, Row and

Column should be hidden or detached when a Canvas is used,

because a Canvas does not provide those two concepts.

Dependency properties keep properties in sync with each other.
However, it is not as powerful as VisTool and Protovis. First, two
properties must be type compatible. If not, the designer should create
value converters in XAML. This is an intermediate step and distances
the mapping. Second, it cannot deal with dynamics of user interfaces,
because data binding cannot bind a property to a function, an
expression, etc. For instance, some user interfaces are generated
according to data, and property values are determined by data from a

7.2.1 Closeness of mapping

158

database. Usually, a dependency property binds to a value known at
the design time. For instance, the designer might refer to a value in
the form of resources such as system title colors, constant values in a
XML, etc. To deal with a run-time value (e.g. database data), the
designer programs objects and binds dependency properties to data
object properties. Consequently, this enhanced power by means of
programming will be at the expense of the closeness of mapping.

XAML supports searching for a visual object by a given type, the
previous data, the parent, and the nth closest ancestor [Nathan 2010].
To do this, the designer should use data binding. He must correctly

set Source, RelativeSource, or DataContext, etc. He should have

in-depth knowledge about those notions to correctly use them. In
WPF, each notion is a specific context of use. This differs from VisTool
and Prefuse with only one concept of data source. In VisTool, it is

DataSource. In Prefuse, it calls data. These diverse notions in WPF

are irrelevant to user interface design, but are important
implementation details. Consequently, they distance the closeness of
mapping. Furthermore, the designer might create control templates
for searching for visual objects. For instance, searching for the nth
closest ancestor should be applied with a control template. The
creation of intermediate objects such as control template also
distances the mapping.

There are several interface builders for XAML in the market. They are
effective to improve the closeness of mapping from visual objects to
XAML code. For instance, the builder checks grammars, generates
XAML code, and provides intelli-sense. However, the builder cannot
suggest what objects a designer should create during his design. The
problem results from plenty of concepts that a designer should grasp.
For instance, when some values should be converted, the designer
should know what converters to use in XAML. When binding a
property to another, the designer should decide what binding mode
(e.g. oneway, twoway, etc.) is appropriate, and so on.

7.2.1 Closeness of mapping

159

7.2.1.2 The mapping from domain data to the specification

 VisTool

In VisTool, data is database tables, records, and fields, etc. In the
Formula Language, a designer uses a table name to access data in a
single table. The Language provides the join-many operator (-<) to

access data across tables. For instance, a DataSource formula

tblPatient -< relMedOrder means to walk from the tblPatient table to the

tblMedOrder table.

Those operators avoid a lot of programming primitives. In the
programming way, the same operation requires four steps,
composing a SQL query, connecting to the database, preparing a data
structure for retrieving data, and associating the data with the
controls. In practice, those four steps will be decomposed into several
sub-steps, for example, composing a SQL query consists of collecting
the fields and keys for table joins. Those are low-level primitives,
which are mental barriers to achieve the designer's design goal.

The Formula Language allows a designer to use a field name to access
the field value. VisTool collects the fields used in all formulas for
populating the select query in the SQL.

The Language provides the join-one operator (>-) to refer to a record
by means of another record. The operator eliminates the needs for
writing a loop to access and compare records. A designer can also use
the control-join operator (-=) to refer to a record by means of another
control.

VisTool interface builder allows a designer to inspect the data behind
a visual object. This feature helps a designer understand how data is
presented and related to other data and presentation. It helps formula
writing and bring the mapping close.

7.2.1 Closeness of mapping

160

 Protovis

Protovis does not support us to retrieve data from a data source. That
can be implemented by interfacing to a data source. For instance, a
programmer can use JavaScript to call web services for data.

Data in Protovis is represented by JavaScript arrays. So an object
array is the unique data structure for various kinds of domain data in
Protovis. It is inevitable to encounter mismatches when the array
structure is different from the domain data. For instance, the designer
meets object-relational impedance mismatch when designing data
presentations for relational databases. Consequently, the designer
goes through an intermediate step of mapping domain data to
Protovis array. For instance, the designer has to find out a record is
mapped to which dimension and index of the array. This makes the
mapping from domain data to the specification indirect. However,
this is also the advantage of Protovis. It is not limited to relational
data.

 XAML

As a programming platform, WPF is powerful to support various
data structures, but does not provide an easy access to data sources. A
designer can use XAML to specify a XML or object data provider, but
those built-in data providers provide limited functionality. They are
usually used for sample data. The access to real data requires
programing. If the data is from a relational database, an extra
object-relational mapping layer is programmed to solve
object-relational impedance. Nor does XAML provide an easy way of
finding the data by means of visual objects, and vice versa.

With XAML, a designer can use data templates and data binding to
associate user interface appearance with an object property. However,
data binding limits to properties. For instance, the designer cannot
bind Color to an arithmetic calculation. Furthermore, data binding
applies to only dependency properties. Normal properties and
attached properties are not supported for data binding.

7.2.1 Closeness of mapping

161

Although dependency properties keep data and user interface in
sync, they do not really reduce programming. A designer must
program objects for data. Those data objects must implement event
notifications for informing data changes. In short, user interface
programming is not avoided but transferred to someone e.g. a
software engineer who programs data objects.

The interface builder does not help much with the mapping from data
to XAML code. For instance, it does not generate code for accessing
data in a database.

7.2.1.3 Summary

In summary, VisTool affords a close mapping. The formula-based
approach eliminates a lot of programming primitives. However, the
close mapping is at the expense of limitation in relational data.
Furthermore, VisTool provides an interface builder. The interface
builder improves the closeness of mapping. However, the builder
does not have a full capability of deriving a formula from any given
screen. This feature might need heuristic rules for formula generation.

Protovis affords a close mapping, but not as close as VisTool. It
reduces some programming such as for-loop to set properties.
However, Protovis does not avoid programming. In some complex
cases, designers rely on javascript to extend Protovis. Programming
distances the mapping. For instance, when addressing properties
from arbitrary marks, the designer might write a foreach block to
search for a mark. Protovis is not limited to relational data, but at the
cost of introducing indirectness into the mapping. A designer should
map Protovis array to domain data structure – resolving
object-relational impedance mismatch. Protovis does not provide an
interface builder. This might make the toolkit unusable to designers.

XAML is the most powerful approach among the three. It provides
many visualization operators for 2D visualization, 3D visualization,
and animations. However, visualization operators are objects.
Programming objects inevitably distances the closeness of mapping.
The interface builder to some extent reduces this difficulty by code

7.2.1 Closeness of mapping

162

generation and direct manipulation, but it cannot suggest which
objects to use when designers encounter difficulties. This is not a
problem of interface builder, but a problem in the platform – too
many concepts to grasp for a designer.

7.2.2 Hidden dependencies

Definition:

A hidden dependency is a relationship between two components

such that one of them is dependent on the other, but that the

dependency is not fully visible. In particular, the one-way pointer,

where A points to B but B does not contain a back-pointer to A

[Green 1996].

Green showed two examples of hidden dependencies, HTML links
and spreadsheet formula calculation [Green 1996][Green 1998]. An
HTML link points to another HTML link, but a link cannot tell which
pages refer to it. In some spreadsheet programs, the formula
calculation also has hidden-dependencies. A cell can refer to other
cells for calculating the value, but the cell does not show which other
cells refer to its value.

 VisTool

VisTool formulas may contain hidden dependencies when calculating
property values. A property formula may contain references to
other properties, fields, etc. However, it is hard to see the other way:
which formulas refer to this property, field, etc.

The formula dependency is a powerful feature. It is easy for a
designer to specify a reference. A designer writes names to specify
references to properties, fields, relationships, and controls. VisTool
handles dependencies automatically. It calculates properties in a
correct sequence. For instance, in the health overview example, the

medicine box property Width formula is RightPosi - Left. RightPosi
and Left are references to properties. When calculating the

property Width, VisTool ensures that RightPosi and Left have

7.2.2 Hidden dependencies

163

been calculated. VisTool also collects fields and relationships in
the dependency for generating a SQL query. For instance, in a

DataSource formula, a user interface designer does not specify
field names.

However, hidden dependency is a difficulty in formula
refactoring. A user interface designer should anticipate that a
change in a property formula may propagate changes to
dependent properties. A remedy is that the interface builder
shows how properties and fields are referred to each other, for
instance, by a dependency graph. At present, VisTool interface
builder does not support it.

 Protovis

Protovis supports calculating a value by other properties, and it is not
easy to see a property is referred by what other properties. So hidden
dependencies exist in Protovis.

Another hidden dependency results from the prototype-instance
model. A mark can inherit from another. Then the child gets default
property values from its parent. This kind of hidden dependency is
more difficult to fix than the property dependency, because a mark
inheritance affects all its children.

 XAML

XAML does not have hidden dependencies on properties. But styles,
skins, template, etc. are hidden dependencies. Visual objects can
attach styles, skins, and so on. However, from only styles, skins, etc.,
the designer cannot tell which objects attach them. Any changes made
in styles will affect look-and-feel of those objects.

Object inheritance is a hidden dependency. For instance, a style can
inherit from another, but the style cannot tell which other styles
inherit from it.

7.2.2 Hidden dependencies

164

7.2.2.1 Summary

VisTool has hidden dependencies. It allows a designer to refer to an
arbitrary data or visual object in several ways. VisTool interface
builder does not show dependencies at the time being.

Protovis also has several kinds of hidden dependencies including
dependencies to properties, dependencies introduced by class
inheritance and by the prototype-instance model.

XAML also has hidden dependencies. They are class inheritance (e.g.
style inheritance) and the attachment of styles, template, skins, etc.

Interface builders do poorly for the dimension. Many interface
builders show only one way of dependencies. For instance, a class
diagram shows only the parent class where a class inherits, but does
not show which child classes are for a parent class.

7.2.3 Abstraction gradient

Definition:

An abstraction is a class of entities, or a grouping of elements to

be treated as one entity, either to lower the viscosity or to make

the notation more like the user’s conceptual structure [Green

1996].

 VisTool

In VisTool, a template is an abstraction of repeated visual objects. For
instance, in the health overview (Figure 30), the designer used the

medOrderBox template to create several medicine boxes. A formula is
an abstraction of property values for repeated controls. For instance,

the designer specified a formula in the medOrderBox's Top. Medicine

boxes get different Top values by means of that formula.

Previous research shows that declarative formulas have "a low
overhead in abstraction level"[Green 1996]. VisTool formulas are
declarative. A user interface designer does not have to write formulas

7.2.3 Abstraction gradient

165

in a specific sequence. VisTool manages the execution sequence. For
example, if a property calculation depends on another, VisTool
detects the dependency and calculates the properties in the correct
order, which is similar to spreadsheet formula calculation. Loops such
as foreach are avoided in formulas as well.

However, the current version of VisTool does not support an
abstraction of templates. It means that a designer cannot create a
composite template that consists of several templates. An example of
template abstraction is data templating technique in WPF and
Silverlight. It may be useful for formula reuse. VisTool does not
support the subclass concept for templates either.

 Protovis

Protovis provides marks, and a mark has a number of properties.
A designer sets properties in constants and anonymous functions.
He invokes a method to create an array as data source. Protovis
automatically creates several mark instances based on the data
source. So a mark is an abstraction of repeated visual objects, and
a mark property is an abstraction of properties for repeated marks.

Protovis supports the prototype-instance model. In a
prototype-instance model, a mark reuses behavior and appearance
from another mark. Hudson explains that: "New objects (instances)
are created, not by instantiating classes, but by copying other objects
(prototypes)" [Hudson 1994]. So the designer only needs to
overwrite a few properties, because many property values have
been defined in that prototypical mark. This is an abstraction of
default values for properties.

Protovis also provides layouts for visualizations in a pre-defined
way such as Tree, network view, etc. Layouts are the traditional
component-based approach. One layout corresponds to one kind
of visualizations.

7.2.3 Abstraction gradient

166

 XAML

As we introduced in the chapter 3, the XAML platform (e.g. WPF)
provides data templating for presenting data. With data
templating, the designer specifies the presentation for one record.
When a data template is attached to a list control (e.g. ListBox), all
records are presented in the same way defined by that template.

The platform provides styles, templates, skins and themes as
abstraction gradients for presentations. The differences among
them are implementation details. For instance, with styles, a
presentation is determined at design time. With skins, an end user
can select a presentation pleasing to him at run-time. A common
feature is that each one can provide a list of property setters. A
property setter specifies a property value. For instance, a style
specifies values for text color, width, etc. With a data binding, in a
property setter the designer can refer a property to another. For
instance, in a template, a property (e.g. color) can refer to the color
of the parent. With those four techniques, a group of visual objects
(e.g. TextBox, Ellipse, etc.) can derive property values from the
pre-defined property setters. For instance, the designer can define

that ForeColor is red in a style. He attaches the style to a group of
controls, and then all those controls will show red texts. The
designer can specify them by control type, name, etc.

Another abstraction gradient is that a style can inherit from
another. A child style inherits property setters from the parent.

7.2.3.1 Summary

Although VisTool provides only templates for setting properties,
hidden dependencies make it powerful enough.

Protovis supports an abstraction gradient for properties, the
prototype-instance mode, and pre-defined ways for a few novel
visualizations.

7.2.3 Abstraction gradient

167

XAML provides the most extensive support for abstraction gradients.
Styles, template, etc. are quite powerful for customizing appearance.
For instance, a novel graphical appearance with vector drawings and
animations can be designed with XAML. This is not supported by
VisTool and Protovis.

7.2.4 Viscosity

Definition:

Resistance to change: the cost of making small changes [Green

1996].

Viscosity is closely related to the abstraction and hidden dependency.
"A classical solution to viscosity problems is to introduce more
abstractions."[Green 1996] Because elements are treated as one group
by introducing abstraction into the system, a change can be made on
the group rather than individual elements. Hidden dependency is a
severe source of viscosity problems [Green 1996]. Hidden
dependency may give rise to knock-on viscosity: "one change 'in the
head' entails further actions to restore consistency" [Green 1996].

When we discuss viscosity, it is sensible to discuss the environment
that supports the user to make a change. Interface builders are
effective for making changes. For instance, some interface builders
support refactoring, and so viscosity is reduced.

 VisTool

Benefiting from the template abstraction, VisTool provides an easy
way of changing property values. After a designer changes a formula,
VisTool interface builder recompiles all formulas and re-renders the
screen. If a formula evaluation fails, the result of that formula is null.
A default property value enables the control to show anyway. This
auto-recompilation is adopted by many other interface builders such
as Flex builder.

In VisTool, a designer can rename templates and designer-created
properties, and can use names to refer to values. It is a fact that after a

7.2.4 Viscosity

168

designer renames a property or a template, the property dependency
imposes additional changes in formulas (i.e. knock-on viscosity). The
designer might get unintended screens when the dependency is
broken. However, VisTool interface builder helps with making
corrections by the "replace all" functionality.

In conclusion, viscosity exists in VisTool. VisTool interface builder
does not support refactoring. So it may not prevent the compilation
error after renaming, but it makes corrections easy.

 Protovis

With Protovis, it is easy to change mark properties. The designer
makes changes in one mark, and all instances are updated.

However, Protovis does not provide an interface builder. Thus, the
user has to switch between Protovis code and a browser for showing
the result. Although it is not a problem with Protovis, it makes the
process of composing code cumbersome and user-unfriendly. The
process of user interface design is continuously interrupted. The
impact largely depends on a programmer's proficiency of writing
code. For instance, an experienced Protovis programmer can imagine
the resulting screen and might not need to see the results frequently.

 XAML

With XAML abstraction gradients, it is easy to change presentations.
For instance, a designer can make some changes in a data template,
and the presentation for all records will get the same change. XAML
does not support hidden dependency, and the interface builder
provides refactoring functionality. So the cost of renaming is quite
low.

However, abstraction gradients might be a disadvantage for viscosity.
The difficulty is how an individual overrides the look-and-feel
defined in an abstraction gradient (e.g. a style, template, etc.). For
instance, the designer wants to apply style changes only in buttons,

7.2.4 Viscosity

169

but that style has been attached to all controls. In that case, he must
define extra rules only for buttons.

7.2.4.1 Summary

With VisTool, a severe viscosity is hidden dependencies, although
hidden dependencies are powerful. VisTool interface builder tries to
alleviate this problem by showing compilation errors and suppressing
the run-time exceptions. This helps a designer correct the mistakes.

With Protovis, a severe viscosity is due to a lack of interface builder.
A designer must anticipate the results of his changes. As Protovis
relies on javescript programming for advanced functionality, the
viscosity depends on the proficiency of the designer using the toolkit
and the complexity of the visualization that the designer works on.

XAML is viscous, although it is the most powerful system among the
three. There are many abstraction gradients. An unexpected result
might result from several abstraction gradients e.g. style inheritance,
a style itself, etc. The interface builder helps with renaming, but
cannot help much with other viscosities resulting from abstraction
gradients.

7.2.5 Error-proneness

Definition:

Does the design of the notation induce "careless mistakes" [Green

1996]?

 VisTool

VisTool provides different operators to address different kinds of
data. For example, VisTool provides bang (!) for accessing a property
value and dot operators (.) for accessing a field value. The join-many
operator (-<) is for one-to-many cardinality, and the join-one operator
(>-) is for many-to-one cardinality.

7.2.5 Error-proneness

170

VisTool does not enforce a designer to use a correct operator, and is
tolerant with mistyping of the operators. VisTool compiler figures out
the meaning anyway. In many cases, the designer can simply use a
dot (.) instead.

Furthermore, formulas are case-insensitive. This reduces much
likelihood of misspellings. For instance, it would be quite error-prone,
if names (e.g. property, relationship, etc.) must be with correct caps.

VisTool interface builder is useful for preventing careless mistakes. It
provides the feature of intelli-sense. When a designer is typing, it
shows a list of names for possible objects in the system such as a field,
a property, a table, etc. So a designer does not mistype names.
Furthermore, it corrects a mis-typed operator, when VisTool compiler
finds out the operator mismatches the name. For instance, a dot
should be used for a field, but a bang is used. The builder can
discover this mistake and corrects it.

 Protovis

Programming in Protovis is not so error-prone. Protovis does not
address data by various names. So a programmer won't mistype
names.

However, Protovis is case-sensitive. So a name in the wrong cap is an
error. But this problem is usually mitigated by training programmers
in appropriate coding styles. Protovis does not provide a WYSISWYG
style of showing programming results either. So it is quite difficult to
do trouble shooting after a programmer writes lengthy code.

 XAML

It is quite error-prone to program XAML. First, XAML entails plenty
of markups (e.g.: < and >), special symbols such as curly braces, etc. A
designer must escape them. For instance, he should write "{}{" for an
opening curly brace ({).

7.2.5 Error-proneness

171

The second kind of errors results from grammars for different values.
There are many kinds of values in the platform. The designer should
specify a value in the correct format. For instance, a mark extension
value should be enclosed in curly braces. A literal string should be
enclosed in double quotes.

Third, the platform allows programmers to extend XAML by markup
extensions. The different grammars for markup extensions results in
many inconsistencies. For instance, in a namespace declaration, a
semicolon (;) is the delimiter to separate a namespace and an
assembly name. Whereas in a data binding specification, a column (,)
is delimiters for properties, etc.

Last, careless errors are resulted from semantics. The same concept
such as a data binding can be described in different ways. For
instance, a binding can be specified with a combination of
ElementName and Path. Alternatively, the same binding can be
specified with Source, Reference, and Path. In fact, a binding is an
object. With XAML, the designer can specify a binding by its
constructor or by setting its properties. Grammars for those two ways
are slightly different in XAML. If an object has several constructors, it
is error-prone, because it is quite easy to mix up different ways of
combinations. Without in-depth knowledge, the designer easily
combine elements (e.g.: Source, ElementName, etc.) in a wrong way.

The interface builder helps with the first and the second kinds of
mistakes. The builder can generate XAML code, and provides
intelli-sense for XAML construction. However, the interface builder
does not provide good support for the third kind of mistakes. Some
markup extensions are programmed by a third party. So the builder
cannot give suggestions on delimiters. For the last kind, the
intelli-sense only shows element names, but does not suggest which
combination of elements is correct. If a wrong combination is
specified, the designer can only know at run-time.

7.2.5 Error-proneness

172

7.2.5.1 Summary

VisTool turns out to be the most error-free system among the three.
Case-insensitivity and the interface builder achieve this.

Protovis and XAML are error-prone. Both are case-sensitive.
Misspelling names (e.g. properties) are often. Protovis does not
provide intelli-sense. So no remedy is available for Protovis. The
XAML interface builders mitigate the viscosity. However, the
platform (e.g. WPF) provides many objects with different ways to
specify. For instance, an object might be specified by using its
constructor or setting properties. The interface builder helps little
with this case.

7.2.6 Hard mental operations

Definition:

High demand on cognitive resource [Green 1996].

Green and Petre suggest that hard mental operations "must lie at the
notation level, not solely at the semantic level"[Green 1996]. They
further explain that this dimension indicates how to design good
notations rather than "the question of which meanings are in
themselves hard to express, whatever the notation"[Green 1996].

 VisTool

VisTool provides join operators such as join-many (-<) and join-one
(>-) for table navigation. A user interface designer can combine
several of them to specify complex table navigation from one to
another. Join operators are symbolic. -< symbolizes the one-to-many
cardinality. It can be understood that the first character (-) symbolizes
one and the second (<) symbolizes many. Similarly, >- symbolizes the
many-to-one cardinality. So a user interface designer should be able
to combine them without difficulty.

Some inexperienced designers may have difficulty understanding the
cardinality e.g. one-to-many. This problem originates from the

7.2.6 Hard mental operations

173

semantics, which is not a problem of the notation design. However, it
indicates that some preliminary training about ER models and
relationships is necessary.

Furthermore, due to abstraction gradient, some designers might feel
difficult in understanding that a formula expresses the look-and-feel
of a bundle of controls. A formula represents collective values and the
result of a formula evaluation of a specific control is an individual
value. This problem can be mitigated by VisTool interface builder.
The builder shows the resulting screen whenever the designer
finishes a formula.

 Protovis

Because Protovis is not limited to relational data, it provides a few
functions to transform data from one structure to another. For
example, the function Flattern transforms a hierarchical structure into
a one-dimensional array. Some transformations are difficult to
imagine. It is not unusual for a designer to see examples first and then
do transformation in a trial-and-error way. In particular, after several
data transformations are performed, it is not easy to follow what the
final structure will be.

 XAML

The platform provides various objects for functionality. For instance,
the platform provides 181 classes for changing property values in
animations [Nathan 2010]. A hard mental operation occurs when a
designer combines objects to achieve his desired result. For instance,
to draw a Bezier curve with XAML, he must figure out the correct
objects to use. Those include Path, PathGeometry, PathFigure,
QuadraticBezierSegment, and Point. Then the designer must link
them in the correct sequence and associate each of them with correct
properties.

7.2.6 Hard mental operations

174

7.2.6.1 Summary

Hard mental operations steepen the learning curve. With VisTool,
walking from one table to another is hard to imagine for beginners.
Similarly, data transformation in Protovis is difficult to grasp as well.
The problem with XAML originates from notation. It is normal to
have more objects when the number of functions grows.

VisTool interface builder and the XAML do not improve this
dimension.

7.2.7 Premature commitment

Definition:

Constraints on the order of doing things force the user to make a

decision before the proper information is available [Green 1996].

 VisTool

With interpretive formulas and the interface builder, VisTool removes
Premature Commitment during user interface development process.
According to the Data State Reference Model, raw data goes through
several steps in the visualization pipeline to become the presentation
(i.e. View) on screen. The interface builder shows the presentation
values. This reminds the designer that some presentation values are
already available. Hidden dependencies allow a designer to refer to
that value. Hence, a designer can avoid thinking the intermediate
steps and data in a visualization pipeline, when he reuses the
pipeline. Those are Premature Commitment in the Cognitive
Dimensions. This removal of Premature Commitment frees a designer
from intermediate steps in the visualization pipeline to reach his
design goal.

With VisTool, writing formulas in properties is sequence-free. The
designer need not consider the sequence of calculating formulas as in
programming languages like C#, Java, etc. VisTool finds a proper
sequence for calculating them. This avoids foreseeing the sequence of
retrieving data, creating controls, calculating properties, etc.

7.2.7 Premature commitment

175

However, a VisTool premature commitment is that the designer

should know the template DataSource before referring to a field

value in the formula. A sequence of using a field is that the designer
looks up which table the field is from, and then checks if the

DataSource has records from that table. If not, the designer changes

the DataSource, and may change Parent too.

 Protovis

Protovis does not support searching for a visual object by means of
data and its presentation. For instance, Protovis does not support
referring to an arbitrary visual object. A workaround is to compute
values for the intended presentation and embed those values into
data. This step is Visualization Transformation in the data state
reference model [Chi 2000]. Through the step, all necessary values
will be available without searching for a visual object.

However, if he wants to reuse values, there is a premature
commitment to visualization operators – what operators in one
pipeline are needed so that another pipeline can correctly process. For
instance, one pipeline transforms data and does some data
formatting. The difficulty is that the designer cannot predicate
precisely what operators he should implement. If the processed data
in one pipeline cannot be consumed by another pipeline, he will
revise the operators. This difficulty becomes more and more severe
when more hidden dependencies are involved, because a dependency
is a new visualization pipeline.

Procedure code is another kind of premature commitments. For
instance, before formatting data, the designer should declare
variables, and program in the appropriate sequence, etc. Apparently,
at the very outset of programming procedural code, he does not know
precisely what variables he declares, and so on.

Protovis does not provide an interface builder. The designer
frequently switches between code and the presentation (e.g. a

7.2.7 Premature commitment

176

browser). But the lack of interface builder does not make the problem
worse.

 XAML

XAML is declarative. This avoids the premature commitment
resulting from the procedural code. For instance, a designer can show
a visual object without considering if its placeholder is created in the
previous code.

With a style, the designer specifies appearances for a bundle of visual
objects by defining property setters. A style collects shared user
interface specification. When specifying a style, the designer foresees
what visual objects and what properties should be involved. As a
result, styles enforce two premature commitments, (1) the
commitment to visual objects and (2) the commitment to properties.

Since a style can be attached to an arbitrary control, the designer
should anticipate the range of controls that apply the style. After a
preliminary style is done, he might find out the scope is inappropriate
and redefines it. For instance, the designer specifies a style for all
controls, but later on he realizes that Textbox and Button should be
exempted from the defined scope as they will have a different look.

Likewise, the designer cannot precisely foresee property setters in a
style. When the list of property setters does not suffice, he will revise
it.

The interface builder does not help with premature commitments.

7.2.7.1 Summary

VisTool avoids some premature commitments in the visualization
pipeline. VisTool Interface builder shows values at the end of the
pipeline. Hidden dependencies allow for referring to those values. So
a designer avoids thinking a series of visualization operators in the
pipeline, when he reuses the values. However, the designer must

7.2.7 Premature commitment

177

precisely foresee DataSources before he specifies properties. For a
complex presentation, he might often revise DataSources.

Protovis has premature commitments to visualization operators, if a
designer reuses visualization pipelines. Procedural code is a common
source of premature commitments. Protovis retains the commitments
introduced by procedural code for advanced functionality.

XAML avoids a premature commitment with its declarative style.
However, styles, templates, etc. introduce plenty of premature
commitments. A designer cannot precisely know what visual objects
will be applied to and what properties will be set. Usually, he defines
a broad scope of controls and property setters. Iteratively, the
designer limits the scope.

7.2.8 Secondary notation

Definition:

Extra information carried by other means than the official syntax

[Green 1996].

 VisTool

Green explained that indentation or "pretty-printing" in code was a
kind of secondary notation. Secondary notation makes code easy to
read and write. It is useful for iterative design, where "the
part-finished structure is inspected and re-interpreted."[Green 1998]

The Formula Language supports secondary notation. The language is
case-insensitive. So a change in capitalization has no adverse impact
on the evaluation result. A designer can prefer their favorite coding
style. Furthermore, a designer can write comments in the code. It
helps the designer understand the formulas composed by another
designer.

7.2.8 Secondary notation

178

 Protovis

Because of grammar restrictions in JavaScript, Protovis is
case-sensitive. So a programmer must adhere to some coding styles.
He also can write comments in code.

 XAML

XAML supports comments as secondary notation. It is case-sensitive.

7.2.8.1 Summary

All systems support secondary notation. VisTool is case-insensitive.
Protovis and XAML are case-sensitive.

7.2.9 Diffuseness

Definition:

Verbosity of language [Green 1996].

 VisTool

The Formula Language is as terse as spreadsheet formulas. The
language supports reuse of formulas by means of references. The
language makes database queries more compact than general SQL.

As an example, in the health record overview (Figure 29), medicine

boxes are aligned to medicine label's Top properties. It means that
a programmer has to follow this sequence: create medicine labels,

calculate label's Top positions, and then calculate medicine box's

Top positions. This sequence is explicitly expressed in code. With
VisTool a designer specifies the same operation simply in the
formula me >- tblMedType -= orderInfo!Top.

The interface builder helps with diffuseness. The direct
manipulation generates code for template. The intelli-sense speeds
up formula writing.

7.2.9 Diffuseness

179

 Protovis

Because of abstraction gradient, Protovis is terse to set properties. For
example, loops and method declarations are avoided. However, the
toolkit still retains a procedural style of programming. For instance, a
designer might still declare variables and program loops. So it is not
as terse as spreadsheet formulas.

Protovis does not provide interface builder.

 XAML

The designer specifies styles, templates, skins, etc. and reuses them to
shorten code. But if these are not reused, the code is not terse, because
many markups and special symbols exist in code.

The interface builder generates some XAML code by direct
manipulation and intelli-sense.

7.2.9.1 Summary

VisTool formulas are as terse as spreadsheet formulas. Hidden
dependencies support formula reuse. VisTool Interface builder
generates formula to improve diffuseness.

Protovis is terse to set properties, but retains a lot of procedural
programming. It is not as terse as we expected.

XAML is terse only when the designer can reuse styles, templates, etc.
Plenty of markups and symbols in XAML make code verbose.
However, the interface builder removes this verbosity.

7.2.10 Juxtaposability

Definition:

Juxtaposability: ability to place any two components side by side

[Green 1996].

7.2.10 Juxtaposability

180

 VisTool

With VisTool interface builder, the designer can see all information
needed for user interface design at the same time. The builder shows
one panel for the properties, one for Entity-Relationship diagram, one
for the final result, etc. Furthermore, the intelli-sense feature helps the
designer select words, which speeds up formulas writing and reduces
the likelihood of misspelling names.

 Protovis

Protovis does not provide an interface builder.

 XAML

XAML interface builder provides good juxtaposability. A designer is
free to dock or stack a panel on the builder. He is able to see several
panels simultaneously.

7.2.10.1 Summary

Both VisTool and XAML provide good juxtaposability.

7.2.11 Summary

VisTool rates high on closeness of mapping, abstraction gradient,
viscosity, error-proneness, secondary notation, diffuseness, and
juxtaposability. VisTool contributes to a high-level approach to user
interface and visualization development. This high-level approach
consists of several building blocks. First, the closeness of mapping
eliminates many programming primitives. The designers think about
user interface concepts instead of low-level implementation details.
This augments the usability factors – learnability and memorability.
Second, hidden dependencies and the removal of a few premature
commitments are helpful for reducing development time. Third, the
high rating on diffuseness shortens lines of code. These augment the
usability factor – task efficiency.

7.2.11 Summary

181

However, the evaluation shows that some designers may have
difficulty with understanding data relationships. For example, they
may find it difficult to find the correct relationship for navigating to
fields. An ER diagram may help solve that problem. For example, the
designer searches the fields in the ER diagram, and then the diagram
suggests a relationship to use based on the formulas that the designer
is typing. More investigations are required to see the feasibility and
usability of this solution.

Protovis rates high on closeness of mapping, abstraction gradient,
diffuseness, and secondary notation. But Protovis retains procedural
code for advanced functionality. As a result, the closeness of
mapping, diffuseness, and viscosity do not rate as high as VisTool.
Protovis provides more abstraction gradients than VisTool. This
allows for rapid visualization development. A severe usability defect
is that Protovis does not provide an interface builder. It degrades
many dimensions such as viscosity, premature commitment, etc.

XAML rates high on abstraction gradient, secondary notation and
juxtaposability. XAML based on WPF is the most powerful system
among the three. For instance, XAML provides more abstraction
gradients than VisTool and Protovis. However, the advanced power
sacrifices the closeness of mapping. The distant mapping results from
plenty of concepts (e.g. what objects to use) and inconsistent ways of
specifying them with XAML. Furthermore, due to the XML-based
syntax, it is error-prone to program XAML. The interface builder
remedies the problem by code generation, but cannot improve the
closeness of mapping, viscosity, error-proneness, and diffuseness to
the level of VisTool and Protovis.

7.3 Usability tests of VisTool interface builder

The other team members usability tested and improved VisTool
interface builder. In total the VisTool team has tested with 24
non-programmers and 6 visualization programmers. In this section,
we summarize some of the test procedures and the results.

7.3 Usability tests of VisTool interface builder

182

We conducted several series of tests with different user profiles and
different procedures. All tests classified the observed problems in this
way [Lauesen 2000]:

Missing functionality: The system cannot support the user's task.

Task failure: The user cannot complete the task on his own or he

erroneously believes that it is completed.

Annoying: The user complains that the system is annoying or

cumbersome; or we observe that the user doesn't work in the

optimal way.

Medium: The user finds the solution after lengthy attempts.

Minor: The user quickly finds the solution after a few short

attempts.

7.3.1 Usability test with a tutorial and non-programmers

One series of tests used a written tutorial. This tutorial introduced
VisTool basic concepts including templates, data source, formulas,
and VisTool interface builder. At the end of each section of the
tutorial, a task was given.

Test procedure: During the test, the user read the tutorial in the
think-aloud way, and also tried VisTool. Then, the tester asked the
user to complete the task that was planned. The tester recorded
usability problems that the user encountered. After a test was done,
the tester analyzed the results and revised the tutorial for the next
test. Each test took around two hours.

After each test, the designer also made minor improvements to
VisTool. Here is an example. The first two users were confused when
they set the Rows (i.e. DataSource) formula. VisTool generated
several instances, but the user could only see one, because instances
appeared on top of each other. The tester improved VisTool so that it
auto-generated formulas that made the instances appear like a
staircase. This eliminated the usability problem.

User profiles: Five users participated in this test. The users were not
programmers, but they had some knowledge of spreadsheet formulas

7.3.1 Usability test with a tutorial and non-programmers

183

or a little programming knowledge. Only one user knew a few
database concepts such as tables. None of them had experience in
user interface design. These user profiles are below our target users.
However, it is still interesting to see to what extent they can learn
VisTool.

Tasks: The tester designed four tasks. In task 1 and task 2, the users
needed to make changes in already-made graphical presentations. In
task 3 and task 4, the users needed to implement planned
functionality for unfinished graphical presentations.

Results: The test showed that all users completed the tasks. For
instance, all could write formulas to bind visual properties (e.g. left,
color, etc.) to data from the database, and understood the indexing
concept, and so on. They could use join operators (e.g. -<), and could
use data processing operators (e.g. sorting) without much difficulty.

However, there were some problems. For instance, most of the users
had troubles with the parent concept. ER diagrams turned out to be
foreign to some users. Our explanation is that if a user does not know
database concepts, ER diagrams are not intuitive.

In conclusion, non-programmers with spreadsheet-level
programming knowledge could learn VisTool basics within the
two-hour training. They did not learn advanced VisTool concepts
(e.g. control-join).

7.3.2 Usability test with designers working in the domain

Our target users are user interface designers working in domains
such as hospitals, banks, etc. Usually, they are doctors, nurses, etc.
with an interest in user interface design. They do not program, but
they understand spreadsheet formulas, HTML scripts, database, etc.

The team carried out a test series with two clinicians. This series used
an oral presentation and a reference card for Formula Language. The
card showed a few example formulas.

7.3.2 Usability test with designers working in the domain

184

Test procedure: The tester first introduced VisTool principles. Then he
showed them an already-made visualization and asked them to
construct the same one. The test users did it in the think-aloud way.
The tester recorded usability problems that the users encountered.

Task: the user should construct visualization.

The user profiles: The first user was a surgeon. He had worked in
Health Informatics since 1986. He had two months programming
experience in 1978 and about one-year experience in relational
databases. He had experience in visualization design with paper and
pencil, but never programed visualization.

The second user was a senior surgeon. He had been familiar with IT
since 1985. He had experience with JavaScript, PHP, etc., but he had
not programmed professionally. He was familiar with relational
databases. He also had experience with Google spreadsheet and Excel
for creating simple visualizations.

Result: The first test took five hours. The user built two visualizations:
Lifelines and Process Completion Diagram. He could complete them
to some degree. He could translate domain data from the database to
position values on screen, and could use control-join (-=) to find a
related visual object, and so forth. In the end this user commented
"there are some problems with the system, and I don't remember all
the rules. I think I could have done this even if you were not here,
entirely by myself, but it would take me some more time…".

The test showed that the user grasped VisTool principles such as
templates, DataSource, etc. The user felt that formulas were quite
straight-forward to use. In particular, the user appreciated that
formulas can refer to property values. He commented "this is the
advantage of linking them (properties) together, because you can
change one and the others are moved automatically". This test also
showed that VisTool interface builder was effective for finding errors.
The user frequently read error messages to fix wrong formulas.

7.3.2 Usability test with designers working in the domain

185

However, the test also revealed problems. The user could not use the
group-by operator. He could not use Parent, but he used a where
clause instead.

The second test took two hours. The user successfully constructed
Lifeline. Because this user was very busy, the tester did not test him
with Process Completion Diagram. He could use group-by, could
translate the database fields into position, and so forth.

This user completed the task with minor problems. For instance, the
user did not remember the correct name to use. The intelli-sense gave
suggestions, and the user quickly found the answer. The user did not
type correct operators, but the interface builder gave him error
messages to show that mistake. The user corrected it without
difficulty.

In conclusion, domain designers could use VisTool to build
customized visualization from scratch after the one-hour training.
They could grasp VisTool concepts including advanced concepts.

7.3.3 Usability test with expert designers

The team carried out a test series with six expert designers. This series
used an oral presentation and a reference card. This card showed the
screens that the user needed to make during the test and a few
example formulas for Formula Language.

Test procedure: The tester took around 30 minutes to introduce
VisTool principles. Then he asked the user to construct visualization.
The test users did it in the think-aloud way. The tester recorded
usability problems that the users encountered when making the
visualization. At the end of each test, the tester showed them a
graphical presentation and asked the users to estimate how much
time they would need to implement it in their favorite ways.

Task: the user needed to construct two visualizations: a bar-chart and
Lifelines.

7.3 Usability tests of VisTool interface builder

186

The user profiles: All users had good knowledge about user interface
or visualization design. They had knowledge about relational
databases. Most of them had experience in visualization
programming with Python, Action Script, or the other toolkits.

Result: All users constructed two visualizations. They mastered
VisTool concepts e.g. join operators, interactions, etc. Some users had
good understanding about the control-join (-=) operator. They could
imagine the algorithm that the control-join worked. They liked
formula simplicity. One user commented that formulas avoided a lot
of efforts in testing simple changes. They could use the join operator
(-<) and aggregation functions but with a little problem.

The users estimated that they could implement the graphical
presentation ranging from 1 to 6 hours with VisTool. With the other
tools, they estimated that it would take 2-3 weeks on average.

The tests revealed a few problems. Expert users felt difficult with
debugging. Debugging is an advanced functionality. Furthermore, a
few users had a difficulty with the parent concept.

In conclusion, expert users could proficiently use VisTool after the
half-hour training. They assured of the simplicity of the
formula-based approach. Their estimations indicate that VisTool
helps them with speeding up development.

7.4 Comparative development effort

A part of VisTool usability is whether experienced VisTool
developers can make graphical presentations faster than with other
tools. We have made one comparison of this kind: An experienced
VisTool and Visual Basic developer implemented the same graphical
presentations with VisTool and with Visual Basic – a traditional rapid
application development system.

We compared the effort in terms of lines of code and development
time. In the demonstration we implement two graphical
presentations: ThermoVis and TreemapVis [Pandazo 2008].

7.4 Comparative development effort

187

7.4.1 The background

The code in this comparison was developed by the same
programmer. He first implemented the Visual Basic version. At that
time, the programmer had knowledge of Visual Basic, but he knew

Figure 54–The thermometer metaphor for showing project status (ThermoVis)

7.4 Comparative development effort

188

nothing about VisTool. The programmer re-implemented the same
two applications with VisTool.

7.4.2 ThermoVis

ThermoVis presents project health status by means of the
thermometer metaphor. It visualizes several software metrics
indicators for each project. The ThermoVis data is from a database.
Figure 54 shows the ER model and the screen developed with VisTool.

In Figure 54 each "thermometer" is a software metrics indicator. An
indicator has several decision criteria, and different indicators have
different decision criteria. In Figure 54 thermometer scales represent
decision criteria. A scale's color indicates the seriousness of the status.
For example, green means good status. Red means bad status. The
"mercury line" (black bar) presents an indicator value. For instance,
the first indicator value is 32. It falls into the light green decision
criteria. That indicator status is OK.

7.4 Comparative development effort

189

Figure 55–ThermoVis' templates and formulas

7.4 Comparative development effort

190

ThermoVis data is from two tables: tblIndicator and tblDecisionCriteria.

TblIndicator stores indicator records. An indicator record contains

value, date, name, etc. TblDecisionCriteria stores decision criteria

records. A decision criteria record contains lowerlimit, upperlimit, etc.

TblIndicator has a one-to-many relationship to TblDecisionCriteria.

With VisTool, this visualization was built with seven templates. We
show the essential templates and formulas in Figure 55. Two

templates are interesting, thermoPanel and thermoScalePanel.

Template thermoPanel creates thermometers. ThermoPanel's

DataSource formula is tblIndicator. As a result, multiple
thermometer panels are created, one panel per indicator.

ThermoScalePanel creates color scales for the thermometers.
ThermoScalePanel's DataSource formula is parent -<

relTblDecisionCriteria. The parent is thermoPanel. It means that
thermoScalePanel starts from a thermoPanel record and collects
tblDecisionCriteria records that are related with that thermoPanel

record. It repeats for each thermoPanel record. As a result, multiple
scale panels are created.

The VisualBasic implementation of this visualization is non-trivial.

Here are the lines of code and the development time:

Development tool Lines of code Development time (hours)

VisTool 60 6

VisualBasic 185 50

7.4.3 TreemapVis

TreemapVis presents project health status by means of a Treemap.
Figure 56 shows the screen. It visualizes the software metrics

7.4 Comparative development effort

191

indicators. The indicators are organized in categories. In Figure 56, a
category is visualized as a column. Each indicator is shown as a box.
The box color shows the corresponding indicator status.

ThermoVis data is from two tables: tblCategory and tblIndicator.

TblCategory stores indicator category records. TblIndicator stores

indicator records. TblCategory has a one-to-many relationship to

tblIndicator.

The essential idea is that the template treeMapPanel creates multiple

category panels and the template TreeMapBlock creates multiple
indicator blocks that are placed on those category panels.

Here are the lines of code and the development time.

Development tool Lines of code Development time (hours)

VisTool 33 6

VisualBasic 160 42

Figure 56–The Treemap for showing project status (TreemapVis)

7.4 Comparative development effort

192

7.4.4 Summary

The development with VisTool is much faster than the traditional
rapid development approach. In particular, the development time
was greatly shortened.

It is not coincidental for VisTool to eliminate many lines of code and
development time. In VisTool, properties accept operators in the
visualization pipeline. Formulas specify those operators. This
simplifies user interface specification. Visualization operators
produce a series of intermediate values. Those values are temporarily
stored in a variable, or an intermediate object such as Analytical
Abstraction and Visualization Abstraction in the pipeline. The
acceptance of visualization operators in properties avoids creating
and maintaining plenty of intermediate things (e.g. objects, type
converters, etc.), as VisTool manages them. Thereby, formulas are
quite neat.

7.4 Comparative development effort

193

Figure 57–TreemapVis' templates and formulas

194

7.5 Performance test

When the end-user has done something, the event handler will
usually ask VisTool to refresh everything in the same way as a
spreadsheet recalculates all cells. There are various ways to optimize
refreshing, for instance only re-compute properties that depend on
the item changed. At present we don't try to optimize. We get
adequate performance with a simple algorithm: Re-compute all
formulas, re-query the database if an SQL statement has changed, set
all component properties to the new computed value (whether it has
changed or not), and update the screen accordingly.

The table below shows the performance for the Lifeline shown in
Figure 29 (average of 10 measurements on an ordinary 2.3GHz PC
with 2 GB memory and a local MS Access database). The total time to
open the screen is 0.6 seconds including 0.4 seconds to make 8 queries
to the database. The time to refresh the entire screen is 0.07 seconds.

Time to open Timelines ms

Scan the .vis-file (5500
chars)

19

 Compile 180 formulas 14

 Compute and create 146
components

101

Time to refresh Timelines ms

SQL queries (8 queries, 140
rows total)

420

Compute and create 146
components

30

Show 146 components 69

Show 146 components 36

Total time 623

Total time 66

195

Chapter 8 Discussion and Conclusion

Myers defines threshold – "how difficult it is to learn how to use the
system", and ceiling – "how much can be done using the system"
[Myers 1999]. He further points out that a successful system is usually
either low-threshold and low-ceiling, or high-threshold and
high-ceiling [Myers 1999]. For instance, we can rate that Windows
Presentation Foundation (WPF) is high-threshold and high-ceiling,
because we consider that WPF is difficult to learn but is powerful. For
Protovis, in the InfoVis field, Protovis is low-threshold and
high-ceiling. However, in user interface design, Protovis can be
high-threshold. That is because when we discuss threshold and
ceiling we must consider the user's skills and "the parts of the user
interface that are addressed: The tools that succeeded helped (just)
where they were needed" [Myers 1999].

Traditionally, high-ceiling is contradictory to low-threshold. An
escalated ceiling is usually accompanied with an escalated threshold,
because an introduction of new functionality will introduce new
concepts into the system. WPF is a typical example. For instance,

Source represents data source in the WPF data binding. With WPF

templates, RelativeSource is introduced to represent the data

source relative to the current user interface. In some complicated

scenarios, DataContext is introduced to represent a common

ancestor as the data source for its children.

VisTool does not fall into this dilemma. We consider VisTool as a
low-threshold and high-ceiling system.

Chapter 8 Discussion and Conclusion

196

 Low-threshold

First, the formula-based approach retains the simplicity of
spreadsheet formulas. For instance, formulas are declarative. The
designer does not write formulas in a specific sequence, and does not
program variables and objects, and so forth.

Second, although VisTool formulas are conceptually more complex
than spreadsheet formulas, the interface builder reduces this
increased complexity. In VisTool, a template creates a group of
objects, and a formula applies to a group of visual objects. These are
abstraction gradients, and do not exist in spreadsheet formulas. The
user might not be accustomed to this feature at the very beginning.
But after they saw the resulting screen with the interface builder,
most of them could understand [Pantazos 2012].

Third, although VisTool requires some database knowledge, the
learning curve is not steep comparing with contemporary tools.
VisTool provides novel notations (e.g. -<, >-) for walking from one
table to another. Some test users without database knowledge
encountered difficulties with it. This is consistent with our evaluation
of Hard Mental Operations in Cognitive Dimensions. However, with
the existing tools, a designer should grasp much broader knowledge
to implement graphical presentations. As an example, these include a
database query language (e.g.: SQLs, LINQ-To-SQL, etc.), database
programming with a hosting language (e.g. C#, Visual Basic, etc.), the
relational-object mapping, algorithm design and data structure for
unifying data and user interface, etc. Some of those fields could be
intimidating to designers. For instance, Entity Framework for
mapping relational data and objects requires a programmer to create
entity code, the conceptual schema, the storage schema, and the
mapping schema [Mostarda 2011]. All require programming and
database expertise and are irrelevant to the user interface. So the
VisTool requirement for database knowledge is acceptable and
necessary.

Chapter 8 Discussion and Conclusion

197

 High-ceiling

We have demonstrated that VisTool is applicable for user interface
development. In the thesis, some visualizations were implemented to
support our claim. However, the evaluation also shows that VisTool
is not as powerful as WPF, but it does not mean that the VisTool
expressive power is inadequate. We must consider the designer tasks.
For instance, unlike WPF, VisTool does not support a designer to
replace the original appearance of a visual object with a novel
appearance such as a vector graph. That is because user interface
designers do not do graphical design. Graphical designer is
responsible for it. VisTool does not provide many data transformation
operators as tools such as Protovis do. That is because user interface
designers should not and cannot solve the problem with data
transformation. In fact, the difficulty with data transformation baffles
even programmers. As recognized in the InfoVis field, the hardest set
of visualization is transforming raw data into a structured dataset
appropriate for visualization [Chi 1998]. User interface designers are
responsible for designing user interface and mapping data on it.
VisTool helps with user interface development. It also helps with
creating graphical presentations such as 2D visualization with real
data and interaction. From the perspective of "the parts of the user
interface that are addressed" [Myers 1999], VisTool is a high-ceiling
approach, and helps with just what designers are good at.

In the future, VisTool will be improved and enhanced with new
functionality. The escalation of VisTool ceiling will not dramatically
steepen the threshold. As we showed in the evaluation of expressive
power, visualization operators are provided by templates or
functions. In other words, VisTool does not introduce new concepts
other than templates and formulas for new operators. However, it is a
matter for a beginner to find out appropriate templates or functions to
use. In the usability tests, some users encountered this problem. At
the time being, that problem is remedied by VisTool interface builder.
When more functionality is invented, this remedy might become less
effective. But, there are a lot of usability improvements for solving it.

Chapter 8 Discussion and Conclusion

198

For instance, we can make VisTool intelli-sense more intelligent to
give precise suggestions. Hence, VisTool does not introduce a wall in
the learning curve after new functionality is added. A wall in the
learning curve is where a designer is hampered and cannot find a
solution following the existing way of using the tool. VisTool users
might spend more time in looking for a function after more and more
functionality is invented, but it does not prevent them from using the
tool.

What are the benefits of VisTool as a low-threshold and high-ceiling
approach bring us? First, low-threshold lowers the barrier to user
interface development. At present, designers are able to use it. In the
future, it might also open the gate to the end user, as a gentle slope
system. When the usability of VisTool interface builder is improved to
an acceptable level, more usability tests will show how gentle VisTool
is. Second, for VisTool, high-ceiling means that designers can do more
such as interaction and real data than the current tools support them.
In particular, designers can do rapidly. This meets the purpose of
prototyping. As Myers notes, such a system does not only benefit
novice users, but also benefit expert users [Myers 1999]. It can allow
for more rounds of iteration design, and hereby improves the
software usability.

8.1 Conclusion

We have shown that VisTool simplifies user interface development.
VisTool also helps with creating new kinds of visualization. Many
novel visualizations can be built with VisTool.

We have shown that VisTool is cognitively simpler than the
state-of-art tools. Usability tests show that VisTool is accessible to
user interface designers with limited programming skills.
Non-programmers with spreadsheet-level programming knowledge
can learn VisTool basics within two-hour training. Domain designers
can use VisTool to build customized visualization after one-hour
training. Expert designers can proficiently use VisTool after half-hour

8.1 Conclusion

199

training. VisTool reduces development time about 80%. The
performance test shows that VisTool performance is adequate.
However, some usability problems exist.

In the future, user interface developed with VisTool should be
portable to more platforms such as web and mobile platforms. More
databases such as Oracle can also be supported.

200

Chapter 9 Future Research

We need to improve VisTool usability. Usability tests show that some
users cannot apply the parent concept. Some advanced functionality
such as the data parent hierarchy and the visual parent hierarchy is
confusing. We suspect that our training might not explain those
concepts well and we might not teach the concepts according to the
user background. Some improvements can also be made in VisTool to
solve those problems. For instance, the interface builder shows the
visual hierarchy and the data hierarchy. We might need to improve
intelli-sense to help designers write formulas with relationships. In
some usability tests, ER diagrams were not intuitive to designers
[Pantazos 2012]. Probably, not all users were used to an ER diagram
for describing relationships. We need more usability tests to reveal
problems and test our proposed solutions.

We need to further escalate the level of user interface development. A
higher level of development will support more application platforms
and more databases. At present, VisTool supports desktop
applications. It is possible that the user interface developed with
VisTool is deployed on the web, mobile platforms, etc. Furthermore,
VisTool should support more databases such as Oracle, MySQL, etc.
Those databases provide their own SQL dialects.

Some operators in the Data State Model are not supported yet. We
should investigate how to support operators in the system level. For
instance, Rotation is supported by some specific templates. We might
investigate how to support it in all templates.

201

Appendix A A syntax tree example

We show an example to explain what a syntax tree looks like and the
implementation of subclasses in that tree. In patient medicine

overview example shown in Chapter 4 , the formula of medOrderBox

property RelatedOrderTop is me >- ctlJoinMedType -= orderInfo!Top =

NaN ? 30 me >- ctlJoinMedType -= orderInfo!Top. The corresponding syntax
tree is illustrated in Figure 58.

VisTool attaches a PrimitiveTypeConverter object as the tree root.
PrimitiveTypeConverter converts the value into one of the following
types: 32-bit integer, double, Boolean and datetime. Depending on the
target property type, PrimitiveTypeConverter converts the value
accordingly. In this example, PrimitiveTypeConverter converts the

value to an integer, because property Top is a 32-bit integer. If the

target property type is not among those primitive types, VisTool
attaches another type converter such as ColorConverterExpr as the
tree root. A snippet of implementation is below.

1 object dynaVal = e.Eval(context, tpl, runtime);

2 switch (type) {

3 case TargetType.Boolean:

4 return Convert.ToBoolean(dynaVal);

5 ...

6 default:

7 return dynaVal;

8 }

In line 1, the variable e is an ExpressionList object, which holds a list
of expression objects. The variable e is the ExpressionList node in
Figure 58. At runtime, ExpressionList produces an object array. In this
example, ExpressionList has only one CondExpr object in the list.

202

CondExpr is if-else condition expression. It contains a condition
expression, a true-branch expression and a false-branch expression. In
this example, the condition node is simply a BinOp object consisting
of a left operand expression, a right operand expression, and an
operator (=). The condition expression produces a Boolean value. If
the value is true, the execution flow jumps to the true-branch
expression, otherwise the execution flow jumps to the false-branch. In
this example, the left operand expression is a ControlProperty object.
The right operand expression is a Constant object. A snippet of
implementation is below.

1 bool b = false;

2 object dyna = this.condition.Eval(context, tpl, runtime);

3 try {

4 b = Convert.ToBoolean(dyna);

Figure 58–The syntax tree for the formula: me >- ctlJoinMedType

-= orderInfo!Top = NaN ? 30 me >- ctlJoinMedType -= orderInfo!Top

203

5 }

6 catch {

7 ... /* recover the boolean result */

8 }

9

10 if (b) {

11 return expTrue.Eval(context, tpl, runtime);

12 }

13 else {

14 return expFalse.Eval(context, tpl, runtime);

15 }

ControlProperty accesses a property value. A ControlProperty object
refers to an expression that produces a control at runtime. With that
control, the ControlProperty accesses its property value. In the
example, ControlProperty refers to a ControlJoin expression. A
snippet of implementation is below. Before accessing a property
value, ControlProperty ensures that the property has been evaluated
if that property has an associated formula, which is shown in code
line 4.

1 ControlInstance dynamicInstance = this.exp.Eval(context,

tpl, runtime) as ControlInstance;

2 if (dynamicInstance == null) return double.NaN;

3 ... /* ensure that dynamicInstance properties have been

evaluated */

4 //reflection to get the property value

5 return propGUI.GetValue(dynamicInstance.guiInstance,

null);

ControlJoinExpr produces a control at runtime. In this example, it
produces a control that are related to Me record. A snippet of
implementation is below. In this example, the variable leftNode
produces the current control (Me). ADOrelationID was determined at

204

compilation time. When compiling the formula me >- ctlJoinMedType -=

orderInfo, VisTool derived ADOrelationID from the relationship
ctlJoinMedType.

1 object dynamicObj = leftNode.Eval(context, tpl, runtime);

2 System.Data.DataRow Row = null;

3

4 inst = dynamicObj as ControlInstance;

5 try {

6 Row = inst.Row.GetParentRow(ADOrelationID);

7 }

8 catch (System.Data.DataException ex) {

 9 ... /* error recovery */

10 }

11 return the control having Row;

205

Appendix B Comparison source code

Thermometer.vis
Width: Init 700

Height: Init 400

Text: "VisTool - ThermoVis "

AutoScroll: true

BackColor: "White"

Label: lblTitle

Left: 10

Width: 350

Height: 20

Text: "Software Metrics Indicators: Project Overview"

Font: "Arial", 11

TextAlign: "MiddleLeft"

Panel: ThermoPanel

DataSource: tblIndicator

Left: index * 90 + 10

Width: 80

Height: 300

BorderStyle: "FixedSingle"

Top: 20

CBottom: me!Height - me!Top

'show the project value

Label: ThermoValueLabel

Parent: ThermoPanel

VisualParent: parent

Left: 21

Width: 80

Height: 20

Top: 280

Text: parent!Value

Font: "Arial", 8

BorderStyle: "FixedSingle"

TextAlign: "MiddleCenter"

'show project name

206

VLabel: ThermoIndicatorLabel

Parent: ThermoPanel

VisualParent: parent

Width: 13

Height: parent!Height

RotationAngle: 270

Font: "Arial", 8

Text: parent.Name & "-" & parent.Date

BackColor: "LightBlue"

'show decision criteria labels with colors

Label: ThermoScalePanel

Parent: ThermoPanel

DataSource: parent -< relTblDecisionCriteria

VisualParent: parent

Left: 13

Width: 30

BorderStyle: "FixedSingle"

Text: UpperLimit

Top: parent!CBottom - (UpperLimit - MinValue) *

Parent!Cbottom / (MaxValue - MinValue) + me!Top

Height: ((UpperLimit - LowerLimit) * (parent!Height - 20))

/ MaxValue - MinValue + 1

BackColor: Color

Font: "Arial", 8

'black bar indicator

Label: ThermoLineLabel

Parent: ThermoPanel

VisualParent: parent

Left: 55

Width: 11

Height:

(Value*(Parent!Height-Parent!Top))/MaxValue-MinValue

Top:

ThermoValueLabel!Top-(Value*Parent!CBottom)/MaxValue-MinV

alue

BackColor: "Black"

BorderStyle: "FixedSingle"

207

treeMapFrm.vis
Form: treeMapFrm

Width: Init 650

Height: Init 410

Text: "VisTool - TreemapVis "

BackColor: "White"

'show title at the top

Label: lblTitle

Left: 10

Width: 350

Font: "Arial", 11

Text: "TreeMap of Indicators: Project Overview"

Panel: TreeMapPanel

DataSource: tblCategory

Left: index * Width + lblTitle!Left

Width: 89

Height: 333

BorderStyle: "FixedSingle"

BackColor: "White"

Top: lblTitle!Bottom +10

Cname: NameCat

CHeight: Height / NrOfIndicators

Button: TreeMapBlock

Parent: TreeMapPanel

DataSource: parent -< relTblIndicatorCat

VisualParent: parent

Width: parent!Width

Height: parent!Height / NrOfIndicators

Top: index * Height

Text: "Area:" & parent!Cname & " " & me.Name & " : Value"

& me.Value

Font: "Arial", 10

BackColor: me.IndicatorColor

BorderStyle: "Fixed3D"

TextAlign: "MiddleCenter"

BorderColor: parent!Backcolor

References

Arroyo E.; Selker T.; Wei W.; (2006) Usability tool for analysis of web designs

using mouse tracks Proceeding CHI EA '06 CHI '06 extended abstracts

on Human factors in computing systems ACM New York, NY, USA

©2006 ISBN:1-59593-298-4

Abras, C.; Maloney-Krichmar, D.; Preece, J. (2004) User-Centered Design In

Bainbridge, W. Encyclopedia of Human-Computer Interaction.

Thousand Oaks: Sage Publications, 2001. (in press).

Abrams M.; Phanouriou C.; Batongbacal A. L.; Williams S. M.; Shuster J. E.;

(1999) UIML: an appliance-independent XML user interface language

Computer Networks Volume 31, Issues 11-16, 17 May 1999, Pages

1695-1708

Ahlberg C.; Shneiderman B.; (1994) Visual information seeking: tight coupling of

dynamic query filters with starfield displays Proceeding CHI '94

Proceedings of the SIGCHI conference on Human factors in computing

systems: celebrating interdependence. ACM New York, NY, USA

©1994. ISBN:0-89791-650-6 doi>10.1145/191666.191775

Baecker R. M., Nastos D., Posner I. R., Mawby K. L. (1993) The user-centered

iterative design of collaborative writing software Proceeding CHI '93

Proceedings of the INTERACT '93 and CHI '93 conference on Human

factors in computing systems

Barnum, C. M. (2001) Usability Testing and Research publisher: Longman;

ISBN-13: 978-0205315192

Baumeister, R. F.; Bushman B. J. (2010) Social Psychology and Human Nature

Publisher: Wadsworth Publishing; 2 edition (January 1, 2010) ISBN-13:

978-0495601333

Bäumer D; Bischofberger W. R.; Lichter H.; Züllighoven H. (1996) User

interface prototyping—concepts, tools, and experience Proceeding ICSE

'96 Proceedings of the 18th international conference on Software

Engineering. IEEE Computer Society Washington, DC, USA ©1996.

ISBN:0-8186-7246-3

Beaudouin-Lafon M., Mackay W.; (2003) Prototyping tools and techniques Book

The human-computer interaction handbook L. Erlbaum Associates Inc.

Hillsdale, NJ, USA ©2003 ISBN:0-8058-3838-4

Blomkvist S. (2005) Towards a Model for Bridging Agile Development and

User-Centered Design Human-Computer Interaction Series, 2005,

Volume 8, IV, 219-244, DOI: 10.1007/1-4020-4113-6_12.

Boehm B. (1991). Software risk management: Principles and practice. IEEE

Software, 8(1):32–41.

Bostock M.; Heer J. (2009) Protovis: A Graphical Toolkit for Visualization IEEE

Transactions on Visualization and Computer Graphics

November/December 2009 (vol. 15 no. 6) pp. 1121-1128

Brinck T.; Hofer E.; (2002) Automatically evaluating the usability of web sites

Proceeding CHI EA '02 CHI '02 extended abstracts on Human factors in

computing systems ACM New York, NY, USA ©2002

ISBN:1-58113-454-1

Bryan-Kinns N.; Hamilton F.; (2002) One for all and all for one?: case studies of

using prototypes in commercial projects Proceeding NordiCHI '02

Proceedings of the second Nordic conference on Human-computer

interaction. ACM New York, NY, USA ©2002. ISBN:1-58113-616-1

Bygstad B.; Ghineaa G.; Brevika E.; (2008) Softwaredevelopmentmethods and

usability: Perspectives from a survey in the software industry in Norway

Interacting with Computers Volume 20, Issue 3, May 2008, Pages 375–

385

Card K. S., Mackinlay J. D., and Shnerderman B.(1999) Readings in information

visualization: Using Vision to think Morgan Kaufmann Publishers Inc.,

San Francisco, CA.

Carroll, J. M.; Rosson, M. B. (1992) Usability Specification as a tool in iterative

development Chapter 1, Publisher: Ablex Pub, ISBN-13:

978-0893919344

Constantine L. L., Lockwood L. A.D. (1999) Software for Use: A Practical Guide

to the Models and Methods of Usage-Centered Design Addison-Wesley

Professional; 1 edition (April 17 1999) ISBN-13: 978-0201924787

Cook W. R., Ibrahim A. H.; (2006) Integrating Programming Languages and

Databases: What is the Problem? ODBMS.ORG, Expert Article, Sept.

2006.

Carter A.S. (2010) How is User Interface Prototyping Really Done in Practice? A

A Survey of User Interface Designers Design Visual Languages and

Human-Centric Computing (VL/HCC) On Page(s): 207 - 211, 2010

IEEE Symposium on Date of Conference: 21-25 Sept. 2010

Chatty S.; Sire S.; Vinot J.L.; Lecoanet P.; Lemort A.; Mertz C.; (2004)

Revisiting visual interface programming: creating GUI tools for

designers and programmers Proceeding UIST '04 Proceedings of the

17th annual ACM symposium on User interface software and

technology. ACM New York, NY, USA ©2004. ISBN:1-58113-957-8

Chi, E.H., Riedl J.T. (1998) An operator interaction framework for visualization

systems Information Visualization, 1998. Proceedings. IEEE Symposium

on 19-20 Oct 1998; Dept. of ComputSci. & Eng.; Page(s): 63 - 70

Chi, E.H. (2000) A taxonomy of visualization techniques using the data state

reference model Information Visualization, 2000; InfoVis 2000; IEEE

Symposium; Xerox Palo Alto Res. Center, CA Page(s): 69 - 75;

Product Type: Conference Publications

Chi, E.H. (2002) Improving Web usability through visualization Internet

Computing, IEEE, Mar/Apr 2002; Volume: 6 Issue 2; On page(s): 64 –

71; ISSN: 1089-7801; References Cited: 19; Cited by : 10; INSPEC

Accession Number: 7222407

Chi, E.H. (2010) A framework for visualizing information Publisher: Springer;

Softcover reprint of hardcover 1st ed. 2002 edition (December 16, 2010)

ISBN-10: 904816009X; ISBN-13: 978-9048160099

Donahue, G.M.(2001) Usability and the bottom line Software, IEEE; Issue Date:

Jan/Feb 2001; Volume: 18 Issue:1; On page(s): 31 – 37; ISSN:

0740-7459; References Cited: 16; INSPEC Accession Number:

6934454; Digital Object Identifier: 10.1109/52.903161

Ellis, R. D., Kurnlawan S. H. (2000) Increasing the usability of online

information for older users: A case study in participatory design

Elkoutbi M., Khriss I., Keller R.K. (2006) Automated Prototyping of User

Interfaces Based on UML Scenarios. AUTOMATED SOFTWARE

ENGINEERING Volume 13, Number 1, 5-40, DOI:

10.1007/s10515-006-5465-5.

Ferre, X.; Juristo, N.; Windl H.; Constantine, L. (2001) Usability Basics for

Software Developers Software IEEE Issue Date: Jan/Feb 2001 Volume:

18 Issue:1 On page(s): 22 - 29 ISSN: 0740-7459 INSPEC Accession

Number: 6934453

Ferreira, J; Noble, J.; Biddle, R.; (2007) Agile Development Iterations and UI

Design AGILE 2007. Date of Conference: 13-17 Aug. 2007. On Page(s):

50 - 58. Product Type: Conference Publications

Fin, M. A.; (2001) Fighting Impedance Mismatch At the Database Level

cache.intersys.com

Genov A.; Keavney M.; Zazelenchuk T. (2009) Usability Testing with Real Data

Journal of Usability Studies, 4, 2, 85-92.

Golden, E.; John, B. E.; Bass, L (2005) The value of a usability-supporting

architectural pattern in software architecture design: a controlled

experiment Proceeding ICSE '05 Proceedings of the 27th international

conference on Software Engineering ACM New York, NY, USA ©2005

ISBN:1-58113-963-2

Goodwin, N. C. (1987) Functionality and usability published in magazine

Communications of the ACM CACM Volume 30 Issue 3, March 1987

ACM New York, NY, USA

Gould J.D. (1985) Designing for usability: key principles and what designers

think communications of the ACM Volume 28 Issue 3, March 1985

ACM New York, NY, USA

Göransson, B.; Gulliksen, J.; Boivie, I. (2004) The usability design process –

integrating user-centered systems design in the software development

process Software Process: Improvement and Practice; Special Issue:

Bridging the Process and Practice Gaps Between Software Engineering

and Human Computer Interation; Volume 8, Issue 2, pages 111–131,

April/June 2003

Green T. R. G. (1989) Cognitive dimensions of notations People and Computers

VI, Cambridge University Press

Green T. R. G. (1990) Programming languages as information structures In J.M.

Hoc, T.R.G. Green, R. Samurcay, & D.J. Gillmore (Eds), Psychology of

Programming (pp.117-137). London: Academic Press.

Green T. R. G., Petre M. (1996) Usability Analysis of Visual Programming

Environments: a ‘cognitive dimensions’ framework

Green T., Blackwell A. (1998) Cognitive Dimensions of Information Artefacts: a

tutorial (revision of “Cognitive Dimensions of notations and other

Information Artefacts” at HCI’98) Available at

http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

Heer J., Card S.K., Landay J.A. (2005); prefuse: a toolkit for interactive

information visualization Proceeding of the SIGCHI conference on

Human factors in computing systems; Pages 421 - 430 ; ACM New

York, NY, USA; ISBN:1-58113-998-5

Hollnagel E (2003) Handbook of cognitive task design Publisher: CRC Press; 1

edition (June 1, 2003); ISBN-13: 978-0805840032

Hudson S.E. (1994) User Interface Specification Using an Enhanced

Spreadsheet Model. Journal ACM Transactions on Graphics (TOG)

TOG Volume 13 Issue 3, July 1994 ACM New York, NY, USA

10.1145/195784.195787

ISO 9241-11 (1998)

http://www.iso.org/iso/catalogue_detail.htm?csnumber=16883

ISO/IEC. Information technology – database languages – SQL – part 3:

Call-level interfaces (SQL/CLI). Technical report 9075-3:2003,

ISO/IEC, 2003.

Janssen C., Weisbecker A., Ziegler J. (1993) Generating User Interfaces from

Data Models and Dialogue Net Specifications Proceeding CHI '93

Proceedings of the INTERACT '93 and CHI '93 conference on Human

factors in computing systems, ACM New York, NY, USA ©1993,

ISBN:0-89791-575-5

Jeffries R.; Desurvire H.; (1992) Usability testing vs. heuristic evaluation: was

there a contest? Newsletter ACM SIGCHI Bulletin Homepage archive

Volume 24 Issue 4, Oct. 1992, ACM New York, NY, USA

Karat C. (1994) A Business Case Approach to Usability. In R. G. Bias and D. J.

Mayhew (Eds.), Cost-Justifying Usability (pp. 45–70). Boston:

Academic Press

Keim, D. A. (2001) Visual exploration of large data sets Communications of the

ACM archive Volume 44 Issue 8, Aug. 2001 ACM New York, NY,

USA

Kieras D. E.; Wood S. D.; Abotel K.; Hornof A. (1995) GLEAN: a

computer-based tool for rapid GOMS model usability evaluation of user

interface designs Proceeding UIST '95 Proceedings of the 8th annual

ACM symposium on User interface and software technology ACM New

York, NY, USA ©1995 ISBN:0-89791-709-X

Klemmer S. R.; Sinha A. S.; Chen J.; Landay J.A.; Aboobaker N.; Wang A.;

(2000) Suede: a Wizard of Oz prototyping tool for speech user interfaces

Proceeding UIST '00 Proceedings of the 13th annual ACM symposium

on User interface software and technology ACM New York, NY, USA

©2000 ISBN:1-58113-212-3

Kutar M.S.1., Britton C.; (2000) Cognitive Dimensions - An Experience Report

Proceedings of the Twelfth Annual Meeting of PPIG, Pages 91-98

Lane, J. H., Simona H. A. (1987) Why a Diagram is (Sometimes) Worth Ten

Thousand Words Cognitive Science Volume 11, Issue 1, January-March

1987, Pages 65-100

Lauesen S. (2005) User interface design - a Software Engineering perspective -

the Virtual Windows method. Publisher: Addison-Wesley; ISBN-13:

978-0321181435

Lee J. C.; Blacksburg V.T.; McCrickard D.S. (2007) Towards Extreme(ly)

Usable Software: Exploring Tensions Between Usability and Agile

Software Development AGILE 2007 Date of Conference: 13-17 Aug.

2007 On Page(s): 59 - 71

Lieberman H., Paternò F., Klann M., Wulf V.; (2006) End-user development: An

emerging paradigm Human–Computer Interaction Series, 2006, Volume

9, 1-8, DOI: 10.1007/1-4020-5386-X_1

Limbourg Q.; Vanderdonckt J.; Michotte B.; Bouillon L.; Florins M.; Trevisan

D.; (2004) USIXML: A User Interface Description Language for

Context-Sensitive User Interfaces Proc. of the AVI’2004 Workshop

“Developing User Interfaces with XML: Advances on User Interface

Description Languages” UIXML’04 (Gallipoli, 25 May 2004).

EDM-Luc, Diepenbeek (2004), 55–62.

Lund, A.M. (1997) Another approach to justifying the cost of usability

interactions Interactions Volume 4 Issue 3, May/June 1997 ACM New

York, NY, USA

Mayhew, D.; Mantei, M. (1994) A Basic Framework for Cost-Justifying

Usability Engineering In: Bias, R., Mayhew, D. (eds.) Cost-Justifying

Usability, pp. 9–43. Academic Press, London

Mazza R. (2009) Introduction to information visualization University of Lugano

Switzerland ISBN: 978-1-84800-218-0 e-ISBN: 978-1-84800-219-7

DOI: 10.1007/978-1-84800-219-7

McClure, R.A.; (2005) SQL DOM: compile time checking of dynamic SQL

statements Software Engineering, 2005. ICSE 2005. Proceedings. 27th

International Conference on Date of Conference: 15-21 May 2005

Memmel, T.; Bock, C.; Reiterer, H. (2008) Model-Driven Prototyping for

Corporate Software Specification. ENGINEERING INTERACTIVE

SYSTEMS, 2008, Volume 4940/2008, 158-174, DOI:

10.1007/978-3-540-92698-6_10.

Microsoft Data Template

http://msdn.microsoft.com/en-us/library/system.windows.datatemplate.a

spx

Mostarda, S.; Sanctis S. M.; Bochicchio D.; (2011) Entity Framework 4 in Action

Manning Publications; Pap/Psc edition (May 21, 2011). ISBN-10:

1935182188. ISBN-13: 978-1935182184

Myers B., Hudson S. E., and Pausch R. (2000) Past, Present, and Future of User

Interface Software Tools.

Myers, B. A.; (1993) Why are Human-Computer Interfaces Difficult to Design

and Implement Technical Report CS-93-183, Carnegie Mellon

University, School of Computer Science

Nathan A. (2010) WPF 4 Unleashed Publisher: Sams; 1 edition (June 14, 2010).

ISBN-13: 978-0672331190

Nielsen, J.; Molich, R. (1990) Heuristic evaluation of user interfaces Proceeding

CHI '90 Proceedings of the SIGCHI conference on Human factors in

computing systems: Empowering people ACM New York, NY, USA

©1990 ISBN:0-201-50932-6

Nielsen, J. (2002) The Usability Engineering life cycle Computer IEEE; Issue

Date: Mar 1992; Volume: 25 Issue:3; On page(s): 12 – 22; ISSN:

0018-9162; INSPEC Accession Number: 4161422; Digital Object

Identifier: 10.1109/2.121503

Nielsen J. (1993) Usability Engineering Publisher: Morgan Kaufmann; 1st

edition; ISBN-13: 978-0125184069.

Nielsen J., Loranger H. (2008) Prioritizing web usability New Riders Press,

Berkeley CA, ISBN-10: 0-321-35031-6

Ousterhout J. K. (1998) Scripting: higher level programming for the 21st

Century Computer; Issue Date: Mar 1998; Volume: 31 Issue:3 ; On

page(s): 23 - 30 ; IEEE Computer Society

Prefuse http://prefuse.org/doc/manual/introduction/example/

Pantazos K., Kuhail A. M., Lauesen S., Xu (2012) Constructing Visualizations

with a Development Environment

Pantazos K.; (2012) uVis Studio: Introducing Savvy Users and Providing Better

Support for Expert Users in the Development of Non-Standard

Visualizations It-University of Copenhagen, Ph.D. thesis

Pandazo K.; Shollo A.; (2008) Improving presentations of software metrics

indicators using visualization techniques It-University of Goteborg,

Goteborg, Sweden, 2008.

Plaisant C., Milash B., Rose A., Widoff S., Shneiderman B. (1996) LifeLines:

Visualizing Personal Histories In Proceedings of the ACM Conference

on Human Factors in Computing Systems (CHI ’96, Vancouver, B.C.,

Canada, Apr. 13–18), M. J. Tauber, B. Nardi, and G. C. van der Veer,

Eds. ACM Press, New York, NY.

Preece, J.; Rogers, Y.; Sharp, H. (2002) Interaction Design Publisher: Wiley; 1

edition (January 17, 2002); ISBN-13: 978-0471492788

Preece, J.; Rogers, Y.; Sharp, H. (2011) Interaction Design: Beyond Human -

Computer Interaction 3rd Wiley Publishing ©2011; ISBN:0470665769

9780470665763

Protovis Website: http://mbostock.github.com/protovis/

Pyla, P. S.; Howarth, J. R.; Catanzaro, C.; North, C. (2006) Vizability: a tool for

Usability Engineering process improvement through the visualization of

usability problem data Proceeding ACM-SE 44 Proceedings of the 44th

annual Southeast regional conference ACM New York, NY, USA

©2006 ISBN:1-59593-315-8

Redish, J.; (2007) Expanding Usability Testing to Evaluate Complex Systems

Journal of Usability Studies, 2(3):102-111, 2007.

Rudd, J.; Stern, K.; Isensee, S. (1996) Low vs. high-fidelity prototyping debate

published in: Magazine Interactions archive Volume 3 Issue 1, Jan. 1996

ACM New York, NY, USA.

McClure R. A., Kruger I. H.; (2005) SQL DOM: Compile Time Checking of

Dynamic SQL Statements ICSE 05, May15-21, 2005, St. Louis,

Missouri, USA.

Sá M.; Carriço L.; Duarte L.; Reis T.; (2008) A mixed-fidelity prototyping tool

for mobile devices Proceeding AVI '08 Proceedings of the working

conference on Advanced visual interfaces ACM New York, NY, USA

©2008 ISBN: 978-1-60558-141-5

Salomon G.B.; (1990) How the Look Affects the Feel: Visual Design and the

Creation of an Information Kiosk Proceedings of the Human Factors and

Ergonomics Society Annual Meeting October 1990 vol. 34 no. 4

277-281

Schuler, D., Namioka A. (1993) Participatory Design: Principles and Practices

Publisher: CRC / Lawrence Erlbaum Associates (March 1, 1993);

ISBN-13: 978-0805809510

Seila, A. F. (2005) Spreadsheet simulation Proceeding WSC '05 Proceedings of

the 37th conference on Winter simulation Winter Simulation Conference

©2005 ISBN:0-7803-9519-0

Sestoft P. (2006) A Spreadsheet Core. Implementation in C#. Version 1.0 of

2006-09-28. IT University Technical Report Series. TR-2006-91. ISSN

1600–6100

Sestoft P. (2009) Compiling spreadsheet-defined functions

Signer B.; Moira C.; (2007) PaperPoint: a paper-based presentation and

interactive paper prototyping tool Proceeding TEI '07 Proceedings of

the 1st international conference on Tangible and embedded interaction

ACM New York, NY, USA ©2007 ISBN: 978-1-59593-619-6

Shneiderman B.; (1994) Dynamic queries for visual information seeking

Software, IEEE, Nov. 1994, Volume: 11 , Issue: 6, 70 - 77

Snyder, C. (2003) Paper Prototyping: The Fast and Easy Way to Design and

Refine User Interfaces (Interactive Technologies) Publisher: Morgan

Kaufmann; ISBN-13: 978-1558608702

Sommerville I. (2006) Software Engineering: (Update) (8th Edition) Addison

Wesley; 8 edition (June 4, 2006) ISBN-13: 978-0321313799

Spence R. (2000) Information Visualization Addison Wesley; 1 edition (Oct 23

2000), ISBN-13: 978-0201596267

Stewart T. (2000) Ergonomics user interface standards: are they more trouble

than they are worth? Human Factors and Ergonomics Society (HFES)

2000

Sukaviriya N., Sinha V., Ramachandra T., Mani S., Stolze M. (2007)

User-Centered Design and Business Process Modeling: Cross Road in

Rapid Prototyping Tools. INTERACT 2007, LNCS 4662, Part I, pp.

165–178, 2007. © IFIP International Federation for Information

Processing 2007.

Tetzlaff L.; Schwartz, D.; (1991) The use of guidelines in interface design

Human Factors in Computer Systems (CHI '91), (1991), pp. 329-333.

	Chapter 1 Introduction
	1.1 Problems
	1.2 Why a user interface development tool is important
	1.3 Solution

	Chapter 2 Background
	2.1 What is usability and why is it important?
	2.2 What usability specialists suggest – a classical approach
	2.3 What are appropriate prototypes?
	2.4 Difficulties with prototyping
	2.5 Problems with ensuring usability in the waterfall model
	2.6 Difficulties with ensuring usability in agile methods
	2.7 Graphical presentation – a problem amplifier
	2.8 Research goal

	Chapter 3 Previous research and tools
	3.1 State-of-the-art tools
	3.2 Tools for developing graphical presentations
	3.2.1 Protovis – a component-based toolkit
	3.2.2 Prefuse – a development toolkit for visualizations with realistic data

	3.3 Model-based prototyping tools

	Chapter 4 VisTool Introduction
	4.1 An example scenario
	4.1.1 The design phase
	4.1.2 The first prototype
	4.1.3 Improve the prototype
	4.1.4 The first release
	4.1.5 Deployment
	4.1.6 After the deployment of the first release

	4.2 The theory behind the story
	4.3 Design rationale
	4.3.1 Formula Language
	4.3.2 Formula usability
	4.3.3 Templates
	4.3.4 Interface builder

	Chapter 5 How VisTool works
	5.1 Basic Concepts
	5.1.1 Control instance
	5.1.2 Control template

	5.2 Multiple instances of a control
	5.3 Property formulas
	5.3.1 Walking from one data entity to another
	5.3.2 Walking from control to data (>-)
	5.3.3 Walking from data to control (-=)
	5.3.4 Interaction
	5.3.5 An example of complex interaction

	5.4 Implementation rationale
	5.4.1 Integrate database query into Formula Language

	5.5 Formula Language Semantics
	5.5.1 Notation
	5.5.2 Join-many (-<)
	5.5.3 Join-one (>-)
	5.5.4 Control-join (-=)
	5.5.5 Dot (.)
	5.5.6 Bang (!)
	5.5.7 Control indexing ([])

	5.6 DataSource semantics

	Chapter 6 VisTool Implementation
	6.1 Formula Language syntax
	6.2 Path compilation
	6.3 Dynamic Typing
	6.4 VisTool user interface description language

	Chapter 7 Evaluation
	7.1 An evaluation of expressive power
	7.1.1 Expressive power

	7.2 Cognitive Dimensions
	7.2.1 Closeness of mapping
	7.2.1.1 The mapping from visual objects to the specification
	 VisTool
	 Protovis
	 XAML

	7.2.1.2 The mapping from domain data to the specification
	 VisTool
	 Protovis
	 XAML

	7.2.1.3 Summary

	7.2.2 Hidden dependencies
	 VisTool
	 Protovis
	 XAML
	7.2.2.1 Summary

	7.2.3 Abstraction gradient
	 VisTool
	 Protovis
	 XAML
	7.2.3.1 Summary

	7.2.4 Viscosity
	 VisTool
	 Protovis
	 XAML
	7.2.4.1 Summary

	7.2.5 Error-proneness
	 VisTool
	 Protovis
	 XAML
	7.2.5.1 Summary

	7.2.6 Hard mental operations
	 VisTool
	 Protovis
	 XAML
	7.2.6.1 Summary

	7.2.7 Premature commitment
	 VisTool
	 Protovis
	 XAML
	7.2.7.1 Summary

	7.2.8 Secondary notation
	 VisTool
	 Protovis
	 XAML
	7.2.8.1 Summary

	7.2.9 Diffuseness
	 VisTool
	 Protovis
	 XAML
	7.2.9.1 Summary

	7.2.10 Juxtaposability
	 VisTool
	 Protovis
	 XAML
	7.2.10.1 Summary

	7.2.11 Summary

	7.3 Usability tests of VisTool interface builder
	7.3.1 Usability test with a tutorial and non-programmers
	7.3.2 Usability test with designers working in the domain
	7.3.3 Usability test with expert designers

	7.4 Comparative development effort
	7.4.1 The background
	7.4.2 ThermoVis
	7.4.3 TreemapVis
	7.4.4 Summary

	7.5 Performance test

	Chapter 8 Discussion and Conclusion
	 Low-threshold
	 High-ceiling
	8.1 Conclusion

	Chapter 9 Future Research

