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ABSTRACT 
In the world of transport management, the term ‘anticipation’ is gradually replacing ‘reaction’. Indeed, the 

ability to forecast traffic evolution in a network should ideally form the basis for many traffic management strategies 
and multiple ITS applications. Real-time prediction capabilities are therefore becoming a concrete need for the 
management of networks, both for urban and interurban environments, and today’s road operator has increasingly 
complex and exacting requirements. Recognising temporal patterns in traffic or the manner in which sequential 
traffic events evolve over time have been important considerations in short-term traffic forecasting. However, little 
work has been conducted in the area of identifying or associating traffic pattern occurrence with prevailing traffic 
conditions. This paper presents a framework for detection pattern identification based on finite mixture models using 
the EM algorithm for parameter estimation. The computation results have been conducted taking into account the 
traffic data available in an urban network. 

1 INTRODUCTION 
Numerous techniques for traffic data forecasting using historical detector data and/or real-time 

measurements have been developed using statistical methods, Neural Networks, Fuzzy-logic, Support Vector 
Machines and Traffic Simulation. (Vlahogianni et al, 2004) summarizes different methodologies of traffic data 
forecasting where some examples of the different methods could be: (Smith. and. Demetsky, 1996) described a 
nonparametric regression method; (Williams et al. 1998) introduced seasonal autoregressive integrated moving 
average and exponential smoothing methods, the Time series Analysis using the ARIMA family of models (Davis et 
al. 1991; Hamed et al. 1995; Williams 2001, Stathopoulos and Karlaftis, 2003), the neural network applications 
(Smith and Demetsky 1994; Clark and al, 1998; Dia , 2001; Ishak and Alescandru 2003). Other methodologies has 
been analysed: the support vector machines (Chen and Grant-Muller, 2001; Zhang and Xie, 2007; Castro-Neto et al,  
2009;  Zhang et al, 2011), Fuzzy-logic (Stathopoulos et al, 2010) and the use of Traffic Simulation  (Ruiz et al, 
2007;Torday et al., 2010 ). 

Recognising temporal patterns in traffic or the manner in which sequential traffic events evolve over time 
have been important considerations in short-term traffic forecasting. However, little work has been conducted in the 
area of identifying or associating traffic pattern occurrence with prevailing traffic conditions. The effectiveness of 
predictions is based on the knowledge of such patterns (Kantz and Schreiber 1997).  

The present paper focuses on the study of the temporal patterns of traffic that arise in urban networks 
regarding both the statistical structure of sequential traffic events as well as the evolution of the specific structure in 
time. The aim is to develop a detection pattern identification framework and identify the pattern associated with  
real-time detection measures for short-term prediction. As a secondary consequence, this framework could be 
applied to incident detection in urban networks.  

This paper is structured as follows: in the introduction we explain the main motivations and applications of 
a pattern identification procedure. In section 2, we explain the statistical methodology used to perform this task and 
we show that mixing patterns can lead to false conclusions. A real data example is studied in section 3 and we 
finally end with a conclusions section. 

 

1.1 Detection Patterns for Time Series Analysis: The False Friend Correlation 
The classic setting of time series analysis, such as ARIMA technique, is based on stationarity and linearity. 

Generally speaking, this means that there exists a linear relationship between time lags of a certain quantity 
(linearity) and this relationship is constant through time (stationarity). We will see that, in the presence of different 
patterns, analysing the data as a whole can lead to wrong conclusions about time lag correlations. Let us explain this 
through an example. 

 
We analysed traffic flows from Madrid (Spain) for 153 days of the year 2005 (see Results section). In the 

first graph of FIGURE 1 we plotted traffic flows at time intant t versus traffic flows at instant t-1, where t runs from 
7.45 am to 8.45 am, at every quarter-of-an-hour. Since the correlation coefficient is 91%, we could easily conclude 
that both linearity and stationarity hold. On the other hand, we applied the pattern identification framework 
described below, with two components, each one representing a different pattern. Thus, each day (comprising traffic 
flows between 7.30 am and 8.45 am) is assigned to one of the two patterns. We plotted the two sets of days 
separately in the second and third graphs in FIGURE 1. Observe that correlations have suffered a large decrease. 
Now, hypothesis of stationarity or linearity are clearly not verified by any of the two groups.  



 

 
1. Example of false correlation 

 
In section 2.4 we will study this effect in depth. We will see that it can be caused by mixing data from 

different patterns. Moreover, we will argue that, in this case, global correlation should be rejected and any attempt to 
study linearity should be done in each group separately. We conclude that pattern identification becomes a necessary 
step in order to prevent false conclusions in any linear setting. 

 

1.2 Detection Patterns for Simulation 
 (Torday et al., 2010) propose Aimsun Online as a framework for a simulation-based decision support 

system for real-time traffic management. 



 

 
2 General architecture of the Aimsun Online solution 

 
In the Aimsun Online architecture (see FIGURE 2) the basic input for this application is the real-time 

detection data, which serves to determine the current level of demand in the network and consequently allows the 
loading of the corresponding OD matrix into the simulation model before it runs. This operation is carried out 
through the OD Matcher module, which compares the latest flow measurements from each detector (typically, the 
time series from the last 30 minutes) with pre-prepared daily traffic patterns. These patterns result from an offline 
treatment of the detection historical database (ideally containing more than one year´s data).  

Considering this architecture and underlying the motivation of having detection pattern identification, the 
basic input required is the detection pattern definition used in different steps of the forecasting process. 
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Integrating the detection pattern identification in this architecture, this paper proposes the application of the 

developed methodology. This process of Detection Pattern Identification is based on a sequential process, where the 
first stage is the local detection pattern identification and the second stage is the global pattern identification (see 
FIGURE 3). 

1. Local Detection Pattern Identification (LDPI): Calculates the different patterns applying the EM algorithm 
for each detector, taking into account the data available for each individual detector inside the historical 
database.  

2. Global Detection Pattern Identification (GDPI): Calculates the different global patterns taking into account 
all data available within the historical data and each individual detector pattern calculated in the previous 
step.  
 
The application of this generic framework in a simulation-based decision support system for real-time 

traffic management is determined by the following elements: 
• Traffic demand definition (in FIGURE 2 identified as “OD Matcher”): GDPI determines the global 

detection patterns and, when the system receives the detector measurements in real-time, classifies the real 
data according to the different patterns calculated and gives as output the traffic demand defined in terms of 
OD matrices associated with the pattern that reproduces the real-time detector measures. 
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FIGURE 3. Local and Global Pattern Recognition. 3. Local and Global Pattern Identification 



• Quality Manager: LDPI determines the pattern for each individual detector, according to the real-time 
detector measures, and then using the simulation results combined with a prediction based on patterns 
establishes a rate of goodness of different types of forecasting methods. 

• Incident Detection Manager (this is not represented explicitly in FIGURE 2 but this module could be added 
as part of the Quality Manager): LDPI determines the pattern for each individual detector according to the 
real-time detector measures and then establishes the presence, location and severity of possible incidents. 
The incident detection is based on the “Outlier Detection” methodology, explained in Section 2. 

2 METHODOLOGY 
The methodology proposed in this paper for detection pattern identification is based on finite mixture (FM) 

models using the EM model for parameter estimation. The generic framework (see FIGURE 4) receives as input the 
real detection data historical database and the number of patterns as a user-defined parameter, and generates as 
output a detection patterns database. The number of patterns a priori is a user-defined parameter but in the numerical 
results this has been calculated using the ICL criterion. 

 
 
 
 
 
 

 

 

 

 

2.1 Finite Mixture Models 
Given densities ����; ���,… , �
��; �
� where �
 denote the density parameters and � = ���, … , ���,  and a 

collection of proportions ��, … , �
 satisfying �
 ≥ 0, and �� +⋯+ �
 = 1 we define the density  
                                               ���; 	�� = ������; ��� + ⋯+ �
�
��; �
�,                                               (1) 

where � = �	��, … , �
; 	��, … , �
�. The density ���, ��, has a direct interpretation. Say we have � different groups, 
each one represented by proportion �
 of the whole population.  In our case, neither the set of parameters ��, … , �
, 
nor the proportions ��, … , �
 (nor the number of components) are known, so they have to be estimated.  

A classic specification for the functions �
��; �
� is the normal density.  In this case �
 = ��
; Σ
�, where  �
 
is the vector of expectations and Σ� is the matrix of variances-covariances. A remarkable property is that any density 
function can be well approximated by a mixture of normal densities if the number of components is large enough.  
In fact, in the extreme case that � equals the number of observations of the sample, the normal mixture model can be 
regarded as a parametric density estimation method with a Gaussian kernel (see Silverman, 1986). 

2.2 Parameter Estimation: EM Algorithm 
The natural way to estimate the unknown parameters is the maximum likelihood estimation: 

� = �����; 	��.
�

 

 However, the traditional approach (to find the roots of the gradient of the log likelihood) doesn’t lead to a 
closed-form solution. Instead, the problem is solved by means of the EM algorithm. See (Dempster et al., 1977; 
McLachlan and Krishnan, 2008) and (McLachlan and Peel, 2000) for a comprehensive treatment of finite mixtures.  

Let y�, … , y!, be vectors of observations that are independent but may have dependent elements. In our 
study, they are flows in a particular detector over some time interval " = �#
�, e.g. T=(8, 8.25, 8.5, 8.75, 9) hours and 
�� = �101.2, 87, 83, 95, 93� vehicles per hour registered at 23/04/2005. In the parameter setting, equal variance-
covariance matrices should be taken in order to ensure global finite maximum of the likelihood, i.e., Σ�, … , Σ* = 	Σ . 
In the EM approach, unobserved variables + are considered realisations of the corresponding labeling of each 
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FIGURE 2 Generic framework for detection pattern recognition 4. Generic framework for detection pattern identification 



observation. That is, for each observation �� , we consider a random vector of binary elements +� = �+�,
�, with 
+�,
 = 1 if the observation �� belongs to the component ,, and 0 otherwise. If we were to observe these vectors, the 
problem of estimating the parameters of the normal distributions would be simple. In the terminology of the EM 
algorithm, this method and the corresponding dataset are called ‘complete’. The realised dataset is called 
‘incomplete’. Then the complete data likelihood (as a function of the variables � and +) is specified and the 
parameters are estimated using an iterative procedure consisting of two steps: (E) expectation and  (M) 
maximisation. Given initial conditions �	��-, … , �
-; 	��-, … , �
- , ; Σ-�, E step in the k+1th iteration is performed by 

.
,�/0� = �
/�
���; �
/; Σ1�
∑ �3/�3���; �3/; Σ1�3

,																																																												�2� 
for each observation 4 and each group 	,.  Then, parameters are updated applying the M step, 

�
/0� = 1
56.
,�/0�

�
, 

�
/0� = ∑ ��.
,�/0��
∑ .
,�/0��

, 
and 

Σ10� = 1
n66.
,�/0���� − �
/0����� − �
/0��9 .

:�
 

The algorithm stops when the the likelihood L of the new iteration differs from its value in the previous 
iteration by less than an a priori set threshold. Quantities τ�,: when the algorithm has converged is the conditional 
probability of the observation j of belonging to group i (the conditional expectation of the elements of z:).  Then 
assignment to a group ,′ follows when the corresponding .
A,� is the maximum among the others .
,� . 
2.3 Outlier Detection 

In this paper we follow the scheme described by (Longford  and D'Urso, 2011). Outliers are handled by 
introducing a new group, Group 0, governed by an “improper” component, that is, with constant density �- = B (so 

C �D
ED = ∞), which will compete with the previous ones. The same formulas are used, replacing �- with B. Observe 

that the estimated �- is a non-decreasing function of D.  
D cannot be estimated by statistical procedures. A desired level of outliers is sought instead. Given �-GHI, at 

each iteration k+1 we perform a Newton-Rapshon type algorithm to the function �-/0� = �-/0��B�, so that �-/0� =
�-GHI. Recall  

.-,�/0� = �-/B
∑ �3/�3���; �3/; Σ1�3J� + �-/B, 

�-/0� = 1
56.-,�/0�

�
.	

Then,		
N�-/0�
NB = 1

5B6.-,�/0�
�

− �.-,�/0��O, 
and the formulae for the Newton-Raphson algorithm becomes, 

BP0� = BP − ��-/0��B� − �-GHI�
N�-/0��BP� NB⁄ = BP −

1
5∑ .-,�/0�� − �-GHI

1
5BP ∑ .-,�/0�� − �.-,�/0��O

. 

Observe that if any .-,�/0� ≠ 1,0, then  
STUVWX
SY > 0 (because	0 ≤ .-,�/0� ≤ 1 for all 	4), and the function is 

strictly increasing. Since �-/0��0� = 0, and limY→D �-/0��B� = 1, there is a unique root of the equation  
�-/0��B� − �-GHI = 0																																																																�3� 

over the domain {B > 0}. It may happen that BP0�<0. This implies that	�-/0��BP� − �-GHI > 0, so we can assure 
that the positive root of (3) lies in the interval �0,BP�. In this case we proceed applying a one-step bisection 

algorithm, i.e. BP0� = BP 2a . 
 



 

2.4 Finite Mixtures and False Friend Correlations 
Traditionally, techniques such as ARIMA (at least its elementary versions), rely on stationarity and 

linearity.  This means, in particular, that given a time series {bc}c and 	d,  
efbcg = �, 

hijfbcg = σO, 
lmnfbc , bcE/g = ofdg																																																																						�4� 

and  
efbc|bcE�, bcEO, … g is a linear function on bcE�, bcEO, …                                (5) 

See, for instance, Chatfield (2004). One empirical way to check (4) and (5) is by plotting the lagged pairs, say  
{�bc , bcE��}c, and search for linearity and high correlation. We will see that finite mixtures can emulate a highly 
correlated process without having a true linear relationship. We construct an example of a mixture of two groups, 
none of them having internal correlation but with the whole process exhibiting high levels of correlation.  

Consider two multivariate Gaussian vectors 
�b�, r��~t���, ��;Σ� 

�bO, rO�~t��−�,−��;Σ�, 
(with densities ��, �O respectively) describing two different groups, with � > 0 and Σ =σOId	. Consider a random 
independent sample taking values from each group with probability 1/2 for each (see FIGURE 5 ).  

 

 
5. Plot of Synthetic Data 

 
We denote the resulting process by �b, r�.	Then, its underlying density is a mixture type density 

��w, �� = 1
2���w, �� +

1
2�O�w, �� =

1
2x�w; �, yO�x��; �, yO� + 1

2x�w;−�, yO�x��;−�, yO�, 
where 

x�	w	; �, yO� = 1
√2�y	{

E�|E}�~O�~  

denotes the density of a Gaussian process with mean � and variance yO. The marginal distribution of b is  

���w� = 1
2x�w; �, yO� + 1

2x�w;−�, yO�. 
Then, 

efbg = 1
2efb�g +

1
2efbOg = 1

2� + 1
2 �−	�� = 0, 



hijfbg = 1
2 �efb�gO + hijfb�gO� + 1

2 �efbOgO + hijfbOgO� − efbg = 1
2 ��O + yO� + 1

2 ��−��O + yO� = �O + yO. 
Analogous results also hold for r. Let’s calculate the correlation coefficient between b and 	r: 

lmn�b, r� = ��w���w, ���w�� = 1
2��w����w, ���w�� + 1

2��w��O�w, ���w�� = "� + "O. 
The term "�can be written as  

"� = 1
2��f�w − ���� − �� + �w + �� − �Og���w, ���w�� = "�� + "�O + "�� + "��.		 

Then, 
 "�� = 0, 
because is the covariance between b� and r�. We also have that, 

"�O = 1
2���wx�w; �, yO�x��; �, yO��w�� = 1

2�O = "��, 
and, 

"�� = −1
2 �O. 

Finally "� = �
O�O. The term "O can be calculated analogously, so  

lmn�b, r� = �O. 
Thus, 

lmjj�b, r� = lmn�b, r�
�hijfbg�hijfrg =

�O
�O + yO. 

Taking � big enough, since lim}→D lmjj�b, r� = 1, this new process can exhibit high levels of correlation. 
 Let’s calculate now efr	|b = wg. The conditional density of r given b = w is 

���|��|���� = ��w, ��
���w� = x�w; �, yO�x��; �, yO� + x�w;−�, yO�x��;−�, yO�

x�w; �, yO� + x�w;−�, yO� . 
Then,  

efr|b = wg = �����|��|������ = � x�w; �, yO�
x�w; �, yO� + x�w;−�, yO� − � x�w;−�, yO�

x�w; �, yO� + x�w;−�, yO�. 
Denote 

i�w; �� = x�w; �, yO�
x�w; �, yO� + x�w;−�, yO� =

1
1 + {�|E}�

~
O�~ E�|0}�~O�~

= 1
1 + {EO|}�~

. 

Then i�w;−�� = H�
~��
�~

�0H�
~��
�~

. Finally, 

efr|b = wg = �	�2i�w; �� − 1�. 
Observe that lim|→D efr|b = wg = �, and lim|→ED efr|b = wg = −�. We stress the fact that efr	|b =

wg is not even a linear function on the variable w.  Linearity of efr	|b = wg in w is an elementary hypothesis of any 
linear model (and so for ARIMA’s). In this example, any assumption of linearity between the variables b and r is 
clearly violated. In FIGURE 6 we show an example of the function i�w; �� with � = 2 and y = 1. Some 
linearisation could be argued in the interval �−1,1�, however recall that the means of both initial distributions are 2 
and −2. So the “linear” interval �−1,1� lies in a “low probability” zone. 

 



 
6. Function a(x,µ) 

 
We might still think that the globality of the process brings some information about its behavior, and so the 

global linearity could be useful for forecasting, to take one example. The answer is that if there were a true linear 
relationship, it should still hold for subsets of the sample, which is not clearly the case. Moreover, knowing more 
information about the sample, for instance to which group the observation belongs, should bring more accuracy to 
our predictions but applying a linear scheme to any of the two example groups is indeed a bad decision, since 
variable b
 and r
 are uncorrelated.  

This shows that properties of the component distributions (normality, linear regression, independence, and 
others) are not retained by mixing. That is, the mixture does not have these properties, even if every component 
does.  This implies that by mixture analysis we may discover features of the components (or even of every 
component) that cannot be found in the entire dataset, comprising the union of the subsets that belong to the 
components. 

We conclude that linear relationship, if any exists, should be considered for each group independently. This 
analysis shows the importance of the previous cluster analysis when applying any forecasting technique. 

3 RESULTS 
 Data from 31 detectors in Madrid (Spain) registering traffic flow every quarter-of-an-hour 

throughout the year 2005 has been analysed. No missing data technique has been applied, so those days with any 
missing value among the 96 quarters-of-an-hour have been dropped.    



 
7. Madrid detector data 

 
In FIGURE 7, we display the whole bunch of trajectories, each one representing a different day for the 

detector 40001, between 6.15 a.m.(qh=25) and 8.45 a.m.(qh=35). We chose only two groups (the simplest case) for 
illustration and the time interval selected is the morning rush hour. Intuition suggests that the groups should be 
strongly associated with the days of the week. In fact, 75% of Group 1 is composed of Saturdays, Sundays and 
holidays, while these days make up only 2% of Group 2(see FIGURE 8). Similar results are obtained for many (or 
all) the other detectors. This reinforces the intuition that forecasting of traffic or any related analysis should be 
conducted separately for working days and weekends and holidays. This is a straightforward conclusion from 
intuition. However, we could also think that Mondays or Fridays exhibit different patterns from the rest of the days 
of the week. Analyzing the sample proportions of the groups more deeply we also conclude that this is not the case, 
which is not such a direct conclusion. 



                                              8. Groups 1 and 2                               
 
In FIGURE 9 we display the outliers set a priori at 5% of the sample. Some of them can be easily 

identified by eye from FIGURE 7, namely the observation with zeros from quarters 25-29, the outliers showing 
spikes at quarters 31 and 33 or the outlier with nearly 200 veh/h at quarter 25.  

A more detailed analysis is based on greater numbers of groups, or on a number determined from the data. 
We applied the ICL criterion (see McLachlan  and Peel (2000)) which is an AIC fashion criterion based on Bayesian 
statistics. In this example, 6 is the number of groups suggested by the ICL criterion (see FIGURE 10). More intricate 
patterns can be observed in the results. As in the earlier analysis, 73% of groups 1 and 2 are composed of  
weekends/holidays and these comprise only 2% of the rest of the groups.  

 
9. Outlier detection 



  
10. Patterns with 6 groups 

4 CONCLUSIONS 
Pattern identification has become a key step to better understanding of traffic behaviour. Here we perform 

this task via clustering, which is one of the main topics in the Data Mining field. We have seen that the EM 
algorithm adapts successfully to traffic data classification, combining a strong statistical basis with very intuitive 
results. We highlight its recent variation to outlier detection. The improper component technique has shown itself to 
be a suitable way to uncover outliers.  

Section 2.3 has shown us the strength of pattern identification in forecasting. Clearly, ignoring clustering 
can lead us to false conclusions. 

We want to emphasize how well suited mixture models are to the problem of traffic management in real 
time. Note that each group or pattern can be regarded as a different scenario. Knowing to which group a new 
observation belongs would be very useful when applying different policies. So, given a particular pattern 
identification (performed previously by the EM algorithm), a new vectorial observation can be easily classified 
using a minor modification of (2). In fact, for a new observation to be completely classified, we need the values of 
the observation over the whole time domain of the pattern, e.g. from quarter 25 to 35 in the Madrid example. 
However, this is not the case with real-time data. One option for overcoming this problem is to use the same formula 
(2), but only with the vector means and the variances-covariances matrix of the time intervals observed up until the 
moment. In this way, we obtain a probabilistic assignation of real- time data to each one of the scenarios. 

We would like to mention two future research possibilities: The first is to analyse the influence of other 
variables such as weather or sport events to each one of the groups; the second is the use of these patterns as a 
primary step for forecasting. 
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