
IT University of Copenhagen

Software and Systems Section

PhD Thesis

Multi-language Development Environments
—
Design Space, Models, Prototypes,
Experiences
Rolf-Helge Pfeiffer
March 29, 2013

Supervisor
Andrzej Wąsowski

IT University of Copenhagen
Software and Systems Section
Rued Langgaards Vej 7
2300 Copenhagen S

2

Abstract

Non-trivial software systems are constructed out of many artifacts expressed
in multiple modeling and programming languages describing different system
aspects on different levels of abstraction. I call such systems multi-language
software systems. Even though artifacts constituting multi-language software
systems are heavily interrelated, existing development environments do not
sufficiently support developers of such systems. In particular, handling relations
between heterogeneous artifacts is not supported at development time.

This thesis a) studies the characteristics of contemporary multi-language soft-
ware systems, b) it investigates features needed in software development tools
and environments to support or enhance multi-language software system de-
velopment, and c) it establishes required knowledge and building blocks for
creation of multi-language development environments.

I address these research goals by applying tool prototyping, technical exper-
iments, user experiments, surveys, and literature survey as methodological
tools.

The main results of this thesis are a) a taxonomy for construction, compari-
son, and characterization of multi-language development environments, b) the
identification of navigation, static checking, visualization and refactoring of
cross-language relations as four elementary cross-language support mechanisms,
c) the experimental evaluation of multi-language software system development
with support of cross-language support mechanisms, d) the characterization of
two industrial strength open-source systems as multi-language software sys-
tems by technical experiments, e) a characterization of the state-of-the-art in
development of multi-language software systems and in multi-language devel-
opment environments, and lastly f) a set of open-source prototype tools, which
implement different language representations and relation models and which
implement different facets of multi-language development environments.

My main conclusions are a) contemporary software systems are indeed multi-
language software systems, b) relations between heterogeneous development
artifacts are ubiquitous and troublesome in multi-language software systems;
they pose a real problem to development and evolution of multi-language
software systems, c) users highly appreciated cross-language support mecha-
nisms of multi-language development environments, d) generic multi-language
development environments clearly enhance the state of the art in tooling for
language integration, and e) multi-language development environments can
be constructed by cautiously deciding on a language representation for hetero-
geneous development artifacts, a model for relations between heterogeneous
development artifacts, and considering typical properties of heterogeneous
development artifact relations.

2

Acknowledgements

There are many people, who have their share in that I deliver this thesis. This is
of course my family. I thank my brother Hendrik for always being interested
in my opinions, having an open ear, and for sharing my enthusiasm about the
subject. I also thank my mother Gabriele for supporting me in going my way.

Furthermore, I would express my thanks to some of the new friends I found here
in Copenhagen. I thank Christoph Froeschel for helping me to better understand
the Danes and for the interesting discussions. Mads Johansen always selected
the right music to the coffee in the morning. Especially Paper B would not have
been possible without the relaxed atmosphere in our sunny living room.

My old friends Vinzenz Hilbert and Konrad Hotzel enriched my thoughts in
long discussions about resonance, eigenfrequency, and atomic structures. I am
very thankful for these discussions and I am still thinking about this. . .

I offer my thanks to all the nice and interesting people whom I got to know
during my project. Jan Reimann, Uwe Aßmann, Jendrik Johannes, Sven Karol,
Mirko Seifert, Christian Wende, Julia Schröter, Claas Wilke, Jan Polowinski,
and everyone at the Software Development Group at TU Dresden. I thank you
all for the friendly reception, the discussions, and our reading group during my
stay abroad.

Here at IT University of Copenhagen, I thank all the members of the Software
Development Group. For all the discussions, feedback, and insight I thank
especially my supervisor Andrzej Wąsowski, Kasper Østerbye, Peter Sestoft,
Joe Kiniry, Philippe Bonnet, David Christiansen, Hannes Mehnert, Andrea
Campagna, Paolo Tell, Rosalba Giuffrida, Josu Martinez, Kevin Tierney, Dario
Pacino, Alberto Delgado-Ortegon, and Fabrizio Biondi. I am deeply thankful
for the good time I had with you as colleagues.

Additionally, I would like to thank the Danish people for making it possible
that I conduct my research at IT University in Copenhagen. It is a great place.

Finally, where would I have been without music? I thank the samba schools
Bafo do Mundo and Samba Universo for getting me into the groove and all the
joyful Sundays. Furthermore, I thank my double bass teacher Mathias Wedeken
for guiding me in unknown territory and for making me see patterns.

4

Contents

1 Introduction 11

1.1 Preface . 11

1.1.1 List of Papers . 11

1.1.2 Tools Developed in this Project 12

1.1.3 Additional Contributions 13

1.2 Outline . 14

2 Motivation 15

2.1 Contemporary Software Systems – Multi-language Software
Systems are Real . 15

2.2 Software System Development – The Confusion of Languages 17

2.2.1 JTrac – A Java Web-application for Issue-tracking . . 20

2.2.2 OFBiz – The Apache Open for Business Project 21

2.3 Contemporary Development Environments – Taming the Con-
fusion of Languages . 23

3 Terminology 27

3.1 Characteristics of Development Artifacts 27

3.2 The Internal Structure of Software Systems 33

3.3 Relations between Development Artifacts 33

3.3.1 Relation Models – Explicit Relation Representation . . 37

3.4 Software Development Tools 41

4 The Design Space of Multi-language Development Environments 43

4.1 Language Representation . 43

4.1.1 Lexical Language Representation 43

4.1.2 Syntactic per Language Representation 44

5

4.1.3 Syntactic per Language Group Representation 45

4.1.4 Syntactic Universal Representation 48

4.2 Relation Models . 48

4.2.1 Explicit Relation Model 49

4.2.2 Tags . 51

4.2.3 Interfaces . 52

4.2.4 Search-based Relation Model 53

4.3 Relation Types . 54

4.4 Inference of Relations between Development Artifact 56

4.4.1 Inference by Program Instrumentation 56

4.4.2 Inference out of Development Artifacts 57

4.5 Cross-language Support Mechanisms 58

4.6 Overview and Comparison of Related Work 60

5 Problem Definition 63

5.1 Research Questions . 64

5.2 Theses . 65

6 Solution Overview 67

6.1 Methodology . 67

6.2 Summary & Contributions per Paper 68

6.2.1 An Aspect-based Traceability Mechanism for Domain
Specific Languages – ECMFA-TW’10 (Paper A) . . . 68

6.2.2 Taming the Confusion of Languages – ECMFA’11 (Pa-
per B) . 70

6.2.3 Tengi Interfaces for Tracing between Heterogeneous
Components – GTTSE’11 (Paper C) 72

6.2.4 TexMo: A Multi-Language Development Environment
– ECMFA’12 (Paper D) 73

6.2.5 Cross-Language Support Mechanisms Significantly Aid
Software Development – MODELS’12 (Paper E) . . . 76

6.2.6 The Design Space of Multi-language Development En-
vironments
– SoSyM’13 (Paper F) 77

6.2.7 Language-Independent Traceability with Lässig – Un-
der Submission (Paper G) 80

6.3 Contributions in a Nutshell 82

7 Discussion, Conclusion, and Future Work 85

7.1 Discussion & Conclusions 85

7.1.1 Thesis T1– Multi-language Software Systems 85

7.1.2 Thesis T2– Developer Support 87

6

7.1.3 Thesis T3– Tool Builder Support 89

7.2 Contribution to Community’s Research Agendas 93

7.2.1 On the Unification Power of Models [24] 93

7.2.2 A Model-based Approach to Language Integration [125] 94

7.3 Future Work . 95

8 An Aspect-based Traceability Mechanism for Domain Specific Lan-
guages – ECMFA-TW’10 (Paper A) 111

9 Taming the Confusion of Languages – ECMFA’11 (Paper B) 125

10 Tengi Interfaces for Tracing between Heterogeneous Components
– GTTSE’11 (Paper C) 143

11 TexMo: A Multi-language Development Environment – ECMFA’12
(Paper D) 159

12 Cross-language Support Mechanisms Significantly Aid Software
Development – MODELS’12 (Paper E) 177

13 The Design Space of Multi-language Development Environments
– SoSyM’13 (Paper F) 195

14 Language-independent Traceability with Lässig – Under Submis-
sion (Paper G) 245

Appendices 263

A Variability Mechanisms in Software Ecosystems: Closed versus
Open Platforms – Under Submission 265

B Multi-language Software Systems on GitHub 277

7

8

Figure 1: Confusion of Tongues,
Gustave Doré, 1865

(http:// en.wikipedia.org/ wiki/
Confusion_of_tongues)

9

http://en.wikipedia.org/wiki/Confusion_of_tongues
http://en.wikipedia.org/wiki/Confusion_of_tongues

10

1 Introduction

This thesis is based on a collection of papers. The following chapters motivate
my work, present the used terminology, summarize the state of the art, state the
research problems, and present a summary of my contributions. The core part
of this document, the research papers themselves, are included in Chapter 8 to
Chapter 14.

1.1 Preface

This section provides an overview of the research papers and research tools
which I wrote and developed during my PhD project. I also summarize addi-
tional works which I have co-authored. They are either of lesser significance
for this thesis or in early stages of research. Thus, they are not discussed in
detail in the subsequent chapters. For all other contributions I provide links to
online resources and references to their occurrence in this document. Note, all
published research papers are peer-reviewed.

1.1.1 List of Papers

Paper A Rolf-Helge Pfeiffer and Andrzej Wąsowski: “An Aspect-based Trace-
ability Mechanism for Domain Specific Languages” Published in:
ECMFA-TW ’10 Proceedings of the 6th ECMFA Traceability Work-
shop, doi:10.1145/1814392.1814399 (Chapter 8)

Paper B Rolf-Helge Pfeiffer and Andrzej Wąsowski: “Taming the Confusion
of Languages” Published in: ECMFA’11 Proceedings of the 7th
European Conference on Modelling Foundations and Applications,
doi:10.1007/978-3-642-21470-7_22 (Chapter 9)

Paper C Rolf-Helge Pfeiffer and Andrzej Wąsowski: “Tengi Interfaces for
Tracing between Heterogeneous Components”, Published in:
GTTSE’11 Proceedings of the 4th International Summer School on
Generative and Transformational Techniques in Software Engineer-
ing, doi:10.1007/978-3-642-35992-7_12 (Chapter 10)

Paper D Rolf-Helge Pfeiffer and Andrzej Wąsowski: “TexMo: A Multi-lang-
uage Development Environment”, Published in: ECMFA’12 Proceed-

11

http://dx.doi.org/10.1145/1814392.1814399
http://dx.doi.org/10.1007/978-3-642-21470-7_22
http://dx.doi.org/10.1007/978-3-642-35992-7_12%20

ings of the 8th European Conference on Modelling Foundations and
Applications, doi:10.1007/978-3-642-31491-9_15 (Chapter 11)

Paper E Rolf-Helge Pfeiffer and Andrzej Wąsowski: “Cross-Language Sup-
port Mechanisms Significantly Aid Software Development”, Pub-
lished in MODELS’12 Proceedings of the 15th International Confer-
ence on Model Driven Engineering Languages and Systems,
doi:10.1007/978-3-642-33666-9_12 (Chapter 12)

Paper F Rolf-Helge Pfeiffer and Andrzej Wąsowski: “The Design Space
of Multi-Language Development Environments”, Published in the
Journal of Software and Systems Modelling, doi:10.1007/s10270-
013-0376-y (Chapter 13)

Paper G Rolf-Helge Pfeiffer, Jan Reimann, and Andrzej Wąsowski: “Lang-
uage-Independent Traceability with Lässig”, Under submission (Chap-
ter 14)

1.1.2 Tools Developed in this Project

Tengja is a tool for automatic generation of trace links between visual models
(Eclipse GMF) and their serialization syntax. The tool is based on aspect-
oriented observation of the serialization of visual models. The tool is
available online1 and it is described in detail in Paper A (Chapter 8).

GenDeMoG the Generic Dependency Model Generator, is a tool for pattern-
based inference of an explicit relation model out of source code, for
example, in XML-based domain-specific languages and Java. GenDe-
MoG is available online2 together with an experimental model of Java 53

and models for OFBiz’ DSLs4. The tool is described in detail in Paper B
(Chapter 9).

Tengi is a domain-specific language and framework to interrelate heteroge-
neous textual and visual languages via interfaces. It is available online5

and Paper C (Chapter 10) describes it in detail.

TexMo is a prototype of a multi-language development environment, which
relies on a universal language representation and an explicit relation
model to interrelate heterogeneous development artifacts. It is available
online6. The tool is described in detail in Paper D (Chapter 11).

Coral is a prototype extending the Eclipse IDE into a multi-language develop-
ment environment. It relies on per language representations and a search-
based relation model to interrelate heterogeneous development artifacts.
Coral includes a domain-specific language to declare cross-language rela-
tions as constraints and a tool to infer cross-language relation constraint
libraries from heterogeneous source code in textual languages. The tool
is available online7 and Paper F (Chapter 13) describes it in detail.

1. http://www.itu.dk/~ropf/download/tengja.zip
2. http://www.itu.dk/~ropf/download/dk.itu.sdg.tengsl.depgen.ofbiz.generator3.zip
3. http://www.itu.dk/~ropf/download/JaMoITU.zip
4. http://www.itu.dk/~ropf/download/OFBiz9_04_DSLs.zip
5. http://www.itu.dk/~ropf/download/tengi.zip
6. http://www.itu.dk/~ropf/download/texmo.zip
7. http://www.itu.dk/~ropf/coral.html

12

http://dx.doi.org/10.1007/978-3-642-31491-9_15
http://dx.doi.org/10.1007/978-3-642-33666-9_12
http://dx.doi.org/10.1007/s10270-013-0376-y
http://dx.doi.org/10.1007/s10270-013-0376-y
http://www.itu.dk/~ropf/download/tengja.zip
http://www.itu.dk/~ropf/download/dk.itu.sdg.tengsl.depgen.ofbiz.generator3.zip
http://www.itu.dk/~ropf/download/JaMoITU.zip
http://www.itu.dk/~ropf/download/OFBiz9_04_DSLs.zip
http://www.itu.dk/~ropf/download/tengi.zip
http://www.itu.dk/~ropf/download/texmo.zip
http://www.itu.dk/~ropf/coral.html

Lässig is a tool prototype for language independent traceability. It adds trace-
ability to all programs compiled to and executed on the Java Virtual
Machine. The tool generates aspects instrumenting the JVM out of meta-
models and automatically populates a trace model. It is available online8.
The tool is described in detail in Paper G (Chapter 14).

1.1.3 Additional Contributions

Software Ecosystems Paper

Thorsten Berger, Rolf-Helge Pfeiffer, Reinhard Tartler, Steffen Dienst, Krzysztof
Czarnecki, Andrzej Wąsowski, and Steven She: “Variability Mechanisms in
Software Ecosystems: Closed versus Open Platforms”, Under submission (Ap-
pendix A)

In the paper we study and compare mechanisms for handling variability in five
successful software ecosystems. We investigate closed platforms like eCos
and Linux in which variability is managed centrally and open platforms like
Debian, Eclipse, and Android, which foster distributed free markets of assets
for customization. We investigate the underlying mechanisms that sustain
success and growth of these two classes of ecosystems. Our findings are
systematized into a framework for comparison and design of software systems
with a variability mechanism.

I contributed the information about the Eclipse ecosystem, for which I con-
structed a tool inferring the interaction of Eclipse bundles out of existing Eclipse
installations.

NLP Model Parser

The NLP model parser9 is a tool prototype, a set of Eclipse plugins, combining
parsing of Microsoft Word10 files into Eclipse Modeling Framework (EMF)
models, with natural language processing provided by the Stanford Parser11.
Our NLP model parser allows to parse Word files containing English text into
models containing structural information of text documents, e.g., information
about headlines, paragraphs, etc., and linguistic information about the docu-
ment’s contents, i.e., information about the types of words, such as, nouns,
verbs, adjectives, and their references.

The NLP model parser is constructed in collaboration with Jan Reimann (TU
Dresden). After integrating our NLP model parser in Coral or a similar model-
driven tool chain, we plan an evaluation, in which the NLP model parser is
applied to development of a multi-language software system specifying its
requirements in Word documents. The goal is to measure the amount and
quality of automatically established relations between a software system’s
requirements, and models and source code implementing the system. We plan
to compare the results to other solutions in this field.

8. http://www.itu.dk/~ropf/laessig.zip
9. https://github.com/DevBoost/EMFText-Zoo/tree/master/BreedingStation/NLP
10. http://office.microsoft.com/en-us/word/
11. http://www-nlp.stanford.edu/software/lex-parser.shtml

13

http://www.itu.dk/~ropf/laessig.zip
https://github.com/DevBoost/EMFText-Zoo/tree/master/BreedingStation/NLP
http://office.microsoft.com/en-us/word/
http://www-nlp.stanford.edu/software/lex-parser.shtml

1.2 Outline

The remainder of the document is structured as follows. Chapter 2 motivates
my research by providing analogies to examples outside the field of software
engineering. Chapter 3 introduces the reader to the terminology used in this
thesis. Also, it harmonizes notions that might differ between some of the
publications (Papers A to G). Related research is presented and discussed in
Chapter 4. Subsequently, Chapter 5 formalizes the informal problem descrip-
tion of the first two chapters. It states theses, goals, and research questions.
Chapter 6 introduces the research methods used for the research in Papers A
to G. Additionally, each paper is summarized, its contributions with respect to
the goals and research questions from Chapter 5 are discussed, and the applied
methodology is stated. Conclusions and future work are discussed in Chapter 7.
All research papers are collected in Chapters 8 to 14 and in Appendix A.

14

2 Motivation

My work is driven by the desire to enhance the state of the art in environments
and tools for software development. Therefore, this thesis investigates how to
provide better support to develop large multi-language software systems. I am
motivated by my experience as software developer and the observation that the
tools, in particular the development environments, which we currently employ
for development of software systems do not appropriately support developers.
I believe that we develop large multi-language software systems with tools,
which in their architecture and the offered features only aid development of
single language software systems in the style of the seventies.

This work focuses on researching a) characteristics of multi-language software
systems, b) enhanced support for developers of multi-language software sys-
tems, and c) technological foundations and techniques that allow for enhanced
development support. The following sections detail the motivation further along
these lines. I will use illustrative examples characterizing contemporary soft-
ware systems, how developers work on them, and what enhanced development
tools should offer to developers.

2.1 Contemporary Software Systems – Multi-language Software Systems are Real

Contemporary software systems are large and heterogeneous. They are con-
structed out of a multitude of artifacts in a multitude of different languages.
Development artifacts are all files that are created or edited during development
of a software system. For example, files containing source code in different
languages, configuration files, system documentation, etc. are all development
artifacts. Artifacts are expressed in languages ranging from natural languages
over domain-specific languages (DSLs) to general-purpose languages (GPLs).
In short, contemporary software systems are multi-language software system.

For example, around one third of developers using the Eclipse IDE work with
C/C++, JavaScript, and PHP besides Java and a fifth of them use Python besides
Java [2]. PHP developers regularly use one to two languages besides PHP [1].

Figure 2.1 summarizes the language composition of the twelve most interesting
projects on GitHub1. A larger version of Figure 2.1 with better readable

1. https://github.com counted on January 16th 2013

15

https://github.com

Objec&ve(C;(6%(

nu;(60%(C;(4%(

Lisp;(1%(

PList;(5%(
Assembly;(1%(

Ruby;(1%(
xcscheme;(2%(

Bourne(Shell;(2%(

nib;(5%(

make;(1%(

xclangspec;(
1%(

HTML;(1%(Rich(Text;(1%(
xcspec;(1%(

CSS;(1%(
strings;(1%(

pch;(
1%(
C/C++(Header;(5%(

(a) Nu https:// github.com/
timburks/ nu

Javascript;+78%+

HTML;+20%+

CSS;+1%+
YAML;+1%+

(b) Prototype https:// github.com/
sstephenson/ prototype

C/C++$Header;$77%$

Bourne$Shell;$1%$

C++;$4%$
Perl;$0%$

m4;$0%$

C;$1%$
Javascript;$0%$

HTML;$1%$Python;$0%$

CSS;$0%$

YAML;$0%$
Ruby$
HTML;$
0%$

make;$
0%$

Ruby;$14%$

XML;$0%$

(c) Passanger https:// github.com/
FooBarWidget/ passenger

Javascript;+12%+

HTML;+86%+

Ruby;+1%+
CSS;+1%+

(d) Scriptacolous https:// github.
com/ madrobby/ scriptaculous

Ruby;&88%&

Javascript;&2%&

HTML;&1%&

SQL;&0%&

yacc;&0%&

CoffeeScript;&
0%&

CSS;&2%&
YAML;&7%&

(e) Rails https:// github.com/ rails/
rails

Javascript;+89%+

HTML;+5%+
PHP;+1%+ YAML;+4%+

Bourne+Shell;+1%+

(f) mootools-core https:// github.
com/ mootools/ mootools-core

HTML;&45%&

Ac,onScript;&42%&

XML;&10%&

CSS;&1%&
MXML;&1%&
Javascript;&1%&

(g) Restfulx https:// github.com/
dima/ restfulx

xib;%
3%%

Objec,ve%C;%29%%

Javascript;%4%%
C/C++%Header;%33%%

nib;%12%%

CSS;%4%%

HTML;%4%%

PList;%4%%

Objec,ve%C+
+;%2%%

Ruby;%2%%
XML;%1%%C;%1%%

pch;%1%%

(h) GitX https:// github.com/
pieter/ gitx

Objec&ve(C;(44%(

xib;(3%(

C/C++(Header;(45%(

PList;(4%(

Ruby;(2%(pch;(
2%(

(i) asi-http-request https:// github.
com/ pokeb/ asi-http-request

C;#23%#

Bourne#Shell;#54%#

Tcl/Tk;#3%#

Python;#1%#

make;#
2%#

Bourne#Again#Shell;#
0%#

Lisp;#0%#

m4;#0%#
ASP.Net;#1%#

CSS;#0%#

Javascript;#0%#

Perl;#5%#
Go;#0%#PHP;#0%#

Assembly;#0%#

XSLT;#0%#

C/C++#
Header;#
9%#

C#Shell;#0%#
PList;#0%#

(j) Git https:// github.com/ git/ git

Javascript;+87%+

HTML;+13%+

(k) Raphael https:// github.com/
DmitryBaranovskiy/ raphael

xib;%
6%%

Objec,ve%J;%54%%

Javascript;%4%%

PList;%11%%

Objec,ve%
C;%2%%

nib;%0%%CSS;%0%%
C/C++%
Header;%
3%%

Python;%0%%
Bourne%Shell;%1%%Lisp;%0%%
Rich%Text;%0%%vim%script;%0%%

Ruby;%0%%

Bourne%Again%Shell;%0%%

strings;%0%%

pch;%0%%

YAML;%0%%

HTML;%18%%

(l) Cappucino https:// github.com/
cappuccino/ cappuccino

Figure 2.1: The twelve most
interesting projects on GitHub and

their language composition
language names can be found in Figures B.1 to B.3 in Appendix B. Note,
interesting is a category on the GitHub computed out of user preferences and
interests. The projects contain everything from two to at least 19 languages.

16

https://github.com/timburks/nu
https://github.com/timburks/nu
https://github.com/sstephenson/prototype
https://github.com/sstephenson/prototype
https://github.com/FooBarWidget/passenger
https://github.com/FooBarWidget/passenger
https://github.com/madrobby/scriptaculous
https://github.com/madrobby/scriptaculous
https://github.com/rails/rails
https://github.com/rails/rails
https://github.com/mootools/mootools-core
https://github.com/mootools/mootools-core
https://github.com/dima/restfulx
https://github.com/dima/restfulx
https://github.com/pieter/gitx
https://github.com/pieter/gitx
https://github.com/pokeb/asi-http-request
https://github.com/pokeb/asi-http-request
https://github.com/git/git
https://github.com/DmitryBaranovskiy/raphael
https://github.com/DmitryBaranovskiy/raphael
https://github.com/cappuccino/cappuccino
https://github.com/cappuccino/cappuccino

The language compositions are counted with the cloc tool2. The numbers of
reported languages are under approximations of the actual amount of languages,
as cloc only counts languages declared in a configuration file. Obviously, all
these systems are multi-language systems.

Complex large enterprise systems consist of even more languages. For the
following four Enterprise Resource Planning (ERP) and e-commerce systems, I
count all languages in their code bases. The code base of OFBiz3, an industrial
quality open-source ERP system, contains more than 30 languages including
GPLs, several XML-based DSLs, configuration files, properties files, and build
scripts. ADempiere4, another industrial quality ERP system, uses 19 languages.
The e-commerce systems Magento5 and X-Cart6 utilize 12 and 10 languages
respectively.

Software systems constructed utilizing the model-driven development paradigm
are likely to consist of even more languages. They additionally rely on lan-
guages for model management, e.g., metamodeling (UML, Ecore, KM3, etc.)
model transformation (QVT, ATL, ETL, Xtend, etc.), code generation (Acceleo,
XPand, etc.), and model validation (OCL, EVL, etc.)7.

Another well-known example of a large multi-language software system is the
Linux kernel. Despite the common belief that it is a C project, the Linux kernel
consists of more than 20 languages8. Additionally, it contains a large variability
model in the KConfig language. The model is used for configuration and it is
strongly interrelated with the kernel source code [84].

Not only that we construct software systems out of a multitude of languages. All
these languages have varying characteristics. They vary in the kinds of concrete
syntax (textual or visual), in the level of abstraction they aim to represent, and
certain languages are tied to certain development phases. For example, natural
languages and visual languages are usually utilized in early development phases,
whereas later development phases rely more on textual programming languages.

2.2 Software System Development – The Confusion of Languages

Despite that development artifacts may have different characteristics with re-
spect to language, abstraction, development phase, etc. they all together con-
stitute a single whole. Each artifact provides a different view on a software
system. To form a single coherent system, development artifacts are composed,
which introduces various kinds of relations between fragments of artifact or
between entire artifacts. Artifacts or their fragments either directly refer to each
other or they refer to the same aspect of a system. Some of these relations
may be explicit. For example, source code in a programming language usually
contains explicit references to other software components in the same language,
see for example the class references in Listing 2.3. Other relations may be
implicit. For example, visual models and code generated from them are both

2. http://cloc.sourceforge.net
3. http://ofbiz.apache.org
4. http://www.adempiere.com
5. http://www.magentocommerce.com
6. http://www.x-cart.com
7. See http://uml.org, http://eclipse.org/modeling/emf, http://wiki.eclipse.org/KM3, http://www.
omg.org/spec/QVT, http://www.eclipse.org/atl, http://www.eclipse.org/epsilon/doc/etl, http:
//www.eclipse.org/xtend, http://www.eclipse.org/acceleo, http://wiki.eclipse.org/Xpand, http:
//www.omg.org/spec/OCL, http://www.eclipse.org/epsilon/doc/evl respectively.
8. Cloc count of linux-3.7.9 http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.7.9.tar.bz2

17

http://cloc.sourceforge.net
http://ofbiz.apache.org
http://www.adempiere.com
http://www.magentocommerce.com
http://www.x-cart.com
http://uml.org
http://eclipse.org/modeling/emf
http://wiki.eclipse.org/KM3
http://www.omg.org/spec/QVT
http://www.omg.org/spec/QVT
http://www.eclipse.org/atl
http://www.eclipse.org/epsilon/doc/etl
http://www.eclipse.org/xtend
http://www.eclipse.org/xtend
http://www.eclipse.org/acceleo
http://wiki.eclipse.org/Xpand
http://www.omg.org/spec/OCL
http://www.omg.org/spec/OCL
http://www.eclipse.org/epsilon/doc/evl
http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.7.9.tar.bz2

Figure 2.2: A head and a foot of a
person

Figure 2.3: A modified version of
the contents of Figure 2.2

descriptions of the same system aspect at different levels of abstraction, but their
detailed relation remains hidden in a code generator. Some artifact relations
can even remain completely undocumented, stored only in human memory. For
instance, requirements documents are sometimes directly translated to source
code without recording any traces between the corresponding artifacts.

From a developer’s perspective, software systems are huge compositions or
conglomerates of development artifacts. But only a fragment of the artifacts
are in focus of developers during modification, customization, or evolution of
a software system. Due to the nature of tools used for software development,
developers usually have a quite narrow and task centric view on a system under
construction. To appropriately support development of multi-language software
systems a more holistic view on the entire system, or at least a more holistic
view of interrelated development artifacts, is desirable.

I illustrate the developer perspective and the missing holistic view on a con-
structed system with an analogy to modern art. Figure 2.2 shows the head
and a foot of a person. In a software system these would correspond to two
development artifacts in different languages. A developer needs to change one
of them to perform a certain task. Due to an incomplete view of the system, she
might not know about the relation of the displayed head and foot. Is there a
relation at all? Do both body parts belong to the same person? Is it a person
performing a somersault? Consequently, the developer could modify the system
as depicted in Figure 2.3, where the foot is flipped horizontally.

With the support of current development tools she cannot judge easily the
feasibility, the validity, or the impact of the applied modification with respect
to the entire system. This is similar to changing a fragment of a Java class or
a fragment of a model in a software system without complete understanding
of the artifacts and their context. See sections 2.2.1 and 2.2.2, which detail the
problem of interrelated development artifacts on two exemplary multi-language
software systems.

A more holistic view enables a developer to judge the illegitimate modification.
It informs a developer about the kind and existence of a relation between head
and foot. See Figure 2.4 to the right. Obviously, head and foot are in relation,
they are parts of the same person, and flipping the foot would “break” the
person.

Similarly to the example, environments for development of multi-language
software system, lack comprehensive support that provide developers with a
holistic view of a constructed system allowing to judge the effects of applied
modifications. Furthermore, they lack support to guide developers to modify
development artifacts while ensuring the well-formedness of the entire system

18

Figure 2.4: Wassily Kandinsky,
Dance Curves: The Dances of

Palucca 1926 [18] at development time.

Relations between heterogeneous development artifacts are numerous and they
are problematic for software developers:

• Since cross-language relations are usually implicit, they require sub-
stantial insider knowledge for a developer to correctly perform simple
development tasks, such as development of new features or modification
of exiting systems. Substantial insider knowledge means for example,
knowledge of architecture, diverse languages, application frameworks,
etc. Furthermore, it requires knowledge of those language constructs
that are potentially referring to other constructs or that are referred by
constructs in other languages.

• Errors caused by broken relations between development artifacts are most
often only exposed at runtime. Detection of any errors requires thorough
testing of the modified code, while at least errors caused by broken
relations between static artifacts, could be revealed at development time.

While constructing software systems, developers continuously have to reason
about such relations and to navigate along relations between heterogeneous de-
velopment artifacts. This calls for investigating language oblivious tools, which
support developers of multi-language software systems better than current tools.
In particular, visualization, static checking, and navigation of relations across
languages and development artifacts could already be valuable mechanisms
supporting developers as indicated by the example above.

Provision of appropriate tools for multi-language software system development
does not only render the work of single developers more convenient. Instead,
there is a global concern to consider. Maintenance and enhancement of software
systems is expensive and time consuming. Between 85% to 90% of project
budgets go to legacy system operation and maintenance [37]. Lientz et. al. [83]
state that 75% to 80% of system and programming resources are used for
enhancement and maintenance, where alone understanding of the system stands
for 50% to 90% percent of these costs [117]. Provision of multi-language

19

Listing 2.1: A fragment of a
properties file (left) and a fragment

of Java login logic (right)

1 login . title = JTrac Login
2 login .home = Home
3 login.loginName = Login Name / email ID
4 login.password = Password
5 login .rememberMe = remember me
6 login.submit = Submit
7 login . error = Bad Credentials

1 private class LoginForm extends StatelessForm {
2 private String loginName;
3 private String password;
4 public String getLoginName () {
5 return loginName;
6 }
7 public String getPassword () {
8 return password;
9 }

Listing 2.2: A fragment of the
HTML code describing JTrac’s

login page

1 <table class=" jtrac ">
2 <tr>
3 <td class="label"><wicket:message key="login.loginName "/></td>
4 <td colspan="2"><input wicket:id="loginName " size="35"/></td>
5 </ tr >
6 <tr>
7 <td class="label"><wicket:message key="login.password "/></td>
8 <td><input type="password" wicket:id="password " size="20"/></td>
9 <td align=" right ">

10 <input type="submit" wicket:message="value:login.submit "/>
11 </td>
12 </ tr >

Figure 2.5: Three source code
fragments of JTrac’s login page

software system development tools could contribute to reduce costs of system
understanding, maintanance, and enhancement.

However, the following sections and my research demonstrates, that designing
such tools is challenging. The challenge lies in the tension between the generic
and the specific. Heterogeneous artifacts, and even more so relations between
them, are often domain-specific. That is, they are intrinsically hard to support
with generic tools.

The following two sections introduce the two multi-language software systems
JTrac and OFBiz. In these sections, the illustrative example of interrelated
development artifacts (Figure 2.4) is carried over to the realm of software
engineering highlighting some of the problems when developing multi-language
software systems.

2.2.1 JTrac – A Java Web-application for Issue-tracking

JTrac is an open-source web-based bug-tracking system. JTrac’s code base
consists of 374 files. The majority of files, 291, contain source code in Java
(141), HTML (65), property files (32), XML (16), JavaScript (8), and 29
other source code files such as Shell scripts, XSLT transformations, etc. The
remaining 83 files are images and a single jar file. JTrac is clearly a medium-size
multi-language software system.

Similar to many other web-applications, JTrac implements the Model-View-
Controller (MVC) pattern. This is achieved using popular frameworks, such as
the persistence framework Hibernate9 for OR-Mapping and web-development
framework Wicket10 to couple views and controller code.

To illustrate the complexity of development of multi-language software system
from a developer’s perspective, lets consider an example extracted from JTrac.
JTrac’s login page (Figure 2.5) is implemented in three source code artifacts
in three different languages. The login page itself is described in HTML

9. http://hibernate.org
10. https://cwiki.apache.org/WICKET

20

http://hibernate.org
https://cwiki.apache.org/WICKET

C
C

Model

View

Controller

Component

C

Model

View

Controller

Component

C

Model

View

Controller

Component

OFBiz application

C

OFBiz framework

...

(a) OFBiz’ component architecture

widget
Scre-
en

widget
Tree

ser-
vices

C

Model

View

Controller

Component

java

bsh

ftl

groovy

entity
Eca

simple
Meth-
ods

widget
Form

widget
Menu

entity
Group

entity
model

(b) OFBiz component architecture and lan-
guage usage

Figure 2.6: OFBiz’ architecture in
a nutshell

(Listing 2.2), displayed messages are given in a properties file (Listing 2.2.1
to the left), and the logic evaluating a login is described in Java (Listing 2.2.1
to the right). The HTML code specifies the structure of the login page and its
contents, i.e., the order or basic layout of the input fields for login and password.
Since JTrac is built using the web-development framework Wicket, the HTML
code contains wicket identifiers, which serve as anchors for string generation or
behavior triggering, see lines 3, 4, 7, 8, and 10 in Listing 2.2. The properties
provide certain messages for the login page. For instance, the property on line 3
in Listing 2.2.1 provides the message string for line 3 of the HTML code. The
Java code (Listing 2.2.1 to the right) implements authentication logic. To focus
on the example, the actual authentication logic is not displayed. In order, to
correctly invoke the Java code, the corresponding accessor methods (lines 4 and
7), and mutator methods (not shown), must use a concatenation of get or set
and the capitalized name of the wicket identifiers on lines 4 and 8 in Listing 2.2
respectively.

Now, imagine a developer renaming the string literal login.loginName on line 3 in
the HTML code to login.loginID. Obviously, the relation between the properties
file (line 3) and the HTML file is now broken. In effect, the message asking for
a login name is not displayed correctly anymore. The mistake is only visible
at runtime. Observe that such small quiet changes of behavior can easily be
missed by testers. Similarly, renaming the string literal loginName on line 4 in
Listing 2.2 to loginID breaks a relation to the accessor getLoginName in the Java
file. The effect of this change is even more serious. JTrac crashes with an error
page.

Obviously, a more holistic view on JTrac incorporating the cross-language
relations11 (blue lines in Figure 2.5) could support developers in understanding
the impact of their actions when working on interrelated artifacts.

2.2.2 OFBiz – The Apache Open for Business Project

Open For Business (OFBiz) is an industrial-strength open-source enterprise
automation software project. Typical use cases for OFBiz are implementation
of ERP systems and online shops.

OFBiz is a large multi-language software system. Its code base is approximately

11. The explicit cross-language relations in the example of interrelated artifacts in JTrac, the blue
lines in Figure 2.5, correspond to the dance curves in Figure 2.4.

21

1 <entity entity�name="FinAccount " package�name="org.ofbiz.accounting.finaccount"
2 title ="Financial Account Entity"> < field name="finAccountId " type="id�ne"></field>
3 < field name="finAccountTypeId" type="id"></field>
4 < field name="statusId" type="id"></field>
5 ...
6 </ entity >

1 public static boolean validatePin(GenericDelegator delegator, String finAccountId, String pinNumber) {
2 GenericValue finAccount = null;
3 try {
4 finAccount = delegator.findByPrimaryKey("FinAccount ", UtilMisc.toMap("finAccountId ", finAccountId))

;
5 } ...

Figure 2.7: Two cross-language
cross-component relations in

OFBiz

300MByte large. It contains development artifacts in more than 30 DSLs
and GPLs. Further, it consists of nearly 5000 development artifacts. Unlike
JTrac, OFBiz is a component-based software system. Its basic distribution
contains currently around 30 coarse-grained components. OFBiz itself provides
a framework for running OFBiz applications. For convenience, I concentrate on
OFBiz applications and consider such applications as separate software systems.
Figure 2.6(a) depicts the component-based architecture of OFBiz applications.
Each OFBiz component follows the MVC design pattern. Figure 2.6(b) sketches
how different languages are used in the MVC architecture. The language names
are not detailed any further, see Paper B for more details. Here, the only
important fact is, that OFBiz applications are implemented using multiple
different languages.

Figure 2.7 shows an example of two relations between a development artifact
containing Java code validating a personal identification number and the data
model described in OFBiz’ XML-based DSL for data model. Both artifacts
reside in different components. OFBiz development artifacts are heavily in-
terrelated by relations linking string literals (see Paper B). For example, the
highlighted arguments of a method in the Java code (Figure 2.7, line 4) refer to
the corresponding names in the data model (lines 1 and 2). Such relations be-
tween development artifacts may cross language boundaries and the boundaries
of the MVC architecture. Even the boundaries of OFBiz components may be
crossed by such relations. This is illustrated in Figure 2.8. The red lines denote
relations between development artifacts across the different MVC architecture
levels, within and across components. The artifacts are not explicitly depicted.
Obviously, it exists an implicit relation graph interrelating development arti-
facts. Such implicit relations are problematic as they are not described explicitly.
Again, imagine a developer renaming finAccountId into finAccountIdentifier. At

Figure 2.8: OFBiz component
architecture and implicit relations

(red lines)22

development time, there is no feedback informing the developer that not only a
cross-language relation between artifacts is broken but also a relation crossing
component boundaries is broken. Clearly, such implicit relations hinder cus-
tomization and evolution of multi-language software systems and they hinder
replacement of components in component-based systems.

Development tools should support developers of multi-language software sys-
tem in their work by provision of a more holistic view on OFBiz, i.e., incor-
porating cross-language relations (blue lines in Figure 2.7) appropriately. As
the example of JTrac and OFBiz development illustrate, enhanced development
tools should generically support multi-language software system development
as the problem of interrelated artifacts is independent of any concrete domain.
Only the type of relations depends on the domain.

2.3 Contemporary Development Environments – Taming the Confusion of Languages

In this section I motivate my research from a tool builder perspective, using
illustrative examples.

As described above, contemporary development environments do not appropri-
ately support development of multi-language software systems. From a tool
builder perspective, the reason for this lack of support, is the way integrated de-
velopment environments (IDEs) represent heterogeneous development artifacts.
Usually, IDEs are parametrized with plugins of language development tools to
support new languages. These plugins contain separate editors, parsers, and
optional compilers, debuggers, etc. This is similar to word processors, which
are parametrized with dictionaries and grammar checking rules for various
natural languages. The illustrative analogy of IDEs for development of software
systems and word processors for writing of documents in natural language is
utilized in the following. Contemporary IDEs are comparable to word pro-
cessors. The latter usually support writers with spell checking and grammar
checking when writing text in a single natural language. For example, consider
the following two sentences12:

John left. He said he was ill.
Figure 2.9: Two interrelated

English sentences These sentences are in correct English. Since there is no violation of ortho-
graphical and grammatical rules, neither a word processor’s spell checker nor
grammar checker detect any errors. In focus of this thesis in the analogy from
a tool builder’s view, is: How do the spell checker and the grammar checker
work? What concepts do they need to implement?

Anaphoric references

John left. He said he was ill.

Coreferences

John

Figure 2.10: Two correctly
interrelated English sentences and

the type of relations
As illustrated before, an important concept for a spell and grammar checker

12. The example is adapted from plato.stanford.edu/entries/anaphora on anaphora.

23

plato.stanford.edu/entries/anaphora

are relations. In particular, relations between multiple sentences. Figure 2.10,
depicts the relations between the two sentences. There are two types of relations
between the noun “John” and the two pronouns “he” (highlighted words in
Figure 2.10). First, these three words are coreferences to the same thing, the
concept of a person or the precise person John. Additionally, the pronouns “he”
are anaphoric references. They are back-references to the noun “John”. Word
processors integrating modern natural language processing facilities [19] can
automatically establish and check coreferences and anaphoric references.

Anaphoric references

They left. He said he was ill.

Coreferences

Group Male

Figure 2.11: Two incorrectly
related English sentences and the

type of relations What word processors usually cannot check is evolution of interrelated sen-
tences. Think of modifying the noun “John” to the pronoun “They”, as in Fig-
ure 2.11. Both sentences on their own are still correct. But the previously
established relations are broken, since the pronouns “They” and “he” refer
to different concepts and the anaphoric references do not point to any noun
anymore. A word processor could mark the sentences and let the writer know
that two previously related sentences are now unrelated.

Listing 2.3: Two correctly
interrelated Java classes

1 package humans;
2 import java. util . List ;
3
4 public class Person {
5 public String name;
6 ...
7 }
8
9 public class Group {

10 private List<Person> members = new ArrayList<Person>();
11 ...
12 }

As this thesis is about software development, the natural language examples are
used for illustration only. In the realm of software development using contem-
porary IDEs and development tools, the previous natural language examples
can be transferred to the example of two interrelated Java classes Person and
Group, see Listing 2.3.

This example illustrates two correctly interrelated Java classes. Each class
is the equivalent of an English sentence in a software development scenario.
Obviously, the attribute member in class Group relies on two correct references
to the class Person (line 10). Similar to modification of “John” to “They” in
Figure 2.11, the relations are broken when the class Person is renamed, for
example, into Human, see Listing 2.4. Contemporary IDEs statically check
such relations by relying on abstract syntax trees and classpath information.
Broken relations are reported via error messages to developers. Contemporary
IDEs in combination with language development tools are good in supporting
developers in such single language settings. That is, there is not much to

24

Listing 2.4: Two Java classes with
broken relations

1 package humans;
2 import java. util . List ;
3
4 public class Human {
5 public String name;
6 ...
7 }
8
9 public class Group {

10 private List<Person> members = new ArrayList<Person>();
11 ...
12 }

research.

But what about if we switch to a polyglot setting? In the analogy to word
processors, it is about writing documents with interrelated sentences in various
languages. Figure 2.12 depicts the same example as in Figure 2.10, but now the
second sentence is in Danish (literal translation of “He said he was ill.”).

John left. Han sagde han var syg.

John

Figure 2.12: Two correctly
interrelated sentences in English

and Danish
Obviously, the two sentences contain the same relations apparent to a reader
literate in both languages. Unfortunately, contemporary word processors do not
provide grammar checking across language boundaries. Thus, modification of
the noun “John” to “They” breaks the relations just as in Figure 2.11, but no
grammar checker can provide any useful feedback to the writer. This example
transferred to the domain of software development highlights the lack of multi-
language support in contemporary IDEs and development tools. Figure 2.13
illustrates another excerpt of a Java class in JTrac describing the logic of a
login page (Listing 2.5) and an excerpt of an HTML file describing the login
page itself (Listing 2.6). There are two relations between the Java and the
HTML code between the marked fragments. I do not describe them in more
detail here, see Paper F a detailed description. I call such relations in software
development cross-language relations, see the following chapter (Section 3)
for more detailed definitions of such relations.

As demonstrated before, the cross-language relations between Java and HTML
code are broken when renaming either relation end to something other than title
or form respectively. Generally, contemporary IDEs do not support developers
in such a scenario. They do not statically check for correct cross-language
relations and they do not let developers navigate such relations. The problem in
general is: contemporary IDEs do not integrate various languages, their editors,
and tools with each other. From a tool builder perspective, the motivating
question is now, how to represent the interrelated languages and the relations
themselves to be able to build tools, which support developers in multi-language
settings?

Oh, look what the good lord for us has done

25

Listing 2.5: An excerpt of a Java
class describing a login page of a

web-application

1 public class LoginPage {
2 private static final Logger logger = ...
3
4 public LoginPage() {
5 setVersioned(false) ;
6 add(new IndividualHeadPanel().setRenderBodyOnly(true));
7 add(new Label("title ", getLocalizer().getString("login.title", null))) ;
8 add(new LoginForm("form "));
9 String jtracVersion = JtracApplication .get() .getJtrac () .getReleaseVersion();

10 add(new Label("version", jtracVersion)) ;
11 }
12 ...
13 }

Listing 2.6: HTML code excerpt
describing a login page

1 <html>
2 <head>
3 < title wicket: id="title "></title>
4 <link rel="stylesheet" type="text /css" href="resources/jtrac .css"/>
5 <link rel="shortcut icon" type="image/x�icon" href="favicon.ico"/>
6 </head>
7 <body>
8 ...
9 <form wicket:id="form " class="content">

10 ...
11 </form>
12 ...
13 </body>
14 </html>

Figure 2.13: Interrelated
multi-language source code in

Java and in HTML

each day he gives us the rising sun.
You don’t have to find yourself sunlight
or the moon and stars that guides your way at night.
So, the best things in life ’s for free,
I say the best things in life ’s for free.

“Oh, look what the good lord for us has done
each day he gives us the rising sun.
You don’t have to find yourself sunlight
or the moon and stars that guides your way at night.
So, the best things in life ’s for free,
I say the best things in life ’s for free.”

The Heptones, The Best Things in Life

26

http://www.youtube.com/watch?v=Q6mnqL3NRag

3 Terminology

The following sections introduce necessary terms and concepts to understand
and relate the contributions of the research papers (Papers A to G). Further-
more, the given terms harmonize notions across the publications. This chapter
contains already parts of the contributions of this dissertation that need to be
introduced here to allow for discussion of the papers themselves. For exam-
ple, Section 3.3 and Section 3.4 summarize contents of Paper F to introduce
terminology required in the following chapters.

3.1 Characteristics of Development Artifacts

Generally, a software system consists of a number of separate programs, con-
figuration files, documentation, etc. [113]. All of these are usually stored in
various files. I uniformly call such files (software) development artifacts or
just artifacts.

Definition 1 (Software Development Artifact)
Software development artifacts are all files, which are created, edited, or
modified by humans or machines with the purpose to develop, customize, or
modify a software system. Such files may contain source code, models, plain
text, images, etc. A collection of development artifacts is heterogeneous if they
are instances of different languages (see Definition 2).

The term mogram [75] denotes a similar, but a little more restricted notion of
development artifacts. Mograms are just models and programs with no further
distinction [76]. Especially, in Papers D to F, I use the term mogram.

In my thesis I use a very broad definition of language. I consider any develop-
ment artifact, such as text files, program sources, models, etc. as sentences of
languages.

Definition 2 (Language)
A language is a set of sentences. Each sentence is a collection of symbols,
where symbols are usually alphanumerical characters.

Sentences can be fragmented. Fragments are just sequences of symbols in a
sentence.

27

Language

Language
Representation

*

1

Language
Definition * *

*

*

defines

adheres to

represents

represents

fills

fills

Figure 3.1: The concepts of
language, language definition,

language representation, and their
relations

Definition 3 (Language Definition)
A language definition is a formal way to specify which sentences belong to a
language.

Usually, language definitions are given by formal grammars, which explicitly
specify which sentences belong to a language. However, I consider any com-
puter program that parses development artifacts as language definitions, since
such programs implicitly specify the set of sentences belonging to a language.

In this thesis I work with abstractions of languages as i want to work with
development artifacts in different languages generically. So, the central concept
to tackle the research questions stated in Section 5 is abstraction of devel-
opment artifacts and languages to more abstract representations. In fact, my
thesis is strongly influenced by the credo “Everything is a model” [24] when
representing languages and development artifacts in multi-language software
systems.

Definition 4 (Language Representation)
A language representation is a data structure specifying the set of abstract
concepts of languages and their relations.

In general, I distinguish two groups of language representations. These are
lexical and syntactic language representations. A lexical language repre-
sentation, represents any development artifact of any language as a stream
of characters. Whereas, syntactic language representation, relies on data
structure like trees and graphs to describe concepts and their relations. Often,
metamodels are used for specification of syntactic language representations.

Obviously, the concepts language, language definition, and language represen-
tation are not independent of each other. Figure 3.1 illustrates the relation of
the concepts, saying that each language has multiple language definitions and
multiple language representations. On the other hand, any language definition
defines exactly one language but any language representation potentially repre-
sents many languages. Note, Figure 3.1 does not depict a metamodel, but just
an illustration for ontological disambiguation.

The relation between language definition and language representation is also
described by others [5, 76]. In both works, the authors state that grammars and
metamodels can be considered as equivalent concepts as they can be mapped
to each other. Actually, the authors describe, that out of grammar rules meta-
model concepts can be generated, usually resulting in quite concrete language
representations. Furthermore, out of metamodel concepts, grammar rules can
be generated under incorporation of further information, for example, the used
symbols. The last constraint demonstrates, that language representations are a

28

Block

content : String
Element

elements0..*

<<instanceOf>> <<instanceOf>>

 public void helloWorld() {
 ...
 }

Java

<<instanceOf>> <<instanceOf>>

John left. He said he was ill.

Natural Language

Type Abstraction Word Abstraction

visibility:Visibility
modifiers:List<Modifiers>
name:String

Method

Class

methods0..*

Sentence

Noun
np0..*

Adjective
adjp0..*

Verb
vp0..*

content : String
Word

sentences
Text

0..*

Figure 3.2: Type abstraction and
word abstraction, two orthogonal

abstraction mechanisms “weaker” concept compared to language definitions. Due to information loss
in the process of abstraction, language representations cannot always generate
valid sentences in the language they represent. Language definitions are needed
to populate a language representation.

Even though very interesting, the question if there exist languages without
description and representations is not discussed here. It is out of scope of this
dissertation.

Obviously, there exist many languages. On computers interaction with devel-
opment artifacts is based on tools, such as editors and the like. All these tools
encode language definitions rendering any artifact on a computer a sentence of
a language. Additionally, depending on the tool processing an artifact, devel-
opment artifacts can be instances of many languages. For example, a Java 5
program is also a Java 6 program. Independently of tools, development artifacts
can also be represented in many ways. For example, a development artifact
containing a program in Java 5 can be represented as instance of the MoDisco
Java 5 model [28], as instance of the JaMoPP Java 5 model [60], or as instance
of my Java 5 model (Paper B). All three models are different representations of
the same language.

In general, there exist even more languages. In computer sciences it is often
distinguished between natural and formal languages. Natural languages are
languages like English, Danish, etc. They are used by people to communi-
cate and they evolve, by people informally agreeing on a languages structure.
Precisely, natural languages are not described formally. In contrast, formal
languages, are artificial languages defined by formal language definitions and
language representations, such as Java 5 in the example above.

Only formal languages are of interest in this thesis. Thus, in the remainder, I
use the terms language and formal language synonymously. However, even
natural languages, can be represented formally by sufficiently abstract language
representations. This is illustrated in the following example.

Consider the example of Java and natural language in Figure 3.2 (centered). A
Java method declaration has a visibility, modifiers, a name, and it resides in a
class (not illustrated in concrete syntax). This domain knowledge is captured
in the example Java language representation (top left). A natural language
text however consists of sentences, which in turn consists of nouns, verbs,
and adjectives. The simple English language representation in Figure 3.2
(bottom left) keeps this domain knowledge. On the other hand, Java method

29

name, age

name : String
age : int

Person

class Person {
 public String name;
 public int age;
}

class Person {
 var name
 var age
}

cognitive abstraction

concrete
syntax

textual

visual

Figure 3.3: The same language
concept in different concrete

syntaxes mapped to their level of
cognitive abstraction (Figure

extended from [65])

declarations and the natural language sentences can be represented by a common
model capturing the structure of both artifacts but neglecting their language
specific differences, see Figure 3.2 to the right. This example illustrates, that
development artifacts may be instances of many languages and that there may be
different language representations for them. Furthermore, it demonstrates that
two orthogonal abstraction mechanisms exist. First, type abstraction [130], also
referred as ontological metamodeling [15] or logical metamodeling [14], and
second, word abstraction [130], also referred as linguistic metamodeling [15] or
physical metamodeling [14]. Type abstraction is a unifying abstraction which
describes domain concepts along with their properties, whereas word abstraction
is a simplifying abstraction, describing structures of sentences or structures of
sequences of symbols. According to Colburn [31], the fundamental difference
of both abstraction types lies, in relying on content or on form for abstraction.
Any of the two abstractions can be applied at the same time to create any type
of language representation. Obviously, in type abstraction a Java method and
natural language sentences are distinguishable by their corresponding language
concepts, whereas in the more generic word abstraction this information is lost.

Abstraction of arbitrary languages into language representations is a key concept
applied in this thesis. Abstraction is a powerful tool as it allows to build generic
tools integrating diverse languages with each other.

The previous example illustrates an informal criterion for language characteriza-
tion. The abstraction level of a language. The level of abstraction informally
groups languages into more concrete and more abstract languages. In a com-
mon understanding, more concrete languages encode more information and
more details compared to more abstract languages. For example, in Figure 3.2
the block language (right) is more abstract compared to the two languages on
the left.

Another example for languages on different levels of abstraction are UML
class diagrams and Java. UML class diagrams are more abstract than classes
in Java. The abstraction levels of UML and Java illustrate, that in software
development more abstract languages are usually used in early development
phases, whereas more concrete languages are usually used in later phases.
Furthermore, in model-driven development, transformation chains formed by
code generators and code transformations, most often transform artifacts in
more abstract languages into artifacts in more concrete languages.

30

1 /* *
2 * Sets the passed Model the specified slot. Removes the model currently set to the specified slot .
3 *
4 * @param slotName
5 * The slot ’s name.
6 * @param value
7 * object to store in the slot (set <code>null</code> to remove the slot)
8 */
9 void set(String slotName, Object value);

Figure 3.4: Javadoc, an
embedded DSL. Source: the

interface WorkflowContext.java in
package org.eclipse.emf.mwe.core

of the Eclipse bundle with the
same name

In addition to level of abstraction, languages can be categorized1 by their
appearance, i.e., by their concrete syntax.

Definition 5 (Concrete Syntax Types)
A language with visual concrete syntax uses visual symbols, such as shapes,
lines, etc. to represent language concepts. Additionally, alpha numeric char-
acters may be used. A language with textual concrete syntax solely uses
alphanumerical characters to represent language concepts.

For brevity, I call languages according to their concrete syntax either visual or
textual languages. Visual languages occur frequently in software engineering.
They are usually used for high-level problem description and clarification of
structures and behaviour. Often, visual languages are not formally defined. For
example, until recently the Unified Modeling Language (UML) was defined
in natural language documents only. Other languages are defined formally,
especially those implemented in tools running on computers.

Especially in Paper A, I claim that visual languages do not actually exist on
computers. Even if tools present development artifacts in visual concrete syntax,
these artifacts are always persisted in textual concrete syntax. That is, visual
concrete syntaxes are only visualizations, i.e., rendered representations, of
textual languages. Consequently, also for visual languages my definitions of
language (Definition 2) and development artifact (Definition 1) apply.

Interestingly, a form of abstraction, cognitive abstraction, is applied in creation
of concrete syntaxes too. For example, Figure 3.3 illustrates the same language
concept, a person on one level of abstraction, in four different concrete syntaxes.
Illustrated on bottom of Figure 3.3 are two textual concrete syntaxes for the
concept person in concrete syntax of Java and Scala respectively. On top
of the same figure, are two visual concrete syntaxes in UML class diagram
syntax and a custom visual syntax. It seems, that in software engineering, more
abstract languages have concrete syntaxes which are more cognitively abstract.
However, cognitive abstraction is an informal characteristic of concrete syntaxes
and strongly individual.

Formal languages can be further divided into domain-specific languages (DSL)
and general-purpose languages (GPL).

Definition 6 (Language Types)
Domain-specific languages (DSL) are languages tailored to a particular do-
main. DSLs are often not Turing complete. That is, they may not be usable

1. The categorization is somewhat informal and may be debated philosophically. Think for
example, of ancient Egyptian hieroglyphics. Are hieroglyphs characters in visual or textual
languages? Similarly, Chinese characters (Han characters) or Japanese characters (Katakana
characters), are on the border between visual and textual languages, from a European point of
view. However, I do not detail the discussion here.

31

DSL GPL natural
textual

visual

language

concrete
syntax

language
abstraction

level

development
phase

Figure 3.5: Space spanned by
properties of development artifacts

to describe general computation problems, as they most typically lack control
structures like loops, conditions, etc. In contrast to DSLs, General-purpose
languages (GPL) are Turing complete languages, that can describe general
computation problems.

Note, most GPLs have textual concrete syntax. GPLs with visual concrete
syntax exist but they are quite rare. For example, LabView’s G language2 is a
GPL with visual concrete syntax.

Languages can be mixed together by embedding one language into another.
For example, Javadoc is an embedded DSL in Java. Listing 3.4 shows an
example of Javadoc code on a method declaration within an interface. For
example, @param is a keyword of the DSL stating method parameters. Javadoc
is an embedded DSL since it extends means of the Java Language, namely
comments and annotations, for its definition. Interestingly, in the example,
Javadoc contains fragments of HTML code; <code> and </code> are HTML
tags. Here, HTML is a DSL embedded into Javadoc, which in turn is embedded
into Java.

Domain-specific languages can be categorized into internal and external
DSLs [115, 49]. Internal DSLs are languages which are embedded into a
host language. They reuse mechanisms of the host language for its definition.
The terms internal and embedded DSL are often used synonymously. Exter-
nal DSLs are languages that are specified without a host language. Separate
dedicated tools, e.g., parsers, interpreters, etc., are used to process them. For
this thesis, the categorization of languages into internal and external DSLs and
the categorization in DSLs and GPL is not central. The tools and research
papers forming this thesis rely only on the fact development artifacts can be
represented by dedicated language representations. The language representa-
tions for development artifacts possibly containing internal DSL code, is likely
independent of the host language anyways. Thus, the language representation is
responsible for representing fragments of an internal DSL to a sufficient extend.
The latter is elaborated further, especially in Paper F in the discussion about
language representations.

The information given in this section allows to define a four-dimensional space,
of development artifacts, see Figure 3.5. This space is spanned by the di-
mensions for level of language abstraction, language type, concrete syntax,
and development phase. Development artifacts are points in this space corre-
sponding to their properties and their usage in a software development process.

2. www.ni.com/labview

32

www.ni.com/labview

First, development artifacts contain sources in a certain language ranging from
domain-specific over general-purpose to natural languages. All these languages
may differ in their concrete syntax, i.e., they are visual or textual languages. All
development artifacts describe system aspects on a different level of abstraction,
placing them on different levels of language abstraction. Lastly, they may be
tied to different development phases.

3.2 The Internal Structure of Software Systems

Modern software systems grow larger and larger. They deal with more and
more complex tasks and they often reuse legacy systems, frameworks, etc.
Ultra-Large-Scale Software Systems [41] or Systems of Systems are predicted to
appear in future.

I define the size of a software system by the number of development artifacts
present at development time. Medium-size software systems are composed out
of multiple hundreds of development artifacts. Large-scale software systems
are composed out of multiple thousands of development artifacts. In this thesis
I address development of medium-size and large-scale multi-language software
systems.

The times of developing large software systems using a single or only few
languages are long over. Regardless of the used language and the level of
abstraction, contemporary systems are constructed out of development artifacts
containing requirements documents, documentation documents, models, source
code, etc. Furthermore, in multi-language software systems problems are usu-
ally solved by deploying appropriate languages for certain tasks. For example,
contemporary systems utilize different languages for database definition and
database access, for specification of business logic and for definition of views
on data. As they grow over time, legacy systems often evolve into large-scale
multi-language software system. They get adapted to new use cases, new tech-
nological environments, or are simply customized by wrapping ever-new layers
of development artifacts in new languages around a legacy base.

Definition 7 (Multi-language Software Systems)
Multi-language software systems are software systems, which are composed out
of development artifacts in various languages. Each language may be used for
a special purpose and in a different phase of development.

Software systems can be defined more formally with respect to the space for
development artifacts described in Section 3.1. Software systems are planes in
the four-dimensional space (Figure 3.5), given by language, language abstrac-
tion, concrete syntax, and development phase, since only one language is used
for their development. Thus, multi-language software systems are hypercubes
in the same four-dimensional space. They are defined by development artifacts
and their relations, which are all laid out in this space.

3.3 Relations between Development Artifacts

As demonstrated by the examples of JTrac and OFBiz in Section 2.2, software
systems are not only collections of development artifacts. Instead, they are
collections of interrelated development artifacts. Correct relations are key to

33

run a software system with the expected behavior.

Definition 8 (Relation)
Two fragments of distinct development artifacts are in relation to each other as
soon as an operation during development either requires the presence of both
fragments or the operation produces one fragment by relying on the other.

In the definition above I refer to operations performed manually by humans,
automatically by machines, or semi-automatically by both of them. For example,
a developer needs a UML use case diagram and an API documentation to
produce a certain piece of source code. The UML use case diagram and the
API documentation are in relation to each other, since the developers performed
an operation reusing both artifacts. Furthermore, the source code, the UML use
case and the API documentation are in relation to each other as the latter are
used to produce the resulting source code.

My definition of relations between development artifacts is somewhat similar to
the one given by Salay et al. [109]. They define relations between models based
on model semantics. Two models are in relation if the interpretation of one
model constrains the possible interpretations of the other one. In my definition
these interpretations are externalized into the operations requiring the presence
of artifacts or their fragments.

Relations between development artifacts can be formal or informal, depending
on availability of the operation causing relations between development artifacts.

Definition 9 (Formality of Relations)
Formal Relations are relations between development artifacts which are
caused by a formal execution of the operation causing the relations. So, ei-
ther a machine in combination with a program performing the operation is
available or the operation is executed by humans in a documented process.
Informal Relations are non-formal relations. That is, the operation interre-
lating development artifacts is not formally available. It only exists in human
interpretation.

Informal relations are weak, as the perception of when artifacts are in relation
is biased by individuals inspecting the corresponding development artifacts.

On top of formality, relations between development artifacts can be explicit or
implicit.

Definition 10 (Explicit and Implicit Relations)
Explicit relations are relations described explicitly either within a development
artifact or in a separate development artifact. Implicit relations are non-
explicit relations. They are established by execution of computer programs
or by manual operation application, but they are not directly accessible to
developers or other tools.

For example, consider a model transformation generating Java classes out
of a UML class diagram. The relations between the UML classes and Java
classes are formal implicit relations, as no artifact explicitly represents relations
between corresponding classes. However, the relations are formally specified by
the transformation itself but they are hidden in the transformation code. Assume,
the transformation is not available anymore. Then the UML and Java classes

34

are in informal implicit relation. Of course the artifacts are still in relation
but the relations are now subject to human interpretation. On the other hand
think of the same model transformation additionally generating a relation model
linking each UML class with the corresponding Java class. The relations in the
generated relation model are formal explicit relations, when both transformation
and relation model are available. The UML and the Java classes are in informal
explicit relation when the UML class diagram the generated source code and the
relation model are readily available but the transformation itself is not available
anymore. Implicit relations are not important to execute a software system. But
the availability of explicit relations is important for developers working on or
evolving a software system.

Relations between development artifacts have orthogonal characteristics de-
pending on the abstraction level of the used languages. Development artifacts
are in a view relation if they describe the same aspect of a software system from
a different perspective at the same level of abstraction. Whereas, development
artifacts are in refinement relation if they are concerned about the same system
aspect on different levels of abstraction. Recall, development artifact relations
are caused by operations applied to them. For example, model transformations
are automatic operations setting development artifacts in relation. The property
of orthogonality is also observed by Mens et al. [88] in their taxonomy of model
transformations. Amongst others, the authors identify horizontal and vertical
model transformations. Both transformations are characterized by the level of
abstraction of the transformed models. Models on the same level of abstraction
are transformed by horizontal transformations and models on different levels of
abstraction are transformed by vertical transformations.

For example, UML class diagrams and UML activity diagrams may be in view
relation, as they may describe the same aspect of a system from a different
perspective. They are a structural and a behavioral description of a system
aspect3. View relations are horizontal relations with respect to the development
space (Figure 3.5). During the development process, development artifacts
usually refine each other. For example, a requirements document in natural
language is refined to a design document, containing UML class diagrams. A
design document in turn is refined to source code in a GPL. Here, refinement
itself is the operation setting the artifacts into a refinement relation. Thus,
refinement relations are vertical relations with respect to language abstraction.
Refinements of development artifacts can be generated manually by humans or
automatically by transformation and generation programs. Manual refinements
are problematic in software development, since the relations from artifacts on
high abstraction level to concrete artifacts are left to human interpretation. Such
relations are especially prone to complete misunderstanding.

Chronologically ordered relations between development artifacts are called
traces.

Definition 11 (Traceability)
Traceability refers to the capability for tracing artifacts chronologically along
a set of chained operations. [100]

Note, traces are enriched relations. They can be formal or informal too.

The characteristics of relations between development artifact discussed so far,

3. Paper C provides an example for a view relation between a model and a UML activity
diagram.

35

reflect the big picture of development of software systems. However, all of these
relations are caused by fragments of development artifacts which are in relation.
Precisely, fragments of development artifact are in relation to each other, due to
some operation during software development, which requires the presence of
the fragments or produces one out of the other. I refer to the fragments linked by
relations as relation ends. I observe the following three fundamental types for
relations. They are described in more detail in Paper D, Paper E, and Paper F.

Definition 12 (Basic Relation Types)
A relation between two fragments f and g in distinct development artifacts
is a fixed relation, if f = g. It is a string-transformation relation, if the two
fragments are similar, i.e., if there exists a transformation T , so that f = T (g)
and T is not the identity function. It is a free relation, if the two fragments
are diverse, i.e., if the relation is neither a fixed nor a string-transformation
relation.

Note, this does not mean that all identical fragments of various development
artifacts are necessarily in relation to each other. Only if an operation during
software development requires the presence of the fragments or produces one
out of the other, they are in relation.

Fixed relations occur frequently in practice. For example, a link in HTML
requires an anchor name and a link tag name to be identical. Otherwise, the
link is broken. HTML links are an example of fixed relations within the same
language. Recall Figure 2.13, it shows an example of two fixed relations across
language boundaries between the identical fragments title and form respectively.

String-transformation relations are also quite common. For example, the Wicket
framework requires certain identifiers in HTML files to have an accessor and
a mutator method (get- and a set-method) in a corresponding Java class, see
Paper E for a more detailed description. In Figure 2.5, the Wicket identifier
loginName (Listing 2.2 line 4) requires a method with the name getLoginName
and setLoginName in the corresponding Java class (Listing 2.1, lines 4 and 7).
Depending on the direction, a string-transformation relation either attaches or
removes get/set and capitalizes or decapitalizes loginName.

Fixed and string-transformation relations can be broken by modifying one rela-
tion end without modifying the opposite relation end accordingly. I sometimes
refer to broken relations as dangling references.

On top of these basic relation types that reflect physical properties of artifact
fragments, there may be many more relation types. I consider them domain-
specific and discuss other possible relation types in related work (Section 4.3)
and in Paper F. However, domain-specific relation types are not in focus of
my thesis as I am interested in fundamental generic support of multi-language
software system development.

Correctly interrelated development artifacts, i.e., relations that are not broken,
are necessary to let computers execute software systems as expected. That
is, compilers and interpreters need correctly interrelated development artifacts
to run a program. In generative and transformative settings more abstract
development artifacts need to be correctly interrelated since code generators
and transformers serve as compilers in such settings. Frameworks and other
programs present at runtime can impose further constraints on how development
artifact need to be interrelated, see Paper E.

As indicated above, relations between development artifacts may or may not

36

Listing 3.1: An explicit relation
model corresponding to

Figure 2.13

1 RelationModel {
2 Artifact " / jtrac /src/main/java/ info / jtrac /wicket/LoginPage.html" {
3 keys A, B;
4 }
5 Artifact " / jtrac /src/main/java/ info / jtrac /wicket/LoginPage.java" {
6 references C, D;
7 }
8
9 Key "A" </ jtrac /src/main/java/ info / jtrac /wicket/LoginPage.html> {

10 [" // @document/@webpagebody/@head/@items.0/@parameter.0/@value"]
11 }
12 Key "B" </ jtrac /src/main/java/ info / jtrac /wicket/LoginPage.html> {
13 [" // @document/@webpagebody/@body/@tag.2/@parameter.1/@value"]
14 }
15
16 Reference "C" </jtrac /src/main/java/ info / jtrac /wicket/LoginPage.java> {
17 [" // @class.0/constructor.0/@expressionstatement.2/@newconstructorcall/@expression/@stringreference"]
18 }
19 Reference "D" </jtrac /src/main/java/ info / jtrac /wicket/LoginPage.java> {
20 [" // @class.0/constructor.0/@expressionstatement.3/@newconstructorcall/@expression/@stringreference"]
21 }
22
23 Relation A <� C [FIXED]
24 Relation B <� D [FIXED]
25 }

cross language boundaries. That gives rise to the following two relation cate-
gories:

Definition 13 (Language Relation Categories)
Intra-language relations are relations between development artifacts of the
same language. Cross-language relations (CLR) are relations between devel-
opment artifacts of the different languages.

As if the four-dimensional space for development artifacts were not enough,
the previous section detailed, that all artifacts in in a software system do not
exist on their own. Instead, they are interrelated. The stress field between
development artifacts in all their variety and different relations amongst them
creates the Confusion of Languages in software development. Multi-language
Software System developers suffer from the confusion of languages similarly
to biblical notions illustrated in Figure 1. Provision of appropriate tools for
development of multi-language software systems will improve their situation.
So in this thesis, I focus on how tools can support multi-language software
system development with arbitrary languages and various relations between
development artifacts.

3.3.1 Relation Models – Explicit Relation Representation

As discussed previously, relations between development artifacts are usually
not described explicitly. This is problematic as developers are not aware of po-
tential relations. Furthermore, tools supporting development of multi-language
software systems benefit from explicit relations, as they can exploit them to
provide feedback to developers. For example, in form of static checking and
visualization of relations between development artifacts.

In this section, I introduce four techniques to explicitly represent relations
between artifacts (Definition 10). The four techniques are a result of a literature
survey in Papers D and F. Their identification and the given examples are
already contributions of my thesis. However, they are introduced here to
facilitate comprehension of Chapter 6.

37

Listing 3.2: An excerpt of a Java
class with link tags

1 public class LoginPage {
2 private static final Logger logger = ...
3
4 public LoginPage() {
5 setVersioned(false) ;
6 add(new IndividualHeadPanel().setRenderBodyOnly(true));
7 add(new Label(@link(in(../LoginPage.html), target(wicket:title)),
8 getLocalizer () .getString(" login . title " , null))) ;
9 add(new LoginForm(@link(in(../LoginPage.html), target(wicket:form))));

10 String jtracVersion = JtracApplication .get() .getJtrac () .getReleaseVersion();
11 add(new Label("version", jtracVersion)) ;
12 }
13 ...
14 }

Listing 3.3: An excerpt of HTML
code with relation anchor tags

1 <html>
2 <head>
3 < title @anchor(wicket:title)></ title >
4 <link rel="stylesheet" type="text /css" href="resources/jtrac .css"/>
5 <link rel="shortcut icon" type="image/x�icon" href="favicon.ico"/>
6 </head>
7 <body>
8 ...
9 <form @anchor(wicket:form) class="content">

10 ...
11 </form>
12 ...
13 </body>
14 </html>

Figure 3.6: Multi-language source
code in Java and HTML

(corresponding to Figure 2.13)
interrelated via tags

Definition 14 (Explicit Relation Model)
An explicit relation model is an artifact, which contains explicit links interre-
lating fragments of various development artifacts.

An explicit relation model can be seen as a graph, whose edges are the relations
and whose vertices are the relation ends in development artifacts. Actually, an
explicit relation model resembles a lot the illustration in Figure 2.13. The blue
lines are an explicit relation model with two cross-language relations connecting
the highlighted relation ends. Listing 3.1 illustrates a possible explicit relation
model in a textual concrete syntax. The relation model is described in more
detail in Paper D. It contains two fixed relations (lines 23 and 24) between two
relation ends (references and keys) respectively. Note, the relation ends in this
model are named (A, B and C, D) and they refer to the development artifacts
containing them (lines 9 to 11, 12 to 14, 16 to 18, and 19 to 21).

Paper F and Section 4.2.1 discuss, that explicit relation models are, especially in
model-driven development, often utilized to represent relations between model
elements.

Alternatively, explicit relation models can be represented by tags, similar to
HTML link tags. In HTML, link tags can be used to specify relations between
fragments of other HTML documents or entire artifacts. Such kind of tags are
conceivable for non-hypertext systems too.

Definition 15 (Tags)
A tag-based relation model marks interrelated fragments directly within het-
erogeneous development artifacts. Relations are expressed by link tags which
refer to anchor tags.

Listing 3.6 illustrates an exemplary explicit relation model based on tags. The

38

Listing 3.4: A Tengi interface
corresponding to LoginPage.java

1 TENGI LoginLogic ENTITY "LoginPage.java" [
2 IN: { loginTitleHTML, loginFormHTML }; CONSTRAINT: loginTitleHTML & loginFormHTML;
3 OUT: { loginTitleJava , loginFormJava}; CONSTRAINT: loginTitleJava & loginFormJava;
4]{
5 LOCATOR loginTitleJava IN "LoginPage.java" OFFSET 198 LENGTH 5;
6 LOCATOR loginFormJava design IN "LoginPage.html" OFFSET 278 LENGTH 4;
7 }

Listing 3.5: A Tengi interface
corresponding to LoginPage.html

1 TENGI LoginView ENTITY "LoginPage.html" [
2 IN: { loginTitleJava , loginFormJava}; CONSTRAINT: loginTitleJava & loginFormJava;
3 OUT: { loginTitleHTML, loginFormHTML}; CONSTRAINT: loginTitleHTML & loginFormHTML;
4]{
5 LOCATOR loginTitleHTML IN "LoginPage.html" OFFSET 27 LENGTH 17;
6 LOCATOR loginFormHTML design IN "LoginPage.html" OFFSET 244 LENGTH 16;
7 }

Figure 3.7: Interfaces interrelating
the Java and in HTML code from

Figure 2.13
example is based on Figure 2.13. Obviously, the artifacts are modified to store
anchor tags (@anchor) in HTML sources and link tags (@link) in the Java
sources. Link tags specify relations to the corresponding opposite relation ends
marked with anchor tags.

Fragments of development artifacts can also be interrelated, by explicitly spec-
ifying relation ends and their relations in interfaces. Imagine interfaces as
tagged relation ends, as in tag-based relation models, which decoupled from
the corresponding development artifacts.

Definition 16 (Interfaces)
Interface-based relation models explicitly define fragments and their relations
in interfaces. Interfaces are separate artifacts accompanying interrelated
development artifacts.

Listing 3.7 illustrates two interfaces for the interrelated Java and HTML sources
of Figure 2.13. The interfaces are expressed in the Tengi interface DSL, see
Paper C. Tengi interfaces define relation ends in corresponding development
artifacts (ENTITY) as ports (LOCATOR). Out-ports (OUT) specify which relation
ends are provided to the environment and in-ports (IN) specify which relation
ends are required from the environment. Constraints (CONSTRAINT) specify
how development artifacts are in relation to each other.

Unlike the three relation models presented so far, which directly refer to relation
ends, relations can also be specified based on search queries. Search queries
refer relation ends indirectly. They need to be evaluated before relations between
concrete relation ends are established.

Definition 17 (Search-based Relation Models)
Search-based relation models represent relations between fragments of de-
velopment artifacts via queries locating fragments and constraints between
the query results, describing the relations themselves. Only after query and
constraint evaluation, relation instances are established.

Listing 3.6 illustrates a search-based relation model. It is expressed in the Coral
DSL (Paper F), which allows for specification of constraints for cross-language
relations.

The listing illustrates a relation between a string reference in Java and a param-
eter in HTML (lines 9 to 15). The actual constraint is implemented in Groovy.

39

Listing 3.6: A search-based
relation model interrelating the
Java and HTML sources from

Figure 2.13

1 java {
2 StringReference is org.emftext.language.java.references.impl.StringReferenceImpl;
3 }
4
5 html {
6 StringValParameter is html.impl.StringValParameterImpl;
7 }
8
9 fixed : StringReference::value in java <��> StringValParameter::value in html with

wickedIDsInJavaConstructors
10 is info display "Wicket IDs in Java constructor call . " implementation "
11 def constructorCallContainer = leftHand.getConstructorContainer()
12 if (rightHand.name.equals("wicket:id") && constructorCallContainer instanceof NewConstructorCall &&

leftHand.value.equals(rightHand.value)) {
13 return true
14 }
15 return false "

It says that a string reference in Java and a parameter in HTML are in relation
as soon as their values are identical and the string reference in Java appears in a
constructor call. Obviously, in search-based relation models, relations between
artifacts are specified on metalevel. Evaluation of the cross-language relation
constraint (line 9) establishes the two relations illustrated in Figure 2.13.

Languages for Specification of Relation Ends. Different languages can be
utilized to identify relation ends. Based on the examples for the four differ-
ent relation models discussed above, I observe three different kinds of such
languages.

Physical Navigation The interface-based relation model in Figure 3.7 specifies
relation ends by locating fragments via an offset and length in a stream
of characters. In that case development artifacts are in a lexical language
representation.

Path Navigation The explicit relation model in Listing 3.1 utilizes uniform re-
source identifiers (URIs) to specify relation ends in development artifacts.
Development artifacts with syntactic language representations allow to
specify of relation ends by path expressions navigating the data structure
of the language representation.

Query Evaluation The search-based relation model in Listing 3.6 specifies
relations via queries and constraints. The queries and constraints require
syntactic language representations, as they encode relations on top of
structural and type information of the language representation.

Obviously, the language for specification of relation ends is influenced by
the language representation. Please refer to Paper F for more detailed infor-
mation on language representations and representation of relations between
development artifacts.

Inference of Relation Models. Relations and relation models do not neces-
sarily need to be specified manually. Instead, they can be inferred automatically
or semi-automatically. The inference may either rely on the static properties of
a system, i.e., its development artifacts, or on its dynamic behavior. By query-
ing the development artifacts in a code base together with knowledge about
language constructs causing relations between artifacts, relation models can be

40

inferred out of artifacts themselves. Especially Papers B and F demonstrate
the application of inference of relation models out of development artifacts.
Furthermore, if relations are first present at runtime, e.g., trace links, they can
be inferred by observing the programs processing development artifacts. That
is, relation models can be inferred by instrumentation of programs. Papers A
and G apply inference by instrumentation.

3.4 Software Development Tools

Contemporary software systems are most often constructed with the help of one
or more software development tools. Software development tools are anything
from simple text editors to full-fledged IDEs, which are utilized to edit, modify,
or develop artifacts in software systems.

Definition 18 (Integrated Development Environment)
IDEs are software development tools, which integrate development artifact
editors with other tools, such as, debuggers, build tools, etc.

One of the fundamental problems addressed in this thesis is that existing IDEs
do not directly support development of multi-language software systems. That
is, they do not generically integrate editors and software development tools
across language boundaries with each other.

Usually, existing software development tools support developers with certain
mechanisms to effectively perform their tasks. For example, contemporary
IDEs statically check source code and report the results to developers, IDEs let
developers navigate source code, or they visualize certain aspects of software
systems.

Definition 19 (Support Mechanisms)
Language support mechanisms are all mechanisms provided by software de-
velopment tools, which support developers constructing software systems in
a single language. Cross-language support mechanisms are all language
support mechanisms, which are accessible across language boundaries.

Paper F and Chapter 4 survey various IDEs, programming editors, and literature
to collect a set of contemporary language support mechanisms.

Definition 20 (Multi-language Development Environment (MLDE))
MLDEs are IDEs implementing cross-language support (CLS) mechanisms.
That is, MLDEs integrate editors and other language specific tools across
language boundaries with each other.

Cry tough, don’t you know you’re getting old.
Cry tough, don’t you don’t you know you’re getting slower.
How can a man be tough, tougher than the world tougher than the world?
For if he’s rough, he’s against the world he’s against the world.
Cry tough, don’t you know you’re getting old.
Cry tough, don’t you don’t you know you’re getting slower.
How can a man be tough, tougher than the world tougher than the world?
For if he’s rough, he’s against the world he’s against the world.
Cry tough, don’t you know you’re getting old.

41

Cry tough, don’t you don’t you know you’re getting slower.
How can a man be tough, tougher than the world tougher than the world?
For if he’s rough, he’s against the world he’s against the world.

“Cry tough, don’t you know you’re getting old.
Cry tough, don’t you don’t you know you’re getting slower.
How can a man be tough, tougher than the world tougher than the world?
For if he’s rough, he’s against the world he’s against the world.”

Alton Ellis, Cry Tough

42

http://www.youtube.com/watch?v=WnrBaMsFqU0

4 The Design Space of
Multi-language Development

Environments

In this chapter I survey the state of the art in development of multi-language
development environments and in support for development of multi-language
software system. There is only few research explicitly targeting multi-language
development environments. Therefore, I summarize related literature populating
the taxonomy of design choices of multi-language development environments
(Paper F and Figure 6.5). The sections of this chapter are aligned along the de-
sign choices of the taxonomy, such as language representation for development
artifacts (Section 4.1), relation model types (Section 4.2), types of relations
between artifacts (Section 4.3), inference of relation models (Section 4.4), and
cross-language support mechanisms (Section 4.5). In each section I also sum-
marize my contributions (Papers A to G) with respect to the corresponding
design decision or with respect to their novelty resulting of the combination of
design choices and their application.

The main contribution of my dissertation with respect to this chapter is the
establishment of the design space for multi-language development environments
in a taxonomy (see Figure 6.5 and Papers D and F) and the systematized
overview of the related work according to the taxonomy (Section 4.6).

4.1 Language Representation

The taxonomy in Paper F contains four language representations falling into
two major categories. First, lexical language representations (Section 4.1.1)
and second, syntactic language representations (Section 4.1.2 to Section 4.1.4).
The following four sections detail the language representations and present
corresponding related work.

4.1.1 Lexical Language Representation

A lexical language representation, represents any development artifact of any
language as a stream of characters.

43

Plain text editors usually keep a lexical representation of the edited development
artifacts. For example, SED [87] and Emacs [116] (without language modes
enabled) keep a lexical language representation and let users modify a stream of
characters. In [122] the notion of a text editor is formalized. Sufrin et al. [122]
formally define commands for text editing on top of characters and on top
of words and lines. That is, editing commands are formalized on physical
properties of a development artifact, on a lexical language representation.

Especially Paper A and Paper C rely on a lexical language representation to
locate fragments of development artifacts serving as relation ends. Lexical
language representations are useful as their simple structure allows to easily
track modifications of development artifacts and thereby adapting relation ends
accordingly.

4.1.2 Syntactic per Language Representation

A syntactic per language representation, represents a single language, which is
already defined by another mechanism such as a formal specification, a parser,
a metamodel, etc. using data structures like trees or graphs.

Using models to represent source code is getting more and more popular.
Modern IDEs, such as, Eclipse, IntelliJ, VisualStudio, NetBeans, etc. implement
separate editors with separate isolated abstract syntax representations for every
supported language. A typical IDE provides separate Java, HTML, and XML
editors. Most, IDE editors maintain an abstract syntax tree (AST) in memory
and automatically synchronize it with modifications applied to concrete syntax.
That is, concrete and abstract syntax are in (a projectional) relation. The ASTs
are exploited to facilitate source code navigation, refactoring, static checking,
etc. on single languages separately.

Language workbenches [45, 46]1 use models to represent languages and ab-
stract syntax trees. I consider models and abstract syntax trees synonyms, as
they are both abstract, per language representations. Per language representa-
tion via models is a concept facilitated by emergence of language workbenches.
Language workbenches such as EMFText [59, 13] and Xtext [35, 39] rely on
EMF models for language representation. Additionally, for each metamodel
representing a language, concrete syntax mapping rules are specified. Parsers,
editors, etc. are automatically generated out of the combination of metamod-
els and concrete syntax mapping rules. The effectiveness of using models
as language representations is documented by the large amount of available
languages. Wide over 100 are listed in the syntax zoos of the two frameworks
EMFText2 and Xtext3. Spoofax [74] does not exploit EMF for definition of
languages. Instead, it utilizes the syntax definition formalism SDF. Similarly,
the Meta-Programming System MPS [33, 129], relies on a proprietary language,
the Structure Language, to define a language’s abstract syntax. However, the
concept of using models as per language representations is common to all
language workbenches. Please refer to Merkle et al. [89] for a an elaborate
comparison of language workbenches.

Often, frameworks for refactoring of legacy code exploit per language repre-
sentations based on models. For example, the MoDisco [28] project is a model-
driven framework for software modernization and evolution. It represents Java,
JSP, and XML source code as EMF models. Each language is represented by

1. Also see www.languageworkbenches.net for the annual language workbench competition.
2. http://emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
3. https://bugs.eclipse.org/bugs/show_bug.cgi?id=328477

44

www.languageworkbenches.net
http://emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
https://bugs.eclipse.org/bugs/show_bug.cgi?id=328477

its own distinct model. The models abstract a legacy software system into mod-
els to enable automatic transformation into a new modernized representation.
Similarly, the reverse engineering framework BlueAge [17] represents legacy
COBOL source code as EMF models, so that model transformations can be
employed to modernize legacy COBOL systems. The same principle of an ab-
stract model-based representation of a programming language is implemented
in JaMoPP [60]. JaMoPP is an EMF per language representation of Java5.
Similarly, Featherweight Java [22, 23], is a model-based implementation of a
subset of the Java language, which is often utilized to research new language
concepts. JavaML [16] is a pre-EMF per language representation of Java using
XML for a structured representation of Java source code. On the other hand,
SmartEMF [64] represents XML-based DSLs via EMF models and maps them
to a Prolog knowledge base, where the EMF models realize a per language
representation.

Especially applications, which integrate tools to allow editing of interrelated
heterogeneous artifacts, rely on a per language representation manifested by
the respective tools. For example, Meyers [90] discusses how to integrate tools
into multi-view development systems. In general, integration of heterogeneous
development artifacts, i.e., language integration, can be considered a problem
of tool integration, since artifacts cannot be edited, modified, compiled, etc.
without tools allowing to perform these actions. Meyers describes, amongst
others, basic tool integration on file system level. There, each tool keeps a
separate internal data representation. That is, each tool is a manifestation
of a per language representation. Similarly, the prototype ToolNet [7, 48]
integrates heterogeneous development artifacts by integrating tools. The authors
of ToolNet propose a kind of message bus on which registered tools exchange
actions applied to development artifacts. By these actions development artifacts
which are modified in different tools are interrelated. Each tool registering to
the bus manifests a per language representation.

There is more research presenting syntactic per language representations. They
are listed in the following in Section 4.1.3 in case the per language representa-
tions are utilized to generate a per language group representation.

Contribution: Especially the prototypes GenDeMoG and Coral (Papers B
and F) but also Tengja and and Lässig (Papers A and G) are based on per
language representations. In Paper B, I utilize per language representations
to enable automatic inference of an explicit relation model containing cross-
component relations of development artifacts in component-based applications.
Similarly, Coral (Paper F) requires per language representations to infer rela-
tions between development artifacts. In both cases, the choice of per language
representations enables the technical experiments investigating relations in
multi-language software systems. A reason for the choice of per language repre-
sentations is, that often they can be easily obtained. For example, in Paper B the
per language representations of OFBiz’ XML-based DSLs are automatically
generated out of readily available XML schemas. Other reasons for the choice
of per language representations, in particular with respect to feasible features in
multi-language development environments, are discussed in Paper F.

4.1.3 Syntactic per Language Group Representation

A syntactic per language group representation, represents a group of languages
defined by multiple language definitions or represented by multiple per language

45

representations using data structures like trees or graphs.

The taxonomy in Paper F proposes a syntactic language representation per
group. The reason to integrate various languages into a single representation
is either to effectively handle languages which are often used in combination
(e.g., [53]) or to represent languages, which share a common characteristic
(e.g., [68]). The following research utilizes per language group representations
without explicitly naming it or without explicitly pointing to it as a major
feature.

Some IDEs chose to represent languages as groups. For example, Strein
et al. [121, 120] realize that most IDEs do not support analysis of multi-language
software systems and that they do not allow to refactor source code across
language boundaries. In order to address these issues, the authors present
X-Develop, an IDE with specific support for development of multi-language
software systems. X-Develop integrates heterogeneous programming languages
by representing source code uniformly as models. In fact, the metamodel for
programming language representation is a syntactic per language group rep-
resentation integrating various object-oriented and mark-up languages. It is
extensible to adapt the X-Develop to new development scenarios, for example
development with non-object-oriented programming languages. One reason
for a language group representation is to provide refactoring across various
programming languages. Unfortunately, X-Develop seems to be no longer avail-
able. Jarzabek [70] describes specification and generation of multi-language
development environments using interrelated attribute grammars in combination
with attributes holding semantic expressions. The language definitions, in form
of grammars, together with the relation specifications, in form of attributes, are
used to generate a per language group representation in a database and editors
working on top of this representation.

Gómez et al. [55] present a tool, which allows to work with visual models
with evolving metamodels. The authors utilize their Generic Intermediate
Metamodel (GIMM) to check models against evolving metamodels and to
provide support to developers to facilitate adjusting the models appropriately.
GIMM is a language group representation for heterogeneous models that share
some basic characteristics, e.g., the models must consist of elements with typed
attributes.

The GUPRO tool [81], integrates multiple per language representations step-
wise into a per language group representation to implement a basic IDE.
GUPRO provides a graph-based query mechanism to locate and navigate cross-
language relations between heterogeneous development artifacts. GUPRO is
intended to especially support the process of understanding multi-language
software systems and relations across the languages COBOL, Job Control
Language (JCL), and Communicating Sequential Processes (CSP).

LiMonE [111] is an editor for literate programming. Relations between natural
language documents and UML models are expressed as constraints in Object
Constraint Language (OCL). The constraints are statically checked to support
users, for example, when documenting UML models or when creating models
out of natural language specifications. Similar to SmartEMF [64], LiMonE
compiles the heterogeneous development artifacts (natural language and UML)
together with the OCL constraints to a Prolog knowledge base and to Prolog
rules. To support static checking of cross-language constraints, Prolog rules
access and evaluate the knowledge base. In general, Prolog knowledge bases can
be considered as a per language group representation. Interestingly, integration

46

of new languages into LiMonE is challenging as for any new language a new
compiler generating Prolog code needs to be manually implemented.

A similar concept can be found in [44]. Ford coins the term polyglot program-
ming for development of applications utilizing more special-purpose languages
in combination with general-purpose languages. In an interview in [43], he
says: “I define a polyglot solution as languages that run on the same run-
time. . . Polyglot solutions for me produce the same bytecode.”. This denotation
suggests a unifying language as criteria for polyglot programming4. Here
bytecode can be, similar to the Prolog knowledge bases, considered as per
language group representation as it integrates heterogeneous languages into
a common representation. Apart from that, Ford [44] also emphasizes, that
development of multi-language software systems is a matter of fact in industry.
Web-applications are named as prominent instances of multi-language software
systems and the Java solution stack exemplifies the cause of multi-language
software systems. Each framework, such as Hibernate, Spring, etc. comes with
their own often XML-based DSLs. According to the author, developers using
such frameworks know easily more than ten languages.

Languages on their own can also be represented as groups. That is, without
an IDE or similar tool fulfilling a special purpose. For example, Holst [68]
presents Meta, a language and environment for specification of language fami-
lies. Languages with similar characteristics are grouped into language families.
For example, Meta(Oopl) is the language unifying all object-oriented program-
ming languages. and Meta(Doc) is the language unifying typesetting languages,
such as LaTex and HTML. Obviously, each Meta(X) is a per language group
representation as it integrates all languages sharing the characteristic X.

More often, languages which are used together in the same context are repre-
sented as groups. For example, the WebDSL [53] framework can be utilized
for implementation of web-applications using a set of abstract interrelated
DSLs. The framework comprises DSLs for specification of data models and
webpages. All heterogeneous development artifacts in the corresponding DSLs
are represented by a per language group representation, the WebDSL integrating
heterogeneous languages, which are used in combination.

Wende [132] presents a solution for language composition based on config-
uration. It relies on the idea that languages are constructed out of building
blocks called components. Such components can be reused and composed
with other into languages or larger reusable components. For example, many
programming languages implement arithmetic and Boolean expressions. Both
are elementary languages which may be reused in other programming lan-
guages. Compositions of languages are language group representations, since
many per language representations are integrated into a single representation.
Mélusine [38], a DSL composition framework, follows a different pattern for
composition of executable DSLs. It generates a virtual machine (VM) for each
DSL and composes DSLs by composing the corresponding VMs. Those DSLs
that can be executed on composed VMs are again instances of a per language

4. I do not reuse the term polyglot programming. First, it emphasizes programming over the
entire process of development of multi-language software systems, and second, the term is
defined using bytecode, a concrete language, as common language representation. Instead, I refer
to multi-language software system development as soon as more than one language is utilized for
development of a software system. Furthermore, I advocate for the use of abstract languages for
language representation. Especially in Paper D and Paper F, I demonstrate that it is likely more
convenient to integrate languages by sufficiently abstract generic representations compared to
provision of compilers to a concrete language for arbitrary languages.

47

group representation.

Unlike the two previous solutions for language composition [132, 38], Renggli
et al. [106, 105] do not compose language components into a language group
representation. Instead, they extend a host language (Smalltalk) with first-class
DSL concepts. The various extensions together with the host language form a
language group representation.

Island grammars [123] allow to parse development artifacts containing frag-
ments with source code in multiple languages. For example, the authors re-
fer to ASP webserver pages consisting of interleaved source code in HTML,
JavaScript, and Visual Basic. Parsing such development artifacts is challenging
as fragments in different languages may be hard to distinguish. The authors rely
on island grammars, which specify fragments of languages separately in a single
grammar and also specify how heterogeneous fragments are distinguishable.
The ASTs resulting from parsing with island grammars are instances of per
language group representations.

4.1.4 Syntactic Universal Representation

A syntactic universal language representation, represents any language defined
by any language definition or represented by any language representation using
data structures like trees or graphs.

Research on truly universal language representations is quite scarce as mostly
language group representations are suggestive of being universal representa-
tions. However, as mentioned previously Meyers [90] discusses tool integration
schemes to generate multi-view development systems. He discusses the pos-
sibility and desirability of a canonical representation, which he describes as
some fundamental data structure maintaining the core data common to all de-
velopment artifacts. Such a data representation for tool integration corresponds
to a universal language representation. However, the author argues that it is
quite hard to come up with an appropriate universal language representation
and that no representation for any arbitrary language has been identified so far.

Contribution: In Papers D and F, I present with TexMo a universal language
representation. The devil’s advocate argues that TexMo’s universal language
representation is only a per language group representation for arbitrary textual
languages as it uniformly represents text as paragraphs, words, etc. However,
remember that I argue in Section 3.1 and in Paper A that on computers only
textual languages exist. In TexMo, the universal language representation is
leveraged to interrelate heterogeneous development artifacts via an explicit
relation model. A universal language representation in combination with a
relation model allows to implement navigation, static checking, refactoring, etc.,
i.e., implementation of CLS mechanisms, only once for all languages. Except
of TexMo, I am not aware of any IDE implementing a universal language
representation.

4.2 Relation Models

A rationale for discussing relation models is given in [88]. The authors present
a taxonomy of model transformation. They define support for traceability
and change propagation across models as a success criteria for transformation
languages and tools. Their notion of transformation tool corresponds to a basic

48

multi-language development environment. To enable traceability and change
propagation relations between fragments of development artifacts need to be
represented, stored, or made accessible. The relation models and occurrences
in related work are discussed in the following four sections corresponding to
the definitions in Section 3.3.1 and the design decisions in the taxonomy in
Paper F.

4.2.1 Explicit Relation Model

Explicit relation models seem to be the most natural relation representation
from a developer’s perspective. Alone the survey by Winkler and Pilgrim
[134] reports twelve different explicit relation models for capturing traceability
information. In the following, I describe relation models in general not only
trace models. Existing explicit relation models are most often tailored to a
particular domain but they share a high degree of commonality. They all express
relations by dedicated model elements in separate models linking structures or
contents of development artifacts.

In different domains and communities different terminology is used for explicit
relation models. The most common names are megamodels [29, 73], trace
models [99, 54, 79, 34, 97, 72], or macromodels [109].

The notion of megamodels was introduced in by Bézevin et al. [29], who
discuss how to integrate models utilized in development of software systems
by explicitly linking them with a separate model. The authors argue, that this
model should be maintained by the modeling platform to facilitate working
with interrelated models across tools. The modeling platform is a collection of
interrelated modeling tools. The AtlanMod MegaModel Management (AM3)5

is such a modeling platform. It allows for specification and maintenance of
trace links between heterogeneous models. In [73], Jouault presents a small
software system mockup, and he explains how AM3 handles relations between
various models exploiting megamodels and weaving models. Megamodels and
weaving models maintain relations on two levels of granularity separately. A
megamodel describes the physical structure of the software system, i.e., it lists
all present models, metamodels, etc. and links them together. Weaving models
link model elements from different models with each other. Megamodels and
weaving models are both explicit relation models.

Paige et al. [99] argue for the use of domain-specific explicit relation models
keeping typed trace links. According to the authors, general-purpose trace
metamodels are not always desirable, because illegitimate trace links, with
respect to the traced development artifacts, can be created. Furthermore, tools
cannot provide rich and elaborate support based on the types of traces, since
this information is not encoded in general-purpose trace metamodels. This
argument is similar to the argumentation in Paper F. There, I discuss the impact
of choice of a per language representation versus a universal language repre-
sentation in multi-language development environments. The domain-specific
trace metamodels in [99] are specified using the Traceability Metamodeling
Language (TML) [34], a dedicated language for defining explicit relation mod-
els. The author’s main idea is to allow to define domain-specific trace types
maintaining rich information, which can be exploited by tools.

Similarly, macromodels [109] are a means to specify typed relations between
heterogeneous models. Macromodels are used to capture the meaning of such

5. http://wiki.eclipse.org/AM3

49

http://wiki.eclipse.org/AM3

relations in an explicit model. Salay et al. perceive submodel of, refinement of,
refactoring of, transformations of, etc. as possible macromodel relation types.
Macromodels are most similar to megamodels as they focus on specification of
relations between models, but not between model elements.

Guerra et al. [54] present the PAMOMO tool. PAMOMO relies on a search-
based relation model using triple graph patterns defining traces between models.
Whenever the triple graph patterns are evaluated on a set of models an ex-
plicit relation model is populated with the relations established by pattern
matches. Similar to triple graph patterns, the explicit relation model proposed
by Bernstein [21] expresses relations between models based on two morphisms.
The morphisms describe the interrelated structures in the respective models
separately.

Jouault [72] discusses a solution to automatically populate trace models while
executing transformations in the Atlas Transformation Language (ATL). He
presents a simple trace model, an explicit relation model, which allows to
generically link model elements in arbitrary heterogeneous models with each
other. A similar version of this simple trace model appears in [79], where the
authors oppose two types of representing model trace links. First, a trace model
explicitly keeps trace links in an external model or second, a tag based trace
link representation (see Section 4.2.2) is kept. A structurally similar explicit
relation model, is the trace model presented by Oldevik et al. [97]. Since the
authors describe a model to text transformation language which automatically
establishes trace links, the explicit relation model does not contain relations
between model elements but between model elements and blocks of text.

Ráth et al. [104] rely on an explicit relation model when synchronizing abstract
and concrete syntax of visual models. The explicit relation model links model
elements in abstract and concrete syntax with each other. It is exploited by
incremental model transformations to reflect modifications applied to model
elements in either syntax.

With the Visual Trace Modeling Language (VTML), Mäder et al. [92] present
a language for specification and execution of traceability queries. The lan-
guage allows to specify queries against a traceability information model. A
traceability information model is an explicit relation model interrelating all
traceable artifacts and their relations of a software system. Interestingly, the
authors provide evidence, that VTML allows non-technical users to specify
and understand queries on this explicit relation model better than in a general
purpose query language.

FeatureMapper [62, 58] is a tool to interrelate feature models with development
artifacts having an EMF-based per language representation. The relations
between features and fragments of artifacts is maintained in a mapping model.
The mapping model is a domain-specific explicit relation model for the domain
of feature modeling. Conceptually, it just links model elements with each other.

Contribution: In Papers E and F I propose the unified notion of explicit rela-
tion model for all previously presented models which explicitly keep relations
between development artifacts. Especially in Paper B and Paper D, I deploy
my own domain-specific explicit relation models linking heterogeneous devel-
opment artifacts. The two explicit relation models link artifacts represented
by different language representations, syntactic per language and universal
representation respectively.

50

I do not develop different explicit relation models for their own sake. Instead, I
create them to enable a technical experiment (Paper B) and a user experiment
(Paper E). I am not aware of any previously published experiment, which
enables inference of relations between heterogeneous development artifacts in
an industrial strength multi-language software system by combining a search-
based and an explicit relation model (Paper B). Furthermore, I am not aware
of the evaluation of CLS mechanisms (Paper E), which are enabled by the
combination of a universal language representation and an explicit relation
model.

4.2.2 Tags

Hypertext systems link fragments of artifacts or complete artifacts with each
other via tags. For example, in HTML, links are defined by tags in HTML
source code [56]. Hypertext systems interpret tags within artifacts as anchors
and links. After interpretation, a relation is established. HyperPro [98, 95] is
a programming environment which treats development artifacts in a software
system as hypertext. That is, development artifacts can be enriched with tags
linking their contents across language boundaries. Contrary to HyperPro, which
uses one text editor to edit heterogeneous development artifacts, Chimera [8]
is a heterogeneous Software Development Environment (SDE) as it integrates
different programs like text editors, PDF viewers, and web-browsers to form
a development environment. It provides navigation across heterogeneous de-
velopment artifacts and over application boundaries by relying on hypertext
functionality. The programs are viewers through which developers work on
different artifacts. Artifacts displayed by one of these viewers are views. Within
views anchors can be created. Via links, anchors can be interrelated into a hy-
perweb. However, after modification of development artifacts links and anchors
have to be checked and eventually reestablished by the developer.

DEFT [133] is a development environment for tutorials. Precisely, it is an
environment for elucidative development [94]. In elucidative development, the
documentation of a software system and its consistency with other development
artifacts such as models and source code is of high priority. DEFT uses tags to
mark regions in natural language documents in which model elements or source
code fragments are merged. Furthermore, DEFT informs developers to keep
the documentation synchronized when interrelated artifacts are modified.

Reuseware [63, 61], is a composition framework for invasive composition.
Components encoding concerns are defined separately and they are composed
with each other when a system is specified. Both works [63, 61] consider
language definitions as components and apply Reuseware to extend languages
with certain concepts, such as modularization or aspect-orientation. Reuseware
relies on slots, hooks, and anchors, which are all tags defining variation points.
That is, they are referable fragments, which can be filled or replaced with
separately defined fragments.

Kolovos et al. [79] discuss two ways of representing trace links between models.
Trace links can either be embedded in models themselves, e.g., by marking rela-
tion ends via tags, or they can be kept as external separate models. The authors
propose to use both representations simultaneously and to merge models and
trace links from explicit relation models into a tag-based relation model on user
request. The authors reuse UML stereotypes to tag elements in UML models
and to establish trace links from merged model elements back to their source
models. Interestingly, tag-based and explicit relation models in combination

51

are also discussed as two possible ways of representing trace links in the survey
of model transformation languages by Czarnecki and Helsen [32].

In this thesis, I did not experiment with tag-based relation models. I believe that
information about relations across development artifacts should not be merged
into artifacts, in the interest of separation of concerns [124]. However, I find the
argument of Kolovos et al. [79] for usage of tags convincing: enhanced system
understanding. Perhaps emerging tags, similar to emergent interfaces [107],
would be a good compromise between merging a concern into a development
artifact and explicitly storing it there. An emergent tag would be a tag that is
presented to a developer as soon as a fragment with relations to other develop-
ment artifacts is in focus. The tag itself would not be physically stored in the
artifact but computed out of one of the other relation models.

4.2.3 Interfaces

Alfaro and Henzinger [6] define different kinds of interfaces for component-
based software development. Informally, they define an interface model to
specify what a component expects from its environment. The authors distinguish
between static (stateless) and dynamic (stateful) interfaces. Static interfaces
are most relevant for my work, as I consider interrelated development artifacts
at development time. Dynamic interfaces could be interesting to consider, as
soon as dynamic fragments in development artifacts need to be interrelated.
For example, dynamic fragments could be source code which is modified or
evaluated at runtime and first then the relation to another development artifact
is established. However, I believe that this is a special case that can be tackled
by interrelating larger parts of development artifacts statically. I do not discuss
dynamic interfaces further.

Hessellund and Wąsowski [67] define interfaces for interrelated models and
metamodels to explicitly describe relations between models crossing language
boundaries. The interfaces are adapted input/output (I/O) interfaces [6]. That is,
the authors consider models and metamodels as components and let interfaces
describe relations across models as requirements and provisions of model
elements. On top of the interface definitions, Hessellund provides a tool, which
automatically infers interfaces out of XML models in OFBiz sources. His
inference engine is based on heuristics.

OSGi is a module system for Java. It allows to create and execute modular
systems [86]. OSGi systems are composed of bundles. Bundles aggregate
Java source code organized in packages and other non-source code artifacts
organized by containing folder hierarchy. Each bundle is defined by an OSGi
interface, which for example, declares imported and exported Java packages.
OSGi interfaces can be considered interface-based relation models as they
specify visibility of packages. That is, OSGi interfaces are more coarse grained
compared to the interfaces in [67].

Despite their name, Emacs’ [116] tags files are actually interfaces. Tag files
store a set of tags pointing to development artifacts or fragments of them. For
example, tags point to methods and classes in source code or to chapters and
paragraphs in documentation. Tag files do not encode an explicit relation
model. Instead, relations are established by users navigating on top of tagged
information.

52

Contribution: In Paper C, I present Tengi, a toolkit including a DSL for spec-
ification of interfaces for heterogeneous development artifacts. Similar to [67],
these interfaces are input/output interfaces specifying required or provided
fragments of an artifact. The Tengi interfaces locate fragments by referring
to physical locations (ports) in a lexical language representation. Although
interfaces are used in related work to enable interrelation of heterogeneous de-
velopment artifacts, I am not aware of any previously published work enabling
uniform description of interfaces for visual and textual languages based on a
lexical language representation.

4.2.4 Search-based Relation Model

Search-based relation models encode relations as queries over development
artifacts. Relations and relation ends are established after evaluation of these
queries. That is, search-based relation models usually do not provide a persistent
representation of relations.

Egyed [36] presents a solution to automatically and efficiently detect and
track inconsistencies between models in different UML languages based on
consistency rules. These rules consist of queries over two separate models. The
query results are set into a Boolean relation. Whenever the Boolean expression,
the actual relation specification, evaluates to false, the relation is broken and
the two models are in an inconsistent state. Here, the collection of consistency
rules defines a search-based relation model.

Hessellund et al. [66] apply code flow analysis to statically check interrelated
XML and Java source code. The authors formalize cross-language relations
as consistency constraints and check them by traversing the abstract syntax
trees of parsed XML files and Java source code. The search-based relation
model is formed by the formal consistency constraints querying two distinct
per language representations.

Recall PAMOMO [54], it utilizes triple graph patterns to define constraints, i.e.,
relations between models. The tool allows to specify positive and negative
patterns. Positive patterns define two conditions, one for each relation end,
under which a relation is present. Negative patterns define single constraints
for contents forbidden to occur in models. That is, a set of positive patterns
manifests a search-based relation model.

Also GPLs are used to express search-based relation models. For example, in
SmartEMF [64] heterogeneous XML models are compiled to Prolog knowledge
bases on which cross-language relation constraints, written as Prolog rules,
are executed. The Prolog rules encoding constraints manifest a search-based
relation model. Störrle’s VMQL [119], a visual query language based on graph
patterns, also compiles models and queries to Prolog knowledge bases and
rules. Interestingly, the author provides evidence that the visual concrete syntax
enables domain experts, who are not computer professionals, to formulate
queries effectively.

Antkiewicz et al. [10, 9] propose development of framework completion code
utilizing framework-specific modeling languages (FSMLs). FSMLs capture
framework concepts. For example, framework completion code is code provided
by plugins to implement new functionality to a framework. Framework concepts
are requirements that framework completion code has to satisfy to produce
expected behavior. For example, interfaces, which need to be implemented
or methods, which need to be called. Usually, such concepts are given in a

53

developer documentation. FSML models are used to formally model framework
concepts on a higher level of abstraction compared to source code examples
in documentation. To map between FSMLs and Java source code, the authors
provide a mapping language. The mappings compile to static AspectJ pointcuts
querying the Java source code for certain structures like method calls, subclasses,
etc. The results of the AspectJ code queries populate FSML instance models
representing the framework completion code. Here, the mapping model can be
considered a search-based relation model. It queries Java code to establish in
memory relations between FSML instances and Java AST nodes.

Search-based relation models rely on a query language or query framework
to formulate and execute queries on development artifacts. In the following,
I present some query languages applicable in search-based relation models.
In the realm of EMF, the Epsilon Comparison Language (ECL) [78], EMF-
IncQuery [20, 57], or OCL [108, 69] are prominent query languages. ECL
is a high-level rule-based language on top of the Epsilon framework [101,
77]. Based on matching, it allows for specification and identification of pairs
of model elements in different models. Similarly, EMF-IncQuery allows to
declare queries over EMF models based on graph patterns. Due to incremental
evaluation, EMF-IncQuery is well suited for efficient evaluation of complex
structural queries over large models. OCL is UML’s constraint language. OCL
allows to effectively query model, since constraints are formulated on top of
query results. The Epsilon Validation Language (EVL) [3] can be considered
as a successor of OCL. Paige et al. [99] specify search-based relation models
including EVL constraints. In the latter work, search-based relation models
populate domain-specific explicit relation models with relations across models.

Contribution: In Paper B, I present GenDeMoG a language for specifica-
tion of search-based relation models interrelating heterogeneous development
artifacts. The paper illustrates an example of a search-based relation model
expressed in GenDeMoG, which interrelates various of OFBiz’ DSLs and Java
source code. The relation model utilizes the expression language of Xtend to
encode relation constraints. Xtend is a GPL often used for implementation of
model transformations. Similarly, in Coral (Paper F) the DSL for specification
of search-based relation models utilizes a GPL (Groovy) to encode constraints.
In both works I decided to research search-based relation models as they are par-
ticularly suited in open environments. Software systems are open environments,
as the set of development artifacts is not constrained.

Coral, a prototype of a multi-language development environment, can be
parametrized with search-based relation models in the form of libraries contain-
ing cross-language relation constraints. I am not aware of any other IDE which
is similarly customizable with explicit relation specifications to support devel-
opment of multi-language software systems incorporating various application
frameworks.

4.3 Relation Types

Relations between development artifacts do not necessarily have to keep rich
type information. For example, they may interrelate fragments and leave devel-
opers to interpret the reason of a relations existence [4]. In that case, relations
encode merely the existence of relations themselves. Different communities

54

propose many different possible relation types to encode information to support
developers or to enhance tools. For example,Winkler et al. [134] present a tax-
onomy for traceability models in model-driven software development. A part of
this work is an overview over research related to typed trace links. The authors
collect many different relation types, which were presented in previous research.
The relation types range from coarse-grained trace link types in requirements
engineering [114], such as, dependency, refinement, evolution, satisfiability,
overlap, conflict, rationalization, and contribution, to fine-grained technical
trace link types [93], such as, Class-imports-Class or MethodInvocation-calls-
MethodDefinition. Both works [99, 34] tackle the problem of heterogeneous
trace link types by allowing for specification of domain-specific6 trace models.
Furthermore, in [99] Paige et al. propose an incremental process for speci-
fication of trace link type hierarchies. The authors highlight the importance
of typed trace links tailored to specific domains. However, they admit, that
classifications of trace link types and trace link type hierarchies are difficult to
compare and unify, due to the diverse levels of abstraction for relation types.

Aizenbud-Reshef et al. [4] survey literature and tools on model traceability.
The authors abstract current relation models into two types. One for tag-based
relation models and another one for explicit relation models. More importantly,
they describe the need for differently typed trace links and characterize two
distinct categories to encode rich information alongside traces. First, customiz-
able attributes on trace links can be utilized to capture information. Second,
special trace link types can be encoded in the trace metamodel, such as, justifies,
describes, depends on, etc. However, customizable attributes on trace links
allow to maintain enriched information but this information is not comprehen-
sively typed. The solution of letting attributes encode rich knowledge about
relations is applied by Nørmark et al. [95]. In HyperPro, development artifacts
are represented as rich hypertext and relations between them are hyperlinks.
Most importantly, rich hypertext allows anchors and links to keep additional
metainformation, such as, link creator, link creation date, etc. in customizable
attributes.

Both, Jouault et al. [73], in the work on megamodels, and Salay et al. [109],
in the work on macromodels, recognize the importance of typed links. They,
propose standard link types and they argue to keep an open set of possible
relation types, so that domain-specific extensions supporting various traceability
scenarios can be accommodated.

Free relations are utilized by Steinberger et al. [118] to let a tool visualize and
highlight relations across applications interrelating arbitrary fragments of devel-
opment artifacts. The interrelated fragments may contain information in visual
or textual languages. The authors evaluate the quality of the visualization in a
user experiment and highlight its positive impact on users when understanding
scattered but interrelated information. Similarly, Waldner et al. [131] discuss
visualization of fixed relations across applications and documents. Their tool vi-
sualizes relations between occurrences of a search result in different documents,
which are viewed in different applications.

Contribution: The previous discussion illustrates, that the modeling com-
munity categorizes relation types mostly not with respect to their physical
appearance but more conceptually, with respect to what I call domain-specific
relation types, see the taxonomy in Figure 6.5. Such relations encode the in-

6. The authors call them case-specific trace models

55

formation about the reason of existence as type information. However, in the
same way as I am applying abstraction to represent languages, I am applying
abstraction to represent relations. I believe, that the most useful abstractions
for relation types are the physical types free, fixed, and string-transformation
relations. These types do not directly encode rich information to support devel-
opers. But they allow to construct tools, which effectively support developers
working on interrelated development artifacts, see Paper E. The three physical
relation types are fundamental for creation of more elaborate domain-specific
relation types. This is the reason, why my prototypes directly support free,
fixed, or string-transformation relations and why I left their relation models
extensible for more specific relation types. I am not aware of any other work
formalizing physical relation types as basis for domain-specific relation types.

4.4 Inference of Relations between Development Artifact

Grammel et al. [52] categorize the generation of relation models into two major
groups. These are a) inference of relation models by instrumentation of pro-
grams transforming development artifacts and b) inference of relation models
solely out of development artifacts, i.e., independently of potential transforma-
tion programs. Actually, Grammel et al. focus on trace models. But to me, the
same categorization is applicable to relation models in general. That is, I apply
these categories to structure the related work on inference of relation models in
this section.

4.4.1 Inference by Program Instrumentation

Few programming languages provide first class support for traceability. Often
such languages are model transformation languages and they automatically
establish trace links between model elements or objects, which are in rela-
tion due to a transformation directive. For example, Epsilon Transformation
Language (ETL) [80] automatically generates a trace model for each model
transformation guarded by a post condition. ATL [136] establishes a trace
models via a similar mechanism. Also the QVT [96] transformation language
has built-in support for traceability [12]. All three languages are rule-based
transformation languages targeting model-to-model transformations. Model-to-
text transformations can handle traceability similarly. For example, the MOF
Model-to-Text transformation language [97] automatically establishes trace
links between model elements and fragments in generated files.

Operations interrelating development artifacts can be instrumented by other
programs. Thereby, relations are automatically established without modification
of the operation. Jouault [72] automatically merges traceability rules into
existing ATL transformation rules before execution. Whenever such enhanced
transformations are executed, trace models are automatically generated. His
solution can be seen as aspect-oriented programing targeting ATL, where the
ATL metamodel is the joinpoint model for static weaving.

Grammel et al. [51] infer trace links not by instrumentation of transformations,
but by connecting a generic traceability framework to the framework executing
transformations. In their solution, a traceability interface abstracts over different
transformation languages. The interface has to be implemented via a concrete
connector in the corresponding frameworks to allow to automatically establish
trace links.

56

Contribution: Tengja and Lässig (Papers A and G) rely on aspects, which
instrument transformations to automatically establish trace links. In Paper A,
I present an aspect-based mechanism instrumenting the serialization of visual
models. It automatically establishes trace links between model elements, their
visual concrete syntax, and textual serialization syntax. Similarly, in Paper G
I rely on aspects, which are generated out of metamodels, to instrument the
Java virtual machine to add traceability support to any programming language
compiling to Java bytecode. Lässig generates 100% correct trace models.

It is a new idea to provide language independent traceability by automatic gen-
eration of aspects, which instrument transformation programs with traceability
directives. I am not aware of a similar traceability solution providing language
independent traceability at such a low cost; only a code generator needs to be
parametrized with metamodels.

4.4.2 Inference out of Development Artifacts

In the following, I discuss related work for the second category identified by
Grammel et al. [52]: inference of relation models solely out of development
artifacts independently of transformation programs.

The modeling community often relies on model matching [27, 52, 126, 127] to
infer relation models. In model matching, models and metamodels, in general
object graphs, are processed and compared with each other. Relations are
then created automatically, whenever a certain similarity measure between
sub-graphs is fulfilled.

The database community applies a similar solution: schema matching [103,
112]. Similar to model-matching, database schemas, i.e., graph structures, are
compared with each other. In addition to structural analysis, schema matching
often incorporates semantic analysis of the schemas.

.

Favre et al. [40] describe a scenario of reverse engineering of a software system
written in C and COBOL. They deploy the Obeo Reverse engineering tool,
which treats source code as models relying on two per language representations.
The authors create a single integrated model for the entire software system
consisting of model elements for C and COBOL code respectively. Importantly,
the relations between the development artifacts are now explicitly contained
in the inferred model. The inferred model of the software system is step-wise
transformed to a visual representation of the system, to a new implementation in
Java, and to HTML documentation. Here, the relations between C and COBOL
code on model level are established based on structural properties of the models
of the source code.

Mahé et al. [85] infer megamodels interrelating development artifacts when
reverse engineering existing software systems. They apply their solution to the
multi-language software system TopCased and demonstrate that its components
are quite interrelated. Their tool infers relations by interpreting structures of
manifest files, which are XML-based models.

In two case studies Antoniol et al. [11] infer trace links out of source code
and natural language documents. The first case study considers development
artifacts in C++ and corresponding manual pages. The second case study infers
trace links between development artifacts in Java and requirements documents.
The authors extract and index information out of heterogeneous development
artifacts. Trace links are established whenever a similarity measure between the

57

extracted information holds. The authors demonstrate that the proposed solution
infers correct trace links. However, the inferred trace models are incomplete
and the authors propose that the inferred traces serve as initial models, which
may be refined by developers.

Hessellund [67] infers a dependency graph out of OFBiz XML models. The
inference is based on heuristics encoded in Java programs. Precisely, the
heuristics are specifications of structures and contents of XML models, which
potentially constitute cross-language references. The inferred dependency graph
is transformed into interfaces and metainterfaces for the XML models and their
schemas.

Contribution When search-based relation models are used in combination
with explicit relation models, the population of the explicit relation models by
evaluation of the search queries can be seen as inference of a relation model
out of development artifacts. In Paper B, I present GenDeMoG a tool, which
similarly to [67], infers an explicit relation model out of development arti-
facts. Unlike Hessellund et al. [67], my tool encodes heuristics about relations
explicitly as constraints in a search-based relation model.

Similarly, Coral’s search-based relation model (Paper F) populates an explicit
relation model. Additionally, Paper F presents the Coral inference tool, which
allows to semi-automatically infer a search-based relation model, i.e., cross-
language relation constraints out of given development artifacts. For that, het-
erogeneous development artifacts are compared with respect to similar contents
in their lexical representation. Subsequently, similar fragments are compared
with each other based on syntactic per language representations. Fragments
matching a similarity measure are then interrelated by generated constraints in
a search-based relation model. This two staged inference process can be seen
as an extended solution of Hesselund’s [67] semi-automatic interface inference
mechanism. Compared to [67], my solution enables semi-automatic infer-
ence of a relation model independently of a concrete multi-language software
system. The only requirement is the availability of corresponding language
representations.

4.5 Cross-language Support Mechanisms

In a limited form, CLS mechanisms are sometimes found in contemporary
IDEs. Many IDEs can be extended to support new development scenarios.
Some development frameworks, such as Hibernate, Spring, Wicket, etc. provide
extensions to major IDEs. The extensions contain either specific editors for
particular languages or they add certain mechanisms supporting development
for the particular framework to the IDE. For example, QWickie7 is an Eclipse
plugin that implements navigation and renaming support between interrelated
Java and HTML files containing Wicket code. The Hibernate Tools8 visualize
and propose code completions when working on Hibernate XML and Java files.
The Spring Tool Suite9 provides visualizations of source code targeting the
Spring framework. In particular, relations between AspectJ and Java source
code are visualized. However, the drawback of all framework-specific tools

7. http://code.google.com/p/qwickie
8. http://www.hibernate.org/subprojects/tools.html
9. http://www.springsource.org/sts

58

http://code.google.com/p/qwickie
http://www.hibernate.org/subprojects/tools.html
http://www.springsource.org/sts

is their limited applicability. They are tailored to a particular domain and
cannot be utilized for development with other frameworks relying on the same
combination of languages.

The IntelliJ IDEA is an IDE, which implements some support mechanisms for
multi-language development [71]. It provides code completion and refactorings
across particular languages, e.g., for HTML and CSS in combination10. Or it
provides visualization and code completion for certain language combinations,
e.g., SQL statements embedded as strings in Java code, which are required by
the Spring or Grails frameworks11. However, these mechanisms are provided
only for some exclusive language combinations.

In the following I summarize research which could inspire CLS mechanisms in
future multi-language development environments. The presented publications
indicate the usefulness of certain mechanisms suggesting them for integration
into multi-language development environments.

Waldner et al. [131] visualize interrelated fragments of development artifacts
across different applications. Interrelated information is highlighted by boxes
surrounding fragments. The relations between fragments are explicitly high-
lighted by visual links. The authors conduct a user experiment evaluating the
benefits of explicit visualization of scattered but interrelated information. They
conclude that visual links prevent users from cumbersome manual search for
interrelated information. Futhermore, they facilitate understanding of scattered
information. An extended solution [118] focuses on and optimized visualization
for the links themselves. Visual links should not obstruct contextual informa-
tion. Thus, they are routed around fragments of development artifacts, which
possibly contribute to understanding of the relations themselves. The authors
conduct an extensive study and conclude that context preserving visual links
facilitate understanding of interrelated information even more.

Treemaps are an elaborate visualization mechanisms used for example in the
Aspect-Oriented Programming (AOP) community to visualize cross-cutting
concerns [42] or the impact of woven advise to source code [102]. Pfeiffer and
Gurd [102] encode the relation between advise of aspects and source code as a
containment relation in a treemap. They allow developers to navigate the inter-
related development artifacts via their visualization. By a user experiment, the
authors demonstrate that a visualization of relations between advise of aspects
and advised source code significantly improves developer’s comprehension
of interrelated fragments. However, treemaps are likely only beneficial for
visualization of directed relations as containment in treemaps suggests directed
relations.

The research prototype Code Bubbles [25] visualizes fragments of interrelated
Java code and documentation in bubbles. Code bubbles are small windows
displaying text. Interrelated source code fragments are highlighted and relations
are illustrated as navigable arrows pointing to other code bubbles. The authors
conduct a user experiment [26] and provide evidence, that program compre-
hension is facilitated by visualizing source code in navigable code bubbles
compared to the file-based editors of contemporary IDEs.

Without being explicit about CLS mechanisms, Freude et al. [48] formulate
visualization, navigation, and static checking of consistency of relations as

10. http://www.jetbrains.com/editors/html_xhtml_css_editor.jsp?ide=idea
11. http://www.jetbrains.com/idea/features/spring_framework.html, http://www.jetbrains.com/
idea/features/groovy_grails.html

59

http://www.jetbrains.com/editors/html_xhtml_css_editor.jsp?ide=idea
http://www.jetbrains.com/idea/features/spring_framework.html
http://www.jetbrains.com/idea/features/groovy_grails.html
http://www.jetbrains.com/idea/features/groovy_grails.html

requirements for their ToolNet prototype. ToolNet provides an implementation
of these three CLS mechanisms across all integrated tools.

Recent research on the use of automatic refactorings in single language set-
tings [91, 135] hints on what kind of refactorings are most useful in development
of multi-language software systems. Both works evaluate large data sets of how
developers use refactorings. Murphy-Hill et al. [91] evaluate more than 240,000
refactorings supported by Eclipse applied by more than 13,000 developers.
They find, that rename refactorings are the most widely deployed automatic
refactorings. Languages engineered with the Xtext language workbench support
automatic rename refactoring across language boundaries by default [128].

More complex refactorings and in particular cross-language refactorings are
studied in [30, 110]. Schink et al. [110] apply so called multi-language refactor-
ings to multi-language software systems. The authors argue that not all such
refactorings can be automatized. In particular, if cross-language refactorings
should preserve semantics of multi-language software systems. The reason
is, that not only the combination of languages is crucial but also application
frameworks which make use of certain language combinations. Frameworks
have idiosyncratic semantics that is hard to capture in generic tools. The authors
give examples of cross-language refactorings, which are correct with respect to
one application framework but incorrect with respect to another.

Contribution In Papers D and F, I identify the four CLS mechanisms visu-
alization, navigation, static checking, and refactoring as elementary support
mechanisms for multi-language development environments. I implement them
in TexMo (Paper D) and in Coral (Paper F). I evaluate their impact on multi-
language software system developers with TexMo (Paper E). Both prototypes
implement the CLS mechanisms in a similar manner as they are implemented
today in IDEs for single languages. The reason is, that the multi-language
development environment in the experiment should be familiar to developers.
It should not disturb developers with completely unfamiliar mechanisms. How-
ever, the presented related work in this section provides alternative solutions
which should be considered for integration in next generation multi-language
development environments. Many results provide evidence of the usefulness of
the corresponding mechanism compared to more traditional support.

I am not aware of any IDE, which implements the elementary CLS mechanisms
generically comparable to TexMo and Coral. The CLS mechanisms of both
prototypes are applicable for development of multi-language software system
independently of the used languages or the used development frameworks.

4.6 Overview and Comparison of Related Work

The following tables (Table 4.1 and Table 4.2) provide an overview of the
related work presented in the previous sections with respect ot the taxonomy of
design decisions for multi-language development environments. This overview
is compiled out of my notes of the related work. It may serve as a starting point
for future PhD students working in the field of tool support for development of
multi-language software systems.

60

Lang. Rep. Rel. Model Rel. Types Inference CLS Mech.
Syntactical

R
es

ou
rc

e

Le
xi

ca
l

Pe
rL

an
gu

ag
e

Pe
rL

an
g.

G
ro

up

U
ni

ve
rs

al

Ex
pl

ic
it

In
te

rf
ac

es

Ta
gs

Se
ar

ch
-b

as
ed

Fr
ee

Fi
xe

d

St
rin

g-
tra

ns
.

D
om

ai
n-

sp
ec

ifi
c

Pr
og

.I
ns

tru
m

.

A
rti

fa
ct

In
te

rp
re

t.

V
is

ua
liz

at
io

n

N
av

ig
at

io
n

St
at

ic
C

he
ck

in
g

R
ef

ac
to

rin
g

[87] 3
[116] 3 3 3 3
[122] 3
[59] 3 3 3 3 3
[13] 3 3 3 3 3 3 3 3 3
[35] 3 3 3 3 3 3 3
[39] 3 3 3 3 3 3 3
[74] 3 3 3 3
[33] 3 3 3 3 3
[129] 3 3 3 3 3
[89] 3
[28] 3 3
[17] 3
[60] 3
[22] 3
[16] 3
[64] 3 3 3 3 3
[90] 3 3 3
[7] 3 3 3 3 3
[48] 3 3 3 3 3
[53] 3 3 3
[68] 3
[121] 3 3 3 3 3 3
[120] 3 3 3 3 3 3
[55] 3 3
[81] 3 3 3
[70] 3 3 3 3 3 3
[111] 3 3 3 3 3 3
[44] 3 3
[43] 3 3
[132] 3 3
[38] 3 3
[106] 3 3
[105] 3 3
[123] 3 3
[88] 3 3
[134] 3 3 3
[29] 3 3 3 3
[73] 3 3 3 3
[99] 3 3 3
[109] 3 3 3 3
[54] 3 3 3 3
[72] 3 3 3
[97] 3 3 3 3
[104] 3 3 3
[92] 3 3 3
[62] 3 3 3 3
[58] 3 3 3 3
[56] 3
[98] 3 3 3 3
[95] 3 3 3 3 3 3
[8] 3 3 3 3
[133] 3 3 3 3
[63] 3 3
[61] 3 3
[79] 3 3 3
[32] 3 3 3
[107] 3 3
[6] 3 3
[67] 3 3 3 3 3 3
[86] 3 3
[36] 3 3 3
[66] 3 3 3 3 3

Table 4.1: Comparison of
related work with respect to the

taxonomy of Figure 6.5

61

Lang. Rep. Rel. Model Rel. Types Inference CLS Mech.
Syntactical

R
es

ou
rc

e

Le
xi

ca
l

Pe
rL

an
gu

ag
e

Pe
rL

an
g.

G
ro

up

U
ni

ve
rs

al

Ex
pl

ic
it

In
te

rf
ac

es

Ta
gs

Se
ar

ch
-b

as
ed

Fr
ee

Fi
xe

d

St
rin

g-
tra

ns
.

D
om

ai
n-

sp
ec

ifi
c

Pr
og

.I
ns

tru
m

.

A
rti

fa
ct

In
te

rp
re

t.

V
is

ua
liz

at
io

n

N
av

ig
at

io
n

St
at

ic
C

he
ck

in
g

R
ef

ac
to

rin
g

[119] 3 3 3
[10] 3 3 3
[9] 3 3 3
[4] 3 3 3 3
[114] 3 3 3
[93] 3 3 3
[118] 3 3 3 3 3
[131] 3 3 3 3 3
[52] 3 3 3
[80] 3 3 3 3
[136] 3 3 3 3
[12] 3 3 3 3
[72] 3 3 3 3
[51] 3 3 3 3
[27] 3 3 3 3
[126] 3 3 3 3
[127] 3 3 3 3
[103] 3 3 3 3
[112] 3 3 3 3
[40] 3 3 3 3
[85] 3 3 3 3
[11] 3 3 3 3 3
[71] 3 3 3 3 3
[42] 3 3 3 3
[102] 3 3 3 3 3
[25] 3 3 3 3 3
[91] 3
[135] 3
[128] 3 3 3 3 3
[30] 3 3
[110] 3 3

Table 4.2: Table 4.1 continued.
Comparison of related work with

respect to the taxonomy of
Figure 6.5

“Old’s cool me tell ya how its cool:
I like the way the girls are dancing to this beat
without the right moves and feet.
I love the way them just a twee, sweet, and neat.
Old’s cool somethings come back fi real!”

Dr. Ring Ding, Old’s Cool

62

http://www.youtube.com/watch?v=uJJZ1HWreyw

5 Problem Definition

Software development aims at constructing software systems, which fit cus-
tomer’s requirements. The systems should be evolvable, customizable, and
adaptable to changing environments and changing requirements. Perhaps most
importantly, software systems should be free of errors. Various factors hinder
development of software systems in particular when they are multi-language
software systems. Development, customization, and evolution of large multi-
language software systems is challenging. Such systems are constructed out of
a multitude of interrelated development artifacts in a broad variety of languages.
The artifacts range from high-level artifacts such as specification and require-
ments documents over modeling artifacts to low-level programming artifacts.
Depending on the phase in software development and on the abstraction level
of a development artifact different languages are used. Used languages range
from natural languages to visual and textual languages.

Many of the challenges are caused or exacerbated by the fact that modern
software systems are multi-language software systems, and in particular by the
lack of good and appropriate development tools (multi-language development
environments). I detail these problems in the following:

Problem i) Missing Cross-language Support Mechanisms Usually, con-
temporary IDEs do not provide support mechanisms across development arti-
facts of different types. For example, navigation across development artifacts in
different languages is usually not supported, static checking exists usually sepa-
rately for each programming language but not across different programming
languages, etc.

Problem ii) The Architecture of Contemporary IDEs Targets Develop-
ment with Single Languages Usually, IDEs integrate development tasks
on single programming languages. For example, IDEs provide integrated code
editors, debugging, and refactoring tools separately for each language used.
The various editors and tools for different languages are typically not integrated
with each other. The underlying reason is, that the architecture of contemporary
IDEs allows for instantiation of integrated tools targeting single languages.

63

Problem iii) Lack of Generic Tools for Development of Multi-language
Software Systems For some IDEs exist extensions supporting development
with interrelated development artifacts in few different languages. Such tools
usually support few specific tasks across languages. The problem is, that these
tools are usually not generic. That is, they can only be used in particular
domains and in particular setups for development of multi-language software
systems. For example, in development with few fixed frameworks or particular
language combinations.

Development, customization, and evolution of multi-language software systems
is tedious, cumbersome, and error-prone due to the shortcomings in contempo-
rary IDEs and software development processes given above.

5.1 Research Questions

Given the context of my research, the overall research question addressed in
this thesis is:

How to support development of multi-language software systems?

In order to tackle the broad research question, I refine it into eight detailed
questions and organize them under three high-level goals. The structure is given
by three major perspectives on development of multi-language software sys-
tems. The first perspective considers characteristics of multi-language software
systems (Goal A), the second perspective is concerned with the needs of devel-
opers with respect to features in tools supporting development of multi-language
software systems (Goal B), and the third perspective addresses conceptual and
technical foundations for tool builders constructing multi-language development
environments (Goal C).

Goal A Investigate characteristics of multi-language software systems. (System
Perspective)

RQ 1 What are the characteristics of language usage in contemporary
multi-language software systems?

RQ 2 What are the characteristics of relations between development
artifacts within and across language boundaries?

RQ 3 What type of relations between development artifacts exist in
multi-language software systems?

Goal B Identify and evaluate features needed in a tool to support or enhance
development of multi-language software systems. (Developer Per-
spective)

RQ 4 What are the elementary features in multi-language develop-
ment environments that support developers of multi-language
software systems?

RQ 5 Do developers of multi-language software systems require cer-
tain features or properties?

Goal C Explore the domain of multi-language development environments and
identify major design decisions and building blocks for creation of
multi-language development environments. (Tool Builder Perspec-
tive)

64

RQ 6 How can software development artifacts be represented? How
to characterize and reference the information in software devel-
opment artifacts that contribute to relations?

RQ 7 How can relations between development artifacts, within and
across language boundaries, be represented? How to charac-
terize and formalize relations between development artifacts?

RQ 8 How to automatically reveal or infer relations between different
development artifacts? Is this feasible at all?

5.2 Theses

Corresponding to the three major perspectives structuring the research questions,
I formulate three precise theses:

T1 Multi-language software systems exist. Contemporary software systems
mostly consist of multiple heterogeneous development artifacts, which are
interrelated.

T2 Multi-language software systems can be developed, evolved, customized,
and adapted more effectively, when appropriate multi-language develop-
ment environments are provided. Developers make less errors, are more
efficient, and work faster, when supported with a set of cross-language
support mechanisms.

T3 Provision of a theoretical framework enables tool builders to create multi-
language development environments with effective CLS mechanisms tai-
lored to the domain and use cases of the multi-language development
environment.

“Problems, everyday is problems,
problems, problems, and problems. . . ”

Desmond Dekker, Problems

65

http://www.youtube.com/watch?v=7PR29Dqq08s

66

6 Solution Overview

In this chapter I introduce the different methods (Section 6.1), which I applied
in the various research papers to tackle the research questions (Section 5.1). I
summarize and discuss each research paper. For each it, I discuss the addressed
goals and contributions to answering the research questions. The section con-
cludes by giving an overview of all publications, their contribution to the goals,
the addressed research questions, and the applied methodology (Section 6.3).

6.1 Methodology

The research papers forming this thesis rely on the following methods.

Tool prototyping This thesis is conducted in the field of software engineering.
Software engineering in a scientific setting relies on construction of
software prototypes, which are evaluated in experiments with respect to
research questions. All research papers in this thesis present and evaluate
tool prototypes, see Section 1.1.2 for a summary of the prototypes.

Literature surveys are usually performed to define the scope of a research
contribution with respect to similar solutions and related work or they
discover the state of the art in a certain research field. Each paper surveys
literature to discuss related work and to compare the presented tool
prototypes with it. Papers D and F present a more elaborate survey of
literature and tools to discover the state of the art of tools supporting
development of multi-language software systems.

Technical experiments evaluate entire prototypes or certain of their properties
either by observing the application of the prototypes to artifacts with
interesting or representative properties in a laboratory environment, or,
they let other computer programs instrument the prototypes. The major-
ity of tool prototypes included in this thesis are evaluated by technical
experiments, see Paper A, Paper B, Paper F, and Paper G.

User experiments evaluate tool prototypes or certain of their properties by
observing users performing tasks in a controlled environment. That
allows to measure the effect of the prototype to the users with respect to

67

certain criteria. Paper G reports on a controlled experiment in which the
effectiveness of CLS mechanisms in development of a multi-language
software system is evaluated.

Case study demonstrate feasibility and applicability of tool prototypes by
applying them to a representative case. The case can be either a real-
world case or a simplified controlled case in a laboratory setting. Paper C
presents a case study on a small exemplary multi-language software
system.

Surveys discover user’s opinions or practices regarding certain research ques-
tions. Usually, surveys are conducted by issuing questionnaires to a
group of users or surveys are conducted by interviewing groups of users.
Especially Paper F presents the results of an online survey, which aims to
discover current practices of language developers and tool builders with
respect to support development with interrelated languages.

6.2 Summary & Contributions per Paper

6.2.1 An Aspect-based Traceability Mechanism for Domain Specific Languages
– ECMFA-TW’10 (Paper A)

Summary

This paper investigates how to automatically infer relations between different
concrete syntaxes of visual modeling languages. Usually, model elements of
the same visual language have different representations. In abstract syntax they
are objects in memory, which are rendered in different visual concrete syntaxes
and, which are stored in serialization syntaxes (often XML-based). Figure 6.1
illustrates a model element in visual concrete syntax (top left), abstract syntax
(top right), textual serialization syntax (bottom), and the relations across the
different syntaxes (highlighted in red).

Especially in this paper, I take the view that visual languages on computers
are always rendered representations of textual languages. The rendered visual
representations are usually displayed to and edited by developers. For any de-
velopment artifact in visual languages, many interrelated development artifacts
in textual languages physically exist in a software system. Most modeling tools
only keep trace links for in memory visual languages but they do not keep trace
links between the visual representations and the serialization syntaxes. Instead,
the trace links are implicitly specified in the implementations of persistence
mechanisms.

The paper presents Tengja, a tool prototype, enabling element to element trace-
ability from visual and abstract syntax to serialization syntax. The prototype
automatically infers trace links between the various syntaxes by instrumenting
the serialization process of visual models. Tengja is implemented as an aspect
in AspectJ. Thereby, it is non-invasive and highly reusable. Neither models, lan-
guages, nor editors need to be modified. Tengja can be applied in combination
with all Eclipse model editors relying on EMF and GMF. The only requirement
is that these editors rely on the standard persistence mechanism. That is, Tengja
is generic with respect to the particular visual language.

68

Figure 6.1: A model element in
visual concrete syntax (top left),
abstract syntax (top right), their

textual serialization (bottom), and
their relations (highlighted)

As a proof of concept demonstrating Tengja’s effectiveness, I develop simple
CLS mechanisms extending current Eclipse editors, with the ability to highlight
relation ends and to request for visual language elements the corresponding
textual representations. Tengja can serve as a foundation for further IDE
extensions.

To evaluate Tengja ’s robustness, the paper presents a technical experiment. The
results indicate that Tengja is indeed applicable to multiple visual languages.

Methods. This paper applies tool prototyping and technical experimentation
as methods. The tool prototype Tengja is constructed to demonstrate the general
feasibility of automatic inference of trace links between different concrete
syntaxes. This is evaluated in a technical experiment.

Quality of the Solution

The robustness of the prototype is evaluated in a technical experiment. A
test program automatically traverses all elements in various visual languages.
It requests trace links from visual language elements to the corresponding
counterparts in serialization syntax. The trace links are logged into files, which
are manually checked for correctness. The check reveals that all important
language elements, those that are displayed to developers in editors, are correctly
traced to the corresponding fragments in serialization syntax. The languages
used in this experiment are of different size and they are all applied in real
products, mostly in the EMF. The different languages highlight that Tengja is
generic, supporting more than only one language. Currently, Tengja is tied to
the EMF framework which is used for language implementation. But, since it
is implemented using an aspect, the amount of work when adapting it to a new
language development framework is relatively small.

Contributions

This paper primarily contributes to Goal C (Tool Builder Perspective) as Tengja
is a potential building block for a multi-language development environment.
Research question RQ 8 asks for feasibility of automatic inference of relations
between artifacts and it asks for possible solutions. Based on an aspect, Tengja

69

automatically establishes trace links between visual, abstract, and serialization
syntax. That is, for this particular use case, the paper proves the feasibility
of automatic inference of trace links between different interrelated concrete
syntaxes. Furthermore, Tengja relies on lexical language representation of any
language to enable highlighting of relation ends of trace links. All the visual
languages have a syntactic per language representation. This suggests two
possible language representations (RQ 6).

The paper also contributes to Goal A (System Perspective). The experiment
reveals that the trace links between the various concrete syntaxes, i.e., one
particular type of relations (RQ 3) are quite frequent for development artifacts in
visual languages (RQ 2). Additionally, the paper provides insight into research
question RQ 1 asking for characteristics of language usage in multi-language
software systems. It is obvious that there exist different representations already
for the concrete syntaxes of single languages.

Although the paper does not directly address the research question RQ 4, which
asks for elementary CLS mechanisms, it implements the CLS mechanisms
navigation and visualization. As both mechanisms are basic features of multi-
language development environments, this paper contributes partly to Goal B
(Developer Perspective).

6.2.2 Taming the Confusion of Languages – ECMFA’11 (Paper B)

Summary

This paper researches OFBiz, an industrial-strength open-source ERP system,
with respect to relations between development artifacts crossing OFBiz’ compo-
nent boundaries. Usually, such relations are implicit, i.e., they are not explicitly
declared in a relation model at development time but first established runtime.
Relations across languages and across components cause a number of prob-
lems for software developers. First, implicit cross-language relations require
substantial domain knowledge to correctly perform simple system evolution
steps. Second, implicit relations may cross component boundaries, which cou-
ples components tightly together. Third, errors caused by broken relations
are most often only exposed at runtime, which requires thorough testing of
the modified code to detect any errors. That is, implicit cross-development
artifact and cross-component relations hinder development, customization, and
evolution of component-oriented multi-language software systems, as no re-
lation representation mechanism of exchangeable components capture hidden
relations.

The paper presents the prototype GenDeMoG, a generic tool for specifica-
tion of cross-component relation patterns for arbitrary multi-language software
systems. As such relation patterns are constraints between structures in de-
velopment artifact described by queries, GenDeMoG essentially is a tool for
specification of search-based relation models. GenDeMoG’s patterns declare
relations explicitly, enabling automatic inference of an explicit model contain-
ing previously implicit cross-component relations. The relation patterns are
declared on languages used in the respective multi-language software systems.
Both, GPLs like Java, and DSLs are supported by GenDeMoG. GenDeMoG is
a generic tool. It is neither tied to certain languages nor to certain applications.
Furthermore, it is non-invasive, i.e., it does not require related artifacts to be
modified in any way.

70

humanres

content

commonext

accounting

party

product
order

manufacturing

workeffort

marketing

securityext

Figure 6.2: OFBiz components
and automatically inferred

cross-component relations in an
aggregated view

Methods. The paper applies tool prototyping and a technical experiment as
methods. The tool prototype GenDeMoG is constructed, to enable the analysis
of a contemporary multi-language software system with respect to relations
between development artifacts crossing component boundaries. Additionally, it
demonstrates the general feasibility of automatic inference of such relations out
of given development artifacts. The technical experiment is the application of
GenDeMoG to OFBiz.

Quality of the Solution

To demonstrate GenDeMoG’s applicability, it is used to analyze an OFBiz
application (Section 2.2.2) for the presence of implicit cross-component rela-
tions. For this experiment, I identified 22 examples of cross-component relation
patterns involving seven languages. GenDeMoG automatically revealed 1,737
cross-component relations of the kind specified by these patterns. The result
of this analysis is a cross-component relation graph. Figure 6.2 shows an ag-
gregated view of all inferred relations between OFBiz’ components. The paper
discusses the established relations to get a deeper insight in the characteristics of
cross-component relations in a contemporary multi-language software system.
The results confirm that relations between heterogeneous development artifacts
do exist, their number is quite large, and even worse, they cross component
boundaries. This means that components of development artifacts are coupled
tightly and circularly, see Figure 6.2. With this results, the experiment confirms
the informal assessment that modification and evolution of OFBiz’ core appli-
cation components is difficult. The experiment indicates, that development of
such large systems needs first, better IDE support and second, that OFBiz’ com-
ponent mechanism inappropriately tracks cross-component relations between
development artifacts.

Contributions

This paper contributes to Goal A (System Perspective) and Goal C (Tool
Builder Perspective). All three research questions contributing to Goal A are
addressed. The paper provides statistics for characteristics concerning language
usage in OFBiz (RQ 1). The number of languages used in OFBiz is quite high.
More than 30 languages are used. The majority of languages are XML-based

71

DSLs but multiple GPLs are used as well. However, all languages in OFBiz
are textual languages. Furthermore, the paper describes characteristics of rela-
tions between development artifacts with a focus on cross-component relations
(RQ 2). It is demonstrated that such cross-component relations are frequent.
Additionally, the kinds of relations and their distribution within OFBiz is dis-
cussed. The paper focuses on fixed and string-transformation relations (recall
Section 3.3). But since the relation patterns are specified in a Turing-complete
language with full access to OFBiz’ code base, any arbitrary type of relation
can be implemented as a relation pattern (RQ 3).

GenDeMoG represents development artifacts using syntactic per language
representations. That is, each development artifact is treated as a model adhering
to a certain language representation (RQ 6). Relations between development
artifacts are expressed in two ways. First, as relation patterns forming a search-
based relation model. Second, after evaluation of the relation patterns an explicit
relation model accumulates all relation instances. Search-based and explicit
relation models are two ways to represent relations between development
artifacts (RQ 7). GenDeMoG and its application to OFBiz demonstrates that
cross-artifact relations can be effectively inferred out of development artifacts
in combination with relation patterns encoding framework knowledge (RQ 8).

6.2.3 Tengi Interfaces for Tracing between Heterogeneous Components –
GTTSE’11 (Paper C)

Summary

This paper presents Tengi, a toolkit for defining, reusing, and relating interfaces.
Tengi interfaces can be defined for any development artifact or for components
of heterogeneous artifacts, no matter of the used language. The interfaces
can be created for artifacts in languages ranging from high-level specification
languages (natural language) and visual languages to low-level implementation
languages. Tengi extends numerous Eclipse editors with the ability to define
ports on development artifacts. Ports are fragments of artifacts forming relation
ends. Figure 6.3 shows an excerpt of an analysis document in the textual
informal BON language (on top) with a defined port (highlighted in yellow).
The bottom of Figure 6.3 shows the corresponding Tengi interface. Via ports,
Tengi interfaces enable explicit description of relations between heterogeneous
development artifacts. Ports in interfaces describe what an artifact requires
from or what it provides to its environment.

In addition to the DSL for interface specification, the paper describes a set of
operators on top of the interfaces to automatically check for compatibility and
refinement, or to perform composition.

Methods. This paper applies tool prototyping and a small case study as
research methods. Unlike in the other papers, the tool prototype Tengi is not
evaluated by a technical or a user experiment. Instead, Tengi is applied to a
small use case demonstrating its feasibility and its application to development
of multi-language software systems.

Quality of the Solution

The case study applies Tengi to a small-sized multi-language software system
consisting of development artifacts in multiple visual and textual languages.

72

Figure 6.3: Excerpt of an analysis
document in informal BON

(bouncycars_informal.bon) with a
marked port on top and below the

corresponding Tengi interface
(bouncycars_informal.tengi)

From the point of view of Tengi interfaces, all development artifacts are ab-
stracted to their physical structure, i.e., they rely on a lexical language represen-
tation. Thereby, the interfaces are applicable to development artifacts in any
language used in development of multi-language software systems. Tengi is
a generic tool, as it is independent of the concrete languages used in a multi-
language software system. Instead, it is only tied to the Eclipse IDE, as its
editors rely on the EMF and it reuses Tengja from Paper A.

Contributions

This paper mainly contributes to Goal C (Tool Builder Perspective). Tengi
demonstrates that heterogeneous development artifacts can be uniformly repre-
sented by a lexical language representation (RQ 6). That is, visual languages,
natural languages, and other languages can be effectively represented by relying
on the physical representation of development artifact contents in serialization
syntax. Ports of interfaces can be specified on such a lexical language repre-
sentation by describing ranges in a character stream. Therefore, the relations
expressed by Tengi interfaces are free relations, i.e., the contents of relation
ends are not constrained, they just need to be present (RQ 7). However, the
interfaces explicitly describe previously implicit relations. Integrity of relations
between heterogeneous development artifacts can be checked by application of
interface operations.

6.2.4 TexMo: A Multi-Language Development Environment – ECMFA’12 -
(Paper D)

Summary

The paper focuses on development environments for development of multi-
language software systems. It elaborates on the fact that existing IDEs do not
directly support development of such systems. IDEs usually do not visualize
cross-language relations, they do not provide navigation along cross-language
relations, they do not statically check cross-language relations for consistency,
nor do they provide refactorings across development artifacts in heterogeneous
languages. These mechanisms are not provided by contemporary IDEs, even
though relations across language boundaries are frequent and fragile, i.e., easily
broken at development time without specific support for developers. The

73

Figure 6.4: TexMo, a model for
universal language representation

paper sets out to improve development of multi-language software system by
enhancing IDEs into multi-language development environments. This paper is
the first of my publications to use the terms multi-language software systems
and multi-language development environment.

The paper addresses multi-language development environments in two ways.
First, from a general perspective a taxonomy of design choices for multi-
language development environments is introduced. Second, a particular multi-
language development environment, an instance of these design choices is
presented. The taxonomy and the CLS mechanisms are identified by a survey
of literature and tools.

The taxonomy makes major necessary design choices for multi-language devel-
opment environments explicit. For example, these are language representation,
representation of relations between languages, and different types of relations.
The paper distinguishes between lexical language representation, the physical
representation of a development artifacts contents as a sequence of characters,
and syntactic language representation, representations using trees and graphs
as underlying data structures to describe abstract concepts and their relations,
see Section 3.1. Relation models in the taxonomy are the four relation models
discussed in Section 3.3.1, i.e., explicit relation models, interfaces, tag-based re-
lation models, and search-based relation models. The purpose of this taxonomy
is twofold. First, it serves as requirements list for implementing multi-language
development environments, and second it allows for classification of such. The
taxonomy is the result of a survey of related literature and tools. Furthermore,
this paper identifies and defines the four mechanisms, visualization, naviga-
tion, static checking and refactoring of cross-language relations as elementary
cross-language support (CLS) mechanisms.

In addition to the taxonomy, the paper presents TexMo, a prototype of a multi-
language development environment providing the four elementary CLS mecha-
nisms across all textual GPLs and DSLs uniformly. The CLS mechanisms are
implemented by leveraging an explicit relation model keeping track of relations
between heterogeneous development artifacts. To be applicable to any textual
language, TexMo represents development artifacts via a universal language
representation. In TexMo, the universal language representation is a text model
representing contents of development artifact structurally as words, whitespaces,
blocks of words, etc, as illustrated in Figure 6.4.

74

Methods. The presented research applies literature survey, tool prototyping,
a small case study, and a user test as research methods. The literature survey is
conducted to identify the state of the art in the field of multi-language devel-
opment environments and to establish a set of elementary CLS mechanisms.
The tool prototype TexMo is constructed to demonstrate the general feasibil-
ity of a multi-language development environment implementing the four CLS
mechanisms, visualization, navigation, static checking, and refactoring on top
of a universal language representation in combination with an explicit relation
model. In preparation of the user tests it is evaluated that it is indeed possible
to represent all of JTrac’s development artifacts as instances of the universal
language representation model. For the user test an example of an explicit
relation model is created.

Quality of the Solution

The paper positions TexMo in the taxonomy of design choices of multi-language
development environments. Furthermore, TexMo is evaluated by applying it
to development of the web-application, JTrac Section 2.2.1. The universal
language representation for textual languages is evaluated by demonstrating
that all of JTrac’s 291 development artifacts are represented by an instance
of the universal language representation model, which allows for interrelation
of development artifact concepts by the explicit relation model. The example
explicit relation model, created for the user test, interrelates nine development
artifacts with in total 87 cross-language relations. By running user tests and
interviews, the paper provides preliminary evidence of TexMo’s feasibility.
A complete controlled experiment using TexMo in development of JTrac is
reported in the following paper in Section 6.2.5 (Paper E).

Contributions

All three goals Goal A (System Perspective), Goal B (Developer Perspective),
and Goal C (Tool Builder Perspective) are addressed in this paper. JTrac
as example of a multi-language software system, illustrates the existence of
various textual GPLs and DSLs in such systems. The languages range from
GPLs like Java over mark-up languages like HTML and XML to DSLs such
as properties files (RQ 1). The paper describes an example explicit relation
model containing fixed relations, i.e., relations between identical fragments of
development artifacts (RQ 3). The relation model is manually created, however,
it demonstrates that heterogeneous development artifacts, at least in parts of
JTrac, are quite interrelated (RQ 2).

This paper is the first one contributing to Goal B (Developer Perspective), i.e.,
elaborating on required multi-language development environment features. The
paper identifies the four CLS mechanisms visualization of, static checking
of, navigation along, and refactoring of cross-language relations as essential
mechanisms for a Multi-language Development Environment (MLDE) (RQ 4).
Even though, the paper does not provide strong evidence for which features
multi-language software system developers require from a multi-language devel-
opment environment, the collected user feedback demonstrates that already the
four CLS mechanisms are highly appreciated by MLDE users, which partially
answers RQ 5.

As the paper addresses multi-language development environments in two ways,
it contributes to Goal C (Tool Builder Perspective) in two ways. The taxonomy
provides general answers to RQ 6 and RQ 7. That is, it explicitly describes de-

75

sign decisions which existing tools and the studied literature make for language
representation, relation models, and relation types, etc. Making the design
choices for multi-language development environments explicit, the taxonomy
lists all possible solutions for implementing a multi-language development
environment. Since TexMo implements a multi-language development environ-
ment instance, it provides specific answers to the research questions RQ 6 and
RQ 7. It illustrates that heterogeneous development artifacts can be effectively
represented using a universal language representation model abstracting over
structures of their contents (RQ 6). Thus, an explicit relation model can refer-
ence development artifact contents, for example, by provision of expressions
navigating along paths in the universal language representation (RQ 7). The
relations in TexMo’s explicit relation model can be fixed and free relations
(RQ 7).

6.2.5 Cross-Language Support Mechanisms Significantly Aid Software De-
velopment – MODELS’12 (Paper E)

Summary

Multi-language software systems are a matter of fact, see Section 2.1. Develop-
ers constructing such systems constantly deal with heterogeneous development
artifacts. Therefore, development tools should support relations, in particular
cross-language relations, between heterogeneous development artifacts at de-
velopment time. I believe that development of multi-language software systems
could be significantly improved if IDEs included multi-language development
support, as known from single languages. For example, if IDEs provided
visualization, static checking for consistency, navigation, and refactoring of
cross-language relations, developer’s understanding of the system would im-
prove and the number of errors made at development time would be reduced.
This paper investigates whether the four elementary CLS mechanisms indeed
improve efficiency and quality of development of multi-language software sys-
tems. To test this, I conduct a controlled experiment in which 22 participants
perform typical software evolution tasks on the JTrac web-application using
TexMo (see Paper D), a MLDE which implements the four elementary CLS
mechanisms. The results speak clearly for integration of cross-language sup-
port mechanisms into software development tools and they justify research on
automatic inference, manipulation and handling of cross-language relations.

Methods. This paper applies tool prototyping and a user experiment as re-
search methods. The tool prototype TexMo, implements the four CLS mech-
anisms to allow for measuring their impact on developers performing certain
development tasks on JTrac.

Quality of the Solution

To evaluate the impact of the four CLS mechanisms on development of multi-
language software systems, I conduct a controlled experiment with 22 partici-
pants, the experimental subjects. The subjects are software professionals, PhD,
MSc, and undergraduate students, who are between 18 and 48 years old. The
subjects are divided into two groups. A treatment group uses TexMo with all
four CLS mechanisms enabled and a control group performs the experiment
tasks using TexMo with disabled CLS mechanisms. The JTrac system is the
experimental unit and TexMo with enabled and disabled cross-language support

76

is the experimental variable in two alternatives. All subjects perform the same
three tasks within half an hour, i.e., ten minutes per task. The tasks include (i)
location and fix of a broken cross-language relation, (ii) renaming of a source
code element what breaks a cross-language relation which should be fixed again,
and (iii) replacement of a code block what breaks multiple cross-language rela-
tions. All tasks include reasoning about the effects and potential problems of
the performed tasks.

The results of the experiment are that visualization, static checking, naviga-
tion, and refactoring across language boundaries are highly beneficial. CLS
mechanisms perceptibly improve effectiveness of developers working on JTrac,
a representative multi-language software system. In the experiment scenario,
users of CLS are more effective than the control group with respect to both error
rate and productivity (working speed). Furthermore, it is shown that, within
the experiment, CLS mechanisms are actually used by developers and that they
improve understanding of complex unknown multi-language source code.

Contributions

This paper is my main contribution to Goal B (Developer Perspective). Since
the MLDE prototype TexMo is used as experimental variable, the paper also
contributes to goals Goal A (System Perspective) and Goal C (Tool Builder
Perspective). The contribution is analogous to the contribution described in
Section 6.2.4 for Paper D. Here, TexMo serves the purpose to enable the user
experiment.

The result of the experiment is that the CLS mechanisms are actually used
by multi-language software system developers and that they are beneficial
with respect to speed of work, error rate, and understanding of developed
multi-language software system source code. The quantitative results of the
experiment suggest the four CLS mechanisms visualization, static checking,
navigation, and refactoring of cross-language relations as essential features
of an MLDE (RQ 4). The qualitative results suggest that developers of multi-
language software systems actually require such mechanisms (RQ 5).

6.2.6 The Design Space of Multi-language Development Environments
– SoSyM’13 (Paper F)

Summary

This paper is an extended version of Paper D. It extends and revises its literature
survey and adapts and reuses elements from Paper E. The implementation of the
Coral MLDE, the comparison of Coral with TexMo, the technical experiment,
and the survey in the language developer community are entirely new.

Similar to Paper D, this paper focuses on multi-language development environ-
ments. It addresses them in two ways. First, from a general perspective, where
a taxonomy of design choices for multi-language development environments
is introduced and second, two particular multi-language development environ-
ments, which are instances of these design choices are presented, compared,
evaluated, and discussed.

The literature survey documents the main design choices for MLDEs which
are summarized in a taxonomy. The taxonomy contains both the defining
requirements for multi-language development environments and the variability
in their implementation. The literature survey is extended even further in this

77

Multi-Language
Development Environment

Relation
Types

Language
Representation

Lexical Syntactic

Relation
Model Type

Explicit
Model

Tags

Search-
Based

Interfaces

Free

Fixed String
Transformation

per
Language

per
 Group Universal Relation Model

Inference

Program
Instrumentation

Artifact
Interpretation

Domain-
Specific

mandatory

alternative
(xor)

or

Legend

optional

CLS
Mechanisms

Visualization

Navigation

Static
Checking

Domain-
Specific

Refactoring

Figure 6.5: The taxonomy for
multi-language development
environments, see Paper F

thesis in chapter Chapter 4. Note, that the taxonomy also incorporates inference
of relation models, what is prominently described in Paper F.

In addition to the research of design space for MLDEs, this paper presents
Coral and TexMo, two prototypes of multi-language development environments.
Both tools implement the four elementary CLS mechanisms of cross-language
relations similarly. With respect to the design choices in the taxonomy, the
prototypes are radically different. As described in Paper D, TexMo represents
development artifacts via a universal language representation and interrelates
them by encoding cross-language relations in an explicit relation model. On the
other hand, Coral represents development artifacts using per language represen-
tations and specifies cross-language relations in a search-based relation model.
The search-based relation model specifies constraints interrelating development
artifacts on language level, see Figure 2.13. Coral allows to distribute the
relation specifications into libraries. Consequently, Coral can be customized
with various libraries for different development scenarios. Additionally, Coral
provides an inference tool enabling semi-automatic inference of search-based
relation models. Both, TexMo and Coral are generic. They do not depend
on any particular languages interrelated in multi-language software systems.
Thus, they can be applied to development of arbitrary multi-language software
systems.

The two MLDE implementations illustrate the challenges, which tool builders
face when constructing different kinds of MLDEs. They also materialize two,
design points in the taxonomy. The experiences with both tools applied to
development of the multi-language software system JTrac are discussed and the
differences between the two tools are analyzed qualitatively.

Finally, to evaluate the need for and the usefulness of multi-language devel-
opment environments two experiments approach the communities of multi-
language software system developers and language and tool builders. Concern-
ing TexMo, the paper presents a condensed discussion of the evaluation of the
CLS mechanisms (Paper E). Coral is evaluated in a technical experiment and
indirectly in a survey in the community of language developers. The survey
investigates the current practices in language development and the kind of tool
support provided by language developers.

78

Methods. This paper relies on five different research methods. These are:
literature survey, tool prototyping, a controlled experiment, a technical experi-
ment, and a survey in the community of language developers.

The literature survey is conducted to identify the state of the art in the field of
multi-language development environments and to establish a set of common
CLS mechanisms. The two multi-language development environment proto-
types TexMo and Coral are used to discuss experiences and the multi-language
development environment design decisions. In a technical experiment Coral’s
inference tool is applied to JTrac illustrating its multi-language characteristics.
This paper argues for that multi-language development environments should be
generic to support development of diverse multi-language software systems. Ac-
cordingly, the paper reports on an online survey in the community of language
developers indicating the need for generic language integration tools.

Quality of the Solution

The paper presents an investigation of the design space of multi-language
development environments from the three different perspectives, the system
perspective, the developer perspective, and the tool builder perspective.

First, concerning the system perspective, the paper reports on a technical ex-
periment in which Coral’s inference tool is used to semi-automatically infer
cross-language relation constraints (the search-based relation model) out of
JTrac’s development artifacts. The result are two libraries containing ten con-
straints. With these two libraries Coral is applied to automatically establish
cross-language relations within JTrac’s artifacts. The result is, that JTrac con-
tains at least 4,941 cross-language relations. This illustrates that heterogeneous
development artifacts in JTrac are quite interrelated and that there exist clearly
too many cross-language relations to be handled manually.

Concerning the developer perspective, the paper demonstrates, by recapitulation
of the results of the user experiment in Papers D and E, that developers benefit
from CLS mechanisms provided in a multi-language development environment
when developing multi-language software systems.

Finally, concerning the tool builder perspective, the paper reflects for TexMo
and Coral on experiences with constructing two new and different MLDEs
prototypes, following two different design choices. TexMo is highly adaptable
to development of diverse multi-language software systems due to its universal
language representations. This representation however comes at a cost of lim-
ited scope of functionality. Coral is highly adaptable to various multi-language
software systems due to its generic search-based language relation model. This
representation however comes at a cost of many required per language repre-
sentations for development artifacts. A survey in the community of language
developers confirms that the constructed languages are very frequently related
to other languages, that tooling to integrate the various languages is partially
provided, and that the provided tools are rarely generic. Indirectly, this evaluates
Coral’s potential benefit in development of multi-language software systems, as
it is a generic tool.

Contributions

This paper is the most elaborate paper in the collection of papers forming this
thesis. It addresses all three goals with all research questions RQ 1 – RQ 8.

Goal A (System Perspective) is addressed by the technical experiment which

79

applies Coral to JTrac. First, it is demonstrated that diverse textual GPLs and
DSLs exist in this contemporary multi-language software system. The various
languages range from GPLs like Java over mark-up languages like HTML and
XML to DSLs such as properties files (RQ 1). The paper reports on a technical
experiment, in which Coral is used to automatically collect cross-language
relations of JTrac’s heterogeneous development artifacts. The results illustrate,
that heterogeneous development artifacts in JTrac are quite interrelated (RQ 2).
Furthermore, it is shown that fixed and string-transformation relations are quite
prominent relation types in heterogeneous source code, i.e., in a technical
domain (RQ 3).

As the results from the user experiment (Papers D and E) are recapitulated and
summarized, the contributions of this paper to Goal B (Developer Perspective)
are analogous to the contributions described in Section 6.2.4 and Section 6.2.5.
However, the survey in th language developer community reveals that language
development community is lacking a generic parametrizable MLDE. This is
not a CLS mechanism but more a property of MLDEs, but the result partially
addresses RQ 5, asking for required features of MLDEs.

Similarly to Paper D, this paper contributes to Goal C (Tool Builder Perspective)
in two ways. First, the taxonomy provides general answers to RQ 6 and RQ 7.
The taxonomy captures design decisions of existing tools and related literature
with respect to language representation, relation models, relation types, etc.
Thus, the taxonomy lists all possible solutions for implementing multi-language
development environments. Both, TexMo and Coral are instances of a MLDE.
Due to their opposing design decisions, they provide specific but differing
answers to research questions RQ 6 and RQ 7. They illustrate that, depending
on the use case of an multi-language development environment, heterogeneous
development artifacts can be effectively represented (RQ 6) by a universal
language representation model, which abstracts over structures of development
artifact or by per language representations, which abstract over the concepts
of heterogeneous languages independently. Similarly, depending on the use
case, TexMo and Coral rely on different types of relation models (RQ 7).
TexMo leverages an explicit relation model to describe cross-language relations
linking fragments of development artifacts via path expressions on instances
of universal language representation model. Contrary, Coral represents cross-
language relations as constraints in a search-based relation model. Both MLDE
prototypes implement differently typed relations (RQ 7). In TexMo, relations
can be of fixed or free relation type and in Coral the four relation types, fixed,
string-transformation, free, and domain-specific can be specified.

The paper also demonstrates that search-based relation models can be inferred
semi-automatically out of development artifacts and that, once a correct search-
based relation model is in place, an explicit relation model can be correctly
established (RQ 8).

6.2.7 Language-Independent Traceability with Lässig – Under Submission
(Paper G)

Summary

Trace links between heterogeneous development artifacts allow to implement
efficient tools supporting developers working on such artifacts. However, most
of contemporary programming languages and model transformation languages
do not provide support for traceability in the first place. Today, if traceability

80

support is required, either systems need to be implemented in one of the few
programming language with built-in traceability support, such as ETL or ATL,
or traceability directives need to be added to existing system implementations.
Implementing traceability with languages with built-in traceability support is
not suitable for legacy systems, as it would require reimplementation. Adding
traceability to existing implementations is not suitable as business logics is
polluted with the application independent concern of traceability. Furthermore,
the same concern has to be implemented repeatedly in different domains. Trace-
ability is a typical cross-cutting concern [124] with respect to a single software
system. At the same time it is a multi-domain concern with respect to many
software systems. Cross-cutting concerns are effectively handled with aspect-
oriented programming [82]. Reoccurring similar concerns in different domains
are effectively handled with model-driven software development [115].

This paper presents a generic model-driven solution to add traceability support
to all programming languages and model transformation languages, which
are compiled to and executed on a virtual machine. Lässig is an implemen-
tation of this solution targeting all languages compiling to the Java Virtual
Machine (JVM). Lässig, is parametrized with metamodels declaring traceable
types. Lässig generates aspects, which instrument the execution of methods
transforming objects with directives to automatically generate trace models.
The kinds of instrumented method executions are based on two heuristics. A
technical experiment demonstrates that only these two heuristics allow to estab-
lish correct trace models. However, potential alternative heuristics for tracing
are discussed too.

Methods. The paper applies two research methods, tool prototyping and a
technical experiment. The tool prototype Lässig is applied to a set of model
transformations in different programming languages.

Quality of the Solution

Lässig is evaluated in a technical experiment. First, the correctness of the auto-
matically inferred trace models is evaluated. Second, a controlled experiment
evaluates the performance overhead of model transformations with Lässig’s
traceability support. For the correctness test, Lässig is applied to three model to
model transformations. Each of them is implemented in each of the three pro-
gramming languages Xtend, Java, and Groovy. The resulting trace models are
manually compared with trace models generated by comparable ETL transfor-
mations. The results demonstrate that Lässig automatically generates complete
and correct trace models introducing a moderate performance overhead to the
transformations.

Contributions

Similarly to the first paper in this thesis, this last paper is primarily contributing
to Goal C (Tool Builder Perspective), since Lässig can be integrated in other
modeling tools and multi-language development environments. The technical
experiment provides evidence that it is feasible to automatically infer trace links
between interrelated objects by instrumenting model transformations executed
on the JVM with aspects, which are automatically generated out of metamodels
(RQ 8). As Lässig automatically establishes relations between objects that are
subject to a transformation, it also answers research question RQ 3 (asking

81

for the different types of relations). The type of relations across development
artifact in this case are trace links.

6.3 Contributions in a Nutshell

In this section, I compare all research papers forming this thesis in Table 6.1.
For each paper, the table illustrates its contribution to the goals, the addressed
research questions, and the applied methodology.

82

Pa
pe

r
A

Pa
pe

r
B

Pa
pe

r
C

Pa
pe

r
D

Pa
pe

r
E

Pa
pe

r
F

Pa
pe

r
G

To
ol

N
am

e
Te

ng
ja

G
en

D
eM

oG
Te

ng
i

Te
xM

o
Te

xM
o

C
or

al
Lä

ss
ig

G
oa

lC
on

tr
ib

ut
io

n
M

LS
S

C
ha

ra
ct

er
is

tic
s

(G
oa

lA
)

3
(O

FB
iz

)
3

(J
Tr

ac
)

3
(J

Tr
ac

)
C

LS
M

ec
ha

ni
sm

s
(G

oa
lB

)
vi

su
al

iz
at

io
n,

na
vi

ga
tio

n
vi

su
al

iz
at

io
n,

na
vi

ga
tio

n
vi

su
al

iz
at

io
n,

na
vi

ga
tio

n,
st

at
ic

ch
ec

ki
ng

,
re

fa
ct

or
in

g

vi
su

al
iz

at
io

n,
na

vi
ga

tio
n,

st
at

ic
ch

ec
ki

ng
,

re
fa

ct
or

in
g

vi
su

al
iz

at
io

n,
na

vi
ga

tio
n,

st
at

ic
ch

ec
ki

ng
,

re
fa

ct
or

in
g

M
LD

E
Fo

un
da

tio
ns

(G
oa

lC
)

tra
ce

ab
ili

ty
;

le
xi

ca
ll

an
gu

ag
e

re
pr

es
en

ta
tio

n

pe
rl

an
gu

ag
e

re
pr

es
en

ta
tio

n,
ex

pl
ic

it
re

la
tio

n
m

od
el

,
se

ar
ch

-b
as

ed
re

la
tio

n
m

od
el

le
xi

ca
ll

an
gu

ag
e

re
pr

es
en

ta
tio

n;
in

te
rf

ac
e

re
la

tio
n

m
od

el

un
iv

er
sa

l
la

ng
ua

ge
re

pr
es

en
ta

tio
n;

ex
pl

ic
it

re
la

tio
n

m
od

el

un
iv

er
sa

l
la

ng
ua

ge
re

pr
es

en
ta

tio
n;

ex
pl

ic
it

re
la

tio
n

m
od

el

un
iv

er
sa

l
la

ng
ua

ge
re

pr
es

en
ta

tio
n,

pe
rl

an
gu

ag
e

re
pr

es
en

ta
tio

n;
ex

pl
ic

it
re

la
tio

n
m

od
el

,
se

ar
ch

-b
as

ed
re

la
tio

n
m

od
el

tra
ce

ab
ili

ty
;p

er
la

ng
ua

ge
re

pr
es

en
ta

tio
n

A
dd

re
ss

ed
R

es
ea

rc
h

Q
ue

st
io

n
R

Q
8,

R
Q

2,
R

Q
3,

R
Q

1,
R

Q
4

R
Q

1,
R

Q
2,

R
Q

3,
R

Q
6,

R
Q

7,
R

Q
8

R
Q

6,
R

Q
7

R
Q

1,
R

Q
2,

R
Q

3,
R

Q
4,

R
Q

5,
R

Q
6,

R
Q

7

R
Q

1,
R

Q
2,

R
Q

3,
R

Q
4,

R
Q

5,
R

Q
6,

R
Q

7

R
Q

1,
R

Q
2,

R
Q

3,
R

Q
4,

R
Q

5,
R

Q
6,

R
Q

7,
R

Q
8

R
Q

8,
R

Q
3

M
et

ho
do

lo
gy

Li
te

ra
tu

re
Su

rv
ey

3
3

To
ol

Pr
ot

ot
yp

in
g

3
3

3
3

3
3

Te
ch

ni
ca

lE
xp

er
im

en
t

3
3

3
3

U
se

rE
xp

er
im

en
t

3
C

as
e

St
ud

y
3

Su
rv

ey
3

Ta
bl

e
6.

1:
C

om
pa

ris
on

of
ea

ch
pa

pe
rw

ith
re

sp
ec

ti
ts

co
nt

rib
ut

io
n

to
th

e
go

al
s,

th
e

ad
dr

es
se

d
re

se
ar

ch
qu

es
tio

ns
,a

nd
th

e
m

et
ho

do
lo

gy
ap

pl
ie

d

83

“She said the lift doesn’t work run up the stairs and come
And if you don’t come quick your not gonna see your son
So I grab a bunch of rose, and I started to run
Here I come”

Barrington Levy, Here I Come

84

http://www.youtube.com/watch?v=sYnpuyXNcGM

7 Discussion, Conclusion, and
Future Work

7.1 Discussion & Conclusions

7.1.1 Thesis T1 – Multi-language Software Systems

Multi-language software systems exist. Contemporary software systems
mostly consist of multiple heterogeneous development artifacts, which are
interrelated.
In this dissertation I investigate characteristics of multi-language software
systems (System Perspective – Goal A) with respect to language usage and
language interrelation. I provide both quantitative and qualitative data charac-
terizing contemporary software systems as multi-language systems with many
relations between the development artifacts.

In Section 2.1, I illustrate the language composition of twelve projects on
GitHub and the language composition of the Linux kernel. These numbers
are new and unpublished data. The result is, that all these systems are multi-
language systems. The GitHub projects consist of everything from two to at
least 19 languages. The Linux kernel consists of more than 20 languages.

Paper B demonstrates that OFBiz is a multi-language system. OFBiz is a large
system as it contains multiple thousands of development artifacts (6,522) in
various languages such as Java (1,122 files), Groovy (365) files, XML (1,283),
etc. Furthermore, a current distribution of OFBiz consists of more than 30
languages, both GPLs and DSLs.

In Paper B I conduct a technical experiment applying a search-based relation
model to OFBiz’ development artifacts. The search-based relation model con-
sists of 22 relation constraint patterns specifying relations in OFBiz. Nineteen of
these patterns specify cross-language relations and three specify intra-language
relations. The GenDeMoG tool automatically infers an explicit relation model
containing 1,737 previously implicit relations. This number, even though al-
ready large, is a strict lower bound for the number of actual relations between
development artifact in OFBiz. This is because the number of constraint pat-

85

terns specifying the relations in GenDeMoG’s search-based relation model may
be incomplete. Additionally, GenDeMoG enables specification and inference of
cross-component relations only. The number of relations between development
artifacts within components is even larger. The experiment confirms that a
large number of implicit relations exist in OFBiz and that they couple its core
components quite tightly and circularly.

In Paper F, I investigate JTrac, a medium-size software system containing
multiple hundreds of development artifacts (372) in Java (140), HTML (66),
property files (30), XML (16), JavaScript (8), etc. JTrac is a multi-language
software system consisting of more than these five languages. In the technical
experiment, I semi-automatically infer a search-based relation model out of
JTrac’s development artifacts. After inference, the search-based relation model
consists of two libraries with five cross-language relation constraints each. With
just these ten constraints Coral automatically establishes 4,941 previously im-
plicit cross-language relations. Similar to the OFBiz experiment, the number of
inferred relations is a lower bound as the constraint libraries may be incomplete.

These examples illustrate the vast amount of relations coupling development
artifacts in multi-language software systems. In both experiments the rela-
tions are automatically inferred out of development artifacts represented by
syntactic per language representations. Remember, some relations (trace links)
between heterogeneous development artifacts are caused by programs process-
ing development artifacts. Even though Papers A and G are mainly concerned
about technological solutions for instrumenting programs causing trace links,
they provide evidence that already small development artifacts in model-driven
systems are quite heavily interrelated by trace links. The results in Paper G
demonstrate that models which are transformed to each other are interrelated
with trace links whose number corresponds to 40% to 100% of the model sizes.

On top of the quantitative results, Paper C demonstrates qualitatively the multi-
language property of a small system consisting of development artifacts in six
languages ranging from a natural language document over visual languages to
textual programming languages. All these development artifacts are related via
view or refinement relations, which are explicitly specified in interfaces.

RQ 1 What are the characteristics of language usage in contemporary
multi-language software systems? The recapitulated results above demon-
strate that contemporary systems are multi-language systems. Small contempo-
rary systems utilize at least two languages, whereas medium-sized and large
scale systems contain many more languages. In fact, during my project, I did
not come across a contemporary software system, which is constructed out of
only a single language.

RQ 2 What are the characteristics of relations between development arti-
facts within and across language boundaries? The results above illustrate
that in contemporary software systems many relations between development
artifacts exist. They exist both within languages and across language bound-
aries. In Paper B around half of the 1,737 automatically inferred relations
are intra-language relations and the other half are cross-language relations. In
Paper F the focus is solely on inference of cross-language relations, as the
main language in the project is Java and contemporary IDEs provide extensive
support for intra-language relations for most GPLs. The lower bound of 4,941
cross-language relations for a medium-sized multi-language software system is

86

quite impressive.

Another observation concerning relation characteristics is that they are of dif-
ferent type. As indicated earlier in this thesis, I am focusing on basic physical
relation types. All automatically established relations specified in the search-
based relation models (Papers B and F) are fixed and string-transformation
relations. Those relations resulting from the qualitative case study (Paper C)
and program instrumentation (Papers C and G) are free relations or trace links
across language boundaries. All the cross-language relations captured in the
TexMo’s explicit relation model (Paper D) are fixed relations.

RQ 3 What type of relations between development artifacts exist in multi-
language software systems? In addition to the three relation types (free,
fixed, and string-transformation) encoding physical properties of relation ends,
there exists a wide variety of domain-specific relation types in multi-language
software systems.

Domain-specific relation types encode the reason of existence for relations [99]
between artifacts via types. They are extensively discussed in particular by the
model-driven development community (see literature inPaper F and Section 4.3).
However, the physical relation types are fundamental to any other domain-
specific relation types, which are always encoded on top of them.

Conclusion. Given the previous discussion, I conclude that thesis T1 holds.
Utilizing various cases, I demonstrate that contemporary software systems are
indeed multi-language systems. Additionally, I provide evidence that the many
development artifacts in contemporary multi-language software systems are
interrelated by different types of relations. The presented numbers for relations
in multi-language software systems are all under approximations of the real
amount of relations. Including more types of relations in the inference processes
easily increases these numbers. These results emphasize the challenges in
development of multi-language software systems. Modification and evolution
of artifacts in multi-language systems currently requires substantial domain
knowledge as implicit relations are frequent and thereby easily broken. Tools
maintaining explicit relation models can assist developers in their work.

7.1.2 Thesis T2 – Developer Support

Multi-language software systems can be developed, evolved, customized,
and adapted more effectively, when appropriate multi-language develop-
ment environments are provided. Developers make less errors, are more
efficient, and work faster, when supported with a set of cross-language
support mechanisms.
To address this thesis, I identified and evaluated features (CLS mechanisms)
needed in a tool to support or enhance development of multi-language soft-
ware systems (Developer Perspective – Goal B). To identify such features, I
surveyed tools and literature and I evaluate them via a user experiment.

To evaluate the impact of CLS mechanisms to developer’s performance, I cre-
ated TexMo, a prototypical multi-language development environment (Paper D),
implementing the four elementary CLS mechanisms visualization, navigation,
static checking, and refactoring. In a controlled experiment, the prototype is ap-
plied as experimental factor with two alternatives. Once with CLS mechanisms
enabled and once with CLS mechanisms disabled. During the experiment 22

87

experiment subjects, equally distributed over two treatment groups, perform
three tasks representing typical development and customization tasks on the
JTrac system. The first task asks to locate and fix a broken cross-language
relation between Java and HTML code. The second task asks for renaming
a relation end in a properties file, what breaks a cross-language relation. The
subjects should fix the broken relation. The third task asks to replace a fragment
of source code, what breaks multiple cross-language relations.

During the experiment I collect quantitative and qualitative data. The quanti-
tative results are discussed in detail in Paper E and the qualitative results are
presented in Papers D and F. In short the quantitative results demonstrate that
visualization, navigation, static checking, and refactoring when offered across
language boundaries are highly beneficial. The CLS mechanisms perceptibly
improve the effectiveness of developers working on a multi-language software
system. Developers supported with CLS mechanisms find and fix more errors
in a shorter time than those in the control group. They perform development
tasks on language boundaries more efficiently. They are more effective than
developers in a control group as error rate decreases and productivity (working
speed) increases. Interestingly, even inexperienced developers provided with
CLS mechanisms perform similarly or better than developers experienced in
developing multi-language systems.

RQ 4 What are the elementary features in multi-language development en-
vironments that support developers of multi-language software systems?
To answer this question I survey tools and literature (Paper F and Chapter 4) to
understand the kind of development support they provide. The four features,
visualization, navigation, static checking, and refactoring are implemented
by all IDEs and by some programming editors for single languages. Conse-
quently, I believe that these four features provided across language boundaries
are elementary features (CLS mechanisms) in multi-language development
environments.

Of course there are other CLS mechanisms. For example, many IDEs provide
code completion for single languages or some recommend code fragments or
actions to accomplish certain tasks. Providing other than the four elementary
CLS mechanisms across languages, is likely beneficial for developers too. But
since none of the experiment subjects (Paper G) mentioned the lack of a certain
CLS mechanism, I do not consider them to be elementary. A dedicated survey
amongst multi-language software system developers could enhance confidence
in which CLS mechanisms actually are elementary. The taxonomy is extensible
with respect to CLS mechanisms (domain-specific mechanisms). I consider
such a survey as future work.

RQ 5 Do developers of multi-language software systems require certain
features or properties? As stated above, I did not conduct a survey amongst
developers of multi-language software system to establish a set of required CLS
mechanisms. I consider such a survey future work. But the quantitative results
and the qualitative feedback of the experiment evaluating the four elementary
CLS mechanisms demonstrate that they not only improve understanding of
complex unknown multi-language systems, also developers appreciate the
offered CLS mechanisms. They indicate that such mechanisms are beneficial
and that such mechanisms are missing in existing IDEs. Some developers in
the control group were negatively surprised that current IDEs do not provide

88

CLS mechanisms in a similar way as they are provided for development with
single languages. Especially static checking seems to be required. Developers
in the control group were searching for problem markers to find possible errors
and were disappointed when there are no such.

Conclusion. I conclude that thesis T2 holds. The results of the experiment
provide evidence that, at least for a fixed set of development tasks on a represen-
tative multi-language software system, developers evolve, customize, and adapt
multi-language artifacts more effectively, when supported by a multi-language
development environment providing CLS mechanisms. Error rates decrease,
work speed increases, and understanding of multi-language software systems is
facilitated.

However, to increase confidence in the presented results an extended experiment
on larger samples including different multi-language software systems and a
greater variety of tasks needs to be executed. This is planned as future work.
An extended experiment should be conducted in evaluation of an industrial
strength multi-language development environments in scenarios of industrial
development of multi-language software systems.

7.1.3 Thesis T3 – Tool Builder Support

Provision of a theoretical framework enables tool builders to create multi-
language development environments with effective CLS mechanisms tai-
lored to the domain and use cases of the multi-language development en-
vironment.
In this thesis, I explore the domain of multi-language development environments
and identify major design choices and building blocks for multi-language
development environments creation (Tool Builder Perspective – Goal C). By
surveying related work (Papers D and F and Chapter 4) I conceptualize design
choices in a taxonomy. Thereby, the design space is made explicit and readily
available to guide tool builders.

The theoretical framework for development of multi-language development
environments is the taxonomy of design choices first presented in Paper D and
refined in Paper F (Figure 6.5).

Contemporary tools implementing CLS mechanisms or implementing support
for development with artifacts in different languages appear to apply quite
ad hoc solutions. For example, when relations across artifacts in different
languages should be represented, encoded, or leveraged, it seems to be a natural
decision for most researchers and developers to opt for syntactic per language
representations in combination with explicit relation models. This impression
seems to be supported by the survey of related work (Section 4). I discuss
many publications with respect to the taxonomy of design decisions. Indicated
by the number of publications, it seems that the most prominent language
representation in research and in tools are syntactic per language representations
and the most prominent relation model are explicit relation models. I believe
that these choices often do not fit well the domain, which the research or a
tool targets. For example, many publications are concerned about maintaining
relations between various models in software systems. Actually, the presented
explicit relation models are a bad design choice for representing relations in
software systems, as such systems are usually open. New development artifacts
are created and thereby relations to already existing artifacts are created too.

89

Explicit relation models are not well suited for maintaining relations in open
systems. Due to their static nature they need to be updated whenever new
artifacts are created or whenever artifacts are modified. Updating an explicit
relation model in evolving systems is quite costly. I realized this when applying
TexMo (see Paper D). That is, explicit relation models are recommendable for
expressing relations in closed static systems, which are not evolving. Software
systems, are open dynamic systems. Artifacts can be added, removed and
modified. For such, systems any of the other three relation models is more
recommendable.

I claim, that one problem for today’s tool builders is that they are not aware of
all possible design choices in the field of multi-language development environ-
ments. I perceive, that the current practices in construction of tools targeting
multi-language environments are not ruled by a deeper analysis and compre-
hension of possible design choices and their impact to the constructed solutions.
Instead, tool builders are driven by the growing size of software systems and
the growing number of utilized languages in them and the resulting complexity.

I believe, that the presented taxonomy contains all fundamental design choices
for multi-language development environments. The taxonomy makes the solu-
tion space explicit. Additionally, in combination with the discussion of all my
tools, which are all instances of the taxonomy (Papers A to G), and especially
with the discussion of the impact of design choices (Paper F), tool builders
are aware of all possible solutions. Likely, by careful reflection and weighing
advantages and disadvantages of certain decisions before engineering a solution
tool builders will create tools, which appropriately fit the domain.

In the following, I discuss my contribution to thesis T3 relying on argumentation
and on analogy. That is, this thesis is not researched by execution of formal
experiment or survey in the tool builder community.

The analogy is that during my PhD project I am a representative tool builder
creating various prototypes targeting multi-language environments. In this dis-
cussion, I focus on the creation of the multi-language development environment
prototypes TexMo (Paper D) and Coral (Paper F). Before creating the tools, I
conducted a domain analysis.

TexMo Domain: The task is to create a multi-language development environ-
ment prototype implementing the four CLS mechanisms visualization, navi-
gation, static checking, and refactoring, so that a controlled experiment can
be executed evaluating the effectiveness of these mechanisms. A priori it is
not predefined on which multi-language software system TexMo is applied.
The only requirement is to implement a multi-language development environ-
ment applicable to any multi-language software system comprising only of
development artifacts in textual languages. It is predefined that the tasks in the
experiment are concerned about modification of existing development artifacts
but not about creation of new artifacts.

Coral Domain: The task is to create a multi-language development environ-
ment prototype with particular support for multi-language software systems
built on top of application frameworks, such as, persistence, web-frameworks,
etc. The relation model should encode relations with respect to framework-
specific knowledge. It is required that the solution is generic with respect
to the utilized application frameworks and languages. Additionally, the four
previously described CLS mechanisms need to be implemented.

Obviously, the TexMo domain is concerned about a closed world, no new

90

artifacts in an multi-language software system need to be considered, whereas
the Coral domain is concerned about an open world.

Before constructing the tools for the respective domains, I consult the taxonomy
of multi-language development environment design choices. By reflecting on
the possible solutions with respect to language representation, relation models,
etc. and by incorporating the domain description, I decide that for the first
domain a universal language representation in combination with an explicit
relation model is best suited and that for the second domain a syntactic per
language representation in combination with a search based-relation model is
best suited.

The rationale for the former is that a) a universal language representation allows
to easily apply the tool to any textual language and b) that an explicit relation
model is suitable for a closed world. The rationale for the latter is, that a search-
based relation model in combination syntactic per language representations
allows for central encoding of framework-specific knowledge as cross-language
relation constraints in libraries corresponding to the frameworks and languages.

Provided a domain analysis and careful reasoning, the taxonomy guides the
tool builder in making design decisions. The effectiveness of the constructed
multi-language development environment TexMo is proven by the successful
execution of the experiment (Paper G). TexMo implements the requirements
and allows the experiment subjects to perform their tasks on an a posteriori
selected multi-language software system. The effectiveness of CLS mechanisms
is evaluated by application of TexMo, see the discussion in the previous section.
That Coral is tailored to its domain (generic encoding of framework-specific
knowledge) and its use cases is indicated by the results of a survey in the
language builder community (Paper F). In short, the results of the survey are
that a) many languages are created, b) languages are in fact interrelated and thus,
artifacts in various languages are interrelated, and c) the systems constructed
using the created languages are multi-language system, which rely on multiple
application frameworks. Furthermore, many language developers provide tools
which check for cross-language relations. But most of the provided tools are
not generic. That is, whenever a new language is used in multi-language system
development the tools have to be adapted to support the changed development
architecture. Coral is a generic tool. It is well suited for language integration
as it only needs to be parametrized with language specifications and possible
cross-language relation constraints. All of the developers indicating that they
provide no tools for language integration or that their tools are non-generic,
could be efficiently supported by a generically parametrizable MLDE, such as
Coral.

Essentially, the design space spanned by the taxonomy provides an answer to
the research questions RQ 6 – RQ 8.

RQ 6 How can software development artifacts be represented? How to
characterize and reference the information in software development arti-
facts that contribute to relations? I argued for the representation of devel-
opment artifacts via language representations (lexical, syntactic per language,
syntactic per language group, and syntactic universal representation), see Sec-
tion 3.1 and 4.1. The main reason to apply language representations is to enable
for explicit representation of relations between development artifacts.

Depending on the chosen language representation, fragments of development

91

artifacts can be referenced differently. In Section 3.3.1, the three fundamental
reference mechanisms are described. For example, fragments of development
artifacts in lexical representation can be referenced by physical positions in
the character stream (physical navigation), see for example the locators in the
interfaces of Paper C. As syntactic representations offer higher abstractions
captured in graph data structures, fragments can be referred by referencing
graph structures. Generally, there exist two fundamental mechanisms (path
navigation and query evaluation). For example, the explicit relation models in
Paper B, Paper D, and Paper G utilize URIs, to reference graph structures by
navigating along paths. Both, Papers B and F, present possible search-based
relation models which rely on queries to locate relation ends.

RQ 7 How can relations between development artifacts, within and across
language boundaries, be represented? How to characterize and formalize
relations between development artifacts? The answer to this question is
given by the four different kinds of relation models (explicit, tag-based, in-
terface, and search based relation models), which can contain or represent
differently typed relations, see Section 3.3.1 for definitions and examples of
the models. An interesting observation in Paper F is that explicit, tag-based,
and interface relation models represent relation instances interrelating artifacts,
whereas search-based relation models specify relations on language level. First
after evaluation the concrete relations are established.

I demonstrate the feasibility of explicit relation models (Paper B, Paper D, and
Paper G), interfaces (Paper C), and search-based relation models (Paper F). In
related work (Section 4.2.2) I point to publications indicating the feasibility of
tag-based relation models.

RQ 8 How to automatically reveal or infer relations between different de-
velopment artifacts? Is this feasible at all? In this thesis I present two
possible solutions for automatic inference of relations between development
artifacts. First, inference of relations out of development artifacts (Papers B
and F) and second, inference of trace links by program instrumentation (Pa-
pers A and G). In both cases fixed and string-transformation relations are
automatically inferred. It is demonstrated that for these cases and these rela-
tion types automatic inference is feasible, since no false positive relations are
inferred.

However, the inference of free and domain-specific relations out of development
artifacts is problematic. The former cannot be automatically inferred without
complete replication of the properties of the relation ends on a per relation basis.
Therefore, free relations are better created manually. The latter can, to a great
extend be inferred automatically but it is only worthwhile encoding inference
code or search-queries when many domain-specific relations of the same type
exist in a system. Otherwise, they are also better created manually.

The degree of automatization depends on the quality of the search queries.
Especially, the Coral inference tool (Paper F) illustrates that the first phase, the
inference of search-based relation models out of development artifacts based on
heuristics, i.e., imprecise search queries, generates false positive cross-language
relations constraints, which have to be manually removed rendering the first
inference phase semi-automatic. So the general answer to the second question
of RQ 8 is that relations in multi-language software systems can, depending on
their type, be automatically inferred to a large extent.

92

Conclusion. I conclude that thesis T3 holds. The presented discussion il-
lustrates that provision of a theoretical framework enables a tool builder to
create multi-language development environments with effective CLS mecha-
nisms, tailored to the domain and use cases of the multi-language development
environment. I am not aware of any comprehensive framework guiding tool
builders similar to the presented taxonomy. However, an experiment or survey
increasing the confidence in the positive impact of explicit design decisions in
form of the taxonomy on tool builders need to be conducted. I did not execute
such an experiment during my thesis as it requires a longer period of research.

7.2 Contribution to Community’s Research Agendas

In this section I discuss results of my work and contributions with respect
to selected items of two research agendas of the community of model-driven
engineering [24, 125].

7.2.1 On the Unification Power of Models [24]

On top of addressing the theses and research questions formulated in Chap-
ter 5, my thesis also contributes to some of the research directions presented
by Bézivin [24] in his discussion of the unification power of models. The unifi-
cation principle is the concept that “Everything is a model”. In the following
I discuss my contributions with respect to three of his research paths in appli-
cation of the unification principle. Additionally, with my work, I contribute to
one open research issue mentioned in the paper.

Programs as Models

All my papers describing tools with syntactic language representations are
also about representation of programs as models. In [24] it is suggested that
explicitly linking grammars and metamodels would allow to represent programs
via equivalent models. The language representations I provide are either created
using EMFText [59, 13] or Xtext [35, 39], two concrete syntax mappers, which
link grammar rules and metamodels to generate language specific tools such
as editors, parsers, etc. One deliverable of my work is a set of languages as
models. For example, together with the tools GenDeMoG, Coral, and TexMo,
I provide language representations for Java 5, HTML, XML, properties files,
Hibernate mapping files, textual languages, etc.

Traces as Models

The tool Lässig (Paper G) generates trace models. The trace models focus on
tracing the relation of model elements which are interrelated due to execution
of programs transforming them. Currently, Lässig does not generate models of
complete stack traces, i.e., sequences of program directives as suggested in [24].
This is not the focus of the corresponding research. However, it can be easily
extended to automatically generate complete stack trace models for programs
executed on a virtual machine.

Also Tengja (Paper A) generates trace models linking model elements in various
concrete syntaxes with each other.

93

Legacy as Models

I do not deploy my tools to automatically migrate software systems to new
platforms or environments. However, the tools GenDeMoG and Coral represent
artifacts and their relations as models. These models in combination form
complete models of software systems. They are quite concrete but higher-
level representations, such as, reports or new systems on new platforms can be
generated via model transformations. For example, the numbers and the graphs
in Paper B are generated out of the explicit relation model.

Open Research Issue: Interoperability

As stated by Bézevin, model-driven engineering may be applied to bridge the
gap between different tools by representing the data structures, on which tools
are editing artifacts, as models. The models should be interchangeable between
tools. In my work these tools are for example editors for different languages,
which are integrated into the Eclipse IDE. Especially Coral, presented in Pa-
per F, implements CLS mechanisms across existing editors. This is realized
not by modification of existing tools but by representing development artifacts
in different languages and their relations as models. This allows to imple-
ment CLS mechanisms on top of these representations and thereby providing
interoperability of existing tools.

The concept is generic. Coral could also be applied, reusing the same mech-
anisms and concepts, to implement the same CLS mechanisms across tools,
which are not integrated in an IDE. Conceptually, it is of no importance if
language representations and relation models enrich IDE editors or other ap-
plications. Perhaps, the appearance of the concrete CLS mechanisms such as
visualizations may differ to those presented in Papers D and F. But nothing
prevents integration of language representations, relation models, CLS mech-
anisms, etc. into an operating system and its graphical user interface. The
concepts remain the same but more integration on a technical level is required,
since the architectural focus of language-specific IDE editors and other IDE
tools is even deeper for entire applications, which are not designed for interop-
erability. However, this is an interesting topic which I will address in future
work.

7.2.2 A Model-based Approach to Language Integration [125]

Also Tomassetti et al. [125] discuss a research agenda on open topics when
enhancing IDEs with CLS mechanisms based on syntactic per language rep-
resentations. In particular, the authors state the following open problems as
research agenda. I discuss my contributions along the lines of their problem
statements.

Categorize Language Interaction Mechanisms

The authors state, that literature only discusses cross-language relations based
on common identifiers (fixed relations) and they notice that alternative possible
relation types are not discussed at all. The authors intend to research possible
cross-language relation types and formalize them into an ontology.

I contribute to this research topic with my discussion of basic physical relation
types in Definition 12. I discuss the relation types and their occurrence in real
multi-language software systems in Paper B, Paper D, and Paper F. The relation

94

types and their representation in the taxonomy of multi-language development
environment design decisions can be considered as an ontology. A more elabo-
rate discussion of domain-specific relation types in the literature is provided in
Section 4.3.

Techniques to Express Cross-language Constraints

The authors ask for development of multi-language development environments
and relation models. Additionally, they seek for their evaluation in different
domains and on different multi-language software systems.

I contribute to this research question in various ways. First, I describe and
formalize different relation models in the taxonomy of design choices for multi-
language development environments (Paper F). In Papers B and F, I present
two different search-based relation models. The Coral DSL for description
of framework-specific cross-language relation constraints in Paper F and the
GenDeMoG DSL in Paper B encode relations between development artifact
via constraints. I discuss a formalization of relation models in general in
Section 3.3.1.

Furthermore, I evaluate both tools in two technical experiments on two multi-
language software systems, OFBiz and JTrac. Both systems are of different size,
medium-size and large scale, and of different application domains. Addition-
ally, I provide evidence that CLS mechanisms in multi-language development
environments have a positive impact on developers rendering them more effec-
tive and enhance their understanding of multi-language software systems, see
Section 7.1.1 and the Papers D and G.

I agree with the authors that it is time to implement industrial-strength multi-
language development environments and evaluate them not in a laboratory
environment but over a long period in an industrial setting.

Queries Involving Multiple Languages

The authors envision that a representation of languages as models would permit
to query an entire multi-language software systems for all relations across
languages interrelating fragments of heterogeneous development artifacts. The
authors plan to explore the feasibility and potential of querying such representa-
tions for cross-language relations.

My Papers B and F present two possible realizations for search-based relation
models including two languages for formulating queries. The feasibility and
potential are demonstrated in the respective papers, where the solutions are
applied to existing multi-language software systems. Both search-based relation
models are applied to automatically infer cross-language relations and cross-
component relations in existing systems. The results demonstrate the large
numbers of previously implicit cross-language relations. I discuss alternative
query languages, which could be integrated in search-based relation models as
related work in Section 4.2.4.

7.3 Future Work

Additionally to the future work mentioned in the previous sections, I discuss
open research problems grouped in two categories, research related and tech-
nology related future work.

95

Research: From a research perspective an interesting question is to evaluate
the application of an industrial strength multi-language development environ-
ment to development of large scale multi-language software systems in diverse
industrial settings. The experiment in Paper E indicates the potential of multi-
language development environments applied to development of multi-language
systems. However, it evaluates the CLS mechanisms on textual languages in one
domain and one development phase. It needs to be evaluated how an industrial
strength multi-language development environment integrating all development
artifacts over all development phases can support different types of developers.
For example, a consultant modifying UML diagrams of a complex system, may
be overwhelmed, when confronted with the results of static checking telling her
that she has broken relations to low level code artifacts or to documentation, of
which she is not aware. It is an open question how to adjust CLS mechanisms
to be equally useful for different groups involved in development.

Another open research question is how to support distributed development
with multi-language development environments. In distributed development,
artifacts constituting a system are distributed over various repositories on many
different computers. Here, the question is how to best represent and handle,
from the perspective of a single multi-language development environment,
relations to temporarily non-existing or invisible artifacts. Likely, interfaces
are the appropriate relation model in such a setting, as they can either be
mirrored locally for all remote artifact or they may have the best properties
in distinguishing if a relation is temporally broken due to an invisible remote
artifact or if it is really broken due to a local change in a related artifact.
This also points to necessary research in CLS mechanisms as a certain level
of uncertainty needs to be included in the corresponding mechanisms. For
example, a visualization of an existing relation with one invisible relation end
should be different from the visualization of a relation to a visible artifact. Even
more important, static checking should report different results for the reasons of
broken relations. Concerning static checking, it needs also to be researched how
to perform static checking when parts of the information required for checking
is not available.

Technology: From a technological point of view it needs to be researched
how to efficiently mix and interrelate various language representations for
the same languages. For example, I plan to extend Coral with a language
group representation based on Prolog, Clojure, or Neo4J, similar to the one in
SmartEMF [64] and VMQL [119]. The reason is that mapping all per language
representations to such a language would allow to perform static checking
across languages more efficiently. A promising solution seems to interrelate
all language representations for different languages again with relation models.
The given relations between the various representations for development arti-
facts could be leveraged to minimize updates when development artifacts are
modified. To maximize efficiency when the number of language representations
per language grows, incremental parsing technologies [50] and incremental
model update technologies [20, 57] should be integrated into multi-language
development environments.

A similar problem that needs further attention is how to efficiently interrelate
various relation models containing different representations of the same rela-
tions? It seems that explicit and search-based relation models (Papers B and F),
explicit and tag-based relation models ([79, 32]), and tag-based relation models

96

and interfaces (Paper F) form combinations of relation models, which might
be used interchangeably. Again a relation model keeping relations between
interrelated relation models seem to be appropriate.

For the two latter open problems, efficient interrelation of various language
representations and efficient interrelation of relation models, a fundamental
research question needs to be addressed. How to handle cascading levels of
relation models? From an engineering point of view and with respect to this
thesis the answer is likely that it is worthless to utilize relation models for more
than one level of interrelation. But how to support tool builders developing
support mechanisms?

“Look at me standing
Here on my own again
Up straight in the sunshine

No need to run and hide
It’s a wonderful, wonderful life
No need to hide and cry
It’s a wonderful, wonderful life”

Seeed/Black Wonderful Life

97

http://www.youtube.com/watch?v=lk4fxsrJajY

98

Bibliography

[1] Zend Technologies Ltd.: Taking the Pulse of the Developer Com-
munity. static.zend.com/topics/zend-developer-pulse-survey-report-0112-EN.pdf,
seen: Feb. 2012

[2] THE OPEN SOURCE DEVELOPER REPORT – 2010 Eclipse Com-
munity Survey. eclipse.org/org/press-release/20100604_survey2010.php (2011),
seen: Mar. 2012

[3] Abrial, J.R., Glässer, U. (eds.): Rigorous Methods for Software Construc-
tion and Analysis, Essays Dedicated to Egon Börger on the Occasion
of His 60th Birthday, Lecture Notes in Computer Science, vol. 5115.
Springer (2009)

[4] Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model
Traceability. IBM Systems Journal 45(3), 515 –526 (2006)

[5] Alanen, M., Porres, I.: A Relation Between Context-Free Grammars and
Meta Object Facility Metamodels (2004)

[6] Alfaro, L.d., Henzinger, T.A.: Interface Theories for Component-Based
Design. In: EMSOFT (2001)

[7] Altheide, F., Dörr, H., Schürr, A.: Requirements to a Framework for
Sustainable Integration of System Development Tools. In: Proc. of the
3rd European Systems Engineering Conference (EuSEC. pp. 53–57
(2002)

[8] Anderson, K.M., Taylor, R.N., Whitehead, Jr., E.J.: Chimera: Hyperme-
dia for Heterogeneous Software Development Enviroments. ACM Trans.
Inf. Syst. 18 (July 2000)

[9] Antkiewicz, M., Bartolomei, T.T., Czarnecki, K.: Fast Extraction of High-
quality Framework-specific Models from Application Code. Autom.
Softw. Eng. 16(1), 101–144 (2009)

[10] Antkiewicz, M., Czarnecki, K.: Framework-Specific Modeling Lan-
guages with Round-Trip Engineering. In: Nierstrasz, O., Whittle, J.,
Harel, D., Reggio, G. (eds.) MoDELS’06. Lecture Notes in Computer
Science, vol. 4199. Springer (2006)

99

static.zend.com/topics/zend-developer-pulse-survey-report-0112-EN.pdf
eclipse.org/org/press-release/20100604_survey2010.php

[11] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recov-
ering Traceability Links between Code and Documentation. IEEE Trans.
Softw. Eng. 28(10), 970–983 (Oct 2002), http://dx.doi.org/10.1109/TSE.
2002.1041053

[12] Aranega, V., Etien, A., Dekeyser, J.L.: Using an Alternative Trace for
QVT. Electronic Communications of the EASST 42 (2011)

[13] Assmann, U., U., Bartho, A., Bürger, C., Cech, S., Demuth, B., Heiden-
reich, F., Johannes, J., Karol, S., Polowinski, J., Reimann, J., Schroeter,
J., Seifert, M., Thiele, M., Wende, C., Wilke, C.: DropsBox: the Dresden
Open Software Toolbox. Software & Systems Modeling pp. 1–37 (2012),
http://dx.doi.org/10.1007/s10270-012-0284-6

[14] Atkinson, C., Kühne, T.: The Essence of Multilevel Metamodeling.
In: Proceedings of the 4th International Conference on The Unified
Modeling Language, Modeling Languages, Concepts, and Tools. pp. 19–
33. «UML» ’01, Springer-Verlag, London, UK, UK (2001),
http://dl.acm.org/citation.cfm?id=647245.719475

[15] Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling
Foundation. IEEE Softw. 20(5), 36–41 (Sep 2003), http://dx.doi.org/10.
1109/MS.2003.1231149

[16] Badros, G.J.: JavaML: A Markup Language for Java Source Code. Com-
put. Netw. 33 (June 2000)

[17] Barbier, F., Eveillard, S., Youbi, K., Guitton, O., Perrier, A., Cariou, E.:
Model-Driven Reverse Engineering of COBOL-Based Applications, pp.
283–299. Morgan Kaufmann (2010), http://www.sciencedirect.com/science/
article/B6MH5-508779H-7/2/6b3199748873fdfa42e3a892ba1b4d19

[18] Becks-Malorny, U.: Kandinsiky. Benedikt Taschen Verlag GmbH (2003)

[19] Bengtson, E., Roth, D.: Understanding the Value of Features for
Coreference Resolution. In: Proc. of the Conference on Empirical
Methods in Natural Language Processing (EMNLP) (10 2008), http:
//cogcomp.cs.illinois.edu/papers/BengtsonRo08.pdf

[20] Bergmann, G., Horváth, A., Ráth, I., Varró, D., Balogh, A., Balogh, Z.,
Ökrös, A.: Incremental Evaluation of Model Queries over EMF Models.
In: Proceedings of the 13th International Conference on Model-driven
Engineering Languages and Systems: Part I. pp. 76–90. MODELS’10,
Springer-Verlag, Berlin, Heidelberg (2010), http://dl.acm.org/citation.cfm?
id=1926458.1926467

[21] Bernstein, P.A.: Applying Model Management to Classical Meta Data
Problems. In: Proceedings of the 1st Biennial Conference on Innovative
Data Systems Research (CIDR) (2003)

[22] Bettini, L.: An Eclipse-based IDE for Featherweight Java Implemented
in Xtext. In: Proc. ECLIPSE-IT. pp. 14–28 (2010), http://2010.eclipse-it.
org/proceedings/

[23] Bettini, L.: A DSL for Writing Type Systems for Xtext Languages.
In: Proceedings of the 9th International Conference on Principles and
Practice of Programming in Java. pp. 31–40. PPPJ ’11, ACM, New York,
NY, USA (2011), http://doi.acm.org/10.1145/2093157.2093163

100

http://dx.doi.org/10.1109/TSE.2002.1041053
http://dx.doi.org/10.1109/TSE.2002.1041053
http://dx.doi.org/10.1007/s10270-012-0284-6
http://dl.acm.org/citation.cfm?id=647245.719475
http://dx.doi.org/10.1109/MS.2003.1231149
http://dx.doi.org/10.1109/MS.2003.1231149
http://www.sciencedirect.com/science/article/B6MH5-508779H-7/2/6b3199748873fdfa42e3a892ba1b4d19
http://www.sciencedirect.com/science/article/B6MH5-508779H-7/2/6b3199748873fdfa42e3a892ba1b4d19
http://cogcomp.cs.illinois.edu/papers/BengtsonRo08.pdf
http://cogcomp.cs.illinois.edu/papers/BengtsonRo08.pdf
http://dl.acm.org/citation.cfm?id=1926458.1926467
http://dl.acm.org/citation.cfm?id=1926458.1926467
http://2010.eclipse-it.org/proceedings/
http://2010.eclipse-it.org/proceedings/
http://doi.acm.org/10.1145/2093157.2093163

[24] Bézivin, J.: On the Unification Power of Models. Software and System
Modeling 4(2), 171–188 (2005)

[25] Bragdon, A., Reiss, S.P., Zeleznik, R., Karumuri, S., Cheung, W., Ka-
plan, J., Coleman, C., Adeputra, F., LaViola, Jr., J.J.: Code Bubbles:
Rethinking the User Interface Paradigm of Integrated Development Envi-
ronments. In: Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1. ICSE ’10, ACM, New York,
NY, USA (2010)

[26] Bragdon, A., Zeleznik, R., Reiss, S.P., Karumuri, S., Cheung, W., Ka-
plan, J., Coleman, C., Adeputra, F., LaViola, Jr., J.J.: Code Bubbles: A
Working Set-based Interface for Code Understanding and Maintenance.
In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. pp. 2503–2512. CHI ’10, ACM, New York, NY, USA
(2010), http://doi.acm.org/10.1145/1753326.1753706

[27] Branco, M.C., Troya, J., Czarnecki, K., Küster, J.M., Völzer, H.: Match-
ing Business Process Workflows across Abstraction Levels. In: France
et al. [47], pp. 626–641

[28] Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: A Generic
and Extensible Framework for Model Driven Reverse Engineering. In:
Proc. of the IEEE/ACM International Conference on Automated Soft-
ware Engineering (2010)

[29] Bézivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. In:
Proceedings of the OOPSLA/GPCE: Best Practices for Model-Driven
Software Development workshop, 19th Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(2004)

[30] Chen, N., Johnson, R.: Toward Refactoring in a Polyglot World: Extend-
ing Automated Refactoring Support across Java and XML. In: Proceed-
ings of the 2nd Workshop on Refactoring Tools (2008)

[31] Colburn, T.: Philosophy and Computer Science. Explorations in Philoso-
phy, M.E. Sharpe (2000), http://books.google.dk/books?id=luF4ElMxqg4C

[32] Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transforma-
tion Approaches. IBM Systems Journal 45(3), 621–646 (2006)

[33] Dmitriev, S.: Language Oriented Programming: The Next Programming
Paradigm. Tech. rep., JetBrains (2004), http://www.onboard.jetbrains.com/
is1/articles/04/10/lop/mps.pdf

[34] Drivalos, N., Kolovos, D.S., Paige, R.F., Fernandes, K.J.: Software
Language Engineering. chap. Engineering a DSL for Software Trace-
ability, pp. 151–167. Springer-Verlag, Berlin, Heidelberg (2009), http:
//dx.doi.org/10.1007/978-3-642-00434-6_10

[35] Efftinge, S., Völter, M.: OAW XText: A Framework for Textual DSLs.
In: Workshop on Modeling Symposium at Eclipse Summit. vol. 32
(2006)

[36] Egyed, A.: Automatically Detecting and Tracking Inconsistencies in
Software Design Models. IEEE Trans. Software Eng. 37(2), 188–204
(2011)

101

http://doi.acm.org/10.1145/1753326.1753706
http://books.google.dk/books?id=luF4ElMxqg4C
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/mps.pdf
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/mps.pdf
http://dx.doi.org/10.1007/978-3-642-00434-6_10
http://dx.doi.org/10.1007/978-3-642-00434-6_10

[37] Erlikh, L.: Leveraging Legacy System Dollars for E-Business. IT Profes-
sional 2 (May 2000)

[38] Estublier, J., Vega, G., Ionita, A.D.: Composing Domain-Specific Lan-
guages for Wide-Scope Software Engineering Applications. In: MoD-
ELS. pp. 69–83 (2005)

[39] Eysholdt, M., Behrens, H.: Xtext: Implement your Language Faster than
the Quick and Dirty Way. In: Proceedings of the ACM International
Conference on Object-oriented Programming Systems Languages and
Applications Companion. pp. 307–309. SPLASH ’10, ACM, New York,
NY, USA (2010), http://doi.acm.org/10.1145/1869542.1869625

[40] Favre, J.M., Musset, J.: Rétro-ingénierie Dirigée par les Métamodéles:
Concepts, Outils, Méthodes. In: Deuxième édition des Journées sur
l’Ingénierie Dirigée par les Modèles (June 2006)

[41] Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, Kazman,
R., Klein, M., Northrop, L., Schmidt, D., Sullivan, K., Wallnau, K.:
Ultra-Large-Scale Systems. Carnegie Mellon University (2006)

[42] de Figueiredo Carneiro, G., Mendonça, M.G., Magnavita, R.C.: An Ex-
perimental Platform to Characterize Software Comprehension Activities
Supported by Visualization. In: ICSE Companion (2009)

[43] Fjeldberg, H.C.: Polyglot Programming – A business perspective. Mas-
ter’s thesis, Norwegian University of Science and Technology (2008)

[44] Ford, N.: The Productive Programmer. O’Reilly, first edn. (2008)

[45] Fowler, M.: Domain-Specific Languages. Addison-Wesley Signature Se-
ries, Pearson Education (2010), http://books.google.dk/books?id=ri1muolw_
YwC

[46] Fowler, M.: Language Workbenches: The Killer-App for Do-
main Specific Languages? (2005), http://martinfowler.com/articles/
languageWorkbench.html

[47] France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.): Model Driven
Engineering Languages and Systems - 15th International Conference,
MODELS 2012, Innsbruck, Austria, September 30-October 5, 2012.
Proceedings, Lecture Notes in Computer Science, vol. 7590. Springer
(2012)

[48] Freude, R., Königs, A.: Tool Integration with Consistency Relations
and their Visualisation. In: ESEC/ FSE Workshop on Tool Integration in
System Development (2003)

[49] Ghosh, D.: DSLs in Action. Manning Publications Co., Greenwich, CT,
USA, 1st edn. (2010)

[50] Goldschmidt, T.: Software Language Engineering. chap. Towards an
Incremental Update Approach for Concrete Textual Syntaxes for UUID-
Based Model Repositories, pp. 168–177. Springer-Verlag, Berlin, Hei-
delberg (2009), http://dx.doi.org/10.1007/978-3-642-00434-6_11

102

http://doi.acm.org/10.1145/1869542.1869625
http://books.google.dk/books?id=ri1muolw_YwC
http://books.google.dk/books?id=ri1muolw_YwC
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://dx.doi.org/10.1007/978-3-642-00434-6_11

[51] Grammel, B., Kastenholz, S.: A Generic Traceability Framework for
Facet-based Traceability Data Extraction in Model-driven Software De-
velopment. In: Proceedings of the 6th ECMFA Traceability Workshop.
pp. 7–14. ECMFA-TW ’10, ACM, New York, NY, USA (2010)

[52] Grammel, B., Kastenholz, S., Voigt, K.: Model matching for trace
link generation in model-driven software development. In: France, R.,
Kazmeier, J., Breu, R., Atkinson, C. (eds.) Model Driven Engineering
Languages and Systems, Lecture Notes in Computer Science, vol. 7590,
pp. 609–625. Springer Berlin Heidelberg (2012), http://dx.doi.org/10.1007/
978-3-642-33666-9_39

[53] Groenewegen, D.M., Hemel, Z., Visser, E.: Separation of Concerns and
Linguistic Integration in WebDSL. IEEE Software 27(5) (2010)

[54] Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: Inter-Modelling:
From Theory to Practice. In: Proc. of the 13th International Conference
on Model Driven Engineering Languages and Systems: Part I (2010)

[55] Gómez, P., Sánchez, M., Florez, H., Villalobos, J.: Co-Creation of
Models and Metamodels for Enterprise Architecture Projects. XM 2012
- Extreme Modeling Workshop (2012)

[56] Halasz, F.G., Schwartz, M.D.: The Dexter Hypertext Reference Model.
Commun. ACM 37(2) (1994)

[57] Hegedüs, Á., Horváth, Á., Ráth, I., Varró, D.: Query-Driven Soft Inter-
connection of EMF Models. In: France et al. [47], pp. 134–150

[58] Heidenreich, F.: Towards Systematic Ensuring Well-Formedness of
Software Product Lines. In: In Proceedings of the 1st Workshop on
Feature-Oriented Software Development. pp. 69–74. ACM, New York,
NY, USA (oct 2009)

[59] Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Deriva-
tion and Refinement of Textual Syntax for Models. In: Proceedings of
the 5th European Conference on Model Driven Architecture - Founda-
tions and Applications. pp. 114–129. ECMDA-FA ’09, Springer-Verlag,
Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-02674-4_9

[60] Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap
between Modelling and Java. In: Proc. of the 2nd International Confer-
ence on Software Language Engineering (SLE 2009), Revised Selected
Papers (2010)

[61] Heidenreich, F., Johannes, J., Zschaler, S.: Aspect Orientation for Your
Language of Choice. In: Workshop on Aspect-Oriented Modeling (AOM
at MoDELS) (2007)

[62] Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: Mapping
Features to Models. In: Companion Proceedings of the 30th International
Conference on Software Engineering (ICSE’08). pp. 943–944. ACM,
New York, NY, USA (May 2008)

[63] Henriksson, J., Johannes, J., Zschaler, S., Aßmann, U.: Reuseware -
Adding Modularity to Your Language of Choice. Journal of Object
Technology 6(9) (2007)

103

http://dx.doi.org/10.1007/978-3-642-33666-9_39
http://dx.doi.org/10.1007/978-3-642-33666-9_39
http://dx.doi.org/10.1007/978-3-642-02674-4_9

[64] Hessellund, A.: SmartEMF: Guidance in Modeling Tools. In: Com-
panion to the 22nd ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications Companion (2007)

[65] Hessellund, A.: Domain-Specific Multimodeling. Ph.D. thesis, IT Uni-
versity of Copenhagen (2009)

[66] Hessellund, A., Sestoft, P.: Flow Analysis of Code Customizations.
In: Proceedings of the 22nd European conference on Object-Oriented
Programming. pp. 285–308. ECOOP ’08, Springer-Verlag, Berlin, Hei-
delberg (2008), http://dx.doi.org/10.1007/978-3-540-70592-5_13

[67] Hessellund, A., Wąsowski, A.: Interfaces and Metainterfaces for Models
and Metamodels. In: Proceedings of the 11th International Conference
on Model Driven Engineering Languages and Systems (2008)

[68] Holst, W.: Meta: A Universal Meta-Language for Augmenting and
Unifying Language Families, Featuring Meta(oopl) for Object-Oriented
Programming Languages. In: Companion to the 20th annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (2005)

[69] Hußmann, H., Demuth, B., Finger, F.: Modular Architecture for a Toolset
Supporting OCL. In: Evans, A., Kent, S., Selic, B. (eds.) UML. Lecture
Notes in Computer Science, vol. 1939, pp. 278–293. Springer (2000)

[70] Jarzabek, S.: Specifying and Generating Multilanguage Software De-
velopment Environments. Softw. Eng. J. 5(2), 125–137 (Apr 1990),
http://dx.doi.org/10.1049/sej.1990.0015

[71] Jemerov, D.: Implementing Refactorings in IntelliJ IDEA. In: Proceed-
ings of the 2nd Workshop on Refactoring Tools. pp. 13:1–13:2. WRT ’08,
ACM, New York, NY, USA (2008), http://doi.acm.org/10.1145/1636642.
1636655

[72] Jouault, F.: Loosely Coupled Traceability for ATL. In: In Proceedings
of the European Conference on Model Driven Architecture (ECMDA)
workshop on traceability. pp. 29–37 (2005)

[73] Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers, Y., Bezivin,
J.: Inter-DSL Coordination Support by Combining Megamodeling and
Model Weaving. In: Proceedings of the 2010 ACM Symposium on
Applied Computing (2010)

[74] Kats, L.C.L., Visser, E.: The Spoofax Language Workbench: Rules
for Declarative Specification of Languages and IDEs. In: Cook, W.R.,
Clarke, S., Rinard, M.C. (eds.) OOPSLA. pp. 444–463. ACM (2010),
http://dblp.uni-trier.de/db/conf/oopsla/oopsla2010.html#KatsV10

[75] Kleppe, A.: Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels (2008)

[76] Kleppe, A.G.: A Language Description is More than a Metamodel.
In: Fourth International Workshop on Software Language Engineering,
Nashville, USA. megaplanet.org, Grenoble, France (October 2007)

[77] Kolovos, D., Rose, L., Paige, R., Polack, F.A.C.: The Epsilon Book.
Structure 178 (2010)

104

http://dx.doi.org/10.1007/978-3-540-70592-5_13
http://dx.doi.org/10.1049/sej.1990.0015
http://doi.acm.org/10.1145/1636642.1636655
http://doi.acm.org/10.1145/1636642.1636655
http://dblp.uni-trier.de/db/conf/oopsla/oopsla2010.html#KatsV10

[78] Kolovos, D.S.: Establishing Correspondences between Models with the
Epsilon Comparison Language. In: Paige, R.F., Hartman, A., Rensink,
A. (eds.) ECMDA-FA. Lecture Notes in Computer Science, vol. 5562,
pp. 146–157. Springer (2009)

[79] Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On-Demand Merging of
Traceability Links with Models. (2006)

[80] Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation
Language. In: Proceedings of the 1st international conference on Theory
and Practice of Model Transformations. pp. 46–60. ICMT ’08, Springer-
Verlag, Berlin, Heidelberg (2008)

[81] Kullbach, B., Winter, A., Dahm, P., Ebert, J.: Program Comprehension
in Multi-Language Systems. In: Proceedings of the Working Conference
on Reverse Engineering (WCRE’98) (1998)

[82] Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Publications Co., Greenwich, CT, USA (2003)

[83] Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of Applica-
tion Software Maintenance. Commun. ACM 21 (June 1978)

[84] Lotufo, R., She, S., Berger, T., Czarnecki, K., Wąsowski, A.: Evolution
of the Linux kernel variability model. In: SPLC’1. LNCS, vol. 6287.
Springer (2010)

[85] Mahé, V., Jouault, F., Bruneliere, H.: Megamodeling Software Platforms:
Automated Discovery of Usable Cartography from Available Metadata
(2009)

[86] McAffer, J., VanderLei, P., Archer, S.: OSGi and Equinox: Creating
Highly Modular Java Systems. Addison-Wesley Professional, 1st edn.
(2010)

[87] McMahon, L.E.: Sed–A Non-interactive Text Editor. Computer Science
Technical Report (77) (1978)

[88] Mens, T., Gorp, P.V.: A Taxonomy of Model Transformation. Electr.
Notes Theor. Comput. Sci. 152, 125–142 (2006)

[89] Merkle, B.: Textual Modeling Tools: Overview and Comparison of
Language Workbenches. In: Proceedings of the ACM International
Conference on Object-oriented Programming Systems Languages and
Applications Companion. pp. 139–148. SPLASH ’10, ACM, New York,
NY, USA (2010), http://doi.acm.org/10.1145/1869542.1869564

[90] Meyers, S.: Difficulties in Integrating Multiview Development Systems.
IEEE Softw. 8 (1991)

[91] Murphy-Hill, E., Parnin, C., Black, A.P.: How We Refactor, and How
We Know it. In: Proc. of the 31st International Conference on Software
Engineering (2009)

[92] Mäder, P., Cleland-Huang, J.: A Visual Language for Modeling and
Executing Traceability Queries. Software & Systems Modeling pp. 1–17
(2012), http://dx.doi.org/10.1007/s10270-012-0237-0

105

http://doi.acm.org/10.1145/1869542.1869564
http://dx.doi.org/10.1007/s10270-012-0237-0

[93] Netta Aizenbud-Reshef, Richard F. Paige, Julia Rubin, Yael Shaham-
Gafni and Dimitrios S. Kolovos: Operational Semantics for Traceability.
In: European Conference in MDA. pp. 7–14 (2005)

[94] Nørmark, K.: Elucidative Programming. Nord. J. Comput. 7(2), 87–105
(2000)

[95] Nørmark, K., Østerbye, K.: Representing Programs as Hypertext. In:
Lund Institute of Technology, Lund University. pp. 11–24 (1994)

[96] Object Management Group: Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, V1.1. http://www.omg.org/
spec/QVT/1.1/ (Jan 2011)

[97] Oldevik, J., Neple, T.: Traceability in Model to Text Transformations. In:
Proceedings of ECMDA Traceability Workshop (ECMDA-TW) (2006)

[98] Østerbye, K., Nørmark, K.: An Interaction Engine for Rich Hypertexts.
In: Ritchie, I., Guimarães, N. (eds.) ECHT. pp. 167–176. ACM (1994)

[99] Paige, R.F., Drivalos, N., Kolovos, D.S., Fernandes, K.J., Power, C.,
Olsen, G.K., Zschaler, S.: Rigorous Identification and Encoding of Trace-
Links in Model-Driven Engineering. Softw. Syst. Model. 10 (October
2011)

[100] Paige, R.F., Olsen, G., Kolovos, D., Zschaler, S., Power, C.: Building
Model-Driven Engineering Traceability Classifications. In: 4th ECMDA
Traceability Workshop (2008)

[101] Paige, R.F., Varró, D.: Lessons Learned from Building Model-driven
Development Tools. Software and System Modeling 11(4), 527–539
(2012)

[102] Pfeiffer, J.H., Gurd, J.R.: Visualisation-based Tool Support for the De-
velopment of Aspect-oriented Programs. In: Filman, R.E. (ed.) AOSD.
pp. 146–157. ACM (2006)

[103] Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic
Schema Matching. The VLDB Journal 10(4), 334–350 (Dec 2001),
http://dx.doi.org/10.1007/s007780100057

[104] Ráth, I., Ökrös, A., Varró, D.: Synchronization of Abstract and Concrete
Syntax in Domain-specific Modeling Languages. Software and System
Modeling (2009), available online first.

[105] Renggli, L., Denker, M., Nierstrasz, O.: Language Boxes: Bending the
Host Language with Modular Language Changes. In: Software Language
Engineering: Second International Conference, SLE 2009 (2010)

[106] Renggli, L., Gîrba, T., Nierstrasz, O.: Embedding Languages with-
out Breaking Tools. In: Proceedings of the 24th European Con-
ference on Object-oriented Programming. pp. 380–404. ECOOP’10,
Springer-Verlag, Berlin, Heidelberg (2010), http://dl.acm.org/citation.cfm?
id=1883978.1884006

[107] Ribeiro, M., Pacheco, H., Teixeira, L., Borba, P.: Emergent Feature
Modularization. In: Proceedings of the ACM International Conference
on Object-oriented Programming Systems Languages and Applications

106

http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/QVT/1.1/
http://dx.doi.org/10.1007/s007780100057
http://dl.acm.org/citation.cfm?id=1883978.1884006
http://dl.acm.org/citation.cfm?id=1883978.1884006

Companion. pp. 11–18. SPLASH ’10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1869542.1869545

[108] Richters, M., Gogolla, M.: OCL: Syntax, Semantics, and Tools. In:
Clark, T., Warmer, J. (eds.) Object Modeling with the OCL. Lecture
Notes in Computer Science, vol. 2263, pp. 42–68. Springer (2002)

[109] Salay, R., Mylopoulos, J., Easterbrook, S.: Using Macromodels to Man-
age Collections of Related Models. In: Proc. of the 21st International
Conference on Advanced Information Systems Engineering (2009)

[110] Schink, H., Kuhlemann, M., Saake, G., Lämmel, R.: Hurdles in Multi-
Language Refactoring of Hibernate Applications (2011)

[111] Schulze, G., Chimiak-Opoka, J., Arlow, J.: An Approach for Synchro-
nizing UML Models and Narrative Text in Literate Modeling. In: France
et al. [47], pp. 595–608

[112] Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Ap-
proaches. J. Data Semantics IV 3730, 146–171 (2005)

[113] Sommerville, I.: Software Engineering. International Computer Sciences
Series, Addison Wesley, Harlow, UK, 8th edn. (2006)

[114] Spanoudakis, G., Zisman, A.: Software Traceability: A Roadmap. In:
Handbook of Software Engineering and Knowledge Engineering. pp.
395–428. World Scientific Publishing (2004)

[115] Stahl, T., Völter, M., Czarnecki, K.: Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley & Sons
(2006)

[116] Stallman, R.M.: EMACS The Extensible, Customizable Self-
documenting Display Editor. In: Proceedings of the ACM SIGPLAN
SIGOA symposium on Text manipulation. pp. 147–156. ACM, New
York, NY, USA (1981), http://doi.acm.org/10.1145/800209.806466

[117] Standish, T.A.: An Essay on Software Reuse. IEEE Trans. Software Eng.
(1984)

[118] Steinberger, M., Waldner, M., Streit, M., Lex, A., Schmalstieg, D.:
Context-Preserving Visual Links. IEEE Transactions on Visualization
and Computer Graphics (InfoVis’11) 17(12) (2011)

[119] Störrle, H.: VMQL: A Visual Language for Ad-hoc Model Querying. J.
Vis. Lang. Comput. 22(1), 3–29 (Feb 2011), http://dx.doi.org/10.1016/j.jvlc.
2010.11.004

[120] Strein, D., Kratz, H., Lowe, W.: Cross-Language Program Analysis and
Refactoring. In: Proc. of the 6th IEEE International Workshop on Source
Code Analysis and Manipulation (2006)

[121] Strein, D., Lincke, R., Lundberg, J., Löwe, W.: An Extensible Meta-
Model for Program Analysis. IEEE Trans. Softw. Eng. 33 (September
2007)

[122] Sufrin, B.: Formal Specification of a Display-oriented Text Editor. Sci-
ence of Computer Programming 1(3), 157 – 202 (1982), http://www.
sciencedirect.com/science/article/pii/0167642382900144

107

http://doi.acm.org/10.1145/1869542.1869545
http://doi.acm.org/10.1145/800209.806466
http://dx.doi.org/10.1016/j.jvlc.2010.11.004
http://dx.doi.org/10.1016/j.jvlc.2010.11.004
http://www.sciencedirect.com/science/article/pii/0167642382900144
http://www.sciencedirect.com/science/article/pii/0167642382900144

[123] Synytskyy, N., Cordy, J.R., Dean, T.R.: Robust Multilingual Parsing
Using Island Grammars. In: Proceedings of the 2003 conference of the
Centre for Advanced Studies on Collaborative research. pp. 266–278.
CASCON ’03, IBM Press (2003), http://dl.acm.org/citation.cfm?id=961322.
961364

[124] Tarr, P., Ossher, H., Harrison, W., Sutton, Jr., S.M.: N Degrees of
Separation: Multi-dimensional Separation of Concerns. In: Proceedings
of the 21st International Conference on Software Engineering. pp. 107–
119. ICSE ’99, ACM, New York, NY, USA (1999)

[125] Tomassetti, F., Vetro, A., Torchiano, M., Völter, M., Kolb, B.: A
Model-based Approach to Language Integration (2013), http://porto.polito.
it/2506234/, to appear in MISE@ICSE

[126] Voigt, K.: Semi-automatic Matching of Heterogeneous Model-based
Specifications. In: Engels, G., Luckey, M., Pretschner, A., Reussner, R.
(eds.) Software Engineering (Workshops). LNI, vol. 160, pp. 537–542.
GI (2010)

[127] Voigt, K., Ivanov, P., Rummler, A.: MatchBox: Combined Meta-model
Matching for Semi-automatic Mapping Generation. In: Proceedings
of the 2010 ACM Symposium on Applied Computing. pp. 2281–2288.
SAC ’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.1145/
1774088.1774563

[128] Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats,
L.C.L., Visser, E., Wachsmuth, G.: DSL Engineering: Designing, Im-
plementing and Using Domain-Specific Languages. dslbook.org (2013),
http://dslbook.org

[129] Völter, M., Solomatov, K.: Language Modularization and Composition
with Projectional Language Workbenches Illustrated with MPS. Software
Language Engineering, SLE (2010)

[130] Wagner, S., Deissenboeck, F.: Abstractness, Specificity, and Complexity
in Software Design. In: Proc. of the 2nd International Workshop on the
Role of Abstraction in Software Engineering (2008)

[131] Waldner, M., Puff, W., Lex, A., Streit, M., Schmalstieg, D.: Visual Links
Across Applications. In: Proc. of Graphics Interface (2010)

[132] Wende, C.: Language Family Engineering – with Features and Role-
Based Composition. Ph.D. thesis, Technische Universität Dresden (2012),
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-88985

[133] Wilke, C., Bartho, A., Schroeter, J., Karol, S., Aßmann, U.: Elucidative
Development for Model-Based Documentation. In: Furia, C., Nanz, S.
(eds.) Objects, Models, Components, Patterns, Lecture Notes in Com-
puter Science, vol. 7304, pp. 320–335. Springer Berlin / Heidelberg
(2012)

[134] Winkler, S., Pilgrim, J.: A Survey of Traceability in Requirements
Engineering and Model-driven Development. Softw. Syst. Model. 9(4),
529–565 (Sep 2010), http://dx.doi.org/10.1007/s10270-009-0145-0

108

http://dl.acm.org/citation.cfm?id=961322.961364
http://dl.acm.org/citation.cfm?id=961322.961364
http://porto.polito.it/2506234/
http://porto.polito.it/2506234/
http://doi.acm.org/10.1145/1774088.1774563
http://doi.acm.org/10.1145/1774088.1774563
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-88985
http://dx.doi.org/10.1007/s10270-009-0145-0

[135] Xing, Z., Stroulia, E.: Refactoring Practice: How it is and How it Should
be Supported - An Eclipse Case Study. In: Proc. of the 22nd IEEE
International Conference on Software Maintenance (2006)

[136] Yie, A., Wagelaar, D.: Advanced traceability for ATL. In: 1st Interna-
tional Workshop on Model Transformation with ATL. pp. 78–87 (2009)

109

110

8 An Aspect-based Traceability
Mechanism for Domain

Specific Languages –
ECMFA-TW’10 (Paper A)

111

An Aspect-based Traceability Mechanism for
Domain Specific Languages

Rolf-Helge Pfeiffer and Andrzej Wąsowski

IT University, Software Development Group,
Rued Langgaards Vej 7, 2300 Copenhagen, Denmark

{ropf,wasowski}@itu.dk

Abstract. Development environments for domain specific modeling usu-
ally represent elements of visual models as objects when in memory and
as XML elements when persisted. Visual models are editable using dif-
ferent kinds of editors, and both the in-memory representations and the
serialization syntax can be manipulated by automatic tools. We present
Tengja, a toolkit, that automatically collects the traces between model
elements in abstract, visual, and serialization syntax. Once the trace
model is established by Tengja it can be used by other applications to
synchronize representations involved, or to navigate across models. We
demonstrate the toolkit by implementing a simple navigation support on
top of it.

Keywords: Model-Driven Software Development, Traceability, Aspect-Oriented
Software Development

1 Introduction

Modeling languages can be classified into visual and textual ones. Textual lan-
guages, such as XML, use alphabet characters to represent models. The Unified
Modeling Language (UML) is an example of a visual modeling language. The
language specification, gives its syntax using visual elements [1]. Visual and tex-
tual modeling languages are used on different levels of abstraction. Often, the
more abstract a model is, the more likely a visual notation is used.

Somewhat controversially, we claim that visual models do not exist in prac-
tice. Instead textual models are interpreted by tools and represented visually.
The visualizations vary, depending on the editors used; ranging from text proces-
sors, via structured forms and trees, to fully fledge diagramming editors. Often
several views are used for the same model.

State of the art frameworks, such as Eclipse Modeling Framework (EMF) and
Graphical Modeling Framework
(GMF), allow automatic generation of rich editors for domain specific languages
(DSLs). The editors are used by developers to produce new software artifacts—
for instance specifications of product variants in model-driven product line ar-
chitectures [16]. Since the editors rely solely on a description of abstract syntax

112

2 Rolf-Helge Pfeiffer and Andrzej Wąsowski

supplemented with visual diagram meta-data, a large degree of code reuse can
be achieved.

Inclusion in mature development processes, imposes high requirements on
modeling editors. Not only should they support developers in the same manner
as usual programming environments, but also provide modeling-specific function-
alities. These, among others, require supporting concurrent editing of multiple
views of an interconnected network of models by multiple developers using differ-
ent physical workstations. Since such applications often need to rely on serialized
versions of models, we approach the question of traceability of model elements
to their serialized representations.

A modern DSL editor distinguishes three representations:

– The serialization concrete syntax (serialization syntax for short) is the per-
sistent representation of models. It often takes form of an XML file adhering
to a particular schema. Tools use serialization syntax at least for storage,
but also for transformation, versioning, etc.

– The abstract syntax is the object graph representing the domain specific
model in memory. It takes the form of an object model adhering to a par-
ticular class model (the meta-model). The abstract syntax is what most
researchers consider ’a model’.

– The visual concrete syntax (or visual syntax for short) is the diagram shown
to the user in a visual editor. The visual syntax is how the users perceive
models.

In programming languages the visual and the serialization syntax coincide: de-
velopers work with the textual representation, which is directly stored in files.
For domain specific modeling languages this is rarely so: The Eclipse DSL toolkit
[9], Generic Modeling Environment [6], MetaEdit+ [10] and Microsoft DSL Tools
[7], all hide the serialization syntax from users. In all these tools editors work
with visual syntax, while abstract syntax and serialization syntax are used for
transformation, synchronization and storage.

Modeling frameworks uniformly support loading and persisting models—a
form of model-to-model traceability between the serialization and the abstract
syntax. For the visual syntax there are well developed traceability mechanisms
linking it to the abstract syntax: all frameworks use them to realize the Model-
View-Controller (MVC) pattern [15], where changes to the visual syntax are
immediately synchronized with the abstract syntax. This is a form of element-to-
element traceability between the abstract and visual models. However, presently,
element-to-element traceability between the abstract and the serialization syntax
is not supported.

The ability to link abstract and serialization syntax at the element granularity
enables the following use cases:

– Model debugging — a developer can navigate from visual syntax elements
directly to XMI representation, in order to inspect the values saved by the
editor. This is useful to debug various phases of the editor, to debug the

113

An Aspect-based Traceability Mechanism for Domain Specific Languages 3

Fig. 1. A visual model element, the corresponding data model element and textual
representations of both

models, and to debug model transformations. This use case is supported by
our prototype (below).

– Monitoring and navigating cross-model soft references — stating soft refer-
ences across models at the level of serialization syntax allows using external
XML processing tools and XML transformations to manage models, while
still maintaining inter-model consistency. Traceability between abstract syn-
tax elements and the serialization syntax allows monitoring external changes
to the abstract syntax, or to the concrete syntax, for example in order to
notify the user about locks to a part of the model, or about concurrent
updates.

– Interactive creation of language independent soft references — extending
the GUI of interactive editors to support definition of soft references and
’anchors’ for higher-level trace-based tools. A user could indicate a model
element, and annotate it with a dependency constraint on another system
component. This dependency can be stored as a dependency between the
serialized versions of the element and that component, which can be pro-
cessed by a traceability tool that is oblivious to the specific notion of models
and components, but just knows about the concept of anchor and depen-
dency. We are presently working on building such a tool for tracing between
heterogenous artifacts.

114

4 Rolf-Helge Pfeiffer and Andrzej Wąsowski

In this paper we present Tengja1, a toolkit for element-to-element tracing from
visual and abstract syntax to their serialized versions. Tengja is implemented as
an aspect in AspectJ, which automatically establishes element-to-element links,
by analyzing the process of saving the model. Our toolkit is non-invasive and
highly reusable due to its aspect oriented nature. It works for existing models
in EMF and GMF. Neither the models nor the editors need to be modified. It
works with all Eclipse model editors (including tree editors, and GMF gener-
ated domain specific editors), as long as they rely on the standard persistence
mechanism.

As a proof of concept, which demonstrates the effectiveness of the framework,
we develop a simple debugging facility using the Tengja-toolkit. It extends the
current Eclipse editors, by introducing an ability to highlight an element and
request its view in other representations. For example, in Figure 1 the user high-
lights EAttribute element of the model opened in a diagram editor of GMF
(left top). On user request, the framework automatically opens three other edi-
tors highlighting the corresponding model parts in each of them (a tree view to
the right, an Ecore XML model to bottom-right and an Ecore diagram model
serialized to XML to bottom-left). The user can then proceed to debug the mod-
eling editors, the serialization mechanism, or the model itself, by inspecting or
modifying the representations shown. As mentioned above the same mechanism
could be used to trigger warnings, errors or updates depending on automatic or
concurrent changes to the serialized or abstract syntax. We intend to investigate
such applications in future.

We proceed as follows. Section 2 provides background on modeling languages
and visualizations in Eclipse. In Section 3 we present Tengja itself, and evaluate
it in Section 4. Sections 5–7 discuss our solution, compare it to published sources,
indicate future research directions and conclude.

2 Models in Eclipse

In this paper we work with EMF and GMF—both visual modeling components of
the Eclipse DSL toolkit. Both frameworks are representative of modern environ-
ments for model-driven software development. Eclipse, GMF and EMF together
enable developers to easily define their DSLs and to generate specialized editors
for them.

Eclipse provides three different kinds of model editors: diagram editors (Dia-
gramDocumentEditor as part of GMF), structured tree editors (Tree used by
EMF), and text editors. Diagram editors and tree editors allow interacting with
visual syntax. Text editors allow for editing models in serialization syntax or in
other textual representations. Eclipse’s modeling package contains examples of
a few predefined editors, such like the UML class diagram editor. In Figure 1
the left-topmost model is shown in a diagram editor (in fact in the class diagram
1 Tengja, Icelandic for connect, was chosen to avoid conflicts with “connects”, “con-

nections”, and “connectors” appearing frequently in model-driven development liter-
ature.

115

An Aspect-based Traceability Mechanism for Domain Specific Languages 5

editor), the right-topmost one in a tree editor, while the two others are shown
in usual text editors.

Presently, the XML Metadata Interchange (XMI) format is used to persist
models in Eclipse. The following gives an overview over the artifacts that are
used to store the relevant information of a graphical model using the example
of the Ecore Metamodeling Language [2].

The model in the top-right of Figure 1 is an excerpt of the EcoreOverview.ecore
data model presented in a tree editor. Its serialization to an XMI file is shown
underneath (bottom-right). Notice, that since the tree editor contains no model
specific layout information, the serialization only contains data model elements.
To the left (top-left) a visual diagram of the same model is shown using UML-
like class diagram syntax. In physical world this image of boxes and lines is the
actual model as it would appear on paper. However from the tool perspective
this is just one possible visualization of the model. Finally, the bottom-left of
the figure shows the serialization of the layout information of the class diagram.

Eclipse separates the visual information model from the actual data model,
spreading their persistent representations over two files. These are integrated to-
gether by modeling editors following the MVC pattern [15]. Figure 22 illustrates
the steps performed when loading, editing, and saving the EcoreOverview.ecorediag
model. When an editor is opened, the visual information model is loaded first,
then the data model is loaded, and both are interpreted, before the model is
presented to the user (the left part of Figure 2).

3 Tengja

Our aim is to provide an extension to Eclipse, which recovers the links between
the serialization syntax and the abstract syntax of models. Since in general,
visual modeling languages are just graphs with different node types and different
edge types, frameworks deploy graph traversal algorithms to persist the models.

The gear-wheels in Figure 3(a) symbolize the standard persistence mecha-
nism of Eclipse serializing both the visual diagram information and the data
model one after another. Both GMF and EMF use the mechanism implemented
in the org.eclipse.emf.ecore.xmi.impl package for this. The XMI represen-
tation is generated by class XMLSaveImpl. It traverses the in-memory object
graph and feature-wise generates the corresponding XML elements. If there ex-
ist corresponding, less abstract models, for instance corresponding data models,
the save mechanism is called iteratively on all these dependent models.

Initially, we had anticipated to find a compositional bottom-up graph traver-
sal algorithm that generates a block of serialization syntax for each model ele-
ment. In reality the translation of each model element is scattered over multiple
methods that are called sequentially. The model graph is not traversed bottom-
up from simple element leaves to the top root. Rather, the persistent model is
constructed sequentially starting from the root model element. The process does
2 Here and in Figures 2 and 3 are artifacts shown to illustrate concepts. Details in

them are not supposed to be legible.

116

6 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Textual

Data

Model

Textual

Visual

Model

1 2

Textual

Visual

Model

1

Textual

Data

Model

2

Editing
 Phase

Interpretation
 Phase

Persisting
 Phase

Fig. 2. Use of visual models in Eclipse

not provide any context anchor that would capture information about the scope:
which model element is in scope and what is the serialization syntax generated
for it. As a result, first it is challenging to understand the relations of a particular
model element and its persistent representation, and, second, no explicit traces
between a graphical model element and its serialization syntax are kept.

Since the standard persistence mechanism obscures the traces, and since we
aim at a reusable and non-invasive tracing toolkit, we settle on using aspects to
observe the standard persistence mechanism, recording the context elements and
linking them to generated syntax. Thereby, we can trace each model element to
its textual representation and thus, establish an explicit mapping between them.
This explicit mapping is then exposed to the development environment, and it
can be used for development of further tools.

The aspect observes the top-most model traversing method and the subse-
quently called corresponding methods in org.eclipse.emf.ecore.xmi.impl,
it observes the sequence of model elements that get treated in the control-flow
of those methods, and keeps track of start and stop positions in the generated
stream of text in serialization syntax for a model element. Subsequently, it maps
model elements to indices in the generated serialization stream.

Figure 3(b) visualizes the standard persistence mechanism saving visual and
data models, being observed by Tengja. Thereby, a trace model in memory is
generated on-the-fly that links the elements of the two syntax kinds.

In order to demonstrate the capabilities of Tengja, we have implemented a
simple extension for Eclipse, able to navigate across the harvested traceability

117

An Aspect-based Traceability Mechanism for Domain Specific Languages 7

Textual

Visual

Model

Textual

Data

Model

(a) The standard set-up

Textual

Visual

Model

Textual

Data

Model

Mapping of

Model

Elements

(b) Monitored by Tengja

Fig. 3. Eclipse’s persistence mechanism serializing two interrelated graphical models

Type of Model Elements
Data Models in .ecore files [correctly traced elements / all elements]

Ecore XMLNamespace XMLType fmp

EClass 20/20 1/1 4/4 8/8
EGenericType 10/155 0/7 0/16 0/30
EAttribute 33/33 5/5 11/11 10/10
EEnum n/a 1/1 n/a 2/2

EReference 48/48 2/2 4/4 16/16
EEnumLiteral n/a 2/2 n/a 10/10
EParameter 22/22 n/a n/a n/a
EOperation 31/31 n/a n/a n/a

EStringToStringMapEntry 55/55 29/29 178/178 n/a
EDataType 32/32 3/3 58/58 n/a

ETypeParameter 5/5 n/a n/a n/a
EAnnotation 39/39 13/13 81/81 n/a

Table 1. Robustness test results for the data models

links. It allows to mark arbitrary model elements in Ecore-based models and to
navigate from the respective element to all related other model elements and
textual representations in abstract syntax, visual concrete syntax, and serializa-
tion syntax. Assume, as seen in Figure 1, that one opens a GMF model in a
diagram editor and one is interested in the traces of a certain model element, in
the example EAttribute, to other model elements. With Tengja it requires just
a button click to move from a marked element to the persistent models opened
in text editors, with the highlighted text corresponding to the original model
element. Note that this functionality is instantly available for all DSLs defined
with Ecore, and all GMF and EMF generated DSL editors.

4 Experimental Evaluation

We evaluate robustness of Tengja with a semi-automated test. A test program
loads a number of models and requests traceability links for their elements. The
results are stored in a log, which is verified by a human expert.

We used a number of GMF diagram models and a number of EMF data
models to run the evaluation. The models where chosen to represent differ-

118

8 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Type of Model Elements
Diagram Models in .ecorediag files [correctly traced elements / all elements]

EcoreAnnotations EcoreDataTypes EcoreGenerics EcoreHierarchy EcoreOverview

Node 18/18 96/96 73/73 232/232 184/184
DrawerStyle 6/6 n/a 14/14 38/38 34/34
SortingStyle 6/6 n/a 14/14 38/38 34/34
FilteringStyle 6/6 n/a 14/14 38/38 34/34
ShapeStyle 3/3 32/32 7/7 19/19 17/17
Bounds 3/3 32/32 7/7 19/19 17/17

DiagramStyle 1/1 1/1 1/1 1/1 1/1
Edge 3/3 n/a 18/18 65/65 48/48

Location 6/6 n/a 45/45 156/156 116/116
ConnectorStyle 3/3 n/a 18/18 65/65 48/48
FontStyle 3/3 n/a 18/18 65/65 48/48

RelativeBendpoints 3/3 n/a 18/18 65/65 48/48
IdentityAnchor n/a n/a n/a 114/114 90/90

Ratio n/a n/a n/a n/a 2/2

Table 2. Robustness test results for the dagram information models

ent sizes and use in real projects. In Tables 1 and 2 column headers corre-
spond to individual models. Ecore.ecore, EcoreAnnotations.ecorediag, EcoreData-
Types.ecorediag, EcoreGenerics.ecorediag, EcoreHierarchy.ecorediag, EcoreOverview.-
ecorediag, XMLNamespace.ecore,
and XMLType.ecore are part of the Ecore implementation available in the org.-
eclipse.emf.ecore Eclipse plug-in (we used version 2.5.0.v200906151043). The
model fmp.ecore is the metamodel of feature models as used in the Feature
Modeling Plug-in [5], available online.

The robustness evaluation was conducted by running a test program on the
above models. The program automatically opens the models in their correspond-
ing editors and generates the mapping between model elements and their textual
representations by saving the respective model before opening it. Subsequently,
the test iterates over all elements of each model and stores their object identifiers
with the textual representation to a log file. The generated log files were man-
ually compared against the source files of the corresponding model. The results
of this check, sorted by the type of model elements, can be found in Table 1 and
in Table 2. In each table cell x/y means that x model elements out of y present
in the model were correctly traced, whereas “n/a” means that the corresponding
model does not contain a model element of the given type.

The result of the evaluation was positive, showing 93% recall and 100% pre-
cision. This means that 93% of the elements have been traced, and all of them
traced correctly.

The only exception are model elements of type EGenericType (Table 1).
Tengja is able to map graphical model objects to their serialization syntax only if
the textual representation is a complete XML element: a string of either “<.../>”
or “<identifier>...</identifier>” form. Most often, model elements of type
EGenericType are in neither form, instead they are subparts of an XML element.
We do not consider this a serious problem, since elements of this type are not

119

An Aspect-based Traceability Mechanism for Domain Specific Languages 9

’clickable’ in model editors anyway. If we only consider clickable elements the
recall raises to 100% with the same precision.

Threats to Validity. There are two main threats to validity of this experiment.
First, our assessment of logs of traces on evaluation models have been performed
by the implementer of Tengja, which could introduce a bias. Moreover the eval-
uation targets were all simple class-diagram files, not actual domain specific
models. We intend to expand the set of evaluation models, and improve the
independence of the evaluation in our ongoing work on this project.

5 Discussion

Tengja is highly reusable, in that it minimizes the amount of code that need to
be refactored when adapting it to a new modeling framework—only the pointcut
specifications should be refactored. In this sense Tengja is ready to support mod-
eling frameworks of Eclipse, that do not exist as of today. Tengja is non-invasive
meaning that it does not require any modifications to models, metamodels, or
existing editors. We have used AspectJ to reach these objectives, but we do be-
lieve that using other composition mechanisms, such as Object Teams, would
yield similar results.

Alternatively we could have implemented an invasive solution, which com-
pletely replaces the persistence mechanism for one, which generates the trace
model on the fly. However this requires deep changes in Eclipse’s implementa-
tion and would not be reusable across new modeling frameworks.

In model transformation systems with QVT-like architecture the trace mod-
els are automatically created while transformations are applied. Implementing
the saving mechanism in such a system, would gain traceability for free, albeit
still just for one particular framework at a time. Presently QVT itself does not
standardize transformations involving serialization syntax, but we would need a
language that supports both automatic element-to-element traceability storage
and model-to-text transformations. One way to obtain this would be to weave
an aspect similar to Tengja into an implementation of existing transformation
toolkit.

One could disregard working with serialization syntax at all. Indeed much of
the functionality can be achieved at the model level, using soft references and
alike. However we have to recognize that a file is the single most popular unit of
organizing software development artifacts. Interfaces for software development
artifacts tend to be the simplest to implement based on files and they allow
programmers to access them with regular text editors (which is very popular).

Since Tengja extends the standard persistence mechanism and supports any
Ecore-based DSLs, it is directly interoperable not only with editors, but also with
other modeling technologies of Eclipse, including transformation languages like
XTend. For example, it can recover traces from abstract to serialization syntax
for models resulting out of transformations. If the transformation framework
supports materialization of traces, these could be combined with our traces, in
order to provide complete end-to-end traceability for chains of transformations.

120

10 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Tengja assumes a rather close relation between the abstract and serialization
syntax. We believe that this is not a serious limitation—it has been expressive
enough to succeed on a handful of DSLs of the Eclipse project, which we have
used for initial evaluation. Indeed, we hypothesize that, unlike for visual syntax
[14], the relation between the abstract syntax and concrete serialization syntax
tends to be close for most modeling languages, as it is also known in compilers
and interpreters for programming languages. Normally, there exists a mapping
between the abstract and serialized representations, where elements of the ab-
stract syntax map to convex fragments of serialization syntax. This assumption
significantly simplifies our implementation.

6 Related Work

Traceability between abstract and serialization syntax is hardly discussed in
modeling community. Oldevik and Neple [13] discuss it in the context of OMG’s
model-to-text transformation standard. They propose to automatically generate
trace models to textual models while the transformation is applied, essentially
in the same manner as it is done for model-to-model transformations. Our work
recovers these links automatically without directly modifying the persistence
code, which would otherwise be required to realize their vision. In this sense,
Tengja is a kind of model transformation [8, 12], which recovers a trace model
by instrumenting a model-to-text transformation.

The literature is abundant in meta-models of trace languages, and in frame-
works allowing defining, maintaining and querying tracability information. Much
less attention is devoted to automatic recovery of such links. One example is the
work of Antkiewicz and coauthors [3] on recovery of framework specific models
from Java code. They use static analysis to recover models from Java source
code (arguably a textual representation). Once the models are extracted, trace
models are used to maintain synchronization links [4].

Ráth et al. [14] extend trace models to arbitrary relations between the ab-
stract and the visual syntax. They use incremental model transformations to
maintain the two layers in sync. While such a generality of constraints appears
superfluous between the serialization and abstract syntax, it would still be in-
teresting to see whether their technology could keep textual and visual models
synchronized easily.

In [11] a rule based approach is proposed for automatic updating of trace-
ability rules based on common model editing operations. It would be interesting
to see whether this adapts also to automatic model transformations, and to links
between serialization and abstract syntax, in particular in scenarios when the
concrete representation is changed concurrently to the abstract representation.

7 Conclusion and Future Work

We have presented Tengja, a robust, non-invasive and reusable aspect-oriented
solution for automatic harvesting of traceability links between abstract and se-

121

An Aspect-based Traceability Mechanism for Domain Specific Languages 11

rialization syntaxes in modeling frameworks of Eclipse. We are not aware of any
tool with similar objectives being available so far.

Tengja visualizes traces between elements of interrelated models on multiple
levels of abstraction. Thereby, it may enhance the awareness and the under-
standing of traces. To demonstrate this we have developed a simple extension
for navigation between model elements in various representations, which can be
used to debug models and editors.

In future we will continue developing Tengja. For example, the tool presently
does not handle models with multiple root elements. This is going to be ad-
dressed. We intend to use Tengja to develop higher level tools, for example
supporting compositional reasoning about systems in the style of component
algebras. Tengja will be the main linking mechanism of this prospective tool.

References

1. OMG Unified Modeling Language, Infrastructure. omg.org/spec/UML/2.2/Infrastructure/
PDF, Mar. 2010.

2. Package org.eclipse.emf.ecore. download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/
org/eclipse/emf/ecore/package-summary.html#details, Mar. 2010.

3. M. Antkiewicz, T. T. Bartolomei, and K. Czarnecki. Fast extraction of high-quality
framework-specific models from application code. Autom. Softw. Eng., 16(1):101–
144, 2009.

4. M. Antkiewicz and K. Czarnecki. Framework-specific modeling languages with
round-trip engineering. In O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio,
editors, MoDELS’06, volume 4199 of LNCS. Springer.

5. M. Antkiewicz and K. Czarnecki. FeaturePlugin: Feature Modeling Plug-In for
Eclipse. In eclipse ’04: Proceedings of the 2004 OOPSLA workshop on eclipse
technology eXchange. ACM, 2004.

6. K. Balasubramanian, A. S. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema.
Developing applications using model-driven design environments. IEEE Computer,
39(2):33–40, 2006.

7. S. Cook, G. Jones, S. Kent, and A. C. Wills. Domain-specific development with
Visual Studio DSL tools. Addison-Wesley, 2007.

8. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-
proaches. IBM Systems Journal, 45(3):621–646, 2006.

9. R. C. Gronback. Eclipse Modeling Project: A Do-
main-Specific Language Toolkit. Addison-Wesley, 2009.

10. S. Kelly and J.-P. Tolvanen. Domain-specific modeling: enabling full code genera-
tion. Wiley-IEEE, 2008.

11. P. Mäder, O. Gotel, and I. Philippow. Semi-automated traceability maintenance:
An architectural overview of traceMAINTAINER. In Proceedings of ECMDA
Traceability Workshop ECMDA Traceability Workshop (ECMDA-TW), 2009.

12. T. Mens and P. V. Gorp. A taxonomy of model transformation. Electr. Notes
Theor. Comput. Sci., 152:125–142, 2006.

13. J. Oldevik and T. Neple. Traceability in model to text transformations. In Proceed-
ings of ECMDA Traceability Workshop ECMDA Traceability Workshop (ECMDA-
TW), 2006.

122

12 Rolf-Helge Pfeiffer and Andrzej Wąsowski

14. I. Ráth, A. Ökrös, and D. Varró. Synchronization of abstract and concrete syntax
in domain-specific modeling languages. Software and Systems Modeling, 2009.
Available online first.

15. T. M. H. Reenskaug. Models - Views - Controllers. heim.ifi.uio.no/~trygver/1979/mvc-2/
1979-12-MVC.pdf, 1979.

16. T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Software Development:
Technology, Engineering, Management. John Wiley & Sons, 2006.

123

124

9 Taming the Confusion of
Languages – ECMFA’11

(Paper B)

125

Taming the Confusion of Languages

Rolf-Helge Pfeiffer and Andrzej Wąsowski

IT University of Copenhagen, Denmark
{ropf,wasowski}@itu.dk

Abstract. Large software systems are composed of diverse artifacts. The relations
between these artifacts are usually not formalized, if the artifacts use different mod-
eling or programming languages. This hinders component-oriented development,
as interfaces of exchangeable components do not capture hidden artifact depen-
dencies. We present GenDeMoG, a tool that allows for mining inter-component
dependencies beyond those explicitly specified. GenDeMoG is a generic generator-
generator parameterized with a high-level system model containing dependency
specifications. So, unlike the language interface mechanisms, GenDeMoG is not
restricted to any given kind of links. We apply GenDeMoG to a realistic case
study—an open source enterprise system, OFBiz. The experiment confirms that the
stereotypical opinion about unknown dependencies across artifact types is indeed
correct. Just 22 specifications allowed GenDeMoG to uncover 1737 undocumented
inter-component dependencies among OFBiz components.

1 Introduction

A modern enterprise system is heterogeneous—it combines development artifacts, ex-
pressed in various languages. These artifacts are aggregated into larger reusable entities,
called components. However, when forming a system, the artifacts are not merely put
together to form components, but they are interrelated via references or other depen-
dencies. Depending on the language and the provided mechanisms, such references are
either direct or indirect. Direct references are string-based references expressed by using
the same datum in different locations. If at one place the datum changes, the reference is
broken. Indirect references are established between artifacts at runtime; for example in
adapter calls, such like when a Java method is calling a Prolog rule.

The larger the number of languages used at development time, the more artifacts con-
taining references to artifacts in other languages appear. Further, since not all languages
are general purpose (GPLs), many artifacts cannot use adapters to interact with code in
other languages, instead they refer to other code artifacts directly. Usually such direct ref-
erences are implicit, in the sense that their semantics is hidden in the execution platform
(an interpreter, business logics, etc.). In contrast, explicit references exploit meta-data of
the referenced datum, for example document structure like in unified resource locators
(URI). Either type of references result in dependencies between artifacts.

The proliferation of references across languages and across components causes a
number of problems for software developers:

– Since inter-language dependencies are usually implicit, they require substantial
domain knowledge for a developer to correctly perform simple evolution steps.

126

– Implicit dependencies may cross the borders of system’s aggregation structure:
components get coupled tighter together. When this happens, it is often not explicitly
recorded in component interfaces.

– Errors caused by broken dependencies are most often only exposed at runtime; so
detection of any errors requires thorough testing of the modified code—while, at
least in principle, errors caused by dangling references between static artifacts, could
easily be caught at compile time.

The first objective of this paper is to present GenDeMoG—a tool that allows for
specifying inter-component dependency patterns for artifacts in heterogeneous systems.
GenDeMoG automatically reveals the hidden dependencies using these patterns. The tool
is generic. It is neither tied to certain languages nor applications. It is also non-invasive,
in the sense, that it does not require that the related artifacts are modified.

Our second objective is to use GenDeMoG to analyze a larger realistic case study for
the presence of unspecified dependencies, and their interaction with component structure
of the system. We use OFBiz [10], an open-source enterprise automation software project,
as the subject in this study. OFBiz is a component-based system comprising a multitude
of heterogeneous languages, both general purpose languages (GPLs) like Java, and
domain-specific languages (DSLs). We research OFBiz applications, that is programs
running on the OFBiz framework. Such applications are again component-based and
heterogeneous. Therefore, we identified 22 exemplary dependency patterns using 7
languages specific to OFBiz. GenDeMoG automatically revealed 1737 inter-component
dependencies of the kind specified by these patterns.

The main findings of these study are that:

– There indeed exists a large number of references between OFBiz components not
specified in the component description mechanism (see e.g., Fig. 1)—even though
the mechanism provides for specifying such.

– These dense and circular references couple the components tightly together. This
confirms the qualitative understanding (see Section 2) that evolution or refactoring
of OFBiz component structure is difficult in practice.

A useful by-product of this work is an initial meta-model of Java 5 implemented
in Xtext [14]. Since we could not find a pre-existing Xtext specification of Java, we
adapted an existing ANTLR grammar, and optimized it to decrease the number of model
elements created in each type, so that pattern matching, which relies on these types,
is more efficient. The new Java model is available online together with GenDeMoG
(http://www.itu.dk/~ropf/download/gendemog.html).

We further motivate the problem of unspecified references across languages and
components using the OFBiz example in Sect. 2. In Sect. 3 GenDeMoG is introduced.
Sect. 4 describes the experimental case study of applying GenDeMoG to OFBiz. We end
with a discussion of future work (Sect. 5), related work (Sect. 6) and conclusion.

2 Background and Rationale

Software systems are implemented using many interrelated artifacts, expressed in
multiple languages. We shall now investigate this architectural phenomenon by surveying

127

<ofbiz-component name="order"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://ofbiz.apache.org/dtds/ofbiz-component.xsd">

<resource-loader name="main" type="component"/>
<classpath type="jar" location="build/lib/*"/>
<classpath type="dir" location="config"/>
...
<entity-resource type="model" ... location="entitydef/entitymodel.xml"/>
...
<entity-resource type="data" ... location="data/OrderTypeData.xml"/>
...
<service-resource type="model" loader="main" location="servicedef/services.xml"/>
...
<service-resource type="eca" loader="main" location="servicedef/secas.xml"/>

...
<webapp name="order" title="Order" ... location="webapp/ordermgr"

base-permission="OFBTOOLS,ORDERMGR" mount-point="/ordermgr"/>
</ofbiz-component>

Fig. 1. An excerpt of the Order component descriptor.

<entity entity-name="FinAccount" package-name="org.ofbiz.accounting.finaccount"
title="Financial Account Entity">
<field name="finAccountId" type="id-ne"></field>
<field name="finAccountTypeId" type="id"></field>
<field name="statusId" type="id"></field>

...
</entity>

public static boolean validatePin(GenericDelegator delegator,
String finAccountId, String pinNumber) {

GenericValue finAccount = null;
try {

finAccount = delegator.findByPrimaryKey("FinAccount",
UtilMisc.toMap("finAccountId", finAccountId));

} ...

Fig. 2. An inter-language cross-component string-based dependency: the marked string literals in
the Java method validatePin refer to objects specified in the XML file on top (both red).

the example of the OFBiz project. OFBiz is a component-based framework on top of
which OFBiz applications are run. A standard OFBiz distribution includes 11 applica-
tion core components delivering key functionalities: accounting, commonext, content,
humanres, manufacturing, marketing, order, party, product, securityext, and workeffort.

Each application component contains a component descriptor, by convention in a
file named ofbiz-component.xml, expressed in a domain specific language using an XML
syntax. The descriptor defines the visibility of artifacts, their types, etc. Fig. 1 presents a
fragment of the descriptor for the order component, which supports functionality around
management of customer orders. The component descriptor informs the framework about
the existence and location of data models and initialization data (entity-resource) or
about the existence and location of business logic (service-resource). Further it declares
whether a component is a web application (webapp) and allows for the specification of a
set of components that it depends on (depends-on). The latter, however, is not used in
the above example, nor anywhere else in core application components of OFBiz.

Implementation artifacts are expressed using DSLs and GPLs. Dependencies between
heterogeneous artifacts are expressed using string-based references, since the languages
themselves do not support heterogeneous interface descriptions—i.e., only few languages

128

allow for expressing relations between language elements within the same language in
a managed manner. That is, the wish to separate concerns by expressing development
artifacts in different DSLs and GPLs and the lack of a uniform managed mechanism to
describe relations between artifacts creates a confusion of languages.

Fig. 2 shows an example of an inter-language, inter-component, string-based depen-
dency between a Java method call and an entity definition. A dependency (reference)
goes from a class FinAccountHelper in the order component to the file entitymodel.xml
in the accounting component (both red in the Figure). This reference, as many other
similar, is not captured by the interface specification of Fig. 1.

Dependencies that cross component boundaries are problematic since they increase
coupling and make components hard to exchange or remove, when customizing OFBiz.
Still, OFBiz contains no mechanism for specification of inter-component dependencies,
which could help developers by reporting violations of dependencies, or merely by
documenting dependencies. The following quotes (original spelling) from the developer
mailing lists show that indeed implicit coupling of components is an issue in practice
(Note, these quotes are to motivate our work. We did not perform a systematic research
on the OFBiz mailing lists):

Hansen: I am looking for information regarding the inter-dependency among all ofbiz
components . . . Is there any effective way to know this kind of information. So that I can
safely remove those components I do not want without affecting the functionalities of the
other components that I want to keep
skip@theDevers I recently used just the party manager in a project and deleted all the
rest. Took a couple of days replacing/commenting out the dependencies. . .
Hansen It would be usuful to have such information (something like rpm dependency
list) handy especially for those application components as they are supposed to be less
dependent on other components comparing to framework components.

[http:// ofbiz.135035.n4.nabble.com/ component-dependency-td153157.html]

Mustansar Mehmood My company(a service company) is considering ofbiz as their
ERP/CRM/accounts Receivable system but Ofbiz seems to have a few things that my
company will not be using for instance E commerce or Manufacturing/. How do we
removed those applications ? and keep it running stable. . .
Divesh Dutta You can not remove the any of the complete application. Each module is
related to another module one or other way. . .
cjhorton Generally, because of dependancies you don’t want to ’remove’ a component,
but rather just ’hide’ it as talked about in the links above. . .

[http:// ofbiz.135035.n4.nabble.com/ Removing-applications-from-OfBiz-td160666.html#a160669]

Our long term research agenda is to support smooth evolutions of systems with
interrelated artifacts. We recognize that this cannot be solved without taking project
specifics into account. Thus in this paper we present a generic tool, which parameterized
with a project-specific model of a software system with its dependencies, is able to reveal
unspecified relations between implementation artifacts across components. In the second
part of the paper we will use this tool to further explore the nature of dependencies in an
example of a mature business application, such as OFBiz.

129

3 GenDeMoG

This section introduces GenDeMoG a generic tool for mining an inter-component
dependency graph of heterogeneous component-based software systems. GenDeMoG’s
architecture and other important aspects are described.

The central artifact to GenDeMoG is a Component Descriptor Model (CDM). A
CDM provides an external description of a component-based software system under
analysis. It states which languages are used by development artifacts, what components
are formed by which artifacts and, most importantly, includes the language-level patterns
that describe the conditions for dependencies between development artifacts. A CDM
comprises the following three sections:

Type definitions In our work we use the terms types and languages synonymously.
Types are defined by a path to a languages meta-model assigned to an alias. The alias
is required to be equal to the meta-models name. GenDeMoG generally provides
2 different means of importing a language to the framework. These are first XSD
meta-models and second EMF meta-models. Each language definition has to refer
to its meta-meta-model.

Component List Components are specified by a unique name. This may be a relative
path to a folder containing the components artifacts or any other name. Each compo-
nent declares a list of artifacts it contains. Artifacts are specified by a unique path,
with respect to a single CDM. Each artifact refers further to its meta-model or the
language it is instance of.

Pattern Definitions Dependency patterns are defined by specifying a key pattern, and
a reference pattern with respect to the corresponding language definitions. Patterns
are specified using the EMF expression language that is used for writing model
transformers and code generators in Xtend and Xpand [13, 12] respectively. Key
patterns always start with the keyword possibleKey and reference patterns
with the keyword possibleReference and may be followed by navigations
to certain model sub-elements, see the dependency pattern in Fig. 3. The second
element of both pattern specifications is the respective model element type. This
states the type of the possibleKey and possibleReference model element
respectively. Finally, the language for key and reference patterns is specified. A
separate boolean expression over key- and reference patterns defines under which
condition a key and a reference pattern are in relation.

Obviously, GenDeMoG’s CDM is directly tied to the meta-model hierarchy [28,
16]. All used languages in a software system are defined to be instances of the same
meta-meta-language (M3) (Ecore [11]). This allows for the definition of dependency
patterns on meta-model level (M2) or language level. All artifacts are specified as models
(on level M1) that are instances of the corresponding meta-model or languages stated in
the type definitions.

In a nutshell, a CDM lists all languages used or of interest in the software system
under analysis, it lists which artifacts form components and most importantly, which
language constructs induce inter-component dependencies.

130

key pattern: "possibleKey.entityName" typeOf "EntityType" in iof entitymodel
reference pattern: "possibleReference.relEntityName"

typeOf "RelationType" in iof entitymodel
dependency relation: "_keyPattern_ == _refPattern_"

Fig. 3. Example pattern.

cached Boolean check(EntityType possibleKey, RelationType possibleReference) :
possibleKey.entityName == possibleReference.relEntityName;

Fig. 4. Automatically generated code corresponding to the pattern in Fig. 3.

Supported Languages. Since GenDeMoG allows for mining inter-component dependen-
cies for heterogeneous languages, it is crucial to provide a mechanism for including new
languages. As mentioned above all languages are based on the Ecore meta-meta-model.
XSD-based language definitions can either be automatically or manually converted to
Ecore-based language definitions. In the experiment (Sect. 4) we use 6 XSD-based
language definitions and one Ecore-based definition. The Ecore-based Java 5 model is
an initial implementation setting up on XText. Generally, there are multiple sources for
predefined languages such as e.g., EMFText Syntax Zoo [3] (currently, 88 languages),
the Atlant Ecore Zoo [2] (currently, 304 languages), the MoDisco Project Page [9]
(currently for Java and XML documents).

Dependency Patterns. GenDeMoG mines Key-Reference dependencies. That is, there is a
key, the definition of a certain piece of information that may be referenced. Furthermore,
there are references, which are pieces of information that specify the referenced keys. In
GenDeMoG such pieces of information are model elements. A key and a reference are
in relation, if and only if the boolean constraint that specifies their relation evaluates to
true. That is, there are no keys and references without a relation.

Dependency patterns are defined between two language elements of a certain type
(type) each which in turn belongs to a certain language (in iof). Each key and refer-
ence pattern may be defined more precisely by an optional refine statement. It may be
used to provide another boolean expression that needs to evaluate to true. Key patterns are
referenced in the dependency patterns using the key word _keyPattern_. Reference
patterns are referenced in the dependency patterns using the key word _refPattern_.
A dependency pattern, with substituted _keyPattern_ and _refPattern_, is a
boolean expression that evaluates to true if a dependency between a key and a reference
exists. Since GenDeMoG is a generator-generator, the dependency patterns get trans-
formed to dependency graph generator code that contains a boolean function call for the
dependency relation, see Fig. 4, corresponding to the dependency relation in Fig. 3. The
language for describing key and reference patterns is the Eclipse Modeling Framework
(EMF) expression language [4].

GenDeMoG’s Architecture. GenDeMoG is a generator-generator. “ [It] compiles a
query into a special-purpose search program, whose task is only to answer the given
query. . . . the input to the program generator is a general query answerer, and the output
is a ’compiler’ from queries into search programs.” [25] The queries in our case are
the dependency patterns. The ’compiler’ is the ext_gen model transformer. It takes the
dependency pattern queries from a CDM and generates graph_gen as special purpose

131

Fig. 5. Metamodel for the mined inter-component dependency graph.

search program, which in turn is a model transformer again. The following is a description
of GenDeMoG’s architecture using the compiler notation from [25]:

graph_gen = Jext_genKxpand [cdm, fst_wf] (1)

snd_wf = Jwf_genKxpand [cdm] (2)

dep_model = Jgraph_genKxtend [{artifacts}, snd_wf] (3)

Entities in J·K describe semantic units, i.e., programs in a certain language (denoted as
subscript) that are executed consuming the arguments in [·]. Workflows (fst_wf, snd_wf)
are programs that execute model generators and model transformers in a specified order.
The first workflow calls the ext_gen code generator on the CDM. That means, that the
generator-generator gets instantiated to the concrete generators for patterns. The second
workflow takes the generated concrete generators and runs them on the corresponding
artifacts in order to generate the dependency graph. Thus, workflows are programs that
have a coordinating function and we denote them as arguments to model generators and
transformers. The generated dependency model is an instance of the meta-model shown
in Fig. 5. Such a dependency graph (Tengsl1 model) contains a representation for each
component, containing artifacts, which in turn may contain key elements and references
to keys.

4 Experiment

We will now demonstrate GenDeMoG by applying it to a real-world medium-sized soft-
ware system analysis scenario. This way we will extract an inter-component dependency
graph for the subject system, which we will further analyze.

The Experiment Subject. OFBiz is an industrial-strength open source enterprise automa-
tion software project licensed under the Apache License Version 2.0. By open source
enterprise automation we mean: Open Source ERP, Open Source CRM, Open Source
E-Business / E-Commerce, Open Source SCM, Open Source MRP, Open Source CMM-
S/EAM, and so on [10]. In this experiment we have used OFBiz ver. 9.04, available at
http://svn.apache.org/repos/asf/ofbiz/branches/release09.04.

OFBiz’ source tree contains 6522 files, including 1122 Java source code files, 365
Groovy files, 1283 XML files, and files in various other languages. Out of 6522 files,

1 Tengsl: Icelandic for relationship

132

Model Controller

View

entitymodel - entitymodel (2)

entitymodel - simpleMethods (6)
entitymodel - java (7)

entitymodel - servies (1) services - simpleMethods (1)

widgetScreen - entitymodel (1)
widgetForm - entitymodel (1)

widgetScreen - widgetScreen (1)

widgetForm - siteConf (2)

Fig. 6. Amount of dependency patterns between the parts of the MVC architecture.

2289 are related to the framework only, and 1539 are owned by the 11 core application
components. The tree contains more than 388000 lines in XML models, and in excess
of 310 KLOC of Java code. The OFBiz project uses not less than 33 domain specific
languages and relies on about a dozen standards or open technologies. More than 2000
email addresses are subscribed to the OFBiz mailing list, most of these technically
oriented participants ranging from core developers to technically skilled users who
customize and deploy OFBiz. The project website lists (February 2011) several large
customers, including internationally known brands such as telecom operators or large
airlines and a multitude of smaller ones. All in all, OFBiz is a fairly representative
example of an industrial quality modern enterprise system.

In this paper we focus on dependencies in OFBiz applications across the core com-
ponents, i.e., inter-component dependencies. To customize an application the mentioned
components can either be modified, removed, or extended and expanded by new com-
ponents. We note that in case of OFBiz, the framework follows the same architectural
principle as the applications built on top of it.

A typical application relies on the following 25 DSLs: componentLoader, jndiConfig,
ofbizComponent, ofbizContainer, ofbizProperties, datafiles, entityConfig, entityEca,
entitygroup, entitymodel, fieldtypemodel, simpleMethods, securityConfig, serviceConfig,
serviceEca, serviceGroup, serviceMca, services, testSuite, regions, siteConf, widgetForm,
widgetMenu, widgetScreen, and widgetTree. On top of the GPLs such like Java and
Groovy [6], the FreeMarker Template Language (FTL) [5], and JavaServer Pages (JSP)
[7] are used. DSLs are used to describe data models, visual application parts, and together
with GPLs they are used to specify the controller level, i.e., required logics, following
the model-view-controller design pattern.

The Experiment Set-up. The objective of this experiment is two-fold. First, we want
to show that a large number of dependencies—precisely, direct references—exists
between components and languages in a mature system like OFBiz. Second, we want to
demonstrate effectiveness of GenDeMoG while revealing the dependencies. We do not
aim at revealing all not specified dependencies—since this would require a substantial
domain knowledge.

We are interested in dependencies within and across architectural layers. Since OFBiz
follows the model-view-controller design pattern the interesting component boundaries
can be divided in the following 6 categories: model–model, model–view, view–view, view-
controller, controller–controller, and controller—model. We have identified patterns
describing dependencies in each of these. The dependencies have been identified by

133

studying available documentation, in particular the developer guide book [24]. We have
stopped searching for more dependencies as soon as we accumulated representatives for
all categories (in total 22 dependency patterns, 19 inter-language and 3 intra-language
patterns). Fig. 6 shows these categories by black edges—thickness of the edge, and the
numeric labels, reflect how many dependency patterns we were able to find on each of
the boundaries. Note that due to the inherent incompleteness of the collection method
this does not mean that proportions between dependencies in OFBiz are precisely as
indicated in the figure. The diagram merely shows the characteristics of our selected
sample set, and it does show qualitatively that there exist dependencies on each of these
boundaries.

The dependency mining algorithm is applied to 642 artifacts (relevant for the patterns)
belonging to the 11 core application components of OFBiz.

Fig. 7 shows an excerpt of the CDM used for this experiment. The complete model
showing all included languages, components, artifacts and dependency patterns is avail-
able online at http://www.itu.dk/~ropf/download/gendemog.html.

Let us survey Fig. 7 to provide further details. A CDM is defined per software system
or project where the projects root folder is specified (at), see line 1. Used languages
(type) are declared, see lines 3-6, by giving them a unique name, a path to their lan-
guage specification (metamodel) or additionally their language package (see line 6),
and stating the languages meta-meta-model (typeOf). Lines 8-24 show an excerpt of
two component specifications (component) via a unique name, a path to the compo-
nent’s root folder (at), an finally the contained artifacts. Each artifact (artefact) is
specified by a path to the artifacts location and the type of the language it is instance
of (typeOf). Note, to minimize GenDeMoG’s memory footprint, the experiment is
run with preprocessed Java source code files. That is, a separate preprocessing step
converted the textual Java files to an Ecore-based model representation (jxmi, e.g., line
13). Lines 26-42 show the declaration of two dependency patterns. We will have a closer
look to the second one. Model elements that might be keys (key pattern:) are
specified by a pattern to a model element, the model element’s type (typeOf), and the
type declaring language (in iof). The same holds for the specification of a reference
element. In both are possibleKey and possibleReference reserved keywords.
In case that a lot of model elements match the pattern definition with the corresponding
type, it is possible to further refine the matching model element set (refine). By a
boolean expression over key and reference patterns, are dependency relations defined
(dependency relation:). In dependency relations and refine declarations are
possibleKey, possibleReference, _keyPattern_, and _refPattern_
reserved keywords.

Results and Analysis. A check for one pattern (out of the 22) over the 642 relevant
artifacts takes about 2-3 minutes time on a 2GHz Intel Core 2 Duo Mac Book with 2GB
1067MHz DDR3 RAM.

Our 22 patterns, reveal in total 1737 inter-component dependencies (the number of
elements of type ReferenceElement as per Fig. 5). These 1737 dependencies have 635
unique target elements (KeyElements). Remember, that since the list of patterns is highly
incomplete, this number is a strict lower bound on the actual number of interactions
between core application components in OFBiz!

134

1 project ofbiz at "/ofbiz_9_4"
2 ...
3 type entitymodel metamodel ".../dtd/entitymodel.xsd" typeOf XSD,
4 type simpleMethods metamodel ".../dtd/simple-methods.xsd" typeOf XSD,
5 type java3 metamodel ".../lang/xtext/Java3.ecore" typeOf Ecore
6 -P "dk.itu.sdg.lang.xtext.java3.Java3Package"
7

8 component accounting at "/ofbiz/applications/accounting" {
9 artefact "/.../accounting/.../entitymodel.xml" typeOf entitymodel,

10 ...
11 artefact "/.../accounting/.../TaxAuthorityServices.xml" typeOf simpleMethods,
12 ...
13 artefact "/.../accounting/.../UtilAccounting.jxmi" typeOf java3,
14 ...
15 }
16 ...
17 component order at "/ofbiz/applications/order" {
18 artefact "/.../order/.../entitymodel.xml" typeOf entitymodel,
19 artefact "/.../order/.../entitymodel_view.xml" typeOf entitymodel,
20 ...
21 artefact "/.../order/.../PurchaseOrderTest.jxmi" typeOf java3,
22 artefact "/.../order/.../SalesOrderTest.jxmi" typeOf java3,
23 ...
24 }
25 ...
26 /* entitymodel <-> entitymodel */
27 key pattern: "possibleKey.field.name" typeOf "EntityType" in iof entitymodel
28 reference pattern: "possibleReference.relation" typeOf "EntityType"
29 in iof entitymodel
30 dependency relation:
31 "_refPattern_.select(e|e.relEntityName == possibleKey.entityName).size > 0
32 && _keyPattern_.intersect(_refPattern_.keyMap.fieldName).size > 0"
33 ...
34 /* entitymodel <-> java */
35 ...
36 key pattern: "possibleKey.entityName" typeOf "EntityType" in iof entitymodel
37 reference pattern: "possibleReference" typeOf "PrimaryVarCall"
38 refine "_refPattern_.name.name.last() == (’getRelatedOne’) &&
39 !_refPattern_.eContents.typeSelect(Arguments).isEmpty &&
40 !_refPattern_.eAllContents.typeSelect(PrimaryLiteral).isEmpty" in iof java3
41 dependency relation: "_refPattern_.eAllContents.typeSelect(PrimaryLiteral)
42 .select(e|e.literal == ’\"’+_keyPattern_+’\"’).size > 0" ...

Fig. 7. An excerpt of the CDM for the experiment.

It turns out that the density of dependencies varies a lot for patterns. This is visual-
ized in Fig. 8. For example pattern number zero, leftmost in the figure, uncovers 700
dependencies, to 132 elements, while pattern number five applies rarely, uncovering only
4 dependencies to 3 key elements.

Fig. 9 shows qualitatively how dependencies are split across the components. Vertices
represent components. There is an edge between two vertices if there is at least one
dependency between the components in the given direction (arrow-heads point towards
owners of target key elements). The only component that is independent from the
remaining ones, as far the 22 dependency patterns are considered, is securityext. Note,
that commonext depends on no component but is required by four others.

The graph contains a large number of cycles, and it is clear that each component
depends on a handful of others. Also each has a few dependent ones. The median number
of components depending on a given node is 6, while the median number of components
on which a node depends is 5. This confirms quantitatively that problems indicated in the
mailing list discussions (see Sect. 2) are well grounded—clearly it must be a challenge

135

132 

107 

8 

26 35 

3  8  10  14 
32 

55 

26 
9 

24 

54 
18 

28 

9 

27 

5  5  0 

100 

200 

300 

400 

500 

600 

700 

0  5  10  15  20 

Fig. 8. Number of dependencies (vertical axis) for each pattern (horizontal axis). Number of key
elements are shown in the bubbles. Grey bubbles are intra-language patterns.

humanres

content

commonext

accounting

party

product
order

manufacturing

workeffort

marketing

securityext

Fig. 9. Inter-component dependencies aggregated from the mined dependency graph.

to remove, replace or modify a component. Indeed, we have been able to confirm this
coupling using merely 22 patterns!

Despite the fact that the component descriptions (ofbiz-component.xml) allow to
specify component dependencies, none of the uncovered dependencies has been explicitly
declared by developers. It turns out that this specification mechanism is not used in
practice. This motivates further research in automatic dependency maintenance tools
such as GenDeMoG.

Fig. 10 summarizes distribution of keys (referred elements) and references (referring
elements) over the languages. Not surprisingly the biggest amount of keys is defined
in the entitymodel DSL, which is used to define the data model. The large numbers of
references outgoing from entitymodel (881) is caused by a large number of relations
between the various concepts in the data model. This is natural in a data processing
system. Also data modeling patterns were the easiest to identify for non-experts, so it
is expected that we included some of these. As we have seen in Fig. 6—the model part
of the architecture (containing the entitymodel language) has participated in the biggest
share of our patterns, so it is expected that it generates most dependencies.

136

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

en
.t
ym
od
el
  

ja
va
3 
 

sim
pl
eM
et
ho
ds
 

se
rv
ic
es
 

w
id
ge
tS
cr
ee
n 

w
id
ge
tF
or
m
 

sit
eC
on
f 

Keys 

References 

Fig. 10. Distribution of keys and references per language.

Finally, we have classified the dependencies that we have observed, in order to
understand the circumstances in which they emerge. We observe three main categories
of dependency patterns (and thus of the mined dependencies):

1. A relation provides a mechanism for distributed information specification within a
language. For example, the relation mechanism of the entitymodel language allows
specifying relations between data tables across artifact boundaries.

2. A call is an inter-language mechanism, where at least one language has runtime
semantics and thus can call certain other code blocks or variables. For example, a
Java method call that consumes a name of a data table as a parameter.

3. A value source is an inter-language mechanism that provides missing values to a
template—for example, when displaying the value of a data field in a view.

Threats to validity The main external threat is that OFBiz is not a representative example
of an enterprise systems. We have tried to argue that it has many of typical characteristics
of such systems. Moreover, we have informally confirmed that indeed it resembles
commercial systems a lot, through personal communication with engineers in the ERP
industry. The main reason to use OFBiz in this experiment is the unrestricted access to
its source code, which would be difficult for other products (and would also make our
results difficult to reproduce or compare in future).

The main internal threat lies in the selection of the 22 dependency patters. First, that
they might be incorrect. Second, that they are not complete. We addressed the latter
issue by deciding not to draw any conclusions about completeness. This allowed us to
mitigate the former, by only focusing on the most obvious patterns, that can be extracted
from the best available documentation [24].

Furthermore, GenDeMoG’s algorithm can contain errors. Besides the usual testing
effort aiming at establishing trust in the implementation we have manually verified that
indeed the dependencies have been correctly matched by manually inspecting all of
them for two selected patterns. This step has shown that 100% of dependencies have
been mined correctly (no false positives). Since the mining program is automatically
generated, our confidence that it operates correctly for other patterns is high.

Finally, the taxonomy of dependency kinds presented above is by design not complete,
but only covers the categories that actually appeared in our 22 patterns.

5 Discussion and Future Work

Currently, GenDeMoG allows for the following:

137

– Non-invasive description of component-based software systems capturing used
languages, components and contained artifacts.

– The definition of inter-component dependency patterns on the language level.
– Automatic generation of programs for mining inter-component dependencies.

GenDeMoG itself relies on Eclipse Modeling Framework (EMF) technologies, such
as the model transformation language Xtend, the code generation language Xpand, and
the DSL development framework Xtext.

It is specific to GenDeMoG that new languages may be included as Ecore-based
models, i.e., all languages are described using the same meta-meta-language. This allows
for the definition of dependency patterns on language level using one language, in this
case Xtend. Importantly, this makes GenDeMoG a generic tool, i.e., applicable to a
wide range of software systems. To demonstrate GenDeMoG’s general applicability
we have created a meta-model for Java 5 and used it in the experiment. Currently,
GenDeMoG’s CDM supports language dependency patterns that relate single language
elements to each other. In future, we will investigate if relating single language elements
is sufficiently expressive for general cases, or if language dependency patterns need to
be more expressive.

One could consider relying on another meta-meta-model than Ecore, such as the
Kernel Metameta-Model (KM3) [27]. Then, GenDeMoG’s model transformations could
be implemented using ATL [1], QVT [8], or the VIATRA2 [15] framework. The par-
ticular choice of modeling and model transformation technologies is not essential for
the design idea behind GenDeMoG. In future, it would be interesting to investigate,
whether the technologies selected were the most efficient possible for the use case. Since
models become very large for large artifacts, we intend to continue improving the tool’s
performance. Also, further work is required to integrate GenDeMoG better into the IDE.

GenDeMoG only mines cross-component dependencies so far. It is however ex-
tremely easy to extend it so that intra-component dependencies are also searched—we
have made preliminary attempts in that direction. Nevertheless, we have decided to focus
on the cross-component dependencies, as they pose a much more pressing issue.

All in all, we spent two man-month for implementing GenDeMoG, setting-up the
experiment, and for identifying the dependency patterns. We did not meassure more
precisely how much time we spent on reading documentation and reading source code.
The working time necessary to apply GenDeMoG to other software systems, i.e., to
identify the corresponding dependency patterns, depends on the degree of experience a
developer has with development of the system under scope.

Since GenDeMoG is generic with respect to the software systems under analysis its
applicability is tied to the amount of language definitions readily available. Especially
GPL definitions can be reused across projects. Hence we aim for providing definitions
for languages such as Groovy, JSP, and FTL.

6 Related Work

The closest work to GenDeMoG is [20], which presents the PAMOMO tool. PAMOMO
uses patterns on models for defining traces or constraints between Ecore-based models.
PAMOMO only allows for pattern definition, whereas GenDeMoG supports modeling

138

entire software projects, where the used languages, components, contained artifacts, and
the dependency patterns are provided together. On top of that, we provide experimental
data: we assess the tools performance applying it to a mature system, and analyzing
the data that it can provide. No experimental data on a realistic case study is available
in [20]. It would be interesting to investigate how PAMOMO patterns scale compared to
dependency patterns in our CDM.

Macromodels [29] have been proposed to capture the meaning of relationships be-
tween models. The reference key relationship captured in the dependency graph of
GenDeMoG (Fig. 5) could be defined in macromodels as well. Contrary to macromodels,
we do not aim at assigning different types to dependencies. We believe, plain refer-
ence key relations are the most generic dependencies. Therefore, only those should be
supported by a generic tool, such as GenDeMoG.

Similarly to macromodels, GenDeMoG allows to relate models that present differ-
ent views of the system to each other. We provide evidence for this in Sect. 4. Both
macromodels and megamodels [26] provide a framework, which allows for manual spec-
ification of different relations. We provide automatic mining facilities to automatically
reveal dependencies.

The AM3 tool (http://eclipse.org/gmt/am3/, [26]) allows capturing and handling of
traceability links between models across languages. A megamodel contains links between
interrelated model elements and models. Our dependency model (Fig. 5) resembles
megamodels in the sense that it is noninvasive: it captures dependency information
without modifying the artifacts in question. Megamodels have been designed with DSLs
in mind. GenDeMoG strives to support both DSLs and GPLs, recognizing that a truly
heterogeneous system, like OFBiz, contains all kinds of artifacts. Again, we extend
[26], by considering a substantial realistic case study. On the other hand it would be
interesting, to see whether there are any performance gains in integration of AM3 into
GenDeMoG.

Mahé [30] uses megamodels in reverse engineering for an existing software system,
TopCased. Unlike, GenDeMoG, which is generic, his tool is geared towards specific kind
of patterns and platforms. Since GenDeMoG is parameterized with models it allows for
a more precise and concrete software system definition.

Favre et. al. describe a scenario of reverse engineering a software system written in
C and COBOL [19]. They deploy the Obeo Reverse engineering tool that treats source
code as models. They create a single model for the entire software system. This model
is subsequently transformed, e.g., to a visual representation of the system. The main
commonality between Favre et. al., the Reuseware framework [22], the MoDisco [17]
toolkit, and GenDeMoG is that code artifacts are abstracted to Ecore-based models and
further transformations are applied to these models and not directly to the source code.
Reuseware and MoDisco both provide a meta-model for the Java GPL. We decided
to implement and deploy our own Ecore-based Java model using XText. We did not
reuse MoDisco’s Java model since we are interested in a model per compilation unit
and MoDisco generates one model per project from the abstract syntax tree. Our Java
model is grammar based, i.e., a parser is generated out of a grammar that builds a Java
model independently from the Java abstract syntax tree. We did not chose EMFText’s
Java model [21], since it could not be used to read the OFBiz code base.

139

GenDeMoG and SmartEMF [23] both abstract XML-based DSLs to Ecore models.
They both use the same case study—the OFBiz project. However, SmartEMF requires
using Prolog to express inter-model dependencies, and it does not handle reference to
GPLs. Also we did not focus on customizations of OFBiz applications, but more on
OFBiz applications seen as component-based systems.

Mélusine [18] is a DSL composition environment, which captures the forward-
development of a software system. In contrast, GenDeMoG is concerned with existing,
perhaps legacy, heterogeneous software systems, where languages are already inter-
related and the hidden dependencies need to be revealed.

7 Conclusion

We have presented GenDeMoG, a generic generator-generator which allows for the
non-invasive description of component-based software systems and patterns which
describe language structures that result in inter-component dependencies. In particular,
GenDeMoG allows for the definition of dependency patterns between artifacts in a
heterogeneous system, including dependencies across boundaries between GPLs and
DSLs. GenDeMoG is available online, and as a generic tool, it can be readily instantiated
for other projects.

Furthermore, we have conducted an experiment, applying GenDeMoG to an indus-
trial strength, mature case study, the OFBiz project. We are not aware of any previously
published experiment that characterizes adverse impact of inter-model references on
architecture in systems based on multiple modeling languages. The experiment has
confirmed the informal impression, that it is difficult to manipulate OFBiz components—
this is likely caused by a quite tight and circular coupling between core application
components. It has also confirmed that a large number of implicit dependencies exist in
the system, even though, the internal component specification mechanism of OFBiz, does
support explicit specification of such. This is an indicator, that, perhaps, expectations
that developers would maintain such dependencies manually are futile.
Acknowledgments. We would like to thank Peter Sestoft for the help on formalizing
GenDeMoG’s architecture description.

References

1. ATL - A Model Transformation Technology. http://www.eclipse.org/atl/ (Jan 2011)
2. AtlantEcore Zoo. http://www.emn.fr/z-info/atlanmod/index.php/Ecore (Jan 2011)
3. EMFText Concrete Syntax Mapper. http://www.emftext.org/index.php/EMFText (Jan 2011)
4. Expression Language Documentation. http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.

xpand.doc/help/r10_expressions_language.html (Jan 2011)
5. FreeMarker. http://freemarker.org/ (Jan 2011)
6. Groovy - An agile dynamic language for the Java Platform. http://groovy.codehaus.org/ (Jan

2011)
7. JavaServer Pages Overview. http://www.oracle.com/technetwork/java/overview-138580.html (Jan

2011)
8. Model To Model (M2M). http://www.eclipse.org/m2m/ (Jan 2011)

140

9. MoDisco. http://www.eclipse.org/MoDisco/ (Jan 2011)
10. OFBiz The Apache Open for Business Project. http://ofbiz.apache.org/ (Jan 2011)
11. Package org.eclipse.emf.ecore. http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/

eclipse/emf/ecore/package-summary.html (Jan 2011)
12. Xpand. http://wiki.eclipse.org/Xpand (Jan 2011)
13. Xtend documentation. http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.xpand.doc/help/Xtend_

language.html (Jan 2011)
14. Xtext - Language Development Framework. http://www.eclipse.org/Xtext/ (Jan 2011)
15. Bergmann, G., Horváth, A., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös, A.: Incremental

Evaluation of Model Queries over EMF Models. In: Proceedings of the 13th international con-
ference on Model driven engineering languages and systems: Part I. pp. 76–90. MODELS’10,
Springer-Verlag, Berlin, Heidelberg (2010)

16. Bézivin, J., Gerbé, O.: Towards a Precise Definition of the OMG/MDA Framework. In:
Proceedings of the 16th IEEE international conference on Automated software engineering.
pp. 273–. ASE ’01, IEEE Computer Society, Washington, DC, USA (2001)

17. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a Generic and Extensible Frame-
work for Model Driven Reverse Engineering. In: Proceedings of the IEEE/ACM international
conference on Automated software engineering. pp. 173–174. ASE ’10, ACM, New York,
NY, USA (2010)

18. Estublier, J., Vega, G., Ionita, A.D.: Composing Domain-Specific Languages for Wide-Scope
Software Engineering Applications. In: MoDELS. pp. 69–83 (2005)

19. Favre, J.M., Musset, J.: Rétro-ingénierie dirigée par les métamodèles : Concepts, Outils,
Méthodes (June 2006)

20. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: Inter-modelling: From Theory to Practice.
In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MoDELS (1). Lecture Notes in Computer
Science, vol. 6394, pp. 376–391. Springer (2010)

21. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap between Modelling
and Java. In: SLE. pp. 374–383 (2009)

22. Henriksson, J., Johannes, J., Zschaler, S., Aßmann, U.: Reuseware – Adding Modularity to
your Language of Choice. In: Proc. of TOOLS EUROPE 2007: Special Issue of the Journal
of Object Technology (2007)

23. Hessellund, A., Czarnecki, K., Wasowski, A.: Guided Development with Multiple Domain-
Specific Languages. In: MoDELS. pp. 46–60 (2007)

24. Howell, R.: Apache OFBiz Development: The Beginner’s Tutorial. Packt Publishing (2008)
25. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Generation

(1993)
26. Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers, Y., Bezivin, J.: Inter-DSL

Coordination Support by Combining Megamodeling and Model Weaving. In: Proceedings of
the 2010 ACM Symposium on Applied Computing. pp. 2011–2018. SAC ’10, ACM, New
York, NY, USA (2010)

27. Jouault, F., Bézivin, J., Team, A.: KM3: A DSL for Metamodel Specification. In: In proc. of
8th FMOODS, LNCS 4037. pp. 171–185. Springer (2006)

28. Oei, J.L.H., van Hemmen, L., Falkenberg, E., Brinkkemper, S.: The Meta Model Hierarchy:
A Framework for Information Systems Concepts and Techniques (1992)

29. Salay, R., Mylopoulos, J., Easterbrook, S.: Using Macromodels to Manage Collections of Re-
lated Models. In: Proceedings of the 21st International Conference on Advanced Information
Systems Engineering. pp. 141–155. CAiSE ’09, Springer-Verlag, Berlin, Heidelberg (2009)

30. Vincent, M., Jouault, F., Bruneliere, H.: Megamodeling Software Platforms: Automated
Discovery of Usable Cartography from Available Metadata

141

142

10 Tengi Interfaces for Tracing
between Heterogeneous

Components – GTTSE’11
(Paper C)

143

Tengi Interfaces for Tracing between
Heterogeneous Components

Rolf-Helge Pfei�er and Andrzej W�sowski

IT University of Copenhagen, Software Development Group,
{ropf,wasowski}@itu.dk

Abstract. Contemporary software systems comprise many heteroge-
neous artifacts; some expressed in general programming languages, some
in visual and textual domain-specific languages and some in ad hoc
textual formats. During construction of a system diverse artifacts are
interrelated. Only few formats, typically general programming languages,
provide an interface description mechanism able to specify software com-
ponent boundaries. Unfortunately, these interface mechanisms can not
express relations for components containing heterogeneous artifacts.
We introduce Tengi, a tool that allows for the definition of software
components containing heterogeneous artifacts. Tengi interfaces link
components containing di�erent textual and visual software development
artifacts ranging from high-level specification documents to low-level
implementation documents. We formally define and implement Tengi
interfaces, a component algebra and operations on them and present a
case study demonstrating Tengi’s capabilities.

1 Introduction

Contemporary software systems are constructed out of a multitude of heteroge-
neous artifacts. A software system (...) consists of a number of separate programs,
configuration files, (...) system documentation [21]. These artifacts contain infor-
mation at di�erent abstraction levels, in various languages and may be tied to
di�erent development phases. Still, they form a single whole and thus each of them
provides a di�erent view on parts or aspects of the systems. The development
artifacts are related either by directly referencing each other or by referring to
the same aspect of a system. Some of these relations may be explicit. Source
code in a general purpose language usually contains explicit references to other
software components or methods called. Other relations may be implicit. For
example visual models and code generated from them are both descriptions of
the same system aspect at di�erent abstraction levels, but the detailed relation
is hidden in the code generator. Some artifact relations can even remain com-
pletely undocumented, only stored in human memory. For instance requirements
documents are sometimes directly translated to source code without recording
any traces from them. Explicit or not, software developers continuously have to
reason about and navigate across such relations, and this creates di�culties. For

144

2 Rolf-Helge Pfei�er and Andrzej W�sowski

example [15] points that it is a major challenge in the Linux kernel project, to
maintain consistency between the kernel variability model and the source code.

This di�culty calls for investigating language oblivious tools that allow
specifying components comprising heterogeneous artifacts, including definition of
links across languages and formats, and allowing monitoring of, and navigation
along, such links. The challenge in design of such tools lies in the tension between
the generic and the specific. Heterogeneous components, and even more so
relations between them, are often domain specific—intrinsically hard to support
with generic tools. In this paper we take up the challenge of constructing such a
generic tool, which is able to capture domain-specific component relations. To
do so, we address the two questions: how to specify component boundaries for
heterogeneous components? And how to technically link the components to these
specifications?

Component boundaries can be specified by interfaces, which are abstract
descriptions of the way in which a component relates to its context. We consider
anything from files to folder structures as components. Artifacts in software
development are files or multiple-files that are used together.

We present Tengi1, a toolkit for defining, reusing, and relating software com-
ponents by means of specifying interfaces for artifacts. Artifacts can be expressed
in various languages on di�erent levels of abstraction, ranging from high-level
specification documents to low-level implementation documents and from de-
velopment artifacts expressed in textual as well as in visual languages. Tengi,
implemented as an Eclipse plug-in, extends numerous Eclipse editors with an
ability to define ports on the edited artifacts. Further, it provides a language for
specifying dependencies between these ports as interface specifications resem-
bling contracts. Operators are provided for automatic checking of component
compatibility and refinement and for composition of components.

Let us illustrate the problem of interrelated heterogeneous artifacts and
Tengi’s use with a small example. Figure 2 shows a requirements document for an
aspect of a simple application, implemented using Java classes (not shown yet).
How do we record the knowledge that this specification fragment is implemented
exactly by the three classes? Tengi provides a traceability mechanism based on
on a simple component algebra. Instead of explicitly declaring traces between the
requirements document and the Java classes, with Tengi, a user can define ports
in any documents (also free text documents like the one in Fig. 2). These ports are
available in Tengi interfaces. Links or traces are realized by the algebra operations
on such interfaces. A Tengi interface for the requirements document in Fig. 2
would provide a port for a certain requirement and Java classes implementing
this requirement would require this port in a Tengi interface.

We use Eclipse to implement Tengi, as Eclipse is a prime representative
of modern Integrated Development Environments (IDE). However, neither the
problem, nor the principal solution discussed in this paper is Eclipse specific.

1 Tengi, Icelandic for interface, was chosen to avoid conflicts with all other kind of
interfaces appearing frequently in computer science.

145

Tengi Interfaces for Tracing between Heterogeneous Components 3

Fig. 1. Examples of software system artifacts: a requirements document fragment on
top, fragment of an analysis document in formal BON (bottom left), and a UML state
machine (bottom right). Concepts referring to each other are illustrated with red lines.

We proceed by motivating our work in Sect. 2 with an example of a hetero-
geneous software system. This system is also used for the case study in Sect. 5,
which illustrates how to apply Tengi to development of a heterogeneous software
system. Section 3 introduces Tengi’s component algebra followed by detailing
Tengi internals in Sect. 4. We finish with a discussion of Tengi, related work and
conclusion in Sections 6–8.

2 Running Example

We use a small system as our running example, also for the case study in
Sect. 5. The system is a clone of a Commodore 64 video game, Bouncy Cars
(http://www.gb64.com/game.php?id=1049). It was developed as an exercise in a
graduate course on modeling at IT University of Copenhagen [1]. The task was
to specify and implement an automatically verifiable, small-sized, object-oriented
(OO) application. The system is specified using the BON method [22]. BON
supports informal and formal, textual and visual specification of structural and
behavioral properties of OO-systems. Visual BON is similar to UML diagrams,
including constraints not unlike OCL constraints.

Our version of Bouncy Cars is an example of a heterogeneous software system.
It comprises artifacts in several languages, at di�erent levels of abstraction:

– A requirements document. A regular text file containing the exercise task in
natural language.

146

4 Rolf-Helge Pfei�er and Andrzej W�sowski

TENGI assignment ENTITY "assignment.txt" [
IN: {}; CONSTRAINT: true;
OUT: { informal analysis, formal design };
CONSTRAINT: informal analysis & formal design;

] {
LOCATOR informal analysis IN "assignment.txt"

OFFSET 6692 LENGTH 179;
LOCATOR formal design IN "assignment.txt"

OFFSET 7112 LENGTH 106;
}

Fig. 2. The requirements document assignment.txt
with two marked ports in the document and the
Tengja dictionary (below).

Fig. 3. Interface for the document
shown in Figure 2.

– A high-level analysis document. This is an informal system specification in
informal textual BON.

– More concrete design documents. There are design documents in formal
textual and visual BON giving system design in formal textual BON. Formal
BON is refined from the former informal BON specification. Furthermore,
a UML state machine specifies the system’s behavior. The UML diagram
was not strictly necessary, but we have used it to replace the standard BON
event chart in order to expand the number of involved languages.

– Implementation artifacts. Multiple JML annotated Java classes [13] implement
the system specification.

The Bouncy Cars example contains artifacts in natural language and in six
software languages. The requirements and high-level analysis documents are more
abstract than design documents and implementation artifacts. Figure 1 shows
three artifacts: a fragment of the requirements document in natural language in
the top part of the figure; a fragment of an analysis document in formal textual
BON in the bottom left part; a UML state machine specifying behavior in the
bottom right part. The three artifacts describe di�erent views on the system, at
di�erent abstraction levels. All three artifacts are implicitly interrelated. They
refer to shared concepts from di�erent view points. For example, the requirements
document, the design documents in formal BON and the UML state machine,
all refer to a concept “game”. Furthermore, both the formal BON and the UML
state machine artifact refer to the concept “level”. Figure 1 illustrates these
relations by red arrows between the shared concepts.

The main challenge in development of heterogeneous systems is caused by
implicit nature of relations across artifacts and languages. They exist in human-
mind, the mind of the developers, but they are not explicitly available for
computers to reason about. Imagine that a new Bouncy Cars developer deletes
the GAME class in the formal BON specification in Fig. 1. The system is now
incomplete and other colleagues who require this class for their work will face
errors. For instance, code generators consuming the BON specification will
produce incorrect results. These errors could be avoided, if suitable warning
messages about the impact of changes were produced early on. This however

147

Tengi Interfaces for Tracing between Heterogeneous Components 5

Fig. 4. Excerpt of the meta-model of the Tengi interface DSL.

requires making cross-language relations explicit and using tools to reason about
them.

In this paper we set out to address this issue by investigating and implementing
interfaces which allow for linking or tracing information across components
containing heterogeneous artifacts.

3 Tengi Concepts

This section introduces the notions used in Tengi and Tengi’s component algebra.
Two artifacts are heterogeneous if they are instances of di�erent meta-models
or if there exists no meta-model to describe them (the terms meta-model and
language grammar are used synonymously, since they can be mapped to each
other in the considered domain [3]). For example, a program artifact in Java and
one in C# are heterogeneous, but also a UML class diagram and an arbitrary
visual domain-specific language (DSL) are heterogeneous. In particular, there
exist development artifacts that are heterogeneous to others due to a lack of a
meta-model, e.g., simple text files.

3.1 Tengi Interfaces

We consider anything from files to folder structures as components. We specify
component boundaries by Tengi interfaces. Interfaces are abstract descriptions
of the way in which a component relates to its context. In Tengi interfaces this
relation is expressed using ports, which could be anything from communication
channels to cross-file references. Tengi interface ports are just abstract names
that can be related to each other and to the artifacts. Tengi interfaces consider
static, development-time properties of components only.

Tengi provides an interface description DSL for heterogeneous artifacts corre-
sponding to the meta-model in Fig. 4. In the following we illustrate an example
for such an interface and provide a formal definition.

Figure 3 shows an example for a Tengi interface for the required tasks of Fig. 2.
This interface simply specifies two ports in assignment.txt, which correspond to
the requirement of informal analysis and a formal design. Both of them are output
ports, meaning that they are provided to the components context. Furthermore,
any concretization of this interface, will have to provide informal analysis and

148

6 Rolf-Helge Pfei�er and Andrzej W�sowski

formal design; pointing to the locations in its components where these ports
are realized. We chose to avoid constructing more complicated interfaces, for
the sake of simplicity of the example. Ports, classified into inputs and outputs,
provide an alias to a corresponding location. They characterize what information
is provided by a component (output ports) or what information is required from
the environment (input ports). Ports in the meta-model are represented by class
PortSpec and the division into input and output ports is manifested by the
containment relations inputPorts and outputPorts, see Fig. 4. Semantically, ports
are Boolean variables. Assignment of true to a port means that it is ’present’,
otherwise it is ’absent’. Constraints, implemented by PortSpec in Fig. 4, are
propositional statements that raise the expressiveness of an interface. The default
constraint is true which for outputs means that nothing is guaranteed to be
provided, and for inputs that nothing is required by the component. Both input
and output ports can be constrained, see containment relations in constraint and
out constraint in Fig. 4. A locator links a port to a physical location in the file
system. A physical location is specified by a path to a file, an o�set and the
length of the marked information, see class Locator in Fig. 4.

Tengi relies on physical locations for the following reasons: (i) Since we
provide interfaces for heterogeneous artifacts, we want the locators to be as
general as possible. Physical locations are advantageous due to their meta-model
independence. That is, new languages can be used with Tengi without modifying
it. (ii) It is important that Tengi indicates the locators visually, raising developer’s
awareness of important dependencies. This is naturally done with physical locators.
(iii) Furthermore, Tengi allows for the evolution of artifacts referred by locators.
For example a locator can be moved, if the file containing it has been edited.
This is now automatically supported for artifacts using text editors. We intend
to investigate technologies that would support other evolution scenarios. Since
locators relate to physical locations in files, Tengi interfaces can be considered
lexical interfaces.

Definition 1. T = (I, O, �, �) is an interface i� I is a set of input ports, O is a
set of output ports and I � O = �; � is a propositional constraint over I (required),
which constrains the valid input port combinations; and � is a propositional
constraint over O (provided), which constrains the valid output port combinations.
Denote the set of all ports as P = I � O.

3.2 Operations on Tengi Interfaces

Composition We say that interfaces T1 = (I1, O1, �1, �1) and T2 = (I2, O2, �2, �2)
are composable i� I1 � I2 = O1 � O2 = �. Composeable interfaces (and thus their
components) can be composed. The interface of the composition is defined as an
interface T = T1 �T2 = (I, O, �, �), where I = I1 � I2 \ (O1 �O2) and O = O1 �O2.
The intuition is that all ports provided (outputs) by T1 and T2 remain provided
by the composition T , but the required inputs that are provided within the
composition itself are no longer required—thus the set di�erence in comput-
ing the input set. The constraints over input and output ports are given by

149

Tengi Interfaces for Tracing between Heterogeneous Components 7

(i) � = �(I1 � I2) � O. �1 � �2 and (ii) � = �I.(�1 � �2) � (�1 � �2) where the
existential elimination of a variable x � X from formula � over variables X is the
formula �x. � = �[0/x] � �[1/x], which extends to �A. � = �x1. · · · �xn. � for a
set of variables A = {x1, . . . , xn} � X. Dually the universal elimination of x from
� is the formula �x. � = �[0/x] � �[1/x], generalizing to �A. � = �x1. · · · �xn. �

for the same set of variables A. Intuitively, the first point above means that inputs
required by the components are still required by the composition, except for the
part of the constraint, which has been satisfied. Point two above states that the
component might provide any combination of outputs such that regardless of
what inputs are given (that satisfy the required constraint) this combination still
can be delivered. Two interfaces are compatible if their output constraint � is
satisfiable. This corresponds to a requirement that a precondition of a procedure
is consistent. We only require satisfiability (and not validity) in order to achieve
an optimistic notion of composition [4], in which a component is useful as long as
there exists a context, with which it is consistent. When composing two inter-
faces their locator lists are simply concatenated. Tengi implements composition
using an Xpand [2] template, so by composing the syntactical representations of
interfaces.

Subtyping (or refinement) is a binary relation that allows comparing interfaces,
in a fashion that is similar to object oriented generalization hierarchy. We say that
T1 is a subtype of T2 i�: (i) I1 = I2 and O2 = O1 and (ii) �1 � �2 and �2 � �1.
Presently, checks of propositional statements in Tengja are implemented using
binary decision diagrams (BDD) [5]. The subtyping definition is somewhat rigid
in that it requires that both interfaces completely agree on their input and output
alphabets. This is not a limitation. If we want to place a subtype interface in a
context of the supertype, we basically need to add extra constraints setting the
unused inputs and outputs of the context to false.

Conformance checking is a check of an interface against one or more devel-
opment artifacts. More precisely, all development artifacts are checked if they
provide the information specified in the corresponding Tengi interfaces. An in-
terface conforms to the corresponding artifacts i� for all the locators exists a
marker on the appropriate file with the appropriate physical locations.

This component algebra, albeit simple, exhibits all crucial properties that are
expected of such: (i) The composition operator is associative and commutative.
(ii) The composition operator is optimistic [4] (iii) The refinement relation is
a preorder (reflexive and transitive). (iv) Composition satisfies independent-
implementability [4]., i.e., it is possible to replace an interface by any of its
refinements in any context, without breaking compatibility (as long as this
refinement does not introduce clashing names—a technicality caused by the fact
that all port names are global).

150

Tengi Interfaces for Tracing between Heterogeneous Components 9

Car_java.

tengi

Game_java.

tengi

Level_java.

tengi

code.tengi

assignment_

txt.

tengi

bouncycars_

informal_bon.

tengi

bouncycars_

formal_bon.

tengi

textual_

bon.tengi

bouncyCars_

bonide_

diagram.tengi

bouncyCars_

bonide.

tengi

visual_

bon.tengi

bouncyCars_

umlstm.

tengi

bouncyCars_

uml.

tengi

visual_

uml.tengi

visual.tengi

+ +

+

++

+

bouncycars.

tengi

subtypes

Fig. 6. Interfaces for all the artifacts in the case study project.

In general, it is not trivial to provide physical file locators for elements of visual
languages.

Tengi supports computing physical locators for visual model elements auto-
matically, using its traceability component Tengja2 [17]. With Tengja it requires
just a button click to move from a marked element to the persistent models
opened in text editors, with the highlighted text corresponding to the original
model element. This functionality is instantly available for all DSLs defined with
Ecore, and all GMF and EMF generated DSL editors. Tengja establishes the
connections, the traceability links between model elements in visual syntax and
their corresponding serialization syntax and highlights these elements.

But how does Tengja bridge gap between the visual layout representation, its
visual concrete syntax, and persistent textual representation, the serialization
syntax?

Technically, Tengja is an extension to Eclipse, which recovers the links be-
tween the abstract and concrete syntax and the serialization syntax of models
by observing the persistence mechanism. Since Eclipse’s standard persistence
mechanism obscures traces, and since we aim at a reusable and non-invasive
tracing toolkit, we settle on observing the standard persistence mechanism with
an aspect, recording the context elements and linking them to the generated
syntax. The aspect observes the top-most traversing method and its callees in
org.eclipse.emf.ecore.xmi.impl. It observes the sequence of model elements
that get treated in the control-flow of these methods, and keeps track of start
and stop positions in the generated stream of text in serialization syntax for a
model element. Subsequently, it maps model elements to indices in the generated
serialization stream. Thereby, we can trace each model element to its textual
representation and establish an explicit mapping between them. The mapping is
then exposed to the development environment via the Tengja dictionary and can
be used in Tengi interfaces.

Tengja allows to mark arbitrary model elements in Ecore-based visual models
and to navigate from the respective element to all related other model elements
and textual representations in abstract syntax, visual concrete syntax, and
serialization syntax, and furthermore, to persist those connections or traceability
2 Tengja, Icelandic connect, was chosen to avoid conflicts with “connects”, “connec-

tions”, and “connectors” appearing frequently in MDE literature.

151

10 Rolf-Helge Pfei�er and Andrzej W�sowski

Fig. 7. Excerpt of the analysis document
in informal BON (bouncycars informal.bon)
with a marked port on top and be-
low the corresponding Tengi interface
(bouncycars informal.tengi).

Fig. 8. Excerpt of the design document
in formal BON (bouncycars formal.bon)
with a marked port on top and be-
low the corresponding Tengi interface
(bouncycars formal.tengi).

links in a global locator dictionary. To define locators in Tengi interfaces this
dictionary can be used to drag single entries into the interface definition.

5 Case Study

This section demonstrates how Tengi is used in a project containing multiple
heterogeneous artifacts, how the Tengi interfaces are defined, and what are the
results of applying operators to them. We use the Bouncy Cars project introduced
in Sect. 2. Notably, we successfully apply Tengi to textual and visual languages
and editors, developed independently of this work by other authors.

Figure 6 presents the overview of the entire project using the composition
structure of Tengi interfaces. Rectangles represent Tengi interfaces. The interfaces
in the bottom row correspond directly to the individual artifacts of the kinds listed
above. We construct the abstract interface specification for the entire Bouncy
Cars project using stepwise bottom-up composition with the � composition
operator introduced in Sect. 3. The Tengi interfaces for basic components (files)
are presented as follows: Figure 3 shows the interface for the requirements
document assignment.txt, itself presented in Fig. 2; Interfaces for the informal and
formal textual BON specifications are found in the bottom of Fig. 7 and in Fig. 8
respectively; In Fig. 13 interfaces for the visual BON model and its corresponding
data model are shown, see Sect. 4; The interface for the UML state machine is
in Fig. 10; and Fig. 11 shows interfaces for the Java classes Car.java, Level.java
and Game.java. All file paths in interfaces in this paper are abbreviated to avoid
clutter. Complete model files are available at www.itu.dk/people/ropf/src/tengi.

152

Tengi Interfaces for Tracing between Heterogeneous Components 11

Fig. 9. UML state machine model
bouncyCars.umlstm with two ele-
ments marked as ports, which appear
in the Tengja dictionary

TENGI visual uml ENTITY
"(bouncyCars uml.tengi+bouncyCars umlstm.tengi)"[

IN: { }; CONSTRAINT: true;
OUT: { level uml data, game uml data, game uml vis, level uml vis };
CONSTRAINT: level uml data & game uml data

& level uml vis & game uml vis;
] {

LOCATOR level uml data IN "bouncyCars.uml" OFFSET 1313 LENGTH 79;
LOCATOR game uml data IN "bouncyCars.uml" OFFSET 975 LENGTH 1469;
LOCATOR game uml vis IN "bouncyCars.umlstm" OFFSET 335 LENGTH 5333;
LOCATOR level uml vis IN "bouncyCars.umlstm" OFFSET 2385 LENGTH 941;

}

Fig. 10. Composition of interfaces for the UML
state machine and its corresponding data model
(Fig. 9).

All basic components listed above provide views on the same domain, the
Bouncy car game, from the point of view of di�erent abstraction levels. That is,
they all contain pieces of information that are related to each other. For example,
all of the basic components care about a “game” that contains multiple “levels”
and some of them tell something about a “car”. Similarly, the state Level in
bouncyCars.umlstm and the class Level in bouncyCars.bonide diagram refer to each
other, but there is no explicit link that allows for automatic reasoning over such
relations. Tengi interfaces establish such a link.

Let us examine a bit closer the interfaces of files bouncyCars formal.bon
and bouncyCars.umlstm (Fig. 8–9). The interfaces are shown in figures 8 and
10 respectively. The first one states that the component bouncycars formal.bon
provides, among others, a port level form bon that refers via its locator to the
specification of a class Level. The Tengi interface for the UML state machine
(Fig. 10) requires, amongst others, the formal specification of Level in BON
(level form bon), to provide the state Level via two new ports level uml data
and level uml vis. These are then used to trace the refinement further to Java
implementation in other interfaces.

The Tengi interface textual bon.tengi is a simple example of refinement (subtyp-
ing) of assignment txt.tengi. Both interfaces provide the ports informal analysis and
formal design, the former, since it corresponds to the high-level requirements doc-
ument, more abstract the latter more concrete. This means that textual bon.tengi
provides both the informal analysis and the formal design and explicitly indicates,
by means of locators, where these are placed in the model.

The composition of all interfaces in the case study results in the synthesized
interface presented in Fig. 14. The overall interface shows no input and thus no
constraints on inputs. This is expected as the entire system is supposed to be
complete, and should not require anything. We also remark that the output con-
straint warrants satisfaction of informal analysis and formal design, which
can be traced all the way back to the initial requirement.

This case study demonstrates that Tengi allows defining interfaces and thereby
components for heterogeneous development artifacts (here free text files, GMF
and EMF models, and Java source code), and further to process such interfaces

153

12 Rolf-Helge Pfei�er and Andrzej W�sowski

TENGI Game ENTITY "Game.java" [
IN:

{ game uml data, game uml vis, game bon data,
game bon vis };

CONSTRAINT:
(game uml data & game uml vis & game bon data &

game bon vis);
OUT: { game java };
CONSTRAINT: game java;

] {
LOCATOR game uml data IN "bouncyCars.uml" OFFSET 975 LENGTH 1469;
LOCATOR game uml vis IN "bouncyCars.umlstm" OFFSET 335 LENGTH 5333;
LOCATOR game bon data IN "bouncyCars.bonide" OFFSET 1302 LENGTH 2100;
LOCATOR game bon vis IN "bouncyCars.bonide diagram" OFFSET 19177 LENGTH 31651;
LOCATOR game java IN "Game.java" OFFSET 94 LENGTH 2228;

}

TENGI bouncyCars bonide ENTITY
"bouncyCars bonide.tengi" [IN: { }; CONSTRAINT: true;

OUT: { game bon data, level bon data };
CONSTRAINT: (game bon data & level bon data);

] {
LOCATOR game bon data IN "bouncyCars.bonide"

OFFSET 1302 LENGTH 2100;
LOCATOR level bon data IN "bouncyCars.bonide"

OFFSET 274 LENGTH 1023; }

TENGI Level ENTITY "Level.java" [
IN: { level uml data, level uml vis, level bon data, level bon vis };
CONSTRAINT: (level uml data & level uml vis & level bon data & level bon vis);
OUT: { level java };
CONSTRAINT: level java;

] { LOCATOR level uml data IN "bouncyCars.uml" OFFSET 1313 LENGTH 79;
LOCATOR level uml vis IN "bouncyCars.umlstm" OFFSET 2385 LENGTH 941;
LOCATOR level bon data IN "bouncyCars.bonide" OFFSET 274 LENGTH 1023;
LOCATOR level bon vis IN "bouncyCars.bonide diagram" OFFSET 630 LENGTH 18540;
LOCATOR level java IN "Level.java" OFFSET 43 LENGTH 1511; }

Fig. 11. Tengi interfaces for the Java classes

using appropriate interface operations. The interface specifications, particularly
interface’s provisions and requirements, not only define components, but also
provide traceability links by marking port’s locations explicitly and interrelating
ports using the constraints and component algebra operators.

In this section we have constructed the Tengi interface in a bottom-up fashion,
starting with the interfaces for basic components. This is not generally required,
as Tengi allows definition of components of any granularity.

6 Discussion

Currently, Tengi allows for the following:

– Defining Tengi interfaces using a textual DSL. The tool provides an appro-
priate editor with syntax highlighting, live validation, and code completion.

– Applying operations to Tengi interfaces, i.e., composition, subtype checking,
compatibility checking, and conformance checking.

– Establishing links between visual model elements and their serialization
syntax and organizing them in a global dictionary.

– Highlighting of information which is referred by Tengja locators in textual
and graphical editors (except for tree viewers).

Tengi itself relies on Eclipse’s model-driven software development tools. For
example, the interface editor was generated using Xtext. That is, Tengi interfaces
are internally represented by Ecore-based models. The composition operation
is implemented via an Xpand template. Xtext and Xpand are both parts of the
Eclipse Modeling Project [6]. Furthermore, interface operations are implemented
using Binary Decision Diagrams (BDD’s), in particular the JavaBDD [23] library,
for the representation of the port specification constraints.

154

Tengi Interfaces for Tracing between Heterogeneous Components 13

TENGI bouncyCars bonide diagram ENTITY
"bouncyCars bonide diagram.tengi" [

IN: { game bon data, level bon data };
CONSTRAINT: (game bon data & level bon data);
OUT: { game bon vis, level bon vis };
CONSTRAINT: (game bon vis & level bon vis);

] { LOCATOR game bon vis IN "bouncyCars.bonide diagram"
OFFSET 19177 LENGTH 31651;

LOCATOR game bon data IN "bouncyCars.bonide"
OFFSET 1302 LENGTH 2100;

LOCATOR level bon vis IN "bouncyCars.bonide diagram"
OFFSET 630 LENGTH 18540;

LOCATOR level bon data IN "bouncyCars.bonide"
OFFSET 274 LENGTH 1023;}

TENGI bouncyCars bonide ENTITY "bouncyCars bonide.tengi" [
IN: { }; CONSTRAINT: true;
OUT: { game bon data, level bon data };
CONSTRAINT: (game bon data & level bon data);

] { LOCATOR game bon data IN "bouncyCars.bonide"
OFFSET 1302 LENGTH 2100;

LOCATOR level bon data IN "bouncyCars.bonide"
OFFSET 274 LENGTH 1023; }

Fig. 12. A visual BON model for the Game
which contains levels.

Fig. 13. Interfaces for the visual model and
its data model (Fig. 12)

The most advanced technically part of Tengi is its traceability mechanism,
Tengja, that allows linking physical locations in files to model elements in modeling
editors by applying suitable aspects to Eclipse editors. Tengja, described in more
detail in a preliminary version of this work [17], modifies the standard serialization
mechanism of Eclipse using aspect oriented programming. The Tengja aspect
observes model serialization to establish physical positions of model elements
in files in a meta-model independent manner. Thus it is not required that
users of Tengi manually change modeling and programming editors to allow for
visualization of ports.

Tengi is generally applicable to development projects that are executed in
the Eclipse IDE. However, any other modern IDE with support for visual models
could have been chosen to serve as platform for Tengi. As mentioned earlier,
Tengi is able to deal with all textual development artifacts as well as visual
models that are EMF/GMF based. To our understanding, this covers the most
important artifacts in current software development projects. Supporting new
artifact types would require the extension of the Tengi tool to deal with the
artifact’s specific editor, since Tengi distinguishes and handles artifacts based on
their specific editor.

Tengi interfaces are separated, i.e., non-invasive, to the corresponding de-
velopment artifacts. We could have investigated an invasive approach. That
would mean that information that should appear in development artifacts would
be directly marked within the development artifact. We decided against this
approach to make the use of Tengi optional and ease adoption in legacy projects.
Further, non-invasive component definition approaches can be researched more
easily since existing projects do not need to be inherently modified. A drawback
of choosing a non-invasive approach is that it requires the use of additional tools
in the development process, here it is the to use of Eclipse IDE with our plugins.

As described in Sect. 3, Tengi allows for the specification of ports for arbitrary
information in development artifacts. It might be a shortcoming that such ports

155

14 Rolf-Helge Pfei�er and Andrzej W�sowski

TENGI bouncycars
ENTITY "Car.java+Game.java+Level.java+bouncyCars bonide diagram.tengi+bouncyCars bonide.tengi+
bouncyCars uml.tengi+bouncyCars umlstm.tengi+bouncycars formal.bon+bouncycars informal.bon"

[
IN: { }; CONSTRAINT: true;
OUT: {car java, game java, level java, game bon vis, level bon vis,

game bon data, level bon data, level uml data, game uml data, game uml vis,
level uml vis, formal design, level form bon, car form bon, game form bon,
car inform bon, game inform bon, informal analysis, level inform bon};

CONSTRAINT: car java & game java & level java & game bon vis & level bon vis &
game bon data & level bon data & level uml data & game uml data & game uml vis &
level uml vis & formal design & level form bon & car form bon & game form bon &
car inform bon & game inform bon & informal analysis & level inform bon;

] {
LOCATOR car java IN "bouncycars/Car.java" OFFSET 65 LENGTH 2471;

...
LOCATOR car inform bon IN "bouncycars informal.bon" OFFSET 2326 LENGTH 787;}

Fig. 14. The interface synthesized for the BouncyCars project.

are presently untyped and that it is thereby possible to construct Tengi interfaces
which relate information that either should not be related. On the other hand, we
think that untyped ports are advantageous since they do not restrict developers
in the specification of interfaces and allow to apply Tengi interfaces in various
settings and environments and under various requirements. For example, with
untyped ports it is possible that in one development project Tengi interfaces
relate only documentation artifacts that relate whole chapters to each other,
whereas another development projects relates only method names of Java classes
to each other.

7 Related Work

The composition operators in Tengi’s algebra is a simplified and regularized
version of the algebra presented in [11], originally inspired by the input/output
interfaces in [4]. Unlike in [11], there is no concept of meta-interfaces in Tengi,
since Tengi regards all software development artifacts as first level artifacts. Also
this version of the component algebra does not reason about internal dependencies
between outputs and inputs within the component.

We have settled on a simple, propositional specification language that can be
e�ciently treated using state of the art technologies like SAT-solving or BDDs. It
was not our objective to create a very rich component algebra. One starting point
to get an overview of this research area is the anthology by Liu and Jifeng [14],
which discusses languages beyond propositional logics.

Static interrelations of heterogeneous software development artifacts are
currently not widely discussed. The work of Henriksson et al. [9] is very close to
ours. They provide an approach to add modularity to arbitrary languages by
enriching their grammars or meta-models with variation points. That is they
provide an invasive modularization support. Also Heidenreich et al. [8] take a
similar route. Both works require an extension of a language’s specifications to
support modularity. First, the described mechanism is language focused, i.e., each
new language’s grammar needs to be modified before supporting modularization
support, and second the described approach is invasive in the sense that no

156

Tengi Interfaces for Tracing between Heterogeneous Components 15

separate interfaces are constructed but the artifacts itself define their provisions
and requirements.

Current traceability solutions like macromodels [19], mega-models [12], trace
models [7], and relation models [16] rely on an explicit model containing traces
between di�erent model elements. Such explicit models can be regarded as
composed or “wired” interfaces where the trace ends are ports of interfaces.
Di�erently, to Tengi all these solutions interrelate models, whereas Tengi abstracts
even more by concentrating on visual and textual artifacts in their textual
representation. Similarly, SmartEMF [10] checks cross-reference constraints to
support developers and cross-references may be regarded as interface ports of
implicit interfaces. The present paper can be seen as a generalization of [10] in
the (specific) sense that Tengi could also be used to address the same problem.

8 Conclusion and Future Work

This paper presented Tengi a tool that allows for the construction of components
of heterogeneous development artifacts using interfaces. Tengi interfaces rely on
ports to physical locations. Combined with the presented component algebra,
such ports describe relations between heterogeneous artifacts themselves. The
tool provides a textual DSL for defining interfaces for heterogeneous software
development artifacts, an appropriate editor including syntax highlighting, live
validation, and code completion, and operations on the interfaces. Furthermore,
the tool includes Tengja, a mechanism for connecting visual model elements with
their serialization syntax and thereby enabling their integration into a global,
IDE-wide, locator dictionary, so that they can be used in Tengi interfaces. The
tool is integrated into the Eclipse IDE as a plug-in. To demonstrate the abilities
and advantages of our tool we provided a case study, that applies Tengi in the
development process of a small sized software system.

In future we will continue developing Tengi. We want to investigate use of
structured locators. We intend to use query languages and express locators as
queries to particular information. This is not trivial, since we would still like
to support evolution of development artifacts with interfaces, which requires
being able to evolve queries in parallel. It is much simpler to track evolution
of physical location, than of complex structures defined by queries. We will
address this issue by investigating heterogeneous development artifacts with
respect to commonalities and di�erences in their structure. This will result in
more development artifacts being usable in Tengi and a standard mechanism
for registering new development artifacts to Tengi. We consider evaluating the
tool in a real-world software development scenario to understand its impact on
developers and on the quality of software produced.

Acknowledgements. The assignment of Fig. 2 is due to Joe Kiniry, who also
introduced Pfei�er to BON. We thank Ralph Skinner for developing a GMF-
based development environment for BON [20], and for supporting us in its use.
We also thank the GTTSE reviewers for their constructive comments on earlier
versions of this paper.

157

16 Rolf-Helge Pfei�er and Andrzej W�sowski

References

1. Advanced Models and Programs, Course Homepage. www.itu.dk/research/pls/wiki/
index.php/AMP-Spring2010 (2010)

2. Xpand. http://wiki.eclipse.org/Xpand (May 2010)
3. Alanen, M., Porres, I.: A Relation Between Context-Free Grammars and Meta

Object Facility Metamodels. Tech. rep., Turku Centre for Computer Science (2003)
4. Alfaro, L., Henzinger, T.A.: Interface Theories for Component-Based Design. In:

EMSOFT (2001)
5. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers 8, 677–691 (1986)
6. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language Toolkit.

Addison-Wesley (2009)
7. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: Inter-modelling: From theory

to practice. In: MoDELS (1). pp. 376–391 (2010)
8. Heidenreich, F., Johannes, J., Zschaler, S.: Aspect Orientation for Your Language

of Choice. In: Workshop on Aspect-Oriented Modeling (AOM at MoDELS) (2007)
9. Henriksson, J., Johannes, J., Zschaler, S., Aßmann, U.: Reuseware - Adding Modu-

larity to Your Language of Choice. Journal of Object Technology 6(9) (2007)
10. Hessellund, A., Czarnecki, K., W�sowski, A.: Guided Development with Multiple

Domain-Specific Languages. In: MoDELS’07 (2007)
11. Hessellund, A., W�sowski, A.: Interfaces and Metainterfaces for Models and Meta-

models. In: MoDELS’08. pp. 401–415. Springer-Verlag, Berlin, Heidelberg (2008)
12. Jouault, F., Vanhoo�, B., Bruneliere, H., Doux, G., Berbers, Y., Bezivin, J.: Inter-

DSL Coordination Support by Combining Megamodeling and Model Weaving. In:
Proceedings of the 2010 ACM Symposium on Applied Computing (2010)

13. Leavens, G.T., Cheon, Y.: Design by Contract with JML (2004)
14. Liu, Z., Jifeng, H. (eds.): Mathematical Frameworks for Component Software:

Models for Analysis and Synthesis. Springer (2007)
15. Lotufo, R., She, S., Berger, T., Czarnecki, K., W�sowski, A.: Evolution of the Linux

kernel variability model. In: SPLC’1. LNCS, vol. 6287. Springer (2010)
16. Pfei�er, R.H., Wasowski, A.: Taming the Confusion of Languages. In: Proceedings

of the 7th European Conference on Modelling Foundations and Applications (2011)
17. Pfei�er, R.H., W�sowski, A.: An Aspect-based Traceability Mechanism for Domain

Specific Languages. In: ECMFA Traceability Workshop (2010)
18. Reenskaug, T.M.H.: Models - Views - Controllers. heim.ifi.uio.no/˜trygver/1979/

mvc-2/1979-12-MVC.pdf (1979)
19. Salay, R., Mylopoulos, J., Easterbrook, S.: Using Macromodels to Manage Collec-

tions of Related Models. In: Proc. of the 21st International Conference on Advanced
Information Systems Engineering (2009)

20. Skinner, R.: An Integrated Development Environment for BON. Master’s thesis,
School of Computer Science and Informatics, University College Dublin (2010)

21. Sommerville, I.: Software Engineering. International Computer Sciences Series,
Addison Wesley, Harlow, UK, 8th edn. (2006)

22. Waldén, K., Nerson, J.M.: Seamless object-oriented software architecture: analysis
and design of reliable systems. Prentice-Hall, Inc. (1995)

23. Whaley, J.: JavaBDD Project Homepage. javabdd.sourceforge.net/ (Mar 2012)

158

11 TexMo: A Multi-language
Development Environment –

ECMFA’12 (Paper D)

159

TexMo: A Multi-Language Development
Environment

Rolf-Helge Pfeiffer and Andrzej Wąsowski

IT University of Copenhagen, Denmark
{ropf,wasowski}@itu.dk

Abstract. Contemporary software systems contain a large number of
artifacts expressed in multiple languages, ranging from domain-specific
languages to general purpose languages. These artifacts are interrelated to
form software systems. Existing development environments insufficiently
support handling relations between artifacts in multiple languages.
This paper presents a taxonomy for multi-language development environ-
ments, organized according to language representation, representation of
relations between languages, and types of these relations. Additionally,
we present TexMo, a prototype of a multi-language development environ-
ment, which uses an explicit relation model and implements visualization,
static checking, navigation, and refactoring of cross-language relations.
We evaluate TexMo by applying it to development of a web-application,
JTrac, and provide preliminary evidence of its feasibility by running user
tests and interviews.

1 Introduction

Maintenance and enhancement of software systems is expensive and time con-
suming. Between 85% to 90% of project budgets go to legacy system operation
and maintenance [6]. Lientz et. al. [19] state that 75% to 80% of system and
programming resources are used for enhancement and maintenance, where alone
understanding of the system stands for 50% to 90% percent of these costs [25].

Contemporary software systems are implemented using multiple languages.
For example, PHP developers regularly use 1 to 2 languages besides PHP [1].
The situation is even more complex in large enterprise systems. The code base
of OFBiz, an industrial quality open-source ERP system contains more than
30 languages including General Purpose Languages (GPL), several XML-based
Domain-Specific Languages (DSL), config files, property files, and build scripts.
ADempiere, another industrial quality ERP system, uses 19 languages. ECom-
merce systems Magento and X-Cart utilize more than 10 languages each.1 Systems
utilizing the model-driven development paradigm additionally rely on multiple
languages for model management, e.g., meta-modelling (UML, Ecore, etc.) model
transformation (QVT ATL, etc.), code generation (Acceleo, XPand, etc.), and
model validation (OCL, etc.).2

1 See ofbiz.apache.org, adempiere.com, magentocommerce.com, x-cart.com
2 See uml.org, eclipse.org/modeling/emf, omg.org/spec/QVT, eclipse.org/atl, eclipse.org/

acceleo, wiki.eclipse.org/Xpand, omg.org/spec/OCL respectively.

160

2 Rolf-Helge Pfeiffer and Andrzej Wąsowski

(a) Declaration of the translate command
attached to a button.

(b) JavaScript code that is executed when-
ever the button is pressed.

Fig. 1: Declaration of a command and its use.

We call software systems using multiple languages, Multi-Language Software
Systems (MLSS). Obviously, the majority of modern software systems are MLSSs.

Development artifacts in MLSS can be models, source code, property files, etc.
To simplify presentation, we refer to all these as mograms [18]. Mograms in MLSS
are often heavily interrelated. For example, OFBiz contains many hundreds of
relations across its languages [23,13]. Unfortunately, relations across language
boundaries are fragile. They are broken easily, as development environments
neither visualize nor statically check them.

Consider the following scenario. For simplicity of presentation we use a small
example. Our work, though, is not tight to a particular selection of languages, or
the particular example system.

Example Scenario. Bob develops a Safari web browser extension. The extension
contributes a button to Safari’s menu bar. Pressing the button translates the
current web-page to English using Google translate and presents it in a new tab.
Browser extensions are usually built using HTML, CSS and JavaScript. Bob’s
extension consists of three source code files: Info.plist, button.js, and global.html.

Plist files serve as an interface for the extension. They tell Safari what the
extension contributes to the UI. In Bob’s extension, the Plist file contains the
declaration of a translate command attached to a toolbar button (Fig. 1a).
JavaScript code contains logic attached to buttons, menus, etc. Bob’s button.js
forwards the current URL to Google’s translation service whenever the corre-
sponding button is pressed (Fig. 1b). Every extension contains a global.html file,
which is never displayed. It contains code which is loaded at browser start-up or
when the extension is enabled. It is used to provide code for extension buttons,
menus, etc. Bob’s global.html file (not shown here) contains only a single script
tag pointing to button.js.

In Fig. 1a the translate command for the button is defined. Fig. 1b shows
how the translate command is used in button.js in a string literal. This is an
example of a string-based reference to Info.plist. Such string-based references are
common in development of MLSSs.

Now, imagine Bob renaming the command in Info.plist from translate to its
Danish equivalent oversæt. Obviously, the browser plugin will not work anymore

161

TexMo: A Multi-Language Development Environment 3

since the JavaScript code in button.js is referring to a non-existing command.
Symmetrically, the reference is broken whenever the “translate” string literal is
modified in the button.js file, without the corresponding update to Info.plist. ut

Existing Integrated Development Environments (IDE) do not directly support
development of MLSSs. IDEs do not visualize cross-language relations (markers
left to line numbers and gray highlighting in Fig. 1). Neither do they check
statically for consistency of cross-language relations, or provide refactorings
across mograms in multiple languages. We are out to change this and enhance
IDEs into Multi-Language Development Environments (MLDE).

This paper introduces a taxonomy of design choices for MLDEs (Sec. 2). The
purpose of this taxonomy is twofold. First, it serves as requirements list for
implementing MLDEs, and second it allows for classification of such. We argue
for the validity of our taxonomy by a survey of related literature and tools.

As the second main contribution, the paper presents TexMo (Sec. 3), an
MLDE prototype supporting textual GPLs and DSLs. It implements actions for
visualization of, static checking of, navigation along, and refactoring of inter-
language relations, and facilities to declare inter-language relations. Additionally,
TexMo provides standard editor mechanisms such as syntax highlighting. We
position TexMo in our taxonomy and evaluate it by applying it to development
of an MLSS and user tests followed by interviews.

2 Taxonomy of Multi-Language Development
Environments

Popular IDEs like Eclipse or NetBeans implement separate editors for every
language they support. A typical IDE provides separate Java, HTML, and XML
editors, even though these editors are used to build systems mixing all these
languages. Representing languages separately allows for an easy and modular
extension of IDEs to support new programming languages. Usually, IDEs keep
an Abstract Syntax Tree (AST) in memory and automatically synchronize it
with modifications applied to concrete syntax. IDE editors exploit the AST to
facilitate source code navigation and refactorings, ranging from basic renamings
to elaborate code transformations such as method pull ups.

Inter-language relations are a major problem in development of MLSS [23,13,12].
Since they are mostly implicit, they hinder modification and evolution of MLSS.
An MLDE is an IDE that addresses this challenge by not only integrating tools
into a uniform working experience, as IDEs do, but also by integrating languages
with each other. MLDEs support across language boundaries the mechanisms
implemented by IDEs for every language separately.

We surveyed IDEs, programming editors3, and literature to understand the
kind of development support they provide. We realized that 4 features, that
3 IDEs: Eclipse, NetBeans, IntelliJ Idea, MonoDevelop, XCode. Editors: MacVim,

Emacs, jEdit, TextWrangler, TextMate, Sublime Text 2, Fraise, Smultron, Tincta,
Kod, gedit, Ninja IDE. (See project websites at: www.itu.dk/~ropf/download/list.txt)

162

4 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Multi-Language
Development Environment

Relation
Types

Language
Representation

Lexical Syntactic

Relation
Model Type

Explicit
Model

Tags

Search-
Based

Interfaces

Free

Fixed

Domain-
Specific

String
Transformation

mandatory

alternative
(xor)

or

Legend

per
Language

per
 Group Universal

Fig. 2: Taxonomy for multi-language development environments.

visualization, navigation, static checking, and refactoring are implemented by all
IDEs and by some programming editors. Thus, in order to support developers
best, MLSS need to consider delivering these features across language boundaries
as their essential requirements:

1. Visualization. An MLDE has to highlight and/or visualize inter-language
references. Visualizations can range from basic markers, as for instance in
the style of Fig. 1 to elaborate visualization mechanisms such as treemaps [7].

2. Navigation. An MLDE has to allow navigating along inter-language relations.
In Fig. 1, the developer can request to automatically open button.js and jump
to line 8, when editing Info.plist. All surveyed IDEs allow to navigate source
code. Further, IDEs allow for source code to documentation navigation, a
basic multi-language navigation.

3. Static Checking. An MLDE has to statically check the integrity of inter-
language relations. As soon as a developer breaks a relation, the error is
indicated to show that the system will not run error free. All surveyed IDEs
provide static checking by visualizing errors and warnings.

4. Refactoring. An MLDE has to implement refactorings, which allow easy
fixing of broken inter-language relations. Different IDEs implement a different
amount of refactorings per language. Particularly, rename refactorings seem
to be widely used in current IDEs [21,31].

To address these requirements one needs to make three main design decisions: a)
How to represent different programming languages? b) How to inter-relate them
with each other? c) Using which kind of relations?

Systematizing the answers to these questions led us to a domain model
characterizing MLDEs. We present this model in Fig. 2 using the feature mod-
eling notation [5,16]. An MLDE always represents mograms based on the their
language (Language Representation). Furthermore, an MLDE has to represent
inter-language relations (Relation Model Type). This feature is essential for
augmenting an IDE to an MLDE. Finally, an MLDE associates types to inter-
language relations (Relation Types). An IDE first becomes an MLDE if it supports
inter-language relations, i.e., as it implements an instance of this model.

The following subsections detail and exemplify the fundamental MLDE char-
acteristics of our taxonomy. References to the surveyed literature are inlined.

163

TexMo: A Multi-Language Development Environment 5

2.1 Language Representation Types

We consider two main types of language representation, lexical and syntactic
language representation. The former always works on an artifact directly without
constructing a more elaborate representation, whereas the latter is always based
on a richer data-structure representing mograms in a certain language. Syntactic
language representation can represent mograms per language, per language group,
or universally.

Lexical Representation. Most text editors, such as EMacs, Vim, and jEdit,
implement lexical representation. Mograms are loaded into a buffer in a language
agnostic manner. Syntax highlighting is implemented solely based on matching
tokens. Due to lack of sufficient information about the edited mogram such editors
provide limited support for static checking, code navigation, and refactoring.

Syntactic Representation. Per Language. Typical IDEs represent mograms in
any given language using a separate AST, or a similar richer data structure
capturing a mogram’s structure; for instance Eclipse, NetBeans, etc. Unlike lexical
representation, a structured, typed representation allows for implementation of
static checking and navigation within and between mograms of a single language
but not across languages. The advantage using per language representation,
compared to per language group and universal representation, is that IDEs are
easily extensible to support new languages.

Using models to represent source code is getting more and more popular4. This
is facilitated by emergence of language workbenches such as EMFText, XText,
Spoofax, etc.5 The MoDisco [4] project, a model-driven framework for software
modernization and evolution, represents Java, JSP, and XML source code as
EMF models, where each language is represented by its own distinct model.
These models are a high-level description of an analyzed system and are used
for transformation into a new representation. The same principle of abstracting
a programming language into an EMF model representation is implemented in
JaMoPP [11]. Similarly, JavaML [3] uses XML for a structural representation
of Java source code. On the other hand, SmartEMF [12] translates XML-based
DSLs to EMF models and maps them to a Prolog knowledge base. The EMF
models realize a per language representation. Similarly, we represent OFBiz’
DSLs and Java using EMF models to handle inter-component and inter-language
relations [23].

Syntactic Representation. Per Language Group. A single model can represent
multiple languages sharing commonalities. Some languages are mixed or embedded
into each other, e.g., SQL embedded in C++. Some languages extend others,
e.g., AspectJ extends Java. Furthermore, languages are often used together, such
as JavaScript, HTML, XML, and CSS in web development. Using a per language
4 Language workbenches mostly use modeling technology to represent ASTs. Therefore,

we use the terms AST and model synonymously in this paper.
5 See www.languageworkbenches.net for the annual language workbench competition.

164

6 Rolf-Helge Pfeiffer and Andrzej Wąsowski

group representation allows increased reuse in implementation of navigation,
static checks and refactoring in MLDEs, because support for each language does
not need to be implemented separately.

For example, the IntelliJ IDEA IDE (jetbrains.com/idea), supports code com-
pletion for SQL statements embedded as strings in Java code. X-Develop [28,27]
implements an extensible model for language group representation to provide
refactoring across languages. AspectJ’s compiler generates an AST for Java as
well as for AspectJ aspects simultaneously. Similarly, the WebDSL famework rep-
resents mograms in its collection of DSLs for web development in a single AST [8].
Meta, a language family definition language, allows the grouping of languages
by characteristics, e.g., object-oriented languages in Meta(oopl) [14]. The Prolog
knowledge base in [12] can be considered as a language group representation for
OFBiz’ DSLs, used to check for inter-language constraints.

Syntactic Representation. Universal. Universal representations use a single model
to capture the structure of mograms in any language. They can represent any
version of any language, even of languages not invented yet. Universal represen-
tations use simple but generic concepts to represent key language concepts, such
as blocks and identifiers or objects and associations. A universal representation
allows the implementation of navigation, static checking, and refactoring only
once for all languages. Except for TexMo, presented in Sec. 3, we are not aware
of any IDE implementing a universal language representation.

The per group and the universal representations are generalizations of the per
language representation. Both represent multiple languages in one model. Gen-
erally, there are two opposing abstraction mechanisms: type abstraction and
word abstraction [29]. Type abstraction is a unifying abstraction, whereas word
abstraction is a simplifying abstraction.

For example, both Java and C# method declarations can include modifiers,
but the set of the actual modifiers is language specific. The synchronized modifier
in Java has no equivalent in C#. Under the type abstraction, Java and C#
method declarations can be described by a Method Declaration type and an
enumeration containing the modifiers. In contrast, under the word abstraction,
Java and C# method declarations would be described by a common simple
Method Declaration type that neglects the modifiers. Obviously, in the type
abstraction Java and C# method modifiers are distinguishable, whereas in the
more generic word abstraction this information is lost.

Type abstraction is preferable for per group representations. Word abstraction
is preferred for universal representations. The choice of abstraction influences the
specificity of the representation, affecting the tools. Word abstractions are more
generic than type abstractions. For instance, more cross-language refactorings are
possible with the per group representation, while the refactorings in the systems
relying on the universal representation automatically apply to a wider class of
languages.

165

TexMo: A Multi-Language Development Environment 7

2.2 Relation Model Types

Software systems are implemented using multiple mograms. At the compilation
stage, and often only at runtime, a complete system is composed by relating
all the mograms together. Each mogram can refer to, or is referenced by, other
mograms. An MLDE should maintain information about these relations. We
observe four different techniques to express cross-language relations:

Explicit model. For example, mega-models [15], trace models [22,9], relation
models [23], or macromodels [24]. All these are models linking distributed mograms
together.

Tags. Hypertext systems, particularly HTML code links substructures or other
artifacts with each other by tags. Tags define anchors and links within an
artifact [10]. Hypertext systems interpret artifacts, anchors, and links. first after
interpretation a link is established.

Interfaces. Interfaces are anchors decoupled from artifacts. An interface contains
information about a development artifact’s contents and corresponding locations.
For example, OSGi manifest files or model and meta-model interfaces describe
component and artifact relations [13].

Search-based. There is no persistent representation of relations at all. Possible
relation targets are established after evaluating a search query. Search-based
relations are usually used to navigate in unknown data. For example, in [30]
relations across documents in different applications are visualized on user request
by searching the contents of all displayed documents.

2.3 Relation Types

Here we elaborate on relations between mograms in different languages. Since we
consider only textual languages all the following relation types relate strings.

Free relations are relations between arbitrary strings. They rely solely on human
interpretation. For example, natural language text in documentation can be linked
to source code blocks highlighting that certain requirements are implemented or
that a programmer should read some documentation. Steinberger et. al. describe
a visualization tool allowing to interrelate information across domains, even
across concrete syntaxes [26]. Their tool visualizes relations between diagrams
and data.

Fixed relations: Relations between equal strings are fixed relations. Fixed relations
occur frequently in practice. For example, the relation between an HTML anchor
declaration and its link is established by equality of a tag’s argument names.
Figure 1 shows an example of a fixed relation across language boundaries.

Waldner et. al. discuss visualization across applications and documents [30].
Their tool visualizes relations between occurrences of a search term matched in
different documents.

166

8 Rolf-Helge Pfeiffer and Andrzej Wąsowski

String-transformation relations are relations between similar strings, or function-
ally related strings. For example, a Hibernate configuration file (XML) describes
how Java classes are persisted into a relational database. The Hibernate frame-
work requires that a field specified in the XML file has a corresponding get and
set method in the Java class. A string fieldName in a Hibernate configuration
file requires a getter with name getFieldName in the corresponding Java class.
Depending on the direction, a string-transformation relation either attaches or
removes get and capitalizes or decapitalizes fieldName.

Domain-Specific Relations (DSRs) are relations with semantics specific to a given
domain or project. DSRs are always typed. Additionally, DSRs can be free, fixed
or string-transformation relations. For example, a requirements document can
require a certain implementation artifact, expressing that a certain requirement
is implemented. At the same time, some Java code can require a properties file,
meaning that the code will only produce expected results as soon as certain
properties are in place. We consider any relation type hierarchy domain-specific,
e.g., trace link classification [22].

The first three relation types, free, fixed, and string-transformation relations are
untyped. They are more generic than DSRs, since they only rely on physical
properties of relation ends. Fixed, string-transformation, and domain-specific re-
lations can be checked automatically, which allows to implement tools supporting
MLSS development, such as error visualization and error resolution.

3 TexMo as an MLDE Prototype

TexMo

Relation
Model Type

Relation
Types

Language
Representation

Universal

Explicit
Model

Free Fixed

Syntactic

Fig. 3: The feature model in-
stance describing TexMo in our
taxonomy of MLDEs.

TexMo6 addresses the requirements listed in
Sec. 2 and it implements an instance of our
MLDE taxonomy. TexMo uses a key-reference
metaphor to express relations. In the example
of Fig. 1, the command declaration takes the
role of a key (Fig. 1a) and its uses are reference
(Fig. 1b). TexMo relations are always many-to-
one relations between references and keys. We
summarize how TexMo meets the requirements
presented in Sec. 2:

1. Visualization. TexMo highlights keys and references using gray boxes, see line
25 in Fig. 1a and line 8 Fig. 1b. Keys are labeled with a key icon and references
are labeled by a book icon; see Fig. 1 left to line numbers. Inspecting markers
reveals detailed information, e.g., how many references in which files refer to
a key, see Fig. 4b.

6 TexMo’s source code including the text model and the relation model is available
online at: www.itu.dk/~ropf/download/texmo.zip

167

TexMo: A Multi-Language Development Environment 9

(a) A broken relation between command
declaration and its use, see Fig. 1b.

(b) Detailed relation information attached to a
key marker.

Fig. 4: Visualization and information for inter-language relations.

2. Navigation. Users can navigate from any reference to the referred key and
from a key to any of its references. Navigation actions are called via the
context menu.

3. Static checking. Fixed relations in TexMo’s relation model (RM) are statically
checked. Broken relations, i.e., fixed relations with different string literals
as key and reference, are underlined red and labeled by a standard error
indicator in the active editor, see Fig. 4a.

4. Refactoring. Broken relations can be fixed automatically using quick fixes.
TexMo’s quick fixes are key centric rename refactorings. Applying a quick fix
to a key renames all references to the content of the key. Contrary, applying
a quick fix to a reference renames this single reference to the content of the
corresponding key.

On top of these multi-language development support mechanisms, TexMo provides
syntax highlighting for 75 languages. GPLs like Java, C#, and Ruby, as well as
DSLs like HTML, Postscript, etc. are supported. Standard editor mechanisms
like undo/redo are implemented, too.

Universal Language Representation. TheTextModel. TexMo implements a uni-
versal language representation since such an MLDE is easily applicable for
development of any MLSS.

All textual languages share a common coarse-grained structure. The text
model (Fig. 5), an AST of any textual language, describes blocks containing
paragraphs, which are separated by new lines and which contain blocks of words.
Words consist of characters and are separated by white-spaces. The only model
elements containing characters are word-parts, separators, white-spaces, and
line-breaks. Blocks, paragraphs, and word blocks describe the structure of a
mogram. Separators are non-letters within a word, e.g., ’/’,’.’, etc., allowing
represent of typical programming language tokens as single words.

TexMo treats any mogram as an instance of a textual DSL conforming to
Fig. 5. For example, a snippet of JavaScript code if(event.command == , line
8 in Fig. 1b, looks like: Block(Paragraph[WordBlock(Word[WordPart(“if”), Seperator-
Part(content:“(”), WordPart(“event”), SeperatorPart(“.”), WordPart(“command”), WhiteS-
pace(“ ”)]), ...]) (using Spoofax [17] AST notation).

168

10 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Fig. 5: The open universal model for language representation.

An Explicit Relation Model. TexMo uses an instance of the Relation Model (RM)
presented in Fig. 6 to keep track of relations between multi-language mogram
code. Our RM allows for relations between mogram contents (ElementKey and
ElementReference), between mogram contents and files (Artifacts) or components
(Components), and between files and components. This allows for example to ex-
press relations in case mogram code requires another file, which occurs frequently,
e.g., in HTML code.

The RM instance is kept as a textual artifact. The textual concrete syntax
is not shown here, since the RM is not intended for human inspection. TexMo
automatically updates the RM instance whenever developers modify interrelated
mograms. That is, TexMo supports evolution of MLSS. Currently, the RM is
created manually. TexMo provides context menu actions to establish relations
between keys and references. Future versions of TexMo will integrate pattern
based mining mechanism [23,9] to supersede manual RM creation.

Relation Types. TexMo’s RM currently implements fixed and explanatory re-
lations. Explanatory relations are free relations in our taxonomy. Keys and
references of fixed relations contain the same string literal. Figure 1 shows a fixed
relation and Fig. 4 shows a broken fixed relation. Explanatory relations allow
to connect arbitrary text blocks with each other, for example documentation
information to implementation code.

4 Evaluation

In this section we discuss TexMo’s applicability. First, we evaluate TexMo’s
language representation mechanism, i.e., its representation of mograms as text

169

TexMo: A Multi-Language Development Environment 11

Fig. 6: TexMo’s explicit relation model.

models. Second, we provide preliminary evidence on the feasibility of TexMo
by testing user acceptance. Furthermore, we discuss applicability of TexMo’s
relation model with respect to keeping inter-language relations while testers are
using TexMo.

The subject used for this evaluation is the open-source web-based bug-tracking
system, JTrac. JTrac’s code base consists of 374 files. The majority of files, 291,
contain source code in Java (141), HTML (65), property files (32), XML (16),
JavaScript (8), and 29 other source code files such as Shell scripts, etc. Similar
to many web-applications, JTrac implements the model-view-controller (MVC)
pattern. This is achieved using popular frameworks: Hibernate (hibernate.org)
for OR-Mapping and Wicket (cwiki.apache.org/WICKET/) to couple views and
controller code. The remaining 83 files are images and a single jar file. We did
not consider these files in our evaluation since they do not contain information
in a human processable, textual syntax. Clearly, JTrac is an MLSS.

4.1 Universal Language Representation

To evaluate TexMo’s universal language representation, we manually opened all
291 mograms with the TexMo editor to check if a correct text model can be
established. By correct we mean that any character and string in a source code
artifact has a corresponding model element in the text model, which in turn
allows the RM to interrelate mograms in different languages. The files used are
available at: www.itu.dk/~ropf/download/jtrac_experiment.zip.

We concluded that all 291 source code files can be opened with the TexMo
editor. For all files a correct text model has been established.

170

12 Rolf-Helge Pfeiffer and Andrzej Wąsowski

4.2 User Test

To test user acceptance, we let 11 testers perform three typical development
tasks. The testers included 4 professional developers, 3 PhD students, and 4
undergraduate students, with median 3 years of working experience as software
developers.

Using only a short tutorial, which explains TexMo’s features the testers had
to work on the JTrac system. First, they had to find and remove a previously
injected error, a broken fixed relation. Second, they had to rename a reference
and fix the now broken relation. Third, they had to replace a code block, which
removes two keys. We captured the screen contents and observed each tester.
After task completion, each tester filled out a questionnaire. Questions asked for
work experience, proficiency in development of MLSS using Java, HTML, and
XML. Additionally, two open questions on the purpose of the test and on the
usefulness of TexMo where asked. After the completion of questionnaires we had
a short, open discussion about TexMo where we took notes on tester’s opinions.

We conclude that the testers understand and use MLDE concepts. Seven
testers applied inter-language navigation to better understand the source code,
i.e., to inspect keys and references whenever an error was reported. Furthermore,
another seven used rename refactorings to securely evolve cross-language relations
in JTrac. All testers were able to find all errors and to fix them. In the following
we quote a selection of the testers arguing about usefulness of TexMo (we avoid
quoting complete statements for the sake of brevity). Their statements indicate
that visualization, static checking, navigation and refactoring across language
boundaries are useful and that such features are missing in existing IDEs.

Q: “Do you think TexMo could be beneficial in software development? Why?”
A1: “TexMo’s concepts are really convincing. I would like to have a tool like
this at work.”
A2: “Liked the references part and the checking. Usually, if you change the
keys/references you get errors at runtime [which is] kind of late in the process.”
A3: “[TexMo] improves debugging time by keeping track of changes on source
code written in different programming languages that are strongly related. I do
not know any tool like this.”
A4: “I see [TexMo] useful, especially when many people work on the same
project, and, of course, in case the projects gets big.”
A5: “I did development with Spring and a tool like TexMo would solve a lot of
problems while coding.”
A6: “In large applications it is difficult to perform renaming or refactoring tasks
without automated tracking of references. . . . If there would be such a reference
mechanism between JavaScript and C#, it would save us a lot of work.
A7:“[TexMo] solves [a] common problem experienced when software project
involves multiple languages.”

Robustness of the Relation Model. To run the user test and to demonstrate that
the RM can express inter-language relations in an MLSS, we established a RM
relating 9 artifacts containing 51 keys, 87 references, via 87 fixed relations with
each other. The RM relates code in Java, HTML, and properties files with each

171

TexMo: A Multi-Language Development Environment 13

other. We did not aim for a complete RM, since we focus on demonstrating
TexMo’s general applicability. After the testers had finished their development
tasks, we inspected the RMs manually to verify that they still correctly interrelate
keys and references.

We conclude that TexMo’s RM is robust to modifications of the MLSS.
After modification operations, all relations in the RM correctly relate keys and
references across language boundaries.

A common concern of the testers related to replacing a code block containing
multiple keys with a new code block, where TexMo complains about a number
of created dangling references in corresponding files. We did not implement a
feature to automatically infer possible keys out of the newly inserted code, since
we consider this process impossible to automate completely.

4.3 Threats to Validity

The code base of JTrac might be to small to allow to generalize that any textual
mogram in any language can be represented using TexMo’s text model. However,
we think that nearly 300 source code files in 15 languages gives a rather strong
indication. The RM used for the user tests might be to small and incomplete.
We were not interested in creating a complete RM, but only concerned about its
general applicability.

To avoid direct influence on the testers in an oral interview, we used a written
questionnaire. All quotes in the paper are taken from this written data.

5 Related Work

Strein et. al. argue that contemporary IDEs do not allow for analysis and refac-
toring of MLSS and thus are not suitable for development of such. They present
X-Develop an MLDE implementing an extensible meta-model [28] used for a syn-
tactic per language group representation. The key difference between X-Develop
and TexMo is the language representation. TexMo’s universal language represen-
tation allows for its application in development of any MLSS regardless of the
used languages. Similarly, the IntelliJ IDEA IDE implements some multi-language
development support mechanisms. It provides multi-language refactorings across
some exclusive languages, e.g., HTML and CSS. Unlike in TexMo, these inter-
language mechanisms are specific to particular languages since IntelliJ IDEA
relies on a per language representation.

Some development frameworks provide tools to enhance IDEs. Our evaluation
case, JTrac relies on the web framework Wicket. QWickie (code.google.com/p/
qwickie), an Eclipse plugin, implements navigation and renaming support between
inter-related HTML and Java files containing Wicket code. The drawback of
framework-specific tools is their limited applicability. QWickie cannot be used
for development with other frameworks mixing HTML and Java files.

Chimera [2] provides hypertext functionality for heterogeneous Software
Development Environments (SDE). Different programs like text editors, PDF

172

14 Rolf-Helge Pfeiffer and Andrzej Wąsowski

viewers and browsers form an SDE. These programs are viewers through which
developers work on different artifacts. Chimera allows for the definition of anchors
on views. Anchors can be interrelated via links into a hyperweb. TexMo is
similar in that models of mograms can be regarded as views where each model
element can serve as an anchor for a relation. Chimera is not dynamic. It does
not automatically evolve anchors while mograms are modified. Subsequent to
modifications, Chimera users need to manually reestablish anchors and adapt
the links to it. Contrary, TexMo automatically evolves the RM synchronously to
modifications applied to mograms. Only after deleting code blocks containing
keys, users need to manually update the dangling references.

Meyers [20] discusses integrating tools in multi-view development systems.
One can consider language integration as a particular flavor of tool integration.
Meyers describes basic tool integration on file system level, where each tool keeps
a separate internal data representation. This corresponds to the per language
representation in our taxonomy. Meyers’ canonical representation for tool inte-
gration corresponds to our universal language representation. Our work extends
Meyers work by identifying a per language group representation.

6 Conclusion & Future Work

We have presented a taxonomy of multi-language development environments, and
TexMo, an MLDE prototype implementing a universal language representation,
an explicit relation model supporting free and fixed relations. The taxonomy is
established by surveying related literature and tools. We have also argued that
implementation of TexMo meets is design objectives and evaluated adequacy of
its design. By itself TexMo demonstrates that design of useful MLDEs is feasible
and welcomed. We reported very positive early user experiences.

To gather further experience, we plan to extend TexMo with string-transfor-
mation and domain-specific relations and compare it to an MLDE using a per
language representation. We realized that it is costly to keep an explicit RM
updated while developers work on a system, especially the larger a RM grows.
Therefore, we will experiment with a search-based relation model. This will also
overcome the vulnerability of an explicit RM to changes applied to mograms
outside the control of the MLDE

Note, TexMo’s RM does not only allow the interrelation of mograms of
different languages but also of mograms in a single language. We do not focus
on this fact in this paper. However, this ability can be used to enhance and
customize static checks and visualizations beyond those provided by current IDEs
without extending compilers and other tools.

While working with TexMo we realized that a universal language represen-
tation is favorable if an MLDE has to be quickly applied to a wide variety of
systems with respect to the variety of used languages. Furthermore, there is a
trade-off between the language representation mechanism and the richness of
the tools an MLDE can provide. Basic support, like visualization, highlighting,
navigation and rename refactorings, can be easily developed on any language

173

TexMo: A Multi-Language Development Environment 15

representation, with very wild applicability if the universal representation is used.
More complex refactorings require a per group or a per language representation.

In future we plan to build support to automatically infer inter-language rela-
tions. Fixed and string-transformation relations can be automatically established
by searching for equal or similar strings. This process is not trivial as soon as a
language provides for example scoping. Then inferring inter-language relations
has to additionally consider language specific scoping rules. Inferring domain-
specific relations has to rely on additional knowledge provided by developers, for
example as patterns [23], which explicitly encode domain knowledge. Inferring
free relations is probably not completely automatable but relying on heuristics
and search engines could result in appropriate inter-language relation candidates.

Acknowledgements: We thank Kasper Østerbye, Peter Sestoft and David
Christiansen for discussion and feedback on models for representation of language
groups and for feedback on the TexMo prototype. EMFText developers have
provided technical support during TexMo’s development. Chris Grindstaff has
developed the Color Editor (gstaff.org/colorEditor), parts of which were reused
for TexMo’s syntax highlighting. Last but not least, we also thank all the testers
participating in the experiment.

References

1. Zend Technologies Ltd.: Taking the Pulse of the Developer Community. static.zend.
com/topics/zend-developer-pulse-survey-report-0112-EN.pdf, seen: Feb. 2012

2. Anderson, K.M., Taylor, R.N., Whitehead, Jr., E.J.: Chimera: Hypermedia for
Heterogeneous Software Development Enviroments. ACM Trans. Inf. Syst. 18 (July
2000)

3. Badros, G.J.: JavaML: A Markup Language for Java Source Code. Comput. Netw.
33 (June 2000)

4. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: A Generic and Extensi-
ble Framework for Model Driven Reverse Engineering. In: Proc. of the IEEE/ACM
International Conference on Automated Software Engineering (2010)

5. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications (2000)

6. Erlikh, L.: Leveraging Legacy System Dollars for E-Business. IT Professional 2
(May 2000)

7. de Figueiredo Carneiro, G., Mendonça, M.G., Magnavita, R.C.: An experimental
platform to characterize software comprehension activities supported by visualiza-
tion. In: ICSE Companion (2009)

8. Groenewegen, D.M., Hemel, Z., Visser, E.: Separation of Concerns and Linguistic
Integration in WebDSL. IEEE Software 27(5) (2010)

9. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: Inter-Modelling: From Theory to
Practice. In: Proc. of the 13th International Conference on Model Driven Engineering
Languages and Systems: Part I (2010)

10. Halasz, F.G., Schwartz, M.D.: The Dexter Hypertext Reference Model. Commun.
ACM 37(2) (1994)

11. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap between
Modelling and Java. In: Proc. of the 2nd International Conference on Software
Language Engineering (SLE 2009), Revised Selected Papers (2010)

174

16 Rolf-Helge Pfeiffer and Andrzej Wąsowski

12. Hessellund, A.: SmartEMF: Guidance in Modeling Tools. In: Companion to the
22nd ACM SIGPLAN Conference on Object-Oriented Programming Systems and
Applications Companion (2007)

13. Hessellund, A., Wąsowski, A.: Interfaces and Metainterfaces for Models and Meta-
models. In: Proceedings of the 11th International Conference on Model Driven
Engineering Languages and Systems (2008)

14. Holst, W.: Meta: A Universal Meta-Language for Augmenting and Unifying Lan-
guage Families, Featuring Meta(oopl) for Object-Oriented Programming Languages.
In: Companion to the 20th annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (2005)

15. Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers, Y., Bezivin, J.: Inter-
DSL Coordination Support by Combining Megamodeling and Model Weaving. In:
Proceedings of the 2010 ACM Symposium on Applied Computing (2010)

16. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Tech. rep., Carnegie-Mellon University
Software Engineering Institute (1990)

17. Kats, L.C.L., Visser, E.: The Spoofax Language Workbench: Rules for Declarative
Specification of Languages and IDEs. In: OOPSLA (2010)

18. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels (2008)

19. Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of Application Software
Maintenance. Commun. ACM 21 (June 1978)

20. Meyers, S.: Difficulties in Integrating Multiview Development Systems. IEEE Softw.
8 (1991)

21. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it. In:
Proc. of the 31st International Conference on Software Engineering (2009)

22. Paige, R.F., Drivalos, N., Kolovos, D.S., Fernandes, K.J., Power, C., Olsen, G.K.,
Zschaler, S.: Rigorous Identification and Encoding of Trace-Links in Model-Driven
Engineering. Softw. Syst. Model. 10 (October 2011)

23. Pfeiffer, R.H., Wasowski, A.: Taming the Confusion of Languages. In: Proceedings
of the 7th European Conference on Modelling Foundations and Applications (2011)

24. Salay, R., Mylopoulos, J., Easterbrook, S.: Using Macromodels to Manage Collec-
tions of Related Models. In: Proc. of the 21st International Conference on Advanced
Information Systems Engineering (2009)

25. Standish, T.A.: An Essay on Software Reuse. IEEE Trans. Software Eng. (1984)
26. Steinberger, M., Waldner, M., Streit, M., Lex, A., Schmalstieg, D.: Context-

Preserving Visual Links. IEEE Transactions on Visualization and Computer Graph-
ics (InfoVis ’11) 17(12) (2011)

27. Strein, D., Kratz, H., Lowe, W.: Cross-Language Program Analysis and Refactoring.
In: Proc. of the 6th IEEE International Workshop on Source Code Analysis and
Manipulation (2006)

28. Strein, D., Lincke, R., Lundberg, J., Löwe, W.: An Extensible Meta-Model for
Program Analysis. IEEE Trans. Softw. Eng. 33 (September 2007)

29. Wagner, S., Deissenboeck, F.: Abstractness, Specificity, and Complexity in Software
Design. In: Proc. of the 2nd International Workshop on the Role of Abstraction in
Software Engineering (2008)

30. Waldner, M., Puff, W., Lex, A., Streit, M., Schmalstieg, D.: Visual Links Across
Applications. In: Proc. of Graphics Interface (2010)

31. Xing, Z., Stroulia, E.: Refactoring practice: How it is and how it should be supported
— an Eclipse case study. In: Proc. of the 22nd IEEE International Conference on
Software Maintenance (2006)

175

176

12 Cross-language Support
Mechanisms Significantly Aid

Software Development –
MODELS’12 (Paper E)

177

Cross-Language Support Mechanisms
Significantly Aid Software Development

Rolf-Helge Pfeiffer and Andrzej Wąsowski

IT University of Copenhagen, Denmark
{ropf,wasowski}@itu.dk

Abstract. Contemporary software systems combine many artifacts spec-
ified in various modeling and programming languages, domain-specific and
general purpose as well. Since multi-language systems are so widespread,
working on them calls for tools with cross-language support mechanisms
such as (1) visualization, (2) static checking, (3) navigation, and (4) re-
factoring of cross-language relations. We investigate whether these four
mechanisms indeed improve efficiency and quality of development of
multi-language systems. We run a controlled experiment in which 22
participants perform typical software evolution tasks on the JTrac web
application using a prototype tool implementing these mechanisms. The
results speak clearly for integration of cross-language support mecha-
nisms into software development tools, and justify research on automatic
inference, manipulation and handling of cross-language relations.

1 Introduction

Developers building contemporary software systems constantly deal with multiple
languages at the same time. For example, around one third of developers using
the Eclipse IDE work with C/C++, JavaScript, and PHP, and a fifth of them
use Python besides Java [1]. PHP developers regularly use one to two languages
besides PHP [2]. Developers of large enterprise systems face a particularly complex
challenge. For instance, OFBiz, an industrial quality open-source ERP system
combines more than 30 languages including General Purpose Languages (GPLs),
several XML-based Domain-Specific Languages (DSLs), along with configuration
files, property files, and build scripts. ADempiere, another industrial quality ERP
system, uses 19 languages. The eCommerce systems Magento and X-Cart utilize
more than 10 languages each.1

We call systems using multiple languages, Multi-Language Software Systems
(MLSSs). Obviously, the majority of modern software systems are MLSSs.

To demonstrate how disturbing development of MLSSs is, lets consider an
example extracted from JTrac, an open-source, web-based bug-tracking system.
JTrac’s login page (Fig. 1) is implemented in three source code files in three
different languages. The login page itself is described in HTML (Lst. 3), displayed
messages are given in a properties file (Lst. 1), and the logic evaluating a login is
1 See ofbiz.apache.org, adempiere.com, magentocommerce.com, x-cart.com

178

2 Rolf-Helge Pfeiffer and Andrzej Wąsowski

1 login . title = JTrac Login
2 login .home = Home
3 login .loginName = Login Name / email ID
4 login .password = Password
5 login .rememberMe = remember me
6 login .submit = Submit
7 login . error = Bad Credentials

Listing 1: A properties file excerpt.

1 private class LoginForm extends StatelessForm {
2 private String loginName;
3 private String password;
4 public String getLoginName() {
5 return loginName;
6 }
7 public String getPassword() {
8 return password;
9 }

Listing 2: Java login logic excerpt.

1 <table class ="jtrac">
2 <tr>
3 <td class ="label"><wicket:message key="login.loginName"/></td>
4 <td colspan="2"><input wicket:id="loginName" size="35"/></td>
5 </tr>
6 <tr>
7 <td class ="label"><wicket:message key="login.password"/></td>
8 <td><input type="password" wicket:id="password" size="20"/></td>
9 <td align="right">

10 <input type="submit" wicket:message="value:login.submit"/>
11 </td>
12 </tr>

Listing 3: A fragment of the HTML code describing JTrac’s login page.

described in Java (Lst. 2). The HTML code describes the structure of the login
page and its contents—how the input fields for login and password insertion are
laid out and how they are ordered. Since JTrac is built using the web-development
framework Wicket, the HTML code contains wicket identifiers, which serve as
anchors for string generation or behavior triggering, see lines 3, 4, 7, 8, and 10 in
Lst. 3. The properties provide certain messages for the login page. For instance,
the property on line 3 in Lst. 1 provides the message string for line 3 of the HTML
code. The Java code (Lst. 2) provides authentication logic. Most of this code is
not shown here, to conserve space. In order, to correctly invoke the Java code,
the field names (lines 2–3), the corresponding get methods (lines 4 and 7), and
the set methods (not shown), must use the same name as the wicket identifiers
on lines 4 and 8 in Lst. 3.

Now, imagine that a developer renames the string literal login.loginName on
line 3 in the HTML code to login.loginID. Obviously, the relation between the
properties file (line 3) and the HTML file is now broken. In effect, the message
asking for a login name is not displayed correctly anymore, see Fig. 2. The mistake
is only visible at runtime. Observe that such small quiet changes of behavior can
easily be missed by testers. Similarly, renaming the string literal loginName on
line 4 in Lst. 3 to loginID breaks a relation to the field loginName in the Java file
(affects lines 2, 4, and 5 in Lst. 2). The effect of this change is even more serious
since JTrac crashes with an error page, see Fig. 3.

We believe that development of MLSSs could be significantly improved
if Integrated Development Environments (IDEs) included support for multi-
language development, known from single languages, such as (i) visualization
(ii) static checking for consistency, (iii) navigation and (iv) refactoring of cross-
language relations. In the remainder we refer to these four mechanisms as Cross-

179

Cross-Language Support Mechanisms 3

Fig. 1: Error-free login page. Fig. 2: Login page with a bro-
ken relation between HTML and
property code.

Fig. 3: Login page with a broken relation between HTML and Java code.

Language Support (CLS) mechanisms. In this paper, we address the following
research question on CLS:

Do Cross-Language Support mechanisms improve developer’s understanding of
the system and reduce the number of errors made at development time?

To investigate this question we run a controlled experiment in which 22
participants perform typical development and customization tasks on JTrac, a
representative MLSS.

It is well known that maintenance and customization of software systems
is expensive and time consuming. Between 85% to 90% of project budgets go
to legacy system operation and maintenance [5]. Lientz et al. [12] state that
75% to 80% of system and programming resources are used for extensions and
maintenance, where alone understanding of the system stands for 50% to 90%
percent of these costs [18]. The results of our experiment demonstrate (i) that
developers using CLS mechanisms find and fix more errors in a shorter time
than those in the control group, (ii) that they perform development tasks on
language boundaries more efficiently, and (iii) that even unexperienced developers
provided with CLS perform similarly or better than experienced developers in
developing MLSSs. Clearly, the integration of CLS into IDEs and development
tools would contribute to reducing the high cost of software maintenance and
evolution. These results confirm the importance of research on interrelating
models and modeling languages, such as trace models [7,14], multi-modeling [8],
mega-models [9], macromodels [17], and relation models [15,16]. Additionally, the
results motivate research on automatic inference of cross-language relations.

180

4 Rolf-Helge Pfeiffer and Andrzej Wąsowski

The JTrac system plays a role of the experimental unit in our setup. We use a
prototype development editor, TexMo, as the experimental variable, by enabling
and disabling its cross-language support. JTrac and TexMo are presented in
Sect. 2. Section 3 describes our methodology and the setup of the experiment. We
analyze the results in Sect. 4, discuss threats to validity in Sect. 5 and related
work in Sect. 6. We conclude in Sect. 7.

Experiment artifacts referred in this paper are available online at itu.dk/people/
ropf/download/Experiment.zip. The archive contains TexMo’s source code, the JTrac
instance used for the experiment, all documents, questionnaires, answers, and
statistics. Screen captures are available on request, as they take up a lot of space.

2 Technical Background

2.1 JTrac: An MLSS Representative

We use the open-source web-based bug-tracking system JTrac as an experimen-
tal unit in our experiment. JTrac’s code base contains 374 files of which the
majority (291) contain code: Java (141), HTML (65), property files (32), XML
(16), JavaScript (8), and 29 other source code files such as Shell scripts, XSLT
transformations, etc. The remaining 83 files are images such as “.png”, “.gif”
and a single jar file. Most of the property files are used for localization of sys-
tem messages. The XML files are used for various purposes, for example to
give an object-relational mapping describing how to persist business objects. As
many other web-applications, JTrac implements the model-view-controller pat-
tern. This is achieved using popular frameworks: Hibernate (hibernate.org) for
object-relational mapping and Wicket (wicket.apache.org) to couple views and
controller code. Clearly, JTrac is a MLSS.

2.2 TexMo: A Multi-Language Programming Environment

TexMo is a prototype of a Multi-Language Development Environment [16] devel-
oped by Pfeiffer. It is an editor that allows to interrelate source code in multiple
languages. TexMo uses a relation metaphor. Relations are defined between ref-
erences and keys. A key is a fragment of code that introduces an identifiable
object, a concept, etc. A reference is a location in code that relates to a key. Re-
lations are always many-to-one between references and keys. TexMo addresses
MLSSs development by implementing the CLS mechanisms as follows:

1. Visualization. TexMo highlights keys and references in gray. See reference
from l.1̇43 in Fig. 4b to l. 15 in Fig. 4a. Keys are labeled with a key icon
and references are labeled by a book icon; see Fig. 4, left to line numbers.
Inspecting markers reveals further details, such as how many references and
in which files refer to a key.

2. Navigation. Users can access the key from any of its reference and navigate
from a key to any of its references. Navigation is activated via a context menu.

181

Cross-Language Support Mechanisms 5

(a) HTML code, which fills a message given by a property name.

(b) A properties key options.manageUsers.

Fig. 4: Declaration of a Wicket id and its use.

3. Static checking. TexMo statically checks cross-language relations. Broken rela-
tions are underlined red and labeled by a standard error indicator, see Fig. 5.

4. Refactoring. Broken relations can be fixed automatically by applying quick
fixes. TexMo’s quick fixes are key centric rename refactorings. Applying a fix
to a key renames all references to the content of the key. Dually, applying a
quick fix to a reference renames this single reference to point to its key.

TexMo is an Eclipse plugin. It uses a universal model for representation of any
textual language. That is, any source code file is an instance of an EMF-based
DSL, which relies on the physical structure of its text. Code is represented as
paragraphs, words, parts of words, characters, and special characters like dots
or semicolons. This universal representation of source code permits the use of a
universal relation model, to track relations across different programming artifacts,
to link arbitrary information across language boundaries and to synchronize these
relations whenever programming artifacts are modified by developers. Further
information about TexMo is available in [16].

3 The Experiment

We run a controlled experiment with 22 participants divided into two groups.
The control group A performs the tasks using TexMo with CLS disabled. The
treatment group B uses TexMo with all four CLS mechanisms enabled.

3.1 Hypotheses

We refine the initial research question into five specific hypotheses:

H1. Developers using CLS find and fix more errors than the developers in the
control group. H1 aims to capture the effectiveness of CLS. Since developers
get more support by the IDE guiding to problems and offering possible
solutions, we expect them to find and fix more errors.

182

6 Rolf-Helge Pfeiffer and Andrzej Wąsowski

H2. Using CLS does not have negative impact on speed of work. Since CLS
provides more information that need to be processed by developers, it could
take longer working with CLS than without it (due to information flooding).

H3. The least experienced developers using CLS perform better than the most
experienced developers in the control group. Since we expect experienced
software developers to perform better than non-experienced developers, it
is interesting to investigate how close non-experienced developers can be
brought to the quality and performance of experienced ones by just offering
CLS. Note, that we refer to general experience in software engineering not
experience related to the experimental unit JTrac.

H4. Developers using CLS locate errors in source code, whereas developers in
the control group identify effects of errors. We expect developers in the
treatment group, those using CLS, to describe errors on a different level of
abstraction. They will locate errors, i.e., which code constructs in relation
with others are responsible for erroneous behavior, whereas developers in
the control group will identify effects of errors, i.e., the erroneous behavior
of the system. This would mean that developers using CLS have a deeper
understanding of the implementation of the system under development.

H5. Developers use CLS mechanisms. We expect developers offered CLS mecha-
nisms to actually use them voluntarily.

3.2 Experiment Design

We use the terminology of Juristo and Moreno [10, Chpt. 4.2] in our description.

The Experimental Unit. JTrac is a representative of a MLSS. It uses more than 5
languages and with its size of nearly 300 source code files it is sufficiently large to
not be easily understandable by the experiment subjects within the given time.

The Experimental Variable. We used TexMo as an IDE with CLS. We are not
aware of any other tool supporting the four CLS mechanisms simultaneously.
Other existing tools either only provide CLS for particular pairs of languages like
IntelliJ IDEA (jetbrains.com/idea), are no longer available, like X-Develop [20], or
they do not implement all four mechanisms simultaneously. Also, since TexMo is
an Eclipse extension it allows the participants to work in a familiar environment.

Factors. We follow a single-factor with two alternatives experiment design. The
factor alternatives are TexMo with visualization, navigation, static checking and
refactoring of cross-language relations disabled and the full-featured TexMo as
described in Sect. 2. Group B uses the full-featured TexMo and the control group,
Group A, uses the restricted TexMo. The latter simulates using a modern IDE.

The Response Variables. We have four response variables representing all quanti-
tative outcomes: number of found errors, number of fixed errors, and the times
for finding and fixing errors.

183

Cross-Language Support Mechanisms 7

The Pre-Experiment. Before the actual experiment we ran a pre-experiment with
five participants, three using the full-featured TexMo editor and two using the
control group version. The purpose of the pre-experiment was to check if the
experiment tutorials, task descriptions, and objects are consistent, correct and
can be understood. In response to the results of the pre-experiment we have
fixed incorrect file paths, typos, and wrong line numbers in the task document,
and we improved error markers in the TexMo editor. The participants of the
pre-experiment have not been used in the main experiment to avoid learning
effects. The results of the pre-experiment are not included in the statistics below.

The Pre-Questionnaire. To avoid bias in the distribution of participants in
two groups with similar technical experience, we let everyone answer a short
questionnaire prior to the actual experiment. We asked 13 yes-no questions about
the technical experience of participants: did they develop web-applications before
and whether they know and used the web-application frameworks Wicket (wicket.
apache.org) or Spring (springsource.org), the object relational mappers Cayenne
(cayenne.apache.org) or Hibernate (hibernate.org), the IDEs VisualStudio (microsoft.
com/visualstudio) or Eclipse (eclipse.org).

Only Wicket, Hibernate, and Eclipse are used in the experiment but we asked
for alternative technologies to minimize the risk that a participant tries to learn
about an important technology before the actual experiment.

The Experimental Subject. This experiment is conducted with 22 experimental
subjects falling into four major categories: software professionals along with PhD,
MSc, and undergraduate students at The IT University of Copenhagen.

The youngest participant is 18 and the oldest is 48, average age is around
29 years, median 28. Nineteen participants report that they have been working
as professional software engineers for at least half a year, with maximum of 13
years (average work experience: around 3 years, median 3 years). Two PhD and
one graduate student have no experience as professional software engineers.

We distributed the subjects in two groups, one per factor alternative. The
distribution was solely based on technological experience reported in a pre-
questionnaire, described above. From the 22 participants, 19 reported to have
experience with web-application development, 1 already used Wicket, 5 used
Hibernate, and 20 have experiences using the Eclipse IDE. Participants were
assigned randomly to distribute them equally according to their experience. In
Group A, 10 persons have experience developing web-applications, none of them
used Wicket before, 2 of them used Hibernate, and 9 used the Eclipse IDE.
Similarly, in GroupB, 9 persons have developed web-applications before, 1 of
them used Wicket, 3 of them Hibernate, and 9 of them Eclipse.

The demographic characteristics of the sample were established using a post-
questionnaire (see below). GroupA’s average age is 29 years, with a median of
28, average work experience is 3.67 years with a median of 3 years. For Group B
the age average is 28.64 years with a median of 30, and average work experience
is 3.22 years with a median of 3 years.

184

8 Rolf-Helge Pfeiffer and Andrzej Wąsowski

(a) Declaration of the fieldsText id attached
to a span tag.

(b) Java code that fills a panel to the span HTML element

Fig. 5: Declaration of a Wicket id and its use.

The Tutorials. At the beginning of the experiment each participant received a
tutorial explaining how to compile, start, and stop JTrac. GroupB received an
extended version explaining the cross-language mechanisms of TexMo. To reduce
bias, all features are described using an example in a different domain than the
one used for the experiment—the development of a Safari browser extension.

The Tasks. The subjects were asked to perform three tasks representing typical
development and customizations tasks. Each task had to be completed, including
a brief per task questionnaire, within the 10 minutes. After 8 minutes the
participant was reminded that only two minutes were left. After 10 minutes the
participants were asked to proceed to the next task. We recorded screen contents
of subjects solving the tasks.

Task 1. The participants received an instance of JTrac in which a cross-language
relation was broken. Figure 5 shows the error: we renamed fields to fieldsText, the
wicket:id attribute in a span tag of the HTML code in line 35. This string literal
serves as a key for two references in the corresponding Java code. The renaming
leads to a runtime error whenever a new issue report is added to the system.

The participants where asked to locate the error in the source code, name all
files which contribute to the error, and to fix the error. The error can be fixed
by renaming the key fieldsText to fields or conversely by renaming the references
from fields to fieldsText. We considered both solutions as valid fixes.

Task 2. We asked to rename the property options.manageUsers in line 143 Fig. 4b
to options.manageAllUsers. This renaming breaks a cross-language relation between
a properties file and HTML code. The system will still run error free but a message
next to an icon on JTrac’s administration page is not displayed anymore.

The participants were asked to name all files contributing to the newly intro-
duced error and to fix the error. We recognize both renaming options.manageUsers
to options.manageAllUsers in the HTML code and reverting the change applied
to the properties file as valid solutions.

185

Cross-Language Support Mechanisms 9

Fig. 6: Declaration of a Wicket id and its use.

1 < t r>
2 <t d c l a s s=" l a b e l "><wicke t : message key=" logon . logonID "/></ t d>
3 <t d c o l s p a n="2">< i n p u t wicke t : i d=" logonID " s i z e="35"/></ t d>
4 </ t r>

Listing 4: HTML code replacing lines 20 to 23 in Fig. 6.

Task 3. The participants were asked to replace a block of code. Figure 6 shows
the HTML code of JTrac’s login page. Lines 20–23 implement a table row
displaying labeled input fields. Line 21 contains a key login.loginName and line
22 contains another key loginName. A property file providing the text labels
refers the login.loginName. The loginName key is referred from a Java class that
evaluates user’s input.

The participants were asked to replace the code block in lines 20–23 with
the HTML code given in Fig. 4. Replacing this block removes two keys and
breaks several references across three files in different languages. We asked the
participants to name all files containing dangling references and to explain how
to fix the problem.

The Post-Questionnaire. The post-questionnaire gathered both qualitative and
quantitative data, mostly about the demographics: age, length of professional
experience, size of developed systems, experience in web-development, famil-
iarity with IDEs, whether they tried to learn technologies mentioned in the
pre-questionnaire. Some of the questions overlapped with the pre-questionnaire,
to verify consistency, or to check for temporal changes. We also asked for partici-
pant experienced problems working with TexMo, and whether TexMo could be
beneficial for software development, to collect feedback about our tooling.

4 Results

H1. Developers using CLS find and fix more errors than the developers in the
control group. We distinguish between locating an error and observing its effect.
A participant locates an error if she properly names all files contributing to an
error and navigates to corresponding lines within the code. She only observes the
effect of an error if she runs the application and identifies erroneous behavior.

The results are summarized in Tab. 1. All developers in Group B successfully
locate errors in all tasks. Only one developer in GroupA locates the error in
Task 1, five locate the error introduced in Task 2, and none is able to locate the
errors in Task 3. Four developers in Task 1 and five developers in Task 3 managed
to partly locate errors, indicating some files contributing to an error but not all.

186

10 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Task 1 Task 2 Task 3 Average
A B A B A B A B

error located 9.09% 100% 45.45% 100% 0% 100% 18.18% 100%
error effect located 45.45% n/a 36.36% n/a 90.9% n/a 57.57% n/a
error fixed 0% 100% 45.45% 100% qualitative 22.72% 100%

Table 1: Success rate per task (n/a=not applicable). Each group has 11 members.

Tasks 1 and 2 ask the participants to fix the errors. In Task 3 the participants
explain how to fix the problem. This is why Tab. 1 contains no success rates for
fixing errors for Task 3 (the last row). All members of GroupB fix the error in
Task 1, compared to none in GroupA. In Tasks 2 and 3, a substantially larger
fraction of participants fixes the errors in Group B than in Group A. On average
Group B is around five times more effective in locating errors than Group A and
nearly four times better in fixing errors than GroupA. We conclude that CLS
significantly improves effectiveness of locating and fixing errors.

H2. Using CLS does not have negative impact on speed of work. We measure the
time to locate errors (GroupB) or observe effects of errors (GroupA) and the
subsequent times to fix identified errors (both groups). The results per task are
illustrated in Fig. 7. We only report time for participants completing a task, at
least partly within the given time.

GroupB finds and fixes errors faster than GroupA, in Tasks 1 and 2. For
Task 3 Group A is slightly faster than GroupB. But remember that we give the
time to observe an error’s effect for Group A and the time to locate an error for
Group B. To fix the the members of the control group would still need to locate it.

In Task 1 (column 1 in Fig. 7) only six participants in the control group locate
the error and none of them is able to fix it. Consequently, there is no corresponding
box-plot in the second column of Fig. 7. In Task 2, only five participants in Group A
suceed to locate and fix the error. For Task 3 ten GroupA participants locate
the error. All eleven participants in GroupB locate and fix all the errors in all
tasks (100% success rate). For Task 3, Group A members are slightly faster. This
is because the observable error effect appears directly on the login page and is
easy to find. Still, members of Group A are not able to find all files contributing
to the error, see Tab. 1.

Since Group B is always similarly fast (Task 3) or faster (Tasks 1 and 2) than
Group A, we conclude that CLS does not have negative impact on effectiveness.

H3. The least experienced developers using CLS perform better than the most
experienced developers in the control group. We ordered participants in both
groups based on age, professional experience, experience in engineering of large
software systems and web-applications, and the size of developed systems. In
our sample, high experience correlates with age, work experience, experience
in development of large systems, and with the sizes of systems developed. We

187

Cross-Language Support Mechanisms 11

Task 1 Task 2 Task 3
1. find error 2. fix error 1. find error 2. fix error 1. find errort in s

0

100

200

300

400

500

600

A B A B A B A B A B

Fig. 7: Time to find and fix errors per
group and task in seconds.

Task 1 Task 2 Task 3
1. find error 2. fix error 1. find error 2. fix error 1. find errorseconds

0

100

200

300

400

500

600

A B A B A B A B A B Group

Fig. 8: Time to find and fix errors for
the most experienced third of Group A
and the least experienced in Group B.

compare the four most experienced developers in GroupA with the four least
experienced in GroupB. Figure 8 illustrates the time used per task. We give
the time until a participant observed the effect of an error for Group A and the
time to locate an error for Group B. Only three of the selected four members in
GroupA contribute data to the analysis, since one of the participants did not
finish the tasks within the allotted ten minutes.

Clearly, the least experienced members of GroupB are faster in locating
errors than the most experienced members of the control group, in Tasks 1 and
2. Again, in Task 3 the error is easily observable directly on the login page.
Group A members are slighty faster in finding the effect but do not find all files
contributing to the error.

For errors which are not easily observable, developers exploiting CLS are faster
in finding and fixing errors than developers without them, despite disadvantageous
difference in reported experience.

H4. Developers using CLS locate errors in source code, whereas developers in
the control group identify effects of errors. Members of GroupB always locate
errors successfully, see Tab. 1. Only one participant in Group B decided to start
JTrac but did not even look at it. Significantly less members of Group A locate
errors. Usually, they do observe the effects, and only subsequently they search
for error locations if time is left. They rely on text search within the code base
for locating the errors.

Members of Group B reason right from the beginning about abstract structures
of the implementation, rather than merely observing effects of errors. This
increases their effectiveness as indicated by the following quote from the post-
questionnaire: I liked the references part and the checking. Usually, if you change
the keys/references you get errors at runtime which is kind of late in the process.
At the same time members of Group A are often not aware, that errors are caused
by broken cross-language relations, as seen from their task notes. They either

188

12 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Task 1 Task 2 Task 3

read markers 100% 100% 100%
used navigation 63.63% 72.72% 18.18%
used refactoring 63.63% 45.45% qualitative

Table 2: Rate of Group B participants using CLS per task.

do not locate the error, or admit that they do not know the reason, or simply
repeat the error message from the running system. Clearly, members of Group B
work on a higher cognitive level than members of Group A.

H5. Developers use CLS mechanisms. All participants in GroupB actually use
visualizations. They actively investigate error markers by hovering the mouse
cursor over them to get more detailed error descriptions. Over 50% of participants
for Tasks 1–2 use navigation and automatic refactoring, see Tab. 2. Most do not
use navigation, when replacing a code block, since they just deleted the keys,
which they could use as navigation start points. Those participants who used
navigation did so by undoing the changes and calling navigation from the old
keys. This indicates need for new user interface design that would allow accessing
deleted relations in a natural manner. No participants used automatic refactoring
for Task 3, since TexMo does not implement automatic inference of possible keys
out of the newly inserted code.

Furthermore, members of Group A complain that there is no static checking
for the errors created when breaking cross-language relations. They expect this
feature from an IDE searching for error markers or warnings. It is difficult to
identify the errors [and]. . . to navigate through the source code structure. Contrary,
Group B members not only do use CLS mechanisms, but also admit that [TexMo]
solves [a] commonly experienced problem when software project involves multiple
languages. These results strengthen our believe that higher speed and success
rate in GroupB is not accidental, but indeed caused by the availability of CLS
mechanisms in their version of TexMo.

5 Threats to Validity

To ensure that the results and conclusions in Sect. 4 are statistically sound, we
test hypotheses H1 to H3 statistically. Hypothesis H4 relies on qualitative data
and hypothesis H5 only observes behavior of Group B, the treatment group. We
apply a �-test to sample data for hypothesis H1 and Student’s t-test to sample
data of hypotheses H2 and H3. The effective null-hypothesis for every test is that
there is no difference between the experimental factor’s alternatives (µA = µB),
so CLS mechanisms do not aid software developers measurably.

We reject the null-hypothesis for H1, as all p-values are below significance level
(0.05), meaning that for all tasks the alternative providing CLS has a significant

189

Cross-Language Support Mechanisms 13

impact on developers. For Tasks 1–3 developers in the treatment group perform
significantly better than in the control group.

Testing H2 and H3, results in a statistically significant performance gain for
the treatment group to locate errors, except if the errors are easily observable.
However, performance is not statistically significantly better for fixing errors if
we apply the test to the part of the control group that suceeded (no time to fix
the error is available for the subjects who failed). Applying the t-test assuming
time larger than 10 minutes for those participants who did not complete the
tasks, confirms a significant performance improvement when fixing errors using
CLS in Tasks 1–2.

All statistical test data is available in the online appendix.

Internal Threats to Validity. The extended tutorial, explaining TexMo’s features,
might have caused a learning effect on members of GroupB. They might have
been more aware of cross-language relations. We believe that these effects are
sufficiently minimized by choice of an example from a completely different domain.
Also we assumed that in a standard development scenario, the developers would
be aware of CLS support, either through reading manuals or by observing user
interface visualizations. A tutorial might have helped them to use them faster
in the beginning, which is justified within a frame of a short experiment task.
Undoubtedly, they would be able to use the CLS mechanisms even more fluently,
if they applied them in a daily work.

Arguably, the sample sizes for H1 tests are very small, while the �-test is
best applied for larger frequencies [10]. We used it, mostly to get a feeling for
the data and to give an indication for a trend. Extending the experiments with
more participants will have to prove this trend. Similarly, sample sizes pose a
threat to validity when testing H2 and H3 with t-tests; in particular, testing
H3 where three data points of GroupA are compared to four data points of
Group B is questionable. Note though, that comparing to similar experiments in
related work [21,19] our sample size is large. Indeed this is the largest controlled
experiment about CLS mechanisms, that we are aware of.

It can be questioned if times for locating errors (Group B) are at all comparable
with times for just observing their effects (GroupA). We believe that this is
not a problem since for the control group the time to observe the effect is a
lower bound for the time to locate an error. So we compare an optimistic under
approximation with complete time, and GroupB still performs favorably.

External Threats to Validity. We ran a blind experiment. We tried to minimize
bias of the participants by relying on written questionnaires and provided only
minimal help on request. Typical help was to point the participants to the
appropriate Ant task to compile and run JTrac.

There is a risk that participants could have learned about technologies after
answering the pre-questionnaire. In the post-questionnaire we re-evaluate the
known technologies and note that only four participants learned about a previously
unknown technology. Two of them studied Cayenne and Spring respectively, which
poses no threat as they are not used in the experiment. Another two learned

190

14 Rolf-Helge Pfeiffer and Andrzej Wąsowski

about Wicket and Hibernate. Since they fall in two separate groups we do not
think that this poses a threat to our grouping.

If our subjects were JTrac experts, they would be able to apply the fixes
faster and the disparity would likely be smaller. However, the task of changing
unknown code is a common scenario, so the results are valuable.

The factor alternative for control group, with disabled CLS, is not a plain
Eclipse. TexMo does not implement all features of Eclipse editors. In particular
it does not implement all the keyboard shortcuts. To allow for comparability
of results we decided to use the restricted TexMo in the control group, so that
the same functionality is available to both groups (besides CLS). We do not
think that this has a significant impact on the results. TexMo does provide
syntax highlighting and redo/undo support. We believe that industrial strength
implementation of CLS mechanisms in would only improve the already promising
results of this experiment.

We established the cross-language relation model for JTrac manually. It relates
9 artifacts containing 51 keys, 87 references, via 87 relations with each other.
Our model does not contain false positives, which could have been the case, if it
was established automatically.

6 Related Work

Mens et al. [13] identify support for multi-language systems as a major chal-
lenge for software evolution. They postulate investigating techniques that are as
language independent as possible and providing real-world validation and case
studies on industrial software systems as valuable.

Chimera [3] provides hypertext functionality for heterogeneous Software
Development Environments (SDE). It allows for the definition of anchors that
can be interrelated via links into a hyperweb. Chimera supports navigation along
the links. The authors claim that developers in an industrial context appreciate
using such links while working. Our paper confirms this belief through a controlled
experiment, not provided in [3].

Others agree [11], that multi-language systems pose a real problem in mainte-
nance and evolution. The authors of [11] focus on the process of understanding
of such systems, trying to improve it with a graph-based query mechanism to
find and understand cross-language relations. Their tool is used in industry, but
no empirical data on its effectiveness is available. Our experiment results indicate
that these techniques are likely very effective, too.

SourceMiner [6] is an IDE providing advanced software visualizations such
as tree maps to aid program understanding. The paper does not present any
empirical data. It would be interesting to combine SourceMiner with TexMo to
measure if these visualizations improve development of MLSSs beyound the CLS
mechanisms studied here.

Since the experimental unit JTrac is based on Wicket. We could have chosen
QWickie (code.google.com/p/qwickie) as a factor alternative. QWickie is an Eclipse
plugin, implementing navigation and renaming support between inter-related

191

Cross-Language Support Mechanisms 15

HTML and Java files containing Wicket code. We favored TexMo, since we wanted
to allow for rerunning the experiment on other experimental units. TexMo is not
bound to a particular framework like Wicket.

Visualization mechanisms for relations across heterogeneous concrete syntaxes
are studied in the Human-Computer Interaction community. In [21,19] relations
across documents in different applications are visualized by links on user request.
Visual links are lines crossing application windows. Waldner et al. [21] study if
visualization of links between related information in several browser windows
is beneficial for understanding scattered information. They run an informal
user evaluation with seven participants concluding that Visual links prevent
the user from having to search information manually ... thereby limiting the
error probability induced by overseeing information and the effort for the user.
A similar but more formal experiment with 18 participants on visual links is
reported by Steinberger et al. [19]. They argue that visual search across different
views is a typical task of knowledge workers, which has to be supported by
tools. They demonstrate that context preserving visual links are beneficial when
searching for interrelated information. Our experiment confirms usefulness of
explicit visualization, even though TexMo uses a different visualization scheme.

Chen and coauthors [4] name modern MLSSs, such as Hibernate and Spring
“polyglot frameworks”. They implement rename refactorings between Java source
code and XML configuration files. Unfortunately, they do not provide any exper-
imental data confirming usefulness of such refactorings. Our experiment shows
that a substantial amount of developers use such refactorings when provided.

7 Concluding Remarks & Future Work

In this paper we report a controlled experiment evaluating cross-language support
mechanisms. The result is, that visualization, static checking, navigation, and
refactoring when offered across language boundaries are highly beneficial. CLS
mechanisms perceptibly improve effectiveness of developers working on MLSS.
Users of CLS are more effective than the control group with respect to both
error rate and productivity (working speed). Furthermore, we show that CLSs
are actually used by developers and that they improve understanding of complex,
unknown multi-language source code.

In future, we plan to replicate our experiment on larger samples to increase
confidence in the presented results. Furthermore, we plan to enhance TexMo
with more CLS mechanisms, in particular with more elaborate cross-language
refactorings, in order to be able to evaluate a broader range of support functions.
Ultimately, the present and future experiments will direct our efforts on developing
a new generation of development environments.

References

1. THE OPEN SOURCE DEVELOPER REPORT – 2010 Eclipse Community Survey.
eclipse.org/org/press-release/20100604_survey2010.php, seen: Mar. 2012

192

16 Rolf-Helge Pfeiffer and Andrzej Wąsowski

2. Zend Technologies Ltd.: Taking the Pulse of the Developer Community. static.zend.
com/topics/zend-developer-pulse-survey-report-0112-EN.pdf, seen: Feb. 2012

3. Anderson, K.M., Taylor, R.N., Whitehead, Jr., E.J.: Chimera: Hypermedia for
Heterogeneous Software Development Enviroments. ACM Trans. Inf. Syst. 18 (July
2000)

4. Chen, N., Johnson, R.: Toward Refactoring in a Polyglot World: Extending Au-
tomated Refactoring Support across Java and XML. In: Proceedings of the 2nd
Workshop on Refactoring Tools (2008)

5. Erlikh, L.: Leveraging Legacy System Dollars for E-Business. IT Professional 2
(May 2000)

6. de Figueiredo Carneiro, G., Mendonça, M.G., Magnavita, R.C.: An experimental
platform to characterize software comprehension activities supported by visualiza-
tion. In: ICSE Companion (2009)

7. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: Inter-Modelling: From Theory to
Practice. In: Proc. of the 13th International Conference on Model Driven Engineering
Languages and Systems: Part I (2010)

8. Hessellund, A.: Domain-Specific Multimodeling. Ph.D. thesis, IT University of
Copenhagen (2009)

9. Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers, Y., Bezivin, J.: Inter-
DSL Coordination Support by Combining Megamodeling and Model Weaving. In:
Proceedings of the 2010 ACM Symposium on Applied Computing (2010)

10. Juzgado, N.J., Moreno, A.M.: Basics of software engineering experimentation.
Kluwer (2001)

11. Kullbach, B., Winter, A., Dahm, P., Ebert, J.: Program Comprehension in Multi-
Language Systems. In: Proceedings of the Working Conference on Reverse Engi-
neering (WCRE’98) (1998)

12. Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of Application Software
Maintenance. Commun. ACM 21 (June 1978)

13. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri,
M.: Challenges in software evolution. In: Proceedings of the Eighth International
Workshop on Principles of Software Evolution. IWPSE ’05 (2005)

14. Paige, R.F., Drivalos, N., Kolovos, D.S., Fernandes, K.J., Power, C., Olsen, G.K.,
Zschaler, S.: Rigorous Identification and Encoding of Trace-Links in Model-Driven
Engineering. Softw. Syst. Model. 10 (October 2011)

15. Pfeiffer, R.H., Wasowski, A.: Taming the Confusion of Languages. In: Proceedings
of the 7th European Conference on Modelling Foundations and Applications (2011)

16. Pfeiffer, R.H., Wasowski, A.: TexMo: A Multi-Language Development Environment
(2012), under submission, www.itu.dk/~ropf/download/texmo.pdf

17. Salay, R., Mylopoulos, J., Easterbrook, S.: Using Macromodels to Manage Collec-
tions of Related Models. In: Proc. of the 21st International Conference on Advanced
Information Systems Engineering (2009)

18. Standish, T.A.: An Essay on Software Reuse. IEEE Trans. Software Eng. (1984)
19. Steinberger, M., Waldner, M., Streit, M., Lex, A., Schmalstieg, D.: Context-

Preserving Visual Links. IEEE Transactions on Visualization and Computer Graph-
ics (InfoVis ’11) 17(12) (2011)

20. Strein, D., Lincke, R., Lundberg, J., Löwe, W.: An Extensible Meta-Model for
Program Analysis. IEEE Trans. Softw. Eng. 33 (September 2007)

21. Waldner, M., Puff, W., Lex, A., Streit, M., Schmalstieg, D.: Visual Links Across
Applications. In: Proc. of Graphics Interface (2010)

193

194

13 The Design Space of
Multi-language Development

Environments – SoSyM’13
(Paper F)

195

The Design Space of Multi-language Development
Environments

Rolf-Helge Pfeiffer and Andrzej Wąsowski

IT University of Copenhagen, Process and System Models Group
{ropf,wasowski}@itu.dk

Abstract. Non-trivial software systems integrate many artifacts ex-
pressed in multiple modeling and programming languages. However, even
though these artifacts heavily depend on each other, existing develop-
ment environments do not sufficiently support handling relations between
artifacts in different languages.
By means of a literature survey, tool prototyping and experiments, we
study the design space of multi-language development environments
(MLDEs)—tools that consider cross-language relations as first artifacts.
We ask: what is the state of the art in the MLDE space? What are the
design choices and challenges faced by tool builders? To what extent are
MLDEs desired by users, and what aspects of MLDEs are particularly
helpful?
Our main conclusions are that (a) cross-language relations are ubiquitous
and troublesome in multi-language systems, (b) users highly appreciate
cross-language support mechanisms of MLDEs and (c) generic MLDEs
clearly advance the state of the art in tooling for language integration.
The technical artifacts resulting from this study include a feature model of
the MLDE design space, a data set of harvested cross-language relations
in a case study system (JTrac) and two MLDE prototypes, TexMo and
Coral, that implement two radically different choices in the design space.

1 Introduction

Contemporary software systems are implemented using multiple programming
and modeling languages. Today, even simple applications employ more than one
language. For instance, PHP developers tend to use a language or two besides
PHP itself [1], or around one third of developers using the Eclipse IDE work with
C/C++, JavaScript, and PHP besides Java and a fifth of them use Python besides
Java [2]. For large enterprise systems the number of languages can be measured in
dozens. The Apache Open For Business (OFBiz),1 an industrial quality open-source
ERP system, integrates artifacts in more than 30 languages, including general-
purpose languages (GPLs), several XML-based domain-specific languages (DSLs),
configuration files, properties files and build scripts. A competing ERP project,

1 http://ofbiz.org, see also [47] on use of DSLs in OFBiz.

196

2 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Fig. 1: Mograms in three languages describing JTrac’s login page shown in Coral
user interface

ADempiere,2, uses 19 languages. The eCommerce systems Magento3 and X-
Cart4 utilize more than 10 languages each. Systems constructed, utilizing the
model-driven development paradigm are likely to consist of even more languages:
languages for metamodeling (Ecore, KM3,5 etc.), modeling (DSLs, UML, CVL6),
validation (OCL, EVL,7 etc.), model-to-model transformation (QVT, ATL,8 etc.),
code generation (Acceleo,9 XPand,10 etc.) and scripting (MWE2,11 etc.).

There are many good reasons to combine multiple languages into a single
system. Domain-specific languages are developed in order to bring the imple-
mentation code closer to domain abstractions, to better exploit the knowledge
of subject matter experts, and to boost productivity [26]. Usually more than
one language is needed, since non-trivial systems span multiple problem domains
and multiple technical spaces [46]. Existing domain-specific and general purpose
languages are brought into the development in order to reuse existing frameworks,

2 http://www.adempiere.com
3 http://www.magentocommerce.com
4 http://www.x-cart.com
5 http://wiki.eclipse.org/KM3
6 http://www.variabilitymodeling.org
7 http://www.eclipse.org/epsilon/doc/evl/
8 http://eclipse.org/atl
9 http://eclipse.org/acceleo

10 http://wiki.eclipse.org/Xpand
11 http://help.eclipse.org/helios/topic/org.eclipse.xtext.doc/help/MWE2.html

197

The Design Space of Multi-language Development Environments 3

Multi-Language
Development Environment

Relation
Types

Language
Representation

Lexical Syntactic

Relation
Model Type

Explicit
Model

Tags

Search-
Based

Interfaces

Free

Fixed String
Transformation

per
Language

per
 Group Universal Relation Model

Inference

Program
Instrumentation

Artifact
Interpretation

Domain-
Specific

mandatory

alternative
(xor)

or

Legend

optional

CLS
Mechanisms

Visualization

Navigation

Static
Checking

Domain-
Specific

Refactoring

Fig. 2: Taxonomy for multi-language development environments

tools and technology stacks [18]. Moreover, modern systems are rarely standalone
and increasingly integrate with other systems, that requires use of interface
mechanisms and integration of their languages [65].

The heterogeneity of software systems is thus not accidental, but deliberate,
and we expect it to stay. In this paper, we call such heterogeneous composite
systems multi-language (software) systems. Obviously, as indicated above, the
vast majority of modern software systems are multi-language systems.

A typical multi-language system contains many diverse development artifacts
such as models, source code, properties files, etc. To simplify presentation, we
refer to all these as mograms [56] in this paper.

Mograms are often heavily interrelated. For example, OFBiz contains hundreds
of relations across mograms in different languages [49,72]. Arguably, relations
across language boundaries are fragile. They are broken easily during development,
as programming environments do not check them statically, nor do they visualize
them. We illustrate the problem with a simple scenario, adapted from [73].

Example. JTrac12 is an open-source multi-language web-based bug tracking
system. JTrac’s login page is implemented using mograms in three different
languages. The login page is described in HTML (Fig. 1, bottom). Message
strings are stored in a properties file (Fig. 1, top right). The logic is specified in a
Java class (top left).

The HTML code specifies the structure of the page and its contents: the
actual fields for login and password and their order. Since JTrac is built using the
Apache Wicket13 web-development framework, the HTML code contains some

12 http://www.jtrac.info/
13 http://wicket.apache.org/

198

4 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Wicket identifiers, which allow other mograms to insert strings or behavior at
indicated locations. These identifiers can be found in the LoginPage.html file,
highlighted in lines 4, 16, 17, 18, 22, 26 and 35 in the figure above. The properties
file defines the contents of messages on the login page. The Java code provides
logic for evaluating a login (authentication). Observe that both the Java code
and the properties file refer to the same Wicket identifiers that were used in the
HTML file.

Imagine that a developer renames the string literal login.loginName in line 21
in Fig. 1 to login.loginID. Obviously, the relation between the properties file (l. 173)
and the HTML file is now broken, leaving a dangling reference. In effect the
message asking for a login is not displayed anymore. Similarly, changing the string
literal loginName (l. 22 of the HTML file) to loginID would break the relation with
the loginName field of the Java class, affecting lines 82 and 91—Wicket requires
existence of accessor methods for its identifiers. This change has a serious effect:
JTrac would not function anymore, throwing a runtime exception instead.

Existing Integrated Development Environments (IDE) do not directly support
development of multi-language systems. They do not visualize cross-language rela-
tions, unlike in Fig. 1, where markers next to line numbers and green highlighting
indicate the relations. IDEs lack static checking for consistency of cross-language
relations. They cannot offer refactorings encompassing mograms in different
languages.

A special class of IDEs, the Multi-language Development Environments
(MLDEs), aim at addressing these shortcomings, by providing cross-language
support mechanisms (CLS mechanisms). In the past we have built several tools
in this space. With this paper we want to document our experience, by exploring
the requirements and the design space for MLDEs along three research questions:

1. What is the state of the art in development of MLDEs?
2. What are the design choices and challenges faced by developers (vendors) of

MLDEs?
3. To what extent are MLDEs desired by users, and what aspects of MLDEs

are particularly helpful?

The paper provides the following contributions:

1. To address the first question we perform a literature survey documenting
the main design choices for many MLDEs and related tools (Sect. 2). We
summarize the knowledge in a taxonomy of MLDEs, presented as a feature
model. The model contains both the defining requirements for MLDEs and
the variability in their implementation.

2. To address the second question we provide independent implementations of
two radically different instances of the above design space: the Coral and
TexMo MLDEs (Sect. 3). These two implementations show the challenges
faced by developers of different classes of MLDEs. They also materialize two,
so far unavailable, solutions with respect to the design space. We discuss our

199

The Design Space of Multi-language Development Environments 5

experience with both tools, which we gained by applying them to a multi-
language case study. We analyze the differences between them qualitatively.
We also use the developed tools to harvest a subset of actual cross-language
relations in a case study system (JTrac), reporting the density of relations,
which clearly cannot be effectively handled without tool support. In this way,
we learn storage and performance requirements on MLDEs, caused by size of
models and the relations (Sect. 4.1).

3. To address the third question, we approach the communities of users and
experts with two experiments addressing the need for, and usefulness of,
MLDEs. First, we run an experiment with TexMo, involving developers, who
evolve a case study system with and without help of the CLS mechanisms
(Sect. 4.2). Second, we survey the community of language developers to
evaluate the current practice in language integration (Sect. 4.3).

These technical developments are followed by a discussion of related work (Sect. 5)
and conclusion (Sect. 6).

The main conclusions from our case studies and experiments are that (a) cross-
language relations are ubiquitous and troublesome in multi-language systems,
(b) users highly appreciated cross-language support mechanisms of MLDEs and
(c) generic MLDEs like TexMo and Coral can clearly advance the state of the
art in tooling for language integration. An important aspect of both TexMo and
Coral are that they are generic—they do not depend on any particular languages
being related, and thus can be adapted to many frameworks and ecosystems,
benefiting not only JTrac, but any multi-language software system. We believe
that these conclusions are interesting both for tool builders and for researchers
in multi-modeling.

An earlier version of this work appeared in [74]. We also adapt some elements
from [73]. In this expanded version, the literature survey has been revised and
extended. The implementation of the Coral MLDE, the comparison of Coral with
TexMo, and two of the experiments (Sections 4.1 and 4.3) are entirely new.

2 Taxonomy of MLDEs

Programming and modeling languages can hardly be considered in isolation of the
system allowing their interpretation—a human mind or a computing system (an
interpreter, compiler, data visualizer, etc.). Cross-language relations do not exist
in isolation either. They are a manifestation of implicit rules in the underlying
interpreting system. We call this underlying set of rules a framework . Frameworks
could be object-oriented frameworks, but could also be other contexts, as indicated
above. Different frameworks give rise to different relations for the same languages.

In the example of Fig. 1, the application server interprets the Java, HTML,
and property files. The semantic rules underlying the web-application framework
Wicket establish the cross-language relations between the files.

The popular integrated development environments (IDEs), like Eclipse or
NetBeans, do not capture these implicit underlying relations and they implement
separate editors for every supported language, with separate, isolated syntax

200

6 Rolf-Helge Pfeiffer and Andrzej Wąsowski

representations. A typical IDE provides separate Java, HTML, and XML editors,
even though these editors are used to build systems mixing all these languages.
Representing languages separately allows for an easy and modular extension
of IDEs to support new programming languages. This easy extensibility has
most certainly contributed to the growth and widespread adoption of IDEs [38].
Most, IDE editors maintain an Abstract Syntax Tree (AST) in memory and
automatically synchronize it with modifications applied to concrete syntax. They
exploit the AST to facilitate source code navigation and refactorings, ranging
from basic renamings to elaborate code transformations such as method pull ups.

Implicit cross-language relations are a major problem in development of
multi-language systems, obstructing their modification and evolution [45,49,72].
Unlike IDEs, which just integrate development tools, a MLDE integrates different
languages by relating mograms across language boundaries. This way MLDEs
are able to address the challenge of modification and evolution of multi-language
systems.

We surveyed IDEs, programming editors14, and literature to understand the
kind of development support they provide. We find that four features, visu-
alization, navigation, static checking , and refactoring are implemented by all
IDEs and by some programming editors. Consequently, MLDEs should consider
delivering these very features across language boundaries as an essential re-
quirement. We call these four features cross-language support mechanisms (CLS
mechanisms) [73]:
1. Visualization of cross-language relations. Visualizations can range from ba-

sic markers, for instance in the style of Fig. 1, to elaborate visualization
mechanisms such as treemaps [28].

2. Navigation of cross-language relations. Navigation would allow the developer
to automatically open either LoginPage.html and jump to line 4 or mes-
sage.properties and jump to line 171, when editing LoginPage.java on line 52
(Fig. 1). All surveyed IDEs allow to navigate source code. Further, IDEs allow
for source code to documentation navigation, which is a a basic example of
cross-language navigation.

3. Static Checking of cross-language relations. As soon as a developer breaks a
relation, the error is indicated to show that the system will not run error free.
All surveyed IDEs provide static checking by visualizing errors and warnings.

4. Refactoring and fixing of broken cross-language relations. Different IDEs
implement a different amount of refactorings per language. Particularly,
rename refactorings seem to be widely supported in IDEs [64,93].

14 We examined the following IDEs/editors: Eclipse http://www.eclipse.org/, NetBeans
http://netbeans.org/, IntelliJ Idea http://www.jetbrains.com/idea/, MonoDevelop
http://monodevelop.com/, XCode https://developer.apple.com/xcode/, Ninja IDE
http://ninja-ide.org/, MacVim http://macvim.org/, Emacs http://aquamacs.org/,
TextWrangler http://www.barebones.com/products/textwrangler/, TextMate http:
//macromates.com/, Sublime Text 2 http://www.sublimetext.com/, Fraise https://
github.com/jfmoy/Fraise, Smultron http://sourceforge.net/projects/smultron/, Tincta
http://mr-fridge.de/software/tincta/index.php, jEdit http://jedit.org/, Kod http://
kodapp.com/, gedit http://projects.gnome.org/gedit/

201

The Design Space of Multi-language Development Environments 7

Language

Language
Representation

*

1

Language
Definition * *

*

*

defines

adheres to

represents

represents

fills

fills

Fig. 3: The concepts of language, language definition, language representation,
and their relations

To address the same requirements in an MLDE, in a cross-language fashion, one
needs to make three fundamental design decisions:

a) How to represent different programming languages?
b) How to relate them?
c) Using what kind of relations?

Systematizing the answers to these questions led us to a domain model
characterizing MLDEs. We present this model in Fig. 2 using the feature modeling
notation [20,54]. The following subsections detail and exemplify the fundamental
MLDEs characteristics of our taxonomy. References to the surveyed literature
are inlined.

2.1 Language Representation Types

Typically, multi-language systems contain many diverse files such as models,
source code, properties files, etc. written in various diverse languages.

Definition 1. Mograms are all files that are created, edited, or modified by
humans or machines with the purpose to develop, customize, or modify a software
system. Such files may contain source code, models, plain text, etc.

In this paper, we use a very broad definition of language.

Definition 2. A textual language is a set of sentences. Each sentence is a
collection of symbols, where symbols are usually alphanumerical characters.

Sentences can be fragmented. Fragments are just sequences of symbols in a
sentence.

We consider any mogram to be a sentence of a language. Note, we believe, that
this definition also covers languages with visual concrete syntax. Even if tools
present mograms in visual concrete syntax, these artifacts are always persisted
in a textual concrete syntax. Consequently, visual concrete syntaxes are only
visualizations, i.e., rendered representations, of textual languages.

202

8 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Definition 3. A language definition is a formal way to specify which sen-
tences belong to a language.

Usually, language definitions are given by formal grammars. Here, we consider
any computer program that parses mograms as a language definition. Such
programs implicitly specify the set of sentences that belong to a language.

In this paper we work with abstractions of languages as we want to work
with mograms in different languages generically. So, the central concept to tackle
the research questions stated above is abstraction of mograms and languages
to more abstract representations.

Definition 4. A language representation is a data structure specifying the
set of abstract concepts of languages and their relations.

A language representation is a means to represent sentences of a language.
We consider two main types of language representations: lexical and syntactic.
The former represents any mogram of any language as a stream of characters.
Whereas, syntactic language representation, relies on data structures like
trees and graphs to describe concepts and their relations. This work is strongly
influenced by the credo “Everything is a model” [15]. Often, metamodels are
used for specification of syntactic language representations. Abstract syntax trees
or metamodels capturing the concepts of a language are examples of syntactic
language representations. Syntactic representation can be shared per language,
per language group, or universally, as explained in the following.

The concepts language, language definition, and language representation are
not independent from each other. Each language has multiple language definitions
and multiple language representations. On the other hand, any language definition
defines exactly one language, while a language representation may represent many
languages. Figure 3 illustrates this ontological disambiguation and the relation of
the terms language, language definition, and language representation.

Lexical Representation.

Definition 5. A lexical language representation, represents any mogram of any
language as a stream of characters.

Most text editors, such as Emacs [81] (without language modes enabled), Vim,
and jEdit, implement lexical representations. Mograms are loaded into a buffer
in a language agnostic manner. Syntax highlighting is implemented solely based
on matching tokens. Similarly, Sufrin et al. [85] formally define commands for
text editing separately on top of characters and on top of words and lines. That
is, editing commands are formalized on physical properties of a mogram. Editors
with lexical language representations provide limited support for static checking,
code navigation, and refactoring. This is, due to lack of sufficient information
about the edited mogram.

203

The Design Space of Multi-language Development Environments 9

Syntactic Representation. Per Language.

Definition 6. A syntactic per language representation, represents a single lan-
guage, which is already defined by another mechanism such as a formal specifica-
tion, a parser, a metamodel, etc. using data structures like trees or graphs.

Typical modern IDEs, such as Eclipse or NetBeans, represent mograms in
any given language using a separate abstract syntax tree, or a similar richer
data structure capturing a mogram’s content. Unlike lexical representation, a
structured, typed representation allows for implementation of static checking
and navigation within and between mograms of a single language, but not across
languages. The advantage of using per language representation, compared to
per language group and universal representation, is that modern IDEs are easily
extensible to support new languages.

Using models to represent source code is getting more and more popular.15
This is facilitated by emergence of language workbenches such as EMFText [41],
Xtext [27], Spoofax [55], etc.16 All of these language workbenches rely on models
as per language representations.

Also frameworks for refactoring of legacy code exploit per language represen-
tations based on models. For example, the MoDisco [17] project, a model-driven
framework for software modernization and evolution, represents Java, JSP, and
XML source code as EMF models, where each language is represented by its own
distinct model. These models are high-level descriptions of an analyzed system
and are used for transformation into a new representation. Similarly, the reverse
engineering framework BlueAge [14] represents legacy COBOL source code as
models, so that model transformations can be employed to modernize legacy
COBOL systems. The same principle of abstracting a programming language into
an EMF model representation is implemented in JaMoPP [42]. Also, JavaML [13]
uses XML for a structural representation of Java source code. On the other hand,
SmartEMF [45] translates XML-based DSLs to EMF models and maps them to
a Prolog knowledge base. The EMF models realize a per language representation.
In our earlier work, we represent OFBiz’ DSLs and Java using EMF models to
handle cross-component and cross-language relations [72].

Syntactic Representation. Per Language Group.

Definition 7. A syntactic per language group representation, represents a group
of languages defined by multiple language definitions or represented by multiple
per language representations using data structures like trees or graphs.

A single language representation can represent multiple languages sharing
commonalities. Some languages are mixed or embedded into each other, e.g., SQL
embedded in C++. Some languages extend others, e.g., AspectJ extends Java.
15 Language workbenches use modeling technology to represent abstract syntax trees.

Therefore, we use the terms AST and model synonymously in this paper, even though
this narrows somewhat the traditional meaning of modeling.

16 See www.languageworkbenches.net for the annual language workbench competition.

204

10 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Furthermore, some languages are often used together, for instance JavaScript,
HTML, XML, and CSS in web development. Using a per language group repre-
sentation allows increased reuse in implementation of navigation, static checking,
and refactoring in MLDEs, because support for each language does not need to
be implemented separately.

For example, the IntelliJ IDEA supports code completion for SQL statements
embedded as strings in Java code. X-Develop [83,84] implements an extensible
model for language group representation to provide refactoring across object-
oriented and mark-up languages. AspectJ’s compiler generates an abstract syntax
tree for Java as well as for AspectJ aspects simultaneously. Similarly, the WebDSL
framework represents mograms in its collection of DSLs for web development
in a single syntax tree [34]. Meta, a language family definition language, allows
the grouping of languages by characteristics, e.g., object-oriented languages in
Meta(Oopl) [50]. The Prolog knowledge base in [45] can be considered as a
language group representation for OFBiz’ DSLs, used to check for cross-language
constraints. The Generic Intermediate Metamodel in [36] is also a per language
group representation for models with similar, but changing, metamodels.

Syntactic Representation. Universal.

Definition 8. A syntactic universal language representation, represents any
language defined by any language definition or represented by any language
representation using data structures like trees or graphs.

Universal representations use a single model to capture the structure of
mograms in any language. They can represent any version of any language, even
of languages not invented yet. Universal representations use simple, but generic,
concepts to represent key language concepts, such as blocks and identifiers or
objects and associations. A universal representation allows the implementation of
navigation, static checking, and refactoring only once for all languages. Research
on truly universal language representations is quite scarce as mostly language
group representations are suggestive of being universal representations. However,
when discussing schemes of tool integration, Meyers [62] mentions the possibility
and desirability of a canonical representation of mograms. The only IDE (MLDE)
implementing a universal language representation known to us is TexMo [74]
described in Sect. 3.3.

2.2 Relation Model Types

Software systems are implemented using multiple mograms. At the compilation
stage, and often only at runtime, a complete system is composed by relating all the
mograms together. Each mogram can refer to, or is referenced by, other mograms.
An MLDE should maintain information about these relations. A relation model
is a defining feature for MLDEs, that distinguishes them from plain IDEs. We
have identified four different techniques to express cross-language relations in
MLDEs:

205

The Design Space of Multi-language Development Environments 11

Listing 1.1: An excerpt of an explicit relation model in TexMo.
1 RelationModel {
2 Artifact "/ jtrac/src/main/java/info/ jtrac /wicket/LoginPage.html" {
3 keys 28603127�20aa�41f3�ad36�e6e37849bd10 ...;
4 }
5 ...
6 Artifact "/ jtrac/src/main/resources/messages.properties" {
7 references befa04ed�5d54�4183�9dcf�ecd4f378f28d ... ;
8 }
9

10 Key "28603127�20aa�41f3�ad36�e6e37849bd10" </jtrac/src/main/java/info/jtrac/wicket/
LoginPage.html> {

11 ["//@blocks.20/@paragraph/@wordBlocks.2/@content/@parts.3",
12 "//@blocks.20/@paragraph/@wordBlocks.2/@content/@parts.2",
13 "//@blocks.20/@paragraph/@wordBlocks.2/@content/@parts.4"]
14 |" login .loginName" from 905 to 919|
15 }
16
17 Reference "befa04ed�5d54�4183�9dcf�ecd4f378f28d" </jtrac/src/main/resources/messages.

properties> {
18 ["//@blocks.157/@paragraph/@wordBlocks.0/@content/@parts.1",
19 "//@blocks.157/@paragraph/@wordBlocks.0/@content/@parts.0",
20 "//@blocks.157/@paragraph/@wordBlocks.0/@content/@parts.2"]
21 | " login .loginName" from 5936 to 5950 |
22 }
23 ...
24 Relation 28603127�20aa�41f3�ad36�e6e37849bd10<�befa04ed�5d54�4183�9dcf�ecd4f378f28d[

FIXED]
25 ...
26 }

Explicit Model.

Definition 9. An explicit relation model is an artifact, which contains ex-
plicit links interrelating fragments of various mograms.

Explicit relation models seem to be the most natural relation representation
from a developer’s perspective. Alone the survey by Winkler and Pilgrim [92]
reports twelve different explicit relation models for capturing traceability infor-
mation. However, in the following we describe relation models in general, not
only trace models. Existing explicit relation models are most often tailored to a
particular domain but they share a high degree of commonality. They all express
relations by dedicated model elements in separate models linking structures or
fragments of mograms.

In different domains and communities, different terminology is used for ex-
plicit relation models. The most common names are megamodels [18,53], trace
models [22,35,52,59,68,70], or macromodels [77]. Despite their different names,
all these models link fragments of distributed mograms together.

Explicit relation models can be seen as graphs whose edges encode relations
and whose vertices encode interrelated fragments in mograms. Listing 1.1 illus-
trates an excerpt of a possible explicit relation model in a textual concrete syntax
(as used in TexMo). It shows a relation (line 24) between two fragments of two
mograms. Here, the respective fragments are the string literals login.loginName
on line 21 in HTML and 173 of the properties file in Fig. 1. The fragments

206

12 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Listing 1.2: An excerpt of a Java class with link tags
1 public class LoginPage {
2 private static final Logger logger = ...
3
4 public LoginPage() {
5 setVersioned(false) ;
6 add(new IndividualHeadPanel().setRenderBodyOnly(true));
7 add(new Label(@link(in(../LoginPage.html), target(wicket:title)),
8 getLocalizer () . getString ("login . title ", null))) ;
9 add(new LoginForm(@link(in(../LoginPage.html),target(wicket:form)))) ;

10 String jtracVersion = JtracApplication .get() . getJtrac () . getReleaseVersion () ;
11 add(new Label("version", jtracVersion)) ;
12 }
13 ...
14 }

are identified by uniform resource identifiers (URIs) (lines 11–13 and 18–20
respectively).

Tags. Alternatively, explicit relation models can be represented by tags, similar
to HTML link tags. For example, in HTML, link tags can be used to specify
relations between fragments of other HTML documents or entire mograms. Such
kind of tags are conceivable for non-hypertext systems too.

Definition 10. A tag-based relation model marks interrelated fragments di-
rectly within heterogeneous mograms. Relations are expressed by link tags, which
refer to anchor tags.

Listings 1.2 and 1.3 illustrate a relation model based on tags. The example
is based on Fig. 1. The mograms are modified to store anchor tags (@anchor)
in HTML sources and link tags (@link) in the Java sources. Link tags specify
relations to the corresponding opposite relation ends marked with anchor tags.

Hypertext systems, link fragments of mograms or complete mograms with each
other via tags. For example, in HTML, links are defined by tags [37]. Hypertext

Listing 1.3: An excerpt of HTML code with relation anchor tags
1 <html>
2 <head>
3 <title @anchor(wicket:title)></title>
4 <link rel="stylesheet" type="text/css" href="resources/jtrac . css"/>
5 <link rel="shortcut icon" type="image/x�icon" href="favicon.ico"/>
6 </head>
7 <body>
8 ...
9 <form @anchor(wicket:form) class="content">

10 ...
11 </form>
12 ...
13 </body>
14 </html>

207

The Design Space of Multi-language Development Environments 13

Listing 1.4: A Tengi interface corresponding to LoginPage.java
1 TENGI LoginLogic ENTITY "LoginPage.java" [
2 IN: { loginTitleHTML, loginFormHTML }; CONSTRAINT: loginTitleHTML & loginFormHTML;
3 OUT: { loginTitleJava, loginFormJava}; CONSTRAINT: loginTitleJava & loginFormJava;
4]{
5 LOCATOR loginTitleJava IN "LoginPage.java" OFFSET 198 LENGTH 5;
6 LOCATOR loginFormJava design IN "LoginPage.html" OFFSET 278 LENGTH 4;
7 }

Listing 1.5: A Tengi interface corresponding to LoginPage.html
1 TENGI LoginView ENTITY "LoginPage.html" [
2 IN: { loginTitleJava , loginFormJava}; CONSTRAINT: loginTitleJava & loginFormJava;
3 OUT: { loginTitleHTML, loginFormHTML}; CONSTRAINT: loginTitleHTML & loginFormHTML;
4]{
5 LOCATOR loginTitleHTML IN "LoginPage.html" OFFSET 27 LENGTH 17;
6 LOCATOR loginFormHTML design IN "LoginPage.html" OFFSET 244 LENGTH 16;
7 }

systems interpret tags within mograms as anchors, and links. After interpretation,
a relation is established. HyperPro [66,69] is a programming environment which
treats mograms in a software system as hypertext. That is, mograms can be
enriched with tags linking fragments across language boundaries.

DEFT [91], the Development Environment For Tutorials relies on tags to
specify how different mograms contribute to a document containing a mixture
of natural and computer languages constituting a tutorial. In this case, the
multi-language system is a document and not a running program.

Reuseware [43, 44], is a composition framework for invasive composition.
Components encoding various concerns are defined separately and composed
when a system is specified. Both works [43,44] consider language definitions as
components and apply Reuseware to extend languages with certain concepts,
such as modularization or aspect-orientation. Reuseware relies on slots, hooks,
and anchors, which are all tags defining variation points, i.e., referable fragments,
which can be filled or replaced with separately defined fragments.

Kolovos et al. [59] discuss two ways of representing trace links between models.
Trace links can either be embedded in the models themselves, e.g., by marking
relation ends via tags into the models, or they can be kept as external separate
models. The authors propose to use both representations simultaneously and
to merge models and trace links from explicit relation models into a tag-based
model on user request. The authors reuse UML stereotypes to tag elements in
UML models to establish trace links from merged model elements back to their
source models.

Interfaces. Relations between fragments of mograms can be explicitly specified
in interfaces. Interfaces can be seen as tagged fragments, as in tag-based relation
models, which are decoupled from the corresponding mograms.

208

14 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Listing 1.6: The Wicket library in Coral DSL.
1 java { StringReference is org.emftext.language. java . references . impl. StringReferenceImpl ;
2 NamedElementName is org.emftext.language.java.commons.NamedElementName; }
3 properties { Key is org.emftext.language. javaproperties . impl.KeyImpl; }
4 html { StringValParameter is html.impl.StringValParameterImpl; }
5
6 string transformation : Key in properties <��> StringValParameter in html with wickedIDsInHTML
7 is info display "A wicketID to property key relation .";
8
9 string transformation : Key in properties <��> StringReference in java with wickedIDsInJava

10 is info display "A wicketID to property key relation .";
11
12 fixed : StringReference :: value in java <��> StringValParameter::value in html with

wickedIDsInJavaConstructors
13 is info display "Wicket IDs in Java constructor call .";
14
15 string transformation : NamedElementName in java <��> StringValParameter in html with

getterMethods
16 is info display "Wicket IDs require a getter method in Java";
17
18 string transformation : NamedElementName in java <��> StringValParameter in html with

setterMethods
19 is info display "Wicket IDs require a setter method in Java";

Definition 11. Interface-based relation models explicitly define fragments
and their relations in interfaces. Interfaces are separate artifacts accompanying
interrelated mograms.

Listing 1.4 and Lst. 1.5 illustrates two interfaces for the interrelated Java and
HTML mograms of Fig. 1. The interfaces are expressed in the Tengi interface
DSL [71]. Tengi interfaces define relation ends in corresponding mograms (ENTITY)
as ports (LOCATOR). Out-ports (OUT) specify which relation ends are provided to
the environment and in-ports (IN) specify which relation ends are required from
the environment. Constraints (CONSTRAINT) specify how mograms are related.

De Alfaro and Henzinger [5] define different kinds of interfaces for component-
based software development. Informally, they define an interface model to specify
what a components expects from its environment. Based on this work, Hessellund
and Wąsowski [49] define interfaces for interrelated models and metamodels
to explicitly describe relations between models crossing language boundaries.
Compared to the interfaces in [49], OSGi interfaces [61] are more coarse grained.
They specify visibility of Java source code organized in packages and other
non-source code artifacts, all aggregated in bundles.

Despite their name, Emacs’ [81] tags files are actually interfaces. Tag files
store a set of tags pointing to mograms or fragments of them. For example, tags
point to methods and classes in source code or to chapters and paragraphs in
documentation. Tag files do not encode an explicit relation model as relations
are established by users navigating on top of tagged information.

Search-based. The three relation models presented so far, directly refer to
fragments in mograms. But relations can also be specified indirectly, based on

209

The Design Space of Multi-language Development Environments 15

search queries, which need to be evaluated before relations between concrete
fragments can be established. That is, search-based relation models usually do
not provide a persistent representation of relations.

Definition 12. Search-based relation models represent relations between
fragments of mograms via queries locating fragments and constraints between the
query results, describing the relations themselves. Only after query and constraint
evaluation, relation instances are established.

Listing 1.6 illustrates a search-based relation model. It is expressed in the
Coral DSL (see Sect. 3.4), which allows for specification of constraints for cross-
language relations. The relation model contains five cross-language relations
between Java, HTML, and properties files. The actual constraint is implemented
in Groovy. Consider for example the cross-language relation constraint on line 12.
It says that a string reference in Java and a parameter in HTML are in relation
as soon as their values are identical and the string reference in Java appears in a
constructor call.

In search-based relation models, relations between mograms are specified at
metalevel. Evaluation of the cross-language relation constraint (line 12) establishes
two relations between the fragments title (line 52 in Java and line 4 in HTML)
and form (line 53 in Java and line 16 in HTML) respectively.

Search-based relations are usually used to navigate in unknown data in open
systems. For example, in [90] relations across documents in different applications
are visualized on user request by searching the contents of all displayed documents.
In [23] consistency rules for models in different UML languages are evaluated
to find inconsistencies in interrelated models. Hessellund et al. [48] apply code
flow analysis to statically check interrelated XML and Java source code. Cross-
language relations are formalized into consistency constraints checking properties
of abstract syntax trees of parsed XML files and Java source code. PAMOMO [35],
utilizes triple graph patterns to define constraints, i.e., relations between models.
The tool allows to specify positive and negative patterns. Positive patterns define
two conditions, one for each fragment, under which a relation is present. Negative
patterns define single constraints for contents forbidden to occur in models. That
is, a set of positive patterns constitutes a search-based relation model.

Also GPLs are used to express search-based relation models. For example, in
SmartEMF [45] heterogeneous XML models are compiled to Prolog knowledge
bases on which cross-language relation constraints, written as Prolog rules, are
executed. The Prolog rules encoding constraints constitute a search-based relation
model.

Mechanisms for Identification of Interrelated Fragments. As the four examples
for the relation models demonstrate, different mechanisms can be utilized to
identify related fragments. We observe three different kinds of such mechanisms.

Physical Navigation In case mograms are in a lexical language representation,
fragments can be identified by positions in the character stream. For example,

210

16 Rolf-Helge Pfeiffer and Andrzej Wąsowski

the interface-based relation model in Lst. 1.4 and Lst. 1.5 specifies relation
ends by locating fragments via an offset and length in a stream of characters.

Path Navigation Mograms with syntactic language representations allow to
identify fragments by path expressions navigating the data structure of the
language representation. For example, the explicit relation model in Lst. 1.1
utilizes URIs to specify relation ends in mograms.

Query Evaluation Alternatively, mograms with syntactic language representa-
tions allow to identify fragments via queries. For example, the search-based
relation model in Lst. 1.6 specifies relations via queries and constraints.

The mechanism to identify interrelated fragments is influenced by the chosen
language representation.

2.3 Relation Types

There exist many different types of relations between mograms in literature.
However, different types of relations are caused by operations during software
development which require the presence of certain mograms and fragments or
they produce one fragment out of the other. We observe the following three
fundamental types of relations.

Definition 13. A relation between two fragments f and g in distinct mograms is
a fixed relation, if f = g. It is a string-transformation relation, if the two
fragments are similar, i.e., if there exists a transformation T , so that f = T (g)
and T is not the identity function. It is a free relation, if the two fragments are
diverse, i.e., if the relation is neither a fixed nor a string-transformation relation.

Note, this does not mean that all identical fragments of various mograms in
a multi-language software system are necessarily related. Fragments of mograms
are only related if an operation during software development, for example a
compiler, an interpreter, a code generator, etc. requires the presence of fragments
f and g in certain mograms or such an operation produces one fragment out of
the other.

Free Relations. Free relations rely solely on human interpretation. For example,
natural language text in documentation can be linked to source code blocks
highlighting that certain requirements are implemented or that a programmer
should read some documentation. Steinberger et al. describe a visualization
tool allowing to interrelate information across domains, even across concrete
syntaxes [82]. Their tool visualizes relations between diagrams and data.

Fixed Relations. Fixed relations occur frequently in practice. For example, the
relation between an HTML anchor declaration and its link is established by
equality of a tag’s argument names. Figure 1 shows an example of a fixed relation
across language boundaries (e.g, on lines 53 and 16).

Waldner et. al. discuss visualization across applications and documents [90].
Their tool visualizes relations between occurrences of a search term matched in
different documents.

211

The Design Space of Multi-language Development Environments 17

String-transformation Relationsappear often in multi-language software system.
For example, the Wicket framework requires identifiers in HTML files to have
accessor methods in a corresponding Java class. The Wicket identifier loginName
on line 22 in Fig. 1 requires a method with the name getLoginName and setLogin-
Name in the corresponding Java class, see lines 82 and 91 in Fig. 1. Depending on
the direction, a string-transformation relation either attaches or removes get/set
and capitalizes or decapitalizes loginName.

Domain-Specific Relations. Besides the three fundamental relation types dis-
cussed above, relations can be typed with semantics specific to a given domain
or project. Additionally, domain-specific relations can be free, fixed or string-
transformation relations. For example, a requirements document can require a
certain implementation mogram, expressing that a certain requirement is imple-
mented. At the same time, some Java code can require a properties file, meaning
that the code will only produce expected results as soon as certain properties are
in place. We consider any relation type hierarchy domain-specific, e.g., trace link
classification [70], or typed links as in DOORS.17

The first three relation types, free, fixed, and string-transformation relations
are untyped. They are more generic than domain-specific relations, since they
only rely on physical properties of relation ends. Fixed, string-transformation,
and domain-specific relations can be checked automatically, which allows to
implement tools supporting multi-language system development, such as error
visualization and error resolution.

2.4 Inference of Relation Models

Relations and relation models do not necessarily need to be created manually.
Instead, they can be inferred automatically or semi-automatically. The inference
may either exploit static properties of a system, i.e., its mograms, or its dynamic
behavior [33]. By querying the mograms in a code base together with knowledge
about language constructs causing relations between mograms, relation models
can be inferred out of mograms themselves. Both model matching [16, 33, 87,88]
in the model-driven development community and schema matching [75,80] in the
database community aims to automatically identify relations between various
mograms. In both cases are object-graphs, models and/or metamodels, matched
to each other and whenever a certain similarity measure for sub-graphs is fulfilled,
relations, mostly trace links, are automatically created. Additionally, schema
matching often combines both semantic and structural analysis of the schemas.

If relations are first present at runtime, often trace links, they can be inferred
out of programs processing the mograms. That is, relation models can also be
inferred by instrumentation of programs.

Few programming languages, in particular model transformation languages,
provide first class support for traceability. They automatically establish trace
17 www-01.ibm.com/software/awdtools/doors

212

18 Rolf-Helge Pfeiffer and Andrzej Wąsowski

visibility:Visibility
modifiers:List<Modifiers>
name:String

Method
Structure

<<instanceOf>>

<<instanceOf>><<instanceOf>>

<<instanceOf>>

public synchronized void methodName() {
 ...
}

public void methodName() {
 ...
}

Type Abstraction Word Abstraction

Java

C#
<<instanceOf>>

<<instanceOf>>
(functionName (...))

Clojure

name:String
Function

Fig. 4: Type abstraction and word abstraction, two orthogonal abstraction mech-
anisms.

links between model elements or objects which are in relation because of a trans-
formation directive. For example, Epsilon Transformation Language (ETL) [58]
automatically generates a trace model for each model transformation guarded by
a post condition. Atlas Transformation Language (ATL) [94] establishes a trace
models via a similar mechanism. Also the QVT [67] transformation language
has built-in support for traceability [9]. All three languages are rule-based trans-
formation languages, targeting model to model transformations. Model to text
transformations can handle traceability similarly. For example, the MOF Model
to Text transformation language [68], which automatically establishes trace links
between model elements and position of text blocks in generated files.

Operations interrelating mograms can be instrumented by other external pro-
grams, so that relations are automatically established without modification of the
operation. Jouault [52] automatically merges traceability rules into existing ATL
transformation rules before their execution populating a trace model. Grammel
et al. [32] infer trace links not by instrumentation of transformation code, but
by connecting a generic traceability framework to the framework executing the
transformation.

3 Implementing MLDEs

In this section we present TexMo (Sect. 3.3) and Coral (Sect. 3.4), two new
MLDEs following two radically different design strategies within our taxonomy.
But first, we introduce and discuss possible mechanisms of abstraction which are
applicable when constructing language representations (Sect. 3.1). Also we discuss
qualitatively the impact of design decisions to the created MLDE (Sect. 3.2).

3.1 Creation of Language Representations – Applying Abstraction

Mograms can be, depending on the tool processing them, instances of many
languages. For example, a Java 5 program is also a Java 6 program. Independently
of tools, mograms can also be represented in many ways. For example, a mogram

213

The Design Space of Multi-language Development Environments 19

containing a program in Java 5 can be represented as instance of the MoDisco
Java 5 model [17], as instance of the JaMoPP Java 5 model [42], or as instance
of our Java 5 model [72]. All three models are different representations of the
same language.

When creating language representations MLDE builders need abstract lan-
guage concepts into language representations. We observe two orthogonal abstrac-
tion mechanisms in modeling. First, type abstraction, also referred as ontological
metamodeling or logical metamodeling . Second, word abstraction, also referred as
linguistic metamodeling or physical metamodeling [10,11,89]. Type abstraction is
a unifying abstraction which describes domain concepts along with their proper-
ties, whereas word abstraction is a simplifying abstraction, describing structures
of sentences or structures of sequences of symbols. According to Colburn [19],
the fundamental difference of both abstraction types lies, in relying on content
or on form for abstraction. Any of the two abstractions can be applied at the
same time to create any type of language representation.

For example, consider Fig. 4, both Java and C# method declarations can
include modifiers, but the set of the actual modifiers is language specific. The
synchronized modifier in Java has no equivalent in C#. Under the type abstraction,
Java and C# method declarations can be described by a Method type and an
enumeration containing the modifiers. In contrast, under word abstraction, Java
and C# method declarations could be described by a common simple Structure
type that neglects the modifiers and universally represents blocks of information.
Obviously, in the type abstraction Java and C# methods are distinguishable by
their corresponding modifiers, whereas in the more generic word abstraction this
information is lost.

The type abstraction is preferable for per language and per language group
representations. Word abstraction is preferred for universal representations. Con-
sider the example in Fig. 4, using type abstraction, the concepts of two imperative
and one functional language are not easily unifiable, whereas using word ab-
straction, methods and functions can be abstracted into a single model element
such as Structure. The choice of abstraction influences the specificity of the
representation, affecting the tools. Word abstractions are more generic than type
abstractions. For instance, more specific cross-language refactorings are possible
when languages are described using type abstraction, while the refactorings in
the systems relying on word abstraction automatically apply to a wider class of
languages.

Abstraction of arbitrary languages into language representations is a powerful
tool as it allows to build generic tools integrating diverse languages with each
other.

3.2 Discussion of MLDE Design Choices

Every design decision reflected in the design space of MLDEs (Fig. 2) has a direct
impact on the functionality and possible features of the resulting MLDE. In the
following we discuss qualitatively the impact of particular decisions across two
dimensions: adaptability and feature richness. We categorize the impact in these

214

20 Rolf-Helge Pfeiffer and Andrzej Wąsowski

(a) The impact of design choices on adapt-
ability of a MLDEs. Relation types are not
included, as they have no impact on adapt-
ability.

(b) The impact of design decisions on rich-
ness of functionality of a MLDEs

Fig. 5: The impact of design choices of MLDEs along the relative measures
low (inner ring), medium (central ring), or high (outer ring) with respect to
adaptability and feature richness.

dimensions using the relative measures low, medium, or high. The purpose of
this discussion is to raise awareness towards the impact of design decision using
two dimensions as examples.

Adaptability is the ability of an MLDE to be used for development of different
heterogeneous multi-language systems. The adaptability of an MLDE depends
primarily on the choice of language representation. Since a universal language
representation incorporates any used language, it is the best choice when the
MLDE should be used for development of various heterogeneous software systems.
Consequently, adaptability of a universal language representation is high, see
Fig. 5a. Adaptability, decreases with per language group representation, and is
even lower for per language representation. In the latter cases any new languages
might need to be integrated into the language representations before they can be
used in the MLDE. This deficiency is negligible for systems addressing a very
stable domain, where the set of languages is known upfront, and it changes rarely.

Explicit relation models have low adaptability. They contain hard links
between mogram instances. Tags and interfaces have medium adaptability. They
still describe relations on mogram instances but the relation ends are not hard
wired. For tags and interfaces relation ends are made explicit, but the relation itself
is implicit until an interpreting system establishes them. Search-based relation
models demonstrate the highest adaptability since they interrelate mograms
at meta-level (language level). Search-based relation models can be reused for
development of multi-language system in similar domains.

215

The Design Space of Multi-language Development Environments 21

The choice of relation types supported by a MLDE does not have an impact
on its adaptability. Relation types just enrich the relation model with further
information. They do not directly refer to any mograms of developed systems.

Richness of Functionality describes the amount of possibly implementable MLDE
functionality that leverages the language representation, relation model, and
relation types. Such functionality may be elaborate visualizations of interrelated
code, versioning of cross-language relations, elaborate cross-language refactorings,
etc.

A per language representation has high richness of functionality. Per language
representations encode more specific information than the more generic per
language group and universal representations. The more specific information is
kept in a language representation, the more MLDE functionality is conceivable.

Search-based relation models have high richness of functionality compared to
medium richness of functionality for tag-based, interface, and explicit relation
models. The former are more generic, since they interrelate mograms at metalevel.
But relations established from search-based relation models still contain the same
amount of information as relations in the other three relation model types. The
more generic a relation model, the wider a MLDE can be applied to various
software projects.

Similarly, the more information is kept by relation types, the more functionality
is conceivable. Therefore, free relations have low richness of functionality, since
they interrelate mograms without indicating the reason for it. Fixed and string-
transformation relations have medium richness of functionality, since functionality
can leverage the physical properties of the relation ends. Obviously, domain-
specific relations have the highest richness of functionality. They keep arbitrary
information about the reason for their existence, thus, they allow for MLDEs
with rich domain-specific functionality.

3.3 TexMo

TexMo18 is an MLDE using a universal language representation, with an explicit
relation model, and supporting basic types for cross-language relations. As
mentioned in Sect. 2, a universal language representation allows to easily deploy
TexMo for development of arbitrary multi-language systems relying on textual
languages. With TexMo we opt for an explicit relation model since it seems
to be the most common design choice from a developers perspective. Alone
the survey by Winkler and Pilgrim [92] reports twelve different explicit relation
models for capturing traceability information. They are all tailored to a particular
solution. We believe that an explicit relation model allows for easy inspection
and debugging of encoded relations, since all relations are collected in a central
artifact.

TexMo’s relation model implements uni-directional relations using a key-
reference metaphor. For example, login.title on line 171 in Fig. 1 is a key in TexMo
18 http://www.itu.dk/~ropf/download/texmo.zip

216

22 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Fig. 6: Text Model – an example of universal language representation as used in
TexMo.

and login.title on line 52 is a reference in TexMo. TexMo relations are always
many-to-one relations between references and keys. We summarize how TexMo
supports the cross-language support (CLS) mechanisms presented in Sect. 2:

1. Visualization. TexMo highlights keys and references using gray boxes. Keys are
labeled with a key icon and references are labeled by a book icon. Inspecting
markers reveals detailed information, e.g., how many references in which files
refer to a key.

2. Navigation. Users can navigate from any reference to the referred key and
from a key to any of its references. Navigation actions are invoked through
via the context menu.

3. Static checking. Fixed relations in TexMo’s relation model are statically
checked. Broken relations, i.e., fixed relations with different string literals
as key and reference, are underlined red and labeled by a standard error
indicator in the active editor.

4. Refactoring. Broken relations can be fixed automatically using quick fixes.
TexMo’s quick fixes are key centric rename refactorings. Applying a quick fix
to a key renames all references to the content of the key. Contrary, applying
a quick fix to a reference renames this single reference to the content of the
corresponding key.

217

The Design Space of Multi-language Development Environments 23

Fig. 7: TexMo’s explicit relation model.

On top of these CLS mechanisms, TexMo provides syntax highlighting for 75
languages. GPLs like Java, C#, and Ruby, as well as DSLs like HTML, etc. are
supported. Standard editor mechanisms like undo/redo are implemented, too.

Universal Language Representation. Finding a universal language representation,
i.e., a representation for any textual language, is challenging since meaningful
concepts for relation ends have to be provided. Recall the example from Fig. 4,
we have to find a language representation unifying for example, methods for
object-oriented languages and functions for functional languages. Now think of
how to extend the language representation to include mark-up languages, so
that cross-language relations can point to important concepts such as method
names, function names, and tag names. Finding a representative abstraction for
universal language representation is not easy.

But all textual languages share a common coarse-grained structure. The text
model (Fig. 6), an abstract syntax tree19 of any textual language, describes blocks

19 The grammar rules for TexMo’s universal language representation can be found in
the file TexMo.cs in the TexMo sources.

218

24 Rolf-Helge Pfeiffer and Andrzej Wąsowski

containing paragraphs, which are separated by new lines and which contain blocks
of words. Words consist of characters and are separated by whitespace. The only
model elements containing characters are word-parts, separators, whitespaces,
and line-breaks. Blocks, paragraphs, and word blocks describe the structure of
a mogram. Separators are non-letters within a word, e.g., ’/’,’.’, etc., allowing
representation of typical programming language tokens as single words. Note,
that TexMo’s universal language representation is only one possible universal
language representation.

TexMo treats any mogram as an instance of a textual DSL conforming to
Fig. 6. For example, a snippet of Java code add(new Label("title" ..., line
52 in Fig. 1, looks like: Block[Paragraph[WordBlock[Word[WordPart(“add”), Seperator-
Part(content:“(”), WordPart(“new”)], WhiteSpace(“ ”)], WordBlock[Word[WordPart(“Label”),
SeperatorPart(content:“(̈’’), WordPart(“title”), SeperatorPart(content:“ ,̈”)], WhiteSpace(“
”)], ...]]] (using Spoofax [55] AST notation).

Obviously, TexMo’s universal language representation model relies on word
abstraction, it abstracts over form not over content. This allows for a quite
simple language representation model and for automatic generation of a single
parser, which parses any textual mogram into an instance of this model. Using
type abstraction for language representation would either require a much larger
language representation model, unifying language concepts of diverse languages
or it would require very sophisticated parsers, which are able to fill instances of
this model.

An Explicit Relation Model. TexMo uses an instance of the explicit relation
model presented in Fig. 7 to keep track of relations between mograms in different
languages. It allows for relations between fragments of mograms (ElementKey and
ElementReference), between mograms (Artifacts) or components (Components).

The relation model instance is kept as a textual artifact storing relations be-
tween mogram instances. Listing 1.1 illustrates the key-reference relation between
the string literal login.loginName on lines 21 and 173 in Fig. 1. Relation ends,
i.e., interrelated model elements (line 24 Lst. 1.1) are identified by URLs on the
language representation model (lines 11-13, 18-20 Lst. 1.1). TexMo automatically
updates the relation model instance and the element URLs whenever developers
modify interrelated mograms by tracking user input and by reflecting changes it
into the relation model. That is, TexMo supports evolution of multi-language
systems. So far, the relation model is created manually. TexMo provides context
menu actions to establish relations between keys and references. The inference
mechanism presented in Sect. 3.4 could be adapted to semi-automatic generation
of TexMo’s explicit relation model.

Relation Types. TexMo’s relation model supports fixed and free relations. Keys
and references of fixed relations contain the same string literal. Free relations
allow to connect arbitrary text blocks with each other, for example documentation
information to implementation code.

219

The Design Space of Multi-language Development Environments 25

Coral Framework

EMFText
Language
Definitions

Coral
Inference

Tool

Coral
Relation

Constraint
DSL

generates

Groovy
Constraint
Implem-
entation

Framework
Expert

implements

Developer

refines

generates

Coral
Checker

Tool

evaluates uses

relies on

uses

Fig. 8: Coral’s architecture and its user groups.

3.4 Coral

Coral20 is an MLDE relying on a per language representation and a search-based
relation model, supporting all four relation types. Coral is implemented as an
extension of the Eclipse IDE, transforming Eclipse into an MLDE. A search-based
relation model allows for high adaptability. Such an MLDE can be parameterized
with language representations and libraries containing constraints describing cross-
language relations. By parametrization the MLDE can be adapted to development
of many kinds of multi-language systems.

The challenge here is to create multiple per language representation models
in combination with a search-based relation model. The challenge lies in defining
each language in a way that it provides meaningful concepts on which constraints
can be expressed, and which are understandable by the constraint developers.
Second, a challenge lies in provision of constraints in a generic, reusable manner.

Modern IDEs can be extended to support multiple languages with plug-ins
that encode framework-specific knowledge. Such plug-ins exist for most popular
application development frameworks, for instance, AspectJ Development Tools,21
Spring Tool Suite,22 Hibernate Tools,23 QWickie an Eclipse plug-in for Wicket,24
etc. The main reason for provision of such tools is to support developers with
feedback on cross-language relations. Usually, these tools are not generically
parametrizable with language definitions and relation descriptions. One needs
to modify the source code of the tools to support new languages. Coral aims at
easing adding support for new languages.

20 http://www.itu.dk/~ropf/coral.html
21 http://www.eclipse.org/ajdt
22 http://www.springsource.org/sts
23 http://www.hibernate.org/subprojects/tools.html
24 http://code.google.com/p/qwickie

220

26 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Fig. 9: The CLS mechanisms visualization and static checking in Coral.

Coral supports both, uni-directional and bi-directional relations. In the fol-
lowing, we summarize how Coral realizes the CLS mechanisms presented in
Sect. 2:

1. Visualization. Coral highlights relation end points using customizable colored
boxes, see e.g., line 52 in Fig. 1 and line 171 in Fig. 1. Relation ends are labeled
with an icon indicating a relation type, see Fig. 1 left to line numbers. Mouse
pointer interaction with the markers allows to reveal detailed information,
e.g., the location of the opposite relation end in another file, see Fig. 9 bottom
left.

2. Navigation. Users can navigate from any relation end to the opposite ends
(available via the context menu).

3. Static checking. Once established, cross-language relations are statically
checked whenever a file is saved. The only unchecked relations are free re-
lations. They do not provide any information that can be used for static
checking. Broken relations, i.e., relations not adhering to a constraint specifi-
cation, are underlined red and labeled by a standard error indicator on the
mograms. See Fig. 9 top right.

4. Refactoring. Broken relations can be fixed automatically using refactorings.
Currently, Coral provides initial basic rename refactorings which rename
all opposite relation ends to the content of the relation end to which the
refactoring is applied. Coral uses Refactory [12,76], which supports generic
specifications of refactorings. This allows Coral to be easily extended with
new kinds of refactorings.

These CLS mechanisms are integrated into Eclipse’s standard editors. Syntax
highlighting, editing operations, and keyboard shortcuts are all provided by the
host editor and can be used as usual.

Per Language Representation with Models Coral relies on a syntactic per language
representation. Figure 10 illustrates excerpts of language representation models
for Java (Fig. 10a), HTML (Fig. 10b), and properties files (Fig. 10c). All three lan-
guage representation models rely on type abstraction. They contain abstractions
over a mogram’s contents. The language representations for parametrizing the

221

The Design Space of Multi-language Development Environments 27

(a) An excerpt of the language rep-
resentation model for Java code.

(b) An excerpt of the lan-
guage representation model
for HTML code.

(c) The language represen-
tation model for proper-
ties code.

Fig. 10: Per language representation models for three languages.

Coral framework are generated using EMFText25 [12], a concrete syntax mapper
for EMF models. Technically, the Coral framework can be parametrized with
other language representation as long as they provide a mapping between the
model representation and a mogram’s text. At this point, we provide language
representations for Java 5.0 (a slightly modified Java model from [42]), XML,
Hibernate XML, HTML, properties files26, and for plain text files. These language
representations can be downloaded along with the Coral tool. New languages can
be easily integrated into Coral. They are just standard Eclipse plug-ins which
need to be installed to Eclipse and registered to a Coral plug-in containing the
constraint libraries. Note, Coral employs a lazy approach when representing
mograms with models. That is, only when static checking and refactoring are
invoked, the model representations for the corresponding mograms are present in
memory.

Coral DSL. Coral uses a search-based relation model to keep track of relations
between multi-language mogram code. The Coral DSL is used to describe cross-
language relations as constraints, which interrelate mograms at language level
(metalevel). The constraints are kept in library files in Coral DSL.

Listing 1.6 illustrates the Coral DSL. The library contains five constraints,
which explicitly encode framework-specific knowledge. The constraints specify how
the Wicket web-application framework expects the three languages Java, HTML,
and properties files to be interrelated. Constraint libraries form the search-based
relation model. The listing starts with a declaration of languages constituting to
a relation. Additionally, for each language it is declared which language elements
25 http://emftext.org
26 A modified version of http://www.emftext.org/index.php/EMFText_Concrete_Syntax_

Zoo_Properties_Java

222

28 Rolf-Helge Pfeiffer and Andrzej Wąsowski

contribute in a relation (lines 1-4). Imported language elements can be found
in Fig. 10. For Java these are for example element names (NamedElementName)
and for HTML these are string-value parameters (StringValParameter). The Coral
DSL allows to name these language elements specifically using the is keyword,
which maps a name to a Java class representing the language element. Constraint
declarations follow these “import” declarations.

Constraints are always typed, such as, string transformation or fixed (lines
6, 9, 12, 15, 18). A constraint connects two language elements of two distinct
languages in a unidirectional (, not shown in the example) or bidirectional ($)
way. Constraints have a severity (info, warning, error) and a message block, whose
contents are displayed on established cross-language relations. The constraint
logic can be either implemented in an implementation block (not shown in the
example) or by provision of a method name referring to a Groovy [21] method
implementing the constraint, such as, wickedIDsInHTML (the Groovy code is
not illustrated here but on the project page27). Method stubs with a complete
signature are automatically generated so only the bodies need to be manually
implemented.

All constraint libraries, files with a .coral extension, reside in a Coral constraint
library plug-in. All libraries in this plug-in are automatically evaluated by the
Coral framework.

Using the Coral inference tool, see in Sect. 3.4, allows to automatically generate
a library with possible constraints.

Relation Types. Coral implements all four relations types of our taxonomy, i.e.,
fixed, string-transformation, free, and domain-specific relations. Relation ends
of fixed relations contain the same string literal and the relation ends of string-
transformation relations contain similar string literals. Figure 1 shows fixed and
string-transformation relations. For example, a fixed relation between line 52 in
LoginPage.java and line 16 LoginPage.html and a string-transformation relation
between line 82 in LoginPage.java and line 22 LoginPage.html. A broken relation
is shown in Fig. 9 line 52 top right. Free relations and domain-specific relations
are not shown in our example. They are useful as soon as Coral is deployed in a
development project and domain knowledge needs to be captured.

Coral behind the Scenes. Coral automatically establishes cross-language
relations when it is parametrized with libraries containing framework-specific
constraints and with language representations. Coral consists of three main
components, see Fig. 8. First, the Coral DSL allows for declarative specification
of constraint libraries. Second, the Coral checker tool, which statically checks
mograms of the developed system with respect to the constraint libraries. Third,
the Coral inference tool, automatically infers possible constraints from hetero-
geneous mograms into a library in Coral DSL. Presently, we provide libraries
of cross-language constraints for Hibernate and Wicket. More libraries will be
available online from the Coral website.
27 http://www.itu.dk/~ropf/coral.html#Constraints

223

The Design Space of Multi-language Development Environments 29

The Coral checker operates on constraints compiled into Groovy scripts.
Groovy is a dynamic programming language for the JVM. The generated Groovy
code serves two purposes. First, it collects all language elements, which potentially
participate in a relation. Second, it evaluates each constraint on all possible
combinations of language elements. The generated scripts are newly interpreted
whenever Coral’s static checking is called. That is, Coral DSL code is highly
dynamic, new constraints can be introduced into a library at any time.

The architectural division into Coral inference tool and Coral checker tool is
caused by the existence of two distinct user groups. The Coral checker tool targets
multi-language system developers. They are MLDE users utilizing the imple-
mented CLS mechanisms. Since the checker tool is only useful when parametrized
with constraint libraries, the Coral inference tool supports (framework) developers
when creating new constraint libraries. Providing constraint libraries, which ex-
plicitly encode cross-language relations, is a formalized way of writing framework
documentation.

Development of Cross-Language Relation Libraries. The development of
constraint libraries is supported in two ways. Framework developers, who know
what kind of constraints their frameworks impose on mograms can implement
these constraints directly into Coral libraries. They are supported by automatically
generated editors, which provide a model view of the sources. Clicking on mogram
code the editor reveals the corresponding language element. The language elements
types needed for constraint specifications are easily accessible.

Coral is a new tool. To support its users to create constraint libraries until
framework developers provide such libraries, Coral provides an inference tool. The
inference tool suggests possible cross-language constraints, which are encoded by
used frameworks.

Automatic Inference of Cross-language Relations. The inference process
is illustrated for a pair of files in Fig. 11. The inference process on each file pair
is divided into three atomic phases, see Fig. 11.

1. Text Intersection. The first phase searches for all longest common substrings
of two mograms in different languages. This phase can be described as text
intersection, where the result is a set of fragments that are shared by two
mograms. This phase is language agnostic. It considers input as a text and
relies on lexical language representation. Obviously, this interference only
produces valuable results, when mogram’s texts are available in unobfuscated
form. This first phase will not provide any useful results for running it, on
encrypted mograms.

2. Filtering. The set of longest common substrings is the input for the second
phase. Both mograms are loaded and each file is treated as a model (abstract
syntax graph). All longest common substrings which are enclosed entirely
by a language element’s attribute in both languages, are potential relation
ends. NamedElementName, StringParameter, or Key in Fig. 10 are examples for

224

30 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Pairs of
Files

Common
Strings

Model Elements
with Common

Contents

Project

File of
Lang.

A

File of
Lang.

B

Lorem ipsum dolor sit amet,
consectetur adipisicing elit,
sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua. Ut enim ad
minim veniam, quis nostrud
exercitation ullamco laboris
nisi ut aliquip ex ea
commodo consequat. Duis
aute irure dolor in

Lorem ipsum dolor sit amet,
consectetur adipisicing elit,
sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua. Ut enim ad
minim veniam, quis nostrud
exercitation ullamco laboris
nisi ut aliquip ex ea
commodo consequat. Duis
aute irure dolor in

Coral
Relation

Constraints

.coral*

Phase I
Text Intersection

Phase II
Filtering

Phase III
DSL Code Generation

Fig. 11: The four phases to inferring CLRC libraries.

language elements, which potentially enclose a longest common substring in
the name attribute. Obviously, this phase is not language agnostic anymore.

3. DSL Code Generation. The instances of possible cross-language relations
from the second phase are abstracted into constraints at metalevel. Consider
an example of abstracting fixed relations. We collect all pairs of model ele-
ments sharing the longest common substrings within the same attribute. The
concrete shared values are discarded, and an equality constraint relating the
attributes of the corresponding language elements is generated. The generated
library captures the information about the related language elements of the
two compared languages.

Even-though, the inference tool is illustrated for a pair of files, it can also operate
on single files and on entire projects. When applied to a single file, the inference
tool considers all other files in a multi-language system and runs a pair-wise
inference. When applied to an entire project, the inference tool runs pair-wise
comparisons for all possible combinations of files.

The resulting library usually needs to be refined manually, as it may contain
false positives. Consider for example a run of the inference tool on the two
files LoginPage.java and LoginPage.html in Fig. 1. The inferred library would
contain a constraint, which establishes a string-transformation relation between
the string literal label in <td class=“label”> on line 21 and the string literal Label
on line 52 (the class name of the constructor call). Of course the string literals
are similar and they appear in atomic language elements, i.e., they fulfill the
requirements of the heuristics of the inference tool, Coral’s inference tool will
not automatically sort out such false positives. In certain domains they might
represent valid cross-language relations. A library developer has to investigate
which constraints describe valid cross-language relations and what technology or
framework imposes a certain constraint on the source code.

In general, cross-language relations and their constraints cannot be inferred
completely automatically. Free relations may relate arbitrary blocks of infor-
mation. A generic inference tool should not be polluted with domain-specific
concepts, which get hard-wired into it. Free and domain-specific relations cannot

225

The Design Space of Multi-language Development Environments 31

be established automatically in a generic manner since there is no generic simi-
larity measure for them. That is, Coral allows for semi-automatic inference of
fixed and string-transformation relations.

3.5 Comparison of TexMo and Coral

In this section we compare TexMo and Coral. We rely on three comparison
criteria. First, the CLS mechanisms, visualization, navigation, static checking,
and refactoring of cross-language relations. Second, the fundamental design
choices of or taxonomy, language representation, relation model, relation types,
and inference of relation models. Third, the two dimensions, adaptability and
richness of functionality.

Both TexMo and Coral implement the same CLS mechanisms, see Tab. 1.
Visualization, navigation, and static checking have similar look and feel for the
users of the tools. Both MLDEs implement rename refactorings that maintain
consistency of relation endpoints. In addition, Coral supports implementation
of arbitrary cross-language refactorings through Refactory. For TexMo renam-
ing remains the only feasible refactoring, due to its language agnostic syntax
representation, the universal language representation based on word abstraction
neglecting types. Coral’s per language representation is based on type abstrac-
tion and many diverse refactorings rely on type information. Effectively, Coral
supports much richer functionality than TexMo.

Simultaneously, the choice of language representation influences the lower
adaptability of Coral, when compared to TexMo. The latter can be immediately
used for new multi-language systems. Coral has to be parametrized with new
language representations and new constraint libraries to fit a new setting. As
soon as a large set of language representations and constraint libraries is available
for Coral, this adaptability problem will become much less significant.

The choice of the relation model has an impact too. For example, false
positives in automatically inferred relations in an explicit relation model are
harder to handle than in a search-based relation model. An explicit relation
model interrelates mogram instances with each other, whereas a search-based
relation model interrelates mograms on language level. Therefore, when manually
adapting automatically inferred relations, in TexMo’s relation model, one has
to navigate and master many relation instances, which use cryptic identifiers
as relation ends. Whereas, in Coral’s constraint libraries one would manually
modify a comparatively small relation model since constraints are expressed at
metalevel.

4 Experimental Investigation

In this section we investigate the challenges and motivation for developing MLDEs.
First, we demonstrate that implicit relations are ubiquitous and dense, which
explains the need for MLDEs and imposes hard performance requirements on
them. Second, we approach the users of MLDEs in an attempt to estimate how

226

32 Rolf-Helge Pfeiffer and Andrzej Wąsowski

TexMo Coral

Visualization X X
Static Checking X X
Navigation X X
Refactoring Rename refactoring Any refactoring with

a Refactory rule

Language Representation Universal Per Language
Relation Model Explicit Search-Based
Relation Types Free, Fixed Fixed, String-

Transformation,
Free, Domain-Specific

Inference of Relation
Model

7 Artifact Interpreta-
tion

Adaptability high low/medium
Richness of Functionality low high
Table 1: Comparison of the two MLDE prototypes with respect to three criteria.

useful these tools are. Third, we survey the community of language implementation
experts, to find out, whether in experts eyes the MLDEs, and especially generically
parameterized MLDEs, would be an improvement over the current practice.

4.1 Cross-language Relations in a Typical Multi-language System

We shall now investigate how common cross-language relations are in a typical
multi-language system. We find out that these relations are so ubiqutous that
they actually pose a performance challenge for tools.

Method. We use Coral inference to automatically establish cross-language relations
in JTrac. We obtain two constraint libraries: one containing five constraints for
the web-development framework Wicket and another one with five constraints
for the persistence framework Hibernate. We address the following questions:

RQ1 How many cross-language relations exist in a representative multi-language
system?

RQ2 How long does it take Coral to establish cross-language relations?
RQ3 What is the distribution of cross-language relations in a representative multi-

language system?

We used just one iteration of inference and verification to develop the two
libraries in this experiment. A complete workspace including the Coral library
plug-in and the JTrac sources for reproduction of the experiment are available
online.28 We have run the inference on a 2.9GHz Intel i7 Mac Book with 8GB of
RAM, of which 4GB were assigned to the Java 6 virtual machine.
28 http://www.itu.dk/~ropf/coral/tech_experiment.zip

227

The Design Space of Multi-language Development Environments 33

Subject. We use JTrac (v2.1.0)29 as the study subject. JTrac’s code base contains
372 files: source code in Java (140 files), HTML (66), property files (30), XML
(16), JavaScript (8), and 29 other source code files such as shell scripts, etc.
Similar to many web-applications, JTrac implements the model-view-controller
(MVC) pattern. This is achieved using popular frameworks: Hibernate30 for
OR-Mapping and Wicket to couple views and controller code. The remaining 83
files are graphical images and a single jar file. Coral, and thus this evaluation,
does not consider these files since they do not contain information in a human
processable, textual syntax, i.e., they are not meant to be text processed by
an editor and thus no target for Coral. Clearly, JTrac is a representative of a
multi-language system.

Results. The results of measuring the number of cross-language relations estab-
lished by each constraint, and the time it takes to evaluate a constraint, are
summarized in Tab. 2. In JTrac, there are at least 4,941 cross-language relations
(question RQ1). The Coral tool automatically establishes all of these relations,
using just ten constraints distributed over two libraries. It takes in total 1.31
minutes to check all constraints on all possible combinations of files (RQ2). A
check of a single constraint takes on average 2.27 milliseconds.

Majority (4,741) of cross-language relations in JTrac, are described by only
three constraints in the Wicket Coral library. Interestingly, even though the
Hibernate OR-mapping is defined in a single file (an XML-based DSL), the
five constraints in the Hibernate Coral library still describe 165 relations. The
relations are not distributed homogeneously over JTrac’s code base. They form
sub-clusters of mograms in the code base. For example, the relations established
by the Hibernate Coral library tie together a resource folder containing the
Hibernate mapping model and the properties files used for localization with a
Java package containing all the Java classes, which form the application’s domain
model. The Wicket library contains constraints, which cluster together a resource
folder containing the properties files with multiple Java packages. Additionally,
the Wicket library heavily interrelates Java and HTML code located in a Java
package, which contains the application’s view code.

On average each file participates in more than 13 cross-language relations.
Nearly every fourth Java class has references to the Hibernate mapping model
and in total about one third of all the mograms (Java, HTML, and properties
files) participate in at least one cross-language relation. Clearly, with these many
relations being implicit, and unsupported by a development environment, broken
relation errors are hard to avoid. However, as the experiment shows, handling
this amount of relations is entirely feasible in a MLDE. Consequently, on average
it takes just below 30ms to check one mogram, open in an editor, for the relations
in which it participates. Standard UI research indicates that response time for
visualization of results of computation actions happening without display of any
progress indicators should never exceed two seconds [31,63]. So even if the density

29 http://sourceforge.net/projects/j-trac/files/jtrac/2.1.0
30 http://hibernate.org

228

34 Rolf-Helge Pfeiffer and Andrzej Wąsowski

of relations would be much higher in other projects, it is very likely that they
can be checked within acceptable time.

Hibernate Wicket Total

cross-lang. relations 165 4,776 4,941
of checks 700 33,900 34,600
Total time 0.04min 1.27min 1.31min
Average time 3.79ms 2.24ms 2.27ms
of relations per file 13.21
False Positives 0/165 0/578

Table 2: Cross-language relations established by Coral inference for JTrac.

We manually verified for false positives within the harvested cross-language
relations. For the Hibernate library we checked all 165 established relations
between the Hibernate mapping file and thirteen Java classes (complete sample).
For the Wicket library we checked 578 random relations out of the established
4,941. These relations involved three properties files, twenty HTML files, and
nineteen Java classes. The sample size exceeds ten percent of the all affected
sources. We have found no false positives.

Threats to Validity. The declared number of established cross-language relations
and the timing results are strict lower bounds, in the sense that JTrac might
contain more relations, and more constraints would take longer for evaluation. Our
constraint libraries contain basic constraints. Currently, we do not infer complex
constraints which for example respects Java’s inheritance mechanism. That is,
the established relations are not complete as long as the constraint libraries are
not complete. We examined only a subset of established cross-language relations
for the Wicket library, for our checks on possible false positive relations. We
believe that this subset is representative since it considers a random choice of
ten and more percent of the interrelated Java, HTML and properties files.

We provide measurements for checking each constraint. The given values refer
to the evaluation of a constraint. We omitted the times of loading the mograms
into models (data structures). The latter step is quite costly in comparison to
the quick checks. Therefore, an effective, incremental loading strategy will be
investigated in a next version of Coral.

4.2 CLS Mechanisms are Beneficial

We conducted an experiment evaluating CLS mechanisms as implemented by
TexMo [73,74], to demonstrate that these mechanisms are actually beneficial when
developing multi-language system and that they are appreciated by developers.

229

The Design Space of Multi-language Development Environments 35

We report the results of multi-language software system development supported
by the four fundamental CLS mechanisms from a user perspective. Here we focus
on reporting qualitative feedback. See [73] for full experiment results and analysis.

Method. We run a single-factor with two alternatives experiment. The factor
alternatives are TexMo with the four CLS mechanisms, visualization, navigation,
static checking, and refactoring disabled and the full-featured TexMo with CLS
mechanisms enabled. A treatment group uses the full-featured TexMo and a
control group, uses the restricted TexMo, which simulates multi-language system
development using a contemporary IDE. Essentially, the experiment evaluates
the four CLS mechanisms but not TexMo itself.

We asked the experiment subjects to perform three tasks representing typical
development and customizations tasks on the JTrac system. The first task asks
to locate and fix a broken cross-language relation between Java and HTML code.
The second task asks for renaming a key in a properties file, what breaks a
cross-language relation. The subjects should fix the broken relation. The third
task asks to replace a block of code, what breaks multiple cross-language relations.
The subjects should explain how to fix the introduced errors. After the task is
completed we ask the following question:

RQ4: Do you think TexMo could be beneficial in software development? Why? .

Subject. The experiment was conducted with 22 experimental subjects falling
into four major categories: software professionals along with PhD, MSc, and
undergraduate students at the IT University of Copenhagen. The participants are
between 18 and 48 years old, average age is around 29 years, median 28. Nineteen
participants are working as professional software engineers for at least half a year,
with maximum of 13 years (average work experience: around 3 years, median
3 years). Two PhD and one MSc student have no experience as professional
software engineers. The subjects are distributed into two groups, one per factor
alternative. Note, in a pre-experiment we had another five subjects, where three
were in the treatment group and two in the control group.

Results. Recall the overall research question from Sect. 1: “To what extent MLDEs
are desired by users, and what aspects of MLDEs are particularly helpful? ”. The
results of our experiment demonstrate that developers using CLS mechanisms
find and fix more errors in a shorter time than those in the control group, that
they perform development tasks on language boundaries more efficiently, and that
even unexperienced developers provided with CLS perform similarly or better
than experienced developers in developing multi-language systems.

In the following we provide answers of subjects in the treatment group to
question RQ4.

• TexMo’s concepts are really convincing. I would like to have a tool like this at work.
• Liked the references part and the checking. Usually, if you change the keys/references

you get errors at runtime [which is] kind of late in the process.

230

36 Rolf-Helge Pfeiffer and Andrzej Wąsowski

• It improves debugging time by keeping track of changes on source code written in
different programming languages that are strongly related. I do not know any tool
like this.

• I see it useful, especially when many people work on the same project, and, of course,
in case the projects gets big.

• I did development with Spring and a tool like TexMo would solve a lot of problems
while coding.

• In large applications it is difficult to perform renaming or refactoring tasks without
automated tracking of references. . . . If there would be such a reference mechanism
between JavaScript and C#, it would save us a lot of work.

• [TexMo] solves [a] common problem experienced when software project involves
multiple languages.

• Yes. I do not know enough about web-programming, but the key/ref relationships
between HTML and Java seem like a common pitfall to me.

• Yes. As code evolves refactoring may be needed. TexMo makes it easy to do so –
it’s helpful.

• Yes. I think when I use Visual Studio for ASP.Net applications, something similar
allows me to detect errors when I change a reference name, and there is a dependency
from an ASP to a C# file.

• Yes. Easy to fix your mistakes.
• Yes. Easy markup. A small challenge in understanding the structure of files because

of Eclipse.

The answers of the treatment group subjects to the research question indicate
that CLS mechanisms are beneficial and that such features are missing in existing
IDEs. Clearly, CLS mechanisms are appreciated by the developers. That is, from
a user’s perspective it is important to implement them in IDEs (MLDEs). Some
developers in the control group were negatively surprised that current IDEs do
not provide CLS mechanisms, considering them as something obviously necessary.

4.3 The Language Integration Survey

In the final part of our investigation, we conduct an online survey among language
developers, to verify our assumption, that a generically parametrizable MLDE
would be welcomed in language development community.

Method. Our survey contains 15 questions in a web-based questionnaire. The
survey takes about ten minutes to complete. We ask for example, for how many
languages a subject constructed, how the languages are typically used, and how
they are typically integrated with other languages. The complete questionnaire
bundled with anonymized results is available online31. Twelve of the questions
and the corresponding results are given in Tab. 3. The remaining questions were
cross checking and context questions not used directly in the analysis below. We
aim to answer the following research questions with our survey:

RQ5 What are the characteristics of constructed computer languages?
31 http://www.itu.dk/people/ropf/survey.zip

231

The Design Space of Multi-language Development Environments 37

RQ6 Do language developers integrate different languages with each other? If so,
how?

RQ7 Are the tools for language integration provided by language developers
generic?

Subjects. The survey targets language developers. We distributed the survey
widely in the online community through forums and mailing lists of Xtext,32,
EMFText,33 ANTLR,34 JavaCC,35 Parboiled,36 and Pyparsing.37

Xtext and EMFText are EMF-based language workbenches. ANTLR and
JavaCC are parser generators. Parboiled and Pyparsing are libraries for develop-
ment of parsers based on parsing expression grammars, another kind of grammar
specification. All tools and frameworks are used for specification and generation
of GPLs and DSLs.

Results. The survey was open for 25 days, until October 18, 2012. We have
received 25 responses. Unfortunately, due to the open nature of the survey, we
cannot estimate the response rate. Table 3 presents the most important results.

Regarding RQ5. An average subject has experience with creating more than fifteen
languages (Q I). The majority of subjects (88%, see Q II) mention that they are
constructing DSLs for diverse purposes ranging from data modeling, visualization
modeling over languages for constraint and check specifications to languages for
legacy code replacement and for requirements engineering. Still nearly two-fifth
mention that they construct GPLs (Q IV). All constructed languages are applied
in development of software systems. This follows from the answers on the usage
scenarios of the built languages. These results confirm our claim that current
software systems are multi-language systems.

Most subjects indicate that their languages are input to transformations,
to code generators, or to interpreters. Around a third admits that they also
construct languages which are used stand-alone, i.e., only for communication
among human stakeholders. Only around 17% of the respondents say that some
of the languages they construct do not have any relations to other languages. The
other responses to question QVI indicate that the majority of the constructed
languages participate in cross-language relations.

Regarding RQ6. Interestingly, over two-third (QVII) of language developers
provide tools along with their languages, which check for correct cross-language
relations, compared to less than a third, who do not. This high level of appreciation
towards cross-language integration was a surprise to us. Around half of the
language developers provide tools, which do static checking or compile-time
(QVIII) checking of cross-language relations. Half of the subjects provide IDE
32 www.eclipse.org/forums/index.php?t=thread&frm_id=27
34 antlr-interest@antlr.org
35 users@javacc.java.net
36 users.parboiled.org
37 pyparsing-users@lists.sourceforge.net

232

38 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Question Result

Average
Q I) How many languages have you
created?

14.92

Average of lower bound Average of upper bound
Q II) How many computer lan-
guages are used in the software
projects for which you developed
new languages?

3.04 8.48

Q III) How many frameworks are
used in the projects for which you
developed new languages?

2.04 9.45

DSL GPL
Q IV) What is the purpose of the
languages you developed?

88% 36%

Stand-alone Transformation/Generation Interpreted
Q V) What is the usage scenario of
the languages you developed?

32% 84% 52%

Referred Refer Referred and Refer No Relation
Q VI) How do the languages you
built interact with other languages
in corresponding projects?

28% 40% 44% 16%

Yes No
Q VII) Do you provide tools along
with any of your languages which
automatically check for correct in-
terrelations to other languages?

68% 32%

Development-Time Compilation Runtime
Q VIII) When do your tools check
for correct interrelations to other
languages?

56% 40% 28%

Yes No
Q IX) Are your tools, which check
the correctness of language interre-
lations, generic?

8% 60%

Q X) Do you provide IDE support
for the languages you develop?

52% 16%

Q XI) Do you incorporate the re-
sults of your tools which check for
correct interrelations to other lan-
guages into the IDE?

44% 8%

Q XII) Are your tools, which incor-
porate the results of checking for
correct language interrelations into
the IDE, generic?

8% 32%

Table 3: Language integration survey questions and quantitative results.

233

The Design Space of Multi-language Development Environments 39

support for their languages (Q X) and two-fifth of the language developers indicate
that the results of these checks are reflected in an IDE (QXI). Remarkably, a
fourth of the language developers neither provides any language integration nor
tools to enhance IDEs with language integration knowledge.

Regarding RQ7. Even-though many language developers provide tools which
check for correct language interrelation (over two-third, see Q VII), most of these
tools are not generic (Q IX and QXII). That is, whenever a new language is
added to the development process or as soon as the patterns of cross-language
relations change, the tools have to be modified manually. Note, a generically
parameterizable tool, which checks cross-language relations is even more valuable,
since around a third of the language developers provide no such tools at all.

The overall conclusion from this survey is that a) many computer languages are
created (Q I), b) languages are in fact interrelated and thus, mograms in various
languages are interrelated (QVI), c) the projects using the created languages
are multi-language system projects (Q II), which rely on multiple frameworks
(Q III). Furthermore, many language developers provide tools which check for
cross-language relations. But, most of the provided tools are not generic. That
is, whenever a new language is used in multi-language system development the
tools have to be adapted to support the changed development architecture. We
conclude that generic tools for language integration, such as Coral, are worth
to be used for language integration. Such tools only need to be parametrized
with language representations and possible constraints. All of the developers
indicating that they provide no tools for language integration or that their tools
are non-generic, could be efficiently supported by a generically parametrizable
MLDE, such as Coral.

Threats to Validity. The main threat to validity of the presented survey is the
relatively low number of responses. Informal cross-checking with developers in our
network however seems to indicate that these results are agreeable. To minimize
the risk of having to few responses we decided to let the survey open for responses.
We will update the data on the survey’s homepage to reduce this risk.

5 Related Work

5.1 Taxonomy

The IEEE Standard Glossary of Software Engineering Terminology [86], defines
traceability as the degree to which a relationship can be established between two
or more products of the development process. . . . In the context of model-driven
development this definition reduces to [3] . . . any relationship that exists between
artifacts involved in the software-engineering life cycle. . . . [Such as] Explicit links
or mappings that are generated as a result of transformations. . . , Links that are
computed based on existing information, Statistically inferred links. Our work
can be addressing certain kinds of traceability needs, but its objective is broader.

234

40 Rolf-Helge Pfeiffer and Andrzej Wąsowski

We are concerned with any kinds of relations that are useful to maintain during
development process, especially during programming—not just traceability.

The taxonomy supports tool builders in their architectural decisions when
heterogeneous mograms on different levels of abstraction should be interrelated.
It does not provide an answer for how to obtain complete or semantically correct
traceability links.

Winkler et al. [92] present a taxonomy for traceability models in model-driven
software development. Similarly to our study, their taxonomy is the result of
a survey of related tools and literature. Their taxonomy describes common
practices for implementing traceability models. Our perspective is broader and
more fundamental. We analyze how to represent related mograms. Traceability
links are just one special case of domain-specific relations. Furthermore, we define
different other relation model types on top of the explicit relation models listed
in [92]. We propose to use several types of language representation models, which
allow models to be related in a generic manner.

In [22,25] a traceability meta-language and a traceability scheme are presented.
These works abstract over specific traceability models to define a general solution
to relate mograms using trace links. In contrast, we do not consider generic
descriptions of explicit relation models. We are interested in describing abstractly
all possible ways of relating information across languages.

Aizenbud-Reshef et al. [3] survey literature and tools on model traceability.
Similar to our taxonomy the authors realize that there are different relation
model types. They abstract current relation models into two types. One for
tag-based relation models and another one for explicit relation models (to use our
terminology). Additionally, they describe the need for differently typed traceability
links. Compared to Aizenbud-Reshef study, our taxonomy is more formal and it
is more generic in that we focus on how to generally interrelate information in
heterogeneous mograms. We identify two more relation model types and, more
importantly, we describe the different types of language representations.

Aizenbud-Reshef et al. state the following challenge: “Tool artifacts may not
always have a unique identifier, especially if their granularity is smaller than
physically stored artifacts. Technologies such as link anchors and bookmarks can
be used to identify such artifacts, but more research is required to make such
anchors robust when artifacts are edited, cut, and pasted.” Both presented MLDEs,
TexMo and Coral support these evolution steps. The reduction of high-cost of
manual creation and maintenance of traceability links is addressed by Coral’s
constraint libraries, specified at the language level.

5.2 Multi-language Development Environments

Strein et al. [84] realize that IDEs do not allow for analysis and refactoring of multi-
language system and thus are not suitable for development of such. They present
X-Develop a MLDE implementing an extensible metamodel used for a syntactic
per language group representation. The key difference between X-Develop and
TexMo and Coral is the language representation. TexMo’s universal language
representation allows for its application in development of any multi-language

235

The Design Space of Multi-language Development Environments 41

system regardless of the used languages. Coral’s per language representation
allows for easy extensibility of the MLDE by parametrization with new language
representations and corresponding cross-language constraints. In X-Develop one
would need to extend the per language group representation and invasively extend
the tool to support new cross-language relations.

Similarly to X-Develop, the IntelliJ IDEA IDE implements some multi-
language development support mechanisms. It provides multi-language refactor-
ings across some exclusive languages, e.g., HTML and CSS.

Chimera [7] provides hypertext functionality for heterogeneous Software
Development Environments (SDE). Different programs like text editors, PDF
viewers and browsers form an SDE. These programs are viewers through which
developers work on different artifacts. Chimera allows for the definition of anchors
on views. Anchors can be interrelated via links into a hyperweb. TexMo is
similar in that models of mograms can be regarded as views where each model
element can serve as an anchor for a relation. Chimera is not dynamic. It does
not automatically evolve anchors while mograms are modified. Subsequent to
modifications, Chimera users need to manually reestablish anchors and adapt
the links to it. TexMo automatically evolves the relation model synchronously to
modifications applied to mograms. Only after deleting code blocks containing
keys, users need to manually update the dangling references. In Coral’s constraints
are just re-evaluated as soon as a mogram is modified. Thereby, relations do not
have to be manually reestablished.

Jarzabek [51] describes specification of multi-language development environ-
ments using interrelated attribute grammars as language definitions. That is,
resulting ASTs are syntactic per language representations in which cross-language
relations are specified via horizontal attributes with attached semantic expres-
sions. Semantic expressions can be considered as search-based relation model.
The advantage of expressing a search-based relation model relying on attribute
grammars is, that changes in interrelated fragments of heterogeneous mograms
are automatically updated whenever semantic expressions are reevaluated. Un-
fortunately, the described IDE is VAX-based seems to be discontinued.

Meyers [62] discusses integrating tools in multi-view development systems.
Language integration can be seen as a particular flavor of tool integration. Meyers
describes basic tool integration on file system level, where each tool keeps a
separate internal data representation. This corresponds to the per language repre-
sentation in our taxonomy. Meyers’ canonical representation for tool integration
corresponds to our universal language representation. Our work extends Meyers
work by identifying a per language group representation. Similarly, the prototype
ToolNet [6, 30] integrates mograms in different languages by integrating tools.
The authors of ToolNet propose a kind of message bus on which registered tools
exchange actions applied to various mograms to facilitate for example static
checking. Consequently, ToolNet uses a tool based per language representation.

This is similar to Coral’s integration strategy, where EMF models are used
for language representation and the EMFText-based parsers can be considered
as tool adapters. Interestingly, the work hints at visualization, navigation, static

236

42 Rolf-Helge Pfeiffer and Andrzej Wąsowski

checking, and error fixing as the key features for cross-application relations. That
supports our standpoint, that these are the four fundamental CLS mechanisms.

LiMonE [78] is an editor for literate programming integrating natural language
and Unified Modeling Language (UML) models via Object Constraint Language
(OCL) constraints. Similar to [45] it compiles the mograms in natural language
and UML and the OCL constraints into a Prolog knowledge base and into Prolog
rules. But since it relies on a custom language representation, it is harder to
incorporate new languages into the tool.

A detailed description of the TexMo can be found in an earlier version of
this paper [74]. Here we focused on the entire design space, thus we limited the
description to the most important design decisions, facilitating a comparison
with Coral.

5.3 Search-based relation model

In Sect. 3.4, we present the Coral DSL to define constraint libraries, which form
a search-based relation model. Since our per language models are based on
EMF, we could have used the Epsilon Comparison Language (ECL) [57], EMF-
IncQuery [40], or Prolog [45] alternatively. Indeed the Coral DSL looks similar
to the first two languages. However, since we wanted to capture the constraints
in framework-specific libraries we decided to implement a separate DSL, tailored
to our problem domain. Furthermore, we would like to experiment with different
technologies for constraint evaluation. Currently, Coral DSL code is transformed
into Groovy code. The generator and the evaluation code can be easily exchanged
for further experiments. With the other mentioned solutions we would have been
tied to a certain model query framework.

5.4 Inference

We observe three main trends in automatic inference of relations between mograms.
First, there is model matching [16, 33, 87, 88] in the model-driven development
community, where object-graphs, models and/or metamodels, are matched to
each other and whenever a certain similarity measure for sub-graphs is fulfilled,
relations, mostly trace links, are automatically created. Second, there is schema
matching [75,80] in the database community, that aims to automatically identify
relations between various schemas (metamodels). Schema matching is similar
to model-matching, although it often combines both semantic analysis of the
schemas and their structural information. Third, there is automatic traceability
link generation [4, 8, 24, 39,60,79] that tries to automatically identify trace links
between natural language documents and source code.

With its staged phases of text intersection and abstraction to constraints on
language level, our inference tool can be considered as a hybrid approach between
automatic traceability link generation and schema/metamodel matching. Note,
Coral’s inference tool can be applied directly to visual mograms, since they are
serialized into text files. In future work we will provide evaluation results for
automatic inference of constraints between textual and visual mograms.

237

The Design Space of Multi-language Development Environments 43

6 Conclusions and Future Work

We have presented an investigation of the MLDEs design space from three
different perspectives.

First, we have identified four core cross-language support mechanisms, visu-
alisation, navigation, static checking, and refactoring. We studied the existing
literature and presented a taxonomy of tools and research proposals that address
these mechanisms using different representations for languages, relation models,
and different types of relations.

Second, we took the tool builder role, and described our experience with con-
structing two new and different MLDEs prototypes, TexMo and Coral, following
two different design choices. Our experience with TexMo and Coral confirms
the high adaptability of tools based on universal language representations. This
representation however comes at a cost of limited richness of functionality.

Third, we have undertaken an empirical investigation of this space, showing
that cross-language relations are ubiquitous even in relatively small systems,
to the extent that one can hardly expect handling them correctly without tool
support. This hypothesis has been further confirmed in experiments with users,
who find using CLS mechanisms very helpful, and with language developers who
report that very frequently they design languages related to other languages, and
need to provide tooling to integrate them. In effect, this paper documents a strong
incentive to construct industrial strength generic parametrizable MLDEs. The
language development community is lacking a generic parametrizable MLDE.

Technical deliverables of this work include the two MLDE prototypes TexMo
and Coral, a number of language representation models and relation models,
along with a Coral DSL inference tool. All these tools are available online along
with documentation and material used in the experiments.

From a technical perspective, both presented MLDEs, TexMo and Coral, do
not only allow to interrelate mograms of different languages but also of mograms
in a single language. For example, in Fig. 1 the Java class LoginPage extends
the class WebPage. A Coral constraint interrelating the class name of the class
WebPage.java and the name used in the extends statement can be declared. We
do not focus on this fact in this paper, and in our current implementation, since
we consider intra-language relations to be appropriately handled by existing
tools. However, this ability can be used to enhance and customize static checks
and visualizations beyond those provided by current IDEs without extending
compilers and other tools.

We plan to extend our MLDEs with efficient language representations. For
example, in Sect. 4.1 we measure the time it takes to check constraints, but we
neglected the times for loading the mograms as models. The latter step is quite
costly in comparison to the quick checks. Therefore, an effective, incremental
loading strategy has to be researched and implemented in an upcoming version
of Coral. Along this lines we plan to conduct a comparative study on different
technical solutions for constraint encoding and constraint checking. As indicated
in related work there are other model querying frameworks and we would like

238

44 Rolf-Helge Pfeiffer and Andrzej Wąsowski

to compare them to our Groovy-based constraint checker. We would like to find
evidence for the most efficient technology.

Furthermore, we intend to extend Coral with language representations for
office documents, such as word-processor files or spreadsheet files, and with
language representations for visual languages, such as UML languages. This
would allow the deployment of one MLDE in all development phases of a software
system. We intend to provide an evaluation on the quality of Coral in combination
with its constraint inference tool in a setting with interrelated visual and textual
languages. Currently, we have preliminary insight from previous work [71], that
the tool can be applied to mograms in visual languages directly, as they are
persisted in textual form.

Acknowledgments We thank Uwe Aßmann and the Software Development
Group at TU Dresden for hosting the first author for an extensive period dur-
ing this work. Uwe Aßmann has suggested to survey the language developer
community as part of this study. We also thank Jendrik Johannes, Sven Karol,
Jan Reimann, Mirko Seifert, and Christian Wende, David Christiansen, Hannes
Mehnert, Jan Polowinski, and Hendrik Pfeiffer for discussions and help with
validating the experiments. We thank all those participating in our survey and
in the previous experiment on CLS mechanisms. Last but not least, we thank
the anonymous reviewers of the earlier version of this paper for their comments
and suggestions.

References

1. Zend Technologies Ltd.: Taking the Pulse of the Developer Community. static.zend.
com/topics/zend-developer-pulse-survey-report-0112-EN.pdf, seen: Feb. 2012

2. THE OPEN SOURCE DEVELOPER REPORT – 2010 Eclipse Community Survey.
eclipse.org/org/press-release/20100604_survey2010.php (2011), seen: Mar. 2012

3. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability.
IBM Systems Journal 45(3), 515 –526 (2006)

4. Alexander, I.: Towards automatic traceability in industrial practice. In: In Proc. of
the 1st Int. Workshop on Traceability. pp. 26–31 (2002)

5. Alfaro, L.d., Henzinger, T.A.: Interface Theories for Component-Based Design. In:
EMSOFT (2001)

6. Altheide, F., Dörr, H., Schürr, A.: Requirements to a framework for sustainable
integration of system development tools. In: Proc. of the 3rd European Systems
Engineering Conference (EuSEC. pp. 53–57 (2002)

7. Anderson, K.M., Taylor, R.N., Whitehead, Jr., E.J.: Chimera: Hypermedia for
Heterogeneous Software Development Enviroments. ACM Trans. Inf. Syst. 18 (July
2000)

8. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering
traceability links between code and documentation. IEEE Trans. Softw. Eng. 28(10),
970–983 (Oct 2002), http://dx.doi.org/10.1109/TSE.2002.1041053

9. Aranega, V., Etien, A., Dekeyser, J.L.: Using an alternative trace for QVT. Elec-
tronic Communications of the EASST 42 (2011)

239

The Design Space of Multi-language Development Environments 45

10. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Proceedings
of the 4th International Conference on The Unified Modeling Language, Modeling
Languages, Concepts, and Tools. pp. 19–33. «UML» ’01, Springer-
Verlag, London, UK, UK (2001), http://dl.acm.org/citation.cfm?id=647245.719475

11. Atkinson, C., Kühne, T.: Model-driven development: A metamodeling foundation.
IEEE Softw. 20(5), 36–41 (Sep 2003), http://dx.doi.org/10.1109/MS.2003.1231149

12. Aßmann, U., Bartho, A., Bürger, C., Cech, S., Demuth, B., Heidenreich, F., Jo-
hannes, J., Karol, S., Polowinski, J., Reimann, J., Schroeter, J., Seifert, M., Thiele,
M., Wende, C., Wilke, C.: Dropsbox: the dresden open software toolbox. Software
& Systems Modeling pp. 1–37 (2012), http://dx.doi.org/10.1007/s10270-012-0284-6

13. Badros, G.J.: JavaML: A Markup Language for Java Source Code. Comput. Netw.
33 (June 2000)

14. Barbier, F., Eveillard, S., Youbi, K., Guitton, O., Perrier, A., Cariou, E.: Model-
Driven Reverse Engineering of COBOL-Based Applications, pp. 283–299. Morgan
Kaufmann (2010), http://www.sciencedirect.com/science/article/B6MH5-508779H-7/
2/6b3199748873fdfa42e3a892ba1b4d19

15. Bézivin, J.: On the unification power of models. Software and System Modeling
4(2), 171–188 (2005)

16. Branco, M.C., Troya, J., Czarnecki, K., Küster, J.M., Völzer, H.: Matching business
process workflows across abstraction levels. In: France et al. [29], pp. 626–641

17. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: A Generic and Extensi-
ble Framework for Model Driven Reverse Engineering. In: Proc. of the IEEE/ACM
International Conference on Automated Software Engineering (2010)

18. Bézivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: Proceedings
of the OOPSLA/GPCE: Best Practices for Model-Driven Software Development
workshop, 19th Annual ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (2004)

19. Colburn, T.: Philosophy and Computer Science. Explorations in Philosophy, M.E.
Sharpe (2000), http://books.google.dk/books?id=luF4ElMxqg4C

20. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications (2000)

21. Dearle, F.: Groovy for Domain-Specific Languages. Packt Publishing, 1st edn.
(2010)

22. Drivalos, N., Kolovos, D.S., Paige, R.F., Fernandes, K.J.: Software language engineer-
ing. chap. Engineering a DSL for Software Traceability, pp. 151–167. Springer-Verlag,
Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-00434-6_10

23. Egyed, A.: Automatically detecting and tracking inconsistencies in software design
models. IEEE Trans. Software Eng. 37(2), 188–204 (2011)

24. Egyed, A., Grünbacher, P.: Automating requirements traceability: Beyond the record
& replay paradigm. In: Proceedings of the 17th IEEE international conference on
Automated software engineering. pp. 163–. ASE ’02, IEEE Computer Society,
Washington, DC, USA (2002), http://dl.acm.org/citation.cfm?id=786769.787006

25. Espinoza, A., Garbajosa, J.: The need for a unifying traceability scheme. In:
ECMDA-TW 2005. SINTEF ICT Norway, Nuremberg, Germany (November, 2005
2005), http://www.modelbased.net/drupal/node/19

26. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley (2004)

27. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applications companion. pp.

240

46 Rolf-Helge Pfeiffer and Andrzej Wąsowski

307–309. SPLASH ’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.
1145/1869542.1869625

28. de Figueiredo Carneiro, G., Mendonça, M.G., Magnavita, R.C.: An experimental
platform to characterize software comprehension activities supported by visualiza-
tion. In: ICSE Companion (2009)

29. France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.): Model Driven Engineering
Languages and Systems - 15th International Conference, MODELS 2012, Innsbruck,
Austria, September 30-October 5, 2012. Proceedings, Lecture Notes in Computer
Science, vol. 7590. Springer (2012)

30. Freude, R., Königs, A.: Tool Integration with Consistency Relations and their
Visualisation. In: ESEC/ FSE Workshop on Tool Integration in System Development
(2003)

31. Galletta, D.F., Henry, R.M., McCoy, S., Polak, P.: Web site delays: How tolerant
are users? J. AIS 5(1), 0– (2004)

32. Grammel, B., Kastenholz, S.: A generic traceability framework for facet-based
traceability data extraction in model-driven software development. In: Proceedings
of the 6th ECMFA Traceability Workshop. pp. 7–14. ECMFA-TW ’10, ACM, New
York, NY, USA (2010)

33. Grammel, B., Kastenholz, S., Voigt, K.: Model matching for trace link generation
in model-driven software development. In: France, R., Kazmeier, J., Breu, R.,
Atkinson, C. (eds.) Model Driven Engineering Languages and Systems, Lecture
Notes in Computer Science, vol. 7590, pp. 609–625. Springer Berlin Heidelberg
(2012), http://dx.doi.org/10.1007/978-3-642-33666-9_39

34. Groenewegen, D.M., Hemel, Z., Visser, E.: Separation of Concerns and Linguistic
Integration in WebDSL. IEEE Software 27(5) (2010)

35. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: Inter-Modelling: From Theory to
Practice. In: Proc. of the 13th International Conference on Model Driven Engineering
Languages and Systems: Part I (2010)

36. Gómez, P., Sánchez, M., Florez, H., Villalobos, J.: Co-creation of models and
metamodels for enterprise architecture projects. XM 2012 - Extreme Modeling
Workshop (2012)

37. Halasz, F.G., Schwartz, M.D.: The Dexter Hypertext Reference Model. Commun.
ACM 37(2) (1994)

38. Hammond, J.S., Schwaber, C., D’Silva, D.: IDE Usage Trends (02 2008), http:
//www.forrester.com/Research/Document/Excerpt/0,7211,43181,00.html

39. Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements tracing via infor-
mation retrieval. In: Proceedings of the 11th IEEE International Conference on
Requirements Engineering. pp. 138–. RE ’03, IEEE Computer Society, Washington,
DC, USA (2003), http://dl.acm.org/citation.cfm?id=942807.943920

40. Hegedüs, Á., Horváth, Á., Ráth, I., Varró, D.: Query-driven soft interconnection of
emf models. In: France et al. [29], pp. 134–150

41. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and
refinement of textual syntax for models. In: Proceedings of the 5th European
Conference on Model Driven Architecture - Foundations and Applications. pp.
114–129. ECMDA-FA ’09, Springer-Verlag, Berlin, Heidelberg (2009), http://dx.doi.
org/10.1007/978-3-642-02674-4_9

42. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap between
Modelling and Java. In: Proc. of the 2nd International Conference on Software
Language Engineering (SLE 2009), Revised Selected Papers (2010)

43. Heidenreich, F., Johannes, J., Zschaler, S.: Aspect Orientation for Your Language
of Choice. In: Workshop on Aspect-Oriented Modeling (AOM at MoDELS) (2007)

241

The Design Space of Multi-language Development Environments 47

44. Henriksson, J., Johannes, J., Zschaler, S., Aßmann, U.: Reuseware - Adding Modu-
larity to Your Language of Choice. Journal of Object Technology 6(9) (2007)

45. Hessellund, A.: SmartEMF: Guidance in Modeling Tools. In: Companion to the
22nd ACM SIGPLAN Conference on Object-Oriented Programming Systems and
Applications Companion (2007)

46. Hessellund, A.: Domain-Specific Multimodeling. Ph.D. thesis, IT University of
Copenhagen (2009)

47. Hessellund, A., Czarnecki, K., Wąsowski, A.: Guided development with multiple
domain-specific languages. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MoDELS. Lecture Notes in Computer Science, vol. 4735, pp. 46–60. Springer
(2007)

48. Hessellund, A., Sestoft, P.: Flow analysis of code customizations. In: Proceedings
of the 22nd European conference on Object-Oriented Programming. pp. 285–308.
ECOOP ’08, Springer-Verlag, Berlin, Heidelberg (2008), http://dx.doi.org/10.1007/
978-3-540-70592-5_13

49. Hessellund, A., Wąsowski, A.: Interfaces and Metainterfaces for Models and Meta-
models. In: Proceedings of the 11th International Conference on Model Driven
Engineering Languages and Systems (2008)

50. Holst, W.: Meta: A Universal Meta-Language for Augmenting and Unifying Lan-
guage Families, Featuring Meta(oopl) for Object-Oriented Programming Languages.
In: Companion to the 20th annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (2005)

51. Jarzabek, S.: Specifying and generating multilanguage software development envi-
ronments. Softw. Eng. J. 5(2), 125–137 (Apr 1990), http://dx.doi.org/10.1049/sej.
1990.0015

52. Jouault, F.: Loosely Coupled Traceability for ATL. In: In Proceedings of the Euro-
pean Conference on Model Driven Architecture (ECMDA) workshop on traceability.
pp. 29–37 (2005)

53. Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers, Y., Bezivin, J.: Inter-
DSL Coordination Support by Combining Megamodeling and Model Weaving. In:
Proceedings of the 2010 ACM Symposium on Applied Computing (2010)

54. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Tech. rep., Carnegie-Mellon University
Software Engineering Institute (1990)

55. Kats, L.C.L., Visser, E.: The Spoofax Language Workbench: Rules for Declarative
Specification of Languages and IDEs. In: Cook, W.R., Clarke, S., Rinard, M.C.
(eds.) OOPSLA. pp. 444–463. ACM (2010), http://dblp.uni-trier.de/db/conf/oopsla/
oopsla2010.html#KatsV10

56. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels (2008)

57. Kolovos, D.S.: Establishing correspondences between models with the epsilon
comparison language. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA.
Lecture Notes in Computer Science, vol. 5562, pp. 146–157. Springer (2009)

58. Kolovos, D.S., Paige, R.F., Polack, F.A.: The Epsilon Transformation Language. In:
Proceedings of the 1st international conference on Theory and Practice of Model
Transformations. pp. 46–60. ICMT ’08, Springer-Verlag, Berlin, Heidelberg (2008)

59. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On-demand merging of traceability links
with models. (2006)

60. Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability
links using latent semantic indexing. In: Proceedings of the 25th International

242

48 Rolf-Helge Pfeiffer and Andrzej Wąsowski

Conference on Software Engineering. pp. 125–135. ICSE ’03, IEEE Computer Society,
Washington, DC, USA (2003), http://dl.acm.org/citation.cfm?id=776816.776832

61. McAffer, J., VanderLei, P., Archer, S.: OSGi and Equinox: Creating Highly Modular
Java Systems. Addison-Wesley Professional, 1st edn. (2010)

62. Meyers, S.: Difficulties in Integrating Multiview Development Systems. IEEE Softw.
8 (1991)

63. Miller, R.B.: Response time in man-computer conversational transactions. In:
Proceedings of the December 9-11, 1968, fall joint computer conference, part
I. pp. 267–277. AFIPS ’68 (Fall, part I), ACM, New York, NY, USA (1968),
http://doi.acm.org/10.1145/1476589.1476628

64. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it. In:
Proc. of the 31st International Conference on Software Engineering (2009)

65. Northrop, L., Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T.,
Kazman, R., Klein, M., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-Large-Scale
Systems - The Software Challenge of the Future. Tech. rep., Software Engineering
Institute, Carnegie Mellon (June 2006), http://www.sei.cmu.edu/uls/downloads.html

66. Nørmark, K., Østerbye, K.: Representing programs as hypertext. In: Lund Institute
of Technology, Lund University. pp. 11–24 (1994)

67. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Specification, V1.1. http://www.omg.org/spec/QVT/1.1/ (Jan 2011)

68. Oldevik, J., Neple, T.: Traceability in model to text transformations. In: Proceedings
of ECMDA Traceability Workshop ECMDA Traceability Workshop (ECMDA-TW)
(2006)

69. Østerbye, K., Nørmark, K.: An interaction engine for rich hypertexts. In: Ritchie,
I., Guimarães, N. (eds.) ECHT. pp. 167–176. ACM (1994)

70. Paige, R.F., Drivalos, N., Kolovos, D.S., Fernandes, K.J., Power, C., Olsen, G.K.,
Zschaler, S.: Rigorous Identification and Encoding of Trace-Links in Model-Driven
Engineering. Softw. Syst. Model. 10 (October 2011)

71. Pfeiffer, R.H., Wasowski, A.: Tengi interfaces for tracing between heterogeneous
components. In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE. Lecture Notes
in Computer Science, vol. 7680, pp. 431–447. Springer (2011)

72. Pfeiffer, R.H., Wąsowski, A.: Taming the Confusion of Languages. In: Proceedings
of the 7th European Conference on Modelling Foundations and Applications. pp.
312–328. ECMFA’11, Springer-Verlag, Berlin, Heidelberg (2011), http://dl.acm.org/
citation.cfm?id=2023522.2023552

73. Pfeiffer, R.H., Wąsowski, A.: Cross-language support mechanisms significantly aid
software development. In: France et al. [29], pp. 168–184

74. Pfeiffer, R.H., Wąsowski, A.: Texmo: a multi-language development environment.
In: Proceedings of the 8th European conference on Modelling Foundations and
Applications. pp. 178–193. ECMFA’12, Springer-Verlag, Berlin, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-31491-9_15

75. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema match-
ing. The VLDB Journal 10(4), 334–350 (Dec 2001), http://dx.doi.org/10.1007/
s007780100057

76. Reimann, J., Seifert, M., Aßmann, U.: Role-Based Generic Model Refactoring. In:
Proceedings of the 13th International Conference on Model Driven Engineering
Languages and Systems: Part II (2010)

77. Salay, R., Mylopoulos, J., Easterbrook, S.: Using Macromodels to Manage Collec-
tions of Related Models. In: Proc. of the 21st International Conference on Advanced
Information Systems Engineering (2009)

243

The Design Space of Multi-language Development Environments 49

78. Schulze, G., Chimiak-Opoka, J., Arlow, J.: An approach for synchronizing uml
models and narrative text in literate modeling. In: France et al. [29], pp. 595–608

79. Sherba, S.A., Anderson, K.M., Faisal, M.: A framework for mapping traceability
relationships. In: 2 nd International Workshop on Traceability in Emerging Forms
of Software Engineering at 18th IEEE International Conference on Automated
Software Engineering. pp. 32–39 (2003)

80. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches 3730,
146–171 (2005)

81. Stallman, R.M.: Emacs the extensible, customizable self-documenting display editor.
In: Proceedings of the ACM SIGPLAN SIGOA symposium on Text manipulation.
pp. 147–156. ACM, New York, NY, USA (1981), http://doi.acm.org/10.1145/800209.
806466

82. Steinberger, M., Waldner, M., Streit, M., Lex, A., Schmalstieg, D.: Context-
Preserving Visual Links. IEEE Transactions on Visualization and Computer Graph-
ics (InfoVis ’11) 17(12) (2011)

83. Strein, D., Kratz, H., Lowe, W.: Cross-Language Program Analysis and Refactoring.
In: Proc. of the 6th IEEE International Workshop on Source Code Analysis and
Manipulation (2006)

84. Strein, D., Lincke, R., Lundberg, J., Löwe, W.: An Extensible Meta-Model for
Program Analysis. IEEE Trans. Softw. Eng. 33 (September 2007)

85. Sufrin, B.: Formal specification of a display-oriented text editor. Science of Computer
Programming 1(3), 157 – 202 (1982), http://www.sciencedirect.com/science/article/
pii/0167642382900144

86. The Institute of Electrical and Eletronics Engineers: Ieee standard glossary of
software engineering terminology. IEEE Standard (September 1990)

87. Voigt, K.: Semi-automatic matching of heterogeneous model-based specifications.
In: Engels, G., Luckey, M., Pretschner, A., Reussner, R. (eds.) Software Engineering
(Workshops). LNI, vol. 160, pp. 537–542. GI (2010)

88. Voigt, K., Ivanov, P., Rummler, A.: Matchbox: combined meta-model matching for
semi-automatic mapping generation. In: Proceedings of the 2010 ACM Symposium
on Applied Computing. pp. 2281–2288. SAC ’10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1774088.1774563

89. Wagner, S., Deissenboeck, F.: Abstractness, Specificity, and Complexity in Software
Design. In: Proc. of the 2nd International Workshop on the Role of Abstraction in
Software Engineering (2008)

90. Waldner, M., Puff, W., Lex, A., Streit, M., Schmalstieg, D.: Visual Links Across
Applications. In: Proc. of Graphics Interface (2010)

91. Wilke, C., Bartho, A., Schroeter, J., Karol, S., Aßmann, U.: Elucidative development
for model-based documentation. In: Furia, C., Nanz, S. (eds.) Objects, Models,
Components, Patterns, Lecture Notes in Computer Science, vol. 7304, pp. 320–335.
Springer Berlin / Heidelberg (2012)

92. Winkler, S., Pilgrim, J.: A survey of traceability in requirements engineering
and model-driven development. Softw. Syst. Model. 9(4), 529–565 (Sep 2010),
http://dx.doi.org/10.1007/s10270-009-0145-0

93. Xing, Z., Stroulia, E.: Refactoring practice: How it is and how it should be supported
- an Eclipse case study. In: Proc. of the 22nd IEEE International Conference on
Software Maintenance (2006)

94. Yie, A., Wagelaar, D.: Advanced traceability for ATL. In: 1st International Workshop
on Model Transformation with ATL. pp. 78–87 (2009)

244

14 Language-independent
Traceability with Lässig –

Under Submission (Paper G)

245

Language-Independent Traceability with Lässig

Rolf-Helge Pfei�er1, Jan Reimann2, and Andrzej Wπsowski1

1 IT University of Copenhagen, Denmark
{ropf,wasowski}@itu.dk

2 Technische Universität Dresden, Germany
jan.reimann@tu-dresden.de

Abstract. Typical programming languages, including model transforma-
tion languages, do not support traceability. Because of that, applications
requiring inter-object traceability implement traceability support repeat-
edly for di�erent domains. In this paper we introduce a solution for
generic traceability which enables the generation of trace models for all
programming languages compiling to Virtual Machine (VM) bytecode by
leveraging automatically generated observer aspects.
We implement our solution in a tool called Lässig adding traceability
support to all programming languages compiling to the Java Virtual
Machine (JVM). We evaluate and discuss general feasibility, correctness,
and the performance overhead of our solution by applying it to three
model-to-model transformations implemented in Xtend, Java, and Groovy.
Our generic traceability solution is capable of automatically establishing
complete sets of correct trace links for transformation programs in various
languages and at a minimum cost. Lässig is available as an open-source
project for integration into modeling frameworks.

1 Introduction

Model-driven Software Development (MDSD) relies on use of models to design,
construct and maintain software systems. Many models in this process are
related by various semantic relations. For example, in generative setups, model
transformations automatically convert models into other models.

Strict quality management processes usually require that a project can identify
and retrieve these relations. This ability is known as traceability and the stored
relations are known as trace links which chronologically interrelate uniquely
identifiable entities along a set of chained operations [21].

Co-evolution of related artifacts is a major challenge, especially for systems
containing related models expressed in multiple languages [23]. If a model is
modified, other related models need to be adapted accordingly. It is hard for
developers to identify the a�ected artifacts. Trace links keep this information.
Thus, automatic tracing of object relations via corresponding transformations,
would allow to dramatically improve tool support for co-evolution of multi-
language software systems.

Strictly speaking, traceability concerns not only the links between models,
but also relations between other artifacts, so for example between models and

246

2 Rolf-Helge Pfei�er, Jan Reimann, and Andrzej Wπsowski

isMany = false
name = address
type = String
owner = School

:Attribute

isMany : boolean
Attribute

type : String
Column

Class
1owner

Type
1 type

name : String
NamedElement

Table
1 table

name : String
NamedElement

transformation rule
attribute2Column

name = address
type = NVARCHAR
table = School

:Column

trace link

Class Metamodel Database Metamodel

Class Model Database Model

Fig. 1. Transformation of a class model attribute into a database model column

1 def Column create c: factory.createColumn() attribute2Column(Attribute a) {
2 if(!a.isMany) {
3 c.name = a.name
4 c.table = a.owner.class2Table()
5 c.type = a.type.name.toDbType()
6 }
7 }

Listing 1. A model transformation rule in Xtend transforming Attributes to Columns
and causing a trace link between such instances

code, or between documentation and code. In this paper, we follow a simplifying
assumption of Bézivin that everything is a model [3]—we discuss traceability
between models, but our techniques are applicable to all the artifacts that can
be represented by models, which includes code and documentation. Indeed, we
believe that all kinds of development artifacts in contemporary software systems
can be represented as models [13,22].

Consider an example transformation converting a class model into a database
model; more precisely, the transformation of a class attribute to a database table
column. Figure 1 shows the input and output languages of this transformation,
while Listing 1 presents the transformation rule expressed in the popular Xtend
language.3 Unfortunately, Xtend is one of the languages, which does not maintain
any explicit link between the input instance of Column and the output instance of
Attribute.

A similar problem appears for transformations implemented in Java. List-
ing 2 shows an excerpt of org.eclipse.emf.ecore.impl.EClassImpl class from
the Eclipse Modeling Framework [28] (EMF), which locates EObjects based on
fragments of unified resource identifiers. Here, no trace link is kept between the
input instance of a String and the output instance of an EObject.

3
http://xtend-lang.org/

247

Language-Independent Traceability with Lässig 3

1 public EObject eObjectForURIFragmentSegment(String uriFragmentSegment) {
2 EObject result = eAllStructuralFeaturesData == null || eOperations != null && !eOperations.

isEmpty() ? null : getEStructuralFeature(uriFragmentSegment);
3 return result != null ? result : super.eObjectForURIFragmentSegment(uriFragmentSegment);
4 }

Listing 2. A Java method causing a trace link between String and EObject instances

Trace links are usually not maintained automatically by transformation pro-
grams, since traceability is not a first class concern in most languages used for
implementing transformations. Only few languages, such as the Atlas Transfor-
mation Language [6] (ATL) or the Epsilon Transformation Language [16] (ETL),
automatically establish traces between the source objects and target objects of
a transformation. So far, adding traceability to a transformation language has
required deep insight into design and advanced language implementation skills. It
could not be done orthogonally, in a language independent manner, and clearly
not by language users (as opposed to language designers and implementers). To-
day, if traceability support is required either the system needs to be implemented
in a programming language with built-in traceability support or tracing has to
be added to relevant methods or transformation rules. The former is not suitable
for legacy systems, as it would require reimplementation. The latter misses the
opportunity to reuse application independent functionality, and pollutes business
logics with it.

Our goal is to overcome the aforementioned problem by provision of generic
traceability support for any (transformation) program implemented in a program-
ming language compiling to bytecode of a virtual machine. The contributions of
this paper are:

– Design of a generic aspect-based model-driven solution to support traceability
for all programming languages compiling to bytecode of a virtual machine.

– Lässig, a prototypical open-source implementation4 of our solution for pro-
gramming languages compiling to JVM bytecode.

– Identification of heuristics, which determine program structures creating
trace links and discussion of extensions and alternative heuristics.

– Evaluation of our generic traceability solution by applying Lässig to three
model transformations, each implemented in Xtend, Java, and Groovy.

The evaluation shows that the automatically established trace links are correct
and complete. The obtained set of traces is similar to the one registered for ETL
transformations, using dedicated traceability support. Finally, the additional
runtime overhead for using the generic traceability approach is rather moderate.
We hope that Lässig is of interest for tool builders and vendors allowing lightweight
integration of traceability into modeling frameworks.

We proceed as follows. Section 2 presents the architecture of our generic
traceability solution. We discuss the prototype implementation (Sect. 3), evaluate
4

http://svn-st.inf.tu-dresden.de/websvn/wsvn/refactory/trunk/Lässig/

248

4 Rolf-Helge Pfei�er, Jan Reimann, and Andrzej Wπsowski

Aspect Generator

Objects Before
Execution

Metamodel
A

Objects After
Execution

Transformation
Program

(Java, Groovy,
Xtend, ...)

VM

runs on

observes

Trace
Model

generatesgenerates

Metamodel
B Legend

Configuration step,
run once
Information flow

Traceability
Aspect

Program relation
Model
Objects
Programs

Fig. 2. Architecture for generic traceability

the idea (Sect. 4) and discuss the evaluation results (Sect. 5). Finally, we survey
the related work (Sect. 6) and conclude with a sketch of future work (Sect. 7).

2 The Solution

2.1 Architecture

Previous work [11,32] argues to support traceability generically in existing trans-
formation languages or frameworks by abstraction over particular transformation
languages. With the help of such an abstraction trace links can be established
generically for di�erent transformation languages. We generalize this claim and ar-
gue that traceability can be generically added to arbitrary programming languages
by relying on a common representation. Bytecode executed on VMs can serve
as such a common denominator. Adding traceability to the common representa-
tion, uniformly integrates this orthogonal language feature to all programming
languages compiling to the same VM.

Figure 2 illustrates the architecture of our solution for generic traceability.
We use two metamodels to parametrize a code generator creating traceability
code. The metamodels contain all classes for whose instances trace links should
be established. In a model transformation scenario, as demonstrated in Sect. 4,
the metamodels are readily available as model transformations are specified on
top of them.

We use aspect weaving to instrument the transformation code with the
traceability code. Recall the transformation rule in Listing 1. The rule creates
a trace link between an object a of type Attribute (the rule’s argument) and
an object c of type Column (return value) as properties of a are, with some
modifications, assigned to properties of c. The result of the assigned property
values is depicted in Fig. 1. The concern of traceability could be introduced

249

Language-Independent Traceability with Lässig 5

to the rule by inserting tracemodel.addLink(a,c) in line 6 (assuming a global
tracemodel). To generate a complete trace model similar directives need to be
added to every transformation rule.

Obviously, the concern of traceability is a cross-cutting concern [14,15,29] as
it requires similar directives to be introduced in every transformation rule in
any language in any domain that should support traceability. Such cross-cutting
concerns are e�ectively handled by aspect-oriented programming (AOP) [17],
encapsulating recurring code in aspects. The aspects can be woven anywhere the
concern is required. This is the reason why our solution has an aspect-oriented
architecture. A traceability aspect is generated once, for each pairwise combination
of metamodels. The traceability code within the aspects is conceptually similar
to the previous example. The aspects, the e�ect of combined metaclasses, and
the aspect generation is detailed in Sect. 2.2.

Whenever programs transforming model elements of the types specified in
the parametrization phase are executed on the VM, the traceability aspect is
woven into the transformation’s bytecode. There, trace links between transformed
objects are automatically established and maintained in a trace model. We can
say, that a traceability aspect observes the VM for transformations interrelating
objects. Obviously, the created trace models maintain trace links created by
programs of arbitrary domains implemented in arbitrary languages. Note, that
the obtained trace model can be partial or incomplete, due to undecidability of
program termination.

2.2 Heuristics for Traceability Aspects

In the realm of object-orientation, all development artifacts and their contents
are objects, since these entities are uniquely identifiable entities. In model-driven
software development (MDSD) all artifacts of the development life cycle can be
considered models and their contents are model elements [4,18,24], all of which
are objects again. In this paper, we use the terms object and model element

synonymously.
Our solution provides traceability at object level. Consequently, all parametriz-

ing abstract metaclasses in the metamodels are not considered as traceable.
Therefore, no traceability code is generated for them.

Our solution relies on the following two heuristics to automatically establish
trace links when observing transformations.

(i) Related objects are an argument and a return value of a transformation (a
method). Additionally, both objects are not null after method execution.

(ii) Related objects are both arguments of a transformation (a method) and at
least one of them is modified during method execution.

The rationale for (i) is, that a method parametrized with an object and
returning a non-null object likely reads the argument to return the corresponding
result. Thereby, both objects are in relation and should be linked. The rationale
for (ii) is similar. A method parametrized with two arguments, where after

250

6 Rolf-Helge Pfei�er, Jan Reimann, and Andrzej Wπsowski

1 private pointcut findMethodA(Column t1, Attribute t2) : !within(Tracer) && execution(* *(..,
Column, .., Attribute, ..)) && args(t1,t2,..);

2 private pointcut findMethodB(Attribute t1, Column t2) : !within(Tracer) && execution(* *(..,
Attribute, .., Column, ..)) && args(t1,t2,..);

3 private pointcut findMethodC(Attribute t1) : !within(Tracer) && execution(Column *(..,
Attribute, ..)) && args(t1,..);

4 private pointcut findMethodD(Column t1) : !within(Tracer) && execution(Attribute *(.. ,
Column, ..)) && args(t1,..);

Listing 3. Generated traceability aspect for transformations between class models and
relational schema

execution at least one argument is modified, likely reads one object to modify
the other one. The simplicity of the two heuristics is their main power—it means
that establishing trace links between objects can be done based on types of
these objects and a simple check of input and output parameters of a method. It
remains completely independent of the complexity of the transformation itself.

These heuristics are the basis for aspect generation. Consequently, they are
implemented in the traceability aspect generator (Fig. 2). A generated aspect
contains four pointcuts for each combination of metaclasses in the parametrization
metamodels. Recall the example of transforming a class’ attributes to table
columns (see Listing 1). Listing 3 illustrates the generated pointcut definitions for
Attribute and Column types. The pointcuts findMethodC and findMethodD (lines 3
and 4), implement heuristic (i) where objects of types Attribute or Column are
returned or are an argument respectively. Pointcuts findMethodA and findMethodB
(lines 1 and 2), implement heuristic (ii) where objects of Attribute and Column
are both arguments. The aspect contains also advise blocks, which are not shown
here, due to their size.5 The advise blocks implement the checks of heuristics (i)
and (ii) for non-null objects or for modified objects. Whenever the conditions of
a heuristic hold in an executed transformation, a trace link is established.

Our experiments (Sect. 4) show that the above described two heuristics are
quite powerful and generate correct trace models for our evaluation cases. In the
design process we have considered two alternative heuristics, which we eventually
discarded. We discuss them briefly below.

Transformation Rules with Multiple Arguments of the Same Type. As described,
our solution establishes links for transformation rules with two arguments or with
an argument and a return value which are combinations of two types (metaclasses).
An extended heuristic would allow to establish trace links for transformation
rules with either many arguments of the same type or with collections of types.
Referring to the metaclasses used in Listing 3 the pointcuts implementing this
heuristic would look, e.g., like in Listing 4.

But we argue not to apply this heuristics as we consider such transformation
rules “bad style” of programming. Transformations of collections should call
transformations of single instances. The latter transformations are matched
5

http://svn-st.inf.tu-dresden.de/websvn/wsvn/refactory/trunk/Lässig/dk.itu.sdg.aspect.

tracemodel.generator/output/Tracer.aj shows the entire generated aspect.

251

Language-Independent Traceability with Lässig 7

1 private pointcut findMethod(Column t1, Attribute t2, Attribute t3, Attribute t4) : &&
execution(* *(.., Column, .., Attribute, Attribute, Attribute, ..)) && args(t1,t2,t3,t4
,..);

2
3 private pointcut findMethod(Collection t1, Attribute t2) : && execution(* *(.., Collection<

Column>, .., Attribute, ..)) && args(t1,t2,..);

Listing 4. Generated traceability aspect for transformations between class models and
relational schema

by heuristics (i) or (ii). A larger study applying Lässig to industrial model
transformations could give an incentive to implement this heuristic.

Transformation Rules Containing Transformation Code. As discussed previously,
our heuristics establish trace links based on execution of transformation rules,
simply inspecting the top activation frame on the call stack. A complex transfor-
mation encoded in a single rule results in a single trace link between the top most
objects. Potentially, one could obtain more information, by inspecting the entire
call stack, not just the top-most environment. An aspect observing temporally
related accessor calls (get and set methods) of distinct objects within the control
flow of a common transformation method could identify potential trace links
between the accessed objects.

Unfortunately, AspectJ does not allow to properly identify objects being
transformed during a VM call stack inspection.6 Furthermore, such a heuristic
would limit the generality of the solution, as not all JVM languages implement
attribute accesses via accessor methods.

3 Lässig: An Implementation

We implement our solution in a tool called Lässig, which provides traceability
support for all compiled programming languages executed on the Java Virtual
Machine. Lässig is implemented as a set of Eclipse bundles: one bundle for
the aspect generator, one bundle containing the traceability aspects, and one
bundle containing the trace model itself. Lässig requires that the metamodels
parametrizing the traceability aspect generator are available as EMF models.
Such metamodels are most often readily available for model transformations.
When adding traceability to programs in general, the metamodels need to be
created. They should contain a metaclass for each traceable JVM type.

Lässig relies on Equinox Weaving for aspect weaving. The traceability aspect
resides in an OSGi bundle specifying which other bundles are observed, i.e., in
which classes of other bundles the aspect is woven into. We use load-time weaving,
which is triggered whenever the JVM loads a class for the first time.

When a transformation from an observed bundle is executed the woven
traceability code is invoked and trace links are automatically recorded in an
6

http://aspectj.2085585.n4.nabble.com/Pointcuts-for-Multi-paramter-Methods-and-for-

Method-Control-Flow-td4650677.html

252

8 Rolf-Helge Pfei�er, Jan Reimann, and Andrzej Wπsowski

in-memory trace model. It can be used as a knowledge-base for tools supporting
developers in coding and co-evolution, or it can be serialized as an instance of
the simple trace model7 [20] and directly inspected by developers.

4 Evaluation

In order to evaluate the quality of generically established trace links of JVM
programs we investigate the following research questions:

RQ1 What is precision and recall of automatically established trace links with
respect to the definition of trace link presented in Sect. 1?

RQ2 What is precision and recall of automatically established trace links in
comparison to those established by a transformation language with a
dedicated traceability support?

RQ3 What is the performance overhead, in terms of time, of the generic traceabil-
ity solution applied to model transformations in di�erent JVM languages?

4.1 Experiment Setup

To evaluate our solution we rely on three model transformations as experiment
subjects: (i) from tree models to graph models (tree2graph), (ii) from class
models to relational schema (class2db), and (iii) from family models to person
models (family2person). All three model transformations are well known canonical
examples in the modeling community. We rely on independent specifications of
these transformations from other projects. The specifications of tree2graph8 and
class2db9 are taken from resources of the ETL community. The specification of
family2person10 is taken from the ATL transformation zoo.

These transformations are often used in teaching transformation languages,
so they cover all major concepts used in transformations: rules transforming
model elements, their properties, containment relations, and references. Thus,
we believe that they are relevant evaluation subjects, with reasonable coverage of
constructs.

We implement each of the transformations in three languages: Xtend, Groovy,
and Java. Xtend is often used for model transformation implementations. It
compiles to Java source code. Groovy is a dynamic programming language
for the JVM. Each of them compiles to JVM bytecode. Xtend, Groovy, and
Java are among the most popular languages used in practice for implementing
7

http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/examples/org.

eclipse.epsilon.examples.metamodels/SimpleTrace.ecore

8
http://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.

examples.tree2graph

9
http://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.

examples.oo2db

10
http://www.eclipse.org/atl/atlTransformations/#Families2Persons

253

Language-Independent Traceability with Lässig 9

model transformations. For this reason we believe they are interesting targets for
evaluation of a language-independent traceability mechanisms.

The implementations of transformations in Xtend, Groovy, and Java follow
a rule-based style. For each combination of metaclasses whose instances are
transformed we implement a separate method (Groovy, Java) or rule (Xtend).

As input models we use a tree, families, and class model for the respective
transformation. The models contain 6, 11, and 19 model elements respectively,
see Table 1.

We run each transformation in every language in five separate test suites, in
which each transformation is run six times. That is, each transformation is run
30 times in total. Since our solution relies on load-time weaving, a test suite here
means that the transformation classes are reloaded for each test suite in a new
Eclipse instance because executing a transformation the first time in a test suite
will result in additional runtime because the traceability aspect is woven. After
the first initial transformation it is re-run five times in each test suite.

The experiment is conducted on a 2.9GHz Intel i7 Mac Book with 8GB of
RAM, of which 4GB are assigned to the Java 6 virtual machine. We use AspectJ
(1.7.2), Xtend (2.3.1), and Groovy (2.0.0).

The model transformations, models and metamodels, as well as the automati-
cally established trace models are available online together with Lässig.

4.2 Absolute Quality of Generic Traceability

RQ1. What is precision and recall of automatically established trace links with

respect to the definition of trace link presented in Sect. 1?

For each transformation we serialize a trace model after completion. To answer
this question, we manually compare the input models and output models together
with the automatically established trace models. Then, we investigate if the
established trace links are correct (precision) with respect to the definition of
trace, and if we missed some traces (recall). Correctness criteria are (i) that the
linked objects exist in the input and output models, and (ii) that the associated
transformation rules establishing a trace link exist and actually transform an
object or parts of it into another object of the appropriate type.

Results. The numbers of established trace links when applying Lässig to the
transformations are presented in Table 1. For example, for the tree2graph trans-
formation Lässig establishes 7, 13, and 14 trace links for the Java, Groovy, and
Xtend transformations respectively.

Table 1. Number of trace links established for transformations in di�erent languages

Number of Trace Links Model Sizes

Java Groovy Xtend Input Output

tree2graph 7 13 14 6 11
family2person 9 9 27 11 9
class2db 14 14 38 19 35

254

10 Rolf-Helge Pfei�er, Jan Reimann, and Andrzej Wπsowski

Recall, the definition of a trace link. A trace, links objects over a set of chained
operations. Thus, a trace model for a language in which transformation rules
are compiled to multiple methods in bytecode is incorrect if it does not contain
multiple trace links for each method on bytecode level. In our experiment we
found no incorrect links in this sense (100% precision and recall).

Discussion. The reason for the di�ering amount of established trace links for the
three transformation languages is, that compilation of transformation rules to
bytecode methods is language specific. For example, closures in Groovy methods
(as in tree2graph) are compiled to separate unfolded methods in bytecode. Simi-
larly, Xtend transformation rules creating model elements, are compiled to two
consecutive methods. One for caching and one for the actual transformation.

We conclude that Lässig does not neglect trace links but establishes trace
links correctly with respect to the programming language used.

4.3 Relative Quality of Generic Traceability

RQ2. What is precision and recall of automatically established trace links in

comparison to those established by a transformation language with a dedicated

traceability support?

So far, we have established experimentally that trace links are correct with respect
to our trace definition (extracted from existing literature on traceability). Now,
we investigate if the trace links are correct in comparison to those established
by a language with first class traceability support. We implement and execute
all three transformations in ETL. Since tree2graph and class2db were originally
implemented in ETL we reuse these transformations. We manually convert the
family2person transformation from ATL to ETL. Subsequently, we manually
compare the ETL trace links with those established by Lässig. The trace link
sets obtained with ETL serve as the baseline when investigating the research
question.

Besides the correctness criteria explained in Sect. 4.2, the following criteria
must be satisfied: The set of established trace links must not be smaller than the
set of trace links generated from ETL, i.e., there must be an injection from the
set of trace links generated by ETL to the set of trace links generated by Lässig.

Table 2. Number of conceptual trace links established for transformations in di�erent
languages compared to ETL trace links

No. of Conceptual Trace Links Model Sizes

ETL Java Groovy Xtend Input Output

tree2graph 6 7 7 7 6 11
family2person 9 9 9 9 11 9
class2db 14 14 14 14 19 35

255

Language-Independent Traceability with Lässig 11

Results. The results of this experiment are presented in Table 2. The first column
contains the number of trace links established by ETL. For example, tree2graph in
ETL results in 6 trace links. On the other hand Lässig establishes 7 trace links for
Java, Groovy and Xtend respectively. Some languages produce more trace links
than others for the same transformation due to the way they are compiled. To
allow for a comparison we collapse multiple trace links from consecutively executed
caching and transformation methods into conceptual trace links. Conceptual trace
links relate to objects (disregarding JVM operations linking them) — so several
links between the same objects are collapsed into a single one, if they only di�er
by consecutive operations on bytecode level causing the link, but all belong to
the same transformation rule.

All links established by ETL are matched by links generated by Lässig (100%
recall). In some cases Lässig establishes more trace links than a corresponding ETL
transformation. For example the tree2graph transformation results in a precision
of approximately 86%. For this transformation in Java, Groovy, and Xtend one
false positive with respect to ETL is established respectively. For the other two
transformations Lässig establishes a corresponding trace link for any ETL trace
link. Thus, both precision and recall are 100% for these transformations.

Discussion. The disparity between the numbers of recovered traces by Lässig
and ETL is caused by ETL implicitly transforming root model elements without
an explicit transformation rule. For example, tree2graph in ETL consists of one
transformation rule converting model elements of type Tree to model elements of
type Node. The graph model’s root element of type Graph is generated automati-
cally without an explicit transformation rule. That is, ETL’s trace model does
not contain a trace link between two model elements of respective types Tree
to Graph. On the other hand, all the Java, Groovy, and Xtend transformations
consist of two transformation rules. One from model elements Tree to Node and
one for model elements Tree to Graph.

Since our solution integrates traceability on bytecode level, Lässig’s trace
models for Xtend transformations are always larger than trace models from ETL
transformations. For Java and Groovy they might be larger, depending on the
chosen transformation rules and the chosen programming style. However, the
larger trace models are still correct because they contain a corresponding trace
link for each trace link in an ETL trace model.

4.4 Performance Overhead of Generic Traceability

RQ3. What is the performance overhead, in terms of time, of the generic trace-

ability solution applied to model transformations in di�erent JVM languages?

Introducing a new concern into a software system is always associated with a
cost. Traceability cannot be provided for free. To answer this question we run
a controlled experiment with two factors on the same experimental subjects as
before: with Lässig enabled (the first factor) and with Lässig disabled (the second
factor). For each factor, we run each transformation in Xtend, Groovy, and Java

256

12 Rolf-Helge Pfei�er, Jan Reimann, and Andrzej Wπsowski

in five separate test suites, in which each transformation is run six times. Per
test suite, we distinguish between transformations run for the first time (weaving
of traceability aspect to transformation code) and subsequent transformation
executions (traceability aspect is already woven).

Results. Table 3 provides an overview of results of time measures. For each of
the three model transformations we provide the execution time in milliseconds.
The speed ratio in the rightmost columns shows how much longer a transfor-
mation runs with traceability enabled compared to the same transformation
without traceability. E�ectively the cost of generic traceability (with respect to
no traceability at all) ranges from 4% to 400%.

The only outlier in this experiment are the transformations implemented
in Groovy. They are generally slower compared than those in Java and Xtend.
Somewhat surprisingly, the Groovy class2db transformations on the very first
class load with enabled traceability are 2% faster than without traceability.

Discussion. It is obvious that all transformations take considerably longer on
class load than in subsequent runs. Also obvious is that di�erent languages are
more or less e�cient in their JVM implementation. However, the large slow-
downs can be observed in the time e�cient implementations of Java and Xtend,
where the average runtimes for each transformation with traceability enabled is
always below two milliseconds. So, still with Lässig’s traceability enabled, the
transformations run fast; way faster than for example the corresponding Groovy
transformations. Performance of transformations is usually more important in
high volume processing, and here it is beneficial that after the initial class loading,
the performance usually improves.

For the measurement of Lässig’s timing properties we may not have chosen
a su�ciently large number of iterations. But we think that our results, after

Table 3. Times for running the model transformations with and without traceability

Running Times [ms] Speed Ratio

Java Groovy Xtend Java Groovy Xtend

tree2graph
with tracing on 1st class load 32.80 869.20 12.00 1.62 1.18 3.53

after 1st class load 0.16 1.36 0.56 2.00 1.31 2.33
without tracing on 1st class load 20.20 736.60 3.40

after 1st class load 0.08 1.04 0.24

family2person
with tracing on 1st class load 62.60 602.20 59.00 4.89 1.51 5.18

after 1st class load 0.16 1.20 0.32 4.00 1.11 4.00
without tracing on 1st class load 12.80 399.60 11.40

after 1st class load 0.04 1.08 0.08

class2db
with tracing on 1st class load 48.80 913.60 28.20 2.05 0.98 3.92

after 1st class load 0.92 3.84 1.64 1.35 1.04 2.93
without tracing on 1st class load 23.80 931.80 7.20

after 1st class load 0.68 3.68 0.56

257

Language-Independent Traceability with Lässig 13

ignoring the outlier, give an indication of how much resources Lässig’s traceability
mechanism consumes on top of the plain transformations.

5 Threats to Validity

Threats to Internal Validity. First, the three subject model transformations might
not be representative. They are all small, ranging from one rule in tree2graph to
eight rules in class2db. However, other transformations even if they consist of more
rules, would not encode di�erent transformation patterns. More importantly,
Lässig’s aspects consist of two Cartesian products of the sets of metaclasses
from both metamodels A and B and creates four pointcuts for each metaclass
tuple—one Cartesian product for A ◊ B and one for B ◊ A. Thus, it is not
relevant how complex the transformations are as Lässig only depends on matching
metaclass tuples in the pointcuts. Thus, all executed transformation rules are
traced independently of their complexity or their amount. Note though that the
current solution is not applicable to model-to-text transformations, and we do
not claim any success there.

Second, the size and complexity of the chosen models and metamodels may
be too small. But again, even though the models may be small (six to 35 model
elements), they contain all typical model structures, such as containment relations,
references between model classes, etc. Again, the internal complexity of models
and metamodels has no influence on the solution as the generated traceability
code only relies on the Cartesian products of the metaclasses involved. Other
structures in the transformed models are irrelevant for identification of executed
transformation rules.

Third, when implementing the model transformations in Java, Groovy and
Xtend we might be biased to implement method or rule signatures which are
certainly matched by the pointcuts in the generated observing aspect. We tried to
minimize this risk by converting the ETL and ATL transformations consistently
to the other languages, just adjusting the syntax.

Lastly, the reliability for the performance overhead measurements could have
been improved, first by larger input models as they result in longer runtimes per
transformation decreasing the e�ects startup time delays caused by Just-In-Time
compilations and the garbage collector. These e�ects could be further decreased
by executing more iterations of each transformation. Running an extensive study
for performance overhead of generic traceability will be addressed in future work.

Threats to External Validity. The choice of the experiment computer and the
choice of concrete language versions, may produce particularly fast results when
establishing the trace models. For reproducibility we will gladly share our experi-
ment Eclipse setup if requested.

6 Related Work

As already mentioned, some model transformation languages provide built-in
traceability support. For example, ETL [16] automatically generates a trace model

258

14 Rolf-Helge Pfei�er, Jan Reimann, and Andrzej Wπsowski

via a post condition guarding a model transformation. A similar mechanism [33]
establishes trace models in ATL. Also QVT [19] has built-in traceability support.
Similarly to Lässig the three languages establish trace links between objects
serving as arguments or as arguments and return values of transformation rules [1].
The main di�erence between Lässig and the previous languages is, that they
implement traceability support for a particular language only. In contrast, Lässig
is language independent. It applies the same traceability support to any JVM
language as traceability is realized on bytecode level.

Currently, Lässig is applicable to languages compiling to Java bytecode.
Interpreted languages cannot be supported generically as interpreters often
obfuscate the relation between the program objects and JVM objects at the
bytecode. Implementing interpreted languages via language workbenches, such
as EMFText [2] or Xtext [8] and mapping them to Java, e.g., with Xbase [7], is
likely the least expensive manner to let Lässig provide traceability support to
such languages.

Grammel et al. [12] categorize generation of trace models into two major
groups. First, by utilizing the transformation program or second, independently of
the transformation program. Clearly, Lässig utilizes the transformation program
by observing its execution and establishing trace links as soon as objects of interest
are modified. ETL’s, ATL’s, and QVT’s traceability mechanisms fall into the same
category. The second category is well researched as model matching [5,12,30,31]
in the modeling community or as schema matching [25,27] in the database
community. The former matches models and metamodels, in general object
graphs, to each other and whenever a certain similarity measure between sub-
graphs is fulfilled trace links are automatically created. The latter is similar to
model-matching, although it often incorporates semantic analysis of the schemas
in addition to their structural information.

Also other works [11,32] propose a solution for generic traceability support.
Both solutions rely on a generic traceability interface abstracting from concrete
transformation languages. In both solutions, this interface needs to be imple-
mented repeatedly for any language which should support traceability, which is
not required by Lässig.

Jouault [14] applies a model transformation to merge traceability rules into
existing ATL transformation rules. This can be seen as an aspect-oriented
programing-like technique for ATL, where ATL’s metamodel is the join-point
model for static weaving. This is similar to Lässig, which also requires a joinpoint
model for aspect weaving. But thanks to relying purely on the JVM bytecode to
provide the joinpoint model, Lässig is significantly more generic than Jouault’s
solution. Furthermore, Lässig automatically generates the traceability code out
of metamodels. That is, Lässig provides traceability with no programming e�ort.

Fabro and Valduriez [9] utilize metamodels to generate model transformations
semi-automatically. The goal is to relieve developers of manual implementation
of recurring code patterns. Lässig can be considered a domain-specific refinement
of the described solution, where the restriction to generation of traceability code
allows for complete automation.

259

Language-Independent Traceability with Lässig 15

7 Future Work & Conclusion

We have introduced a solution for generic traceability for languages compiling
to a VM. We provide Lässig, a prototype implementing our solution for all
programming languages compiling to Java bytecode. We have demonstrated that
Lässig is a practical and feasible solution. It automatically establishes correct
and complete trace models.

Lässig has one limitation, the granularity of the trace model, i.e., the number
of automatically established trace links depends on the quality of the observed
transformation code. A transformation rule implementing a complex transforma-
tion of many objects of di�erent types results in a trace model containing only
a single trace link. We do not think that this limitation is very serious. First,
implementing such a “bad style” transformation in, for example, ETL results
in a similarly sparse trace model and second, such a sparse model still contains
correct trace links maintaining more information than available without Lässig.

We demonstrate the capability of Lässig. We show that Lässig provides trace-
ability at very low additional cost. It is neither necessary to manually implement
traceability support for di�erent domains in di�erent languages nor is it necessary
to learn aspect-oriented programming. Instead developers just parametrize a
code generator with metamodels and thereby generate traceability aspects. We
have experienced that Lässig generates 100% correct trace models. Currently,
the only requirement is to follow good style of writing transformations, i.e., one
method or transformation rule per combination of transformed metaclasses.

In the paper, we have used one step transformations to evaluate the tools.
But Lässig can handle chains of transformations as well. If all the development
artifacts are projected as models, it is possible to establish sequences of trace
links that span larger parts of development process (end-to-end traceability), as
long as all the steps are executed in a JVM.

In future we plan to evaluate Lässig in combination with code generators, i.e.,
model-to-text transformations. We assume that Lässig can be applied e�ectively
since many generators use method signatures matching pointcut findGenMethod(
Type t1): execution(String *(.., Type, ..))&& args(t1,..) pointcuts. Such a
heuristics is likely to work with Xpand generator templates in Xtend. However
verifying this requires extending Lässig to keep track of locations in the generated
text file.

Beyond the general traceability problem, Lässig can be used in a broader range
of applications. Especially, in the area of model refactoring Lässig can be applied
to provide trace links between refactored models and dependent models. For
example, Refactory [26] is a generic model refactoring framework. By integrating
Lässig and its trace models, Refactory could automatically apply co-refactorings
to dependent models.

Acknowledgements. We cordially thank Julia Schröter and Claas Wilke for their
helpful comments on an earlier version of this paper. This research has been
co-funded by the European Social Fund and the Federal State of Saxony within
the project #0809518061.

260

16 Rolf-Helge Pfei�er, Jan Reimann, and Andrzej Wπsowski

References

1. Aranega, V., Etien, A., Dekeyser, J.L.: Using an alternative trace for QVT. Elec-
tronic Communications of the EASST 42 (2011)

2. Aßmann, U., Bartho, A., Bürger, C., Cech, S., Demuth, B., Heidenreich, F., Jo-
hannes, J., Karol, S., Polowinski, J., Reimann, J., Schroeter, J., Seifert, M., Thiele,
M., Wende, C., Wilke, C.: DropsBox: The Dresden Open Software Toolbox – Domain-
Specific Modelling Tools beyond Metamodels and Transformations. Software &
Systems Modeling pp. 1–37 (2012)

3. Bézivin, J.: On the unification power of models. Software and System Modeling
4(2), 171–188 (2005)

4. Bézivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. In: Proceedings
of the OOPSLA/GPCE: Best Practices for Model-Driven Software Development
workshop, 19th Annual ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (2004)

5. Branco, M.C., Troya, J., Czarnecki, K., Küster, J.M., Völzer, H.: Matching Business
Process Workflows across Abstraction Levels. In: France et al. [10], pp. 626–641

6. Eclipse Foundation: ATLAS Transformation Language. http://www.eclipse.org/

m2m/atl (Apr 2012)
7. E�tinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow, R., Hassel-

bring, W., Hanus, M.: Xbase: implementing domain-specific languages for Java.
In: Proceedings of the 11th International Conference on Generative Programming
and Component Engineering. pp. 112–121. GPCE ’12, ACM, New York, NY, USA
(2012)

8. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applications companion. pp.
307–309. SPLASH ’10, ACM, New York, NY, USA (2010)

9. Fabro, M.D.D., Valduriez, P.: Towards the e�cient development of model transfor-
mations using model weaving and matching transformations. Software and System
Modeling 8(3), 305–324 (2009)

10. France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.): Model Driven Engineering
Languages and Systems - 15th International Conference, MODELS 2012, Innsbruck,
Austria, September 30-October 5, 2012. Proceedings, Lecture Notes in Computer
Science, vol. 7590. Springer (2012)

11. Grammel, B., Kastenholz, S.: A generic traceability framework for facet-based
traceability data extraction in model-driven software development. In: Proceedings
of the 6th ECMFA Traceability Workshop. pp. 7–14. ECMFA-TW ’10, ACM, New
York, NY, USA (2010)

12. Grammel, B., Kastenholz, S., Voigt, K.: Model Matching for Trace Link Generation
in Model-Driven Software Development. In: France, R., Kazmeier, J., Breu, R.,
Atkinson, C. (eds.) Model Driven Engineering Languages and Systems, Lecture
Notes in Computer Science, vol. 7590, pp. 609–625. Springer Berlin Heidelberg
(2012)

13. Hessellund, A., Wπsowski, A.: Interfaces and Metainterfaces for Models and Meta-
models. In: Proceedings of the 11th International Conference on Model Driven
Engineering Languages and Systems (2008)

14. Jouault, F.: Loosely Coupled Traceability for ATL. In: In Proceedings of the Euro-
pean Conference on Model Driven Architecture (ECMDA) workshop on traceability.
pp. 29–37 (2005)

261

Language-Independent Traceability with Lässig 17

15. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Knudsen, J. (ed.) ECOOP 2001 — Object-Oriented
Programming, Lecture Notes in Computer Science, vol. 2072, pp. 327–354. Springer
Berlin Heidelberg (2001)

16. Kolovos, D.S., Paige, R.F., Polack, F.A.: The Epsilon Transformation Language. In:
Proceedings of the 1st international conference on Theory and Practice of Model
Transformations. pp. 46–60. ICMT ’08, Springer-Verlag, Berlin, Heidelberg (2008)

17. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning
(2003)

18. Lauenroth, K., Pohl, K.: Software product line engineering - foundations, principles,
and techniques, chap. 4, pp. 72–86. Springer (2005)

19. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Specification, V1.1. http://www.omg.org/spec/QVT/1.1/ (Jan 2011)

20. Paige, R.F., Drivalos, N., Kolovos, D.S., Fernandes, K.J., Power, C., Olsen, G.K.,
Zschaler, S.: Rigorous Identification and Encoding of Trace-Links in Model-Driven
Engineering. Software & Systems Modeling 10 (October 2011)

21. Paige, R.F., Olsen, G., Kolovos, D., Zschaler, S., Power, C.: Building Model-Driven
Engineering Traceability Classifications. In: 4th ECMDA Traceability Workshop
(2008)

22. Pfei�er, R.H., Wπsowski, A.: Taming the Confusion of Languages. In: Proceedings
of the 7th European Conference on Modelling Foundations and Applications (2011)

23. Pfei�er, R.H., Wπsowski, A.: Cross-Language Support Mechanisms Significantly
Aid Software Development. In: France et al. [10], pp. 168–184

24. Pfei�er, R.H., Wπsowski, A.: TexMo: a multi-language development environment.
In: Proceedings of the 8th European conference on Modelling Foundations and
Applications. pp. 178–193. ECMFA’12, Springer-Verlag, Berlin, Heidelberg (2012)

25. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4), 334–350 (Dec 2001)

26. Reimann, J., Seifert, M., Aßmann, U.: On the reuse and recommendation of model
refactoring specifications. Software & Systems Modeling pp. 1–18 (2012)

27. Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches 3730,
146–171 (2005)

28. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-
work, 2nd Edition. Pearson Education (Jan 2009)

29. Tarr, P., Ossher, H., Harrison, W., Sutton, Jr., S.M.: N degrees of separation:
multi-dimensional separation of concerns. In: Proceedings of the 21st international
conference on Software engineering. pp. 107–119. ICSE ’99, ACM, New York, NY,
USA (1999)

30. Voigt, K.: Semi-automatic Matching of Heterogeneous Model-based Specifications.
In: Engels, G., Luckey, M., Pretschner, A., Reussner, R. (eds.) Software Engineering
(Workshops). LNI, vol. 160, pp. 537–542. GI (2010)

31. Voigt, K., Ivanov, P., Rummler, A.: MatchBox: combined meta-model matching for
semi-automatic mapping generation. In: Proceedings of the 2010 ACM Symposium
on Applied Computing. pp. 2281–2288. SAC ’10, ACM, New York, NY, USA (2010)

32. Walderhaug, S., Johansen, U., Stav, E., Aagedal, J.: Towards a Generic Solution
for Traceability in MDD. In: ECMDA Traceability Workshop (ECMDA-TW). pp.
41–50 (2006)

33. Yie, A., Wagelaar, D.: Advanced traceability for ATL. In: 1st International Workshop
on Model Transformation with ATL. pp. 78–87 (2009)

262

Appendices

263

A Variability Mechanisms in
Software Ecosystems: Closed

versus Open Platforms –
Under Submission

265

Variability Mechanisms in Software Ecosystems:
Closed versus Open Platforms

Thorsten Berger1,3, R.-Helge Pfeiffer1, Reinhard Tartler2, Steffen Dienst3,
Krzysztof Czarnecki4, Andrzej Wąsowski1, Steven She4

1IT University of Copenhagen, 2University of Erlangen-Nuremberg, 3University of Leipzig, 4University of Waterloo

ABSTRACT
Leveraging open platforms to establish vibrant ecosystems
of software has received increasing attention. Probably the
most successful ecosystems rose in the mobile phone domain,
where the shift from closed and centrally managed systems to
open and extensible platforms such as Android and iOS led
to tremendous growths. Large communities have helped to
virtually explode the variety of mobile applications, allowing
consumers to customize their mobile phones to great degrees.
This variety is achieved using variability mechanisms. While
closed platforms manage variability centrally and do not sup-
port consumers to use arbitrary third-party contributions,
open platforms foster distributed free markets of assets and
provide consumer-friendly tools to use them. But what are
the underlying mechanisms that sustain success and growth
of these two classes of ecosystems? Intrigued by this question,
we attempt to study variability mechanisms in closed and
open platforms. We qualitatively and quantitatively analyze
five successful ecosystems. Our key observations are that
variability models work best in centralized closed ecosys-
tems, that dependency structures are surprisingly dense in
all ecosystems, and that the fast growth of open ecosys-
tems relies on capability-based dependencies, which foster
distribution, but require stable centralized vocabularies.

1. INTRODUCTION
Software ecosystems are increasingly popular for their

economic, strategic, and technical advantages. From a user’s
perspective, ecosystems are a successful approach to mass
customization: users select the desired functionality of their
instance—a phone, an IDE, or an operating system—using
proper tools. From an economic perspective, ecosystems
enable the sharing of a commodity burden—when many
companies contribute to a project—or foster new business
models and markets.

Large software ecosystems approach variability—the diver-
sity of systems they o↵er—in very di↵erent ways. Consider
the Linux Kernel and the Android application platform for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC ’13 Tokyo, Japan
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

mobile devices. Linux is a highly configurable system us-
ing mechanisms known from software product lines [39, 15],
such as a centralized variability model, a configurator, the
C preprocessor, and a complex build system. Nevertheless,
it is more than just a traditional software product line—it
is a software ecosystem [16]. Over 6000 individuals from
over 600 companies [19] have helped to more than double the
Linux Kernel code base from 3.5M to 7.9M LOC in the last
six years. Android is a service-oriented architecture that also
manages huge variability, but in a more compositional and
open way. Users derive a concrete system (a mobile device)
by selecting apps from online repositories (app stores) using
an installer tool. It has no centralized variability model, but
uses distributed manifest files. Android is also an ecosys-
tem, spanning an industrial consortium developing the main
platform, device providers, and a vast and vibrant market of
third-party apps.

The Linux Kernel and Android represent two major classes
of large, highly successful ecosystems that follow the best
suited strategies for their goals and domain. Linux has
a predominantly closed platform. It carefully controls the
admission of new features into its o�cial release and has
no o�cial facility that allows users to install third-party
features. Android has an open platform by supporting a free
market of apps. In contrast to Linux Kernel’s respectable,
yet controlled growth, the Android ecosystem has virtually
exploded—similar to other mobile application platforms, such
as iOS. Created five years ago, the Android ecosystem boasts
over 650,000 apps today.
Research has addressed software ecosystems, but focused

on economic, strategic, and organizational aspects [17, 32, 42],
largely sidestepping technology. While ecosystems are clearly
driven by business and strategic forces, it largely remains
speculation which and how variability mechanisms sustain
their success and growth. What are their characteristics and
how do ecosystems with closed and open platforms di↵er?
How is a mechanism related to an ecosystem’s organization
or to dependency structures? Are closed mechanisms even
applicable in open platforms?

We study variability mechanisms in closed and open plat-
forms by qualitatively and quantitatively analyzing some of
the most successful and fastest-growing ecosystems in ex-
istence today: the eCos operating system (OS), the Linux
Kernel, the Debian Linux distribution, the Eclipse IDE, and
the Android platform. They all successfully facilitate and
manage massive variability, approaching it from di↵erent
organizational and business perspectives and using di↵er-
ent mechanisms. We hypothesize that if we understand the

266

Legend:
Feature

Optional
Feature
Mandatory
Feature

Alternative
Features

Cross-
Tree-
Constraints

a → b ∧
c ≥ d

Figure 1: Feature model example [15]. The feature
Debug Level is mandatory for the Journaling Flash File
System, whereas Compress Data is optional.

causalities of choosing a technical solution, we will be able to
predict how it sustains success and growth of an ecosystem,
to ultimately guide development and management.
The research objectives of our study are to (O.1) iden-

tify and analyze the variability mechanisms in each class of
ecosystems; and (O.2) discover relationships and causalities
among the mechanisms and organizational structures found.
Our contributions comprise: (C.1) a conceptual frame-

work defining key variability mechanisms and organizational
structures within and across the ecosystems; (C.2) an in-
stantiation of the framework with empirical data for each
ecosystem; (C.3) a set of phenomena and hypotheses emerg-
ing from data; and (C.4) extracted datasets about all five
ecosystems for reproducibility and further research. We re-
port the key high-level findings of our study in this paper
and provide an online Appendix1 with additional statis-
tics, details on our datasets, and the implementation of the
static analysis of Android bytecode.

On a final note, our study represents the exploratory phase
in the long-term process of theory building. We discover phe-
nomena and generate testable hypotheses based on empirical
evidence. Although closed and open ecosystems appear to
have substantial di↵erences, our exploratory study shows
that it is possible to create a common theory behind both
classes. In fact, developing models to describe ecosystems
is a major research issue [26]. Our findings generate require-
ments for tool builders. Our datasets can serve as realistic
benchmarks. For example, all of the studied ecosystems have
a high density of dependencies, which tools must be able to
cope with. Finally, we raise future research questions.

2. RESEARCH ISSUES
Software ecosystems are an emergent field of research and

have been addressed from various perspectives. Unfortu-
nately, research has not agreed on a definition of ecosystems
from the perspective of technology yet, although they are
often seen as technical constructs [12]—arguably with fluid
boundaries to related paradigms, such as distributed systems
or componentware. In this work, we take the view of ecosys-
tems being extensions of software product lines of substantial
size [16, 26, 25, 38].
Definitions. We define an ecosystem as a large system
composed of interrelated assets developed by communities
of developers upon a common technological platform. Con-
sumers derive instances by making decisions in an automated,
tool-supported process. A platform is open when there is
explicit technical support for consumers to use third-party
assets in an instance. It is closed when outside contributions
need to be integrated into the platform with a controlled
process.

1http://itu.dk/~thbe/ecosystems/appendix.pdf

1 Package: gawk
2 Version: 1:3.1.7.dfsg-5
3 Maintainer: Arthur Loiret <aloiret@debian.org>
4 Depends: libc6 (>= 2.3)
5 Provides: awk
6 Section: interpreters
7 Priority: optional
8 Description: a pattern scanning and processing language

Figure 2: Excerpt of a Debian manifest containing
metadata, such as package name (l. 1), version (l. 2),
dependencies (l. 4–5), and categorization (l. 6–7)

Our study centers around the following research issues.
Conceptual Framework. We conjecture that closed and
open platforms have implications to organizational structures,
variability mechanisms, and dependencies. To compare the
two heterogeneous classes, it is instrumental to define a
conceptual framework that unifies related ecosystem-specific
aspects with a common terminology.
Organization & Scale. Expecting di↵erent organizational
structures, we aim to understand the organization of develop-
ment and variability management; and the extent to which
ecosystems are controlled. This analysis allows us to define
the organizational context in which mechanisms are applica-
ble. Likewise, to draw conclusions about scalability, we need
to estimate scales and growth rates, which di↵er significantly
given the diverse economies that drive ecosystems.
Variability Mechanisms. The closed platforms eCos and
the Linux Kernel manage variability using mechanisms known
from software product line engineering (SPLE) [39, 15]. SPLE
allows to e�ciently create portfolios of systems in an appli-
cation domain by leveraging the commonalities and carefully
managing the variabilities among them [18]. Variability mod-
els, such as feature or decision models [29, 37], are popular
means to handle variability. Variability management is the
corresponding discipline of taming variability-induced com-
plexity in product lines. It comprises activities such as mod-
eling, scoping (controlling and restricting contributions) and
maintaining variability information (parameterization, de-
pendencies, versioning). However, these activities are rather
heavyweight and require advanced technical skills. We con-
jecture they hinder contributions, and we expect to find lean
techniques in open platforms, not seen in SPLE.

eCos and Linux have variability models, which abstractly
represent thousands of variabilities (drivers, processor types,
scheduling algorithms, diagnostics) and the dependencies
among them. Fig. 1 shows a sample feature model [29] of a
filesystem. In contrast, Debian, Eclipse, and Android rely on
distributed manifest files to express variability information.
Fig. 2 shows an excerpt of a Debian manifest. Understanding
the applicability of variability models [15, 39], and their
relationship to manifests [20, 24, 36], is an important research
issue in SPLE.
Asset packaging is a prerequisite for open platforms to

support coarse-grained variability. We expect di↵erences
in packaging, encapsulation, and parameterization support;
also in facilities for interactions. We conjecture that pro-
cesses of making decisions di↵er. Not all platforms support
derivation of a whole instance due to complexity reasons (An-
droid handsets always come with pre-installed/pre-configured
apps). Reconfiguration of an initial instance, on the other
hand, requires special binding mechanisms.
Dependencies. Interactions between assets introduce de-
pendencies that are declared in variability models or mani-

267

fests using constraint languages. Dependencies complicate
development and maintenance, but also challenge derivation
and reconfiguration tools. To understand how ecosystems
cope with complexity, it is crucial to understand the de-
pendency structures that tools and consumers manage. We
expect the di↵erent representations and granularities of vari-
ability to influence dependency structures. Interestingly,
Android is the only platform that does not declare dependen-
cies and handles interactions fully dynamically. Analyzing
its mechanisms helps to understand how one of the largest
and fastest-growing ecosystems tackles complexity.

3. METHODOLOGY
We perform five exploratory case studies [22, 27]. They are

aimed at discovering real-world phenomena and generating
hypotheses from empirical evidence, which is the exploratory
phase of theory building [22]. Case studies have been success-
fully used before in a similar context, to study open source
software development (such as [35]). Generating hypothe-
ses by analysis of case studies is a highly qualitative and
interpretive process. These hypotheses need to be refuted
or confirmed using other methods, such as experiments and
simulations, which is subject for future work.
The major part of our analysis is qualitative. It aims at

identifying mechanisms and organizational structures in the
studied ecosystems and relationships among them. During
the analysis, we iteratively built a conceptual framework of
these mechanisms and structures, allowing us to compare
their use across the ecosystems. The framework is summa-
rized inFig. 3 and in the concept hierarchy shown in the
left-most column in the subsequent tables. We seeded the
framework with mechanisms known from SPLE and then
expanded to those specific to open ecosystems. Many are
inspired from literature, such as [15] (variability models, de-
pendencies), [21] (binding time/mode, openness), and [40]
(interaction, encapsulation); others were added as discovered.

Quantitative analyses allow us to ask questions about oc-
currence and frequency of identified mechanisms. It is instru-
mental to identify potential correlations between qualitative
concepts, such as openness of the platform, and quantitative
ones, such as growth rate of an ecosystem or dependency
structures.

3.1 Subject Selection Criteria
Although representativeness of case study subjects is gen-

erally not required for theory building [23], our selection
strives for broad applicability of the resulting conceptual
framework. We chose five successful ecosystems spanning
diverse domains, ranging from feature-based systems with
variability models and static compile-time binding, through
component-oriented architectures specifying variability in
separate manifest files associated with packages, to highly
dynamic service-oriented systems with runtime resolution of
dependencies between assets.

eCos is a free real-time OS for deeply-embedded appli-
cations—a domain that requires high portability, low memory
usage, and small binary images. With a market share of
5–6%, it powers, among others, multimedia, networking and
automotive devices [5]. Consumers of eCos are highly spe-
cialized developers of embedded systems. eCos maintains
advanced tools, such as a configurator with a reasoning en-
gine. Linux is a free general OS kernel targeting a much
broader range of hardware than eCos. Its consumers include

Linux distributors, who customize and release specialized
kernels, and technically skilled end users, who sometimes also
configure, compile, and install a custom kernel. Linux also
provides a configurator, but much less advanced [15] than
in eCos. Debian is a complete OS with a large selection of
applications. It is available for many hardware architectures,
ranging from embedded systems to high performance com-
puters. Its consumers are both non-technical end users and
system administrators with high technical expertise. Debian
provides suitable installers and configurators for beginners
and experts. The Eclipse IDE is a foundation for highly-
customizable development tools (the Rich Client Platform for
building arbitrary GUI software is out of scope of this work).
Although users of the Eclipse IDE are technically-skilled de-
velopers, extending the system is supported by a convenient
installer. Android is a free OS for mobile devices, including
smartphones, tablets and netbooks, that can be extended
with third party applications (apps). The target consumers
of Android are non-technical end users, deriving their system
by installing apps with a user-friendly installer.
Even though, Eclipse is a package in Debian, and Linux

is the underlying kernel of Android and Debian,we clearly
distinguish these ecosystems, analyze and compare them on
their own.
Linux’ and eCos’ platform are predominantly closed. In

Linux, additions must be applied to the source tree as git
branches or patch sets.“Out-of-tree” development is actively
discouraged [11] and deriving such an instance not tool-
supported. Exceptions are loadable kernel modules from
commercial vendors. In eCos, although openness was a goal
of its packaging mechanism, contributing requires program-
ming e↵ort. In contrast, Debian, Eclipse, and Android are
open by design and o↵er tools to easily install extensions
distributed on free markets.

3.2 Data Sources and Analysis Infrastructure
Sources are cited as we use them in the text. In the quali-

tative analysis, we relied on o�cial documents such as the
Debian Policy [2] and the Eclipse Development Process de-
scription [10]. We also examined tools and languages used
in the subjects. For the quantitative measures, we used
statically extracted data. Since analyzing whole ecosystems
is infeasible given their open and uncontrolled nature, we
mined substantial subsets by considering the most vibrant
parts—the major distribution sources. For eCos, we con-
sidered all i386-specific and hardware-independent packages
from the repository (v. 3.0). For Linux, we analyzed the x86
architecture from the 2.6.32 codebase. Debian’s subset are all
binary i386 packages from the 6.0 distribution. For Eclipse,
we analyzed the Helios 3.6 modeling distribution together
with bundles from the associated repository. For Android,
we gathered nearly all available free apps from the app store
over a period of 14 months.

We developed analysis tools for each ecosystem. For eCos
and Linux, we partly reused our previously developed infras-
tructure from [15]; for Eclipse, we exploited the platform API
to query information; for Debian, we analyzed the package
indices used by the native installers. Analyzing Android was
most challenging: we implemented static analysis techniques
to identify dependencies in Android bytecode. More details,
including exact dates and versions used for estimations, and
all datasets are available in our online Appendix.

268

Main Platform Free Market

Feature Dependency
Variability Model

abstraction

Unit Parameter

Asset
configures

Asset Base

Suppliers

Developers

Consumers

End-Users

Configurator

derive

reconfigure

develop

Instance

Installer

make decision

make decision

Tools
Decisions

Decision Lifecycle

Ecosystem

Variability Representation

Legend:

Concept

Optional
Concept

Action

Tool

Actor

Inheritance
Relation

Containment
Relation
Binary
Relation
Content
Flow
Action
Invocation

Basic Unit Composite Unit

Dependency
Manifest

Figure 3: The Conceptual Framework

4. CONCEPTUAL FRAMEWORK
Figure 3 presents the core part of our conceptual framework.

We describe it in this section, and then use it to characterize
and compare the ecosystems in a uniform manner. The
general framework concepts are typeset in sans-serif and their
ecosystem-specific instantiations in cursive.

An ecosystem is a universe of shared assets centered around
a technical platform. In this universe, various roles, mainly
suppliers and consumers, interact in order to develop, manage,
and consume assets. More roles exist, but modeling them
is out of our scope. A platform denotes the technical aspects
of an ecosystem: a variability-enabled architecture, a set of
shared core assets, tools, frameworks, and patterns, together
with organizational and process-related concerns. Every
vital ecosystem has a controlled central part, the main platform,
which is managed by the platform supplier. Free market is
the less-controlled, complementary part of the ecosystem
that provides third-party assets extending the main platform.
Alternative platforms may exist as derivatives of the main platform
for specific needs. For example, Ubuntu is a Debian derivative
for desktop and laptop users. Since derivatives do not belong
to the free market, we ignore them in this study.

Assets are any artifacts, such as source code, binaries,
media files, or documentation. Each of the studied platforms
packages assets into basic units, such as Debian packages
or Eclipse bundles. Composite units, such as Debian meta
packages, aggregate sets of basic units.
Variability in the platforms has two forms: basic units can

be optional, or vary inside, or both. Unit parameters, such as
properties in Eclipse, describe variability within basic units.
An instance (e.g. a customized Linux Kernel or Android

system) is a concrete system derived from the main platform
and the free market by making decisions—more precisely, by
selecting and configuring assets, thus, resolving variability.
Usually, an instance can be reconfigured later.

Variability information (dependencies and unit parameters) is
specified either within a variability model or in distributed man-
ifests. Variability models are system-wide abstractions over
the concrete assets and declare features and dependencies using
a dedicated language [15]. Features are abstract entities that
are mapped to units and unit parameters. Instead of making
decisions directly on the assets, derivation is based on deciding

features. Manifests directly reflect variability information of
the assets, without the ability to introduce abstractions, for
example, to optimize dependency structures. Such abstrac-
tion is only partially available by introducing empty assets
whose manifests aggregate dependencies, like virtual packages
in Debian.
Each ecosystem supports derivation and reconfiguration by

automated tools: configurators for the variability model-based
platforms (eCos, Linux) and installers for manifest-based plat-
forms (Debian, Eclipse, Android). Such automated tools
assist consumers with intelligent choice propagation, conflict
resolution, and optimization based on the dependencies. The
latter are declared either among features within the variability
model, or among basic or composite units within the manifest.

5. ORGANIZATION & SCALE
In our study, we identified the following organizational

structures and ecosystem scales achieved over time.

5.1 Organization
The development and variability management are orga-

nized as follows in each ecosystem; see Table 1.
eCos’ main platform is its free edition, maintained and

developed by the main supplier eCosCentric and external
contributors [4]. Both development and variability manage-
ment are centralized in the main platform. We have not
found reliable information about the process used for con-
tributions. However, the main platform is controlled by a
group of currently ten maintainers, which indicates that con-
tributions have to pass their reviews. Only a marginal free
market emerged on the fringe of the main platform, although
eCos’ packaging mechanism and its modular variability lan-
guage were designed to encourage contributions. No uniform
distribution channel exists for the free market.
Linux’ main platform is the mainline kernel. The variabil-

ity management is centralized, with only a few maintainers
controlling the variability model [19]. In contrast, the de-
velopment is highly distributed, comprising thousands of
developers and maintainers. However, contributions have
to pass thorough reviews through the maintainer hierarchy.
Although no uniform distribution channel (beyond mailing
lists) outside the main platform exists, an unorganized free
market with third-party modules (mostly drivers) emerged.
Debian’s main platform is the central repository contain-

Table 2: Estimated Scales and Growth Rates

eCos Linux Debian Eclipse Android

Main platform scale
Basic Units 39481 25,8611 28,2322 5,7873 834

Features 2,859 10,415 N/A N/A N/A
LOC 0.9M 7.9M 762M 21.2M 1M

Free market scale
Basic Units >1,5301 — >15,1792 >1,8973 >651K4

Features >315 — N/A N/A N/A
LOC >279K — >410M >6.9M >1G

Growth rates
Inception year 1999(v1.1) 1991(v0.01)1996(v1.1) 2001(v1.0) 2008
Inception LOC 76k 10k 13M 141k 1.128M5

Current LOC 1.2M 7.9M 1.2G 28.1M 1G
Growth per year 32% 39% 35% 80% 353%

1 Files 2 Packages 3 Bundles 4 Apps 5 Android OS and apps

269

Table 1: Ecosystem Domains and Organization.

eCos Linux Kernel Debian Eclipse Android

D
om

ai
n Software domain embedded OS general-purpose

OS kernel
OS &
application software

software development
tools

OS & applications for
mobile devices

Consumer skills highly-
technical

highly-technical non- and technical technical non-technical

O
rg

an
iz

at
io

n

Main Platform free eCos
edition

mainline kernel Debian Archive
(’main’ section)

yearly official platform
release

Android OS and
Google Apps

Development centralized distributed distributed distributed distributed
Variability mgmt. centralized centralized distributed distributed centralized

Free market packages kernel modules
(drivers), patches

mostly commercial
packages

bundles on update
sites/market places

apps on market places

distribution channel none none marginal third-party
repos.

Eclipse Marketplace Google Play store

ing the o�cial distribution. Both development and variability
management are distributed, comprising over thousand pack-
age maintainers, who maintain packages (particularly their
manifests, see Fig. 2) that are sourced from free and open
source software [30]. The main platform tries to be as inclu-
sive as possible, with little restrictions to contributors, while
reviews still assure quality [2]. A free market, with mostly
commercial and non-free packages in scattered third-party
repositories, complements the main platform.

Eclipse’s main platform is represented by the yearly re-
leases of the IDE. It consists of independently managed
projects following the Eclipse Development Process [10] and
is controlled by its supplier, the Eclipse Foundation. Con-
tributions of new projects undergo thorough reviews. Both
the development and variability management is distributed
in the main platform. Eclipse has a complementary free
market, mainly represented by the Eclipse Marketplace [3]
and further repositories, such as Yoxos [9] and smaller update
sites for Eclipse’s installer.

Android’s main platform comprises the OS and pre-
installed apps. While the development is distributed, the
variability management of the main platform is centralized
and fully controlled by Android’s supplier, the Google-led
Open Handset Alliance. Individual sub-projects exist, each
having a project lead (typically a Google employee [1]. Contri-
butions to the main platform are possible, but with thorough
reviews. A free market is an essential goal of Android. The
main distribution channel (Google Play store) is wide open
to third-party contributions of arbitrary applications.

5.2 Scale & Growth
We conservatively estimated main platform and free market

sizes, as shown in Table 2 and detailed in the Appendix.
eCos has the smallest main platform, comprising only

502 packages and a marginal free market. Linux is much
larger, given its support of a much wider variety of hardware.
We could not estimate the possibly large, but unorganized
free market. Debian has the most inclusive and largest
main platform in our study, given that it is relatively easy
to contribute new packages. As a result, the free market [8]
is comparatively small, half the size of the main platform.
Eclipse’s main platform and free market are both of medium
size, compared to the others. The main platform (Helios 3.6)
is three times larger than the two free market repositories [3]
and [9]. However, the whole free market might be significantly
larger, as the ecosystem is heavily scattered. Android is an
ecosystem with a free market that is over 1,000 times larger

than the main platform [6]. The main platform, which is
relatively closed and strongly filters outside contributions, is
very small with only 83 apps.

We estimated yearly growth rates of our subjects—Table 2—
by fitting an exponential growth function to the size di↵erence
between initial release and current state. Not surprisingly,
these confirm that platforms with intended free markets
(Eclipse, Android) grew considerably faster than those that
focus on the main platform (eCos, Linux,Debian).

6. MECHANISMS
In our study, we identified and characterized variability

mechanisms both from a technical (how instances vary) and
a consumer perspective (how and when consumers make
decisions). Table 3 summarizes our observations.

6.1 Variability Representation
Variability Model and Language. Linux’ and eCos’
feature-model-like [29, 15] variability models are declared
in the Kconfig and CDL language [15]. CDL was designed to
encourage contributions and allows a modularized specifica-
tion of models, distributed over individual eCos packages.
Manifest and Schema. Debian, Eclipse and Android de-
clare their variability information in text- or xml-based man-
ifests inside packaged basic units and maintained together
with it. For brevity, we do not report further details on
the modeling languages and manifest schemas, but refer to
previous work [15], Appendix, and implementation of our
analysis infrastructure.
Units, Unit Parameters, and Features. In eCos, ba-
sic units are source files with internal variability controlled
by preprocessor symbols (unit parameters) and realized via
#ifdef statements. Composite units are packages, which are
aggregations of source files, test cases, or other resources,
together with a variability model of the package. eCos’
configurator aggregates partial models into a single whole,
depending on the set of loaded packages. A feature-to-code
mapping (declared in the model) connects features with im-
plementation assets; it is used to derive a concrete instance.
Linux has two types of basic units: (1) source files with
preprocessor symbols (unit parameters) as in eCos, and (2)
loadable kernel modules that extend Linux at runtime. No
concept for composite units exists. The feature-to-code map-
ping resides in the build system [14]. Debian’s basic units
are packages—file archives with helper scripts and a mani-
fest. Composite units are realized by meta packages, whose
purpose is to aggregate other packages via dependencies.

270

Table 3: Variability Mechanisms

eCos Linux Kernel Debian Eclipse Android
Va

ri
ab

ili
ty

R
ep

re
se

nt
at

io
n Variability model feature-model-like feature-model-like N/A N/A N/A

Features packages, components,
options, interfaces

configs, choices,
menuconfigs, menus

N/A N/A N/A

Language CDL Kconfig N/A N/A N/A
Manifest (Schema) N/A N/A y (textual DSL) y (OSGI manifest) y (XML-based DSL)
Asset Base

Basic units files files, kernel modules packages bundles apps
Composite units packages N/A meta packages features N/A
Unit parameters preproc. symbols preproc. symbols debconf options properties/

preferences
N/A

Grouping and categorization variability model variability model tasks, sections,
debtags

market place
categories

app store categories

D
ec

is
io

ns

Decision lifecycle derivation derivation, reconfig. reconfiguration reconfiguration reconfiguration
Decision binding static static & dynamic dynamic dynamic dynamic

E
nc

ap
su

la
tio

n

Interface mechanisms C header files C header files package-specific Java interfaces and
OSGI manifest

explicit public
components, predef.
data formats

Interface specification documented
interfaces for
components,
e.g., drivers

documented
interfaces for
components,
e.g., drivers

package-specific,
documented policies
for some domains

explicit public
interfaces defined
by OSGI manifest

explicit public
components, predef.
data formats

In
te

ra
ct

io
ns

Managed by runtime system N/A N/A N/A Equinox OSGI Dalvik VM
Interaction mechanisms static linking static & dynamic

linking
dpkg-triggers,
documented policies

class reference,
services, extension
points

intent mechanism

Interaction binding early static early static & dynamic not specified late static & dynamic late dynamic

The tool debconf realizes unit parameters and is used by
scripts to configure the packaged software. It prompts users
to make configuration choices during package installation.
Eclipse’s basic units are OSGI bundles—dynamically load-
able modules tying together artifacts such as Java classes,
images, configuration files, and metadata. Bundles run in
a virtual machine. Unit parameters are provided by several
mechanisms, including the preference store and configuration
admin service. Composite units, called “features”, aggregate
multiple bundles with branding and update information. An-
droid is composed of apps—individual application programs
representing basic units. Most apps run in a virtual machine
(Dalvik). Android has no concept of composite units, and no
dedicated mechanism for unit parameters. Apps read global
settings from a special class or a data storage.
Grouping and Categorization. To organize units and fea-
tures, eCos and Linux use the hierarchy of their variability
models [15], whereas the open platforms rely on diverse, often
informal and distributed categorization systems. These are
integrated in the Eclipse Marketplace and Google Play. De-
bian o↵ers community-driven categorizations: Debtags [43].

6.2 Decisions
The most distinguishing characteristics of decisions we

identified are their lifecycle, binding, and tool support.
Decision Lifecycle. A decision lifecycle characterizes when
and how end users decide the presence or absence of units—
whether they derive an instance from scratch, or only re-
configure one. In Linux and eCos, users derive an instance
using configurators. In the other ecosystems, end users nor-
mally reconfigure an initial instance provided by the supplier.
Eclipse comes in one of eleven pre-instantiated editions. An
Android instance is delivered with the mobile device. A
Debian end-user usually installs a minimal system before it
can be reconfigured by installing and removing packages.

Decision Binding. Decisions can have di↵erent binding
mode and binding time. Binding mode characterizes whether
a decision can be changed. For eCos and Linux, it is static,
since these systems require to re-derive the instance for
changes. However, Linux also allows late dynamic deci-
sion binding by means of loadable kernel modules. Debian,
Eclipse and Android are dynamic as they allow basic units
or composite units to be installed and removed at run-time.

6.3 Encapsulation & Interactions
Encapsulation. Our closed platforms o↵er no encapsu-

lation concepts beyond C header files; only implementation
guidelines for interfaces of loadable kernel modules exist in
Linux. In Debian, interfaces are solely package-specific; how-
ever, Debian has policies for some domains, such as Java
libraries or Emacs extensions. Eclipse encapsulates all classes
and resources in the bundle; public functionality—Java pack-
ages, OSGi service interfaces, extension points–must be de-
clared in the manifest. Android apps can provide public
components that are described and advertised to other apps
with intent filters (see Sect. 7.1).

Interaction mechanisms and binding. Interactions
among basic units requires identifying and binding the con-
crete target. eCos and Linux use static interaction binding;
technically, all selected basic units are linked into a single
binary image. Linux also supports late dynamic interac-
tion binding through kernel modules. In Debian, interaction
binding is mostly package-specific, however, several policy
documents prescribe guidelines for interaction in some do-
mains. As a major di↵erence, the open platforms Eclipse and
Android both provide a runtime system with full control over
interactions. Eclipse o↵ers three facilities: direct class refer-
encing, extension points and services. Except for services,
interaction targets are bound late but statically—due to Java
classloader restrictions. Android provides a purely dynamic

271

facility for interaction with its intent mechanism. The in-
teraction target—specified by parameters of an intent—is
continuously reevaluated at runtime and could easily change
when apps are exchanged or reinstalled.

7. DEPENDENCIES
In our study, we identified the following mechanisms to

express dependencies and resulting dependency structures.
Table 4 summarizes the core characteristics.

7.1 Specification, Semantics & Expressiveness
eCos and Linux declare dependencies among features in

their variability models. Due to their high level of abstraction,
variability models allow flexible specification of intricate
dependency structures. This flexibility comes at the cost of
maintaining additional artifacts—variability model [31] and
feature-to-code mapping [14], which need to be coordinated.
Debian’s and Eclipse’s specification of dependencies among
basic units in manifests is more direct, but less flexible.
Android approaches the problem entirely dynamically. No
static specifications of dependencies among apps are used.
Apps can only declare to be open for interaction by setting
a flag, or defining an intent filter, stating that the app can
handle specific service requests (Appendix Sect. 5). Android’s
installer does not enforce dependencies statically; apps handle
unsatisfied dependencies at runtime.

We identified a special class of dependencies in each ecosys-
tem: dependencies on capabilities, as opposed to direct de-
pendencies. Capabilities are abstractions over functionality
provided by one or more units or features. For example,
the capability to open URLs is provided by multiple web
browsers. In Fig. 4, we detail the roles assumed by units
and capabilities in dependencies: providing and depending
on other units and capabilities; see Appendix for additional
explanation. Some platforms provide explicit capability con-
structs, such as CDL interfaces in eCos and virtual packages
in Debian (l. 5 in Fig. 2). Eclipse uses names of Java packages
as capabilities. Android provides the richest specification via
intent filters. These form a simple DSL or an ontology, which
can be used by contributors to increase reuse. Interestingly,
the community launched repositories with additional vocabu-
lary [7]. Finally, Kconfig has no explicit capability construct,
but some features in the Linux model play this role.
We also classified the dependencies by their semantics

(modality). Hard dependencies must always be satisfied.
Soft dependencies represent suggestions or defaults. Table 4
shows the keywords in the variability languages/schemas
declaring a certain type of dependency.

The constraint languages for declaring dependencies di↵er
in expressiveness. eCos’ CDL supports most operators of a
modern programming language [15]. Kconfig supports any
Boolean dependencies and equality on strings and numbers.
Notably, it uses three-state logic for dealing with loadable ker-

capabili'es

provided

by a unit

capabili'es

a unit

depends on

Capability
dependency on capability

provide capabili0es

units

a unit

depends on

units 

providing

a capability

units 

depending on

a capability
units

depending

on a unit

direct

dependency

Basic Unit /

Feature

②
④ ③

⑤⑥
①

Figure 4: Dependency Metamodel

Table 5: Dependency Statistics

eCos Linux Debian Eclipse Android

Ecosystem subset
Basic units 10231 10,3261

2,8142
28,2323 2,1054 281,0795

Features 1,244 6,308 N/A N/A N/A
LOC 302K 4,3M 782M 7,8M 433M
LOC per basic unit† 295 416 27,699 3,705 1,539

Basic units/features
W/ dependencies 99% 100% 96% 89% 69%
direct 1� 99% 100% 95% 81% 14%
to capability 3� 8% N/A 24% 27% 68%

W/ depending units 2� 42% 31% 62% 57% N/A
Providing capability 5� 10% N/A 13% 80% 100%

Dependencies 1� 3�
per basic unit/feature‡ 1 2 4 6 1

Capabilities
W/ depending units 4� 44% N/A 54% 11% N/A

1 Files 2 Loadable modules 3 Packages 4 Bundles 5 Apps
† Average ‡ Median � Numbers refer to our meta model (Fig. 4).

nel modules [15]. Debian supports any Boolean dependencies
among packages and comparisons on version ranges. Exclu-
sions are specified via conflicts and breaks, and defaults via
recommends. Debian provides even more modalities, mainly
to drive package update, replacement, and removal processes.
Eclipse supports implications, conjunctions, and version com-
parisons, but lacks negations and disjunctions. It is not easily
possible to exclude bundles or declare alternatives.

7.2 Dependency Structures
To study dependency structures, we computed cardinalities

for all association ends in our dependency meta-model (see
Fig. 4). Detailed diagrams are available in Appendix (Sect. 6).
Connectivity. The connectivity of the dependency graph
indicates the proportion of units and features for which depen-
dency information has to be maintained. The number of units
or features having direct (1� in Fig. 4) and capability-based
(3�) dependencies is surprisingly high, regardless of platform
openness. The highest is observed in Linux, where almost
all features reference others, and in eCos, where it reaches
99%. These numbers are high partly because every non-root
feature implies its parent in the model hierarchy. Still, many
features (30% in eCos, 85% in Linux) declare cross-hierarchy
dependencies. These are known to critically influence hard-
ness of reasoning both for configuration tools [33] and for
users, by introducing intricate implications of choices. No-
tably, the high percentage of cross-hierarchy dependencies
in Linux challenges assumptions about the complexity of
models made before [33]. Finally, in the open systems, most
basic units also participate in many dependencies: Debian
has the highest amount with 96%, followed by Eclipse with
89%, and Android with 69%.





























    








Figure 5: Dependencies per feature or basic unit

272

Table 4: Dependency Mechanisms

eCos Linux Kernel Debian Eclipse Android
D

ep
en

de
nc

ie
s

Direct dependency
Target features features basic units basic units basic units
Types (hard/soft) hierarchy, requires,

active_if, default,
calculated

selects, prompt
condition, default

depends, pre-depends,
recommends, breaks, con-
flicts, suggests, enhances

Require-Bundle explicit
intent

Capability-based dependency
Target CDL interfaces N/A virtual packages Java packages intent filters
Types same as direct dep. N/A same as direct dep. Import-Package implicit

intent
Common vocabulary N/A N/A N/A via API via API

Provide capabilities implements N/A provides Export-Package via intent
filter

Expressiveness any Boolean;
arithmetic & string
operations

any Boolean;
number/string
equality

any Boolean; version
comparison

conjunction &
implication; version
comparison

N/A

Density. The density of the dependency graph indicates
how much dependency information needs to be maintained
per unit or feature. To assess it, we considered the number
of dependencies per unit or feature, see Fig. 5.

Except Android, the open platforms have more dependen-
cies per unit than the others per feature. Interestingly, there
are many outliers, such as an app with 96 dependencies in
Android, a package with 323 dependencies in Debian, and a
bundle with 419 dependencies in Eclipse. Some Debian out-
liers have many soft dependencies (modalities like suggests
and recommends), although most dependencies are hard in
Debian (Appendix Sect. 6.2.2). While many Eclipse outliers
are caused by many Java package imports (capability-based
dependencies), most dependencies are direct ones on bundles
(Appendix Sect. 6.2.1).

We also investigated the reverse dependencies (2� and 4�
in Fig. 4). If units have many, they are particularly hard to
evolve, since dependencies on them are not specified directly
together with the unit. Evolution of such units can break
dependencies easily. We obtained numbers for all systems
except Android, due to limitations of our static analysis (Ap-
pendix Sect. 5.3.2). We find that the open ecosystems have
higher proportions of units being referenced (Debian: 62%,
Eclipse: 57%) than the others for features (eCos: 42%, Linux:
31%). We further notice that, particularly in Debian, 44%
of packages depend on libc6, whereas in the other subjects,
we not observed such an outstanding central unit or feature.
Capabilities Interestingly, the percentage of units or fea-
tures with direct dependencies drops significantly from eCos
with 99% to Android with only 14%. The opposite is ob-
served for capability-based dependencies, which rise from 8%
in eCos to 68% in Android. Dependencies on capabilities
increase variability (more than one web browser can fulfill
the open URL capability), decrease coupling (an app no
longer depends on a specific browser), improve flexibility and
communication among developers, since capabilities indicate
that specific functionality is available.

8. PHENOMENA & HYPOTHESES
The exploratory methodology of our study and the small

set of subjects prevent us from drawing statistically sig-
nificant conclusions. Thus, we synthesize our findings as
phenomena (facts that hold about our subjects), hypotheses
(proposed explanations), and interesting research directions
indicated by data.

Mechanisms. Mechanisms in the closed platforms are
characterized by variability models, expressive dependency
facilities, early static decision binding, and enabling fine-
grained basic units. In the open platforms, we expectedly
found easy-to-use mechanisms that promote contributions:
uniform distribution channels within a free market, asset
packaging, manifests, runtime resolution of dependencies,
highly dynamic runtimes, and interface mechanisms. We
found that a clear di↵erence between manifests and vari-
ability models is that manifests are always fully distributed,
created as individual units with bilateral relations to other
manifests, and used and evolved as individual units. In con-
trast, variability models, even if split over multiple files, are
created around a central hierarchy, and used and evolved as
a whole. Variability models with their rich languages and
the arbitrary asset mapping enable fine-grained mechanisms
and almost arbitrary cross-cutting contributions.
Organization. The existence of variability models corre-

lates with centralized variability management in our subjects
(Tables 1, 3). Although many developers can contribute code
and changes to the models, a core team must watch the
impact of changes. Notably, we made the same observation
in our recent survey of industrial variability modeling [13].

Hypothesis 1. A centralized variability model is fragile and
has to be managed centrally by a small team.

This hypothesis explains the absence of variability models
in open platforms. But whether a distributed variability
model could facilitate distributed variability management
remains an interesting research question. There is so far no
empirical evidence, since eCos has a distributed (via eCos
packages) variability model described in a rich language, but
failed to create a vibrant ecosystem of assets with distributed
variability management.

Furthermore, the organizations of development and vari-
ability management are independent. Linux’ development
process is highly distributed, while ensuring centralized vari-
ability management. This observation challenges claims [41,
42, 36] that only distributed variability management is suited
for distributed (or composition-oriented) development.
We observe di↵erent processes for contributions to the

ecosystems. The closed platforms strongly filter contribu-
tions using heavyweight processes including manual reviews,
while the open platforms o↵er lean processes through their
distribution channels. In turn, open platforms only allow
coarse-grained contributions, with Eclipse and Android ad-

273

ditionally relying on highly dynamic runtimes (virtual ma-
chines) and interface mechanisms. The following hypothesis
strives to explain this relationship:

Hypothesis 2. Closed platforms must compensate missing
guarantees of encapsulation and interface mechanisms with
heavyweight processes and strict policies to assure quality.

Dependencies. One of our most interesting findings were
capability-based dependencies. We are not aware of SPLE
literature describing such dependencies nor any academic lan-
guage supporting them. Their widespread use indicates two
important requirements for open platforms: (1) language sup-
port and (2) management of centralized stable vocabularies.
The platforms with higher proportions of capability-based
dependencies grow significantly faster. Although there are
many reasons for growth, such as business context, sheer
manpower of a vibrant community, or huge market demand,
we hypothesize that:

Hypothesis 3. A high amount of capability-based dependen-
cies positively influences growth.

For significant impact, capabilities should not just be la-
bels (Debian, Eclipse), but described in a rich DSL, similar
to intent filters (see Appendix) in Android. Further, the
fast-growing ecosystems (�80% a year) rely on dynamic de-
cision binding and service-oriented composition mechanisms,
like runtime-service lookup, download and installation. We
conjecture that these are essential for fast growth.

Variability models appear to impact dependency structures.
In closed platforms, the median of declared dependencies per
feature is lower than per basic unit in the open platforms.
This phenomenon is seen across the subject spectrum without
Android, which does not declare dependencies. Variability
models let developers optimize and collapse implementation-
level dependencies, while the coordination cost for these
activities in a distributed setting may be too high. Still, there
can be other reasons for the lower number of dependencies
in the systems with variability models, so this controversial
observation requires further research.

Variability Management Research. Recall that vari-
ability management aims at taming variability. The accu-
mulation of new activities of very di↵erent nature in open
platforms calls for a new discipline in variability research:
Variability Encouragement. Verifying its underlying activ-
ities, such as maintaining capability vocabularies and pro-
cesses with little restrictions on contributions, and relating
them to known software engineering practices constitutes
follow-up research.

9. THREATS TO VALIDITY
External Validity. We have purposely selected heteroge-

neous ecosystems to increase the generality of our conclusions.
Although being among the largest and most successful, they
might not be representative for each class. We mitigate this
threat by using an exploratory research method: instead
of testing hypotheses, we record observed phenomena and
generate hypotheses. We limit data sources to reliable docu-
ments, freely available source code, and tools. Confronting
our results with other data, such as interviews, would be
valuable future work.

Internal Validity. In the quantitative analysis, some
numbers are estimated using interpolations and safe assump-
tions (lower bounds) and may be inaccurate. We address
this threat by providing data sets, details on data sources,

additional diagrams, and our analysis tools in an Appendix.
Dependencies seem di�cult to compare between closed and
open platforms. Furthermore, Android does not declare
dependencies; it is not clear whether our extracted dependen-
cies are comparable to declared ones. In fact, it is subject of
ongoing research whether these are generally comparable or
not. Therefore, we avoid comparing dependency numbers for
Android to other systems. Further, the Debian and Eclipse
analysis disregards dependencies on particular unit versions,
which may impact accuracy. We believe this simplification is
acceptable, as such dependencies are mainly used to assist
system upgrades, not addressed by us. Still, all these num-
bers indicate scalability requirements for tools. In that sense
(algorithmic hardness), they are useful standalone and, to a
large extent, comparable.

10. RELATED WORK
Barbosa et al. [12] review publications on software ecosys-

tems using a systematic mapping study. They confirm that
ecosystem are technical constructs, related to open source
software and SPLE. Bosch [16] contributes a taxonomy of
software ecosystems, which is applicable to all our subjects.
He emphasizes economical incentives that ecosystems o↵er,
such as value and attractiveness for users, collaboration,
and the practical scalability of ecosystems. McGregor [32]
discusses transactions between organizations participating
in an ecosystem, their strategic and economic advantages,
and possible risks, for example resulting from an unplanned
scope. Gurp et al. [42] analyze development processes used
by Eclipse and Debian and show that their development can
be performed successfully using practices not seen in SPLE.
Messerschmitt et al. [34] characterize software ecosystems
according to their context. They identify stakeholders and
their interests and views on software systems. All these
works aim at understanding the various forms of ecosystems
that arose. We extend this research by empirically analyz-
ing two classes of ecosystems (closed and open platforms)
that allow automatic derivation of instances. Furthermore,
we look closer into technical aspects, and relating them to
organizational structures.
Jansen et al. [26] present a research agenda for software

ecosystems, proposing to study ecosystems such as MySQL/
PHP, Microsoft Windows, and iPhone apps. We deliver on
this agenda by investigating similar systems. They announce
the characterization and modeling of software ecosystems
as a main challenge. Kabbedijk et al. [28] study defining
characteristics of open-source ecosystems, using Ruby, which
also uses manifests, as a reference. They focus on the role
of developers and basic units (gems). Our framework uses
di↵erent study subjects and includes more concepts. Seidl
et al. [38] model the evolution of assets in a software ecosys-
tem. The develop a metamodel focusing on versioning and
versioned dependencies and discuss possible analysis on top
of metamodel instances. Their focus is di↵erent from ours,
we focus on mechanisms and ecosystem organization. Cosmo
et al. [20] and Galindo et al. [24] show that subsets of vari-
ability models can easily be converted into a Debian package
structure with manifest files and back. Schmid [36] compares
Debian package manifests and Eclipse bundle manifests with
FODA feature models [29]. We see our study as an extension
to this research. However, our work is both qualitative and
quantitative, analyzing large ecosystem subsets. We also
develop hypotheses that explain interesting observations.

274

11. CONCLUSIONS
With our exploratory study of five successful ecosystems

with closed and open platforms, we took one, but self-
contained step towards building a theory that explains vari-
ability mechanisms in ecosystems. We contribute a concep-
tual framework about variability in ecosystems, and phe-
nomena and hypotheses that have practical implications for
project management, architecture, and tool support. Among
others, we observe that closed platforms allow almost ar-
bitrary changes, but need heavyweight processes to assure
quality; that variability models are too fragile for distributed
variability management; that open platforms with vibrant
free markets imply strictly controlled main platforms and
capability-based dependencies. These rely on a centralized
and a stable vocabulary. Finally, the mechanisms found in
open platforms call for research on variability encouragement.

12. REFERENCES
[1] Android Open Source Project – People and Roles.

http://source.android.com/source/roles.html.
[2] Debian policy. http://debian.org/doc/debian-policy.
[3] Eclipse marketplace. http://marketplace.eclipse.org.
[4] eCos. http://ecos.sourceware.org/.
[5] eCos and RedBoot based products showcase.

http://ecoscentric.com/ecos/examples.shtml.
[6] Number of available Android applications.

http://appbrain.com/stats/number-of-android-apps.
[7] OpenIntents. http://openintents.org.
[8] Uno�cial Debian Repositories. http://apt-get.org.
[9] Yoxos on Demand. http://ondemand.yoxos.com.

[10] Eclipse Development Process. http://eclipse.org/projects/
dev_process/development_process_2010.pdf, 2011.

[11] Some development model notes.
http://lwn.net/Articles/108484, May 2011.

[12] O. Barbosa and C. Alves. A systematic mapping study
on software ecosystems. In IWSECO, 2011.

[13] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,
K. Czarnecki, and A. W ,asowski. A survey of variability
modeling in industrial practice. In VaMoS, 2013.

[14] T. Berger, S. She, K. Czarnecki, and A. W ,asowski.
Feature-to-Code mapping in two large product lines. In
SPLC, 2010.

[15] T. Berger, S. She, R. Lotufo, A. W ,asowski, and
K. Czarnecki. Variability modeling in the real: A
perspective from the operating systems domain. In
ASE, 2010.

[16] J. Bosch. From software product lines to software
ecosystems. In SPLC, 2009.

[17] C. Burkard, T. Widjaja, and P. Buxmann. Software
ecosystems. Wirtschaftsinformatik, 54, 2012.

[18] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[19] J. Corbet, G. Kroah-Hartman, and A. McPherson.
Linux kernel development. https://www.linuxfoundation.org/
sites/main/files/lf_linux_kernel_development_2010.pdf, 2010.

[20] R. D. Cosmo and S. Zacchiroli. Feature diagrams as
package dependencies. In SPLC, 2010.

[21] K. Czarnecki and U. W. Eisenecker. Generative
Programming. Addison-Wesley, 2000.

[22] S. Easterbrook, J. Singer, M.-A. Storey, and
D. Damian. Selecting empirical methods for software

engineering research. In Guide to Advanced Empirical
Software Engineering. Springer, 2008.

[23] K. M. Eisenhardt and M. E. Graebner. Theory building
from cases: Opportunities and challenges. Academy of
management journal, 50(1):25–32, 2007.

[24] J. A. Galindo, D. Benavides, and S. Segura. Debian
packages repositories as Software Product Line models.
In ACoTA, 2010.

[25] IT Radar. Software ecosystems - interview with slinger
jansen. http://www.it-radar.org/serendipity/uploads/transkripte/
SECO-Transcript_I.pdf, 2012.

[26] S. Jansen, A. Finkelstein, and S. Brinkkemper. A sense
of community: A research agenda for software
ecosystems. 2009.

[27] M. Jørgensen and D. Sjøberg. Generalization and
theory-building in software engineering research. In
EASE’04, at ICSE’04, 2004.

[28] J. Kabbedijk and S. Jansen. Steering Insight: An
Exploration of the Ruby Software Ecosystem. In
ICSOB, LNBIP, 2011.

[29] K. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical report, CMU, 1990.

[30] M. Kra↵t. TheDebian System. Open SourcePress, 2005.
[31] R. Lotufo, S. She, T. Berger, K. Czarnecki, and

A. W ,asowski. Evolution of the Linux kernel variability
model. In SPLC, 2010.

[32] J. D. McGregor. Ecosystems, continued. Journal of
Object Technology, 8(7), 2009.

[33] M. Mendonca, A. W ,asowski, and K. Czarnecki.
Sat-based analysis of featuremodels is easy. In SPLC,
2009.

[34] D. G. Messerschmitt and C. Szyperski. Software
Ecosystem: Understanding an Indispensable Technology
and Industry. MIT Press, 2003.

[35] A. Mockus, R. T. Fielding, and J. Herbsleb. A case
study of open source software development: the apache
server. In ICSE, 2000.

[36] K. Schmid. Variability modeling for distributed
development - a comparison with established practice.
In SPLC. 2010.

[37] K. Schmid, R. Rabiser, and P. Grünbacher. A
comparison of decision modeling approaches in product
lines. In VaMoS, 2011.

[38] C. Seidl and U. Assmann. Towards modeling and
analyzing variability in evolving software ecosystems.
In VaMoS, 2013.

[39] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and
O. Spinczyk. Is the Linux Kernel a Software Product
Line? In SPLC-OSSPL, 2007.

[40] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, 2002.

[41] J. Van Gurp and C. Prehofer. From SPLs to Open,
Compositional Platforms. In Dagstuhl Seminar 08142,
2008.

[42] J. van Gurp, C. Prehofer, and J. Bosch. Comparing
practices for reuse in integration-oriented software
product lines and large open source software projects.
SPE, 2010.

[43] E. Zini. A cute introduction to debtags. In 5th annual
Debian Conference, volume 10, page 17, 2005.

275

276

B Multi-language Software
Systems on GitHub

277

Objec&ve(C;(6%(

nu;(60%(C;(4%(

Lisp;(1%(

PList;(5%(
Assembly;(1%(

Ruby;(1%(
xcscheme;(2%(

Bourne(Shell;(2%(

nib;(5%(

make;(1%(

xclangspec;(
1%(

HTML;(1%(Rich(Text;(1%(
xcspec;(1%(

CSS;(1%(
strings;(1%(

pch;(
1%(
C/C++(Header;(5%(

(a) Nu https:// github.com/ timburks/ nu

Javascript;+78%+

HTML;+20%+

CSS;+1%+
YAML;+1%+

(b) Prototype https:// github.com/ sstephenson/ prototype

C/C++$Header;$77%$

Bourne$Shell;$1%$

C++;$4%$
Perl;$0%$

m4;$0%$

C;$1%$
Javascript;$0%$

HTML;$1%$Python;$0%$

CSS;$0%$

YAML;$0%$
Ruby$
HTML;$
0%$

make;$
0%$

Ruby;$14%$

XML;$0%$

(c) Passanger https:// github.com/ FooBarWidget/ passenger

Figure B.1: The twelve most
interesting projects on GitHub and

the constituting programming
languages

278

https://github.com/timburks/nu
https://github.com/sstephenson/prototype
https://github.com/FooBarWidget/passenger

Javascript;+12%+

HTML;+86%+

Ruby;+1%+
CSS;+1%+

(a) Scriptacolous https:// github.com/ madrobby/ scriptaculous

Ruby;&88%&

Javascript;&2%&

HTML;&1%&

SQL;&0%&

yacc;&0%&

CoffeeScript;&
0%&

CSS;&2%&
YAML;&7%&

(b) Rails https:// github.com/ rails/ rails

Javascript;+89%+

HTML;+5%+
PHP;+1%+ YAML;+4%+

Bourne+Shell;+1%+

(c) mootools-core https:// github.com/ mootools/ mootools-core

Figure B.2: The twelve most
interesting projects on GitHub and

the constituting programming
languages (continued from

Figure B.1)

279

https://github.com/madrobby/scriptaculous
https://github.com/rails/rails
https://github.com/mootools/mootools-core

HTML;&45%&

Ac,onScript;&42%&

XML;&10%&

CSS;&1%&
MXML;&1%&
Javascript;&1%&

(a) Restfulx https:// github.com/ dima/ restfulx

xib;%
3%%

Objec,ve%C;%29%%

Javascript;%4%%
C/C++%Header;%33%%

nib;%12%%

CSS;%4%%

HTML;%4%%

PList;%4%%

Objec,ve%C+
+;%2%%

Ruby;%2%%
XML;%1%%C;%1%%

pch;%1%%

(b) GitX https:// github.com/ pieter/ gitx

Objec&ve(C;(44%(

xib;(3%(

C/C++(Header;(45%(

PList;(4%(

Ruby;(2%(pch;(
2%(

(c) asi-http-request https:// github.com/ pokeb/ asi-http-request

Figure B.3: The twelve most
interesting projects on GitHub and

the constituting programming
languages (continued from

Figure B.2)

280

https://github.com/dima/restfulx
https://github.com/pieter/gitx
https://github.com/pokeb/asi-http-request

C;#23%#

Bourne#Shell;#54%#

Tcl/Tk;#3%#

Python;#1%#

make;#
2%#

Bourne#Again#Shell;#
0%#

Lisp;#0%#

m4;#0%#
ASP.Net;#1%#

CSS;#0%#

Javascript;#0%#

Perl;#5%#
Go;#0%#PHP;#0%#

Assembly;#0%#

XSLT;#0%#

C/C++#
Header;#
9%#

C#Shell;#0%#
PList;#0%#

(a) Git https:// github.com/ git/ git

Javascript;+87%+

HTML;+13%+

(b) Raphael https:// github.com/ DmitryBaranovskiy/ raphael

xib;%
6%%

Objec,ve%J;%54%%

Javascript;%4%%

PList;%11%%

Objec,ve%
C;%2%%

nib;%0%%CSS;%0%%
C/C++%
Header;%
3%%

Python;%0%%
Bourne%Shell;%1%%Lisp;%0%%
Rich%Text;%0%%vim%script;%0%%

Ruby;%0%%

Bourne%Again%Shell;%0%%

strings;%0%%

pch;%0%%

YAML;%0%%

HTML;%18%%

(c) Cappucino https:// github.com/ cappuccino/ cappuccino

Figure B.4: The twelve most
interesting projects on GitHub and

the constituting programming
languages (continued from

Figure B.3)

281

https://github.com/git/git
https://github.com/DmitryBaranovskiy/raphael
https://github.com/cappuccino/cappuccino

