

The Necessary Death of the Block Device Interface

Matias Bjørling, IT University of Copenhagen
Philippe Bonnet, IT University of Copenhagen
Luc Bouganim, INRIA and U.Versailles
Niv Dayan, IT University of Copenhagen

IT University Technical Report Series TR-2012-159

ISSN 1600-6100 August, 2012

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50527413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyrigth  2012, Matias Bjørling, Philippe Bonnet, Luc Bouganim, Niv Dayan

 IT University of Copenhagen
 All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

 ISSN 1600-6100

 ISBN 978-87-7949-264-6

Copies may be obtained by contacting:

 IT University of Copenhagen
 Rued Langgaards Vej 7
 DK – 2300 Copenhagen S
 Denmark

 Telephone: +45 72 18 50 00
 Telefax: +45 72 18 50 01
 Web: www.itu.dk

The Necessary Death of the Block Device Interface
Matias	
 Bjørling1, Philippe Bonnet1, Luc Bouganim2,3, Niv	
 Dayan1

1 IT University of Copenhagen
Copenhagen, Denmark

{mabj,phbo,nday}@itu.dk

2 INRIA Paris-Rocquencourt
Le Chesnay, France

Luc.Bouganim@inria.fr

3 PRISM Laboratory
Univ. of Versailles, France

Luc.Bouganim@prism.uvsq.fr

ABSTRACT
Solid State Drives (SSDs) are replacing magnetic disks as
secondary storage for database management as they offer
orders of magnitude improvement in terms of bandwidth
and latency. In terms of system design, the advent of SSDs
raises considerable challenges. First, the storage chips,
which are the basic component of a SSD, have widely
different characteristics – e.g., copy-on-write, erase-before-
write and page-addressability for flash chips vs. in-place
update and byte-addressability for PCM chips. Second,
SSDs are no longer a bottleneck in terms of IO latency
forcing streamlined execution throughout the I/O stack to
minimize CPU overhead. Finally, SSDs provide a high
degree of parallelism that must be leveraged to reach
nominal bandwidth. This evolution puts database system
researchers at a crossroad. The first option is to hang on to
the current architecture where secondary storage is
encapsulated behind a block device interface. This is the
mainstream option both in industry and academia. This
leaves the storage and OS communities with the
responsibility to deal with the complexity introduced by
SSDs in the hope that they will provide us with a robust,
yet simple, performance model. In this paper, we show that
this option amounts to building on quicksand. We illustrate
our point by debunking some popular myths about flash
devices and pointing out mistakes in the papers we have
published throughout the years. The second option is to
abandon the simple abstraction of the block device
interface and reconsider how database storage manager,
operating system drivers and SSD controllers interact. We
give our vision of how modern database systems should
interact with secondary storage. This approach requires a
deep re-design of the database system architecture, which is
the only viable option for database system researchers to
avoid becoming irrelevant.

INTRODUCTION
For the last thirty years, database systems have relied on
magnetic disks as secondary storage [19]. Today, the
growing performance gap between processors and magnetic
disk is pushing solid-state drives (SSDs) as replacements
for disks [11]. SSDs are based on non-volatile memories
such as flash and PCM (Phase-Change memory). They
offer great performance at an ever-decreasing cost. Today,
tens of flash chips wired in parallel behind a safe cache
deliver hundreds of thousands accesses per second at a
latency of tens of microseconds. Compared to modern hard

disks, this is a hundredfold improvement in terms of
bandwidth and latency, at ten-times the cost. New SSD
technologies, such as PCM, promise to keep on improving
performance at a fraction of the cost.
It has now been six years since Jim Gray pointed out the
significance of flash-based SSDs. Has a new generation of
database systems emerged to accommodate those profound
changes? No. Is a new generation of database systems
actually needed? Well, the jury is up. There are two schools
of thoughts:
• The conservative approach, taken by all database

constructors, and many in the research community, is
to consider that the advent of SSDs does not require
any significant re-design. The fact that SSDs offer the
same block device interface as magnetic disks allows
preserving existing database systems and running them
unchanged on SSDs (slight adaptations being sold as
SSD-optimizations). A fraction of radical
conservatives ignore SSDs and keep on writing articles
and grant proposals based on disks, as if we were in
the 90s (How will they teach about database systems
in five years, when none of their bachelor students has
ever seen a disk?). More moderate conservatives,
focusing on storage management, consider that
database systems have to be redesigned on top of the
block device interface, based on the new performance
characteristics of SSDs. The hope is that the storage
and operating system communities provide a robust,
yet simple, performance model for the new generation
of storage devices.

• The progressive approach is to consider that the advent
of SSDs, and non-volatile memories more generally,
requires a complete re-thinking of the interactions
between database system, operating system and storage
devices. The argument is that SSDs challenge the strict
layering established between these components on the
basis of a simple performance contract, e.g., sequential
access is no longer orders of magnitude faster than
random access, SSDs are no longer the bottleneck in
terms of latency, SSDs require a high-level of
parallelism, SSDs do not constitute a homogeneous
class of devices (as opposed to disks). This approach,
that requires a deep cross layer understanding, is
mainstream in the operating system and storage
research communities [7,9,13]; not yet in the database
systems research community.

The premise of the conservative approach is that the block
device interface should be conserved as a robust abstraction
that allows the operating system to hide the complexity of
I/O management without sacrificing performance. We
show, in Section 2, that this assumption does not hold;
neither for flash-based nor for PCM-based devices. Worse,
we show that it leads to brittle research based on myths
rather than sound results. We debunk a few of these myths,
illustrating our points with mistakes published in the
articles we have written throughout the years.
In Section 3, we present the challenges that SSDs and non-
volatile memories raise in terms of system design and
discuss how they impact database systems. We present our
vision of the necessary collaboration between database
storage manager and operating system.
Note that we do not dispute that the conservative approach
is economically smart. Neither do we ignore the fact that
disks still largely dominate the storage market or that the
block device interface will live on as a legacy for years.
Our point is that the advent of SSDs and non-volatile
memories has a deep impact on system design, and that we,
as database systems researchers, must re-visit some grand
old design decisions and engage with the operating system
and storage communities in order to remain relevant.

THE CASE AGAINST THE BLOCK
DEVICE INTERFACE
SSD MYTHS
Even if the block device interface has been challenged for
some years [18], these critics have had, so far, a limited
impact. For instance, all research papers published in the
database community, proposing new storage models,
indexing methods or query execution strategies for flash
devices still build on the premise of SSDs encapsulated
behind a block device interface [5]. All of these approaches
assume, more or less explicitly, a simple performance
model for the underlying SSDs. The most popular
assumptions are the following:
• SSDs behave as to the non-volatile memory they

contain: Before flash-based SSDs became widely
available, there was a significant confusion between
flash memory and flash devices. Today, we see a
similar confusion with PCM.

• On flash-based SSDs, random writes are extremely
costly and should be avoided: This was actually always
true for flash devices on the market before 2009.
Moreover, this rule makes sense after a quick look at
flash constraints and SSD architecture. Many thus
propose to avoid random writes using buffering and
log-based strategies.

• On flash-based SSDs, reads are cheaper than writes:
Again this seems to make sense because, (1) reads on
flash chips are much cheaper than writes (the so-called
program operations); (2) flash chip constraints impact
write operations (need for copy-on-write as in-place
updates are forbidden on a flash chip). Some proposals

are built on this rule, making aggressive use of random
read IOs.

We will show in Section 2.3 that these assumptions about
(flash-based) SSDs are plain wrong, but first, let us review
the internals of a flash-based IO stack -- from flash chips to
the OS block layer.

I/O STACK INTERNALS
A point that we would like to carry across is that we, as
database researchers, can no longer consider storage
devices as black boxes that respect a simple performance
contract. We have to dig into their internals in order to
understand the impact of these devices on system design.
Here is a bottom up review of the IO stack with flash-based
SSDs. We discuss PCM in Section 2.4.
Flash chip: A flash chip is a complex assembly of a huge
number of flash cells1, organized by pages (512 to 4096
bytes per page), blocks (64 to 256 pages per block) and
sometimes arranged in multiple planes (typically to allow
parallelism across planes). Operations on flash chips are
read, write (or program) and erase. Due to flash cells
characteristics, these operations must respect the following
constraints: (C1) reads and writes are performed at the
granularity of a page; (C2) a block must be erased before
any of the pages it contains can be overwritten; (C3) writes
must be sequential within a block; (C4) flash chips support
a limited number of erase cycles. The trends for flash
memory is towards an increase (i) in density thanks to a
smaller process (today 20nm), (ii) in the number of bits per
flash cells, (iii) of page and block size, and (iv) in the
number of planes. Increased density also incurs reduced
cell lifetime (5000 cycles for triple-level-cell flash), and
raw performance decreases. For now, this lower
performance can be compensated by increased parallelism
within and across chips. At some point though, it will be
impossible to further reduce the size of a flash cell. At that
point, PCM might be able to take over and still provide
exponential growth in terms of density.
Flash SSD: A flash-based SSD contains tens of flash chips
wired in parallel to the SSD controller though multiple
channels. Flash chips are decomposed into logical units
(LUN). LUNs are the unit of operation interleaving, i.e.,
operations on distinct LUNs can be executed in parallel,
while operations on a same LUN are executed serially. We
consider that SSD performance is channel-bound if
channels are the bottleneck and IOs wait for a channel to be
available before they can be executed. SSD performance is
chip-bound if chip operations are the bottleneck and IOs
wait for a chip operation to terminate before they can be
executed. Figure 1 illustrates these notions on an example.

1 See [5] for a discussion of flash cells internals.

Page program

Page program

Page program

Page program

chip bound Channel bound

Four parallel reads Four parallel writes

chip1
chip2
chip3
chip4

Page
transfer

Page
read

Command

chip bound

Figure 1: Example of channel transfer and chip operations
on four chips (we assume 1 LUN per chip) attached to the
same channel.

SSD controller: The SSD controller embeds the so-called
Flash Translation Layer (FTL) that maps incoming
application IOs –a read, a write or a trim2 on a logical block
address (LBA)– into flash chip operations. As illustrated on
Figure 2, FTL is responsible for:
• Scheduling & Mapping: The FTL provides a

virtualization of the physical address space into a
logical address space. This mapping is done at the page
(and possibly block) level. The FTL implements out-of-
place updates (copy-on-write) to handle C2 and C3. It
also handles chip errors and deals with parallelism
across flash chips. While each read (resp. trim)
operation is mapped onto a specific chip, each write
operation can be scheduled on an appropriate chip.

Figure 2: Internal architecture of a SSD controller
• Garbage Collection: Each update leaves an obsolete

flash page (that contains the before image). Over time
such obsolete flash pages accumulate, and must be
reclaimed through garbage collection.

• Wear Leveling: The FTL relies on wear-leveling to
address C4--distributing the erase counts across flash
blocks and masking bad blocks.

Note that both the garbage collection and wear leveling
modules read live pages from a victim block and write
those pages (at a location picked by the scheduler), before
the block is erased. The garbage collection and wear
leveling operations thus interfere with the IOs submitted by
the applications.
OS Driver: SSDs are not directly accessible from the CPU;
the operating system provides a driver that manages
communications to and from the device. Most SSDs
implement a SATA interface and are accessed via the
generic SATA driver. Some high-end SSDs (e.g., ioDrive
from FusionIO) are directly plugged on the PCI bus. They
provide a specific driver, which implements part of the
SSD controller functionalities (leveraging CPU and RAM
on the server to implement part of the FTL).
Block Layer: The block layer provides a simple memory
abstraction. It exposes a flat address space, quantized in
logical blocks of fixed size, on which I/O (read and write)
requests are submitted. I/O requests are asynchronous.
When an I/O request is submitted, it is associated to a

2 The Trim command has been introduced in the ATA interface standard
to communicate to a flash device that a range of LBAs are no longer used
by an application

completion queue. A worker thread then sends a page
request to the disk scheduler. When the page request
completes, an interrupt is raised (within the device driver),
and the I/O request completes. In the last few years, the
Linux block layer has been upgraded to accommodate
SSDs and multi-cores. CPU overhead has been reduced– it
was acceptable on disk to reduce seeks –, lock contention
has been reduced, completions are dispatched on the core
that submitted the request, and currently, the management
of multiple IO queues for each device is under
implementation.
Is it still reasonable to hide all this complexity behind a
simple memory abstraction? Let us now revisit the
performance assumptions popular in the database
community.

DEBUNKING SSD MYTHS
(1) SSDs behave as to the non-volatile memory they contain.
Hopefully, the previous section will have made it very clear
that this statement is not true. We pointed out this
confusion in [6]. Still, two years later, we proposed a
bimodal FTL that exposed to applications the constraints of
a single flash chip [4]. We ignored the intrinsic parallelism
of SSDs and the necessary error management that should
take place within a device controller. Exposing flash chip
constraints through the block layer, as we proposed, would
in effect suppress the virtualization of the physical flash
storage. This would limit the controller’s ability to perform
garbage collection and wear leveling (as it could not
redirect the live pages of a victim block onto other chips)
and its ability to deal with partial chip failures. It would
also put a huge burden on the OS block layer if the
application aimed at efficiently leveraging SSD parallelism
by scheduling writes on multiple chips. Today, papers are
published that attribute the characteristics of a phase-
change memory chip to a SSD, thus ignoring that
parallelism and error management must be managed at the
SSD level.
(2) On flash-based SSDs, random writes are very costly
and should be avoided.
While this statement was true on early flash-based SSDs, it
is no longer the case [2,3,5]. There are essentially two
reasons why a flash-based SSD might provide random
writes which are as fast as, or even faster than sequential
writes. First, high-end SSDs now include safe RAM buffers
(with batteries), which are designed for buffering write
operations. Such SSDs provide a form of write-back
mechanism where a write I/O request completes as soon as
it hits the cache. Second, modern SSD can rely on page
mapping, either because mapping is stored in the driver
(without much RAM constraints), or because the controller
supports some form of efficient page mapping cache (e.g.,
DFTL [10]). With page mapping, there are no constraints
on the placement of any write – regardless of whether they
are sequential or random. Thus a controller can fully
benefit from SSD parallelism when flushing the buffer
regardless of the write pattern! An interesting note is that
random writes have a negative impact on garbage

chip
chip
chip
…

chip
chip
chip
…

chip
chip
chip
…

chip
chip
chip
…

Read
Write
Trim

Lo
gi

ca
l a

dd
re

ss
 s

pa
ce

P
hy

si
ca

l a
dd

re
ss

 s
pa

ce Scheduling
& Mapping

Wear
Leveling Garbage

collection

Shared Internal
data structures

Read
Program

Erase

Flash memory array

collection, as locality is impossible to detect for the FTL.
As a result, pages that are to be reclaimed together tend to
be spread over many blocks (as opposed to sequential
writes where locality is easy to detect). Quantifying these
effects is a topic for future work. To sum up, the difference
between random writes and sequential writes on flash-
based SSDs is rather indirect. We completely missed that
point in [4], where we ventured design hints for SSD-based
system design.
(3) On flash-based SSDs, reads are cheaper than writes.
While at the chip level reads are much faster than writes, at
the SSD level this statement is not necessarily true. First,
for reads, any latency or delay in the execution leads to
visible latency in the application. It is not possible to hide
this latency behind a safe cache, as it is the case for writes.
So if subsequent reads are directed to a same LUN and, if
that LUN or the associated channel is busy, then the read
operation must wait (e.g., wait 3ms for the completion of
an erase operation on that LUN)! Third, reads will benefit
from parallelism only if the corresponding writes have been
directed to different LUNs (on different channels). As we
have seen above, there is no guarantee for this. Fourth,
reads tend to be channel-bound --while writes tend to be
chip-bound --, and channel parallelism is much more
limited than chip parallelism.

DISCUSSION
It is unlikely that the complexity of flash-based SSDs can
be tamed into a simple performance model behind the
block device interface. So what should we do? An option is
to wait for the OS and storage communities to define such a
model. In the meantime, we should stop publishing articles
based on incorrect assumptions. Another option is to skip
the complexity of flash-based SSDs and wait for PCM to
take over, as the characteristics of PCM promise to
significantly reduce complexity (in-place updates, no
erases, on-chip error detection, no need for garbage
collection). First, there is a large consensus that PCM chips
should be directly plugged onto the memory bus (because
PCM is byte addressable and exhibits low latency) [8,16].
The capacity of each PCM chip is unlikely to be much
larger than RAM chips. That still leaves us with the
problem of secondary storage. Second, PCM is likely to be
integrated into flash-based SSDs, i.e., to expand buffer
capacity and performance. As a result, flash-based SSDs
are unlikely to disappear any time soon. Third, even if we
contemplate pure PCM-based SSDs [1], the issues of
parallelism, wear leveling and error management will likely
introduce significant complexity. Also, PCM-based SSDs
will not make the issues of low latency and high-
parallelism disappear. More generally, PCM and flash mark
a significant evolution of the nature of the interactions
between CPU, memory (volatile as well as non-volatile)
and secondary storage. This is an excellent opportunity to
revisit how database systems interact with secondary
storage.

SECONDARY STORAGE REVISITED
For years, we have assumed that persistence was to be
achieved through secondary storage, via a memory
abstraction embodied by the block device interface. The
advent of flash and PCM force us to reconsider this
assumption:
1. We can now achieve persistence through PCM-chips plugged

on the memory bus and directly addressable by the CPU [7],
in addition to secondary storage, composed of SSDs.

2. Flash-based SSDs are no longer accessed via a strict memory
abstraction. The TRIM command has been added to read and
write to make it possible to applications to communicate to a
SSD that a range of logical addresses were no longer used
and could thus be un-mapped by the FTL. SSD constructors
are now proposing to expose new commands, e.g., atomic
writes [17], at the driver’s interface. More radically,
FusionIO is now proposing direct access to its driver, entirely
bypassing the block layer (ioMemory SDK). The point here
is that the block device interface provides too much
abstraction in the absence of a simple performance model.

This evolution forces us to re-visit the nature of persistence in
database systems. We see three fundamental principles:
• We should keep synchronous and asynchronous patterns

separated, as Mohan suggested [16]. Until now, database
storage managers have implemented conservative
asynchronous I/O submission policies to account for
occasional synchronous I/Os [13]. Instead synchronous
patterns (log writes, buffer steals under memory pressure)
should be directed to PCM-based SSDs via non-volatile
memory accesses from the CPU, while asynchronous
patterns (lazy writes, prefetching, reads) should be directed
to flash-based SSDs via I/O requests.

• We should abandon the memory abstraction in favor of a
communication abstraction to manage secondary storage, as
we suggested in [4]. The consequence is that (a) the database
system is no longer the master and secondary storage a slave
(they are communicating peers), and (b) the granularity of
interactions is not limited to blocks. This has far reaching
consequences on space allocation and naming (extent-based
allocation is irrelevant, nameless writes are interesting), the
management of log-structured files (which is today handled
both at the database level and within the FTL), the
management of interferences between I/Os, garbage
collection and wear leveling. Interestingly, Jim Gray noted in
[11] that RAM locality is king. An extended secondary
storage interface would allow us to efficiently manage
locality throughout the I/O stack.

• We should seek inspiration in the low-latency networking
literature. Secondary storage is no longer a bottleneck in
terms of latency, and it requires parallelism to reach nominal
bandwidth. A similar evolution has been witnessed for some
years in the networking community, where the developments
of network cards, and the advent of 10/40/100 GB Ethernet,
forced them to tackle the problems caused by low-latency.
The solutions they explored including cross-layer design,
shared memory, and FPGAs are very much relevant in the
context of a re-designed I/O stack, all the way to a database
system. Major differences include the need to manage state
for I/O completion and the need to handle small requests.

Note that any evolution of the role of secondary storage
will take place in the context of multi-core CPUs. So, the
staging architecture [12], based on the assumption that all

data is in-memory, should be the starting point for our
reflection.
Why don’t we let the OS community redefine the IO stack?
Well, they are not waiting for us. Proposals are flourishing
for PCM-based [1,9,7], flash-based [14] and even database
storage [15] systems. Note that these approaches are based
on actual storage hardware and complete system design.
We argue that it is time for database system researchers to
engage other systems communities to contribute to the on-
going re-design of the I/O stack and re-think the role of
persistence in database systems.

CONCLUSION
In this paper, we established that the database systems
research community has a flash problem. We argued that
the high-level of abstraction provided by the block device
interface is a significant part of the problem. We joined the
choir of those who preach a re-design of the architecture of
(single-site) database systems. We argued that we ignore
the evolution of secondary storage at our own peril. First,
because some of the assumptions we are making are myths
rather than sound results. Second, because the on-going re-
design of the I/O stack is an opportunity for intriguing
research.

REFERENCES
[1] A. Akel, A. Caulfield, T.Mollov, R.Gupta, S. Swanson. Onyx: A

Prototype Phase Change Memory Storage Array. HotStorage 2011.
[2] M. Bjørling, P. Bonnet, L. Bouganim, and B. T. Jònsson.

Understanding the energy consumption of flash devices with uFLIP.
IEEE Data Eng. Bull., December, 2010.

[3] M. Bjørling, L. L. Folgoc, A. Mseddi, P. Bonnet, L. Bouganim, and
B. Jònsson. Performing sound flash device measurements: some
lessons from uFLIP. SIGMOD Conference, 2010.

[4] P. Bonnet and L. Bouganim. Flash Device Support for Database
Management. CIDR, 2011.

[5] P. Bonnet, L. Bouganim, I. Koltsidas, S. Viglas. System Co-Design
and Data Management for Flash Devices. VLDB 2011.

[6] L. Bouganim, B. T. Jònsson, and P. Bonnet. uFLIP: Understanding
flash I/O patterns. CIDR, 2009.

[7] A. Caulfield, T. Mollov, L. Eisner, A. De, J. Coburn, S. Swanson:
Providing safe, user space access to fast, solid state disks. ASPLOS
2012.

[8] S. Chen, P. Gibbons, S. Nath: Rethinking Database Algorithms for
Phase Change Memory. CIDR 2011.

[9] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C. Lee, D. Burger,
D. Coetzee: Better I/O through byte-addressable, persistent memory.
SOSP 2009.

[10] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash translation layer
employing demand-based selective caching of page-level address
mappings. In ASPLOS, 2009.

[11] J. Gray. Tape is dead, disk is tape, flash is disk, RAM locality is
king. Pres. at the CIDR Gong Show, Asilomar, CA, USA, 2007.

[12] Stavros Harizopoulos, Anastassia Ailamaki: A Case for Staged
Database Systems. CIDR 2003

[13] Christoffer Hall, Philippe Bonnet: Getting Priorities Straight:
Improving Linux Support for Database I/O. VLDB 2005.

[14] H. Lim, B. Fan, D. Andersen, M. Kaminsky: SILT: a memory-
efficient, high-performance key-value store. SOSP 2011

[15] M. Mammarella, S. Hovsepian, E. Kohler: Modular data storage with
Anvil. SOSP 2009:147-160

[16] C.Mohan, S.Bhattacharya. Implications of Storage Class Memories
on Software Architectures. HPCA Workshop on the Use of
Emerging Storage and Memory Technologies. 2010

[17] X. Ouyang, D. W. Nellans, R. Wipfel, D. Flynn, D. K. Panda:
Beyond block I/O: Rethinking traditional storage primitives. HPCA
2011.

[18] S. W. Schlosser and G. R. Ganger. MEMS-based Storage Devices
and Standard Disk Interfaces: A Square Peg in a Round Hole?
USENIX FAST, 2004.

[19] M. Stonebraker. Operating system support for database management.
Commun. ACM, 24(7):412–418, 1981.

