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Abstract

Recognizing and reacting to emotions are fundamental elements in communica-
tion among humans. Transferring these skills to computers is an exceptionally
complex task, in part, due to the subjective nature of emotions and the subtle,
context-dependent and disperse properties of their manifestations. This the-
sis investigates methods to uncover the mapping between emotions and their
manifestations based on observations of humans experiencing specific affective
states.

The first challenge is to annotate and, in turn, recognize the affective states ex-
perienced. While posing interesting computational difficulties, ordinal reports
such as rankings and ratings can yield more reliable affect annotations than
alternative tools. This thesis explores preference learning methods to automat-
ically learn computational models from ordinal annotations of affect. In par-
ticular, an extensive collection of training strategies (error functions and train-
ing algorithms) for artificial neural networks are examined across synthetic and
psycho-physiological datasets, and compared against support vector machines
and Cohen’s method. Results reveal the best training strategies for neural net-
works and suggest their superiority over the other examined methods.

The second challenge addressed in this thesis refers to the extraction of relevant
information from physiological modalities. Deep learning is proposed as an auto-
matic approach to extract input features for models of affect from physiological
signals. Experiments on psycho-physiological datasets show that these meth-
ods, in combination with automatic feature selection, can reveal information
that yields more accurate predictors of affect than typical hand-crafted feature
extractors examined in Affective Computing research.

The third challenge arises from the complexity of hand-crafting feature extrac-
tors that combine information across dissimilar modalities of input. Frequent
sequence mining is presented as a method to learn feature extractors that fuse
physiological and contextual information. This method is evaluated in a game-
based dataset and compared against ad-hoc extracted features. The evaluation
reveals that this unsupervised method, combined with appropriate feature selec-
tion algorithms, yields more accurate predictors of affective player experiences
than hand-crafted single-modality features.

In summary, this thesis proposes and validates a complete methodology for
building models of affect from ordinal annotations with minimal expert-knowledge,
advancing affect modeling towards an automated data-driven process. The gen-
erality of the thesis’ key findings presented along with the limitations and the
extensibility of the proposed components are discussed.
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Chapter 1

Introduction

Emotions are fundamental elements of human intelligence linked to attention, perception
and behavior (Goleman, [2006; Scherer, [2003; Frijda, [1986; Lopes et al., 2005). The voluntary
expressions and unconscious manifestations of emotions give away clues on our state of mind.
Predicting emotion from such manifestations and being able to act on that knowledge,
is considered an essential skill for basic social interactions and a fundamental ability for
eminent managers, lecturers and showmen. Nowadays we work with, learn from and get
entertained by computers that ignore our emotions. Models that would enable machines to
detect and respond to them, would augment our interaction with technology. In particular,
machines that could detect and react to our stress, confusion or enjoyment levels would be
able to improve our productivity at work, facilitate learning or maximize entertainment.

Unfortunately, more than 15 years after the early studies in Affective Computing (AC),
(Picard, [1995) the problem of detecting and modeling emotions, or more generally affect, in
the context of human-computer interaction (HCI) remains complex and largely unexplored.
Research in the affect modeling field is focused, primarily, on the study and use of artificial
intelligence (AI) techniques for the construction of computational models of affect. The
key challenges one faces when attempting to create these models are inherent in the vague
definitions and fuzzy boundaries of affect (Calvo and D’Mello, 2010), and in the model-
ing methodology followed. In this context, open research questions are still present in all
key components of the modeling process. These include, first, the appropriateness of the
modeling tool employed to map emotion manifestations and responses to annotated affec-
tive states; second, the processing of signals that express those manifestations (i.e. model
input); and third, the way affect annotation (i.e. model output) is handled. This thesis
touches upon all three key components (i.e. input, model, output) introducing new tools
for affect modeling.

1.1 Motivation and Challenges

Visible signs of emotion often accompany our experiences with technology, for example a
smile when a phone makes a good recommendation, a yawn when an online course presents
the next exercise and a yell of anger when a game pulls off a seemingly impossible defeat.
Loads of precious, accurate and automatic feedback falls on deaf ears while thrown at the
machine. Models of affect would endow computers with the ability of assessing the subjec-
tive experience of users from these visible signs and additional non-visible bodily changes
(e.g. changes in heart rate). This new communication channel between humans and technol-
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Chapter 1. Introduction

ogy could be applied to enhance current testing methodologies: estimations of the affective
responses of users to a new device or application would provide more interesting informa-
tion than regular HCI performance metrics (e.g. selection speed (Natapov et al., |2009))
and bypass the disruption and tediousness of completing questionnaires. More advanced
applications arise from the integration of these models as part of adaptation mechanisms
that modify the content or behavior of the system based on the estimated affective state of
the user, namely an affecttive loop (Hook, |2009; Fairclough, [2009).

Computer games in particular provide the ideal arena for the study of this loop since they
can elicit a plethora of affective states (Perron) [2005) and their dynamic nature opens up
a large number of possibilities for personalized and adaptive content (Gilleade et al., |2005;
Hudlicka, 2009; |Yannakakis and Togeliusl, [2011; [Yannakakis and Paival |2013). However, a
common critique for adaptation in games is that most players do not want to feel patronized
by a game that lowers the difficulty according to the player’s performance. Models of affect
provide alternative heuristics (predictors of affect), such as boredom or engagement, that
games can rely upon for adaptation. For each playing session, an affect-adaptive game could
generate content tailored to the current player’s mood and adapt different elements along
the session to maximize enjoyment and minimize long periods of boredom. Additionally,
a game aimed at eliciting emotions such as fear or even frustration, could use models of
emotion to evaluate player’s responses to different game elements and find the most effective
stimuli for each player.

Moving from entertainment technologies to educational, affective adaptation holds the
potential of boosting the efficacy of virtual tutors (McQuiggan et al.l [2007). As emotions
are strongly linked to attention, motivation and learning, a tutor able to minimize boredom
and frustration and react to confusion would help students to learn faster than another
tutor that only relies on performance measures. A final and highly relevant application
for affect modeling is the implementation of tools for assisting people with difficulties to
express or recognize emotions (Kaliouby et al.l 2006). Models that rely on unconscious
manifestations of emotion such as physiological signals, can help parents and educators of
children living with such disabilities. Examples of these technologies are flourishing, and
while a great promise has been shown via the exploration of basic mental-body mappings of
affect — such as heightened skin conductance and arousal (Fletcher et al., |2010) or smiles
and enjoyment (McDuff et al., 2012) — general and reliable models for more complex
affective states are not yet available.

One of the main obstacles in the attempt to model affect is the difficulty of collecting
reliable representative data to create the model. This difficulty is caused for a number
of factors determined by the fundamental characteristics of affect: first, affective states
are subjective and depend on a large number of factors, which makes impossible to devise
an experimental protocol that accurately elicits, across a group of different individuals, a
specific affective state; hence the need for annotation. Second, affective states are presented
with different intensities and the boundaries among different states are blurry; thus the
reliability and accuracy of annotated affect is compromized. Third, affective states are not
instantaneous and last a variable amount of time; so modeling methods are required to
process sequential information. Fourth, the manifestations of affect are complex and not
completely understood; hence any designer-driven decision in the modeling process could
hinder important effects. Fifth, the manifestations of affect can be ambiguous as there is no
one-to-one mapping between the bodily and mental states of affect; thus, several modalities
of inputs need to be considered simultaneously.

This thesis introduces a generic methodology towards more accurate and reliable models
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1.2. Problem Formulation

of affect by proposing and evaluating methods that overcome the above-mentioned difficul-
ties. In particular, first, several preference learning methods (PL) are proposed for con-
structing models of affect from ordinal reports. These reports create a more challenging
and less investigated machine learning problem but they facilitate more reliable annotations
of affect intensity, as they only require comparisons among affective experiences instead of
absolute numerical estimations of the intensity of each experience. Hence the proposed
methods aim at creating more accurate models from more reliable data. Second, a deep
learning method is introduced for extracting novel complex physiological features that can
feed the input of the models of affect which are built through preference learning. This
method processes physiological signals automatically introducing minimal human-biases,
thus potentially revealing sequential patterns not represented by ad-hoc designed metrics.
Finally, a sequence mining method is presented for synthesizing the temporal relation among
input modalities; this method conforms an automatic procedure for fusing physiological and
contextual information facilitating multimodal models of affect. The introduced method-
ology is tested on a number of synthetic and user survey datasets that contain affect an-
notations. In the next two sections, the problem of affect modeling is formulated more
concretely and the contributions of this thesis are specified in more detail.

1.2 Problem Formulation

Despite the extensive amount of research in affective phenomena, researchers have not yet
reached consensus on a precise definition of affect. Affect is generally used as a term to
encompass dissimilar mental states related to emotion (affective constructs) such as per-
sonality traits, preferences, attitudes and moods (Davidson, 1994; Davidson et al., |1994]).
Compared to the other constructs, emotions are typically depicted as short episodes that
span for seconds or minutes (Scherer} 2000} Frijday [1993). Modeling affect in this thesis is
restricted to modeling mental states elicited by brief experiences including not only tradi-
tional emotions (e.g. frustration and anxiety) but also other constructs related to affect and
cognition, and fundamental to entertainment (e.g. “fun” and perceived challenge). For the
sake of readability, all these mental constructs are referred to as affective states throughout
this dissertation.

The approach to affect modeling investigated here is based on two points in which most
theorists agree upon (Picard, 1997} |Scherer], |2000). First, it is widely accepted that emotions
have a mental and a bodily component. The former refers to the subjective feeling and the
cognitive processes that occur during an emotional episode while the latter refers to motor
expressions (e.g. facial expressions) and physiological changes (e.g. increase of heart rate).
The second point of consensus among the researchers in the field is that emotions normally
occur as a response to internal or external stimuli or events that are significant to the
organism.

Based on these two points of agreement, a model of affect can be defined as a predictor
of the mental component of emotion that relies on the (measurable) bodily component
and the external stimuli that triggers the emotional response. In computational terms,
this model can be further defined as a function that processes several parallel streams of
multimodal data (e.g. video feed of the face, heart rate signal and events occurring in
the computer interface) and predicts a quantifiable representation of the affective state
(e.g. 0.9 probability of the user being frustrated). This idea is exemplified in Figure [L.1b]
through a model that estimates the affective state of a video-game player relying on certain
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Figure 1.1: Problem formulation: a model of affect estimates the affective state of a user
based on information about her physiological state and her interaction with the system. A
feature extraction phase is required to reduce the high-dimensionality of the input signals
and provide suitable inputs to the model. Training data is collected from users interacting
with the system and reporting the target affective states by sorting several sessions (e.g. A
and B) by the intensity of the state felt (e.g. B was more exciting than A, A < B). The
model is trained by adjusting its parameters to make predictions that satisfy the training
reports (e.g. a higher prediction of excitement for B with respect to A). The trained model
can then be applied to estimate in real-time the affective state of new users.

metric (x) that combines physiological signals and the sequence of events occurring in the
game. The central problem addressed in this dissertation is the application of artificial and
computational intelligence methods to automatically infer that model and that metric from
a set of observations of the target affective state.

Collecting reliable observations of the affective state is key to creating a valid and ac-
curate model. As there are no available systematic approaches for objectively measuring
affective states it, inevitably, requires humans to make the annotations through self-reports,
reports as an expert observer or through the design of the experimental protocol (e.g.
custom-design a frustrating experience). For affect modeling, the annotations are usually
reduced to binary (the affective state is felt or not) or numerical values (intensity of the af-
fective state) matching well the most popular Al tasks, namely classification and regression.
Algorithms designed for these tasks attempt to find the one-to-one mapping between each
experience (data sample) and its corresponding target output (affect annotation). While
annotating binary labels oversimplifies the task by neglecting affect intensities, annotating
exact numerical intensities of affective states is a rather challenging (and to a degree, naive)
task. Note that user ratings follow unknown subjective scales that vary across users and
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1.2. Problem Formulation

along time (Viswanathan, 1993; Costner, 1969)), and therefore they should not be treated
as real-values. A compromise is found by treating ratings as ordinal labels or by using
ordinal annotations such as rankings (e.g. the affective state was felt stronger during the
first than the second experience) that represent different relative levels of intensity without
introducing unreliable numerical values.

As illustrated in Figure[I.1a] the process for creating models of affect in this dissertation
is rendered as learning the mapping between objective measurable cues and ordinal annota-
tions of different emotional experiences. Three fundamental challenges can be distinguished
in this process:

e The first key challenge emerges from the switch from nominal and real-valued anno-
tations to ordinal annotations (rankings, pairwise preferences or ratings as ordinal
values): the computational learning task moves from one of classification or regres-
sion to object ranking (OR) in which each data sample no longer maps to a given
label but to a position within an ordering of the data samples. This problem has
been studied within the machine learning sub-field of preference learning (Fiirnkranz
and Hillermeier} 2010a); however, affect datasets feature a number of particu-
lar characteristics that create challenges for standard PL methods. These
include small sample size, noisy inputs, significant differences across groups of data
samples and noisy outputs. These characteristics arise from the data collection exper-
iments using specialized sensing hardware, which leads to time consuming sessions,
experimental biases and data artifacts, and participant-specific baseline recordings; in
addition of course to the challenging task of annotation affective states.

This challenge motivates the first objective of this thesis which consists of identifying
the suitability of dissimilar PL techniques for affect modeling and beyond. In partic-
ular, we explore a series of artificial neural network (ANN) variants, support vector

machines (SVM) and Cohen’s method (CM).

e A second challenge faced when learning models of affect is dealing with the large
dimensionality of the streams of input data and the multiple entangled
factors of variation independent of affect. Consider, for instance, that a moni-
tored episode of frustration lasts for 60 seconds, a physiological sensor is recording a
signal at 32 Hz and one rating for the whole experience is reported; in this example
one single annotation of frustration is related to 60 x 32 = 1920 physiological record-
ings. Additionally, if an internal body change related to e.g. digestion alters the
physiological signal, the effect would be entangled with the manifestations of frustra-
tion. Finding a function that maps that amount of data directly to an estimation of
the affective state is practically impossible, especially considering that affect datasets
generally contain a small number of data samples. Traditionally, the dimensionality
of the inputs is reduced by extracting several characteristic attributes of the input
streams (feature extraction) and feed them to the models. While this phase is bene-
ficial for affect modeling, it limits the creativity of feature design to the expert (i.e.
the AC researcher) resulting in potentially inappropriate affect detectors that might
not be able to capture the manifestations of affect embedded in the raw input signals.
To overcome the limitations of human-designed features (ad-hoc features), this thesis
introduces a method based on deep architectures for automatic discovery of features
that can yield more accurate models of affect.

This method renders the second objective of this thesis consisting of evaluating the
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Chapter 1. Introduction

efficacy of deep learning methods for reducing the dimensionality of input signals. In
particular, we focus on the reduction of key physiological signals, namely skin conduc-
tance (SC), heart rate (HR), blood volume (BV) and blood volume pulse (BVP). In
addition, we test whether more accurate models of affect can be created by replacing
manual ad-hoc features with deep learned features. A sub-goal of this objective is to
test the efficacy of automatic feature selection (FS) for finding the deep learned fea-
tures that are relevant for affect, hence creating more accurate and expressive models
of affect.

e A third challenge arises from the complexity of effectively hand-crafting mul-
timodal features. While there exist well-stablished ad-hoc features for individual
physiological signals (e.g. average heart inter-beat amplitude), features that combine
information across modalities are not common. This usually results in models of af-
fect that combine the different input modalities using unimodal features (i.e. feature
level fusion (Pantic and Rothkrantz, 2003)), potentially missing relevant interactions
among modalities. In addition, when context information is considered, complex ad-
hoc features can rarely be reused due to large differences on the definition of actions
and events across dissimilar applications or systems. This thesis introduces the ap-
plication of frequent sequence mining (SM) algorithms for automatic extraction of
features from multiple modalities including context.

The corresponding objective consists of evaluating the efficacy of sequence mining
methods for automatically fusing multiple input modalities. In particular, we inves-
tigate the fusion of physiological and contextual information, and test whether more
accurate models of affect can be created by replacing manual ad-hoc feature extrac-
tion with sequence mining. Similarly to the second objective, a sub-goal of this third
objective consists of testing the efficacy of automatic feature selection mechanisms for
boosting the accuracy of models of affect based on automatically extracted multimodal
features.

In summary, the main goal of this thesis is to introduce appropriate methods and tools
towards more reliable and accurate computational models of affect. The three main research
questions that are raised towards achieving that goal and addressed in this thesis are as
follows:

e What are the most adequate computational methods to create models of
affect from ordinal annotations? Experiments in Chapter [5] tackle this question
by evaluating which training algorithms and error functions create the most accurate
artificial neural network for predicting synthetic functions and affect datasets; in ad-
dition, support vector machines and Cohen’s method are applied to the same tasks
and compared against the ANN models.

e Can automatic feature extraction reveal relevant components from phys-
iological signals that lead to more accurate models of affect than ad-hoc
features? Chapter [6]addresses this question by analysing features learned from phys-
iological datasets using convolutional neural networks (CNNs), and comparing the
prediction accuracy of affect models built on these features and on standard ad-hoc
features.

e Can automatic feature extraction capture the interrelationships among in-
put modalities and lead to more accurate models of affect than ad-hoc
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single-modality features? Chapter [7] helps to answer this question by extracting
multimodal features from physiology and context signals using the generalized sequen-
tial patterns (GSP) algorithm; prediction models based on these features are compared
against models fed by standard ad-hoc features in order to reveal the relative predic-
tion power of the sequence-mining multimodal features.

The next section outlines the contributions of this thesis which arise by answering the
above-mentioned research questions.

1.3 Novelty and Contributions

The main contributions of this thesis are aligned along the process of modeling affect from
annotated user data. In particular, this thesis brings methods from the fields of data mining
(DM), artificial intelligence and computational intelligence (CI) to address three different
challenges within the affect modeling process:

e Methods for modeling emotion from ordinal annotations: a set of tools for
training models of affect using ordinal data (rankings or ratings). The methods are
evaluated on synthetic data representing common patterns and characteristics of affect
datasets. In addition, the methods are validated in two real datasets containing self-
reports of affect and several input modalities.

e Methods for automatically extracting physiological features: we propose an
algorithm based on convolutional neural networks and auto-encoders (AE) for unsu-
pervised extraction of features of blood volume, blood volume pulse, skin conductance
and heart rate. This is the first reported study of such methods on physiological
signals. Also, for the first time deep learning is used to create models of affective
experiences.

e Methods for automatically fusing physiological modalities and context: a
frequent sequence mining algorithm is introduced as a method for extracting features
from asynchronous and simultaneous signals. In particular, the method is utilized
to extract patterns from discrete skin conductance and blood volume pulse events
and the sequence of actions arising from the interaction between user and system
(keystrokes and actions in a video-game). This technique has not been used before
in the context of human-computer interaction or as a feature extraction method for
affect modeling.

e Methods for automatic feature selection: the efficacy of two automatic fea-
ture selection algorithms is validated across a number of ad-hoc and automatically
extracted physiological and multimodal feature sets in two affect datasets.

Additionally, this thesis also contributes to the the fields of machine learning and com-
puter games research:

e Methods for object ranking: a set of algorithms and tools for training artificial
neural networks using ordinal data is compiled combining existing training algorithms
and error functions scattered in the machine learning and preference learning litera-
ture. New error functions are also introduced to complete the spectrum of possible
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1.4

approaches to neural network-based object ranking. This is the first thorough empir-
ical study of artificial neural networks across training algorithms and a large set of
error functions for a preference learning task. Additionally, support vector machines
and Cohen’s method are evaluated to validate the efficacy of ANN approaches against
dissimilar well-established preference learning algorithms.

Methods for player modeling: collectively, the thesis contributes to the field of
computer games (arguably, the richest human computer interaction sub-domain) and
player experience as it introduces methodologies for emotion annotation, feature ex-
traction and selection, and affect modeling that yield models of affect of high predic-
tion accuracies.

Publications

The work conducted in this thesis has resulted in a number of technical peer-reviewed
publications in journals and conference proceedings that are listed below:

Journal Publications

Martinez H.P., Yannakakis, G.N. - Artificial Neural Networks for Object Ranking: an

Empirical Comparison (under preparation)

Martinez, H.P., Bengio, Y., Yannakakis, G.N. - Learning Deep Physiological Models
of Affect, IEEE Computational Intelligence Magazine, 9:1:2033, 2013

Yannakakis, G. N., Martinez, H. P., Jhala, A. - Towards Affective Camera Control in
Games, User Modeling and User-Adapted Interaction, 20:313-340, 2010

Conference Proceedings and Workshop Papers (peer-reviewed)

Martinez, H.P., Yannakakis, G.N. - Mining Multimodal Sequential Patterns: A Case
Study on Affect Detection, Proceedings of the International Conference on Multimodal
Interaction, ICMI, Alicante, November, 2011 (Outstanding student paper award)

Martinez, H.P., Garbarino, M., Yannakakis, G.N. - Generic Physiological Features
as Predictors of Player FExperience, Proceedings of the international conference on
Affective Computing and Intelligent Interaction, ACII, Memphis, October, 2011

Martinez, H.P., Yannakakis, G.N. - Analysing the Relevance of Fxperience Partitions
to the Prediction of Players Self-Reports of Affect, Proceedings of the international
conference on Affective Computing and Intelligent Interaction, Emotion in Games
workshop, EMOGames, Memphis, October, 2011

Martinez, H.P., Yannakakis, G.N. - Genetic Search Feature Selection for Affective
Modelling: a Case Study on Reported Preferences, Proceedings of the international

workshop on Affective Interaction in Natural Environments, AFFINE, Turin, October,
2010

Martinez, H. P., Hullett, K., Yannakakis, G. N. - Extending Neuro-evolutionary Pref-
erence Learning through Player Modelling, Proceedings of the IEEE Conference on
Computational Intelligence and Games, CIG, Copenhagen, August, 2010
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e Schwartz, M., Martinez, H.P., Yannakakis, G.N., Jhala, A. - Investigating the inter-
play between camera viewpoints, game information, and challenge, Proceedings of the

international conference on Artificial Intelligence and Interactive Digital Entertain-
ment, AIIDE, Palo Alto, October, 2009

e Martinez, H.P., Jhala, A., Yannakakis, G.N. - Analyzing the impact of camera view-
point on player psychophysiology, Proceedings of the international conference on Af-
fective Computing and Intelligent Interaction, ACII, Amsterdam, September, 2009

1.5 Summary of Thesis

The remaining of this thesis is organized as follows:

Chapter [2| reviews the state-of-the-art in affect modeling, surveys studies from other fields
related to the methods proposed in this dissertation, and summarizes the work done
in several application domains.

Chapter [3| details the key phases of the method employed for affect modeling including the
motivation for every phase. This includes the data collection (input modalities and
annotation schemes), the feature extraction (unsupervised methods), the automatic
feature selection and the preference modeling phases.

Chapter 4| introduces the two experimental surveys that generate the affect datasets used
to validate the proposed methods. Additionally, the synthetic datasets used for the
validation of the preference learning algorithms are presented.

Chapter [5| compares the efficacy of several preference learning algorithms based on arti-
ficial neural networks, support vector machines and Cohen’s method and identifies
the most adequate configurations for affect modeling and beyond. The algorithms are
tested on both synthetic and real affect datasets.

Chapter [6] investigates the feasibility of automatic extraction of physiological features
using deep learning and evaluates its suitability for affect modeling.

Chapter [7] introduces the use of sequence frequent mining for unsupervised feature ex-
traction and showcases its advantages and limitations for affect modeling.

Chapter [8| summarizes the main findings extracted from the previous chapters and dis-
cusses their limitations and extensibility.

1.6 Summary

Computational models of affect have the potential to enhance and transform human com-
puter interaction. Affective states are not easily elicited and delimited, while their mea-
surable manifestations are ambiguous and exist in highly-dimensional, multimodal signals.
This thesis contributes to the advancement of current affect modeling methodologies with
new methods that build models on ordinal annotations of affective experiences and reduce
and fuse multiple input modalities automatically without relying on hand-crafted feature
extraction and selection solutions.
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Chapter 2

Related Work

In this chapter, we survey work related to this thesis from different perspectives. The
first section surveys a complete set of methods that have been applied to affect modeling.
Advances on the technical aspect of this work within other research areas are analysed in the
second section. Finally, the last section offers a brief review of affect detection applications,
where the methods examined in this thesis can be applied.

2.1 Affect Modeling

Emotions and affect are mental and bodily processes that can be inferred by a human ob-
server from a combination of contextual, behavioral and physiological cues. Part of the
complexity of affect modeling emerges from the challenges of finding objective and measur-
able signals that carry affective information (e.g. body posture, speech and skin conduc-
tance) and designing methodologies to collect and label emotional experiences effectively
(e.g. induce specific emotions by exposing participants to a set of images). Although the
contributions of this thesis are mostly concerned with computational aspects of creating
physiological detectors of affect, the signals and the affective target values collected shape
the modeling task and, thus, influence the efficacy and applicability of dissimilar computa-
tional methods. Consequently, this section gives an overview of the field beyond the input
modalities and emotion annotation schemes examined in the case studies. In particular, this
section surveys studies representative of the four phases of the methodology proposed in
this thesis for affect modeling: 1) eliciting and collecting observations of changes in affective
states (Section 2) defining feature sets to extract relevant bits of information from
objective data signals (i.e. feature extraction; Section , 3) reducing the dimensional-
ity of the feature sets (Section [2.1.3)), and 4) creating models that map a feature set into a
given affective target value (i.e. training models of affect; Section . For more extensive
surveys of affect modeling methods, the reader is referred to several review articles [Calvo
and D’Mello| (2010); |[Kleinsmith and Bianchi-Berthouze (2012); [Zeng et al. (2009); Pantic
and Rothkrantz (2003); |[Kivikangas et al.| (2010); Wu et al.| (2012).

2.1.1 Data Collection
Affect elicitation

Many different strategies have been proposed for the induction of affective states in humans.
These strategies can be separated into three categories. The first consists of instructing
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participants to act or pose affective states. This is a common practise in facial and body
expression studies (Kleinsmith and Bianchi-Berthouze, 2012)) but is unsuitable for other
modalities such as physiology as participants can not produce on-request the typical phys-
iological response to a given affective state. Furthermore, one can easily speculate that
models built on such data will not be that reliable in real settings (e.g. when using any
computer application) where emotional displays are not as exaggerated.

A second approach for one to be able to elicit affect consists of instructing participants to
remember significant real-life events attached to certain emotional experiences. This method
has been used in several studies (AlZoubi et al., |2009; Levenson, 2007} Picard et al., 2001}
Calvo et al., 2009|among others); however, it has been argued that the exact experience of an
emotion (including its physiological manifestations) cannot be re-experienced by mentally
reenacting a past situation (Robinson and Clore, 2002 (Galin, |1994; |James, 1890)). Thus, it
appears that this is not an appropriate method to collect psycho-physiological data.

The third approach to affect elicitation consists of designing different experimental con-
ditions aimed at eliciting dissimilar affective responses. The conditions could target specific
affective states or simply produce dissimilar experiences. A popular method within this
category relies on slide presentation of pictures labeled with levels of arousal and valence
(IAPS Lang et al., [1999). A set of these pictures selected from different areas of the arousal-
valence space are presented for few seconds, one after another potentially evoking dissimilar
affective states (e.g. |Alzoubi et al., [2011; Schaaff and Schultz, 2009)). Other forms of passive
stimuli (i.e. participants do not interact) are audio and video clips that can be presented
in the same fashion as images (e.g. [Koelstra et al 2012; Bradley and Lang}, 2000; |Janssen
et al., [2009). Stimulation time is usually longer for such multimedia content, increasing
from 10 seconds that images are typically shown to several minutes that a complete song
or scene can last. On the other hand, they have a relatively higher degree of ecology as
emotions in real life often occur in response to dynamic external visual and auditory stim-
ulation (Levenson, 2007). Similarly, a wide variety of interactive tasks have also been used
to elicit emotions such as driving (Healey and Picard} [2005; Fernandez and Picard} [2003])
and playing video-games (Martinez et al., 2013; Kapoor et al., [2007). In these tasks, the
interaction information can be used as input to the affect model which can yield richer
models.

For this thesis we selected two affect datasets collected using audio-visual stimuli in
a lab as we believe that these user studies offer a good balance between the intensity of
the emotions elicited and control over experimental variables and environment. In the first
study several participants watch a sequence of music video-clips whereas in the second study
the participants play a series of computer games.

Affect annotation

The key limitation of modeling affect at large is the inability to access directly the subjective
feelings of the target experiment participant. In order to access that information with the
highest possible accuracy, three basic psychometric approaches have been proposed: expert
annotation, the subtractive method and self-reports. The first approach consists of one or
several trained experts annotating the affective states that the participant is feeling during
the experience (e.g. Devillers and Vidrascul, 2006; Bailenson et al., |2008; |Karpouzis et al.,
2013; [D’Mello and Graesser, 2009). The main drawbacks of this approach are the high
time-consumption, the inability of reporting on the fly (the observers will normally work
over video recordings) and the need of expert annotators (Sanderson and Fisher, 1994)).
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Additionally, this method relies on visible expressions of emotion that the participant may
(unintentionally) hide, fake or exaggerate. On the other hand, the main advantage of this
method is that it does not disrupt participants’ experiences. An increasingly popular variant
of this technique consists of asking a large number of untrained observers over the web (i.e.
crowdsourcing (Tsai et al., 2012; McDuft et al., [2012))). While this variant might reduce
the cost and time of annotation, it may also reduce the quality of the data as it is highly
complicated to control for the expertise and good will of the annotators (Mohammad and
Turneyl, 2012).

The second approach consists of designing several tasks with the aim of eliciting different
affective states or different intensities of the same states (e.g. a stressful task and a non-
stressful task (Healey and Picard, |2005)). It is assumed that every participant experiences
the emotions that the task has been designed to evoke. This approach is not very appropriate
for rather abstract and complex states such as “fun” since it is e.g. non trivial to create a
game that would be engaging for every participant. Otherwise, this method eliminates the
need to re-evaluate the experiences which includes the time and budget overhead of expert
observers and the disruption of questionnaires.

The third approach consists of asking directly the participant what she is feeling or
has felt. This approach works only under the assumption that participants are aware of
their affective state and able to remember it. According to Robinson and Clore (2002]),
participants would be able only to access their feelings directly if they report the emotion
while happening. For instance, Kapoor et al. (2007) used a game on their experiments
that featured a button to allow participants to report when they began to feel frustrated.
However, this and other methods for reporting affect on-line (e.g. think-aloud) are disruptive
of the experience (Nielsen et al., 2002). On the other hand, if the emotion is reported at the
end of the experience, participants would need to reconstruct the affective experience by
recalling relevant thoughts and event-specific details. Note, that the fact that the participant
needs to rely on memories and belief, does not imply that reports of emotion are not reliable
and; in fact, post-experience self-reports can potentially be the most reliable source of
affective information (Clore, [1994; Diener}, 2000; Watson, 2000|) despite problems such as
order effects (Chan,|1991). In addition, self-reports present a number of practical advantages
over expert annotators that have made them popular among AC studies (e.g. |[Koelstra,
et al., 2012} Hernandez et al. |2011): they are a quick (to answer one question will take
few seconds), on-line (answers are known immediately after or during the experience) and
cheap (forced-choice questionnaires can be processed automatically).

Regardless of the approach, the affective state information can be given as an absolute or
relative measure. Absolute values or ratings are regularly used to evaluate user experience
along some dimension such as arousal or frustration. Participants are typically asked to
express how they felt in a scale varying between two extremes as for instance in Likert-
scales (Likert|, [1932)). The scale is usually characterized by numbers or qualitative adjective
(e.g. “extremely” and “poor”) indicating the direction of the scale and the intensity at
each point (Watson and Clark, [1999). It is also frequent to replace those markers by visual
representations as for example in the self-assessment manikins (Morrisl [1995) for reporting
arousal, valence and dominance (Mehrabian, 1995)). Alternatively, Scherer| (2005) proposed
a 2-dimensional questionnaire that lays out several 5-point scales with different directions,
aligned with the positions of different affective states in the arousal-valence space (Russell,
1980)).

Relative measures or rankings/preferences are common in marketing studies under the
name of A/B testing (Kohavi et al., [2009)). In this context, pairwise self-reports can be used
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to collect participants’ preferences over two variants (A and B) of the same product. In the
context of affect annotation, rankings and preference questionnaires require the participant
to order a set of experiences by intensity of affective state felt, (e.g. the first game felt more
frustrating than the second). However, these tools have only been explored scarcely (e.g.
in Tognetti et al., 2010a; [Yannakakis et al., 2010; Pedersen et al.,2010)) in favour of ratings,
despite of a number of known subjective biases (Viswanathan| 1993} [Costner| [1969)) and
stronger order effects (Yannakakis and Hallam| 2011) of rating reports.

Both affect datasets used in this thesis include post-experience self-reports, DEAP us-
ing ratings and Maze-Ball using pairwise preferences, showcasing the applicability of the
proposed methodology to both types of affect reports.

Measurable manifestations of affect

This thesis focuses on two modalities of input, namely physiology and (game) context.
Physiology has been extensively investigated in relation to affect (Andreassi, 2000; Calvo
among many others). While a relation between physiology and affect is by
now undeniable, the exact mapping is not yet known; the methodology proposed in this
thesis provides new tools for advancing further the investigation of this relation. As for
context information within the game domain, the number of studies is more reduced, yet
they have shown that this modality is extremely valuable for affect detection, in particular
when fused with other modalities such as physiology (e.g. McQuiggan et al.,|2007; Martinez
land Yannakakis, 2011b; Ravaja et al., 2005)). In addition, this is the least obtrusive and
cheap modality as it does not require any physical contact with the participant and can be
recorded within the virtual environment (game or other application).

Other modalities that have been explored in related work but not touched upon in
this thesis include facial expressions (Kapoor et al., [2007; |Arroyo et al., 2009; |Grafsgaard
et al 2011} Busso et all, 2004} Zeng et all,[2009), muscle activation (typically face) (Conati
and Maclaren, [2009; Dennerlein et al.,[2003), body movement and posture (Asteriadis et al.,
[2009; [van den Hoogen et al., 2008} [Kapoor et al.,[2007; [D’Mello and Graesser], [2009; Bianchi-|
Berthouze and Lisetti, 2002)), speech (Vogt and André, |2005; Kannetis and Potamianos,
2009} [Juslin and Scherer], 2005} [Johnstone and Scherer, 2000; [Banse and Scherer, [1996)),
brain interfaces (Rebolledo-Mendez et al., [2009; [AlZoubi et al., 2009) and eye movement
(Asteriadis et al.l 2009). The methodology that we present is potentially applicable to
all these modalities but we restrict our experiments to physiology and context as we be-
lieve they are more appropriate for the future development of affective technologies. Note
that camera-based modalities (facial expressions, body posture and eye movement) require
a well-lit environment often not present in home settings (e.g. when playing video-games)
and they can be seen by some users as privacy hazards (as the user is continuously recorded).
As for brain interfaces and muscle activation, the sensors are currently more invasive than
physiological sensors that can be embedded in comfortable wrist bandsﬂ making physiolog-
ical sensors easier to wear both in home settings and in the wild. Finally, speech is also a
easy-to-access modality that do not require obtrusive sensors, but on the other hand it does
not provide continuous data as users may be quiet during parts or the whole experience,
e.g. some gamers are silent while playing games alone.

! Accessed November 14, 2012 http://www.empatica.com/
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2.1.2 Feature Extraction

In the context of affect detection, feature extraction is referred to as the process of transform-
ing the raw signals captured by the hardware (e.g. a skin conductance sensor, a microphone,
or a camera) into a set of inputs suitable for a computational predictor of affect. The most
common features extracted from unidimensional continuous signals are simple statistical
features calculated on the time or frequency domains of the raw or the normalized signals
(see|Picard et al.| 2001} Ververidis and Kotropoulos, 2004 among others). Examples of these
features are average heart rate, maximum skin conductance and variance of the amplitude
of a speech signal. More complex features inspired by signal processing methods have also
been proposed by several authors. For instance, |Giakoumis et al.| (2011)) proposed features
extracted from physiological signals using Legendre and Krawtchouk polynomials while
Yannakakis et al.| (2008]) used the approximate entropy (Pincusl [1991) and the parameters
of linear, quadratic and exponential regression models fitted to a heart rate signal. Uni-
dimensional discrete signals — i.e. temporal sequences of discrete labels, typically events
such as clicking a mouse button or blinking an eye — are usually transformed with similar
ad-hoc statistical features such as counts. The focus of this thesis is on unsupervised meth-
ods that can automatically derive features from the data, opposed to a fixed set of features
that represent arbitrary characteristics of the signals.

Related work on recognition of affect based on signals with more than one dimension
boils down to recognition of affect from images or videos of body movements, posture or
facial expressions. In most studies, a series of relevant points of the face or body are first
detected (e.g. right mouth corner and right elbow) and tracked along frames. Second,
the tracked points are aggregated into discrete Action Units (Ekman and Friesen |1978]),
gestures (Caridakis et al., [2011]) (e.g. lip stretch or head nod) or continuous statistical fea-
tures (e.g. body contraction index) which are then used to predict the affective state of the
user (Kleinsmith and Bianchi-Berthouze, |2012). Both above-mentioned feature extraction
steps are, by definition, supervised learning problems as the points to be tracked and action
units to be identified have been defined a priori. While these problems have been investi-
gated extensively under the name of facial expression or gesture recognition this thesis will
not survey them broadly as the focus is on methods for automatically discovering new or
unknown features in an unsupervised manner.

Deep neural network architectures such as convolutional neural networks are popular
techniques for object recognition in images (LeCun and Bengiol |1995; Farabet et al., [2013)
and have also been applied for facial expression recognition. In (Matsugu et al., |2003),
CNNs were used to detect predefined features such as eyes and mouth which later were
used to detect smiles. Contrary to the work presented in this thesis, in that study each
of the layers of the CNN was trained independently using backpropagation, i.e. labeled
data was available for training each level. More recently, Rifai et al.| (2012)) successfully
applied a variant of auto-encoders (Bengio et al., 2007) and convolutional networks, namely
contractive convolutional neural networks, to learn features from images of faces and predict
the displayed emotion. The key differences of the application of DL in this thesis with that
study reside on the nature of the dataset and the method used. While Rifai et al.| (2012]) used
a large dataset (over 100,000 samples; 4,178 of them were labeled with an emotion-class)
of static images displaying posed emotions, this thesis uses small datasets (224 and 880
samples, labeled with pairwise orders) with a set of physiological signal time-series recorded
along an emotional experience. The reduced size of these datasets (which is on the same
magnitude as datasets used in related psycho-physiological studies such as Kapoor et al.|
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2007; Tognetti et al., |2010b) does not allow the extraction of large feature sets (e.g. 9,000
features in (Rifai et al., 2012)) as it would lead to affect models of poor generalizability.
Furthermore, while the use of CNNs to process images is extensive, to the best of the
author’s knowledge, CNNs have not been applied before to process (or as a means to fuse)
physiological signals. While extracting information from an image of a posed emotion is not
an easy task, the image typically contains a sufficient number of distinct cues to identify
the emotion. On the other hand, the relation between physiological signals and affect is
more ambiguous and subtle, thereby finding distinct physiological components relevant for
affect is arguably a harder task.

2.1.3 Feature Selection

As in many other machine learning applications, in affect detection it is common to ap-
ply dimensionality reduction techniques to the complete set of features extracted. A wide
variety of feature selection methods have been used in the literature including sequential
forward (Lee and Narayanan, 2005} Ververidis and Kotropoulos, [2004; He et al., 2009), se-
quential floating forward (Picard et al., 2001; Vyzas and Picard, |1998; Schuller et al., 2005,
sequential backwards (Wagner et al., 2005; Giakoumis et al., [2012), n-best individuals (Yan-
nakakis and Hallam| 2007)), perceptron (Pedersen et al., 2010|) and genetic (Tognetti et al.,
2010a) feature selection. This thesis is not focused on the feature selection phase, we utilize
sequential forward and genetic search to demonstrate how the proposed feature extraction
mechanisms interact with quick local-search and slower global-search algorithms.

Fisher’s projection (Krzanowski, 1977) and principal component analysis (PCA) (Wold
et al.,|1987)) have been also widely used as dimensionality reducers on different modalities of
human input for affect modeling (e.g. see Kim et al., 2004; Vyzas and Picard} 1998} [Schuller
et al.l |2005; [Lee and Narayanan| 2005 Busso et al., [2004; [Charfuelan and Schroder], 2011
among others). An auto-encoder can be viewed as a non-linear generalization of PCA |Hinton
and Salakhutdinov| (2006); however, while PCA has been applied in AC to transpose sets
of manually extracted features into low-dimensional spaces, in this thesis auto-encoders are
training CNNs to transpose subsets of the raw input signals into a learned set of features.
With the application of DL in the AC domain we expect that relevant information for
prediction can be extracted more effectively using dimensionality reduction methods directly
on the raw physiological signals than on a set of designer-selected extracted features.

2.1.4 Model Creation

Before delving into the details of computational models of affect, it is worth mentioning
that a large body of research in affect modeling does not make use of CI and ML tools
whatsoever. Instead, correlation analyses between affective target values and a set of sta-
tistical features are often used as the key methodology in a vast number of publications
(Nacke and Lindley, 2008; [Mandryk et al., 2006; Rani et al., |2005; Hazlett], 2006; Drachen
et al. [2010; Hazlett, 2006; Ravaja et al., 2005 among others). The outcome of this method-
ology is a statistical analysis of certain input signal characteristics with respect to a specific
condition or feature (e.g. average heart rate is linearly correlated with self-reports of fun).
On the other hand, the outcome of the methods used in this thesis consists of both linear
and non-linear function approximators (or models) that map a number of input features to
an output (affect estimation).

The selection of a method to create that model is strongly influenced by the dynamics of
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the features (stationary or sequential) and the format in which training examples are given
(continuous values, class labels or ordinal labels). Hidden Markov models (Grafsgaard et al.)
2011; Fernandez and Picard| [2003), dynamic Bayesian networks (Kaliouby and Robinson),
2005; Fernandez and Picard) 2003) and recurrent neural networks (Kobayashi and Haral
1993) have been applied for constructing affect detectors that rely on features which change
dynamically. In the methodology presented here, automatic methods are used to reduce
the resolution of temporal signals down to a set of features that can be fed to simple
stateless models; these models allow typically for a simpler training and interpretation than
complex continuous sequential predictors. To create models of affect based on stationary
features, a vast set of off-the-shelf machine learning methods have been applied, irrespective
of the specific emotions and modalities involved. These include linear discriminant analysis
(Giakoumis et al., 2012), multi-layer perceptrons (Bailenson et all 2008; Wagner et al.,
2005), k-nearest neighbours (Lee and Narayanan, [2005; |/AlZoubi et al.l 2009; Nasoz et al.,
2004]), support vector machines (Alzoubi et al., 2011; Kim et al.,|2004; |Garber-Barron and Si,
2012; Soleymani et al.l [2012), decision trees (Heraz and Frasson, 2007; McQuiggan et al.,
2007; Mcquiggan et al., 2008), Bayesian networks (Gunes and Piccardi, 2007), Gaussian
processes (Kapoor et al.l [2007) and fuzzy-rules (Mandryk and Atkins| 2007). On the other
hand, From this large selection of stateless models, we focus our investigation on multi-layer
perceptrons (MLPs) because they can approximate any continuous function, characteristic
that we believe is key to investigate the unknown mappings of affect. In addition, the
complexity of MLPs can be kept to levels in which is possible to interpret the learned
function. We compare MLPs against support vector machines which offer a reliable baseline
given their popularity in a large number of domains.

Different variants of the aforementioned methods have to be used depending on the
nature of the prediction target. In all above-mentioned studies, the prediction targets are
either class labels (e.g. frustrated and happy) or ratings. Class labels are treated as nominal
variables and ratings are also typically transformed into nominal variables (e.g. in a scale
from 1 to 5 of stress, values above or below 3 correspond to the user at stress or not at
all, respectively (Hernandez et al., 2011))). It is also common to treat continuous ratings
as real-valued variables (e.g. Nicolaou et al., |2011) although this is a questionable practice
since the subjective biases in human ratings make them ordinal variables. Alternatively, it
is possible to treat ratings as ordinal variables or collect the prediction targets as rankings
(e.g. the first experience is more frustrating than the second). In this thesis we focus on
methods that train computational models using this type of data. These methods, known
as preference learning methods, allow us to avoid binning together ordinal labels and to
work with comparative questionnaires which provide more reliable reports of affect data
compared to ratings (Yannakakis and Hallam, 2011)).

Preference learning methods and comparative (rank) questionnaires have been scarcely
explored in the AC literature, despite their well-known advantages. To the best of the au-
thors knowledge, PL methods have not been used before within AC studies to model ratings.
Applications to model ranks can be found in [Tognetti et al. (2010a) which applies linear
discriminant analysis to learn models of preferences over game experiences based on phys-
iological statistical features and comparative pairwise self-reports (i.e. participants played
pairs of games and ranked games according to preference). On the same basis, Yannakakis
et al.| (2008) and Yannakakis and Hallam| (2008]) trained multi-layer perceptrons via genetic
algorithms (i.e. neuroevolutionary preference learning) to learn models for self-reported fun
using physiological and behavioral data, and pairwise self-reports. As mentioned before,
this thesis focus on artificial neural networks (MLPs to be more precise), and more specifi-
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cally, it analyzes the impact of different error functions as this is the element in the training
process that enables learning models from ordinal data.

2.2 Data Modeling

Data modeling consists of finding the underlying mathematical model that best describes
a set of observations. This thesis addresses the problem of finding the mapping between
physiological and behavioral data and a number of affective states of users. For that purpose,
methods are borrowed from three independent but overlapping research areas: machine
learning, computational intelligence and data mining.

2.2.1 Machine Learning

Machine learning (Mitchell et al., [1997) is a branch of artificial intelligence concerned with
computational methods for automatic learning from data. This involves, for example, meth-
ods for autonomous agents to develop strategies to solve a given task. Related to data
modeling, ML also offers algorithms to find unknown relations among the variables or fea-
tures in a given dataset; these algorithms can be categorized in two groups: supervised and
unsupervised learning.

Supervised learning

In supervised learning, a function or model is learned from a set of training examples. These
examples associate a set of input features with a set of target outputs. The learning process
synthesizes the mapping between the inputs and the output. Depending on the nature of
the output, supervised learning algorithms can be classified as regression if the output is a
continuous value, classification if the output is an item from a finite set (class) and preference
learning if the output is an ordered set, ordinal class (rank) or ordinal relation. This thesis
focus on the third type of supervised learning, preference learning, and in particular on
learning from ordinal relations, a setting also known as object ranking (Furnkranz and
Hullermeier, 2010b). The basis of the algorithms used in this thesis, however, has been
developed for classification and regression tasks and, therefore, we offer an overview of such
methods in the following section.

Classification and regression: both artificial neural networks and support vector ma-
chines are popular and well-known methods in pattern recognition (Bishop, 1995} |Scholkopf:
and Smolal 2001). Support vector machines were proposed by Cortes and Vapnik| (1995) and
have since then been applied on numerous domains — e.g. text categorization (Joachims|,
1998), spam classification (Drucker et al., |1999) and gene selection for cancer classification
(Guyon et al., 2002). The original SVM model was presented for binary classification only
but extensions for regression have been proposed (Drucker et al., 1997) as well as different
optimized versions of the training algorithm (Osuna et al., [1997; |Joachims, 2006)).

The first artificial neural network models were proposed by McCulloch and Pitts) (1943
and Rosenblatt| (1958) but discredited due to the limited representational power of the basic
model (only linear functions) and lack of general training algorithm for more complex mod-
els (Minsky and Seymour, 1969). ANNs re-emerged years later after Werbos (1974) and
Rumelhart et al. (1986) popularized a gradient-descent method known as backpropagation
(BP) to train feed-forward neural networks. This training method applied on feed-forward
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fully connected networks known as multi-layer perceptrons has dominated the study of
ANNs in ML since then. Backpropagation training of MLPs has been applied to an end-
less list of tasks from the prediction of thunderstorms (Gardner and Dorling, (1998)) and
bridge damage detection (Pandey and Barai, [1995) to affect classification (Bailenson et al.|
2008)). Although, in theory, an MLP can approximate any function (Hornik et al.l [1989),
in practice backpropagation is limited by the size of the MLP and therefore the complex-
ity of the approximated functions. Time-delay neural networks (TDNN) (Waibel et al.,
1989)) represent a variation of feed-froward networks whose restricted structure makes them
suitable for pattern recognition on 1-dimensional signals. The main application of TDNN
is sound classification tasks such as music genre classification (Hamel et al., 2011) and
phoneme recognition (Hampshire et al., [1990]) but several studies have also applied them
on electro-encephalogram signals to predict epileptic seizures (Mirowski et al., 2008)) or rec-
ognize event-related potentials (Cecotti and Graser, [2011)). Convolutional neural networks
(LeCun et all [1989) represent a generalization of the same model to data of any number
of dimensions and have been applied successfully to several computer vision tasks (LeCun
et al., [1998; [Szarvas et al., 2005; |Nebauer, [1998). In this thesis CNNs are used for the first
time to extract features from physiological signals that are then fed to MLPs, SVMs and
Cohen’s models that predict user affective states.

Object ranking: popular families of object ranking OR algorithms include Gaussian pro-
cesses (Chu and Ghahramani, 2005; Nielsen et al., 2011; Abbasnejad et al. 2011)), SVMs
(Joachims|, 2002; Radlinski and Joachims| 2005; Bahamonde et al., |2007) and ANNs (Ped-
ersen et al) 2009). Most work in the field of object ranking focuses on the application
of one family of methods to new domains or suggests modifications of existing algorithms
for performance improvement. This thesis instead examines several modifications to ANN
training and presents an empirical comparison which includes SVMs and Cohen’s method
across dissimilar datasets. [Kamishima et al. (2005) reported a similar empirical work where
they compared two different SVM approaches, Cohen’s method and Empirical Rank Re-
gression (ERR) across several sets of synthetic and real data. That work, however, did not
consider any ANN based methods which are central to this thesis, and did not make use of
any affect dataset.

Neural networks were first used to solve an order learning problem by Tesauro| (1989)).
Tesauro was concerned with computer players that could learn to play backgammon and
he proposed a method to train a MLP using pairwise preferences. The network received as
inputs the final state of the game board after each one of two alternative moves that the
player had to choose from. Backpropagation with a standard error function, namely sum
of squared errors (SSE), was used to learn which one of the two moves was optimal. In
this thesis we test several alternative error functions that allow artificial neural networks
training with a single object (or sample) as input.

Caruana et al.|(1996)) introduced a different neural network approach, namely RankProp,
which utilizes a 2-phase modification of backpropagation to learn a binary dataset: at the
first phase of each epoch a real-valued rank is estimated for each object; at the second phase
standard backpropagation is applied with SSE as the error function to learn those ranks.
Ranks are estimated by ordering the training samples , first, based on their categorical
binary label and, second, based on the output values that the current ANN yields for each
one of them. The normalized position in the order is then used as a target value for the
regression phase. Note that this is not an object ranking task per se — as the final goal is
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binary classification — but it can easily be extended using ordinal labels during the ordering
step. This approach assumes that the ordinal labels correspond to a global ordering. In
(Caruana et al., [1996) the target function is risk of death and one can safely assume that
all dead patients had a higher risk of death than patients alive; however, this assumption
does not hold true for any domain. In particular, when we model user preferences given as
ratings in a e.g. 5-point Likert scale from 'poor’ to 'very good’ (Likert) [1932]), personality
biases, cultural background, temperament, and interests may have significant effects on the
global ordering as ‘Average’ for one person may indicate a higher preference than ‘good’
for another, or for the same person an object shown twice may be first rated as ‘average’
and then as ‘good’ due to order and inconsistency effects (Yannakakis and Hallam, 2011])
(see Section for more details). User ordinal reports are central in this thesis and
consequently we examine error functions that bypass the need for assumptions about global
consistency of affect annotations.

Crammer and Singer| (2001)) proposed a method called PRank to train single layer per-
ceptrons on a set of objects with explicit numeric ranks. They reported experiments on a
synthetic and on a real dataset and showed that their approach could outperform a multi-
class classification and standard regression algorithms for training perceptrons. In this thesis
on the other hand, models are not trained to predict the exact numerical rating values; in-
stead the aim is to train models that predict relative orderings of objects. Furthermore, the
algorithms described here can be used to train arbitrary network topologies.

Burges et al| (2005) proposed one of the error functions used in this thesis (cross-
entropy) and compared it against RankProp, PRank and Online Aggregate Prank-Bayes
Point Machine (OAP-BPM) (Harrington, 2003) across several synthetic and real datasets.
They showed that both single layer perceptrons (SLPs) and MLPs trained using their error
function could outperform those other methods. The rank margin error function (also
examined in this thesis) was used in (Bai et al., [2010; |Grangier and Bengio, [2005) to train
quadratic models for document retrieval tasks and compared across several real datasets
against other methods designed for that same task (e.g. OKAPI (Robertson et al., [1995)
and Latent Semantic Indexing (Hofmann, 1999))). The regularized least-squares function,
also evaluated in this dissertation, was introduced by |Pahikkala et al.| (2009) and compared
against SVMs on several datasets. In this thesis, those error functions are further validated
on different synthetic and real datasets and their effectiveness is also tested when combined
with a global optimization algorithm.

Yannakakis et al. (2009, 2010) studied the sigmoid error function to train artificial neural
networks using genetic algorithms on dissimilar real datasets and compared them against
large margins (Fiechter and Rogers, 2000), meta-large margins and Gaussian processes
(Williams and Rasmussen, |1996)). This thesis offers the first attempt to compare that
method against local search algorithms (backpropagation) and other error functions for
neural network training.

To the best of our knowledge, this dissertation is the first study that extensively com-
pares various SVM kernels and artificial neural networks in the context of object ranking.
Furthermore, none of the studies surveyed above investigated the effect of error functions
and error function margins on OR model performance, which are central for using ANNs
for object ranking.
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Unsupervised learning

Unsupervised learning deals with problems such as finding distinct groups (clusters) of
data samples and learning the probability distribution that generates a dataset. In this
thesis unsupervised learning is applied to generate feature extractors that process large data
samples transforming them into suitable input sets for supervised learning. To that end,
auto-encoders (Bengio et al., 2007)) are used to pretrain the layers of a convolutional neural
network that reduces physiological signals into a manageable set of features (see Section
[3.2.1)). Pretraining in neural networks can be interpreted as a method to find a good initial
configuration that facilitates supervised learning. This phase has allowed researchers to train
efficiently large hierarchical models — referred to as deep architectures — which otherwise
yield poor results (Bengio, 2009). This method was first proposed by Hinton et al.| (2006])
who pretrained layered feed-forward neural networks using restricted Boltzmann machines
(Freund and Haussler, |1994)). Since then a myriad of studies have proposed improvements
and alternative methods for pretraining deep architectures including several variants of
auto-encoders (Rifai et al, 2011; |Vincent et al., 2010, 2008]). The main application domain
of these methods is computer vision tasks such as object and scene recognition (Kiros
and Szepesvari, [2012; Ballan et al., [2012; Nair and Hinton, |2009) where they nowadays
represent the state-of-the-art. This thesis does not contribute to theoretical advancements
on these methods but applies auto-encoders to an unexplored domain: affect recognition
from physiological signals.

2.2.2 Computational Intelligence

Computational intelligence focuses on nature-inspired algorithms such as artificial neural
networks and genetic algorithms (GAs) (Goldberg, 1989)) which can solve computational
problems that cannot be easily formulated mathematically. Genetic algorithms consist of a
global search algorithm that uses operators inspired by theories of natural evolution. GAs
are used in this thesis to train ANNs as an alternative method to backpropagation. The
combination of GAs and ANNs, known as neuroevolution (NE) (Moriarty and Miikkulainen,
1997)), is a powerful tool that has generated solutions to learning problems where backprop-
agation is intractable. Although in this thesis we employ the basic form of neuroevolution
that only adjusts the weights of a neural network, more advanced methods to evolve also
the network topology are available (Stanley and Miikkulainen), 2002).

2.2.3 Data Mining

The data mining field covers methods applied to discover patterns in large datasets of data.
These include, for example, the ML and CI methods presented above but may also include
sequence mining methods such as frequent sequence mining. This method is used in this
thesis to extract features from multiple modalities of user data for affect prediction.

Sequence classification using frequent patterns

Frequent sequential patterns are typically mined to detect interesting common trends in the
data and discover association rules, correlations and other relationships (Han and Kamber),
2006|) but they can be applied also for the classification and clustering of sequences.
Protein homology detection and classification is one of the most popular sequence mining
tasks. In (Ben-Hur and Brutlag), 2003)), a set of relevant subsequences (motifs) are predefined
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and each protein is represented as a vector of attributes; each attribute represents the
number of occurrences of a motif in the represented protein (generally, each motif will
either occur once or not occur). In (Ferreira and Azevedo, 2005) a naive Bayes classifier
identifies the most probable family to which a protein belongs to using as inputs the number
and average length of the frequent subsequences shared within each of the protein families.

One of the many differences between the task of classifying proteins and processing
multimodal signals is the temporal nature of the signals: in a protein string every pair
of consecutive elements has a distance of 1 unit while in a signal the time distance be-
tween two elements is derived by the sampling rate. This difference has an impact on the
structure of sequences (e.g. in multiple time-series sequences two events might occur si-
multaneously), the matching conditions of sequential patterns and the procedure to match
sequential patterns (e.g. in non-temporal sequences the number of gaps between elements
can be constrained whereas in a temporal sequence the time between elements is constrained
instead).

Lesh et al. (1999)) define an effective method to mine features for sequence classification.
This method consists of mining all sequential frequent patterns and prune those that are
either not distinctive of one of the target classes or correlated with a pattern already selected.
This pruning stage is necessary since frequent mining can produce an enormous amount of
features that cannot be efficiently handled by a classifier. In this thesis, a similar approach
to (Lesh et al.l 1999) is used but the set of frequent sequential patterns is reduced by
automatic feature selection which searches for the combinations of sequences that are more
relevant for predicting a target output (i.e. affective state in the case studies presented).

2.3 Application Domains

The methodology investigated in this thesis will allow researchers to create models of affect
that can potentially lead to a better understanding of human emotions. While studying
human affect is laudable on its own, there are also a number of practical applications for
creating affect detectors. Models of affect can be used to express or manifest felt emotions to
others; recipients of these manifestations could be for instance professionals helping autistic
children or computer applications adapting and personalizing their content. This section
offers a brief review of four main domains where affect detectors have been explored.

2.3.1 Adaptive Digital Games

Computer games, opposed to traditional music and video content, are highly interactive
media that continuously react to the users’ input. This interactivity can naturally ac-
commodate mechanisms for on-line real-time adaptation of content aimed at manipulating
player experience (Yannakakis and Togelius|, 2011). Some commercial games such as Left /
dead (Valve, 2008) and Mario Kart 64 (Nintendo, 1996) include mechanisms to adapt the
difficulty of the game but player experience is more complex that just challenge. Affect de-
tection can enable adaptation mechanisms that target other aspects of the experience such
as frustration (McQuiggan et all 2007) and engagement (Gilleade et al., [2005; [Hudlicka),
2009)).

Affect detection from physiology in games has been explored in a large number of studies
(Tijs et al., 2008; Nacke and Lindley}, 2008; |[Mandryk et al., [2006; Mandryk and Atkins| 2007}
Rani et al., 2005} [Tognetti et al.l [2010b; |Drachen et al., [2010; McQuiggan et al., 2007| among
others). Nevertheless, most of these studies use games as a test-bed to elicit emotions and
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in none of them further work has been done towards affective adaptation. At the moment of
writing, the only existing study that adapts the game content based on affect-physiological
models can be found in (Yannakakis, |2009); in that study a model of fun based on heart
rate features is used to adapt several parameters of a physical game for children. It is also
worth mentioning that few games use physiological sensors, not to adapt the game based on
an affect model, but as an active control. For instance, The Journey of Wild Divine (Wild
Divine, 2001) is a game designed to teach relaxation exercises and it uses blood volume
pulse and skin conductance to evaluate the performance of the player.

The second modality used in this thesis, game context, have been used in several studies
to predict different affective states and other dissimilar mental states relevant for playing
experiences (Pedersen et al., 2010; Shaker et al., |2010; [Robison et al., 2009 among others);
on the other hand, to the best of the authors’ knowledge, this technology has not been yet
exploited in commercial games.

Finally, the fusion of physiology and game metrics has been explored in a small number
of studies, typically by analysing the physiological responses to game events (Conati and
Maclaren, |2009; Hazlettl 2006; |[Ravaja et al.,|2005) but also using physiological and gameplay
statistical features (Mcquiggan et al., 2008} [Martinez and Yannakakis, 2010)). In addition
to the other examples, the applicability of these models has not been yet explored, and no
studies or commercial games using them exist.

In all, affect modeling has been explored in games but attempts to create affect-driven
adaptation mechanisms are still scarce. The methodology presented in this thesis facili-
tates is well-suited to create models to support these mechanisms the development of these
adaptation mechanisms, as it offers an automatic method to create accurate real-time affect
detectors.

2.3.2 Adaptive Music and Video Applications

Audio-visual media is a powerful elicitor of emotions in humans (Lundqvist et al., [2009;
Levenson, 2007; Nasoz et al., [2004)). Just as with games, an entertainment application can
use affect models to detect those emotions and drive user experience. Within music, the
relation between emotion and physiology has been extensively studied (Lundqvist et al.
2009; Grewe et al., 2007; Khalfa et al., 2002| among others) but the application of affect
models in this domain is still limited. |Janssen et al. (2009) worked on affective play-lists
which automatically select the next song to be played relying on predictions of the listeners’
mood. A similar application can be envisaged for a video or movie recommender system
that predicts which clips are more suited for the viewer. However, research is still focused on
the affect detection phase (Soleymani et al.,|2008; |Koelstra et al., 2012; McDuff et al., |2011;
Silveira et al., |2013; [Fleureau et al., [2012)) and physiological video-recommender systems
have not been yet exploited. While context information is not as easily accessed in this
domain, the methodology studied in this dissertation can be used to build physiological
models of affect that could enable all the applications mentioned above.

2.3.3 Intelligent Tutoring Systems

Confusion, anxiety and frustration are cognitive and affective states with a direct impact on
students’ learning process and outcome (Picard et al., [2004; Schwarz, [2000). Consequently,
affect detection is becoming increasingly important in the intelligent tutoring community
(Robison et al. 2009). The basic idea is that if a virtual tutor is capable of detecting the
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affective state of the student, it can react to it which would enhance the learning experience
(e.g. minimizing frustration) and possibly improve the learning outcomes.

As for other application domains, research has mostly focus on the detection phase
(Calvo and D’Mello, 2011)), evaluating dissimilar methods to model student confusion (Graf-
sgaard et al., [2011; Hussain et al., 2011)), frustration (Conati and Maclaren|, 2009; |[McQuig-
gan et al., 2007) and attention (Qu et al., 2005). An example of virtual tutors that react to
automatically detected affect can be found in (Robison et al., [2009). That study presents a
game-based virtual environment that monitors the student’s actions and provides empathic
feedback according to the detected affective state. They showed that, for instance, feedback
targeting to reduce detected frustration can indeed help students.

Even when tutoring systems are not built as a game, they produce a large amount of
information similar to the game metrics (e.g. actions of the student); thus, all the methods
that are evaluated throughout this thesis can be utilized in intelligent tutoring systems
without any modification.

2.3.4 Health Technologies

Nowadays, a significant part of the worlds population is afflicted by depression and stress-
related illnesses, which are directly connected to emotion and moods. Thus affect detection
is key for the prevention and computer-based treatment of these affections. Among these
illnesses, post-traumatic stress disorder (PTSD) has attracted a lot of attention. [Pedersen
et al. (2012) performed a representative study in this area; they created a game-based
tool for treating PTSD based on exposure theory. Physiological signals were recorded
from patients playing the game in order to develop future versions in which the game is
personalized to the patient’s level of stress.

Another application of affect detection to health technologies is related to syndromes
such as autism that involve difficulties processing or expressing emotions. There have been
a large body of studies in AC research towards developing tools to help parents, teachers
and carers of children with autism (Picard, 2009; Liu et al., [2008; Kaliouby et al., [2006]).
These tools detect the affective state of the children and communicate it to themselves or
others, enhancing communication.

An additional application to health technologies has been explored in relation to tele-
medicine. In this particular domain, emotion is not at the core of the treated illness but it
is regarded as an important element in the doctor-patient communication. Detecting the
affective state of the patient can help the doctor to better diagnose or simply better interact
with the patient. This enhanced communication can improve patient’s satisfaction and yield
faster recoveries. |Lisetti et al.| (2003)) developed such a system, in which the affective state
of the patients were predicted from physiological signals and communicated to the doctor.

From a computational perspective, this domain is not different from others in which
context information is typically not available and only physical modalities such as physiology
can be recorded. In this respect, the methods presented on this thesis regarding physiological
models of affect can aid the development of better affect-aware health technologies.

2.4 Summary

This thesis proposes a set of computational methods to create models of affect. This chap-
ter surveyed the related work from three perspectives: methods used in affect modeling,
research performed in other areas around the methods used in this thesis, and application
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domains for the methods examined. The next chapter, outlines the general methodology
proposed for modeling affect and describes the key components in detail.
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Chapter 3

Methodology

As it was outlined in Chapter [1} this thesis addresses several challenges in affect modeling.
In this chapter the set of computational methods proposed to address those challenges
are described. These different methods can be integrated into a complete methodology
for affect modeling which is depicted in Figure The four phases illustrated in the
figure represent the typical machine learning process where (1) data is collected, (2) data is
transformed into a set of suitable inputs for a computational model (i.e. feature extraction),
(3) irrelevant inputs are removed (i.e. feature selection), and (4) model is learned from the
data. While this process is common in ML, alternative computational models not requiring
the phases of feature extraction and selection also exist. In particular, hidden Markov
models (Grafsgaard et al. [2011)), dynamic Bayesian networks (Kaliouby and Robinson),
2005)) and recurrent neural networks (Kobayashi and Haral [1993) could potentially receive
the raw signals as inputs and predict the affective state once the whole sequence of values
is processed. However, in practice quantization or reductions similar to feature extraction
are required when the length of the sequences is large (e.g. Jiang et al.l 2011)).

The first phase, data collection, is crucial as the whole process relies on it. Capturing real
world phenomena into a format accessible for a computer is a complex task in many domains;
capturing the affective state of a human is arguably amongst the hardest data collection
tasks as objective measurements do not exist — a human is always required to label affective
states in one way or another. This thesis does not investigate different data collection
mechanisms but focus on modeling methods that rely on ordinal annotations of affect. In
Section we discuss the advantages and limitations of different protocols used to gather
ordinal annotations in this user studies used in this thesis, namely ratings and rankings. In
addition to the affect labels, the data sample must contain the information cues that will be
provided as inputs of the model. This information is typically collected through cameras,
force and movement sensors, and physiological sensors which generate temporal sequences
of continuous values or images that span across the monitored experience. Additionally,
if the goal of the model is to infer affect while a user interacts with a specific system,
several internal variables of the system, referred to as context, can be recorded and provided
to the model as continuous signals or as sequences of discrete labels — typically, events
corresponding to actions or internal changes (e.g. mouse click or loading screen completed).
This thesis focuses on physiological signals and context information; Section surveys
both input modalities in detail. Often, an additional phase is used to reduce the noise on
the signals and remove artifacts, specially for physiological signals. We do not make use
of this treatment because we aim at creating a methodology with as few steps as possible
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Figure 3.1: Methodology for affect modeling. Information from the user and the system is
collected while the user interacts with the system. That information (time series or static
data) is transformed during the feature extraction stage into a set of features. The set of
features is reduced by means of automatic feature selection eliminating the least relevant
ones. Finally, preference learning is used to learn the mapping between the set of selected
features and the ordinal affect annotations (e.g. preference self-reports).

and as automated as possible. Therefore we validate that the feature extraction, feature
selection and modeling phases can learn from untreated input signals.

The second phase, feature extraction, transforms the data collected from the sensors and
the system into a set of features that can feed a computational model of affect. While this
phase is typically performed through a number of ad-hoc features which are proposed by the
researcher, this thesis proposes two methods to learn the features automatically from the
collected data. The first method applies concepts from deep learning (Bengio et al., [2012)
to learn features from different physiological signals. The second method, in a complete
different manner, utilizes frequent sequence mining (Srikant and Agrawal, 1996)) principles
in order to extract features across dissimilar and discrete input modalities. Both methods
are described in detail in Section [3.2]

The extraction phase often yields a number of features which is too large for ML algo-
rithms to find meaningful and accurate mappings in the data, which motivates for the use
of dimensionality reduction mechanisms. Automatic feature selection (Dash and Liu, [1997)
is a popular category of methods that select the most relevant features according to some
criterion, removing those that are (potentially) useless and redundant. In Section the
two FS approaches used in this dissertation are reviewed.

Finally, the mapping between the selected extracted features and the affect annotations
is drawn by means of preference learning (Firnkranz and Hiillermeier, 2010al) in the last
phase of the methodology (see Figure. As the method relies solely on the data collected,
the model does not depend on intermediate affect representations such as the arousal and
valence dimensions (Russell, 1980) and maps extracted features directly into a numerical
estimation of the target affective state. The general problem of PL is formalized in Section
along with the methods examined in this thesis, namely artificial neural networks,
support vector machines and Cohen’s method.
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3.1 Data Collection

The process of creating models of affect by means of supervised learning relies upon a dataset
that contains a mapping from measurable cues of users’ context, behavior and physiological
state to their affective states. Such a dataset is usually collected through controlled exper-
iments where a group of participants is exposed to distinct experimental conditions aimed
at eliciting different affective states. Through a number of sensors, cameras, questionnaires
and other input devices, a sample of the prospect inputs and the expected outputs of the
model is taken. The work described in this thesis did not include any data collection and
instead we made use of two publicly available affect datasets that include physiological
signals. Nevertheless, we describe, for the sake of completeness, the affect elicitation and
measurement strategies used on these datasets (Section and the characteristics of the
input modalities recorded (Section [3.1.2).

3.1.1 Model’s Output: Self-reports of Affect

The two datasets used in this thesis present a user study in which participants are exposed
to audio-visual stimuli to elicit different affective states. In the first study, DEAP, a group
of participants watches a sequence of 1-minute-long music video-clips whereas in the sec-
ond study, Maze-Ball, another group plays several 90-second-long computer games. Both
videos and games are able to elicit a wide range of affective states and they are the stimuli
with a higher ecology within controlled settings (compared for instance to sliding images)
as emotions in real life often occur in response to dynamic external visual and auditory
stimulation (Levenson) 2007)).

As generally, each individual can react differently to the same stimuli, it is required
that the affective states felt during the experience are annotated. In both datasets used in
this thesis, the experiences are annotated using post-experience self-reports. This approach
works only under the assumption that participants are aware of their affective state and
able to remember it. According to Robinson and Clore (2002)), an affective state cannot
be directly remembered, and the participant needs to rely on recalling relevant thoughts
and event-specific details, and beliefs. Note, that the fact that the participant needs to rely
on memories and beliefs, does not imply that reports of emotion are not reliable and; in
fact, according to many authors post-experience self-reports can be the most reliable source
of affective information (Clore, [1994; |Diener] 2000; Watson) 2000) despite problems such
as order effects (Chanl, [1991)). A limitation of post-experience reports is that, generally,
only one annotation is available for the whole experience (the 1-minute video or 90-second
game) but on the other hand they are not disruptive of the experience (as during-experience
reporting protocols such as think-aloud (Nielsen et al. [2002)) and they are faster and
cheaper than using expert annotators or crowdsourcing studies (Sanderson and Fisher),
1994)).

Regardless of the approach, the affective state information can be given as an absolute
or relative measure. Absolute values or ratings consist of choosing a value within a given
interval to express the intensity of the affective state. The intensity may be expressed as
a nominal value (e.g. the experience was frustrating or not) or using a more detailed scale
(e.g. from very frustrating to not at all frustrating or from 1 to 100). The alternative
approach, relative measures or rankings/preferences, require the participant to order a set
of experiences by intensity of affective state felt, (e.g. the first game felt more frustrating
than the second). At first glance, one may think that ratings are clearly superior because

47



Chapter 3. Methodology

(1) they require less experimental conditions (a comparison is not required) and, (2) they
provide a numerical measure of the intensity. However, rating annotations offer ordinal
information just like rankings due to the subjectivity of human reports of affect (Stevens
et all [1946). First, the difference among rating items is unknown, e.g. in a 5-point scale
the difference between 1 and 2 is smaller that between 4 and 5 if the user is reluctant on
using the final value of the scale. Second, ratings suffer from a number of reporting biases
that makes the intensity value inaccurate (Viswanathan,|1993; |Costner, |1969)). These biases
include variability of the scale across time (e.g. while rating 40 videos using a 5-point scale,
the meaning of ’2” in the first and the fortieth video may not be exactly the same), and
variability of the scale across participants (e.g. in a 5-point scale a person may never use the
extreme values 1 and 5 while other may only use those). Thus, ratings do not provide any
advantage over rankings because (1) an appropriate use of ratings requires more than one
experiment as the values are relative and not absolute, and (2) the information regarding
the intensity cannot be easily utilized given that the subjective distance among items is
unknown and varies along time and across participants. In addition, results reported on
a recent study (Yannakakis and Hallam| 2011) suggest that ratings rankings do not only
provide similar information, but also ratings can lead to significant order effects compared
to rankings. More in detail, that study reported that in two different datasets, rating
annotations presented significant recency effects (tendency to give higher ratings to later
experiences) while pairwise preferences did not.

The modeling methods used in this thesis are designed for ordinal data independently
of the reporting method; thus we validate them using both ratings and rankings. The first
dataset used, Maze-Ball, was collected using pairwise preferences via a 4-alternative forced
choice questionnaire (4-AFC). In a 2-AFC, the participant is asked to report whether a
particular affective state (e.g. frustration and anxiety) was felt stronger during condition A
or B. The 4-AFC adds two additional possible answers — that either the affective state was
felt with equal strength in both conditions or that it was not felt in either of them — in order
to minimize unreliable reports introduced when the two conditions do not induce affective
states that are clearly different. The second dataset, DEAP, was collected using continuous
ratings to annotate different dimensions of the experience (e.g. arousal and valence). Note
that, as mentioned above, despite each rating is a continuous value, its meaning is solely
ordinal. Therefore, we can represent the ratings as pairwise preferences without loss of
information: if for every pair of data samples (videos) we create a pair in which the sample
with a higher rating is preferred over the other sample, none of the ordinal information in
the ratings is lost as it could be reconstructed from the pairwise preferences. However, in
order to minimize the variability effects, we discard the following pairs:

e Pairs including ratings from two different participants are not included; thus, bypass-
ing problems due to the variability across participants.

e Only pairs containing consecutive videos are included; thus, aggressively removing
noise due to the variability along time of the rating scale.

e Pairs that present rating differences below one are considered unclear preferences,
which are not used for learning. This threshold is based on the minimum distance in
the visual scale displayed on the questionnaire; in this particular experiment, while
participants reported a continuous number between 1.0 and 9.0, nine separate discrete
items were displayed (rendering a minimum distance of one unit).
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By removing pairs that potentially present noisy or even random data (e.g. when com-
paring ratings across participants) we are improving the quality of the ground truth; hence,
automatic learning methods can potentially build more reliable models of affect.

3.1.2 Model Input: Affect Manifestations

Two sources of information are considered in this thesis as inputs to models of affect, namely
physiological signals and context information.

Physiology

Research on psycho-physiology (Andreassi, 2000)) has largely studied the unconscious phys-
iological changes in the human body — including changes in body temperature, blood
pressure and skin perspiration — as responses to mental states including affective and cog-
nitive states (e.g. stress, anxiety and attention). Nowadays, the existence of such link
is undoubtedly accepted across researchers in any related field. These unconscious body
changes are rooted in the autonomic nervous system (ANS) which is the subset of neurons
in the peripheral nervous system. In turn, the ANS has been traditionally divided in two
systems: the sympathetic and parasympathetic systems responsible for preparing the body
for a physical activity in response to a threatening situation (fight-or-flee response) or for
resting, respectively. An activation of the sympathetic nervous system (SNS) can increase
heart rate, decrease blood flow to extremities and increase activity of sweat glands. Comple-
mentary, an activation of the parasympathetic nervous system (PSNS) produces decreased
HR and has not known direct effects on the sweat glands or blood flow in extremities.

While several other effects are known and have been studied in relation to emotion (e.g.
salivary secretions are affected by both systems and have been studied as indicators of stress
and anxiety (Bohnen et all 1991; Graham et al.; [1988])), skin and cardiac activity changes
are particularly interesting as they can be easily measured through sensors attached to the
fingertips or the wrist, providing feedback in real time to an affect detector. In particular,
the activity of the sweat glands can be collected attaching electrodes to two fingers of the
same hand and measuring the skin conductance between then[!] In turn, variation of blood
flow can be measured from a fingertip using a photaplethysmompfﬂ that obtains the blood
volume or pulse volume (more commonly referred to as blood volume pulse). Additionally,
heart rate and other heart rate variability (HRV) signals such as RR intervals (i.e. time
between consecutive heart beats) can be derived from BV and BVP using mathematical
peak detector algorithms. Samples of these signals are shown in Chapter [4] as they are
included in the two affect-related datasets used to test the proposed methodology (Figure
and Figure [4.8)).

Physiology is a highly objective modality in the sense that a regular person cannot
consciously affect her physiological stateﬂ thus she cannot hide an emotional response.
A disadvantage is the intrusiveness of the sensors and their unavailability at large scale,
although positive progress has been done on both fronts in recent years. The number of

!Two basic methods exist consisting of keeping the voltage constant and measuring the fluctuations of
electric current or viceversa.

2This sensor transmits light to the skin and measures the reflected light variation.

3it has been suggested that through operand conditioning techniques it might be possible to alter one’s
own level of ANS activity (Andreassi), 2000)
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commercial sensors to capture these responses is increasing (e.g. [ OMIZ_II7 ProComp Infinit
including solutions that are less intrusive (e.g. armbands as Q—sensmﬁ and Empaticd'l).
Furthermore, the game industry has shown interest on embedding physiological sensors in
popular console gamepad@ which could lead to the adoption of physiological monitoring
during regular video-game play, and consequently facilitate the introduction of psycho-
physiological models for procedural adaptation into commercial games. Models of affect
that rely solely in physiological signals appear in Chapter |p| and are studied in more detail
in Chapter [6]

Context and Interaction

It has been argued that for a complete understanding of experiences of emotion the psy-
chological component must be addressed in addition to the neurobiological instantiation
of affective states (Barrett et al., 2007). Part of this psychological component can be in-
troduced into predictors of affect as information about the context and the interactions
(actions, system responses and goals) during the affective experience; note that the context
of our experiences affects the way that we feel, express and perceive affective states. For
instance, a different social context may have a great impact on how we experience a game
both psychologically and physiologically (Mandryk et al., 2006). Furthermore, the social
context directly affects display rules which lead to different expressions of the same emotions
(Zeman and Garber} 1996) as our audience changes. Finally, the affective states that we can
perceive in e.g. facial expressions, can differ depending on the scene where those are staged
(Aviezer et al. 2008)) and the facial expression of the AI (or human) controlled agent we
interact with (Gratch and Marsella, 2001). Therefore, in addition to the theoretical value of
adding context information to an affect predictor, it also provides higher affect recognition
rates as it directly influences our affective experiences.

The context modality is available in one of the two affect-related datasets used (Maze-
Ball); this game dataset contains, among other information, the events that occur in the
game session (e.g. the player is hit by an enemy), which will have a direct contribution to
changes on the affective experience of the player. Models of affect that combine physiological
signals and context are discussed in Chapter

3.2 Feature Extraction

Feature extraction is applied to transform the raw input signals into a set of features that
can feed a computational predictor. The goal of this process is to extract the distinctive
characteristics of the signals creating an input space with a reduced number of meaning-
ful dimensions that facilitate the prediction of the target function. In this thesis three
approaches that capture dissimilar aspects of the signals are applied: an ad-hoc method
containing features frequently used in AC studies (described in Chapter || for each different

4 Accessed November 14, 2012 http://www.wilddivine.com/

® Accessed November 14, 2012 http://www.thoughttechnology.com/

5 Accessed November 14, 2012 http://www.affectiva.com/q-sensor/

" Accessed November 14, 2012 http://www.empatica.com/

8 Accessed November 14, 2012 http://www.siliconera.com/2011/11/01/
sony-patent-reveals-biometric-ps3-controller-and-handheld/

YAccessed February 01, 2013 http://www.siliconera.com /2010/10/07 /nintendo-patent-shows-wii-vitality-
sensor-game-example/
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3.2. Feature Extraction

dataset) and two unsupervised learning methods to create features from the data (Section

and Section |3.2.1)).

3.2.1 Deep Learning

In this section we propose and describe a method for creating features based on deep archi-
tectures for sequential signals. The basic idea is to build a deep model that receives as inputs
the raw signals and outputs a set of features that feeds the computational model of affect
(see Figure [3.2). The automation of feature extraction via deep learning could potentially
yield a more complete set of physiological features than ad-hoc feature extraction methods
which, in turn, will deliver models of affect of higher accuracy. Deep learning has been
used to improve the accuracy of large classifiers with many inputs (e.g. all the pixels in an
image) (Bengio, |2009); in their process, DL methods tune the (initially random) parameters
of a multi-layered (deep) model to facilitate supervised learning. While initially the layers
of the model produce a random projection of the input data, after the tuning process they
extract meaningful information. Hence, DL is an ideal solution for automatically creating
features.

We use convolutional auto-encoders (CAEs) that utilize a convolutional neural network
to create a hierarchy of features that reduces long and complex signals (see Section .
Over other models, CNNs present the advantage of creating simple features at each layer,
which allow us not only to reduce the signals, but also facilitates the analysis of the features,
and therefore the affect models. As for training algorithm, CAE adjusts the parameters of
the CNN using auto-encoders (Vincent et al., 2008) that train filters or feature extractors
that capture a distributed representation of the leading factors of variation of their input
signals (see Section. This is the same idea as the process followed by PCA but with the
advantage of bypassing the linearity assumption (Wold et al., [1987). Alternative methods
such as restricted Boltzmann machines present a more complex theoretical background but
have not produced better results in practice. Thus, we prefer to utilize the simplest method.

Convolutional neural networks

Convolutional or time-delay neural networks (LeCun and Bengio, |1995) are hierarchical
models designed to process input spaces where a spatial or temporal relation exists (e.g.
images, speech or physiological signals). The hierarchy alternates a number of convolutional
and pooling layers in order to process large input spaces (see Figure .

Convolutional layers contain a set of neurons that detect different patterns on a patch of
the input (e.g. a time window in a time-series or part of an image). The inputs of each neu-
ron (namely receptive field) determine the size of the patch. Each neuron contains a number
of trainable weights equal to the number of its inputs and an additional bias parameter (also
trainable); the output of each neuron is calculated by applying an activation function (e.g.
logistic sigmoid) to the weighted sum of the inputs plus the bias (see Figure . Each
neuron scans sequentially the input signal producing an output for each consecutive patch.
The consecutive outputs generated assemble a new signal referred to as feature map (see
Figure . The output of the convolutional layer is the set of feature maps resulting from
convolving each of the neurons in the layer across the input. Note that a convolution layer
does not typically reduce the size of the input as the convolution of each neuron produces
a signal of the same length as the input signal minus the size of the patch (i.e. the size of
the receptive field of the neuron), plus 1 (see Figure [3.2)).
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Figure 3.2: Example of the structure of a deep architecture. The architecture contains: (a)
a convolutional neural network with two convolutional and two pooling layers, and (b) a
single-layer perceptron predictor. In the illustrated example the first convolutional layer (3
neurons and path length of 20 samples) processes a skin conductance signal which is prop-
agated forward through an average-pooling layer (window length of 3 samples). A second
convolutional layer (3 neurons and patch length of 11 samples) processes the subsampled
feature maps and the resulting feature maps feed the second average-pooling layer (window
length of 6 samples). The final subsampled feature maps form the output of the CNN which
provides a number of extracted (learned) features which feed the input of the SLP predictor.
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Input

Neurons

Figure 3.3: Convolutional layer. The neurons in a convolutional layer take as input a patch
on the input signal x. Each of the neurons calculates a weighted sum of the inputs (x - w),
adds a bias parameter 6 and applies an activation function s(z). The output of each neuron
contributes to a different feature map. In order to find patterns that are insensitive to the
baseline level of the input signal, x is normalized with mean equal to 0. In this example,
the convolutional layer contains 3 neurons with 20 inputs each.

The reduction is produced in the pooling layers which reduce the resolution of each
feature map through a pooling function. A window of given length slides over each feature
map reducing consecutive and non-overlapping segments of the signal into one value (see
Figure . The maximum or average values are the two most commonly used pooling
functions providing maz-pooling and average-pooling layers, respectively. The output of a
pooling layer presents the same number of feature maps as its input, but the resolution of
each of them has been reduced by a factor equal to the window length (see Figure . As
consecutive values of a feature map are similar — due to be produced by the same neuron
evaluated at contiguous locations of the input signal — small window lengths will produce
small losses of information.

The pooling layers perform a very simple processing task, and thus the extracted features
are mainly defined by the convolutional layers, and more concretely, their neurons. By
analyzing the weights of each neuron, one can derive the characteristics of the input that
every feature is capturing. When the input to the neuron is a 1-dimensional signal (e.g.
heart rate), the weights of the neuron can be plotted in temporal order to reveal the input
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Figure 3.4: Pooling layer. The input feature maps are subsampled independently using a
pooling function over non-overlapping windows, resulting in the same number of feature
maps with a lower temporal resolution. In this example, an average-pooling layer with a
window length of 3 subsamples 3 feature maps.

patterns that yield higher output values.

Auto-encoders

An auto-encoder (Hinton and Zemel, 1994; |Hinton and Salakhutdinovj, 2006} Bengio et al.,
2007)) is a model that transforms an input space into a new distributed representation by
applying a deterministic parametrized function (e.g. a single layer of logistic neurons) called
the encoder (see Figure. The AE also learns how to map back the output of the encoder
into the input space, with a parametrized decoder, so as to have small reconstruction error
on the training examples, i.e. one minimizes the discrepancy between the outputs of the
decoder and the original inputs. However, constraints on the architecture or the form of
the training criterion prevent the auto-encoder from simply learning the identity function
everywhere. Instead, it will learn to have small reconstruction error on the training examples
(and where it generalizes) and high reconstruction error elsewhere (Bengio et al., [2012)). We
train the convolutional layers of a CNN by casting their neurons as an encoder and training
their weights to reconstruct the input signals or input feature maps. As decoder we used
the same weights, approach known as tied weights.

The encoder is trained using backpropagation, a gradient descent method that iteratively
adjust the weights to minimize the reconstruction error. We used a denoising auto-encoder
(Vincent et al., [2008]) in which the reconstruction error is defined as the sum of squared dif-
ferences between the inputs and the reconstructed corrupted inputs. The latter corresponds
to the output of the decoder, which takes as inputs the outputs of the encoder, which in turn
takes the input signal with added noise (corrupted inputs). This added noise contributes to
the auto-encoder’s ability of reconstructing the input signal despite certain level of noise.
In this thesis, each convolutional layer of the CNN is trained one by one, from bottom to
top (Masci et al., |2011). The neurons of each convolutional layer are trained patch-wise,
i.e. by considering the input at each position (one patch) in the sequence as one example.
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Figure 3.5: Structure of an auto-encoder. The encoder generates the learned representation
(extracted features) from the input signals. During training the output representation is
fed to a decoder that attempts to reconstruct the input.

This allows faster training than training convolutionally, but may yield translated versions
of the same filter.

3.2.2 Frequent Sequence Mining

Frequent sequence mining methods are typically used to characterize sequential datasets
by finding the regular (frequent) subsequences. When we apply feature extraction, we are
trying to extract the defining characteristics of a dataset; thus, we can use the characteristics
represented by the frequent sequences as features to reduce a dataset. We can define
each data sample by the frequent sequences that it contains, thus reducing the dataset
by removing information that is rare (or infrequent). While infrequent information can
be relevant for affect prediction, patterns that are seen often will contribute to predictors
with better generalization, as patterns present in the dataset are likely to be seen in new
data samples. Moreover, sequence mining can be used to mine frequent sequences that
span across several modalities, providing an unsupervised method to extract multi-modal
features. In this section we formalize the problem of mining frequent sequences, describe
the specific algorithm applied in this thesis (generalized sequence patterns) and outline the
mechanisms used for defining features from frequent sequences.

Problem formulation

Let us define a data-sequence as sequence of events, which corresponds to an input sample
in a dataset. Then, we define a frequent sequence as a subsequence of events that occurs
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ﬂ\.. (B) I*g

(a) Consecutive events: sequences (AX) and (AC) are both frequent despite events occurring in different

modalities and other events occurring in between

F. B ... ..

(b) Sliding window: the sequence ((AY")) (events A and Y considered simultaneous) is frequent if the distance

between A and Y is below the time window W4z in both samples.
’ '
P
‘ .
[

1
Y L
L4
L4
-

-

(c¢) Time constraint: the sequence (AY is frequent if the time constraint Gu,.z is equal or longer than the
distance between A and Y in the sample on the right.

Figure 3.6: Frequent sequence constraints. The three main requirements or constraints for
considering a sequence of events frequent are showcased with two data samples with two
modalities (red and green) with events {A, B,C'} and {X,Y, Z}, respectively.

regularly in the dataset (i.e. in a large number of data-sequences). An event is associated
with a time stamp (discrete moment on time when the event occurs) and an identification
(type of event). An event could be for example an increase on heart rate, a key pressed
or an action unit activation in a facial expression task (Pantic et al., 2005). Note that,
signals composed by sequences of continuous values have to be transformed into sequences
of discrete events. For example, a SC signal can be converted to a sequence of sudden
increments and sudden decrements (detected as large changes in small time intervals of
the signal). Certainly, this transformation removes some amount of information about the
signal — in the SC example, the tonic component would be completely lost— but on the
other hand may lead to the discovery of interesting patterns across signals that are not
accessible otherwise.

More formally, a sequential pattern is defined as an ordered list of elements — denoted as
(egey . .. en); €; is the it element of the sequence — each containing a non-empty (unordered)
set of m simultaneous events — denoted as (zg, 1, ..., Zm); T; is an event. For example, an
element could be two keys pressed simultaneously, several action units executed at the same
time or an increase in heart rate (an element with only one event). A frequent sequence can
be defined as a sequential pattern that is supported by, at least, a minimum amount of data-
sequences as determined by the minimum support (Spmn) value. A data-sequence supports
a sequential pattern if and only if it contains all the events present in the pattern in the
same order. Note that this definition does not restrict that events in consecutive positions
within the pattern must be strictly consecutive in the data-sequence (see Figure . For
example, the data-sequence (xoxizox3r4T5) supports the pattern (eges) with ey = (z¢) and
es = (x5) if further constrains are not specified. The amount of data-sequences that support
a sequential pattern is referred as the support count.
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Algorithm 1 Generalized Sequential Patterns.
Input: a dataset of data-sequences, Simin, Gmaer and Wi az
Output: the set of sequence patterns that are supported by more than S,,,;, data-sequences.
01: procedure GSP(data, Spnin, Gmaz, Wimaz)
02: Count the number of data-sequences in which each different event is contained (support
count).
03: Insert the events with a support count greater than S, into the set of frequent
1-sequences (L1).
04: k=1
05: while L is not empty
06:  Generate the set of candidate (k + 1)-sequences (Ck11). See Algorithm [2| for more
details.
07:  Determine the support count of the sequences contained in Cj 1.
08:  Create the set of frequent (k + 1)-sequences (Lyy1) with the sequences in Ci 4
that present a support count greater than Sy,,.
09: k=k+1
10: return L1 U Lo U--- U Lp_4

In order to model the fusion of sequences from different modalities, the basic definition
of frequent sequence is extended with two of the generalizations proposed in (Srikant and
Agrawall |1996]) which are as follows:

e Sliding window: given an element e; containing two or more simultaneous events
(zo,x1...Tm ), a data-sequence contains the element e; if and only if all its events occur
in the data-sequence within a given time window W4, (see Figure . In other
words, two or more events in a data-sequence can be considered to occur simultane-
ously (i.e. belonging to the same element) if and only if they occur within a time
interval shorter than W, ...

e Time constraint: given two consecutive elements in a pattern, e;e; 11, a data-sequence
may support the pattern only if both elements occur in the specified order and the
time difference between their occurrences is lower than a specified time threshold,

mazimum gap Gumaz (see Figure [3.6¢)).

Given this formulation, we need to specify only three parameters, the minimum support,
the time window and the maximum gap, which constrain the frequent sequences that will
be extracted. Then, an automated search would mine the dataset to find every matching
subsequence.

GSP algorithm

The generalized sequential patterns algorithm (Srikant and Agrawall |1996) is used for min-
ing the frequent sequences in this thesis. GSP is a candidate generation and test algorithm
which supports the constrains mentioned in the previous section. It first finds the frequent
sequences with one single event, namely 1-sequences. That set of sequences is self-joined
to generate all 2-sequence candidates for which their support count is calculated. Those
sequences that are frequent (i.e. their support count is greater than a threshold value Sy, )
are self-joined to generate the set of 3-sequence candidates. The algorithm is iterates, in-
creasing the length of the sequences in each algorithmic step, until the next set of candidates
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Algorithm 2 Candidate generation in GSP.

Input: a set of (k — 1)-sequences Ly_1.

Output: the set of candidate k-sequences Ck.

01: procedure generateCandidates(Lj_1)

02: for each pair of sequences sy, s, € Ly_1 with s, = (efed...e%) and s, = (ee ...eh)

03: if the two sequences obtained by dropping the first event of s, and the last event of
sy are identical

04: if e, has only one event e}, = (y1)

05: Generate the candidate sequence s., by inserting y; as last event of ef:
Say = (e5€5 . e2_ (€5, 51)

06: else

07: Generate the candidate sequence s;,, by replacing e}, with en:
Soy = (€7€5 ... eZ_jen).

08: if all contiguous subsequences of s;, are contained in Lj_;

09: Insert sy into Cy.

10: return Cj

is empty. The basic principle of the algorithm is that if a sequential pattern is frequent,
then its contiguous subsequences are also frequent. Given two sequences s; and s, s, is a
contiguous subsequence of s, if either: 1) s, is obtained by dropping the first or last event
of sg; or 2) s, is obtained by dropping an event from an element of s, with two or more
events; or 3) there exists a sequence s, such that s, is a contiguous subsequence of s, and
sy is a contiguous subsequence of s..

By self-joining a set of frequent sequences of length k, the algorithm obtains only the
(k+1)-sequences whose contiguous subsequences are frequent, thereby, reducing the number
of sequential patterns for which support counts have to be determined. The reader is referred
to Algorithm [I] and Algorithm [2] for a more detailed presentation of the basic steps of the
GSP algorithm.

Feature creation

After the frequent sequences have been found in the full dataset, each data-sequence is
transformed into a vector of features. For each frequent sequence we create one feature;
and for each data-sequence we calculate its value using one of the following strategies:

e Count: the number of occurrences of the frequent sequence within the data-sequence
is used as feature.

e Boolean: the feature is equal to one if the frequent sequence occurs at least once
within the data-sequence, and 0 if it never occurs.

3.3 Automatic Feature Selection

As feature extraction derives a number of characteristics from the input signal regardless
of the target affective state, automatic feature selection is an essential process towards
distinguishing which of those features can assist the creation of the model of affect. FS
consists of a search scheme to test alternative combinations of input features and a heuristic
to determine their relevance. Opposed to other dimensionality reduction methods such as
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principal component analysis (Wold et al., [1987) and Fisher’s projection (Krzanowski, 1977)
that project the feature space into a space of lower dimensionality, F'S eliminates dimensions
(features) from the original space maintaining the physical meaning of the inputs to the
model. We consider that this is a key feature for affect modeling, as it is necessary to
analyze the mappings captured by the models learned; analysis that can lead to a better
understanding of human affect.

Two F'S procedures are applied in this thesis: a local search and a global search, namely
sequential forward feature selection (SFS) and genetic search feature selection (GFS). In
both algorithms, the relevance of each set of selected features is measured through the
performance of a model built on those features. Note that neither method presented is
guaranteed to find the optimal feature set since all possible combinations are not evaluated
(SFS is a hill-climber and GFS is based on genetic search).

3.3.1 Sequential Forward Feature Selection

Sequential forward feature selection is a bottom-up search procedure where one feature is
added at a time to the current feature set. The feature to be added is selected from the
subset of the remaining features such that the new feature set generates the maximum value
of the performance function over all candidate features for addition. The search stops when
adding a new feature does not yield an increase in performance. We apply this method
because while being simple and fast, it has been successfully applied in dissimilar studies
(Yannakakis and Hallam, [2007; Pedersen et al., 2010; [Yannakakis et al., 2010 among many)
for affective preference prediction.

3.3.2 Genetic Feature Selection

GFS implements a generational genetic algorithm (GA) to search for the set of features that
yields the most accurate preference predictor for the investigated affective state. According
to the GF'S mechanism, the whole set of input features is encoded as a bit string chromosome,
c:

c= (91,92, INy) (3.1)

where
1, if feature 7 is included

P 3.2
gi {0, if feature ¢ is not included (3:2)

and N is the total number of features existent in the input dataset.

A population of N, chromosomes is initialized with all bits set to zero but one selected
randomly; i.e. the first generation consists of sets of one randomly selected feature. The
reason for initializing chromosomes with only one feature is to obtain minimal feature
subsets which, nevertheless, yield high performing predictors of reported affect — serving
as the input of the model. Then, at each generation:

1. All chromosomes of the population are evaluated. For that purpose a preference
model is built using as inputs the feature set presented by the chromosome and its
performance serves as fitness function.

2. An elitism selection method chooses the [V, individuals with highest fitness to be the
parents of the next generation.
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3. Pairs of parents are selected using a rank selection method that ranks the parents by
their fitness and then selects two of them with a probability proportional to r; where r
is the position in the ranking. A total of N.— N, offspring are reproduced via uniform
crossover — i.e. every gene has the same probability of being from one or the other
parent — with probability p.. If crossover is not applied, the most-fit parent of the
two is cloned to generate an offspring.

4. For each offspring, mutation occurs at each gene with probability p,,. The mutation
scheme used flips the value of the selected gene which, in turn, suggests that the
corresponding feature is either added (1) or removed (0) from the feature set. Finally,
all offspring are inserted to the population.

The algorithm terminates after G4, generations and the set of features corresponding
to the highest performing preference predictor found across all generations is chosen. It
is noteworthy that parent chromosomes are cloned to the new generation but their perfor-
mance is re-evaluated, i.e. a new model is built on that feature set. Therefore, when the
training algorithm used to build the model is non-deterministic (e.g. neuroevolution), the
fitness function of some individuals may fluctuate significantly from one generation to the
next. We apply this method because it enables a more exhaustive exploration of the space
of input features than SFS while maintaining an acceptable computational cost.

3.4 Preference Learning

Preference learning (Furnkranz and Hiillermeier, 2010a)) is a subfield of machine learning
that deals with the problem of learning orders. Object ranking is a particular category of
problems within PL in which a set of rankings or pairwise comparisons (partial orders) are
specified over a set of data samples (objects). The goal is to learn a function that given a set
of objects can predict the order among them. Considering affective experiences as different
objects, modeling affect from ordinal reports (e.g. ratings and pairwise preferences) can be
cast as an object ranking task.

Before delving into the details of the dissimilar methods used in this thesis, the problem
of object ranking is formalized here. Let x; denote an object from the complete set of
possible objects x* and be defined as a feature vector x; = [x;0, Zj1, ..., Tin]. An order Oy
induces a preference relation among a set of objects, x*¥ C x* such that

(Xi ~ Xj) € O , or
in,Xj € Xk (Xi < Xj) € Oy, or (3.3)
(xi =xj) € Oy

where x; > x; denotes that x; has a higher ranking than (or is preferred over) x;, and x; = x;
denotes that x; and x;j present the same ranking (or are preferred equally). For example,
consider 10 games for which final score and average heart rate of the player are recorded.
xo through xg would refer to each of the games with g and x¢ ; the final score and heart
rate during the first game, respectively. O may represent frustration self-reports for player
k (e.g. game 1 was more frustrating than game 2 which in turn was as frustrating as game
3 which is denoted as O = {xo > x1 = x2}). Given a set of orders S = {01, 02, ...,Op},
the object ranking task consists of learning the underlying function that maps the features
of the objects onto an ordered space from which the orders in S are hypothetically sampled.
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According to [Furnkranz and Hiillermeier| (2010a), there are two main approaches to model
that function: as binary relations and as utility functions.

Methods on the first OR approach learn classifiers that given two objects predict which
one is preferred. This is, the models receive as inputs two affective experiences and predict
whether int the first or the second the target affective state is felt stronger (e.g. it is
more frustrating). These models are therefore sensitive to the order of the experiences
but on the other hand, two experiences are required to make a prediction which might
not be suitable for some real-time applications. Cohen’s method (Cohen et all 1999) is
arguably the best representative of this category and it will be described in detail in Section
The methods within the second OR approach build models that receive as input a
single experience and output a continuous value that estimates the preference (e.g. level of
frustration). Given a pair of objects, the model predicts that the object that yields higher
output is preferred. Such models are more apt for real-time applications as they only need
information about the current experience. On the other hand, a major restriction of this
approach is that it cannot model intransitive preferences/cycles (e.g. {(xo0 > x1), (x1 >
X2), (X2 > x¢)}) which is useful, for instance, to model order effects.

The problem described in the second OR approach shares many characteristics with
standard classification and regression tasks in which the goal is to learn an unknown utility
function that maps input objects into given target values (nominal or real values). A widely
used method to learn the utility function consists of choosing a particular parametric model
U%Y(x) (e.g. a perceptron) and finding the parameter values w for which a given error
function E (e.g. sum of squared errors) is minimized. That error function generally depends
on the estimated (U%(x;)) and target (y;) values for the samples on the training dataset
((x1,¥;) € D). By definition, in object ranking there are no target values y; existent for each
object x; which prevents from using standard error functions developed for classification
and metric regression unless certain assumptions are made. A simple assumption would
be — given that ordinal labels (ranks) are assigned to each object — to ignore the ordinal
nature of the data and model ranks as independent classes. In such a scenario, multi-class
classification algorithms can be applied; however, this approach is expected to yield less
accurate models than other methods that take the order into account (Crammer and Singer),
2001). A different approach consists of assuming consecutive ranks as equidistant (e.g.
Kamishima et al. |2005; Kramer et al., [2001) which, in turn, transforms the OR problem
into a metric regression task. However, as discussed in Section this assumption does
not generally hold for data involving human subjective reports.

For the benefit of OR, several error functions have been developed to measure the degree
of agreement between an OR model and a set of target orders. These functions can be used
to extend standard ML algorithms without additional assumptions. This includes methods
on support vector machines (Herbrich et al.|[1999; Joachims|, 2002)), artificial neural networks
(Burges et al., [2005; [Yannakakis et al., 2009; [Shivaswamy and Joachims, [2011; |Delalleau
et al., 2011)), Gaussian processes (Chu and Ghahramani, |2005; |Abbasnejad et al., 2011)),
linear discriminant analysis (Tognetti et al., 2010bla) and boosting algorithms (Freund
et al., 2003).

In this thesis we examine ANNs and SVMs. The main focus of this thesis is on ANNs
because they can approximate models of any complexity (not only linear as for example
LDA), and to some extent, they can be analyzed by an expert. SVMs are chosen as a
comparative method because they have yielded excellent results in different modeling tasks
(including affect) and can model a large number of function complexities. Finally, Cohen’s
method is also included to provide a comparison against a method from the alternative
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OR approach. In the reminder of this section these three algorithms for object ranking are
described in detail.

3.4.1 Artificial Neural Networks

Artificial neural networks (Bishop, 1995) are biologically-inspired computational models
used as function approximators for pattern recognition in many domains such as computer
vision. An ANN is defined as a network of processing units called neurons. Each neuron
receives a number of real-valued inputs and calculates its output as follows:

n—1
0j = (Y _ wijwi; + ;) (3.4)
=0

where wj = [wjo, wj1, ..., wjn—1] are the connection weights, X5 = [xj0, 1, ..., Tjn—1] are the
inputs, o; is the output, §; is the threshold and f(z) is the activation function of neuron j.
The weights and threshold are real-valued parameters that are adjusted to yield different
functions. The activation function is typically a logistic sigmoid or hyperbolic tangent in
prediction tasks because they are monotonic, their output ranges are bounded and present a
computationally cheap derivative (characteristics that facilitate gradient-descent training).

A single-layer perceptron is the simplest ANN topology in which all the inputs of the
network are connected to the inputs of the neurons, and the output of each neuron forms
one of the outputs of the network. While the expressivity of an SLP is limited, arbitrarily
complex functions can be represented by more complex topologies where the output of some
neurons is connected to the input of others. Theoretical results elaborated by [Kolmogorov
(1963)) support that a neural network with a layer of neurons with logistic sigmoid activation
functions connected to an output neuron with a linear activation function can approximate
any continuous function for a given precision (i.e. universal approximation). This result
suggests that, in theory, neural networks define the ideal tool for approximating continuous
functions; however, in practise finding the appropriate topology and precise connection
weights within a reasonable amount of time is not always guaranteed.

A multi-layer perceptron is a neural network topology where neurons are arranged in
stacked layers; the outputs of every neuron in one layer are connected only to every neuron
in the next layer (see Figure[3.7)). The inputs of the network are connected to every neuron
in the first layer and the outputs of the neurons in the last layer (output layer) form the
outputs of the network. This has been the most popular type of ANN for decades in
pattern recognition in part due to its theoretical representation power (MLPs with one
logistic hidden layer can approximate any continuous function) and relatively simple and
efficient training strategies. In ANN terminology, training refers to the automatic process
by which the appropriate weights of a network, activation functions and network topology
are selected to approximate an unknown function. This process requires two main elements:
a function to determine the “goodness” of any configuration (error function) and a search
algorithm to efficiently traverse the space of possible configurations (training algorithm).
These elements are described in the following sections.

Training Algorithms

The space of possible configurations of a neural network, even if the topology of the network
and the activation functions are fixed, is typically too big for exhaustive exploration. Back-
propagation and neuroevolution are popular ANN training algorithms based on gradient-

62



3.4. Preference Learning

Input Hidden Hidden  Output
Layer Layer 1 Layer2  Layer

Figure 3.7: Example of a multi-layer perceptron with two inputs (z¢ and x1) and one output
(y). Two hidden layers with 2 and 3 neurons, respectively, transform the input and feed
the single neuron in the output layer. Connection weights and thresholds are displayed over
the corresponding connection arrows.

descent (local search) and evolutionary algorithms (global search), respectively. These algo-
rithms have been largely applied to neural network training on regression and classification
tasks and they can be applied unchanged to preference learning.

Backpropagation (Rumelhart} 1995) on its basic form optimizes an error function it-
eratively across a number of epochs by adjusting the value of each weight and threshold
proportionally to the derivative (gradient) of the error with respect to the weight. This
method requires that the topology and activation functions are fixed before hand. In this
thesis, the following weight-update rule is used:

8(Wt)2

1 Z OE(U™" (x),xp,%XN)
dw!

¢
w; T = w — A —
! ’ |S| ow!
(xp,xN)ES

+ A2 (3.5)

where E is the error function which depends on a pair of objects (xp,xn) and the current
configuration of the network U™*(x) (see Section , S is the set of pairs in the training
dataset, |S| is the number of pairs in S, w! is the value of weight i at epoch ¢, A; is the learn-
ing rate and Ao is a weighting parameter for the reqularizer term. The regularizer is used
to maintain the weights of the network low and by doing so, avoiding (reducing) overfitting
(Bishop, [1995)). Overfitting is an issue inherent to ML algorithms that consists of a model
memorizing training examples rather than learning the underlying function. If overfitted
an ANN model makes good predictions in the training dataset, but poor approximations
on similar (unseen) data. As the weight update relies on the calculation of the derivative
of the error function with respect to the weights of the network, the error function needs to
be differentiable and depend on the values of the weights at a sufficient number of points
because otherwise, the weight update cannot be computed or is equal to zero.

Neuroevolution (Moriarty and Miikkulainen, [1997) is the application of evolutionary
algorithms to ANN training. A genetic algorithm (Goldberg, 1989) is a global search strat-
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egy that features methods inspired by natural evolution. In brief, a GA on its general form
maintains a population of individuals or phenotypes each one encoded by a genotype or set
of genes (chromosome). In NE, the phenotypes correspond to different neural networks
while the genotype can be for example, the set of connection weights. Iteratively across a
number of generations, the GA modifies the population by replacing existing individuals by
new phenotypes created throughout a number of genetic operators, such as cross-over and
mutation, applied to selected genotypes. Cross-over creates a new genotype by recombin-
ing genes from already existing individuals. In turn, mutation creates a new genotype by
modifying existing individuals. The selection of individuals to be replaced, recombined or
modified is influenced by their fitness (F) to induce an improvement of the fittest individuals
across generations.

For the simplest form of NE, every individual represents a neural network with a fixed
topology whose genotype consists of the set of weights; the fitness function is the inverse
of an error function, in this way the GA evolves an initial population of neural networks
with random weights towards different weight configurations that yield lower errors. More
specifically, in this thesis NE is applied with an elitism replacement strategy in which a
fraction of fittest individuals are retained into the population of the next generation and
all the others are replaced keeping the size of the population constant across generations.
The new individuals are generated by applying uniform crossover (Harik et all|1999) with
probability p. to pairs of individuals selected from the whole population using a rank se-
lection strategy. Rank selection picks an individual ¢ with probability proportional to %
where 7; is the rank of that individual in the population according to its fitness. Gaussian
mutation is applied to each gene of the new individuals with probability p,, which adds a
random number sampled from a Gaussian distribution (z = 0,0 = 0.1) to the weight (gene)
selected to be mutated. The fitness function for each individual is calculated as follows:

Fly=—= 3 —BU™(x),xp,xx) - ’WA| > (w))? (3.6)
(xp,xn)ES wiewi

where E is the error function which depends on a pair of objects (xp,xn) and the config-
uration of the network U™’ (x) for individual i (see Section , S is the set of pairs in
the training dataset, |S| is the number of pairs in S, w' is its genotype (vector of weights),
|wi| its length and X is a positive weighting parameter for the regularizer term. Similarly to
BP, a regularizer term is included in the calculation of the fitness evaluation to penalize the
fitness of ANNs with high weight values that are more prone to overfit the training data.
The value in this algorithm is divided by the number of weights to reduce the growth of the
term as a consequence of increasing the size of the topology.

The simplest form of NE requires that the network topology and activation functions
are fixed a priori and only the set of weights are evolved. However, more advanced methods
for evolving the topology of the network (Stanley and Miikkulainen) [2002) could be used
but are not explored in this thesis.

Error functions for object ranking

An error function is required to automatically evaluate the quality of any given parameter
configuration that defines a computational model and, thus, enable automatic parameter
tuning or training. The functions described in this section define a measure of agreement
between two orders, and are used to evaluate the agreement between the order estimated
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by a model and the order given by a dataset. All functions examined here are calculated for
pairwise preferences (i.e. orders of length two) with the exception of the Spearman function
that is calculated for orders of any length (see Equation . Nevertheless, this is not a
limitation as any given order Oy = {x¢ *= X1 = ... = Xp_1} can be described without loss
of information as (g) pairwise comparisons. Additionally, the functions in this thesis are
used to model only clear preferences; that is, given two objects {x;,x;} within an order Oy,
either (x; > x;) € Oy, or (x; < Xxj) € Oy, is expected, but never (x; = x;) € Op. With this
in mind and to simplify the notation, for any pair of objects presented to an error function
the preferred object is denoted as xp and the non-preferred as xn so that xp = xn always
holds true. Similarly, for brevity the difference between the outputs of a model U% (x) for
the preferred and non-preferred objects of a pair, i.e. U%(xp) — UV (xN), is denoted as
Upy. It is worth highlighting that a pair {xp,xn} is only classified correctly by a model
U%(x) when Upy > 0.

Note that if we use UY to calculate the probability of x; > xj, a small value of U}
yields low certainty px;-x; =~ 0.5). However, in the scenario of a strict classification (i.e.
U%(x;) > U%(x;) implies x; > x;), a small value of separation may damage generalization
to predictions on unseen data as small disturbances in object feature vectors (e.g. noise) may
turn a correctly classified pair into a misclassified one. Particular error functions overcome
this problem by rewarding differences that are larger than zero up to some threshold. In
order to assess the potential impact of this threshold — referred to as margin, m, throughout
this dissertation — on the generalizability of object ranking models, we introduce it in the
definition of every error function. Figure 3.8 shows all functions with the margin values of
0.0, 0.5 and 1.0 examined in this thesis. In the reminder of this section, we describe all
the error functions explored in this thesis and their gradients, as they are key for training
neural networks via backpropagation.

Cross-entropy: given a pair of objects {xp,xN}, the probability of xp = xn can be
defined as the logistic sigmoid function of Upy; the cross-entropy error function, E¢, is
calculated as the cross-entropy cost of this probability, resulting in the following equation:

Ec(U¥(x),XP, XN) = —D(xprxn) 108 (9(UPN —m)) = (1 = Dixprxn)) 10g (1 = g(UPy —(m)))

3.7
where p(xpsxy) 18 the expected probability of xp = xn, m is the margin parameter (typi-
cally m = 0.0) and g(x) is the logistic sigmoid function.

The resulting function is depicted in Figure [3.8a] In absence of more information it
is assumed that pixp.xy) = 1, L.e. there is complete certainty that xp > xnN. For high
negative Up), values (i.e. clear erroneous predictions) the error function presents high
values. Adjustments on the model parameters that correct the prediction produce rapid
decrements on the error function which becomes steady after Up)y is large enough.

The gradient of the function with respect to the model parameters is calculated as

IEc(UY (%), xp, XN) w ouy
Ow = (g(UPN - m) - p(xP>xN))T‘];N (38)

where p(xpyxy) 18 the expected probability of xp > xn, m is the margin parameter (typi-
cally m = 0.0) and g(z) is the logistic sigmoid function.

65



Chapter 3. Methodology

4.0
3.5 — m=0.0
30 == m=05
2.50 .,

N m=10

15 ~1.0 05 0.0 0.5 15

Upy=U" (xp )—U" (xy)

1.0

(a) Cross-entropy

15 10 1.5

Upy=U" (xp )—-U" (xx)
(¢) Regularized least-squares

4.0

3.5 — m=1.0 |1

30 -+ m=0.5|]
m=0.0 ||

0.0l . T Cain e et P ———

-15 -10 -05 0.0 0.5 1.0 15

Uy =U" (xp)~U” (xy )

(e) Rank-margin

1.0 e
0.8
5 06f
ol 04r| — m=0.0
02| === m=0.5 i
ool | m=1.0 :
-15  -10  -05 0.0 05 10 15
Upy=U" (xp )—U" (xy)
(b) Spearman
oa| === m=0.5 :
ool m=1.0
-15  -1.0  -05 0.0 05 1.0 15
Upny=U" (xp )—U" (xy)
(d) Sigmoid (4 = 30.0, v— = 5.0)
02| -+ m=05 :
ool | = m=1.0 5
-15  -1.0  —05 0.0 05 1.0 15

Upn=U" (xp ) =U" (xy )
(f) Sigmoidal rank-margin (v = 5.0)

Figure 3.8: Error functions for object ranking with respect to the difference between the
model’s output for the preferred and non-preferred objects of a pair (U})) and three dif-
ferent margin values, m. The blue line corresponds to the typically used margin for each

error function.
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Regularized least-squares: given a pair of objects, {xp,xn}, the regularized least-
squares error function, Eryg, is calculated as follows:

Erps(U™(x),xp,xN) = (m — UPy)® (3.9)

where m is the margin parameter (typically m = 1.0). This function decreases quadrati-
cally as the difference between the model’s output for the preferred and the non-preferred
objects increases. The function becomes zero when this distance is equal to m and increases
quadratically after the distance grows past this threshold (see Figure . By minimizing
this function, the model adjusts its parameters to separate the output of the preferred ob-
ject from the output of the non-preferred object exactly by the value of the margin . The
gradient of this function with respect to the model parameters is calculated as follows

aERLs(UW(X),XP,XN) . w 8U}§VN

where m is the margin parameter (typically m = 1.0).

Rank-margin: given a pair of objects, {xp,xN}, the rank-margin error function, Ery,
is calculated as follows:

Eryn (U (%), xp,xN) = max{0,m — Upy} (3.11)

where m is a margin parameter (typically m = 1.0). This function decreases linearly as
the difference between the model’s output for preferred and non-preferred objects increases.
The function becomes zero after this difference is greater than a margin value (see Figure
. By minimizing this function, the model adjusts its parameters to separate the model’s
output for the preferred object from the output for the non-preferred object as much as
possible — and below a margin threshold. The gradient of this function with respect to the
model parameters is calculated as follows

= w 3.12
ow _9Upy otherwise ( )

aERM(UW<X),XP,XN) {0 if UPN—TTL>O
ow

where m is a margin parameter (typically m = 1.0).

Sigmoid: given a pair of objects {xp,xN}, the sigmoid error function, Fg, is calculated
as follows:

vy fURy >m

Es(UY(x),xp,xn) = 1.0 — - , Y= { (3.13)

v— otherwise

where m is the margin parameter (typically m = 0.0), and 4 and ~_ are two weight pa-
rameters that influence the slope of the sigmoid function on the two ends of the decision
boundary between correctly and incorrectly classified pair (Upy = 0). The value of Eg
decreases monotonically with respect to difference between the model’s output for the pre-
ferred and the non-preferred objects. Due to the sigmoidal shape of the function rapid Eg
value changes occur around the decision boundary (U = 0) while relatively small changes
occur far from it (see Figure . The gradient of this function with respect to the model
parameters is defined as follows:
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6ES(UWS;)/’ XP,XN) _ _,7(1‘0 _ g(’Y(UJVDVN — m)))g('y(UIVDVN — m)) ag‘];;:]v,

{w if Uy > m
")/:

. (3.14)
~v— otherwise

where m is the margin parameter (typically m = 0.0), and 74 and ~_ are two weight
parameters and g(x) is the logistic sigmoid function.

Spearman: the Spearman coefficient (Zar, 1998) is an index that measures the similarity
between two orders over the same set of objects. This coefficient is calculated as the
Pearson’s correlation between the ranks induced by the two compared orders. In particular,
given an order, Oy, over a set of objects, x*, a rank, r(xj, Oy), is assigned to each object, x; €
x*, as a cardinal number according to its position in Oj. Objects at the same position are
assigned consecutive cardinal numbers arbitrarily and receive the same rank calculated as
the average of those consecutive numbers. For example, given four objects {xo, X1, X2, X3}
and the order O = {x¢ > X1 = X2 > X3}, their ranks are r(x9,0) = 0, r(x1,0) =
r(x2,0) = 12 and r(x3,0) = 3 following the above procedure. Given a target order Oy
over a set of objects, x*, and an order, Oy, induced by a model U W(x) over the same
set of objects, the Spearman error function Egp can be defined subtracting the Spearman
coefficient (Zar, 1998) normalized into [0, 1] from 1.0 as follows:

> (r(xi, Or) — r(x1, Ow))?

x;EXF

Egp(U™(x),Ok) =3 P =] (3.15)

where |x*| is the number of objects in the target order Oy.

Clearly, Egp is 0 when U%(x) induces the same order as Oy, over x* and 1 when U%(x)
induces the exact opposite order. This error function can be applied to orders of any length
without converting them into pairwise comparisons. When the target order is a pair, Egp
is equivalent to an inverted step function (see Figure whose value is 0 if the pair is
correctly classified (Up, > m with the margin m = 0.0) and 1 if the pair is incorrectly
classified (UpZy < m with the margin m = 0.0).

The gradient of this error function with respect to model parameters equals zero on every
differentiable point which makes it unsuitable for gradient-based optimization. However,
it conforms the simplest possible error function for object ranking using a global search
technique such as a genetic algorithm.

Sigmoidal rank-margin: A clear distinction can be made among the functions defined
above. E¢ depends strongly on Up,, changes and very little on whether {xp,xn} is cor-
rectly classified or not. Egys shows the similar dependency that is neutralized after UYy; is
over a margin threshold (usually 1.0). Eg shows more sensitivity to changes from correctly
to incorrectly classified (xp,xn) (or vice-versa) as changes of Up, around the decision
boundary (Upy = m) produce larger changes to Eg than changes far from that boundary.
Finally, Esp strengthens this dependency showing only changes when the Upy — m sign
changes.
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A hybrid function is proposed combining characteristics of Eg and Egp featuring a
continuous improvement dependent on the distance between the model’s output for preferred
and non-preferred objects until the target pair is correctly classified, point at which the
function becomes a step zero (see Figure [3.8f). The sigmoidal rank-margin error function
FEgspy is defined as follows:

0 if Upy > m
N (3.16)

1.0 — W otherwise

Espy (UY(x),xp,XN) = {

where m is the margin parameter (typically m = 0.0), v is a positive weighting parame-
ter that defines the slope of the logistic sigmoid function and g(z) is the logistic sigmoid
function. The gradient with respect to the model parameters is calculated as

OEsrym (UY(x),xp, XN) 0 it USy >m
- w W ouy .
ow —7(1.0 —g(v(UPy — m)))g(’y(UPN —m)) =X otherwise

(3.17)
where m is the margin parameter (typically m = 0.0), and + is a positive weighting param-
eter that defines the slope of the logistic sigmoid function. This error function is similar to
Ery as both are defined as piece-wise functions that are constant if the difference between
the model’s output for the target pair is above a given threshold. If the threshold is set
to the same value, the only difference expected when using ANN backpropagation will be
caused by the difference between linear and sigmoid derivatives. On the other hand, from
the point of view of global optimization (e.g. genetic search) Esras, compared to Era,
puts more reward to parameter configurations that exceed the threshold.

3.4.2 Support Vector Machines

A support vector machine (Cortes and Vapnikl 1995) is a binary classifier that linearly
separates in a projected space ¢(X) the data samples x;. The decision boundary of the
classifier is given by a weight vector w which is found by solving;:

C 1 2
minimize: §HWH + C’Z &
subject to: Vx; € D,w - ¢(x4)z; > 1 —&; (3.18)
Vi & >0
where z; € {+1,—1} is the class of sample x;, D is the complete set of training samples,
& is a set of non-negative variables, C' a weighting parameter, w the trained decision

boundary and ||w]| its module. The above optimization conditions can be easily modified
to accommodate pairwise comparisons as follows:

o 1
minimize: §Hw\| +C Z &
subject to: V(xip,x&) €eD,w- (¢(Xip) _ ¢(Xi\1)) >1-& (3.19)
Vi& >0

where XiP and x{\l represent the preferred and non-preferred objects in the pair ¢. This op-
timization can be solved by introducing Lagrangian multipliers and solving the transformed
optimization problem using techniques from mathematical programming (Herbrich et al.
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Figure 3.9: Support vector machine classification mechanism. Ten data samples in the input
space (xg, 1) are transposed into a projected space ¢(xo,x1) = (20, 21, 22). The projection
of the data samples over the line defined by w defines the global order modeled by the
SVM.
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2000). The solution is expressed as a linear combination of some training samples which
receive the name of support vectors:

w= Y ai(d(xh) - d(x))
(xpx}y)€S (3.20)
VO@' 0 S (67 S C

Once w is trained, given a pair of objects {x;,x;} the SVM predicts that x; > x; if w-p(x;) >
w - ¢(x;). Graphically, this means that w specifies the direction along which the projected
space is ordered (see Figure . Although the SVM creates a linear separation, this is
defined on the transformed space defined by ¢ which yields more complex boundaries in
the input space. Finally, replacing each calculation of the dot products by a kernel function
r(Xi,Xj) = ¢(x3) - ¢(x;), it is no longer required to explicitly project the input samples
into the transformed space, thus saving on computational effort during training but more
importantly enabling a large number of transformed non-linear spaces, including Hilbert
spaces of infinite dimensions (Herbrich et al., |1999). In those cases, the vector w cannot
be obtained and the output of the model can only be calculated in terms of the support
vectors:

U (x) =w- p(x) = Z i (k(x,xh) — K(x, xk)) (3.21)

(xL,,x)es
While the training algorithm is completely different, a clear parallelism between SVMs
and ANNs can be seen within this formulation: each of the support vectors can map to
the connection weights of one of the hidden neurons in a 2-layer MLP while the kernels
would represent the activation functions and, finally, the «; parameters would map to
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the connection weights of a single output neuron with a linear activation function. With
regards to expressivity, ANNs show a greater potential because its hidden layers can be
trained (instead of relying on training examples) and because several hidden layers can

be stacked yielding to hierarchical transformations with an overall lower number of nodes
(Bengio, [2009).
The five following kernels have been used in this thesis:
e Linear: r!(xj,xj) = x; - X;
e Polynomial 2" degree: £2(xi,%;) = (vxi - Xj + 3)?
e Polynomial 3" degree: x3(xi,%;) = (vx; - x5 + 8)3
e Gaussian radial basis function): % (x;,x;) = e~ xi=x;ll*

e Sigmoid: x°(xi,%;) = tanh(vx; - x; + )

For a more detailed description of the ranking SVM algorithm the reader is referred to (Her-
brich et al., [1999; Joachims, 2002).

3.4.3 Cohen’s Method

By contrast to the methods described above, Cohen’s method (Cohen et al., [1999)) does not
solve the problem of OR by finding a utility function that induces a global order on the object
space. Instead, this method creates a function that defines the probability of any object

being preferred over any other object. Formally, given two objects x; = [z?, 2}, ...,x?il]
and x; = [m?, iL'Jl-, vy 1‘?_1], with xj,x; € [0,1]" a Cohen’s model is defined as follows:
n—1 n—1
Cw(xi,xj) = Z kak(Xi,Xj) + Z w2*k+1Rk(l —Xi, 1 — Xj) (3.22)
k=0 k=0

1 ifaf > ab

Ry(xi,x;) =0 ifzf <af (3.23)
0.5 otherwise

The probability of an object x; being preferred over an object x; is determined by the
comparison of each and every input feature (and their inverse values), independently. Each
feature contributes with 1, 0 or 0.5 depending on whether its value is higher on the object
x;j, higher on the object xj or equal in both. The contributions of all features are then
aggregated through a weighted sum. Originally, (Cohen et al. (1999) proposed an algorithm
to train these weights w iteratively using the following equations:

wZﬁL(Rk:Ot)

t+1
= 3.24
Wi Zt ( )
1
L(f(X7Y)7 Ot) =1- @ Z f(xiaxj) (325)
(x1,%5)€0¢
where w! is the value of the weight associated with feature 2, Ry, is the function defined in
Equation 3.4.3) Z; is a normalization factor such that w]t:rl =1, Oy is the set of pairwise
k
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preferences presented at iteration ¢, |Oy| is the number of pairs in O; and f is the learning
rate. As proposed in (Kamishima et al.), the pairs in the training dataset S are presented
successively until L(C%, S) converges.

Cohen’s method presents two advantages over the other methods examined in this thesis.
First, the created model can model intransitive preferences/cycles (e.g. {xa > xXB,XB >
XC,XC >~ XA }) because it takes two objects as input. Second, the model is not affected
by baseline problems (i.e. each participant with features in a separate range of values)
as the actual values of the features are not directly connected to the output of the model
(their effect is mediated through Ry (xj,Xj). On the other hand, this method can create
models that approximate functions of reduced complexity, as the output is always a linear
combination of fixed single-feature comparisons.

3.5 Summary

This chapter described in detail the methods which are proposed in this thesis for automatic
and reliable affect modeling. These methods are grouped into the four phases of a standard
machine learning methodology, namely data collection, feature extraction, feature selection
and model training. The next chapter corresponds to the first phase of the methodology,
data collection, and introduces the datasets used to validate the rest of the methods in the
remaining of this dissertation.
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Data Collection and Generation

The main contributions of this thesis arise from empirical evaluations of a number of mod-
eling and feature extraction methods. We present the datasets used for these evaluations in
this chapter, starting with the generation of several synthetic datasets and following with
the description of two affect-related (i.e. real) datasets. The synthetic datasets were created
for evaluating the modeling methods. Although synthetic data cannot capture all particu-
larities of real affect datasets, it allows us to evaluate the behavior of the examined methods
under particular known conditions which are unknown or uncontrollable in real data. In
particular, the synthetic datasets generated here served to analyze the preference learning
methods under different input data distributions (that resemble particular characteristics of
affect datasets) and different target function complexities (as the methods are designed to
find affect models of unknown complexity, we tested one linear, one quadratic and another
non-linear target functions).

The real datasets were used to validate both the modeling and the feature extraction
methods. We describe both datasets, Maze-Ball and DEAP, with sufficient detail to follow
the results presented in the following chapters. However, as the data collection is not part
of this thesis, we refer the reader to the original sources (Yannakakis et al., |2010; [Martinez
et al.l 2010; Koelstra et al., [2012) for an in-depth analysis of the data.

4.1 Synthetic Data

In this dissertation we examined a number of preference learning methods that learn a
computational model from a dataset. The fundamental premise for these methods (and for
most other parametric learning techniques) is that the dataset is generated by sampling a
utility function U*(x) that relates a set of observable features to the learning target (e.g.
average heart rate and final score in a game to level of frustration of the player). By fitting a
computational model to the dataset, these methods are approximating this utility function.
In a real dataset, the utility function is unknown (e.g. frustration could be a linear function
of heart rate or a quadratic function of final score) and the sampling cannot be easily
controlled (e.g. the average heart rate of different participants in the dataset could be very
similar or very different). Hence, we use synthetic datasets to evaluate the behavior of all
methods under different utility functions and sampling distributions.

Note that the datasets required for the methods explored in this thesis — i.e. object
ranking, a group of methods within preference learning — consist of a set of objects S =
{%0,X1,...,Xm} defined by n real-valued features, and a set of pairwise preferences (orders)
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determined by the utility function. For any pair of objects, the utility function assigns a
higher value to the object that is preferred within the pair. Formally, the utility function
is related to the objects and pairwise preferences as follows:

U*(x) : R" = R;V(xa,xB) € S,U"(xa) > U*(xB) = XA > XB (4.1)

where U*(x) is the utility function, (xa,xp) is any pair of objects in S and xp > xp
denotes that xA precedes or is preferred over xg.

We generated nine synthetic datasets by combining three known utility functions with
three methods for sampling the feature space. The utility functions are a linear combination
of features, U'(x), a quadratic weighted sum, U?(x), and a feed-forward neural network
with two logistic hidden layers (with 5 and 10 neurons, respectively), U ANN (x). Formally,
the functions are defined as follows:

n—1

Ul(x) = Z Tw; (4.2)
i=0
n—1

U?(x) = (O waw;)” (4.3)
i=0

9 4 n—1
UANN (x) = Z w® S(Z wi (S(Z xlw; + Qj)> +6) | ;s(x) ! (4.4)
— i=0

- 1+e =
k=0 j=0 +

where the parameters w and 6 are sampled randomly from a Gaussian distribution (¢ = 0,
o = 1) for each utility and x = [z¢,21...x,—1] is an object defined by n features. Figure
depicts an example of these synthetic utility functions in a 2-feature object space.
While many other functions could have been tested, the selected set cover distinct levels of
complexity that could be found in real datasets.

For each of the three functions, 3 sets of objects are sampled. The number of features
used is all synthetic sets is 10 which represents a reasonable number of features to train
a model of affect using a real dataset taking in consideration the (typically) small size of
affect-related datasets. The first object set Sujll contains 10000 pairs of objects sampled

from a uniform distribution (min = —1, max = +1) while the second S ;o1 contains 10000
pairs of objects sampled from 20 Gaussian distributions with different means and standard
deviations equal to 0.1. The second set in contraposition to the first showcases a challenge
that affect datasets (and physiological in particular) present: data from separate partici-
pants or sessions have different baselines. Figure shows an example of the distribution
of object pairs in a 2-dimensional feature space for each of the three sampling method.
The third set Sg{+11 is created by initially sampling a larger number of pairs from a uniform

distribution (min = —1, maz = +1) and then selecting two subsets of 5000 pairs each with
the shortest and largest utility differences, respectively. The utility difference between two
objects U*(xa)—U*(xp) defines the strength of the pairwise preference between them. This
is exemplified in Figure 4.1} note that pairs of objects that are close in the feature space
typically present similar utility functions (as utility functions are expected to be smooth)
but the contrary statement does not necessary hold true for pairs of objects that are sepa-
rated in the feature space as seen in the highlated pair of objects in Figure In a real
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0.0 0.5
Lo

1.0 10
(c) UM N (x)

Figure 4.1: Synthetic utility functions. Utility functions for two-feature objects are dis-
played. Two objects (xa and xg) and the utility difference between them U*(xa)—U*(xB)
are depicted.
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Figure 4.2: Example of the frequency dis-
tribution of the utility difference between
preferred and non-preferred objects in pairs
of the synthetic datasets with sets of ob-
jects sampled from a uniform distribution
(Sujll ), several Gaussian distributions with

different means (Spr.1) and a uniform dis-
tribution forcing two differentiated levels of
utility difference (Su+11).
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4.2. Maze-Ball

dataset, a pairwise preference with a low utility difference may correspond to an unclear
preference, i.e. the two options compared have a very similar associated utility (e.g. level
of frustration) and the user cannot clearly discern which one is higher (which one is more
frustrating). When dealing with human subjective self-reports in experimental settings,
and especially with affective states, a number of unclear preferences are always expected.
Hence, this third sampling method aid us in evaluating the tolerance of the PL methods
examined to this phenomenon. Figure depicts an example of the frequency distribution
of the utility difference for the three sets of objects used.

Finally, after the pairs of objects are sampled, the pairwise preferences are defined using
Equation after Gaussian noise 4 is added to the input features. The amount of noise is
adjusted to create around a 5% of misclassified pairs, that is for 5% of the pairs the utility
function assigns a higher value to the object that is not preferred. Formally, for each of
these 5% object pairs (xa,xp), the dataset contains the preference xp < xp with:

U*(xa) > U*(xB); U*(xA +04) < U*(xB + 6pB) (4.5)

4.2 Maze-Ball

The Maze-Ball dataset contains data gathered through a game-based experimental survey.
This dataset has been used in a number of articles which amount to a significant part
of the contributions of this thesis (Martinez et al., [2010; Schwartz et al., [2009; |Martinez
et al., 2009} Martinez and Yannakakis, 2010} [Yannakakis et al., [2010; Martinez et al., 2011
Martinez and Yannakakis, [2011alb)).

4.2.1 DMaterials and Set-up

Maze-Ball is a three-dimensional prey/predator PacMan-like game (see Figure . The
player (prey) controls a ball which moves inside a maze where 10 red-colored opponents
(predators) move around. The goal of the player is to maximize her score by gathering
as many gold tokens, scattered in the maze, as possible while avoiding the enemies in
a predefined time window of 90 seconds. The 90 second play-time window is designer-
driven and attempts to maintain a good balance between sufficient gameplay interaction
and the player’s cognitive load. On one hand, a short game is required to minimize memory-
dependent effects of post-experience on questionnaire items and the total time required for
the experience to run; on the other hand the game should provide sufficient interaction for
the requested affective states to be elicited.

The game implements a dynamic camera controller that adapts the view of the graphical
world given a desired 3-parameter profile: distance to the player, height above game the
level and frame coherence (i.e. smoothness of the camera movements). Eight variations of
the game are deployed as a result of changing the camera profile while keeping the game
design, level design, and game mechanics unaltered. For each of the three camera control
variables, two states (‘High’ and ‘Low’) are selectedﬂ All game variants are illustrated in
Figure [4.4]

The purpose of using Maze-Ball for collecting affective information is two-fold: first, it
consists of a minimal interface for an enjoyable game (arrow keys for controlling the char-
acter) and a simple visual environment. Single-hand game control via the keyboard allows

YThe Low and High values selected for distance, height and frame coherence are respectively 2.5 and 6;
6 and 15; and 0.01 and 0.35
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(a) Game variant 1: (Low, Low, Low) (b) Game variant 2: (High, Low, Low)

(c) Game variant 3: (Low, High, Low) (d) Game variant 4: (High, High, Low)

(e) Game variant 5: (Low, Low, High) (f) Game variant 6: (High, Low, High)

(g) Game variant 7: (Low, High, High) (h) Game variant 8: (High, High, High)

Figure 4.4: Screen-shots of Maze-Ball. All eight game variants of Maze-Ball generated with
a different camera profile given by the tuple (height, distance, frame coherence).
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Figure 4.5: The set-up of the experiment. The Maze-Ball game is viewed on screen; the
IOM bio-sensing hardware is placed on the subject’s left hand in this picture.

for the unobtrusive placement of biofeedback sensors to the free hand which is essential for
physiological recordings. Second, there is a direct effect of the amount of information avail-
able to the player about the world — via camera viewpoint — on her movement strategy
and consequently her experience. For instance, in the top-down view of the full maze the
player has complete global information about the world for planning out the path along the
maze. This viewpoint, however, may not be optimal for controlling the character’s local
movement as the character takes up only a small fraction of the entire screen. A close
view, such as the first person view, makes moving the character and avoiding enemies easier
but strategically moving along the maze harder. Thus, an experimental survey can provide
rich data for affect modeling and insights on the effect of virtual camera settings to player
experience.

The participants play the game with the IOM biofeedback device placed on the fin-
gertips (two electrodes for recording skin conductance and one photo sensor for recording
blood volume pulse) of the non-dominant hand as seen in Figure By using small and
accurate commercial apparatus like the IOM biofeedback device in the least intrusive way,
experiment psychological effects caused by the presence of recording devices are minimized.
Furthermore, a number of gameplay metrics are logged including the position of the player
and enemies, the position of the camera, the keys pressed and relevant game events such as
collecting pellets.
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4.2.2 Experimental Protocol

Physiological signals and subject’s emotional preferences were acquired for Maze-Ball through
the following game survey experiment. Thirty six subjects (males: 80%) aged from 21 to 47
years (mean and standard deviation of age equal 27.2 and 5.84 respectively) participated in
the experiment. Participants were recruited at different universities in Copenhagen area and
received no payment. Each participant was led into the experiment room, briefed about the
experiment and the sensors were placed on her non-dominant hand. After the experimenter
left the room, the computer displayed the instructions, and a consent and demographic
forms. After the forms were filled in, the participant played a tutorial game. Then, each
participant played a predefined set of eight games for 90 seconds each — the games differ
in the levels of distance, height and frame coherence — and reported their experience after
each completed pair of games. Between the games of the same pair, the participants rest
for at least 15 seconds, time after which they can start the next game.

The number of experiment participants is determined by C3 = 36, this being the required
number of all combinations of 2 out of 9 game variants. Each participant played one pair of
variants in both orders and other two pairs with different game variants. The games played
by each participant are assigned in such a way that, in total, 4 preference instances should
be obtained for each pair of the 9 game variants in both orders (2 preference instances
per playing order). Given that, a number of 4 pairs of games is required to be played by
each participant resulting to 36 - 4 = 144 game pair preferences. In addition to the 8 game
variants generated by solely varying the camera profile, a ninth variant without visible walls
is included to test the impact of walls in camera-profile preferences. Pairs containing this
variant are not included in this thesis yielding a total of 112 valid pairs for modeling affective
states.

4.2.3 Participants Self-assessment

After each completed pair of games, A and B, participants report their emotional preference
using a 4-alternative forced choice protocol:

e game A [B] was/felt more FE than game B [A] game (cf. 2-alternative forced choice);
e both games were/felt equally E or

e neither of the two games was/felt E.

Where E is the user (affective and cognitive) state under investigation and contains
fun, challenging, boring, frustrating, exciting, anzious and relaring (see Figure . The
selection of these seven states is based on their relevance to computer game playing with
parameterized camera positioning. The first five have been previously used in game-related
user studies (Mandryk and Atkins, [2007) while the last two are included for maintaining a
uniform covering of the arousal-valence appraisal space (Russell, 1980).

Note that participants are not interviewed but are asked to fill in a comparison ques-
tionnaire, minimizing interviewing effects. The 4-alternative forced choice protocol is used
since it offers several advantages for subjective emotion capture: explicit comparisons can
potentially minimize participants’ subjective notions of scaling and allow a fair comparison
between the answers of different participants while also making explicit the “no preference”
cases concealed by 2-AFC. The 4-AFC and 2-AFC protocols have been successfully utilized
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»  Please click one of the answer hoxes for each of the questions:

In which game you felt
more..
Jrelaked?  GameA )GameB i Both Equally () Neither

.ankious?  (xGameA )GameB )Both Equally () Neither

frustrated? & GameA (O)GameB (Both Equally ) Neither

.excited? @ GameA “iGameB T Both Equally O Neither

.bored? (LIGameA GameB /Both Equally ) Neither

Which game was more challenging? 1GameA ) GameB ()Both Equally I Neither

Which game was more fun to play? & GameA ~IGameB TJBoth Equally O Meither

Figure 4.6: Preference questionnaire used in the Maze-Ball game survey.

to provide data for building accurate computational models of reported emotional prefer-
ences (Yannakakis et al., [2008; [Yannakakis and Hallam| [2008, 2011)). The “no preference”
cases are not used for modeling which leaves 92, 90, 90, 86, 83 and 54 pairs, respectively,
for reported challenge, fun, frustration, relaxation, anxiety, excitement and boredom. The
number of boredom pairs is rather too small for modeling but we will include it for com-
pleteness.

4.2.4 Signals and Features

In this section we describe the data collected on the Maze-Ball game survey and used in
the following chapters: the raw physiological signals used in Chapter [6] the sequences of
gameplay and physiological events used in Chapter [7] and the ad-hoc statistical features
used throughout all three results chapters.

Physiological signals

For each game blood volume pulse, and skin conductance, were collected in real-time at
a sample rate of 31.25 Hz (32 ms sampling interval). Heart rate is computed using a 5-
second sliding window by extrapolating the inter-beat time intervals detected in the BVP
signal (see Figure. Measurement units for HR and SC are, respectively, heart beats per
minute (bpm) and micro-Siemens (uS) whereas BVP is a relative measure of blood vessel
pressure.
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(b) Participant no. 5: Game variant 1

Figure 4.7: Example of the SC, BVP, RR and HR signals obtained in a pair of Maze-Ball
games: a participant (no. 5) plays a game of High height, Low distance and High frame
coherence (a) and then a game of Low height, Low distance and Low frame coherence (b).
The participant expressed a fun, boredom and relaxation preference for the game variant

6 whereas expressed a challenge, excitement, frustration and anxiety preference for game
variant 1.
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Sequences of Events

A data-sequence is created from the logs of each game by concatenating all the events logged
in temporal order. The following list describes the events included for this dissertation:

e Performance Events

— Player collects a pellet ($): 10 identical pellets are placed in different areas of
the maze enforcing a difference of at least few seconds between two pellets. This
event is picked as it is expected to have an impact on reported challenge and fun
(among other reported user states).

— Enemy hits the player (E): 14 enemies follow predefined paths guarding a pellet
causing this event to occur very close in time with the $ events frequently. Enemy
hits are selected as events since enemies are critical to player experience in a prey/
predator game.

— Countdown starts (¢1°): when entering the last 10 seconds of the game the timer
changes its color rushing up the player. This event occurs exactly once in each
game, thus it does not provide sufficient information about the experience per
se. However, sequences combining this event with physiological events or other
gameplay events are expected to have a direct impact to reported anxiety and
excitement.

e Navigation Events

— Moving to a new area of the maze (m’,...,m"): although there are not explicit

boundaries between areas of the maze, 8 different sectors can be distinguished
based on the different wall layout, placement of the pellets and movement of the
enemies which, in turn, represent different degrees of difficulty. These events are
expected to have a direct impact on the challenge reports.

— Press an arrow key (A, ¥, <, »): pressing the right and left arrows make the ball
turn if it is located in a corner; the down key forces the ball to turn 180° and the
up arrow has no effect. Each single one of these events most likely holds a tiny
piece of information about user experience; however, sequences combining many
of these events may point to more complex navigation patterns with a potential
impact on experience.

— Inactivity for more than 1 second (Stop): the player avatar is moving forward at
any time unless it hits a wall. In that case, the ball will only continue moving if
the player turns. When the ball is stopped for 1 second, the event is logged. It
could indicate that the player is planning a strategy or waiting for an enemy to
move away from a pellet. Thus, this event is relevant for the identification of a
player’s behavioral patterns and, indirectly, for affect detection.

e Physiological Events

— Difference between two inter-beat intervals (RR intervals) is greater than 50 ms
(r+50 r=59): the heart beats are detected from the BVP signal and when two
consecutive inter-beat intervals differ for more than 50 ms, an event is logged.
The threshold of 50 ms is commonly used in affective and medical studies |Gold-
berger et al.| (2001)); Yannakakis et al. (2010) as an indicator of arousal which in
turn is one of potential identifiers of the affective states examined.
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— SC increase/decrease (s, s%): sudden changes in the SC signal are detected and
logged as events. They are normally detected in pairs: after sT the SC will
increase for a while and s* will be logged when it starts decreasing. These SC
signal events are picked because they suggest changes in sympathetic activity
and, thereby, may relate to reported user experience.

Ad-Hoc Features

This section lists the common feature extractors used for skin conductance, blood volume
pulse and heart rate (ad-hoc physiological features). It also introduces the game metrics
(ad-hoc context features) proposed for the Maze-Ball game.

Physiology: same extractors are applicable to the SC and HR signals while BVP presents
several signal-dependent as seen in the list below. The choice of those specific statistical
feature extractors is made in order to cover a decent amount of the BVP, SC and HR signal
dynamics proposed in the majority of previous studies in the field (Picard et al.| 2001}
Goldberger et all 2001; [Yannakakis and Hallam, 2008]).

e SC and HR (a € {SC, HR}): Average E{a}, standard deviation o{a}, maximum
max{a}, minimum min{a}, the difference between maximum and minimum signal
recording D* =max{a}—min{a}, time when maximum « occurred tpax{a}, time
when minimum « occurred tmin{a} and the difference D = tpmax{a} — tmin{a};
autocorrelation (lag equals 1) of the signal p{ and mean of the absolute values of the
first and second differences of the signal (Picard et al.,2001]) (5ﬁ| and 5%| respectively);
initial, «a;,, and last, qgqe, a recording, the difference between initial and final «
recording D* =max{a}—min{a} and Pearson’s correlation coefficient R, between

raw « recordings and the time ¢ at which data were recorded.

e BVP: Average E{BV P}, standard deviation c{BV P}, mean of the absolute values
of the first and second differences of the signal (5€‘VP and (5€|V P respectively), aver-
age and standard deviation of the inter-beat amplitude E{I BAmp} and o{IBAmp}.
Moreover, given the inter-beat time intervals (RR intervals) of the BVP signal the

following heart rate variability extractors are proposed:

— HRV- time domain: the average and standard deviation of RR intervals E{RR}
and o{ RR}, the fraction of RR intervals that differ by more than 50 msec from
the previous RR interval pRR50 and the root-mean-square of successive differ-
ences of RR intervals RM Srr (Goldberger et al.| 2001).

— HRV - frequency domain: the frequency band energy values derived from power
spectra obtained using the Lomb periodogram (Moodyl, [1993)); energy values are
computed as the integral of the power of each of the following two frequency
bands, relevant for short experiences (Force, [1996): High Frequency (HF') band:
(0.15, 0.4] Hz and Low Frequency (LF') band: (0.04, 0.15] Hz. In addition, the
ratio LF'/HF and the normalized values LF/(LF + HF') and HF/(LF + HF)
are also included as recommended in (Force, [1996]).

Game context: several events and game state variables are logged for each game, includ-
ing elements of the game state and the player’s inputs (keystrokes). A list of ad-hoc features
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that attempt to capture the relevant elements of the experience in this specific game are
listed in detail in this section.

e Performance: the final score (), the percentage of the grid explored (G), and the
percentage of paths covered several times (P) (calculated by dividing the number of
explored cells of the grid by the times the player leaves a cell).

e Time: average and standard deviation of time intervals the player stays in certain
cell (t¢) and the number of these intervals that are greater than 0.5, 0.6, 0.7, 0.8, 0.9
and 1.0 seconds (§ 5, t§ ¢, t5 75 15 g5 1695 1S o Tespectively).

e Space: average and standard deviation of the Euclidean distance between the ball
and the closest token (Dj) and between the ball and the closest enemy (DY), average
and mean of the standard deviation of the Euclidean distance to all enemies (Dg,),
average and standard deviation of the manhattan distance between the ball and the
closest token (D}') and between the ball and the closest enemy (DE'), average and the
mean of the standard deviation of the manhattan distance to all enemies (D).

e Input: number of right (90°), left (—90°) and 180° turns divided by the times the
right, left and down key arrows were pressed respectively (wgg, w_go, wigp), number
of times the up arrow (K,;,) key was pressed, average and standard deviation of the
time that either the right or the left arrow keys were held down (tX).

4.3 DEAP

DEAP (a database for emotion analysis using physiological signals) is a dataset that gathers
brain activity and physiological reactions of users to music videos. This publicly available
dataset was collected by Koelstra et al. (2012)) and a first exploration of the data and a
thorough description was included in that work.

4.3.1 Materials and Set-up

Forty music video-clips were selected to elicit dissimilar levels of arousal and valence. Ini-
tially, a larger set of videos were chosen manually (60) and automatically (60) based on
crowdsourced affect labels. After cropping the videos to 1-minute long segments, they were
rated by a number of volunteers on 9-point scales for valence, arousal and dominance. The
40 videos with strongest ratings and minimal variation across volunteers were selected.

The videos were presented in randomized sequences to participants while several sensors
connected to one hand, face and back, and a electro-encephalographic cap recorded a myr-
iad of physiological signals including blood volume, skin conductance, skin temperature,
electroencephalogram, respiration rate and electromyography of the face using the Biosemi
ActiveTwo system. The experiments were performed in two laboratory environments with
controlled illumination. The videos and questionnaires were automatically presented in a
computer screen.

4.3.2 Experimental Protocol

Twenty two healthy participants (50% female), aged between 19 and 37 (mean and standard
deviation of age 26.5 and 3.99), participated in the experiment. The original dataset con-
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tains additional participants but have been left out due to differences in the physiological
sensors used.

Prior to the experiment, each participant signed a consent form, filled out a demographic
questionnaire and read a set of instructions informing them of the experiment protocol and
the meaning of the different scales used for self-assessment. The participant was only led
into the experiment room after the instructions were clear. After the sensors were placed and
their signals checked, the participants performed a practice trial to familiarize themselves
with the system. Next, the experimenter started the physiological signals recording and
left the room, after which the participant started the experiment by pressing a key on
the keyboard. The experiment started with a 2 minute baseline recording, during which a
fixation cross was displayed to the participant. Then the 40 videos were presented in 40
trials in a different order for each participant. Each trial consists of the following steps:

1. A 2-second screen displaying the current trial number to inform the participants of
their progress.

2. A 5-second baseline recording (fixation cross).
3. The 1-minute display of the music video.
4. Self-assessment questionnaire.

After 20 trials, the participants took a short break.

4.3.3 Participants Self-assessment

At the end of each trial, participants performed a self-assessment of their level of arousal, va-
lence and dominance using a continuous 9-point scale visualized via self-assessment manikins
(Morris, [1995). A similar scale but with a different visualization (thumbs down/thumbs up
symbols) was provided to report liking. Finally, after the experiment, participants were
asked to rate their familiarity with each of the songs on a 5-point scale. The questionnaires
are displayed on the same screen and participants used the mouse to choose the answers.
From the arousal, valence and liking ratings, three separate pairwise self-reports are cre-

ated by including all consecutive pairs that are rated with a difference greater than 1. Note
39

that 4 pairs could be extracted from each participant; however, only consecutive pairs
i=1

are chosen to minimize the effects of rating scales as it could be expected that participants

have taken into account the previous rating to rate the current video. Additionally, differ-

ences between two ratings lower than 1 are considered as unclear preferences and thus not

included. The threshold of 1 is chosen as it is the smallest unit on the visual scale (SAM).

In total, 590, 547 and 542 pairs are extracted for valence, liking and arousal respectively.

4.3.4 Signals and Features

In this section we describe the data collected on the DEAP survey and used in the following
chapters: the raw physiological signals used in Chapter [6] and the ad-hoc statistical features
used in Chapter [ and Chapter [6]
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Figure 4.8: Example of the SC, BV, RR and HR signals obtained in a pair of DEAP videos:
a participant (no. 1) watches (a) a video with high arousal and valence (Song 2 by Blur)
and then (b) a video with medium arousal and high valence (What a Wonderful World by
Louis Armstrong). The participant expressed a slightly higher valence, higher arousal and
higher liking for the second video (differences of 0.27, 3.23 and 1.96, respectively).
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Physiological signals

For each 1-minute video skin conductance and blood volume (BV) were recorded from the
hand at 512 Hz. Heart beats are detected from the BV signal and RR intervals calculated.
Heart rate is calculated from the RR signal over a 5-second sliding window (see Figur.
The additional signals recorded are not used in this thesis to keep a set of similar signals in
both real datasets.

Ad-hoc features

To extract features from SC and HR, the same features extractors defined for the previous
dataset are applied (see Section . For blood volume, in addition to all the features
extractors applied to BVP in MB, the following feature extractors are defined: maximum
max{BV}, minimum min{BV}, the difference between maximum and minimum signal
recording DBV =max{BV}—min{ BV}, time when maximum BV occurred ty,.x{ BV}, time
when minimum BV occurred tyi,{ BV} and the difference DBV = t 0 {BV} — tmin{BV'};
autocorrelation (lag equals 1) of the signal pPV initial, BVj,, and last, BV, BV recording,
the difference between initial and final BV recording and Pearson’s correlation coefficient
Rpy between raw BV recordings and the time ¢t at which data were recorded.

4.4 Summary

This chapter introduced the datasets used to test the affect modelling methodology pre-
sented in this dissertation. Specifically, the procedure for generating synthetic datasets for
evaluating preference learning methods (Chapter |5) was detailed. Additionally, two user
studies designed to collect the psycho-physiological changes of users watching videos and
playing games, respectively, were outlined. Data collection conforms the first phase of the
methodology for modeling affect presented in this thesis. The next chapter jumps into the
last phase, namely preference modeling, as it will be used in later chapters to evaluate the
remaining intermediate phases.
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Modeling Preferences

Modeling is the last phase of the methodology proposed in this thesis. It is used to find the
mapping between a set of input features and an affective state. The mapping or model is
learned from a set of data samples or objects (input feature values) recorded during affective
experiences and annotations of the states felt during those experiences. This chapter focuses
on methods that learn the mapping from affective preferences, i.e. annotations that sort
the objects by the intensity of the affective state felt.

In particular, we introduce an empirical evaluation of several training algorithms for
artificial neural networks, support vector machines and Cohen’s method, in order to inves-
tigate which method is more suited for affect modeling. We first test these algorithms on
synthetic datasets that let us recreate a variety of problems often seen in affect datasets.
Specifically, we create 9 datasets by combining 3 mapping complexities with 3 input feature
distributions. All datasets contain pairwise preferences which are extracted from a fixed
mapping or utility function (i.e. the relation between input features and affect intensity);
the three functions used are a linear function U'(x), a quadratic function U?(x) and a
non-linear function based on a 2-layer ANN UANN(x). Additionally, the sets of objects
are sampled from distributions that simulate properties typically present in affect data.
The first set of objects Sufll is sampled from a uniform distribution which represents an

ideal scenario serving as a baseline. The second set S NOL is sampled from several normal
distributions with different means; this results in objects grouped in clusters, and pairwise
preferences defined only between objects of the same cluster. This set resembles datasets
that aggregate groups of objects as, for instance, datasets with physiological data from
different users. The third set Sg{+11 samples two groups of objects from a uniform distri-

bution. The pairs of objects in one group feature large differences between the value of
the utility function for the preferred and non-preferred object of the pair; this resembles
comparisons between experiences that elicit very different affective states (or intensities of
the same affective state). The second group of objects within SZ;ZH present low utility dif-

ferences which, in turn, resembles unclear preferences in which the 1affective state felt in the
compared experiences is very similar (these datasets are defined in more detail in Chapter
. In addition to experiments in synthetic data, a first glimpse at affect datasets is also
presented by testing the algorithms in a selection of the affect datasets presented in Chapter
[4t Maze-Ball and DEAP.

The significance of the results reported in this chapter is evaluated using t-test, and only
differences that yield p-values below 0.05 are considered significant. Each of the following
sections presents the results on synthetic and real-datasets of one of the computational
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methods examined.

5.1 Experiments with Artificial Neural Networks

The experiments analyzed in this section focus on the efficacy of a variety of error functions.
ANNS present many other relevant hyper-parameters (e.g. topology), but those are common
to other tasks (classification and regression). On the other hand, the error function is the
key that enables training from preferences. The error functions explored induce different
biases to the trained ANNs as they define differently how the continuous output of the ANN
(U%(x)) relates to the ordinal target values (pairwise preferences). Specifically, three of
the error functions examined (rank-margin Egrys, regularized least-squares Frrg and cross-
entropy E¢; see Chapter [3]) show a strong dependency with respect to the difference between
the model’s output for the preferred and non-preferred objects of each pair (denoted as Upy)
while the remaining three (Spearman Egp, sigmoidal Fg and sigmoidal rank-margin Esrar;
see Chapter |3)) are measures more related to the number of correctly classified pairs — which
is connected to the sign of UP (a positive value corresponds to a correctly classified pair)
but not its magnitude.

In addition to the error functions, we also examine two training algorithms, namely
backpropagation and neuroevolution, in order to assess interactions between the error func-
tions and different optimization strategies. Finally, we also include in the analysis the
activation function for the output neurons. For every ANN topology tested, the activation
function of the hidden neurons is a logistic sigmoid; however, the output neuron employs
either a linear activation function or a logistic sigmoid function (referred to as linear and
logistic topologies, respectively). While the choice between linear and logistic does not
strongly affect the expressivity of a preference model, it is expected to have a large effect
on the training process as the logistic function is bounded and the linear is not. Note that
the expressivity is not affected because both activations are monotonic strictly increasing
functions; this property implies that both induce the same order when applied to the same
set of data samples (i.e. the same network with a linear or logistic output predicts the
same pairwise preferences). On the other hand, the training process is affected as the error
functions investigated depend on the magnitude of the output in a different manner (to be
more precise, they depend on UpP,;) which is, in turn, affected by the output activation.
In particular, the linear and logistic functions in the output neuron determine a different
range of values for UpZ: a linear activation function creates ANNs with unbounded outputs
which leads to an unbounded difference between outputs (Upy € (—00,00)) whereas the
logistic sigmoid function constricts the output of the networks to the interval [0, 1] which, in
turn, yields bounded output differences (U} € [—1,+1]). As each error function integrates
UpPy in a distinct manner, the selection of the activation function presents dissimilar effects
across experiments.

In summary, we explore the dependencies expected among training algorithm, error
function and output activation across several datasets of varying characteristics. Section
presents experiments on synthetic datasets aimed at analyzing these dependencies.
Additionally, a parameter named margin was introduced into every error function to reg-
ulate the impact of Upy on the overall error; Section presents experiments assessing
the effect of this parameter in the training process. Finally, an evaluation of the different
methods and variants on affect datasets is introduced in Section 5.1.3

In all experiments presented in this section, a number of hyper-parameters are adjusted
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systematically for every topology, training algorithm, error function and margin value. In
particular, the regularizer parameter (for BP and NE), learning rate (for BP only) and the
number of parents and chromosomes copied to the next population (for NE only) are tuned.
The rest of the parameters were fixed after preliminary experiments. For every experiment,
we report the average and standard error of the accuracy on unseen data of 10 models; for
synthetic datasets the accuracy is calculated as the percentage of correctly classified pairs
in the testing set (20% of the pairs) and for the affect dataset as the average percentage of
correctly classified pairs in 3-fold cross-validation.

5.1.1 Error Functions

In the following, an evaluation of the error functions with their original margin values is
presented for the synthetic datasets generated with each of the three utility functions. In
particular, the value of the margin is set to 1.0 for Erys and Egrrs and to 0.0 for the
remaining error functions.

Linear synthetic data

Single-layer perceptrons are trained to learn the three synthetic datasets generated via a
linear utility function. As the features in these datasets are linearly related to the synthetic
preferences, an SLP suffices to approximate the utility function. As it can be observed from
Figure both training algorithms learn successfully the target utilities despite the input
noise and different data distributions. However, several error functions show significant
accuracy decrements despite the simplicity of learning a linear function.

In the uniformly distributed set (U 1Su+11), both training algorithms and topologies

across error functions yield models with accuracies above 94% (see Figure and
Figure . These accuracies match the accuracy achieved by the target utility
function U'(x) as noise was introduced in the creation of the dataset. This suggest
that the training methods examined can learn linear functions with a high precision
despite certain level of input noise.

Backpropagation presents the only noticeable decrement in accuracy when training
linear SLPs with Eg. Note that some experiments (out of 10 trials) yield accuracies
below 94% as reflected in the relatively large standard error. This suggests, that for
this error function the initial weights of the SLP, even for a simple linear function,
may have a significant impact on the performance of gradient descent.

When the objects in the dataset are sampled from clusters (UISNBI), NE trains
linear SLPs that maintain accuracies around 94% independently of the error function
employed (Figure . On the other hand, solely Fsp and Eggys yield logistic SLPs
with similar accuracies (93.86% and 93.83%, respectively) as seen in Figure
The significant decrement in accuracy for the other error functions can be explained
by their stronger dependency on Upy. This strong dependency implies that the
training algorithm reduces the error by increasing Up, for most pairs in the dataset;
however, when increasing Up with a logistic network for pairs within particular
clusters, differences in other clusters shrink. This reduction in particular clusters
appears as the outputs of the network in that region of the input space become very
similar because the logistic output of the network saturates (outputs values nearly 1 or
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nearly 0). Thus, the training algorithm with these error functions trades off correctly
classified pairs (in clusters that saturate the ANN’s output) for higher output pair
differences (in clusters that lie on the linear regime of the logistic function). On
the other hand, the objectives imposed by Egp (maximizing the number of correctly
classified pairs) and Esgys (minimizing Up,, among incorrectly classified pairs) regard
the number of incorrectly classified pairs uniformly across clusters, independently of
which regime of the logistic function the lie on.

When backpropagation is applied to the linear clustered dataset, we observe a larger
number of accuracy decrements with respect to results in the uniformly-distributed
dataset. For linear topologies, only Ec and ERrps present small (yet significant) per-
formance drops which appears to be caused by the training process stopping before
all pairs are classified correctly; the reason for this early stop is that the contribution
to the gradient from correctly classified pairs nullify the contributions of incorrectly
classified pairs towards the end of the training process; Errs, Fsry and Eg reduce
this effect by generating a larger difference on the gradient between correctly and
incorrectly classified pairs (giving more emphasis to the latter).

For logistic SLPs, backpropagation does not train models with accuracies above 92%
with any of the error functions while Egrps yields accuracies that are even lower.
This is because the gradient of this error function (which tries to reduce Up), among
incorrectly classified pairs) combined with the regularizer used by backpropagation
(which tries to reduce w) drives training towards minimal weight configurations (i.e.
|w| ~ 0); that generate, through the logistic activation, outputs close to 0.5 for
every object in the dataset (effectively reducing Up for every pair). As the gradient
does not strongly promote positive values of UJ;, trained SLPs present suboptimal
training, validation and testing accuracies. In comparison, NE paired with Eggrs
trains SLPs with larger weights and higher prediction accuracies, in part, due to the
global-search nature of the training process and, in part, due to the apparent inefficacy
of the regularizer term.

Altogether, these decreases in accuracy with respect to the uniform dataset highlight
the complexity inherent to learning from pairs located in different and compact areas
of the input space.

In the dataset with synthetic unclear preferences (U 15’5{+1), several SLPs reach
-1

100% accuracy (see Figure and Figure [5.1f). This is possible as none of the
5% pairs with inverted preferences fall within the testing partition for this dataset.
These results confirm that the methods investigated can train SLPs that are able to
generalize well to unseen data despite the noise in the training set. The accuracy
drops seen in some error functions are partly motivated by the difficulty of learning
the preferences linked to small utility differences (i.e. the unclear preferences). For
linear SLPs, NE presents lower accuracies with Erps and Egys (87.8% and 92.35%,
respectively). These accuracy decrements appear to come in hand with their strong
dependence on UPy: as the SLPs in the NE population come closer to the target
utility, clear preference pairs yield large U, values and unclear preference pairs yield
small U values. In consequence, error differences across these SLPs are dominated
by pairs sampled with large utility differences because these pairs contribute to the
error function with larger UpJ); changes. Consequently, NE trains SLPs that classify
correctly clear pairs but does not necessarily unclear pairs. Similarly, one could expect
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the same behavior from F¢ as it also depends strongly on UP; however, it appears
to perform well with NE. This could be motivated by the smaller difference between
the contribution to the error from large and small UYy values (i.e. from clear and
unclear pairs), as determined by a less steep slope (see Figure .

BP does not show problems with those error functions but instead yields accuracy
drops for Egry and Eg (90.38% and 94.29%, respectively). Both error functions
show a large standard error as consequence of the training algorithm finding optimal
solutions in several runs. This shows that both error functions can lead to optimal
solutions but inappropriate initial weights can yield to a local optimum. The better
results for Errs and Egrys appear to be due to the more effective use of the regular-
izer, that can neutralize the gradient before the weights grow too large (giving larger
differences).

Logistic SLPs trained for U ISZH — independently of the error function or training
-1

algorithm — converge to networks with large weights that produce saturated outputs
for most objects in the dataset. On one hand, UY; is maximal for pairs sampled with
large utility differences because the output equals 1 for preferred objects and equals
0 for non-preferred objects. On the other hand, UY; is close to zero for most pairs
sampled with small utility differences because the output for both objects in the pair
lie on the same flat regime of the logistic sigmoid. These saturated SLPs yield high
accuracies across all error functions and training algorithms with the exception of Eg
which yields surprisingly low accuracies (Figure . In Eg, when dealing with UJy
values close to zero, increasing U py; for few correctly classified pairs has a larger impact
on the error than reducing Upy for many incorrectly classified pairs. Consequently,
the trained SLPs only classify correctly a small subset of the pairs sampled with small
utility differences. This effect is not seen on the other error functions that depend
strongly on Up, because they present a smaller change around the boundary defined
by Ufy = 0.

Overall, both training algorithms are able to train SLPs that approximate the linear utility
function to a good degree despite the noise added to the inputs. Even though the target
utility function is simple, different object distributions have an effect on training. Spearman
and sigmoidal rank-margin combined with neuroevolution always yield models with accura-
cies among the highest; results suggests that the independence of these error functions with
respect to the difference between the trained model’s output for preferred and non-preferred
objects (UP) among correctly classified pairs, allows NE to always find optimal solutions
independently of the activation function used in the output neuron. For BP, regularized
least-squares stands out as the most robust function. It appears that this function defines
the gradient that best balances the effect of correctly and incorrectly classified pairs during
training.
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Figure 5.1: Single-layer perceptrons trained on the synthetic linear datasets with uniformly
distributed objects (U 15u+11), clustered objects (ULS NB,I) and differentiated groups of utility

differences (Ulsl(fffll)' Bars represent the average accuracy of 10 SLPs in the testing data

partition while the error bars represent the standard error.
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Quadratic synthetic data

Two multi-layer topologies with one hidden layer are trained to learn the three synthetic
datasets generated via a quadratic utility function. The first topology (M LP?) contains
two hidden neurons which are enough to predict with perfect accuracy pairwise preferences
based on a quadratic utility; the second topology (M LP'?) contains 10 hidden neurons, the
increased complexity can facilitate the training process by enabling several optimal solutions
but can also be more prone to overfitting. Observing Figure [5.2 and Figure [5.3] it is clear
that NE outperforms BP across all datasets and error functions examined, yielding the best
results with Eggrpys and Egp.

In the uniformly distributed set (U?S,,+1), NE trains M LP? networks with linear out-
-1

put activation achieving testing accuracies above 80% with all error functions and over
90% with several of them as shown in Figure With the larger topology (M LP?)
and also linear output, Fsrys and Egp present a decreased accuracy pointing out the
insufficient number of generations (or number of individuals in the population) to
train a topology of this size (Figure . In the previous section, results suggested
that these error functions lead to optimal solutions when error functions that depend
on UPy can not; however, they also generate a more abrupt fitness landscape that
may slow down training, i.e. the error between solutions that are similar may change
rapidly (due to the discontinuity on the error function) or not at all (due to the flat
regions on the error function) requiring more generation to find the global optimum.
For M LP', the best results are achieved with Ec and Egjs that, arguably, generate
the smoothest landscape of all functions as they present no discontinuities, and they
are monotonic with small slopes (unlike Fg).

When NE is used to train logistic MLPs on the uniformly distributed quadratic
dataset, only Fsgry, Esp and Eg maintain accuracies similar to the linear MLPs.
It appears that the added complexity arising from bounding the maximization ob-
jective (UPy) results in poor training performances. While Eg still depends on the
maximization of Up, among correctly classified pairs, this dependency fades away
after a small difference is reached.

The most striking result in the uniform dataset, is the poor performance of BP that
yields accuracies above 70% only when training M LP° with Erpg (78.96% accuracy
on average; see Figure . It is worth mentioning, that attempts to train SLPs
for this dataset yield, on average, accuracies around 68% which match the accuracies
reached by BP with most error functions when training MLP? and M LP'. This
suggests that in most experiments gradient descent managed to learn, at best, a
monotonic approximation of this utility function.

In the quadratic dataset with clustered pairs (U25N3.1), FEgs, Esry and specially
Egsp (89.41% with the logistic activation) combined with NE yield the most accurate
M LP?, independently of the output activation function (see Figure and Figure
. The other error functions train (in some experiments) linear M LP? that yield
accuracies below chance level (as reflected by the low average and corresponding the
high standard error). This is caused by a convergence of the genetic population
towards monotonic functions that only maximize Up), within the clusters of pairs
that are located in one side of the parabola — determined by the synthetic quadratic
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utility U2(w). When the logistic activation is used, the average accuracies drop below
chance level, showing that only these monotonic solutions are found.

Experiments with M LP'0 and NE confirm the result found on the uniform quadratic
dataset, that shows that the performance of error functions that do not dependent
on the value of UP, among correctly classified pairs decreases when applied to larger

networks (see Figure and Figure [5.3d)).

Backpropagation yields only baseline accuracies (around 50%) due to the inability of
learning the training examples (training accuracies are also around 50%). It appears
that the small differences between the clustered objects in the training pairs result in
very low error gradients in the hidden neurons unable to modify the initial random
weights significantly. Possibly, a variable learning rate (larger for the hidden neurons
than the output neurons) could improve the performance of BP in clustered sets.

In the dataset with two groups of objects with differentiated utility differ-
ences (U 2SZ+1), none of the training methods get, on average, accuracies above 80%,
—1

which amounts to a decrease of 10% in accuracy compared to the best results in the
uniformly distributed set (see Figure and Figure . Most of the incorrectly
classified pairs were sampled with short utility differences (unclear preferences), but
unlike the results seen in the experiments with the linear utility, a number of pairs
with large utility differences (clear preferences) are also not correctly classified. This
finding suggests that a dataset with a significant amount of unclear preferences, even
when they are correct (note that 50% of the pairs in the synthetic set contains un-
clear preferences but only 5% are incorrect), can drive training towards suboptimal
solutions.

Finally, BP performs worse than NE and accuracies only reach 70% when training
M LP'Y with Egpg, similarly to the experiments in the uniformly distributed set (but
with a 10% decrement in the best accuracy).

In sum, learning the quadratic utility is, unexpectedly, a more difficult task compared to
learning the linear utility. Given a small ANN topology, NE learned the function up to a
good degree from the uniform and clustered distributions (best accuracies around 90%) us-
ing Esry and Egp (and Eg for linear output activations only); the distribution with groups
of differentiated utility differences posed a greater challenge as the synthetic unclear prefer-
ences appear to stir the training algorithm towards suboptimal solutions. Large topologies,
on the other hand, could not be learned accurately with Esrys and Egp, presumably due to
the relatively abrupt fitness landscape generated. The alternative training algorithm, back-
propagation did not achieve as high accuracies in any of the datasets despite training on the
same topologies. It appears that for the quadratic utility function, gradient decent with the
proposed error functions always converges to suboptimal solutions with accuracies similar
to monotonic functions (SLP). Only Frrs outperformed those accuracies when applied for
training the larger topology. In the clustered set backpropagation underperformed due to
the proximity of the training objects within each pair, which produced a small gradient
unable to train the logistic hidden neurons.
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Figure 5.2: Multi-layer perceptrons with 2 hidden neurons (M LP?) trained on the syn-
thetic quadratic datasets with uniformly distributed objects (U 25u+11), clustered objects

(U28 Nﬁ.l) and differentiated groups of utility differences (UZSZH). Bars represent the av-
—1

erage accuracy of 10 MLPs in the testing data partition while the error bars represent the
standard error.
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Neural synthetic data

A two-hidden-layer MLP (M LPj,) with 5 and 10 neurons, respectively, is trained to learn
the three synthetic datasets generated via a non-linear utility function. This utility func-
tion is a neural network with the exact same topology as M LP1507 thus the function can
potentially be learned with perfect accuracy (around 95% due to the induced noise in the
data).

In the uniformly distributed dataset (UANY Su+11), NE yields again more accurate

models than BP (see Figure[5.4aland Figure with maximum accuracies of 90.98%
and 91.24% for MLPs with linear activation output trained using Ec and Egyy, re-
spectively. Espar, Es and Egp yield slightly (but significantly) lower accuracies; given
the relatively large size of the topology, this is consistent with the findings reported
for the quadratic dataset.

BP reaches its highest accuracy with Eryg training an MLP with linear output activa-
tion (81.04% accuracy); while this is not low, additional tests revealed that SLPs can
achieve similar accuracies in this dataset, which suggests that gradient descent could
not capture adequately the non-linearity of the utility. The low accuracies presented
with Egras confirm results found in the other datasets showing the inability of this
error function to drive gradient descend.

In the clustered dataset (UAVNS NB'I)’ testing accuracies are severely decreased (see
Figure and Figure |5.4d)). NE trains models with testing accuracies above 60%
for all error functions, with the highest average accuracy presented by Ec (66.29%
accuracy); SLPs trained for this dataset present similar accuracies further showing
that the utility was not appropriately learned. These low accuracies are in line with
previous results that show that, on one hand, error functions that depend strongly
on UPy among correctly classified pairs find difficulties in clustered datasets and,
on the other hand, the other error functions suffer performance decrements on large
topologies. Both issues converge in this particular dataset, leaving no adequate error
function to learn this non-linear synthetic utility from clustered data. As expected
from previous results, BP does not improve baseline accuracies due to the proximity
between training objects. This experiment further shows the difficulty of learning
a complex non-linear function from scattered and clustered data pairs rather than
uniformly sampled pairs.

The dataset with short and long utility differences (UAVY SZH) is modeled more
-1
accurately with linear output activation models when trained with NE and the error

functions F¢, Errs and Erpy (83.61%, 82.16% and 81.76%, respectively) and BP
with the error function Egrrs (79.24%) as seen in Figure and Figure The
drop in accuracy with respect to the uniform distributed set is lower than the one
observed in experiments with quadratic utility datasets; nevertheless, the synthetic
unclear preferences did not aid the learning task.

In sum, the experiments on synthetic neural datasets did not reveal new insights but con-
firmed some of the results found on the other synthetic datasets.
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From the results of all datasets, we can conclude that NE trains more accurate ANNs
than BP across synthetic datasets as BP encounters difficulties learning non-linear utili-
ties. Backpropagation achieves the highest accuracies when combined with error functions
that present a strong dependency with respect to Up, — i.e. the difference between the
trained model’s output for the preferred and non preferred object — among correctly and
incorrectly classified pairs (these are Egys, Errs and E¢). Egpg in particular stands out
as in most experiments yields higher prediction accuracies; this error function seems to
generate the gradient that best balances the pull towards correcting the outputs for incor-
rectly classified pairs and increasing U for correctly classified pairs. On the other hand,
NE achieves higher accuracies through the error functions that dependent mostly on the
number of correctly classified pairs and U}, only among incorrectly classified pairs (these
are Egp and Esprys). This alternative strategy appears superior specially when there exist
training pairs with small differences in synthetic utility (as with unclear preferences or clus-
tered data). On the other hand, these error function are not suitable for backpropagation:
FEgp creates a null gradient that cannot inform training and Fggrys creates a gradient that
drives training towards models that do not separate the outputs between preferred and
non-preferred objects. In addition, it appears that the performance of NE with these error
functions decreases as the size of the model trained grows; it is unclear from the experiments
reported in this chapter, whether by investing on a larger number of training generations
and/or population size, these functions could always find optimal solutions, but results do
not indicate otherwise.

It was also shown, that for datasets that feature objects grouped in compact clusters, BP
cannot train logistic hidden neurons as consequence of the generated small gradient which
may be corrected with the use of an enlarged learning rate for those layers. Additionally,
the use of a logistic output activation did not seem to provide any significant benefits and,
instead, created a more difficult optimization problem for error functions strongly dependent
on Upy.

Finally, following the lower accuracies present in non-uniform datasets, it appears that
learning a preference model from user reports can be facilitated by minimizing the number
of unclear preferences and by including pairs of data expanded across the whole input
space, rather than grouped into clusters. In the domain of affect modeling, annotation
protocols such as the 4-alternative forced choice (see more details in Section can be
of great help with the first issue as users can explicitly indicate unclear preferences. The
second issue, which may easily appear in physiological affect datasets when aggregating data
from different users, activities or sessions, does not present a clear solution; while within-
subject or within-session normalization may benefit learning, one must acknowledge that
the preference function learned may variate with the normalization scheme applied, as the
preference reports from different users (or sessions from the same user) will be overlapped
at different relative positions in model’s input space.

5.1.2 Margin tuning

The analysis presented in the previous section shows that not all error functions are appro-
priate for specific problems, topologies and training algorithms. As it was pointed out, the
difference between the output of a model for the two objects in a training pair (denoted as
UPy), is a fundamental element of the error functions examined and it has an important im-
pact on the learning process. The margin parameter defined for all error functions mediates
the relation between UP, and the overall error, thus it is expected to have also a decisive
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role in the training process. This section summarizes the outcome of tuning the value of the
margin for each of the error functions across the synthetic datasets and topologies presented
in the previous section. Four key values are selected for the margin: 0.0 and 1.0 as they
are the de facto values used in the error functions, 0.5 for being the middle point and 0.01
representing a non-zero low value.

Regularized least-squares Errg

In this error function, the margin represents the desired value for Upy across training
pairs — its the local minima of a quadratic parabola so as Up}; increases or decreases its
value from the margin value, the error raises quadratically. Non surprisingly, a margin
equal to zero is not compatible to this error function as it trains a model that does not
differentiate between compared objects (see Figure . In most experiments, 1.0 yields
the highest accuracy with the exception of networks with a logistic output activation trained
with neuroevolution. In that specific setting, 0.01 yields equally good or higher accuracies
than other margins in the experiments with non-linear synthetic utilities. Note that with
a margin of 1.0, that the only logistic networks that can reach the error global minimum
must output 1.0 for all preferred objects and 0.0 for all non-preferred; as the margin is
lowered, the minimum no longer requires extreme output values resulting in a smoother
fitness landscape that facilitates training.

Backpropagation in the non-linear datasets requires a margin of at least 0.5 in order to
achieve accuracies higher than the baseline which suggests that 0.01 generates a gradient
too small for effective training at the critical region around Up,, = 0 — i.e. the boundary
that defines if a pair is correctly classified or not.

Rank-margin EFr),

While in Frrs the margin specifies the exact desired value for Upy, in this error function
it specifies the minimum desired value for Up,. This subtle difference generates better
results for margins that equal zero but as in Eryg, generally larger values of the margin are
associated with higher accuracies — excluding the case of 0.01 for logistic topologies trained
with NE (see Figure [5.6). Note that for zero margin, this function becomes more similar
to Esra but its performance when combined with NE is much worse; this shows that the
step in Eggrpr, which stresses the difference between correctly and incorrectly classified, is
essential for global-search training. On the other hand, this step is not relevant for BP
because it does not affect the gradient — which is equal to zero with or without the step.

Sigmoid Eg

For this error function the margin is not the target value for Upy as in Egrs and ERra;
instead it defines the value around which Up); variations have a significant impact on the
error. The larger this value is, the greater the impact of changing Up,, among correctly
classified pairs. As seen in Figure lower values of the margin (0.0 and 0.01) tend to
yvield better results across datasets and training algorithms although occasionally larger
values yield more accurate models (e.g. in the linear set with differentiated utility differ-
ences Suirll UANN) " Large margins of this function appear to give not enough emphasis

to incorrectly classified pairs which reflects negatively on the training performance. The
original margin used along with this function is 0.0; however, this experiment shows that
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increasing the margin to 0.01 can yield slight performance improvements which motivates
for the inclusion of the margin as an additional hyper-parameter.

Sigmoidal rank-margin Fspys

This error function was designed as a combination of Eg and Erjs; thus, the margin specifies
the minimum desired U}, (the error is constant after the value specified by the margin is
reached) and only variations of U}y, within a close range of values around the margin have
a significant impact on the overall error. For BP, a margin equal to 0.01 yields the highest
accuracies in most datasets (see Figure . This small margin promotes differences slightly
above zero, enough to avoid convergence towards ANNs with minimal weights that cannot
separate training pairs. For NE, small values also yield better results but the differentiation
between 0.0 and 0.01 is not as large given that global-search training can find optimal
solutions with zero margin.

Cross-entropy E¢

This is a monotonic function of UJ); that presents a decreasing slope as the models’ output
between preferred and non-preferred increases. By increasing the margin, the error for
every training pair increases, but this increment is larger for incorrectly classified pairs.
Adjusting the value of the margin produced significant changes for several experiments, as
higher values tend to provide higher accuracies (see Figure . It appears that for this
error function, systematic tuning of the margin could yield better models as a general best
value was not found.

Spearman FEgp

The margin for this simple function specifies the minimum UP; required to consider a pair
as correctly classified. For logistic models, a margin value of 1.0 yields baseline results
as no model can be trained to surpass a difference of 1.0 (see Figure . For both
linear and logistic models, it appears that a margin of zero value yields the most accurate
models although 0.01 can lead to slightly more accurate models in some settings. Even
though it could be expected that larger values yield higher accuracies as a result of a better
generalization, the global-search nature of the genetic algorithm finds decent solutions with
the minimum possible margin.
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Figure 5.5: Regularized least-squares: the average accuracy of 10 models trained using
neuroevolution and backpropagation with Errg is tested on 4 margin values (0.0, 0.01, 0.5
and 1.0) for each of the synthetic datasets and selected topologies. The standard error is
depicted as error bars.
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Figure 5.6: Rank-margin: the average accuracy of 10 models trained using neuroevolution
and backpropagation with Egys is tested on 4 margin values (0.0, 0.01, 0.5 and 1.0) for
each of the synthetic datasets and selected topologies. The standard error is depicted as
error bars.
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Figure 5.7: Sigmoid: the average accuracy of 10 models trained using neuroevolution and
backpropagation with Eg is tested on 4 margin values (0.0, 0.01, 0.5 and 1.0) for each of
the synthetic datasets and selected topologies. The standard error is depicted as error bars.
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Figure 5.8: Sigmoidal rank-margin: the average accuracy of 10 models trained using neu-
roevolution and backpropagation with Esras is tested on 4 margin values (0.0, 0.01, 0.5
and 1.0) for each of the synthetic datasets and selected topologies. The standard error is
depicted as error bars.
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Figure 5.9: Cross-entropy: the average accuracy of 10 models trained using neuroevolution
and backpropagation with F¢ is tested on 4 margin values (0.0, 0.01, 0.5 and 1.0) for each
of the synthetic datasets and selected topologies. The standard error is depicted as error
bars.
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Figure 5.10: Spearman: the average accuracy of 10 models trained using neuroevolution
with Egp is tested on 4 margin values (0.0, 0.01, 0.5 and 1.0) for each of the synthetic
datasets and selected topologies. The standard error is depicted as error bars.
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5.1.3 Explorations on affect datasets

In addition to the analysis of the performance of ANN techniques on synthetic pairwise data,
we describe in this section an initial analysis of their performance on real affect datasets
where the utility function underlying the preferences is unknown. The different error func-
tions, margin values, topologies and training algorithms explored for synthetic data are
applied to learn models from Maze-Ball and DEAP. A subset of ad-hoc physiological fea-
tures is selected by hand for each dataset; each feature is normalized using z-transformation
— i.e. subtracting the mean and dividing by the standard deviation — over the complete
sets (global normalization) and over individual participants (within-subject normalization).
Unlike the experiments with synthetic data, the differences in accuracy across different
parameter configurations were small and often statistically insignificant, therefore we only
present, for each affective and cognitive state reported in each dataset and for the two nor-
malization schemes, the configurations that yielded the highest average accuracy over 10
runs (see Table and Table .

The first noticeable result is the rather low average accuracies obtained. These are
expected, however, due to the lack of context features (e.g. gameplay features in MB) and
the fixed subset of features (ANN inputs) used across reported states. As it is shown in
Chapter [6land Chapter[7], a careful feature selection mechanism is critical to obtain accurate
models when the dataset used is small.

For globally normalized features, the highest accuracies for boredom, excitement and
frustration are achieved via backpropagation of single-layer perceptrons while the highest
accuracies for anwxiety, relazation and fun are achieved with multi-layer perceptrons (1 hid-
den layer with 10 neurons) trained via neuroevolution. Cross-entropy (with a margin value
of zero), rank-margin (with a margin value of 0.5 for a linear SLP and of 0.01 for a logistic
SLP) and regularized least-squares (with a margin value of 1.0) are the error functions.
Reports of challenge in MB and the three reported states in DEAP (arousal, valence and
liking) are predicted with low accuracies given the manually selected features. For within-
subject normalized MB data, backpropagation with rank-margin (m = 1.0 or m = 0.5)
or sigmoidal rank-margin (m = 0.01) yield the highest accuracies with the exception of
challenge which finds the best model through the combination of the sigmoid error function
(m = 0.5) and neuroevolution. DEAP reports are also predicted poorly with this normal-
ization and only SLPs trained for arousal (backpropagation combined with E¢) present an
average accuracy above baseline (57.05%).

At first, it may be surprising that BP yields better models than NE given that in
the synthetic datasets the genetic search beats the gradient search in most experiments. It
seems that, the higher training accuracies obtained by NE translate often in lower validation
accuracies in these small affect datasets. On the other hand, for the globally normalized
datasets NE trains MLPs that are significantly better than any other model trained by BP
(for fun and relazation). Although here only the best results are presented — they are not
necessarily significantly more accurate than the second best — it appears that rank-margin,
sigmoidal rank-margin and cross-entropy can train models that generalize better to unseen
data than models trained with other error functions.
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Data | Target Training | Error | Margin | Topology | Activation Accuracy
Anxiety NE RLS 1.0 MLPY Linear 58.17 (1.07)
Boredom BP C 0.0 SLP Linear 66.67 (<0.01)
Challenge NE SRM 1.0 SLP Linear 54.85 (0.87)

MB Excitement BP RM 0.01 SLP Logistic | 64.99 (<0.01)
Fun NE C 0.0 MLPY Linear 64.44 (1.39)
Frustration BP RM 0.5 SLP Linear 67.33 (0.36)
Relaxation NE C 0.0 MLPY Linear 60.45 (1.36)
Arousal NE C 0.5 MLPy, Linear 56.20 (0.42)

DEAP | Valence NE SRM 0.5 SLP Linear 55.39 (0.34)
Like BP C 0.0 MLPY Linear 55.63 (0.24)

Table 5.1: ANN configurations for globally normalized datasets: experiment configuration
that yielded the highest validation accuracy (average and standard error in parenthesis
of the 3-fold cross-validation accuracy from 10 independent runs) for each dataset. The
configuration is defined by the training algorithm, error function, margin value, network
topology and activation function of the last neuron.

Data Target Training | Error | Margin | Topology | Activation Accuracy
Anxiety BP SRM | 0.01 SLP Logistic 61.07 (0.7)
Boredom BP RM 1.0 SLP Linear 66.67 (0.37)
Challenge NE S 0.5 SLP Logistic 58.98 (0.25)

MB Excitement BP SRM | 0.01 MLP Linear 65.24 (0.29)
Fun BP SRM | 0.01 MLP? Linear 66.42 (0.0)
Frustration BP RM 1.0 SLP Linear 61.00 (0.19)
Relaxation BP RM 0.5 SLP Linear 60.89 (0.26)
Arousal BP C 0.01 SLP Linear 57.05 (0.26)

DEAP | Valence BP RLS 0.01 SLP Logistic | 55.77 (<0.01)
Like BP RM 1.0 SLP Linear 55.33 (0.04)

Table 5.2: ANN configurations for within-subject normalized datasets: experiment configu-

ration that yielded the highest validation accuracy (average and standard error in parenthe-
sis of the 3-fold cross-validation accuracy from 10 independent runs) for each dataset. The
configuration is defined by the training algorithm, error function, margin value, network
topology and activation function of the last neuron.

5.2 Experiments with Support Vector Machines and Cohen’s
Method

In order to frame the performance of artificial neural networks, we also examine support vec-
tor machines and Cohen’s method which represent, respectively, a widely popular machine
learning algorithm and a method tailored for preference learning. This section compares
the accuracies of these two methods over the same synthetic and real datasets explored on
the previous section. Both training algorithms are deterministic, hence the accuracy of one
run is shown. For Cohen’s method the number of epochs and learning rate are adjusted
systematically for each dataset. Five SVM kernels are tested (linear x', sigmoid x°, Gaus-
sian kK and polynomial of second x? and third x® degree) and the regularizer parameter C
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Figure 5.11: Support vector machines and Cohen’s method: the testing accuracy of SVMs
with different kernels — linear (x'), polynomial of 2"¢ degree (x2) and 3"¢ degree (x%),
sigmoid (x°*) and Gaussian (k) — and Cohen’s method (C'M) are presented for each of
the synthetic datasets.

and the kernel-dependent parameters v and 3 are adjusted systematically for each kernel
and dataset. As described in Section the kernel defines the complexity of the function
that the SVM can approximate, in a similar fashion to the topology on artificial neural
networks; thus, different kernels are expected to perform best for different datasets. Figure
[b.11] depicts the accuracies of the models trained on the synthetic datasets.

For the three linear datasets, the linear kernel yields equally high or higher accuracies
than the other kernels. These accuracies (94.8%, 91.8% and 98.95% for the uniform, clus-
tered and differentiated-utilities datasets, respectively) are fairly high, nevertheless slightly
below the accuracies of the best single-layer perceptrons trained on the same datasets. Co-
hen’s model only reaches accuracies around 70%; although the model consists of a linear
combination of single-feature comparisons which could approximate these datasets perfectly,
the training algorithm converges to maximize only one weight corresponding to the feature
with a higher correlation on the training set.
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5.2. Experiments with Support Vector Machines and Cohen’s Method

For the three quadratic datasets, as expected, the SVM with polynomial kernel of sec-
ond degree yields higher accuracies than the other kernels (87.6%, 69.05% and 79.4%). It
appears that the same issues that afflict ANNs also generate problems in SVMs as these
accuracies are not significantly higher than the best multi-layer perceptrons (with 2 hidden
neurons average accuracies of 91.68%, 89.41% and 79.18% were achieved). In particular, the
error functions that succeed for neuroevolution in the clustered dataset outperform, by an
ample difference, the SVM kernels tested. Cohen’s method yields again significantly lower
accuracies.

For the datasets generated with a non-linear neural network, SVMs with polynomial
kernels yield the highest accuracies. For the uniform and unclear preference datasets, the
second degree polynomial kernel yields the highest accuracies (accuracies of 88.0% and
80.7%, respectively) which, as in previous experiments, do not outperform ANN approaches
(91.24% and 83.61% highest accuracies among ANNs). On the clustered set, the polynomial
kernel of 37% degree yields the highest accuracy which surpasses the best ANN by a small
margin (68.35% and 66.28% for the SVM and ANN, respectively) although the accuracy is
still relatively low. Cohen’s models yield again lower accuracies than the other methods.

The experiments in synthetic data showcase that ANNs conform a reliable method to
solve object ranking tasks that, given the adequate error function and parameters, outper-
forms a simple approach as Cohen’s method and yields comparable — and in some scenarios
significantly better — results to SVM, one of the most widespread machine learning meth-
ods.

As with ANNSs, the experiments with real datasets did not produced large accuracy
differences; therefore, we report the accuracies of the models that yielded higher prediction
accuracies (see Table[5.3|and Table. On real datasets with features normalized across all
participants, a polynomial kernel of 3% degree outperforms the neural network models for
relaxation, frustration and challenge (see Table. The neural network training algorithms
yield more accurate fun and excitement models and no differences are observed for boredom
and anziety. For the DEAP dataset, the sigmoid and Gaussian kernels yield the best results
across all methods but close to baseline. With the data normalized within-subject, challenge,
excitement and fun are predicted more accurately by SVMs (Gaussian and polynomial of
37 degree) while the other 4 reported states are predicted more accurately by ANN models
(see Table. For DEAP reports, predictions are still below 60%; however, a polynomial of
374 degree achieves a 58.58% accuracy; the highest obtained in this dataset with manually
selected features. In turn, Cohen’s model yield accuracies below 60% for all states and
datasets as none of the features is highly correlated with the preferences.

Altogether, the reported experiments show that ANNs can learn more accurately most
synthetic datasets and several affect datasets than SVMs. In addition, ANNs present an
advantage with respect to interpretation of the learned functions (Bengio, 2007). In brief,
both models can be broken down into a linear model that imposes an order over a non-linear
projection of the input space; in an ANN this projection is provided by one or more hidden
layers that can provide meaningful insights on the nature of the modeled function through
a hierarchy of learned features. On the other hand, the non-linear projection of an SVM
is defined by a subset of training objects, each of them generating a dimension (or feature)
of the projected space through the kernel function; as the parameters of each dimension
are selected from the set of training objects (rather than learned), the expressivity of such
representation is limited. In addition, since only one layer is created the number of projected
features may explode as the complexity of the modeled function increases. An advantage
of SVMs is that the training algorithm is deterministic; however, it may come with a larger
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Data Target Kernel SVM accuracy | CM accuracy
Anxiety Polynomial (degree 3) 58.21 46.67
Boredom Polynomial (degree 2) 66.67 55.56
Challenge | Polynomial (degree 3) 61.90 55.71

MB Excitement | Polynomial (degree 3) 62.61 58.99
Frustration | Polynomial (degree 3) 66.67 47.78
Fun Polynomial (degree 3) 65.20 59.82
Relaxation | Polynomial (degree 3) 64.45 56.67
Arousal Sigmoid 57.57 50.93

DEAP | Valence Sigmoid 52.70 56.44
Like Gaussian 56.49 48.08

Table 5.3: SVMs and Cohen’s models for globally normalized datasets: accuracies of Cohen’s

models and best SVM kernels.

Data Target Kernel SVM accuracy | CM accuracy
Anxiety Gaussian 59.31 46.67
Boredom Gaussian 64.81 55.56
Challenge | Polynomial (degree 3) 64.93 55.71

MB Excitement Gaussian 66.09 58.99
Frustration | Polynomial (degree 2) 59.99 47.78
Fun Polynomial (degree 3) 65.34 59.82
Relaxation Gaussian 58.89 56.67
Arousal Sigmoid 57.38 51.11

DEAP | Valence Polynomial (degree 3) 58.48 56.44
Like Sigmoid 56.31 48.08

Table 5.4: SVMs and Cohen’s models for within-subject normalized datasets: accuracies of
Cohen’s models and best SVM kernels.

computational cost. While a careful analysis of computational effort is not performed, SVMs
training time was significantly higher than the corresponding training times for the neural
network approaches in the reported experiments. Using a Java implementation for neural
networks, with no particular optimization mechanisms, and the SVM-light library (written
in C) with the default optimization parameters (Joachims| [1999)), training one model (ANN
or SVM) in a dedicated node required, approximately less than 5 minutes for BP, less than
15 minutes for NE and between 20 minutes and several hours for SVMs (excluding linear
kernels that trained in few seconds).

Finally, Cohen’s method performs poorly as it trains models that predict preferences
based only on the most correlated feature across the dataset. Potentially, an alternative
training algorithm — such as a genetic algorithm guided by the Spearman error function
— could yield more competitive results. Furthermore, one must note that the comparison
over synthetic datasets may have benefited ANNs and SVMs as those methods are based
on transitive preferences as the utilities used to create the data; Cohen’s method on the
other hand is designed to deal with intransitive preferences. Therefore, in highly intransitive
datasets, Cohen’s method could outperform ANNs and SVMs.
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5.3 Summary

In this chapter we evaluated different methods to implement the last phase (preference mod-
eling) of the affect modeling methodology introduced in this thesis. The experiments focused
on artificial neural networks and in particular, on error functions and training algorithms.
Results on synthetic data suggested the superiority of neuroevolution and highlighted the
effects of two properties of the error functions, namely the dependency on the number of
correctly classified pairs, and the impact of the difference between the trained model’s out-
put for preferred and non-preferred objects in each pair. Neuroevolution generated more
accurate models with error functions that primed the first property and disregarded the out-
put differences of pairs classified correctly, these are Spearman and sigmoidal rank-margin
error functions. Backpropagation on the other hand performed better with error functions
based on the output differences for correctly and incorrectly classified pairs. Specifically,
the regularized least-squares error function features the relation between output differences
and error that yielded the highest accuracies. Furthermore, we studied the effect of man-
ually adjusting the impact of that difference on the error, enabled through the proposed
margin parameter. Results showed that each error function performs better with different
margins but in general, it appeared that the performance of ANN training algorithms can
be improved by systematically tuning this hyper-parameter.

For a selection of real affect datasets, BP achieved better results in several settings, due
to a greater overfitting of NE. As also derived by results in several experiments with the
synthetic sets, it seems that the regularizer term — which prevents gradient descent from
overfitting — did not achieve its intended purpose with global-search training.

Complementary, the efficacy of ANNs was validated against other popular machine
learning techniques (support vector machines) and preference learning-specific methods
(Cohen’s model). Experiments showed that ANNs could outperform these methods in
the examined preference modeling tasks. While SVMs showed slightly higher accuracies in
few affect datasets, ANNs appear to be a more appropriate tool for affect modeling, given
their enhanced expressivity that enables an easier interpretation of the learned model.

Finally, results on synthetic data suggested that the use of unclear preferences or subsets
of data with different baselines complicates the learning task for the methods examined.
Thus, it is expected that affect modeling can be facilitated by removing unclear user prefer-
ence reports and by minimizing, whenever possible, across-users differences from the input
features fed into the model. One may argue that, removing data can adulterate the results
of an experiment; however, we are not proposing to remove data because it yields higher
accuracies, but because the underlying function is best approximated (which in turn leads
to higher accuracies); as finding the underlying function in affect reports is the main goal
of affect modeling, our results suggest that using questionnaires that allow users to report
unclear preferences (rather than force them to specify strong preferences) can help to draw
more accurately models of affect.

In the next chapter, the focus switches to the first phases of the affect modeling method-
ology proposed in this thesis. Different feature extraction and selection techniques are ap-
plied in combination with the ANN training algorithms evaluated in this chapter to create
models for several affective states and physiological datasets.
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Chapter 6

Automatic Feature Extraction for
Physiological Signals

In the preceding chapter we studied several preference learning methods that allow us to
create models from ordinal annotations. As discussed in Chapter [3| these annotations allow
us to reliably label affective experiences; by encoding these experiences as measurable data
samples, PL becomes a particularly well suited method to create models of affect. However,
the amount of information collected during each experience usually leads to large data
samples that have to be reduced or otherwise PL methods (or more in general, machine
learning methods) may not train meaningful models. In psycho-physiological studies, the
data samples are composed by one or several physiological signals such as heart rate and skin
conductance. These signals are commonly reduced through the extraction of a set of ad-hoc
features (e.g. averages, variances and maximum values) proposed by an expert. Then, these
features are used as the inputs of the models that estimate the target psychological states.

In this chapter we investigate state-of-the-art algorithms for automatic feature extrac-
tion offering an alternative to the expert-driven approach. We propose the utilization of
convolutional auto-encoders to generate set of features that minimize the amount of infor-
mation lost in the feature extraction process. CAEs represent an unsupervised training
algorithm for convolutional neural networks; once trained, these networks take as input a
data sample (e.g. a physiological signal) and transform it into a reduced representation.
Thus, the outputs of the CNNs can be used as inputs for a predictive model in place of
a set of ad-hoc features. While CAEs have shown a great potential on other domains like
computer vision, they are characterized by a large number of parameters complicating their
introduction to new domains. When applied to physiological signals, parameters used for
computer vision are not applicable as in that domain data is arranged across 2-dimensional
(images) or 3-dimensional (videos) arrays while physiological signals are 1-dimensional (sig-
nal values spanning along time). CAEs have also been applied to music where the processed
data is 1-dimensional; however, those studies extracted features from the Fourier transfor-
mation of the original signal, that is, from the frequency domain (spectrogram) instead of
the temporal domain (waveform). As our goal is not only to provide an algorithm that
reduces the amount of information lost in the feature extraction phase but also remove,
as much as possible, intermediate steps between data collection and modeling, we chose
not to transform the signals into their frequency domain, however requiring an extensive
parameter tuning. As the exhaustive empirical validation of all possible CAE parameters
(including CNN topology) is an intractable task, the critical parameters (e.g. the patch
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length, the number of layers, the number of neurons, learning rate and corruption rate)
have been systematically tested, and a number of CNN parameters (e.g. pooling window
length) have been fixed based on suggestions from the literature. In this chapter we report
selected parameter sets which succeeded to a higher or lower degree in extracting relevant
affect information from physiological signals, and summarize some of the patterns observed
in the preliminary experiments.

In this chapter we showcase the expressive power of CNN features by analyzing several
CNNs trained for reducing skin conductance, heart rate, blood volume pulse and blood
volume signals on two dissimilar datasets, namely Maze-Ball and DEAP. We center the
analysis of these CNN features on the weights of the neurons in the convolutional layers
because these are the trainable parameters. Note that, as detailed in Chapter each
neuron evaluates every patch of the input signal (given by the output of the previous
pooling layer). For each patch, the input samples are normalized (mean value within the
patch equal to zero) and multiplied by the weights of the neuron; the resulting value is
added the threshold of the neuron and processed by a logistic sigmoid function, producing
the output of the neuron. Then, sequences of consecutive outputs are pooled together using
an average or maximum function yielding one feature value. Thus, the feature value is
directly linked to the multiplication between the weights and the normalized input signal,
which is higher for sequences of input samples that follow a pattern similar to the sequence
of weight values. Accordingly, the trained weights of a specific neuron can be visualized as
a sequence that depicts the input patterns that produce maximal outputs. For each of the
physiological signal and dataset examined, we present and discuss these visualizations for
one selected network. As the goal of this thesis is neither to provide an extensive analysis
of the affect models found on Maze-Ball and DEAP nor unveil new physiological features,
we will present only the 1-convolutional-layer networks which allow for a simpler and more
clear analysis than networks with a larger number of layers.

In addition to the examination of the expressivity of CNN features, we test their effec-
tiveness by feeding them as inputs of computational models of affect and comparing them
to models that take as inputs a complete set of ad-hoc statistical features common in af-
fective computing studies. Using the PL methods studied in the previous chapter, models
based on CNN features and ad-hoc features are trained to predict the MB game-related
affective states (anziety, boredom, challenge, excitement, frustration, fun and relaxation)
and the DEAP affect dimensions (arousal, valence and dominance). Note that we are not
concerned with the particular affect models found on these datasets or their maximum pre-
diction accuracy, thus this chapter is focused on the evaluation of CNNs relative to standard
feature extraction methods. Two different sets of CNN features and two variants of the set
of ad-hoc features are evaluated allowing a more thorough evaluation and fair comparison
(by balancing the number of attempts of each method). The ad-hoc features in each dataset
are described in Chapter [f] and the two variants are created using two different normaliza-
tion schemes. A z-transformation procedure generates one of the variants, where the mean
and standard deviation of each feature across each dataset are equal to 0 and 1, respectively
(within dataset normalization). The second variant is created using the same procedure but
modified to achieve mean 0 and standard deviation 1 for each feature within the samples
of each participant independently (within subject normalization).

For each set of features ten models were trained independently using the methods that
showed more promise in Chapter [5] i.e. artificial neural networks trained using either the
regularized least-squares error function with margin equal to 1.0 or the sigmoid rank-margin
error function with margin equal to 0.01. Which error function is used, the training algo-
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rithm (neuroevolution or backpropagation) and the neural network topology are system-
atically adjusted independently for each experimental condition (defined by physiological
signal, affective state and feature selection method). The rest of parameters are either fixed
or adjusted systematically following the same procedure as in the previous chapter. The
predictive power of each feature set is given by the average 3-fold cross-validation accu-
racy (percentage of correctly classified pairs) of the 10 models. Furthermore, as neither
the ad-hoc features nor the CNN features are necessarily relevant for predicting each of the
specific affective states, sequential forward and genetic search feature selection are applied
to reduce every set of features studied. Following the same procedure, SF'S and GFS run 10
times, thus each producing 10 models for each feature set with potentially different features
selected. T-tests are used to assess the significance of accuracy differences among pairs of
experiments; significant results are considered with p-values below 0.05.

6.1 Skin Conductance

In this section we show the utility of CNNs as feature extractors for skin conductance. We
present experiments with four different CNNs, two trained on the MB dataset and two on the
DEAP dataset (see Table . The first CNN trained for MB, labeled CN N5, ,, contains
two convolutional layers with 5 logistic neurons at each layer, as well as an average-pooling
layer over non-overlapping windows of size 3. Each of the neurons in the first and second
convolutional layer has 20 and 11 inputs, respectively. The second network for MB, labeled
as CN NS%C, contains one convolutional layer with 5 logistic neurons of 80 inputs each. The
first network trained on DEAP data, labeled CN NS5, contains two convolutional layers
with 5 and 15 logistic neurons at each layer, as well as an average-pooling layer over non-
overlapping windows of size 5. Each of the neurons in the first and second convolutional
layers has 10 and 15 inputs, respectively. The second CNN for DEAP, labeled as CN Ng%c,
contains one convolutional layer with 15 logistic neurons, with 30 inputs at each neuron.

All topologies are built on top of an average-pooling layer over non-overlapping windows
of the raw SC signals; for both MB networks the window length is fixed at 20 samples while
for the DEAP networks, C'NN?:%C and C’N]\fi%c;< 15, @ window length of 512 and 256 samples is
selected, respectively. This initial layer reduces through an average function, the resolution
of the raw SC signal from 31.25 Hz to 1.56 Hz in MB and from 512 Hz to 1 Hz (in DEAP
with CNNC) and to 2 Hz (in DEAP with CNN;$ 5). Although SC is usually sampled
at high frequencies (e.g. 512 Hz), related studies have shown that the most affect-relevant
information contained in the signal can be found at a lower time resolution as even rapid
arousal changes (i.e. a phasic change of SC) can be captured with a lower resolution and at
a lower computational cost (Ravaja et al., |2006; Yannakakis et al., 2010). For that purpose,
the selection of this initial pooling stage aims to facilitate feature learning at low resolutions.
Moreover, preliminary experiments with dissimilar pooling layers showcased that features
extracted on higher SC resolutions do not necessarily yield models of higher accuracy.

All four CNNs examined here are selected based on a number of criteria. The number
of inputs of the first convolutional layer of the CNNs considered were selected to extract
features at different time resolutions and, thereby, give an indication of the impact the time
resolution might have on performance. In MB 20 and 80 inputs correspond to 12.82 and
50.56 seconds, respectively; in DEAP 10 and 30 inputs correspond, in turn, to 5 and 30
seconds. Extensive preliminary experiments with smaller and larger time windows did not
seem to affect the model’s prediction accuracy. For the 2-convolutional-layer networks, five
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Maze-Ball DEAP

ONNEG. ONNE | ONNRL,, ONNY

. Function | Average  Average Average  Average
Pooling layer 1| ) dow 20 20 512 256
Convolutional | Neurons 5 5 5 15
layer 1 | Inputs 20 80 10 30

. Function Average Average Average Average
Pooling layer 2 Window 3 % 5 %
Convolutional | Neurons 5 — 15 —
layer 2 | Inputs 11 — 15 —
. Function | Average — Average —
Pooling layer 3 Window " o * -

Table 6.1: Convolutional neural network topologies for skin conductance.

The pooling

function and the window length of each pooling layer, and the number of neurons and the
number of inputs per neuron of each convolutional layer are specified. The window length
in the output layers (*) is adjusted to generate a total of 15 outputs.

neurons were selected for the first layer as a good compromise between expressivity and
dissimilarity among the features learned: a low number of neurons derived features with
low expressivity while a large number of neurons generally resulted in features being very
similar. The small window on the intermediate pooling layer was chosen to minimize the
amount of information lost from the output of the first convolutional layer (i.e. feature
maps) while the number of inputs to the neurons in the next layer was adjusted to cover
about a third and above half of the pooled feature maps in CNN5S 1, and CNNS s,
respectively. Five output neurons were used for MB and 15 for DEAP; a final pooling layer
reduces the number of outputs per neuron to 3 samples in MB networks and 1 in DEAP
networks. Hence, the networks trained for MB produce 15 CNN features which correspond
to the output of 5 neurons averaged over 3 contiguous time windows along the 90 second
experience; similarly, the networks trained for DEAP generate 15 CNN features but these
correspond to the output of 15 neurons averaged over one single time window over the 60
second experience. The selection of the number of neurons and pooling in the last layer
was made to achieve the exact number of ad-hoc statistical features of SC (i.e. 15) which
allow us to make a more fair comparison. The number of output neurons is larger for
DEAP networks because this dataset contains a larger number of training samples, thus a
wider range of different patterns could potentially be found and therefore a larger number
of distinct features could be learned.

6.1.1 Deep Learned Features

This section showcases the expressivity potential of CNN features by analyzing some of the
convolutional networks learned from SC data; as mentioned in the beginning of this chapter,
this analysis spans only the 1-convolutional-layer networks and is centered on the weights
of the neurons in this layer. Figure depicts the values of the 80 connection weights of
the five neurons in CN Né%c. These weights cover SC signal patches of 51.2 seconds (0.64
seconds per weight). The first neuron (N; /5) outputs a maximal value for areas of the
SC signal in which a long decay is followed by 10 seconds of an incremental trend and a
final decay. The second neuron (Ny/5) shows a similar pattern but the increment is detected
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earlier in the time window and the follow-up decay is longer. A high output of these neurons
would suggest that a change in the experience elicited a heightened level of arousal that
decayed naturally seconds after. The forth neuron (Ny/5) in contrast, detects a second
incremental trend in the signal that elevates the SC level even further. The fifth neuron
(Ns/5) also detects two increments but several seconds further apart. Finally, the third
neuron (N3/5) detects three consecutive SC increments. These last three neurons could
detect changes on the level of arousal caused by consecutive stimuli presented few seconds
apart. Overall, this convolutional layer captures long and slow changes (10 seconds or more)
of skin conductance. These local patterns cannot be modeled with the same precision using
standard statistical features related to variation (such as standard deviation and average
first /second absolute differences), which further suggests that dissimilar aspects of the signal
are extracted by learned and ad-hoc features.

Figure depicts the value of the 30 connection weights of the 15 neurons in CN N3;S’DC.
These neurons cover 30 seconds of the SC signal (1 second per weights) on each evaluation.
By minding the shorter (in seconds) input patch, a large number of similarities with C' N Nz
are observed. In particular, the first (N /5) and fourth (N,/15) neurons output a maximal
value for areas of the SC signal characterized by a sudden increment during 10-15 seconds,
followed by a decay that leaves the signal in a heightened level; these features resemble the
central pattern captured by Ny /5 and Ny 5. The fourteenth neuron (N4 /15) highlights areas
marked by a long decay (20 seconds) following to an increment; this pattern, in turn, is
analogous to the final and intermediate segments of Ny /5 and Nj /5, respectively. The third
neuron (N3 /15) Presents also a pattern similar to that observed in Ny/5 and N5 5 but with
a 5-second-long offset with respect to Ny4/15 (starting at the highest point). Finally, the
second neuron (N, /15) detects an identical component to the initial segment of N3 /5, i.e. a
slow increasing trend followed by a strong decrement. These similarities suggest that, first
and unsurprisingly, similar components construct the SC signals in both datasets despite the
different stimuli, hardware and data collection protocols; and second, that auto-encoders
were able to find the same patterns despite the different number of training samples of each
dataset, and different patch lengths and time resolutions of each CNN.

The remaining neurons captured additional patterns. Specifically, the sixth neuron
(Ng/15) and ninth neuron (Ng/15) detect a short increment in the SC signal (approximately
5 seconds) while the rest of the neurons react to different bursts of 2 or 3 small increments.
These are components of higher frequency that were not captured by the longer time window
(and lower number of neurons) of CNNZC.
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Figure 6.1: Learned features of the 1-layer convolutional neural networks trained for SC.
Lines are plotted connecting the values of consecutive connection weights for each neuron
Ny jtotar- The x axis displays the time stamp (in seconds) of the samples connected to each
weight within the input patch.
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6.1.2 Deep Learning vs. Ad-hoc Feature Extraction

In this section we provide a systematic evaluation of the skin conductance CNN features by
comparing their prediction power against ad-hoc features. Figure depicts the average
prediction accuracies of ANNs trained on all the outputs of the CNNs compared to the
corresponding accuracies obtained by ANNs trained on the complete set of ad-hoc statisti-
cal features. CNN features yield models with a significantly higher accuracy than ad-hoc
features for the MB states of relazation, fun, excitement and anxiety. Given the perfor-
mance differences among these networks, it appears that learned local features could detect
aspects of SC that were more relevant to the prediction of these particular affective states
than the set of ad-hoc statistical features proposed. Figure and show that the
highest accuracies achieved using automatically selected features maintain a significant dif-
ference for relazation while for the remaining 3 states the accuracies meet at similar values.
Furthermore, the relaxation and fun models trained on selected ad-hoc features, despite the
benefits of F'S, yield accuracies which are not significantly different than the models trained
on the complete sets of learned features. This suggest that CNNs can extract general in-
formation from SC that is more relevant for affect modeling than ad-hoc features selected
specifically for the task.

On the other hand, models trained on ad-hoc features outperform CNN-based models
across feature selection schemes on the prediction of frustration and challenge. This signif-
icant difference suggests that certain aspects of the signals were not adequately captured
by the convolutional networks. In particular, the normalization the input signals within
each patch facilitates the learning of relative or local features at the expense of discarding
absolute or global information. This information is, however, captured by simple ad-hoc
features such as maximum max{SC'} and initial SCj,; values. These features with absolute
information are found in the best frustration model built on GFS-selected features (specif-
ically, we find among its inputs SCj,;, max{SC} and time when the minimum value is
recorded tmin{SC}) and the best challenge model also built in GFS-selected features (re-
ceives as inputs SCj,i, max{SC}, minimum value min{SC'?}, difference between maximum
and minimum values of SC DSY). It appears that despite their simplicity, these features
yield more relevant information for the prediction of some affective and cognitive states
than the CNN topologies used here. For the remaining MB state, boredom, models trained
on selected features are no significantly different between ad-hoc and learned features. For
the DEAP dataset, only models for arousal present accuracies above 60% and no significant
difference is observed between ad-hoc and CNN models.

Despite the difficulty in predicting complex affective states based solely on SC, these
results suggest that unsupervised CNNs trained as a stack of denoising auto-encoders form
a promising method for automatically extracting features from this modality, as competi-
tive prediction accuracies were achieved when compared against a well-defined set of ad-hoc
statistical features. Results also show that there are particular affective states (relazation
and fun), in which DL is able to automatically extract features that are beneficial for their
prediction. On the other hand, the within-patch normalization used prevents DL from
capturing certain absolute characteristics of the SC signals (such as initial and maximum
values) which appear to be useful to predict some affective states (frustration and chal-
lenge). With an alternative normalization (e.g. normalize the complete signals within each
participant prior presentation to the network), CNNs could capture those simple and pos-
sibly other more advanced absolute patterns; thus, it is expected that combining CNNs
with different normalizations can reach and surpass the accuracies shown by the ad-hoc
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Figure 6.2: Skin conductance: average accuracy of ANNs trained on ad-hoc features normal-
ized across the complete dataset (within dataset) and within each participant independently
(within subject), and features generated by each of the CNN topologies (CN N5 1, and
CNNgC for MB, and CN N3, 15 and CNNZC for DEAP). The black bar displayed on each
average value represents the standard error (10 runs).
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feature-based models. One could argue that the same procedure could be applied on the
opposite direction, i.e. ad-hoc features could be designed to match the accuracies of DL in
the previously presented states. In fact, DL can be used to find new ad-hoc feature extrac-
tors by coding the patterns learned in the networks. However, an ad-hoc set of features is
by definition finite and may not contain the appropriate indexes for a given dataset. Cre-
ating a massive repository would not yield optimal solutions either; not even when using
dimensionality reduction methods. Unsupervised feature learning (if adequately tuned) has
the potential of identifying automatically every relevant component of any given dataset in
a compact and homogeneous set of features, yielding more accurate predictors without the
intervention of a human designer.

6.2 Blood Volume and Blood Volume Pulse

Following the same systematic approach for selecting CNN topology and parameter sets,
two convolutional networks for blood volume pulse (in Maze-Ball) and other two for blood
volume (in DEAP) are presented and evaluated in this section. These CNN topologies are
summarized in Table Those used for BVP feature the following: (1) one max-pooling
layer with non-overlapping windows of length 30 followed by a convolutional layer with 5
logistic neurons and 45 inputs at each neuron (CNNEVT); and (2) two convolutional layers
with 10 and 5 logistic neurons, respectively, and an intermediate max-pooling layer with
a window of length 30. The neurons of each layer contain 30 and 45 inputs, respectively
(CN Ngf%ng). Both topologies are topped up with an average-pooling layer that reduces the
number of outputs from each of the 5 output neurons down to 3 — i.e. the CNNs output 5
feature maps of length 3 which amounts to 15 features. The initial pooling layer of the first
network collects the maximum value of the BVP signal every 0.96 seconds, which results in
an approximation of the signal’s upper envelope — i.e. a smooth line joining the extremes
of the signal’s peaks. Decrements in this function are directly linked to increments in heart
rate, and further connected to increased arousal and corresponding affective states (e.g.
excitement and fun as shown in the studies of Yannakakis et al| (2010); Yannakakis and
Hallam| (2008). Neurons with 45 inputs were selected to capture long patterns (i.e. 43.2
seconds) of variation, as sudden and rapid changes in heart rate were not expected during
the game survey experiment. The second network follows the same rationale but the first
pooling layer — instead of collecting the maximum of the raw BVP signal — processes the
outputs of 10 neurons that analyze signal patches of 0.96 seconds, which could operate as
a beat detector mechanism.

The two CNN architectures presented for BV (in DEAP) feature an initial max-pooling
layer with non-overlapping windows of length 512. In both topologies, one convolutional
layer is stacked on top with 9 logistic neurons and 20 and 30 inputs at each neuron, respec-
tively, to each topology (labeled CNNZYV and CNNEV). Finally, an average-pooling with
length 11 (for CNN£V) and max-pooling layer with length 10 (for CNN£ZY) reduces the
number of outputs of each neuron down to 3 yielding a total of 27 outputs per network.
The initial pooling layer yields a smoother signal at 1 Hz that should facilitate learning
patterns at low frequencies (above heart beat frequency). High frequency information may
also be important; however, reducing the initial time resolution of the signal speeds up CNN
training (as the number of training patches is reduced) while a large part of the relevant
information in those high frequencies is present in the heart rate signal (and can be ex-
tracted from that modality). The two different topologies are designed to capture patterns
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Maze-Ball DEAP
C’NN4B5VP CNN:,%‘;fs CNNQ%V CNNP%V
Pooling layer 1 Function | Maximum — Maximum Maximum
Window 30 — 512 512
Convolutional | Neurons 5 10 9 9
layer 1 | Inputs 45 30 20 30

Pooling layer 2 unction | Average  Maximum | Average Maximum

Window * 30 * *

Convolutional | Neurons — 5 — —
layer 2 | Inputs — 45 — —

. Function — Average — —
Pooling layer 3 Window - " - -

Table 6.2: Convolutional neural network topologies for blood volume and blood volume
pulse. The pooling function and the window length of each pooling layer, and the number
of neurons and the number of inputs per neuron of each convolutional layer are specified.
The window length in the output layers (*) is adjusted to generate a total of 15 and 27
outputs for the MB and DEAP networks, respectively.

of different length (20 and 30 seconds) and the number of neurons and pooling is adjusted
to approximate the number of BV ad-hoc features (i.e. 26).

6.2.1 Deep Learned Features

In this section we examine one of the networks trained for BVP and another trained for
BV. Figure depicts the 45 connection weights of each neuron in CN N, f5VP which cover
43.02 seconds of the BVP signal’s upper envelope. Given the negative correlation between
the trend of the BVP’s upper envelope and heart rate, neurons would output maximal
values when consecutive decreasing weight values are aligned with an area in the BVP
signal corresponding to a HR increment and consecutive increasing weight values with HR
decays. On that basis, the second (Ny/5) and fifth (N5 /5) neurons detect two 10-second-long
periods of HR increments, which are separated by a HR decay period. The first (N;/5) and
the forth (N4 /5) neuron detect two overlapping increments on HR, followed by a decay in
Nys5. The third neuron (Ns/5), on the other hand, detects a negative trend on HR with
a small peak in the middle. This convolutional layer appears to capture dissimilar local
complex patterns of BVP variation which are, arguably, not available through common
ad-hoc statistical features.

Figure depicts the 30 connection weights of each neuron in CN NgBOV. While a rather
wide variety of patterns is observed in this network, none of them appears to resemble the
BVP patterns learned from MB. Despite the similarity of the recording protocols — i.e.
the same sensor technology (plethysmography) applied to the finger tips — this result only
confirms the dissimilarity between these two signals (Lidberg et al., [1974). In particular,
each of the pairs N3 9-Ny9 and Nj/9-Ng/9 detects one similar pattern with an offset of
approximately 4 seconds, Ny presents its maximal output for signals with a period of
11 seconds, Ny /9 detects a fast and slow accumulative increments, Ng/9 an increment for
11 seconds and decrement for the remaining 19 seconds, and Ny/9 and Ng/g feature a 15
seconds peak (7.5 seconds increment, 7.5 decrement) preceded by a fast and strong or slow
and mild decrement, respectively. These are complex variation patterns that are unlikely
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Figure 6.3: Learned features of selected convolutional neural networks trained for BVP
and BV. Lines are plotted connecting the values of consecutive connection weights for each
neuron N /yo1q;- The x axis displays the time stamp (in seconds) of the samples connected
to each weight within the input patch.

to be well represented by standard ad-hoc features.

6.2.2 Deep Learning vs. Ad-hoc Feature Extraction

In this section we compare the prediction accuracies of ANN models trained on any of the
four CNNs described above against ANN models trained on BVP and BV ad-hoc features.
Predictors of fun trained on features extracted with C'N NE)VP outperformed the ad-hoc
feature sets without feature selection by a large margin — accuracies of 70.6% and 65.99%,
respectively — (see Fig. . Automatic feature selection generates a larger improvement
for the ad-hoc models yielding a non significant difference between the best models (see
Fig. [6.4). Given the reported links between fun and heart rate (Yannakakis and Hallam),
2008]), this result suggests that CN N, E)VP effectively extracted HR information directly from
the BVP signal — i.e. without beat extractors — to predict reported fun. The efficacy of
CNNs is further supported by the results reported in (Martinez et al., 2011) where SLP
predictors of fun trained on ad-hoc statistical features of the HR signal (in Maze-Ball)
do not outperform the DL models presented here. For reported fun, CNN-based feature
extraction demonstrates a great advantage of extracting affect-relevant information from
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Figure 6.4: Blood Volume Pulse and Blood Volume: average accuracy of ANNs trained on
ad-hoc features normalized across the complete dataset (within dataset) and within each
participant independently (within subject), and features generated by each of the CNN
topologies (CNNEVL and CNNEVE for MB, and CNNEY and CNNEY for DEAP). The
black bar displayed on each average value represents the standard error (10 runs).
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BVP bypassing beat detection and heart rate estimation.

On the other hand, for arousal, boredom and excitement, models trained on all and
selected ad-hoc features significantly outperform CNN based models. Furthermore, a similar
difference is observed among predictors of relaxation, like and valence trained on automatic
selected features. Observation of the subsets of selected features reveals that at least one
of the inter-beat amplitude features (E{I/BAmp} and c{IBAmp}) were present in every of
the best models as well as the power frequency spectrum features (e.g. high frequency power
HF) in a smaller number of models. While precise beat information appears to be crucial
to build accurate models of several affective states from BVP and BV, CNNEVY CNNBY
and CN Nfév have no access to any trace from the heart beats as consequence of the initial
pooling layer, explaining the lower accuracies of CNN features in certain affective states.
Even though C'N N3gx45 was designed to include heart beat information, it appears that the
topology chosen was not sufficient to capture information about the beat amplitude. Despite
missing this information, excitement and boredom still show high accuracies around 70%.
Finally, non significant differences are observed for the remaining MB states — frustration,
challenge and anziety — among the best feature selection results suggesting that in absence
of a strong link between beat amplitude and target affective states, convolutional networks
can extract appropriate features from BVP for predicting affect.

In all, results presented in this section show that CNNs can extract relevant information
for affect prediction from the raw BVP and BV signals. Models of several affective states
trained on these features are comparable to models that rely on advanced ad-hoc features
that build on beat detectors (e.g. inter-beat amplitude) and Fourier transformations (e.g.
high frequency power of BVP). It was clear, however, that information regarding inter-beat
amplitude could not be captured by the topologies tested leading to models with significant
lower accuracies than models relying on the average and standard deviation of IBAmp.

6.3 Heart Rate

As with the previous modalities, two CNN topologies are chosen for each HR dataset (see the
detailed parameters in Table . All four topologies include one single convolutional layer
and one average-pooling layer that extracts exactly 15 outputs. For MB the two networks
designed feature: (1) 15 neurons and 30 inputs at each neuron (CNNZF=MB) and (2) 3
neurons and 15 inputs at each neuron (CN N{éR_M B ). Analogously for DEAP the networks
contain: (1) 5 neurons per patch location and 30 inputs at each neuron (CN Nj%%R*D EAP)
and (2) 3 neurons per patch location and 15 inputs at each neuron (CN N{}:R_D AP ). Each
of the neurons in these networks captures 15-second or 30-second long patterns in the HR
signals, depending on the number of inputs (1 second per input as HR is sampled at 1 Hz).
That length amounts to a third and half of the experience in MB and DEAP, respectively;
15 and 5 neurons are chosen to find a variety of distinctive patterns in the long 30 seconds
intervals while a lower number of neurons (i.e. 3) is chosen for the 15-second long windows
as a small number of different patterns are expected.

6.3.1 Deep Learned Features

Two dissimilar topologies are selected for analysis in this section. For the HR signal in MB
we examine a network with 15 features (CNN. 3H0R7M B ). By observing Figure it appears
that, the total number of 30-second-long distinct patterns could be captured with less
than 15 neurons as several pairs of neurons in CN N%R*M B Jearned similar weight vectors
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Magze-Ball DEAP
CNNJF—MBE  CNNJFME T ONNIE  CNNIE
Convolutional | Neurons 15 3 5 3
layer 1 | Inputs 30 15 30 15
. Function Average Average Average  Average
Pooling layer 2 Window % % % s«

Table 6.3: Convolutional neural network topologies for heart rate. The pooling function
and the window length of each pooling layer, and the number of neurons and the number
of inputs per neuron of each convolutional layer are specified. The window length in the
output layers (*) is adjusted to generate a total of 15 outputs.

(N3/15 <> Ngj15: Najis <> Nejiss Nsjis < Nojiss Nojis <> Nigjis and Nigjis <> Nisjis)-
While these features may be redundant for training a classifier from a small number of
data samples, a predictor could be trained to extract very detailed information from subtle
changes in the signals given a large dataset; for example, the pair Ny 15-Ng/15 can be used
to distinguish between the relative magnitude of a small peak compared to a preceding
larger peak. Another group of similar patterns can be identified in Ny/15, Ni1/15, Nojis
and Njg/15: these four neurons show an almost periodic signal with an increasing period
across them (from 8 seconds in the N; /15 t0 12 seconds in Ny /15). Applied together to
the same input signal, these neurons estimate different frequency components contained
between 0.125 Hz and 0.083 Hz, within the low frequency band (0.04 to 0.15 Hz, LF'); the
amount of variation within this band conforms a popular index of heart-rate variability as
several studies have drawn links to parasympathetic activity (Goldberger et al., 2001). This
result highlights the power of convolutional auto-encoders as they could automatically learn
a well-known HR feature, very relevant in affective computing research. It is thus expected
that this approach can also discover new interesting features not used before.

Most of the other neurons show a combination of more dissimilar variations combining
increments and decrements that last between 5 and 10 seconds each. N3/ 15 and Ng/5
capture longer sustained increments (13 seconds approximately) while N7/5 and Ns/q5
react to periods of small changes (during 10 seconds) followed by an increment (about
8 seconds). Overall, these neurons appear to capture different non-periodic patterns of
variation characterized by changes that are sustained for at least 5 seconds. Changes in
periods below 5 seconds were not expected to be significant as the HR signal was calculated
using a 5-second long sliding window. While ad-hoc features of HR variability are usually
extracted from RR intervals, CNNs discovered some popular indexes on the HR signal and
other complex features possibly not represented in typical HR and HRV feature sets.

Figure depicts the weights of a CN N;éR_D EAP which features only 5 neurons but
the same number of inputs at each neuron than the network analyzed above. Each of the five
neurons would output a maximal value for a different sequence of alternating increments and
decrements each of them lasting between 5 and 10 seconds, approximately. Variations with
similar lengths of time were observed in most of the neurons in CN N?{gR_M B suggesting the
recurrence of these HR patterns across dissimilar activities of low physical demand (playing
a computer game and watching music videos).
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Figure 6.5: Learned features of selected convolutional neural networks trained for HR. Lines
are plotted connecting the values of consecutive connection weights for each neuron Ny /¢g14;-
The x axis displays the time stamp (in seconds) of the samples connected to each weight
within the input patch.

6.3.2 Deep Learning vs. Ad-hoc Feature Extraction

In this section we compare the prediction accuracies of ANN models trained on the HR
CNNs against ANN models trained on HR ad-hoc features. In these experiments reported
CNN features of HR yield significantly more accurate models than ad-hoc features in sev-
eral MB states and DEAP dimensions. In particular boredom and challenge models trained
on CNN features yield significantly higher accuracies than the corresponding ad-hoc mod-
els when no feature selection is applied (see Figure . Feature selection increases the
accuracies of these models dissimilarly, yielding non significant differences between best
CNN and ad-hoc selected feature sets as seen in Figure and Figure Models for
frustration and anziety , in turn, do not present a significant difference in accuracy across
the complete set of extracted features, while feature selection pushes the accuracy of CNN
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Figure 6.6: Heart Rate: average accuracy of ANNs trained on ad-hoc features normalized
across the complete dataset (within dataset) and within each participant independently
(within subject), and features generated by each of the CNN topologies (CNNZF~MB anq
C’NNngMB for MB, and C’NN;(I)RfDEAP and C’NNngDEAP for DEAP). The black bar
displayed on each average value represents the standard error (10 runs).
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features to a significantly higher value than the best ad-hoc model . Within DEAP, CNN
features yield more accurate models of valence and like compared to the accuracies obtained
from the ad-hoc features both when all the features are concerned and when they are auto-
matically selected via SF'S and GFS. From these results it appears that CNNs can extract
features from HR that are more relevant for the prediction of several affective constructs
than popular HR ad-hoc features.

On the other hand, CNN feature models are outperformed by ad-hoc feature models
in a few settings. In particular, excitement and fun models built on all ad-hoc features
yield significantly better results than CNN feature sets but accuracies are evened up af-
ter features are automatically selected with GFS. This result highlights the importance of
feature selection even for CNN extracted features. Finally, relazation models yield better
or similar results with ad-hoc features across selection mechanisms. The best relaxation
model, trained on features selected via GFS, is an MLP with a single input feature: time
when minimum HR was detected. The CNN that yields better results contains neurons
that cover 30 seconds of the raw HR signal (out of 90 in MB). With the patch-wise normal-
ization applied in our experiments, it would have been impossible to distinguish whether
the minimum is detected in the first, second or third segment of the game. A larger time
window or a different normalization scheme (as discussed in Section would help CNNs
to capture these global patterns.

6.4 Fusion

To test the effectiveness of learned features in models fusing several input modalities, the
outputs of the BVP/BV, SC and HR CNN networks presented earlier are combined into
one ANN and its performance is compared against a combination of all ad-hoc BVP/BV,
SC and HR features. As depicted in Figure differences observed in this experiment
confirm the high relevance of CNN-learned features for predicting several affective states
and the limitations of the approach reported previously in the study of single modalities.
Specifically, the fusion of CNNs from all signals generates models that yield higher prediction
accuracies than models built on ad-hoc features in the MB states of fun and excitement.
In both states the models built on the complete set of features and the best performing
automatically selected set yielded significantly more accurate models than the corresponding
ad-hoc feature sets. Furthermore, automatic selected CNN features (via SFS) yield the
highest performing prediction model for valence reported so far (average accuracy of 63.3%),
which is significantly higher than the best model built on any selected set of ad-hoc features
(best accuracy obtained with GF'S selected features is 62.68%). On the other hand, challenge
and arousal are predicted with significantly higher accuracies when using sets of ad-hoc
features. The most accurate arousal model, built on 8 selected features, uses as inputs
o{IBAmp} and E{IBAmp} which are not captured by CNNs due to the imposed initial
max-pooling layer, and tin{ BV}, SCjus and DtSC which are hindered by the patch-wise
normalization used. Similarly, the best challenge model uses four inputs two of which are
E{IBAmp} and tnin{SC}. For the remaining affective states and dimensions, no significant
differences are observed which suggests that the lack of certain aspects of the signals by
CNNs were covered by information from other modalities.
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Figure 6.7: Physiological Fusion: average accuracy of ANNs trained on ad-hoc features
from every modality (BVP/BV, HR and SC) normalized across the complete dataset (within

dataset) and within each participant independently (within subject), and features generated

by a triple of the CNNs (CNNa i Psb TR MB and CNNEZYEHHE=ME for MB, and

CN Nl%c;{f +V26rf£}g_D EAP and ON N:fo(j:gf +V1§H R=DEAP 5y DEAP). The black bar displayed
on each average value represents the standard error (10 runs).
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6.5 Summary

This chapter presented an empirical evaluation of convolutional auto-encoders as a method
to extract features for affect prediction from physiological signals. We have applied this
method to skin conductance, heart rate, blood volume pulse and blood volume and showed
that, through a simple visualization mechanism, the extracted features are easily analyzed
and capture well known affect features and other physiological patterns. Furthermore, these
features yield predictive affect models of equal or greater accuracy than ad-hoc methods
for a number of modalities and affective states present on the two datasets examined, sug-
gesting that unsupervised feature learning can reveal affect-relevant information hindered
by standard ad-hoc features. On the other hand, ad-hoc features outperformed automat-
ically learned features on some states and modalities, pointing out two weaknesses of the
proposed method, namely inaccurate synthesis of global information and difficulties for cap-
turing amplitude information on periodic signals, outlining some clear directions for future
work. Aside of these contributions, the results also served to showcase the importance of
automatic feature selection and further validate neural network preference learning as a
technique for affect modeling. In the next chapter a completely different feature extraction
approach is evaluated, namely frequent sequence mining, used specifically to fuse physio-
logical modalities of inputs with contextual information.
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Chapter 7

Automatic Feature Extraction for
Context and Physiology Fusion

In the previous chapter we showed how an unsupervised learning method can be used
in place of ad-hoc features to reduce the dimensionality of the input signals of an affect
model. Despite of years of research on psycho-physiology, results showed that physiological
features learned automatically can yield more accurate models of affect than sets of standard
ad-hoc features. This finding represents an improvement for psycho-physiology but more
in general defines a new paradigm that can generate advances in other affect modeling
scenarios, specially those in which the body of research around ad-hoc features is limited.
One of these scenarios consists of modeling affect using context as an input modality. We
refer to context as information about the system that the user is interacting with in the
target application domain. Information within this context modality could be a mouse click
on an advertisement while browsing the web, an actor that starts to cry on a movie scene
or a player scoring a goal on a soccer video-game. The context modality depends on the
specific system and thus generic ad-hoc features are not easily designed. Another scenario
in which ad-hoc features have been scarcely studied consists of modeling affect using several
different modalities; in fact, most studies only consider single-modality features which then
are fed to the predictive model.

In this chapter we evaluate the efficacy of an unsupervised learning method on these
two scenarios: to extract features that combine several modalities including context. We
utilize the generalized sequential patterns sequence mining algorithm to find patterns across
sequences of discrete events as those commonly found on a context modality (e.g. sequence
of actions performed on the interface). Then, these patterns (frequent sequences) can be
directly converted into features that feed an affect model. In particular, we apply GSP
to mine frequent sequences across discrete events of skin conductance, blood volume pulse
and game events (that provide a context for the physiological responses) within the Maze-
Ball dataset (all the events are described in Chapter . The first section of this chapter
presents a detailed analysis of the sequences extracted and discusses the effect of different
parameters on the extraction algorithm. In the second section, two alternative methods
for feature creation from frequent sequences are applied, and the resulting feature sets are
compared to two variants of a set of ad-hoc features as inputs to predictors of the affective
states reported in Maze-Ball. The ad-hoc features are described in Chapter [dand include the
physiological features used in the previous chapter together with a set of gameplay features.
Similarly to the previous chapter, the analysis of the results covers the expressivity of the
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unsupervised learned features and the relative performance between those features and an
ad-hoc set; the thorough analysis of the affect models is left out as the focus of the chapter
is on the method and not the Maze-Ball dataset.

7.1 Sequence Mining

As described in Chapter [3] the GSP algorithm features 3 tunable parameters: minimum
support, maximum time window and minimum gap, denoted as Spin, Wmar and Gpaz,
respectively; this section discusses the effects of these parameters in the task of mining
sequences from multimodal datasets and later analyzes the frequent sequences found in the
Magze-Ball dataset.

7.1.1 Parameter Tuning

The Spmin is set up to 100 sequences which forces a sequence pattern to occur in at least
44.64% of the samples (100 out of 224 samples in total) to be considered frequent. This high
threshold is selected because of the low specificity of the events that yields a high frequency
of each event within the data-sequences. For example, consider the event of picking any
of the ten available pellets ($) and an alternative representation with ten different events
associated to a specific pellet in the game {$o,...,$9}. The support count for each $§, is
expected to be lower than the support count of $ as different players will most likely pick
different pellets. Consequently a lower minimum support would be required to consider
sequence patterns containing the 10 specific $,. events frequent.

The W4z is chosen as a trade-off between the frequency of the events within and across
signals. On one hand, a low window is required to not consider simultaneous events that
within the same signal are clearly not occurring at the same time (e.g. in a 90 second-
long game, two gameplay events of more than a few seconds apart should not be processed
as two simultaneous events). On the other hand, a certain window must be allowed to
consider events from different asynchronous signals to occur at the same moment in time.
For example, a variation on the RR signal is linked to the time interval between two heart
beats; a gameplay event happening during this interval should be considered simultaneous
to the RR variation even though the time stamps of both events are not identical. In all
experiments reported in this chapter Wy, is 1 second.

The G parameter has a direct effect on the number of events that can be concatenated
in a sequence and the support count of those sequences. Note that the definition of a
sequence pattern does not require two consecutive events to occur immediately one after
the other in the data-sequences. Consequently when G4, is much larger than the frequency
of events in one modality, a high number of events in other modalities can be skipped when
matching a pattern with a data-sequence. For example, if we select a G4z Of 5 seconds and
we consider the sequence (»)(»), the number of data-sequences containing those two events
in a 5 second interval is very high (arrow keys are pressed every 1-3 seconds) even though
none of the players pressed the right arrow key twice in a row. This effect is enhanced by
the fact that the target sequences combine events from different modalities. For instance,
if the pattern (»)(s™)(») is found with a 5 second Gypqz, this sequence is supported by any
data-sequence in which a player pressed the right key in a 5 second interval before and after
his SC raised — independently of other keys being pressed before and after s or other
events such as $ and E occurring. This has not only an effect on the informative value of
the sequences but also increases greatly the number of frequent patterns (see Table . On
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Gmaz

# events 5 3 5
1 19 19 19
2 161 188 232
3 785 1650 2113
4 505 8387 18259
5 28 18985 118192
6 0 21704 545667
7 0 11251 NaN
8 0 1954 NaN
9 0 36 NaN

Table 7.1: Amount of frequent sequential patterns for different values of Gjuqa.. Search
was stopped for Gz = 5.0 for lengths above 6 as the computational cost of finding every
pattern became intractable.

the other hand, a large G4, may allow higher level sequences — i.e. sequences of high level
events that do not occur very frequently — to emerge such as ($)($)($). Thus, when setting
up this parameter, it is necessary to take into account the frequency of each event and the
desired target sequences. As this chapter focuses on the extraction of features that fuse
physiology with context, G, is set up to small values to capture the relationship between
gameplay events and physiological responses. In particular, results with G4, of 1.5 and 3
seconds, which are both close to the frequency of the key presses (the most frequent event in
the dataset), are reported. The two selected G4, values also approximate the physiological
time responses to game events reported in several studies — e.g. see (Ravaja et al., 2005|
2006]).

7.1.2 Sequence Analysis

We found a large amount of frequent sequences in the dataset; specifically, looking at the
3 and 5 second Gjnq, values (see Table one may observe the exponential increase of
frequent sequential patterns with regards to the number of events considered. The large
amount of patterns is caused, in part, by the right and left key press events which are so
frequent in the data-sequences that result in almost wild card events (i.e. between any two
events is very likely that either the right or the left key is pressed).

The more restrictive Gy,q. 0f 1.5 seconds did not produce any frequent sequence com-
bining the sector events with the key presses making more difficult, if not impossible, to
map a sequence of key presses to an area in the maze (e.g. (<€)(»)(»)(«)(«)). Even
though specific paths cannot be inferred from the key presses, some interesting results can
be observed. For 1.5 and 3 second G4, values the sequences of maximum length found
consist only of the events {«, », st SU}; neither other gameplay events nor RR variations
are included in the most frequent sequences (see Table . These sequences suggest that
the combination of many key press patterns in the Maze-Ball game and SC variation are
frequent and should be considered in the analysis of player experience. Furthermore, in the
longest sequences that combine key presses with the events {E, $} (see Table[7.2)), the latter
always appear in the last position of the sequences suggesting that players follow similar
strategies to approach pellets and enemies but more dissimilar behaviors are presented after
picking a pellet or being hit by an enemy.
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S Gmax

equences 15 3
(sMH(sH () () (»)(@)(«) | <100 108
() () (») (O () (»)(»)(«) | <100 108
(@ (sM () (sT) (%) () (») (@) (@) | <100 101
(») () (») (@) (€)(3) <100 104
() () (@) («)(8)(w) <100 104
() (»)(«4)(5) <100 149
(») (@) (m")(»)(») (=) <100 105
() (»)(O(E) <100 104
() () (E)(») () <100 102
(@M (%) (»)(E)(w) <100 101
(Q((»)(») (@) 115 202
(»)(sMH () (s%) (@) 106 192
(sMH(»)(sH) () (@) 101 187

Table 7.2: Support counts of a subset of frequent sequences containing keyboard events.

Table shows some of the most frequent 2-sequences and 3-sequences that combine
the main performance events, $ and F, with physiological events. With the more restrictive
value for Gyqs (1.5 second), all the frequent 3-sequences contain the subsequence ( s )(
s¥ ) with the event $ or E in any position, being the most frequent sequence in which the
gameplay event occurs simultaneously with an increase of SC, followed by a decrease of SC.
The 3 second Gqq on the other hand, produced almost any combination of two physiological
events with one of the gameplay events. This might indicate that the threshold is too large
and does not capture a meaningful fusion of the modalities.

The frequent 2-sequences correspond to all possible combinations of one of the gameplay
events with one physiological event showing more occurrences when combined in the same
element. Note that the count support indicates only the number of data-sequences in which
the sequence pattern appears and not the number of occurrences within each data-sequence.
Opposite to long sequences, these short patterns are expected to occur more than once in
each sequence. Therefore, the number of occurrences of the patterns within each data-
sequence is required for a full analysis of the physiological responses to game events. This
study, however, is too detailed for this chapter as the focus is on the method rather than
the psycho-physiological models of Maze-Ball players.

It is worth mentioning that none of the other high level gameplay events occur frequently
with the physiological responses. While this is not entirely surprising for the sector events
— given that there is no visual or audio feedback when changing sectors in the maze —
one would expect that the count down event would trigger a change on the player that
would have been reflected on her physiology. However, such a relationship is not observed
frequently via event sequences.

7.2 Affect Modeling with Frequent Sequences

For the affect modeling experiments reported here, the frequent sequences included were
found using Gz = 1.5, Spin = 100 and W4, = 1 that did not contain the keyboard and
Stop events. This last constrain reduces substantially the number of frequent patterns from
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3-sequences 5 3 5Gma$3 2-sequences 7 5Gm‘w3
($ sﬂ)(sU) 141 168 | ($ s™) 184 184
(B sM)(s ) 131 163 | ($ r—Y) 178 178
(sM)($)(s ) 123 164 | (E s™) 175 175
(sM(F )( Wl 116 164 | (E st 174 174
(sM(s*)($) | 112 181 | (E rT9) 174 174
(E)(sﬂ)(sﬂ) 109 175 | ($ sY) 170 170
(sﬂ)( )( )| 106 180 | (s™)($) 166 194
($)(sM(s¥) | 105 186

(sﬂ)($ s¥) 1105 158

(sT s4)($) | 102 139

Table 7.3: Support counts of a subset of the most frequent sequences including physiological
and performance events. Events enclosed in the same parentheses occur simultaneously (in
any order within an interval of 1 second).

1498 to 140 in an effort to lower the dimensionality of the input space and the computational
cost of training. Preliminary studies showed that using the full set of frequent patterns did
not improve the prediction accuracy of the models of affect. Models for the seven states
in Magze-ball are created based on two representations of these sequential patterns, namely
boolean and count. With the count representation, the features for each data-sequence
(game played) correspond to the number of occurrences of each frequent sequence within
that sample (values normalized between 0 and 1 across the complete set); with the boolean
representation every feature with a value above 0 is converted to 1 (each feature is a detector
of whether a particular frequent sequence occurs at least once within the data-sequence).
Alternatively, models are trained using a set of ad-hoc features that combines physiological
data — 15 features extracted from each signal (heart rate, skin conductance and blood
volume pulse) — and gameplay metrics — 31 features extracted.

Analogously to the methodology used in the previous chapter, for each set of features
and particular affective state, sequential forward and genetic search feature selection run
10 times using the methods that showed more promise in Chapter [5| and the average 3-fold
cross-validation accuracy (percentage of correctly classified pairs) across the 10 resulting
feature subsets is reported. The average 3-fold cross-validation accuracy of 10 models
trained on the complete sets (without feature selection) of features is also reported. T-
tests are used to assess the significance of accuracy differences among pairs of experiments;
significant results are considered with p-values below 0.05.

The training algorithm (neuroevolution or backpropagation), error function (regularized
least squared with margin equal to 1.0 or sigmoid rank margin with margin equal to 0.01)
and neural network topology are systematically adjusted independently for each condition
(target affective state, feature selection method and feature extraction scheme). The re-
maining parameters are either fixed or adjusted systematically following the same procedure
as in previous chapters.

7.2.1 Sequences Input to User Preference Models

For the dataset examined, in which the frequent patterns are short and expected to occur
a variant number of times across samples, the count representation is expected to yield
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Figure 7.1: Sequential vs ad-hoc features: average accuracy of ANNs trained on ad-hoc
features and features extracted from GSP sequences as real (Count) or binary (Boolean)

features. The black bar displayed on each average value represents the standard error (10
runs).
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Anx | Brd | Chl | Exc | Frs | Fun | Rix

Sequential Count 49 | 5.8 | 6.3 5 11 6.5 | 6.3

SFS Boolean | 94 | 9.3 | 95 | 6.5 10 | 11.3 | 8.3
Ad-hoc Dataset 4 3 2.1 6 7 5.8 | 5.6
Subject | 3.3 | 3.9 | 3.9 | 4.8 5 48 | 7.2
Sequential Count 186 | 13.8 | 16 | 22.5 | 182 | 27.3 | 16.8

GTS Boolean | 25.3 | 25.8 | 24 | 24.2 | 259 | 25.8 | 26
Ad-hoc Dataset | 87 | 12.1 | 9.5 | 11.2 | 14.4 | 10.8 | 18.3
Subject | 12.4 | 12.7 | 13.8 | 17.3 | 11.6 | 12.1 | 21.1

Table 7.4: Number of selected features. The average number of features selected across
10 runs of SFS and GFS for each of the affective states in MB — anziety (Anx), boredom
(Brd), challenge (Chl), excitement (Exc), furstration (Frs), fun (Fun) and relazation (Rlx)
— and four sets of features: sequential with boolean and count representation (140 features
in total) and ad-hoc with within dataset and within subject normalization (76 features in
total).

higher accuracies since the boolean representation is far less informative. Models trained
in the complete sets of features show that this hypothesis is valid for the states of fun,
excitement and frustration while boolean features yield significantly higher accuracies than
count features for anziety, boredom and challenge (see Figure . When SFS and GFS
are applied, the same results are observed with the exception of several differences becoming
insignificant — for challenge (both GFS and SFS), frustration (GFS) and fun (SFS).

Models of affect were trained on pairs of data, as boolean features collapse a range of
values into 1, a larger number of pairs present the same value for each feature when the
boolean representation is used, yielding to a lower differentiation than features based on
the count representation — count features show a different value between the samples of
each pairwise report on 76.77% of the pairs on average (standard deviation equals to 11.1)
while with boolean features this average percentage drops to 36% (standard deviation of
11.57). Nevertheless, models built on boolean features can learn to differentiate preferences
with comparable accuracies as count features by using a larger number of inputs (see Table
. Furthermore, by collapsing every value above 0 into 1, more pronounced differences
are observed than with features normalized by the maximum number of occurrences (e.g. a
pair that presents values 0.0 and 0.1 for a given count feature, yields, respectively, 0.0 and
1.0 the boolean version). This form of aggressive outlier removal, could explain the higher
accuracies for anziety and boredom models.

7.2.2 Comparison Between Sequential and Ad-hoc Features

Feature sets based on frequent sequence patterns, when reduced by automatic feature se-
lection, yield equally or more accurate predictors of affect than ad-hoc features in all the
states investigated with the exception of relazation (see Figure and Figure . In
particular, with the count representation, the best selected models yield higher accuracies
for the states of fun, and challenge. With the boolean representation, sequential features
also yield significantly more accurate models than ad-hoc features for anziety and boredom.
Models for frustration and excitement do not present significant differences while relazation
is predicted more accurately with ad-hoc features. While ad-hoc features contain much
more information about physiology (e.g. maximum heart rate and the high frequency com-
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ponent of RR intervals) and gameplay (e.g average distance to enemies and percentage of
map explored), information about discrete events occurring in short time intervals provides
equivalent or more valuable information about the user experience for the prediction of all
self-reports of affect except relaxation. One could argue that a greater number of ad-hoc
gameplay features could have been created reducing for instance information about the
trajectory followed by the player (which is present in the sequential features through the
section events); however, ad-hoc gameplay features were carefully designed when MB was
created and the parts of the maze were not considered relevant (Martinez et al., |2010). Note
that any information captured by automatically learned features can be ultimately coded
as an ad-hoc feature forcing sequential features to yield performances equal or lower than
ad-hoc features; however, the main advantage of these automatic feature extraction meth-
ods is that they can find features that could have been disregarded by human designers, as
it was the case with Maze-Ball trajectory information.

If feature selection is not applied, frustration and anziety (in addition to relazation)
models yield higher accuracies with ad-hoc features (see Figure . While sequential
features seem to not provide additional information for the prediction of frustration and
relaxation, anxiety models on selected sequential features outperform ad-hoc features; hence,
it appears that the larger total number of features (140 sequential features vs. 76 ad-
hoc features), unsurprisingly, can have a negative effect on training. Nevertheless, count
features for fun and boolean features for challenge and boredom still maintain a significant
improvement over ad-hoc features despite the larger set of features, highlighting the efficacy
of unsupervised feature extraction on creating relevant input features.

7.2.3 Expressivity of Sequential Features

This section exemplifies the expressivity of models that rely on sequential features. Table
depicts a model built on boolean sequential features (best anziety model) and a model
built on count sequential features (best fun model), corresponding to the highest accuracies
found using single-layer perceptrons. As both models are single-layer perceptrons, we can
very easily analyze the effect of each feature by examining the connection weights (features
with low absolute connection weight are omitted to better highlight the relevant effects).

The anziety model combines 2 multimodal features and 2 physiological features. The
sequences (77°0 )('$ ) and ( E )( sT ) associated with high negative weights suggest that
games in which an increment on SC is never detected after being hit by an enemy or an
increment on H R — connected to the decrement of RR intervals — is never detected right
before collecting a pellet are related to more anzious experiences. This could be explained by
an overall heightened level of SC and HR during an anxious level leading to less noticeable or
non-existent reactions to the most relevant gameplay events. Along the same interpretation,
an increased variability of sympathetic activity in absence of gameplay events would indicate
a more anxious experience, as suggested by the positive connections with ( sT s% )(sT ) and
( sT »+59). The changes could be caused by difficulty of approaching pellets or changes on
the camera perspective which are not represented in the sequence events.

Observing the best-performing ANN model of fun (see Table it seems that the total
number of pellets picked ($) has a positive impact on reported fun as well as when a sudden
peak in SC is generated just before or just after picking a pellet — ( s™ )( s* )( $) and (' $
s )( s¥ ) — which could be related to a heightened arousal state when the player is about
to pick a pellet. Sudden increases on the RR intervals length followed by a sudden change
on SC — (r*59) (sM) and (r+50)(s¥) — have a negative impact on reported fun attenuated
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Anxiety Fun

(r50)($) -027](ESsY) -0.31

(E )( sT) -0.15 ($sﬂ)( s¥) 0.18

(T 50 024 | (sT)(s¥)($) 0.19

(sTs¥)(sT) 019 ($) 0.25
(30 (sT) -0.19
(r+59)(s4) -0.19
(rH0)(sT)(r0) 017
(ms) -0.17

Table 7.5: Input features and corresponding connection weight values for the highest per-
forming ANN models for anziety and fun.

when followed by a sudden increase on RR — (r7%9) (sT) (r=°0). Additionally, enemy hits
accompanied by a sudden decrease on SC (E s'), not surprisingly, seem to decrease the
level of fun. Note, that a single event £ would not necessarily have a negative effect on
fun as it is a fundamental part of the game; however, a decrease on SC might indicate a
lowered level of the player’s arousal as consequence of the game event. Finally, it appears
that exploring the 5" sector of the maze contributes to less fun experiences. As shown
by these two models, sequential frequent patterns used as boolean or real-valued inputs for
models of affect can reveal relevant elements of affective experiences obscured by standard
ad-hoc features, especially across modalities of user input.

7.3 Summary

This chapter evaluates sequential pattern mining as a method to extract automatically mul-
timodal features. The GSP sequence pattern mining algorithm was applied to physiological
signals (blood volume pulse and skin conductance) and context-based metrics (e.g. in-game
events and key board presses) in a game dataset. The extracted frequent sequences and algo-
rithm parameters were analyzed to highlight the main advantages, limitations and practical
considerations of this approach when applied to the analysis of multimodal interactions.
Additionally, as an alternative to ad-hoc features, the frequent sequences mined were
presented as inputs of affect detectors assisting the process of finding more accurate models
of user affect and experience. With automatic feature selection, sequences outperform
ad-hoc features in four (anwiety, boredom, challenge, and fun) out of the seven affective
states examined in this study, yield similar accuracies in other two states (frustration and
excitement), and showcase slightly lower accuracies for relaxation. Furthermore, an analysis
of the models of affect trained on the frequent sequences reveals relationships between
sudden arousal level changes across physiological signals, critical game events and reported
affect, which demonstrates the expressive power of this feature extraction mechanism.
Overall, despite its simplicity, sequence mining shows a great potential for automati-
cally extracting features for modeling affect from discrete (or discretized) input modalities.
Despite the discretization of physiological signals discards interesting information such as
heart rate variability, the results show that these simple events in combination with game
information suffice to yield multimodal features of great prediction power. In the final
chapter, the main findings and contributions of this thesis are summarized, the limitations
of the method and evaluation are discussed and the directions for future work are outlined.
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Chapter 8

Conclusions

This thesis proposed a methodology for enhancing current affect modeling practices. The
methods that integrate this methodology are aligned to the three research questions outlined
in Chapter 1) what are the most adequate preference learning methods to train models
of affect based on ordinal annotations of affect, 2) can automatic feature extraction capture
physiological components that are more relevant for prediction of affect than popular ad-
hoc designed features and 3) can automatic feature extraction capture the interplay across
modalities of input and produce more accurate models of affect compared to ad-hoc features.

Towards answering the first research question, we analyze the performance of a collec-
tion of artificial neural network training algorithms as well as support vector machines and
Cohen’s method. Several synthetic datasets are generated to test the performance of the
different algorithms with respect to the complexity of the target function (i.e. the mapping
between physiology and affective state in psycho-physiological modeling). Within those
synthetic datasets, two key patterns — common in physiological and affect datasets —
are investigated: input data distributed around separate clusters (to resemble physiological
data from several users with dissimilar baselines) and pairs of data with different degrees of
preference (to simulate self-reports over pairs of experiences that elicit very similar affective
states). The algorithms are also compared across two affect datasets containing a number
of fixed physiological features that are used as inputs of the models, and pairwise self-
reports and ratings of several affective states that are used as target outputs. Additionally,
a detailed evaluation of the impact of the error function and training algorithm in ANN pre-
diction accuracy is presented. In particular, the two training algorithms for neural networks
dominant in different artificial intelligence communities are evaluated, namely backpropa-
gation from machine learning studies and neuroevolution from computational intelligence
studies; both algorithms are compared across a collection of error functions proposed in
the related literature — rank-margin, cross-entropy and regularized least-squares from ML
research, and sigmoid from CI and affective computing studies — and also introduced here
— sigmoidal rank-margin and Spearman — to cover characteristics not explored before.

In order to answer the second research question, a method based on recent advances
in deep learning (Bengio et al.l 2007)) is proposed as an automatic feature extractor and
compared to an extensive set of ad-hoc features which are commonly (and traditionally
used) in AC research. Specifically, convolutional neural networks are trained using denoising
auto-enconders to extract features from four physiological signals (HR, SC, BV and BVP).
These features are compared against ad-hoc signal-specific features as inputs to ANN-based
models trained to predict pairwise self-reports in two affect datasets.
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An answer to the third research question was sought by introducing a frequent sequence
mining method borrowed from data mining studies, as a technique for multimodal feature
extraction. In particular, the generalized sequence patterns algorithm is applied to extract
features from temporal sequences, that fuse interaction events (game context) and physi-
ological responses, in an affect game-based dataset. The automatically generated features
are compared against ad-hoc features as inputs to affect models.

Results obtained from the experiments presented in this dissertation suggest that more
accurate models of affect can emerge from the combination of ANNs for preference learning
with automatic feature extraction techniques, both for physiological signals and multimodal
fusion. First, ANNs outperform SVMs in most datasets examined and CMs in all of them.
Considering that ANNs also require a lower computational effort and that they present a
higher expressivity, it is suggested that they conform a more suited method for affect prefer-
ence modeling. In addition, within ANN variants experiments on synthetic data showed that
NE is able to train more accurate ANNs than BP especially when the data is not uniformly
distributed, either because the input samples present variable baselines (clustered data) or
unclear preferences are present in the dataset. For NE, the error functions that yield more
accurate models do not depend on the ANN’s output for sample pairs classified correctly,
being the sigmoidal rank-margin the error function that yields the best results from the
examined error functions. On the other hand, BP requires error functions that depend on
correctly classified pairs, being regularized least-square the examined function that yields
best results, as it defines the most appropriate balance between maximizing the difference
between ANN’s output of samples in correctly classified pairs, and correcting the outputs of
samples in incorrectly classified pairs. Second, CNNs yield models that outperform ad-hoc
features for several input modalities and several affective states; furthermore, limitations
revealed in the experiments suggest that alternative configurations would show larger ben-
efits of automatic feature extraction. Third, results demonstrated that SM, and in general
automatic feature extraction, can reveal relationships across sudden arousal level changes in
physiological signals, critical game events and reported affect, and that those relations can
guide the construction of more accurate predictors of affect compared to standard ad-hoc
physiological features and game metrics.

8.1 Contributions

This section summarizes the contributions of this thesis which advance affect modeling prac-
tices in AC and HCI. The main achievements also contribute to the field of Al and games
and technology enhanced learning technologies that incorporate user modeling components
(such as intelligent tutoring systems and game-based learning approaches). Finally, con-
tributions have also been made to the fields of machine and preference learning with new
validations of the strengths and weaknesses of several supervised and unsupervised learning
techniques. More specifically, this thesis has contributed the following:

e Evaluation of a generic methodology for creating models of affect based on physi-
ological and contextual information from ordinal annotations. Reduction of input
signals through feature extraction and selection, and model training are performed
by automatic algorithms, reducing information loss and biases introduced by human
modelers.

e Extensive empirical testing of a set of artificial neural network training algorithms,
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support vector machines and Cohen’s method for pairwise preferences.

e Introduction of deep learning for the construction of accurate models of affect based
on physiological manifestations of affect. The method is tested in two affect datasets
and a number of recommendations are suggested for its application in affect modeling
at large.

e Introduction of sequential pattern mining as a method for exploring the relation-
ship between asynchronous signals from different modalities. Sequence mining has
demonstrated its ability in extracting relevant multimodal features that are critical
for accurate affect detection.

e Confirmation of the importance of automatic feature selection in affect modeling.

8.2 Limitations

This section outlines the key limitations and drawbacks of the methodology proposed and
the evaluation presented. The main limitations can be traced back to the difficulty of
collecting large and reliable affect datasets, which are common limitations to any affect
modeling methodology that relies on user data. The remaining limitations — as the results
revealed — arise from the application of the new methods introduced in this thesis.

8.2.1 Data-driven Affect Modeling
Method Evaluation

While the Maze-Ball and DEAP datasets include key components for affect modeling and
are representative of a typical affect modeling scenario, the methodology presented needs
to be tested on diverse datasets. Moreover, to be able to demonstrate robustness of the
algorithms, more and dissimilar modalities of user input need to be considered, and dif-
ferent domains (beyond games and music videos) need to be explored. The accuracies
obtained across different affective states and modalities of user input, however, already pro-
vide sufficient evidence that the methodology would generalize well in dissimilar domains
and modalities. Although low accuracies are obtained in the prediction of particular af-
fective states, specially within the DEAP dataset, the proposed methodology is promising
as all the results are compared against well-established and validated methods that do not
achieve higher accuracies.

Model Generality

A limitation inherent to data-driven modeling approaches is that the quality of a learned
model is subject to the quality of the data used to train it. If emotion elicitation fails but
users still report experiencing specific affective states, noise is introduced into the dataset
which may drive data-driven methods towards flawed or suboptimal models of affect as
shown in Chapter Several mechanisms are used in this thesis to reduce the number
of incorrect reports and minimize their effect on training. Maze-Ball experimental survey
featured a 4-alternative choice questionnaire that offers experiment participants two explicit
options to report unclear differences in affective states, which then were dropped before
training the models of affect. DEAP, in turn, implements regular ratings (participants rate
each video after watching it) but two considerations were taken when converting them into
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pairwise preferences. First, only consecutive reports were converted into preferences as it is
expected that relative ratings across non-consecutive videos are unreliable — as consequence
of subjective scales rapidly becoming inconsistent along time. Second, rating differences
below 1 point (in a real-valued 7-point scale) are considered unclear and dropped before
training the models. Then a regularizer is included in the training algorithms to enforce
smooth models (i.e. small changes in the inputs yield to small changes in the outputs) that
potentially do not learn spurious and incorrect patterns. Finally, cross-validation is used to
estimate the generality of the models by calculating their prediction accuracy over data not
used during training. However, note that parameter tuning and feature selection are guided
by cross-validation accuracy which negatively affects the generality of the parameters used,
features selected and models.

Even though we consider all the datasets used in this dissertation to be representative
of the problem under examination, ideally, model generality can only be adequately evalu-
ated in completely different datasets from the one used for training (as in Martinez et al.,
2011)). Alternatively, large datasets would improve the quality of the models by providing a
population sample that better represents the complete population and reduces the number
of patterns appearing by chance.

Ambiguity of physiology and additional components of affect

It has been suggested that certain dissimilar affective states may be linked to the same
physiological responses (Cacioppo and Tassinary, [1990) which would prevent the creation
of computational predictors that can differentiate among them while relying solely on phys-
iological data. This theory would explain, in part, the relative low accuracies of the phys-
iological models presented in Chapter [6f This limitation is alleviated by learning models
that fuse context information and physiology, which capture more complex and meaningful
affective relations (Barrett et all 2007) and present higher prediction accuracies as physi-
ological patterns are disambiguated by context information. However, it is not absurd to
expect that other factors — not manifested through physiology or context — could also
influence affective states generating other effects and biases. For instance, personality could
determine different affective responses even though the context and the physiological re-
sponses appear similar (although some links between personality and physiology have been
suggested (Kagan et all [1987)). We can, in part, overcome such limitations by including
additional information (e.g. personality, moods, preferences, gender) as inputs to models of
affect, thereby, enhancing the expressivity and completeness of the models and improving
the accuracy of the predictions. The methodology introduced in this thesis could potentially
create models with such additional information and help towards investigating its relevancy
or, contrarily, redundancy. However, those investigations would require a larger dataset
containing a population sample representative of the variance of all the investigated factors.

Post-experience reports and comparative reports

The models of affect constructed across this thesis are trained on quantitative post-experience
self-reports; thus, models depend on the ability of the experiment participants to remember
their affective experiences and express them through a preference (MB) or a rating (DEAP)
report. According to different theoretical models of emotional self-report, when humans re-
port past emotional experiences they have to retrieve specific thoughts, event-specific details
or beliefs that relate to the past experience (Robinson and Clore, 2002; Rossl [1989; |Chris-
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tianson and Safer, [1996; Kahneman, 1999). From these theories follows that the self-reports
may be related only to certain parts of the experience monitored and, in turn, those parts of
the experience are more relevant for the prediction of the reports. [Martinez and Yannakakis
(2011a) have shown that by calculating ad-hoc physiological features on particular intervals
of the experience can increment the prediction accuracies for certain affective states. CNN
may implicitly help improving the accuracy of the models by finding a set of patterns at
different time intervals of the experience; SM may also exploit this characteristic implicitly
by providing features that are not tied to particular moments of the experience. Thus, it
appears that both methods proposed can extract information from the specific events that
motivate the self-reports. However, a problem remains related to the user not recalling
experiences of particular affective states that were not linked to specific events or thoughts.
In comparative reports, especially, two separate experiences must be remembered, although
an implicitly similar process could happen with single ratings if users attempt to maintain
a consistent scale. The length of the experiences was kept short (90 seconds in MB and 60
seconds in DEAP) to minimize this problem but limitations derived from memory can only
be completely bypassed by reporting affective states while they are being felt (e.g. think-
aloud protocols) which on the other hand disrupts the experience. In addition to problems
induced by recall of emotion, other limitations to self-reports exist such as primacy and
recency effects related to the experiment order (Yannakakis and Hallam|, 2011) (i.e. the
participant having a tendency towards the first or last experience, respectively) or to the
order of the items or direction of the scale within the questionnaire (Chan, |1991) (i.e. se-
lecting the first or last item of a questionnaire, respectively). Alternatively, self-reports can
be replaced by expert annotators that can pinpoint the exact time interval during which the
affective state is displayed. This method, however, relies more on the user displaying clearly
their affective state (and it is also more expensive and time-consuming). In summary, affect
annotation is arguably the toughest challenge in affect modeling as there exists no method
that is completely trustworthy and reliable.

Loss of information from ratings to preferences

In Chapter [3| we argued that rating reports contain ordinal information as the distance
between items on the scale is unknown and variable (as it is subjective). Furthermore, in
order to reduce biases due to the variability of the scale along time and across participants,
we converted pairs of consecutive ratings into pairwise preferences. While this transforma-
tion is likely to reduce the amount of noise introduced in the dataset, it also leads to a loss
of information related to the intensity of the emotion. Note that if for instance, a partici-
pant rates three consecutive experiences as {1, 4,5}, these ratings yield the same order (and
pairwise preferences) as {1, 2,5}; however, the second experience presents a larger intensity
in the first set of ratings than in the second. Alternative preference learning methods can
be used to introduce this information into the learning process, as for instance through an
extension of the regularized least-squares error function (Pahikkala et al. |2009). On the
other hand, it is not certain whether introducing that discarded information in the modeling
process yields more precise affect models or yields flawed models due to reporting biases.
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8.2.2 Automatic Feature Extraction
Parameter tuning and training time

While DL and SM can automatically provide a more complete and appropriate set of features
for certain affective states, ad-hoc features are off-the-shelf solutions that do not require
training or tuning for well-studied signals; however, for new signals such as actions or events
in a new game, new features must be hand-crafted. For SM the number of parameters is
small (3) and can be selected taking into account few considerations (see Chapter [7] for more
details) although the computational cost for finding all frequent patterns can be high when
the input signals are dense. DL generally requires a lower training time but the number of
parameters is larger and tuning demands more expert knowledge. This thesis introduces a
number of CNN topologies that performed well on the SC and HR signals and to a lesser
extend on the BV and BVP signals. Regarding the similarities in the features learned
between datasets, it is expected that similar configurations would yield good performances
in alternative datasets reducing the effort of parameter tuning. Alternatively, these methods
can be applied to create new ad-hoc features — i.e. they could be trained once on a large
dataset and the features then reused in further datasets.

Discretization of signals for frequent sequence mining

While DN is applicable to continuous signals — i.e. temporal sequences of real values such
as physiological signals — and to discrete signals — i.e. temporal sequences of discrete
labels such as interaction events (e.g. clicking a button) — a limitation of SM is that it can
only handle discrete signals. The discretization of continuous signals involves information
loss and it may require a designer to choose the important components. In this thesis, two
discretization methods were utilized to generate simple events from heart rate variability
and skin conductance, respectively. The resulting multimodal features that combined these
events and contextual information yield high prediction accuracies despite of large amount
of physiological data lost in the process; however, it is expected that alternative methods
(hand-crafted or learned) able to inject a larger amount of information into the discretized
signal could yield better results.

Global patterns and signal amplitude in convolutional networks

Two limitations emerged from the experiments reported in Chapter [6] regarding CNN ca-
pabilities: the topologies used in this thesis could not capture global information (e.g. time
when minimum value is recorded) and could not properly represent the peak-to-peak am-
plitude of periodic signals such as BVP. The first limitation appears to be caused by the
patchwise normalization of the approach; thus it is expected that using alternative normal-
ization schemes can eliminate this problem. The second limitation however, seems to arise
from an incomplete exploration of the possible topologies as, in most cases, the periodic
nature of the signals (BVP and BV) was removed (via initial pooling layers). It is thus ex-
pected that alternative topologies can capture these components overcoming this problem
as well. Alternatively, related studies have made use of Fourier transformation to extract
the frequency components and feed them directly into the CNN (e.g. Hamel et al., [2011));
such an approach can potentially yield good results for periodic physiological signals as well.
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Expressivity of deep learned features

An advantage of ad-hoc statistical features resides in the simplicity to interpret the physical
properties of the signal as they are usually based on simple statistical metrics. Therefore,
prediction models trained on ad-hoc features can be analysed with low effort providing in-
sights in affective phenomena. Artificial neural networks have traditionally been considered
as black boxes that oppose their high prediction power to a more difficult interpretation of
what has been learned by the model. Results presented in Chapter [0 have shown, however,
that appropriate visualization tools can ease the interpretation of neural-network based
features. Moreover, learned features derived from DL architectures may define data-based
extracted patterns, which could lead to the advancement of our understanding of emotion
manifestations via physiology (and beyond).

8.3 Extensibility

The methodology introduced and evaluated throughout this thesis showed great promise in
two affect datasets. This section reviews additional domains where the same methodology
is expected to perform reliably and a set of extensions for the methods that can lead to the
creation of more accurate and reliable models of affect.

8.3.1 Applicability to Other Domains

Given that the computational methods used directly are generic, it is expected that the
methodology can be used to train reliable and accurate affect models beyond the experi-
mental datasets used here.

Automatic feature extraction beyond physiology and game context

As it has been mentioned before, CNNs can process any continuous signal. While this thesis
applied CNNs on heart rate, skin conductance, blood volume pulse and blood volume, the
method is directly applicable for affect detection in single-dimensional, time-series, input
signals such as electroencephalograph (EEG), electromyograph (EMG), skin temperature
(ST), respiration rate (RSP) and speech, but also in two-dimensional input signals such as
images (Rifai et al., 2012; |Asteriadis et al., 2009) (e.g. for facial expression and head pose
analysis). It has been also discussed that CNNs could process discrete events if converted to
a continuous function which also opens up the possibility of extracting contextual features
via DL and even multimodal features by using neurons that collect inputs across modalities.

With appropriate mechanisms for discretization, SM is expected to yield excellent results
with additional 1-dimensional continuous signals. The discretization mechanisms used for
SC and BVP could be tuned to extract events from ST and EMG, and RSP, respectively,
as the characteristics of the signals are similar. The method is also directly applicable to
facial expression and body movement via action units which are discrete events typically
used for the recognition of emotion from these modalities (Ekman and Friesen, 1978 among
others).

Affect modeling beyond games and films

The key findings of the thesis indicate that the affect modeling methodology proposed is
independent of the user activity and the system used to elicit the affective states. Thus,
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the method is directly applicable to any real-time human computer interaction sub-domain
(involving physiological signals or any type of time-series user input modality).

Affect modeling beyond self-reports

Although all the user experiments presented in this thesis contain post-experience self-
reports, the methods are directly applicable to any other form of reports that can be repre-
sented ultimately as comparisons, even if the compared experiences last for different time
lengths (e.g. an external observer could annotate frustration episodes of variable length
and rank them by intensity). Pooling layers of a CNN can be adjusted to yield the same
number of features independently of changes to the length of the raw signals. SM features
are also applicable to variable-length experiences without any adjustments. Furthermore,
with small modifications — i.e. use of different error functions such as sum of square errors
(Widrow and Lehr, 1990) — the methodology proposed can be applied to affect classifi-
cation (i.e. prediction of discrete emotions) and regression (i.e. prediction of target affect
intensities) tasks across any type of input signal.

8.3.2 Method Extensions

This dissertation introduced automatic feature extraction to affect modeling from physiology
and context, and surveyed several modeling methods. The evaluation covers the basic
components of deep learning and frequent sequence mining, and three modeling methods
but a different number of research directions can extend this work.

Alternative modeling methods and intransitive preferences

We presented an extensive study of three computational methods for preference learning
to figure out which techniques are best for affect modeling. However, additional methods
have to be added to the comparison to completely answer this question. On one research
direction, further standard methods that solve the preference learning problem by approx-
imating a global utility function can be explored; candidates popular on different research
areas are Bayesian networks and decision trees. On a different direction, the approach de-
fined by Cohen’s method — i.e. two data samples are fed simultaneously to the model and
the probability of the first being preferred is approximated — has to be examined more
carefully. In this thesis, only synthetic transitive preferences where used for testing while
Cohen’s method is likely to stand out when learning intransitive preferences. Furthermore,
any standard classification method (e.g. decision trees) can be directly applied to predict
preferences in this manner, by using two samples as input to the model and one binary class
as output (first sample is preferred or second sample is preferred).

Deep models of affect

Deep learning was used to automatically extract features that could be fed to any compu-
tational model (e.g. support vector machine). Choosing an artificial neural network as the
representation of the model, creates the opportunity of further refining the learned features
through supervised learning (i.e. fine-tuning the model (Bengiol [2009)). This method could
yield better results by explicitly imbuing information about the target affective state into
the features; however, large datasets would be required to prevent overfitting.
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Larger topologies and features sets

The reduced size of the datasets used in the evaluation limited the number of features
that could be learned via deep learning. Currently, deep architectures are widely used to
extract thousands of features from large datasets, which yields models that outperform
other state-of-the-art classification or regression methods (e.g. (Krizhevsky et al., [2012;
Farabet et all) |2013)). It is expected that the application of DL to model affect in large
physiological datasets would show larger improvements with respect to ad-hoc features and
provide new insights on the relationship between physiology and affect. Additionally, as
mentioned above, a wider range of topologies and normalization schemes could enable CNNs
to capture a wider range of signal components providing a larger difference with respect to
ad-hoc feature extraction. Finally, a combination of several CNNs with dissimilar topologies
to detect patterns of different time resolution, would surely yield to more accurate models
(as seen in Rifai et al. 2012).

8.4 Summary

This thesis has presented a complete methodology for learning models of affect from moni-
tored experiences annotated with post-experience ordinal self-reports. The models are based
on preference learning methods — artificial neural networks, support vector machines and
Cohen’s method — that estimate the affective state of the user relying on physiological and
contextual features extracted automatically through unsupervised machine learning and
data mining techniques (deep learning and frequent sequence mining). The methodology
presents a number of limitations inherent to the basic problems of learning models from
observations of affect and a few drawbacks of the algorithms used. The promising results
reported in this dissertation suggest that the methodology would create accurate models
of affect in different domains and a number of extensions to the method are expected to
enhance results even further.
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