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ABSTRACT

In the world of transport management, the termi¢gaition’ is gradually replacing ‘reaction’. Indéethe
ability to forecast traffic evolution in a netwoskould ideally form the basis for many traffic mgement strategies
and multiple ITS applications. Real-time predicticapabilities are therefore becoming a concretel fee the
management of networks, both for urban and intemurbnvironments, and today’s road operator hagasangly
complex and exacting requirements. Recognising ¢ealpatterns in traffic or the manner in which segfial
traffic events evolve over time have been importantsiderations in short-term traffic forecastirpwever, little
work has been conducted in the area of identifgingssociating traffic pattern occurrence with pitng traffic
conditions. This paper presents a framework foect&in pattern identification based on finite mhegtumodels using
the EM algorithm for parameter estimation. The catafion results have been conducted taking int@waucthe
traffic data available in an urban network.

1 INTRODUCTION

Numerous techniques for traffic data forecastingngishistorical detector data and/or real-time
measurements have been developed using statistiedlods, Neural Networks, Fuzzy-logic, Support gect
Machines and Traffic Simulation. (Vlahogianni et aD04) summarizes different methodologies of itaffata
forecasting where some examples of the differenthous could be: (Smith. and. Demetsky, 1996) deedria
nonparametric regression method; (Williams et &98) introduced seasonal autoregressive integnatedng
average and exponential smoothing methods, the $aries Analysis using the ARIMA family of modeBayvis et
al. 1991; Hamed et al. 1995; Williams 2001, Stathwdps and Karlaftis, 2003), the neural network agpions
(Smith and Demetsky 1994; Clark and al, 1998; 28Q1; Ishak and Alescandru 2003). Other methodedobas
been analysed: the support vector machines (Chettsaant-Muller, 2001; Zhang and Xie, 2007; CastretaNet al,
2009; Zhang et al, 2011), Fuzzy-logic (Stathopswdd al, 2010) and the use of Traffic SimulatioRui¢ et al,
2007;Torday et al., 2010 ).

Recognising temporal patterns in traffic or the mamnin which sequential traffic events evolve otiere
have been important considerations in short-teaffi¢rforecasting. However, little work has beemduocted in the
area of identifying or associating traffic patterccurrence with prevailing traffic conditions. Th#ectiveness of
predictions is based on the knowledge of such pettgkantz and Schreiber 1997).

The present paper focuses on the study of the texhpatterns of traffic that arise in urban netwsork
regarding both the statistical structure of seqaktriaffic events as well as the evolution of gpecific structure in
time. The aim is to develop a detection pattermtifieation framework and identify the pattern assted with
real-time detection measures for short-term priamictAs a secondary consequence, this frameworkdcba
applied to incident detection in urban networks.

This paper is structured as follows: in the intrctthn we explain the main motivations and appliwagi of
a pattern identification procedure. In section 2, explain the statistical methodology used to peifthis task and
we show that mixing patterns can lead to false lemimns. A real data example is studied in secBoand we
finally end with a conclusions section.

1.1 Detection Patternsfor Time Series Analysis: The False Friend Correlation

The classic setting of time series analysis, sscARIMA technique, is based on stationarity anedirity.
Generally speaking, this means that there exislisiear relationship between time lags of a certgirantity
(linearity) and this relationship is constant thghuime (stationarity). We will see that, in thegence of different
patterns, analysing the data as a whole can leatidiog conclusions about time lag correlations. usexplain this
through an example.

We analysed traffic flows from Madrid (Spain) fds3Ldays of the year 2005 (see Results sectiorthen
first graph of FIGURE 1 we plotted traffic flows tane intantt versus traffic flows at instamtl, wheret runs from
7.45 am to 8.45 am, at every quarter-of-an-hourcéthe correlation coefficient is 91%, we couldilgaconclude
that both linearity and stationarity hold. On ththes hand, we applied the pattern identificatioanfework
described below, with two components, each oneesgmiting a different pattern. Thus, each day (ciimgrtraffic
flows between 7.30 am and 8.45 am) is assignednéo aj the two patterns. We plotted the two setslafs
separately in the second and third graphs in FIGURBbserve that correlations have suffered a ldeggease.
Now, hypothesis of stationarity or linearity arealy not verified by any of the two groups.
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1. Example of false correlation

In section 2.4 we will study this effect in depiWe will see that it can be caused by mixing datenfr
different patterns. Moreover, we will argue thatthis case, global correlation should be rejeatsdiany attempt to
study linearity should be done in each group sepgraNe conclude that pattern identification beesma necessary
step in order to prevent false conclusions in amgdr setting.

1.2 Detection Patter nsfor Smulation

(Torday et al., 2010) propose Aimsun Online agaméwork for a simulation-based decision support
system for real-time traffic management.
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2 General architecture of the Aimsun Online solution

In the Aimsun Online architecture (see FIGURE 2&) tiasic input for this application is the real-time
detection data, which serves to determine the ntifexel of demand in the network and consequesaltlyws the
loading of the corresponding OD matrix into the wlation model before it runs. This operation isriea out
through the OD Matcher module, which compares #test flow measurements from each detector (tylyictie
time series from the last 30 minutes) with pre-preg daily traffic patterns. These patterns refsath an offline
treatment of the detection historical databasea{igeontaining more than one year’s data).

Considering this architecture and underlying theivation of having detection pattern identificatjadhe
basic input required is the detection pattern dkidim used in different steps of the forecastinggass.
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3. Local and Global Pattern I dentification

Integrating the detection pattern identificatiorthirs architecture, this paper proposes the agpicaf the
developed methodology. This process of DetectidteRaldentification is based on a sequential pgec@here the
first stage is the local detection pattern ideadifion and the second stage is the global pattemtification (see
FIGURE 3).

1. Local Detection Pattern Identification (LDPI): Calates the different patterns applying the EM atgon
for each detector, taking into account the datadlable for each individual detector inside the bigtal
database.

2. Global Detection Pattern Identification (GDPI): @ahtes the different global patterns taking intocant
all data available within the historical data amathe individual detector pattern calculated in thevipus
step.

The application of this generic framework in a siation-based decision support system for real-time
traffic management is determined by the followihgngents:

« Traffic demand definition (in FIGURE 2 identifieds dOD Matcher”): GDPI determines the global
detection patterns and, when the system receieeddtector measurements in real-time, classifiesehl
data according to the different patterns calculatedl gives as output the traffic demand definetgiims of
OD matrices associated with the pattern that rapres the real-time detector measures.



e Quality Manager: LDPI determines the pattern foche@ndividual detector, according to the real-time
detector measures, and then using the simulatisnltsecombined with a prediction based on patterns
establishes a rate of goodness of different typésrecasting methods.

» Incident Detection Manager (this is not represembaalicitly in FIGURE 2 but this module could bedadi
as part of the Quality Manager): LDPI determines plattern for each individual detector accordinght
real-time detector measures and then establisleeprésence, location and severity of possible el
The incident detection is based on the “Outlierdagbn” methodology, explained in Section 2.

2 METHODOLOGY

The methodology proposed in this paper for detagbiattern identification is based on finite mixti(Fev)
models using the EM model for parameter estimafldre generic framework (see FIGURE 4) receivesipstithe
real detection data historical database and thebeuraf patterns as a user-defined parameter, andraies as
output a detection patterns database. The numhmattrns a priori is a user-defined parameteirbtiie numerical
results this has been calculated using the ICkergoib.
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Number of
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4. Generic framework for detection pattern identification

2.1 FiniteMixture Models

Given densitie¥; (y; 6,), ...,fg(y; Hg) where#; denote the density parameters and (y1,..,y™), and a

collection of proportiong,, ..., m, satisfyingr; = 0, andm, + -+ + m, = 1 we define the density
f(}’: 19) =7Tlf1(y; 61)+"'+7Tgfg(y; Hg)' (1)

whered = (my, ..., mg; 64, ...,0,). The densityf (y,9), has a direct interpretation. Say we hgvaifferent groups,
each one represented by proportigrof the whole population. In our case, neithergheof paramete,, ..., 6,
nor the proportiongy, ..., m, (nor the number of components) are known, so tize to be estimated.

A classic specification for the functiofigy; 6;) is the normal density. In this ca@e= (y;; Z;), where y;
is the vector of expectations aHRdis the matrix of variances-covariances. A remaléaloperty is that any density
function can be well approximated by a mixture ofmal densities if the number of components isdazgough.
In fact, in the extreme case thipequals the number of observations of the sampdendrmal mixture model can be
regarded as a parametric density estimation mailithda Gaussian kernel (see Silverman, 1986).

2.2 Parameter Estimation: EM Algorithm
The natural way to estimate the unknown paraméelse maximum likelihood estimation:

L= nf(%'i 9).

J

However, the traditional approach (to find thetsoof the gradient of the log likelihood) doesmadl to a
closed-form solution. Instead, the problem is sblly means of the EM algorithm. See (Dempster et18i77;
McLachlan and Krishnan, 2008) and (McLachlan anel F2000) for a comprehensive treatment of finiigtares.

Lety,,..,yn, be vectors of observations that are independentriay have dependent elements. In our
study, they are flows in a particular detector aa@me time interval = (t;), e.g. T=(8, 8.25, 8.5, 8.75, 9) hours and
vy, = (101.2,87,83,95,93) vehicles per hour registered at 23/04/2005. Inghmmeter setting, equal variance-
covariance matrices should be taken in order tarenglobal finite maximum of the likelihood, i.&€,, ...,Zg = Z .
In the EM approach, unobserved variabtegre considered realisations of the correspondibgling of each



observation. That is, for each observatighwe consider a random vector of binary elememts (z;;), with
zj; = 1 if the observatiory; belongs to the componeitand O otherwise. If we were to observe these vectbe
problem of estimating the parameters of the nomistributions would be simple. In the terminologytbe EM
algorithm, this method and the corresponding datase called ‘complete’. The realised dataset ieda
‘incomplete’. Then the complete data likelihood @dunction of the variableg and z) is specified and the
parameters are estimated using an iterative proeeduonsisting of two steps: (E) expectation and ) (M
maximisation. Given initial conditionszy, ..., m3; pf, ..., u3,; £°), E step in the k+1th iteration is performed by

K+l _ f filys 15 29)
Tij = K k. yk)’ @
Zlnl .fl(y}! Hl '2 )
for each observatiohand each group. Then, parameters are updated applying the M step,

1
rh+l = -Z Tl
n

k+1
e+l _ Z/ Yiti

i Z} k+1 ’

skl _ ZZ T (y, — ) (y; - g<+1)T_

The algorithm stops when the the I|keI|hobcbf the new iteration differs from its value in tpeevious
iteration by less than ampriori set threshold. Quantities; when the algorithm has converged is the conditiona
probability of the observatiopof belonging to group (the conditional expectation of the elements;pf Then
assignment to a groupfollows when the corresponding ; is the maximum among the othes.

and

2.3 Outlier Detection

In this paper we follow the scheme described byn@ford and D'Urso, 2011). Outliers are handled by
introducing a new group, Group 0, governed by amptioper” component, that is, with constant dengjty: D (so
f_°°oof = o0), which will compete with the previous ones. Theng formulas are used, replacifyjgwith D. Observe
that the estimated, is a non-decreasing function of D.

D cannot be estimated by statistical proceduresgedired level of outliers is sought instead. Giv&f, at
each iteration k+1 we perform a Newton-Rapshon gjgerithm to the functiom** = r%*1(D), so thatrk*! =

ndes. Recall
kD

2121 T[lkfl(yj; JToF Ek) + kD’

1
k+1 _ E k+1
Mo =) Toj -

J

k+1
a”0+ Lk _ (Tk-{-l)z
nD 0,j 0,j ’
and the formulae for the Newton-Raphson algorlttm:dmes,
(k1 (D) — m§es) X - e

Dm+1= m k+1 T om z
om§ ™ (Dy)/9D Tty — (k)

k+1 _
TO]

Then,

amk+1

Observe that if any§** # 1,0, then >0 (becaus® < 74t <1 for all j), and the function is

strictly increasing. Sincef*1(0) = 0, andlimp_., 75*1(D) = 1, there is a unique root of the equation
+1(D) des =0 (3)

over the domaifD > 0}. It may happen thad,,,<0. This implies thatX*1(D,,) — md* > 0, so we can assure

that the positive root of (3) lies in the interv@d, D,;,). In this case we proceed applying a one-step tiisec

algorithm, i.eD,,,, = Dm/z.



2.4 FiniteMixturesand False Friend Correations

Traditionally, techniques such as ARIMA (at leatt €lementary versions), rely on stationarity and
linearity. This means, in particular, that givetirae serieX,}, and k,

E[Xt] = #'
Var[X.] = o2,
Cov[X¢, X¢—] = v[k] €))
and
E[X:|X:_1,Xt_5, -] is a linear function o&;_, X;_,, ... (5)

See, for instance, Chatfield (2004). One empinieay to check (4) and (5) is by plotting the laggedts, say

{(X:, X:-1)}:» and search for linearity and high correlation. Wik see that finite mixtures can emulate a highly

correlated process without having a true lineati@hship. We construct an example of a mixturenaf groups,

none of them having internal correlation but whke tvhole process exhibiting high levels of corielat
Consider two multivariate Gaussian vectors

(X0, )~V (=, —); Z),
(with densitiesf;, f, respectively) describing two different groups,hwit > 0 andX = o ?Id . Consider a random
independent sample taking values from each grotip probability 1/2 for each (see FIGURE 5).
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5. Plot of Synthetic Data

We denote the resulting process(txyY). Then, its underlying density is a mixture type dgns

1 1 1 1
fay) =500 +5LEY) =50 o)p(y;u,0%) + 2906 —h, a2)p(y; —u, %),
where

_(x-w)?
202

1
x;u,0%) = e
$(x;p0°) o
denotes the density of a Gaussian process with mean variance2. The marginal distribution of is

1 1
fx(x) = Ecb(x: w o) + §¢(x‘ —u,0%).
Then,

1 1 1 1
E[X] =§E[X1] +§E[X2] =§#+§(—H) =0,



VarlX] = 5 (EDG P + Varl]?) + 2 BT +VarlX12) — BIX] = 5 (2 +0%) + 5 (-0 +02) = 2 + 02
Analogouszresults also hold fir Let’zs calculate the correlation coeffizcient betng e%nd Y:
Cov(X,Y) = f f xyf (x,y)dxdy = %f f xyfi(x, y)dxdy +%ffxyf2(x,y)dxdy =L +1,.
The terml, can be written as
L = %f f[(x — W@ =W +ux +py — @?1f; (x, y)dxdy = Iy + Ly + Lz + Iy
Then,

111 = O,
because is the covariance betw&grandY;. We also have that,

1 2 2 1,
I =E#ffx¢(x;#,0 oy, o )dxdyIEM = L3,

and,
L, = — = U
. 14 2#
FinallyI; = E“Z' The terml, can be calculated analogously, so
Cov(X,Y) = u2.
Thus,
Cov(X,Y) u?

Corr(X,Y) =

JVar[X]{/Var[Y] - u* +o?

Takingu big enough, sinckm,,_,, Corr(X,Y) = 1, this new process can exhibit high levels of datien.
Let’s calculate novE[Y |X = x]. The conditional density df givenX = x is
fO,y)  ¢lsua?)py;u0%) + ¢l —p,0?)p(y; —u,0%)

foix=0) = 00 500 1 07) + hlx 1 0?)
Then,
— 1 — _ ¢(x; 1, 0°) ¢(x; —p, 02)
E[Y|X =x] = fyﬂwx:x)(y)dy _'u¢(x;,u,02)+¢(x; —,u,GZ)_'udb(x;,u,aZ)+¢(x; "
Denote
() d(x;p,0%) 1 1
a(x;p) = = > > = .
H o p,02) + dp(x; —p, 02) L4 e(xz-;;) _(x2+auz) 4 e_'é‘;f_zﬂ

2xp

Thena(x; —i) = ——%—. Finally,
14e o7
E[Y|X = x] = p (2a(x; 1) — 1.

Observe thatim,_,., E[Y|X = x] = u, andlim,_,_,, E[Y|X = x] = —u. We stress the fact thaflY |X =
x] is not even a linear function on the variableLinearity of E[Y |X = x] in x is an elementary hypothesis of any
linear model (and so for ARIMA'S). In this exampbkny assumption of linearity between the varialdeendY is
clearly violated. In FIGURE 6 we show an exampletio¢ functiona(x;u) with u =2 and o = 1. Some
linearisation could be argued in the intergall, 1), however recall that the means of both initial ritisttions are2

and—2. So the “linear” interva{—1,1) lies in a “low probability” zone.
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6. Function a(x,p)

We might still think that the globality of the pess brings some information about its behavior,ssmthe
global linearity could be useful for forecasting,ttke one example. The answer is that if thereevaetrue linear
relationship, it should still hold for subsets bétsample, which is not clearly the case. Moreokeowing more
information about the sample, for instance to wtdebup the observation belongs, should bring morii@cy to
our predictions but applying a linear scheme to ahyhe two example groups is indeed a bad decisorce
variableX; andY; are uncorrelated.

This shows that properties of the component distidims (normality, linear regression, independeare]
others) are not retained by mixing. That is, thatore does not have these properties, even if esenyponent
does. This implies that by mixture analysis we naigcover features of the components (or even afryev
component) that cannot be found in the entire @ataomprising the union of the subsets that belunghe
components.

We conclude that linear relationship, if any existsould be considered for each group independ€erig
analysis shows the importance of the previous etumtalysis when applying any forecasting technique

3 RESULTS

Data from 31 detectors in Madrid (Spain) registgritraffic flow every quarter-of-an-hour
throughout the year 2005 has been analysed. Ndngigata technique has been applied, so those widlysany
missing value among the 96 quarters-of-an-hour baes dropped.
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7. Madrid detector data

In FIGURE 7, we display the whole bunch of trajeies, each one representing a different day for the
detector 40001, between 6.15 a.m.(qh=25) and 8mM5gh=35). We chose only two groups (the simptesk) for
illustration and the time interval selected is therning rush hour. Intuition suggests that the gsoshould be
strongly associated with the days of the week.dlet,f75% of Group 1 is composed of Saturdays, Simndad
holidays, while these days make up only 2% of Gra(gee FIGURE 8). Similar results are obtainednfiany (or
all) the other detectors. This reinforces the titui that forecasting of traffic or any related sé& should be
conducted separately for working days and weekemdb holidays.This is a straightforward conclusion from
intuition. However, we could also think that Mondayr Fridays exhibit different patterns from thetref the days
of the week. Analyzing the sample proportions & ¢inoups more deeply we also conclude that thisithe case,
which is not such a direct conclusion.
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In FIGURE 9 we display the outliers satpriori at 5% of the sample. Some of them can be easily
identified by eye from FIGURE 7, namely the obséorawith zeros from quarters 25-29, the outlieh®wsing
spikes at quarters 31 and 33 or the outlier withrlye200 veh/h at quarter 25.

A more detailed analysis is based on greater nwrifegroups, or on a number determined from tha.dat
We applied the ICL criterion (see McLachlan anelf2000)) which is an AIC fashion criterion bassdBayesian
statistics. In this example, 6 is the number oligsuggested by the ICL criterion (see FIGURE Mdye intricate
patterns can be observed in the results. As inetlmier analysis, 73% of groups 1 and 2 are conpade
weekends/holidays and these comprise only 2% offetsteof the groups.
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9. Outlier detection
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10. Patternswith 6 groups

4 CONCLUSIONS

Pattern identification has become a key step ttebanderstanding of traffic behaviour. Here wefqren
this task via clustering, which is one of the m#pics in the Data Mining field. We have seen ttiee EM
algorithm adapts successfully to traffic data dfestion, combining a strong statistical basishwitery intuitive
results. We highlight its recent variation to cetldetection. The improper component techniqueshawn itself to
be a suitable way to uncover outliers.

Section 2.3 has shown us the strength of pattemtiiication in forecasting. Clearly, ignoring clesng
can lead us to false conclusions.

We want to emphasize how well suited mixture mo@etsto the problem of traffic management in real
time. Note that each group or pattern can be reghas a different scenario. Knowing to which graupew
observation belongs would be very useful when dpglydifferent policies. So, given a particular patt
identification (performed previously by the EM atijbm), a new vectorial observation can be easifssified
using a minor modification of (2). In fact, for @m observation to be completely classified, we ribedvalues of
the observation over the whole time domain of th#epn, e.g. from quarter 25 to 35 in the Madricraple.
However, this is not the case with real-time d&tae option for overcoming this problem is to use shme formula
(2), but only with the vector means and the vamghoovariances matrix of the time intervals obséwve until the
moment. In this way, we obtain a probabilistic geation of real- time data to each one of the stesna

We would like to mention two future research podisidss: The first is to analyse the influence dher
variables such as weather or sport events to eaehobthe groups; the second is the use of thederpa as a
primary step for forecasting.
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