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Kopitiam – a unified IDE for developing formally verified Java programs

Hannes Mehnert and Jesper Bengtson

IT University of Copenhagen
{hame, jebe}@itu.dk

Abstract. We present Kopitiam, an Eclipse plugin for certifying full functional correctness of Java programs
using higher-order separation logic. Kopitiam extends the Eclipse Java IDE with an interactive environment
for program verification, powered by the general-purpose proof assistant Coq. Moreover, Kopitiam includes
a development environment for Coq theories, where users can define program models, and prove theorems
required for the program verification.

1 Introduction

It is difficult to design software that is guaranteed to work. For most software, correctness is inferred by extensive
and costly testing, but this can only prove the presence of errors, not their absence. For safety critical systems this
is unsatisfactory. The ideal is to specify the desired behaviour of a program using logics and mathematics, and
then formally prove that the program satisfies its specification; this guarantees that all cases have been covered and
that no stone has been left unturned. Formal methods have had a renaissance in recent years, and they are being
incorporated into tools that are used in different parts of the software development cycle, but they are typically
highly specialised and focus on ensuring that a program satisfies a key property such as deadlock freedom, memory
safety, or termination.

In this paper we present Kopitiam, an extension to the Java development environment of Eclipse that allows
programmers to prove full functional correctness of Java programs. Kopitiam is designed according to the follow-
ing set of design philosophies:

1. Users should be able to develop programs, their models, their specifications and their proofs of correctness
incrementally and side by side.

2. The program logic must be expressive enough to reason about features such as mutable state, shared data
structures and pointer aliasing.

3. The specification language must be expressive enough to describe the behaviour of all programs that we want
to certify

4. All proofs that users write must be checked automatically.
5. No bug in the tool itself may break soundness – a buggy tool may fail to certify a program, but it must never

claim that a defective program is correct.
6. The integrated development environment (IDE) must include the tools that software developers are accus-

tomed to, such as compilers, profilers, unit testers, and debuggers.

Software development is an incremental process, and it is important that programs are kept synchronised with
their proofs of correctness. This is ensured by point 1. The danger is otherwise that a proof proves properties about
an outdated version of the program.

Point 2 requires that we support some dialect of separation logic [30]. Since its conception, separation logic has
been used to great success for modular reasoning about programs written in languages using shared data, pointers,
aliasing, and destructive updates, including object-oriented languages [8,26,27,34]. By modular reasoning we
mean that the specification of a program can constrain itself to the state that the program actually acts upon, and
not the entire proof state.

Point 3 requires that the proofs are developed interactively as the heuristics required to find them will generally
be undecidable. In practice, this requires that the user has access to an interactive proof assistant such as Coq [32],
Isabelle [25], or HOL [15]. These theorem provers support a higher-order logic that is expressive enough to reason
not only about specification languages but also about the semantics of programming languages. Combined, this
allows them to certify theorems that prove that programs satisfy their specifications with respect to the semantics
of the programming language. Another distinct advantage of the interactive proof assistants is that they have a
kernel that automatically certifies the proofs produced by the user, as required by point 4. Moreover, this kernel
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Fig. 1. Kopitiam workflow. The user writes an annotated program in the Java perspective, and a model of the program in the
Coq perspective. Each method is verified one at a time. The user steps through the statements of the method, using inline Coq
commands to update the proof state where necessary. Kopitiam automatically produces a certificate of correctness when all
methods have been verified.

is very small and is the most complicated piece of code that actually has to be trusted (apart from a few minor
parsing and output routines). This provides the reliability required by point 5. The kernel will reject a proof that is
incorrect, even if it was produced by the theorem prover or by another part of the tool, due to a bug.

Finally, it is important that the developer has access to a state of the art development environment for the actual
software development, as required by point 6. Even though our ultimate goal is to prove the absence of bugs in
our programs, the process of formal verification is currently prohibitive and testing and debugging are very useful
tools to get a program in such a shape that it can reasonably be assumed to be bug free before undertaking the
verification effort.

Kopitiam Kopitiam is an Eclipse plugin that integrates the Java development environment of Eclipse with the
general-purpose interactive proof assistant Coq. The software verification process is split into two distinct parts;
proofs about the program specification, which are done in a Coq perspective, and proofs about the actual program,
which are interleaved with the program itself in the Java IDE. Program verification is interactive. The user steps
through the program, in the style of a debugger, proving that all prerequisites are met for every statement. The
workflow is described in Figure 1.

As a back-end, Kopitiam uses Charge! [4,5], a framework for verifying Java programs using an intuitionistic
higher-order separation logic in Coq. Charge! provides tactics that automatically discharge commonly occurring
proof obligations, allowing the user to focus on the interesting rather than the tedious aspects of program verifica-
tion.

Contributions Our main contribution is that we provide one uniform framework for formal verification of Java
programs that integrates an industry-grade IDE with a general-purpose interactive proof assistant. More specifi-
cally, Kopitiam includes:

– An extension to the Eclipse Java development environment that allows users to annotate their code with spec-
ifications for each method (§2.2, 3.2). The user steps through the program one statement at a time, executing
each symbolically and observing how the proof state changes. All steps are verified by Charge!. If necessary,
these steps are interleaved with Coq code to prove that the current proof state satisfies the conditions required
to make the next step.

– A development environment for Coq theories (§2.2, 3.1). This perspective allows users to state theorems in
Coq, and construct proofs of their correctness interactively, much like Proof General, or CoqIDE. This mode
is used to define the model of the program, and prove all necessary properties needed for verification.

– Support for passing Java program variables as arguments to predicates defined in the Coq standard library
(§2.2 p. 6). This allows models and specifications to use predicates and terms that have not been designed
with software verification in mind.

– Support for proof certificates. Once a program has been verified with Kopitiam, we produce a proof certificate
(§2.2 p. 7), which contains the program and a theorem and corresponding proof that the program is correct.
This proof certificate is checkable by Coq using Charge!.
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class List {
static class Node {

int value;
Node next;

public int nodeLength() {
int r = 1;
Node n = next;
if (n != null) {

r = n.nodeLength();
r = r + 1;

}
return r;

}
}

Node head;

public int length() {
Node h = head; int r = 0;
if (h != null) r = h.nodeLength();
return r;

}
public void add (int n) {

Node x = new Node(); x.value = n;
Node h = head; x.next = h;
head = x;

}
public void reverse () {

Node old = null; Node lst = head;
while (lst != null) {

Node tmp = lst.next; lst.next = old;
old = lst; lst = tmp;

}
head = old;

}
}

Fig. 2. A small list library. The library has one inner Node class, which is used for each list element. The Node class allows
us to differentiate between an empty list (where head is null) and the null pointer.

To the best of our knowledge, no other tool integrates an industry-grade IDE like Eclipse with an interactive
proof assistant this closely. There are other tools that target software verification, but those that use interactive
proof assistants either verify the programs completely in a proof assistant or generate theory files from annotated
code (and thus lose the ability to keep code and proofs synchronised). Another approach is to build the entire de-
velopment and verification environment from scratch, which invariably leads to fewer features than those available
when building on already well-established IDEs and proof assistants. An extensive comparison with related work
is presented in Section 5.

Kopitiam is released under the BSD license. Examples and installation instructions are available at http:
//itu.dk/research/tomeso/kopitiam/.

2 Using Kopitiam

We demonstrate program verification in Kopitiam by certifying a small library for linked lists with two classes: an
inner class Node for the list elements and the class List for the lists themselves. The public API of the List class
consists of a length method, which defers its work to the auxiliary recursive nodeLength method in the Node
class, an add method that adds an element to the head of the list, and finally a method reverse for in place list
reversal. The source code is presented in Figure 2.

To verify this library, we need a model for each class, and a specification for each method. The models, and the
proofs about them, are developed in the Coq perspective. The specifications, and the proofs of the actual source
code, are developed in the Java perspective. We discuss each in turn.

2.1 Coq perspective

The Coq perspective is a development environment for Coq theories in Eclipse. It highlights the command cur-
rently being processed, as well as the commands that have been processed by Coq, with a yellow and a green
background respectively. If the proof script contains an error, the faulty code is highlighted with a red squiggly
line, and the error is presented in the error window. A goal viewer shows the current proof obligation and further
subgoals. Kopitiam also supports keyboard shortcuts for common tasks, such as stepping through the proofs, and
syntax highlighting. We also support features not commonly found in theorem prover interfaces such as folding of
proofs, an outline for Coq theories, and code completion that suggests commands and lemmas, including the ones
developed by the user. The perspective is powerful enough to develop standard Coq theories, and is not limited to
program verification. A screenshot is presented in Figure 3.
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Fig. 3. Screenshot of the Coq perspective in Kopitiam. To the left, the package explorer and the Coq theory outline; in the
middle, the theory file and the error window; to the right, the goal viewer which has the Coq context at the top, and the current
goal at the bottom. The 0 indicates that there is currently only one subgoal. In the theory file, the green background indicates
how far the theory has been processed by Coq. Moreover, the term Zabs has been underlined and marked as an error since no
lemma or tactic with that name exists; by pressing Ctrl-Space we obtain a list of possible completions.

Defining the program model The theoretical foundation of Kopitiam is the Charge! framework, which verifies
Java-like programs in Coq using a higher-order intuitionistic separation logic. Separation logic allows users to
reason about the shape and contents of the heap. For this exposition, we only require two construct specific to
separation logic: the points-to predicate (7→) and the separating conjunction (∗). The predicate c.f 7→v states that
an object instance referenced by c has a field f that currently contains the value v; the predicate p ∗ q states that
the predicate p holds for one part of the heap and the predicate q holds for another disjoint part of the heap. The
∗-operator gives rise to the characteristic frame rule of separation logic

{p}c{q}
{p ∗ r}c{q ∗ r}

c does not mention r

which states that a command c that runs in the state p and terminates in q, can run in an environment where a
disjoint r is present as long as no command in c modifies r. In general, the Hoare-triple {p}c{q} states that if the
command c starts from state p and terminates, it will satisfy the state q.

The semantics of Java in Charge! is untyped. A single type val in Coq represents Java types. Separation logic
predicates have the type asn. There is also a typeof predicate, where typeof p C states that the dynamic type of
the object reference p is the class C.

For our list library, we define one model for the inner Node class, and one for the List class. Throughout the
paper, we use standard mathematical notation in Coq code, and not the ASCII code used by Charge!.

4



<% lvars: xs : list val %>
<% requires: `List_rep "this"/V `xs %>
<% ensures: `List_rep "this"/V (`cons "n"/V `xs) %>
public void add (int n) { . . . }

<% lvars: xs : list val %>
<% requires: `List_rep "this"/V `xs %>
<% ensures: `List_rep "this"/V `(rev xs) %>
public void reverse () { . . . }

<% lvars: v : val, xs : list val %>
<% requires: "this"/V.`next 7→ `v ∗ `Node_rep `v `xs
<% ensures: "r", "this"/V.`next 7→ `v ∗ `Node_rep `v `xs ∧

"r"/V == `((length xs) + 1)%>
public int nodeLength () { . . . }

<% lvars: xs : list val %>
<% requires: `List_rep "this"/V `xs %>
<% ensures: "r", `List_rep "this"/V `xs ∧ "r"/V == `(length xs) %>
public int length () { . . . }

Fig. 4. Specification of the methods in the list library. Note how they all use the backtick operator (`), or the /V notation,
so that predicates that normally take values as arguments take program variables instead. This applies not only to our
own List_rep and Node_rep predicates, but also to functions from the Coq standard library like cons. The ensures
clauses in nodeLength and length both have the return variable "r", which indicates that any value returned will be
assigned to this variable.

Fixpoint Node_list (p : val) (lst : list val) : asn :=
match lst with

| nil⇒ p = null
| x :: xs⇒ typeof p Node ∧ ∃v : val. p.value 7→x ∗ p.next 7→v ∗ Node_list v xs

end.

Lists are modelled using the lists from the Coq standard library. The predicate Node_list p lst is defined recur-
sively over lst and creates one instance of Node on the heap for every element in lst, where every instance points
to the next respective element in the list.

The predicate List_rep p lst states that p has the dynamic type List and that the head field of p points to an
object modelled by the Node_list predicate.

Definition List_rep (p : val) (lst : list val) : asn :=
typeof p List ∧ ∃h : val. p.head7→h ∗ Node_list h lst

Proof development The Coq perspective is also used to develop the meta-theoretical properties that we require
for the program model. For this list library, we need a lemma that states that the only list that can model the
null-pointer is the empty list.

Lemma lst_ptr_null: ∀k lst . k = null −→ (Node_list k lst ` lst = [])
Proof.

· · ·
Qed.

This lemma states that if k is null and k is modelled by a list lst, then lst must be the empty list. This lemma is
proven in Coq by case analysis on lst.

2.2 Java perspective

The Java perspective of Kopitiam is an extension of the Java editor. We have extended the syntax with antiquotation
brackets <% and %>, between which Kopitiam-specific code is placed. These brackets and their contents are
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ignored by the rest of Eclipse and all of its standard functionality is maintained. We use the Java perspective to
write programs and their specifications, and ultimately prove that the programs satisfy their specifications.

Specifications Specifications of methods have the form

<% lvars: x1 : T1, . . . , xn : Tn %>
<% requires: P x1 . . . xn %>
<% ensures: Q x1 . . . xn %>

where x1 to xn are logical variables universally quantified over P and Q, T1 to Tn are their types, P is the
precondition and Q is the postcondition of the method. Here T1 to Tn are standard Coq types, and P and Q are
Coq predicates in our assertion logic; typically the model of each class will contain the building blocks required
to construct these predicates.

Specifications can also mention the program variables that each method takes as arguments, and the this
pointer, but making this compatible with the predicates we defined for the program model is not entirely straight-
forward. Program variables are strings, and their values are stored on the stack. The List_rep predicate has the
type val → list val → asn. We would like to be able to declare an assertion List_rep "p" xs stating that the
program variable p points to a list xs , but this will not type check in Coq as "p" has the type string and not val.
In Charge! this problem is solved using an environment monad [4] that allows assertions to be parametrised by
a stack, and all program variables to be evaluated before being used in a predicate. We will not go into the exact
details here, but by prefixing any Coq predicate and its arguments with a backtick (`), we allow these predicates
to use the stack to look up the value of any program variable. We also have the expression "p"/V that returns a
function that, given a stack, looks up the program variable "p" on the stack. The List_rep predicate is then written
as `List_rep ("p"/V) (`xs), where the parentheses can be omitted. Note that `xs is evaluated to xs since xs contains
no program variables, but the backtick is still required to make the term type check. One important observation is
that we can apply the environment monad to any Coq type, which allows us to use the standard built-in libraries
of Coq with our specifications, even though they were not originally designed with program variables in mind.

The specifications for all methods in our list library are presented in Figure 4. The specification for node-
Length uses the Node_rep predicate directly since this method is defined in the Node class. The other methods
are defined in the List class, and use the List_rep predicate for their specifications. A user of this library would
only need to know about the List_rep predicate.

Formal verification Classes are verified method by method. By right-clicking on a method and selecting Verify
Method from the menu, we enter a mode that lets us prove formally that the method satisfies its specification.
A screenshot is presented in Figure 5. Charge! includes a semantics for Java that comes with an inference rule
for every statement type. Methods are proved correct by stepping through them one statement at a time, using a
tactic named forward, which is inserted automatically for each statement. The forward tactic checks whether the
precondition is satisfied, and if so executes the next command symbolically and updates the program state. If the
precondition is not satisfied, the user can insert standard Coq code in antiquotes between statements to change the
state in such a way that the next step is enabled.

The Java perspective uses the same goal viewer as the Coq perspective, and displays a Hoare triple {P}c{Q}
where c is the remaining statements, and the precondition P is the current program state. The predicate Q is most
often the postcondition of the method, but it is also used at the end of loops and conditional branches.

Loops are annotated with two predicates. The first is an invariant, which is a predicate that must hold on loop
entry and on all iterations of the loop. The second is a frame, which is a predicate that is part of the current proof
state and which is not required to prove the loop body, but which is required to prove the remaining code of the
method. The frame is only available outside of the loop. This is achieved by using to the frame rule from page 4.

The proofs of the different methods in the list library vary in complexity. The simplest one is the add method,
which requires only its specification and a single sl_simpl annotation. The proofs for the nodeLength and length
methods are relatively straightforward. At each method call, the precondition of nodeLength must be established,
but the fact that the method is recursive makes no difference to the complexity of the proof. The most complex
proof is the one for the reverse method, which is presented in Figure 6. This proof nicely demonstrates the way
software is verified using Kopitiam. Manual proofs are required in key places, but these can often be kept small
and concise. In particular, any properties pertaining to the model should be proved as separate lemmas in the
model file.
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Fig. 5. Screenshot of the Java perspective. In the middle, the Java editor with antiquotes for specifications and proofs. The green
background indicates commands processed by Coq. The blue background indicates a verified method; its tooltip contains the
lemma statement and its proof, including the calls to the forward tactic. To the right, the goal viewer, displaying the Hoare
triple of the remaining loop body.

Proof Certificate For each method a validity theorem is produced, which states that the implementation fulfills
its specification. Once this theorem is discharged, the method in question is marked with a green checkmark and
light blue background, as shown Figure 5.

Once all methods of a class have been verified, Kopitiam generates a proof certificate. This certificate contains
the Java program code as Coq definitions for all methods and classes. The theorem that the entire program is
correct is derived automatically from the theorems that state that each individual method is correct. Ultimately,
we obtain one theorem of program correctness which can be checked completely by the Coq kernel using Charge!
independently of Kopitiam.

3 Implementation

Kopitiam is not a stand-alone application, but an Eclipse plugin. Eclipse is written in Java, and thus runs on the
JVM. Kopitiam is developed in Scala, a functional object-centered language which also runs on the JVM. In this
section, we discuss two important aspects of our development. The first is how Kopitiam communicates with Coq
and stays responsive while Coq is working on a proof. The second is how we extend Java’s syntax with antiquotes
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void reverse () {
Node old = null; Node lst = this.head;
<% invariant: ∃ys zs. `Node_list `"old" `ys ∗ `Node_list `"lst" `zs ∧

`(v = ((rev ys) ++ zs))
frame: "this"/V.`head 7→ `x0 ∧ `typeof "this"/V `List%>

while (lst != null) {
//Proof of the loop invariant for loop entry follows
<% up_exists (@nil val); sl_simpl. %>
<% destruct x3; [sl_contradict; congruence |]; triple_nf. %>
Node tmp = lst.next; lst.next = old; old = lst; lst = tmp;

}
<% . . . Proof of the loop invariant for the loop body (3 lines) . . . %>
this.head = old;
<% . . . Proof of the postcondition (3 lines) . . . %>

}

Fig. 6. Proof of the reverse method. User guided proofs are required to prove the loop invariant for loop entry and for the
loop body, and to prove the postcondition. Coq automatically introduces new logical variables for the binders we use. The
logical variables v in the invariant represents xs from the specification, and x0 in the frame represents h from the definition of
List_rep (page 5).

while maintaining support of the Eclipse tools that work on regular Java projects. We will also briefly discuss
parsing of Coq code, how we translate Java into Coq definitions, what measures we take to increase performance,
and finally how the Verify Method action is implemented.

3.1 Coq Interaction

Coq does not provide a standard API. All communication is handled via the coqtop binary, which in turn com-
municates solely via the standard input, output and error streams. Thus all data must be sent and received as
strings.

The main obstacle to overcome when interfacing with Coq is to achieve a responsive and reliable communi-
cation. Coq often takes a long time to process commands and it is important that Kopitiam does not freeze while
Coq is working. Moreover Coq only responds to complete commands, and care has to be taken to avoid a state
where Coq waits for more input, while Kopitiam waits for a response from Coq.

We solve these problems by designing an asynchronous publish/subscribe system using Scala actors, shown
in Figure 7. This allows users to send commands without the IDE being blocked while waiting for a response.
Kopitiam has the central message distributor PrintActor that maintains a set of subscribers. The PrintActor re-
ceives a message as a string from Coq, parses it to a more structured form, and redistributes this parsed message
to all subscribers. Kopitiam encapsulates communication with Coq within the CoqTop singleton object. This ob-
ject provides a single method writeToCoq, which takes a string and transforms it to a complete command (by
adding the terminating ’.’ if necessary) before sending the command to Coq.

The subscribers of the message distributor are shown on the right of Figure 7, we describe them in ascending
order. The DocumentState object tracks Coq’s state. Coq maintains a unique number for each successful state
update, and DocumentState stores a mapping from a position in the source file to Coq’s state. This makes it
possible to step back an arbitrary number of commands to a previous state. The GoalViewer updates the goal
viewer in the Coq and Java perspectives; the CoqEditor colors the background of the processed Coq commands
and manages error reporting. The ContentAssistant stores names of proven lemmas in the current file and uses
them to suggest completions to the user. The ContentAssistant also uses Coq’s SearchAbout command to
find possible completions from other files. Finally, users interact with CoqTop every time they step through a
proof or program.

This design for interaction with Coq is extensible. The Java perspective in Kopitiam has a lot in common with
the Coq perspective; the user performs actions such as stepping through code, writing proof scripts, and retracting
proof state. Nearly all code for communicating with Coq has been reused between the two perspectives. The only
perspective-specific code handles the positioning information in the DocumentState object, since the syntax of
Coq files and Java files differ.
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Fig. 7. The singleton object CoqTop encapsulates the communication with coqtop. The method writeToCoq sends a
message to the standard input stream of coqtop. The CoqTop singleton starts a process and connects the standard output and
error streams to a BusyStreamReader instance each. When a BusyStreamReader instance receives a message, it forwards
that to the singleton object PrintActor. This is the central distributor of messages, and first parses the received string into a
more structured object and sends that asynchronously to all subscribers on the right side.

3.2 Antiquotes

We use antiquotes to extend the Java syntax to handle method specifications, which are written before method
definitions, and proof scripts, which are written inside method bodies and interleaved with Java statements.

In order to integrate these antiquotes with the Java syntax we extend the Java lexer and parser in Eclipse.
Since neither the lexer, nor the parser, provide an off-the-shelf extension mechanism, we use aspect-oriented
programming to modify the bytecode of Eclipse at load-time. Our extension creates a dummy node for each
antiquote in the abstract syntax tree of the Java programs. The developer can still use all standard Eclipse tools like
debuggers, compilers, profilers, and unit testers, since the dummy nodes are ignored by Eclipse. The extensions to
the Eclipse parser and lexer are available as a separate Eclipse plugin1.

We evaluated three other possible approaches to embed specifications and proof script inside of programs:
annotations, comments, and static method calls.

Java annotations are only allowed before methods, not inside method bodies, and would only support method
specifications. Type annotations are a recent development that allow annotations at type occurrences, but since
they also can not be placed inside the method bodies they do not solve the problem.

Java comments are allowed anywhere, making them a good candidate. However, the Eclipse Java lexer throws
comments away. If we used comments, we would have to modify the internal behaviour of the Java lexer (to
keep the embedded statements) and parser (to make sense of these embedded statements). This would make our
implementation prone to breakage with respect to future releases of Eclipse.

In an earlier version of Kopitiam [21] we represented method specifications and proofs in the Java source code
as strings in calls to dummy static methods on a dummy Coq class. This was cumbersome and all commands had
to be passed as strings. Moreover, method calls are not allowed outside method bodies, where specifications are
written.

3.3 Parsing of Coq code

Kopitiam needs to parse Coq code to support features like syntax highlighting, an outline, and proof folding. The
folding hides proof script of a lemma between the Proof and Qed keywords, similarly to how method bodies are
folded in Eclipse.

Rather than having a complete parser for Coq’s grammar, we first split Coq code into sentences of complete
commands. Each sentence is then parsed individually to check for the keywords that are required by the highlighter,
the outline, and the folder. Parsing the entire Coq code is not realistic as Coq allows users to dynamically change
its grammar on the fly using a powerful notation mechanism. Since even compiled Coq binaries can include such
changes, creating an external parser for complete Coq commands is impractical. Our solution allows us to only
check each command for the keywords that we require to build the functionality we need. We leave the complete
parsing of each individual command required for proof checking to Coq.

1 https://github.com/hannesm/KopitiamAspects
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3.4 Java translation

Kopitiam translates Java into the subset of Java formalized in Charge!. This support includes read and write op-
erations for fields and variables, static and dynamic method calls (including recursion), while loops, conditionals,
and object allocation. The latter creates a new instance of an object and allocates memory for its fields on the heap.

The translation is implemented using the visitor pattern on the Eclipse abstract syntax tree. During the traversal,
Kopitiam issues warnings about missing specifications and Java code which it cannot translate to our core subset.

3.5 Verify Method

The Verify Method action in the Kopitiam user interface requires that the theory file containing the program
model has been compiled, and that Coq definitions have been created for all method specifications. After these
things are done, a validity theorem for the method is generated and the user is prompted to interactively verify the
correctness of the method.

To increase responsiveness Kopitiam is optimised to load theories, including the program model, only when
needed and unloading them only when they are modified. Moreover, Kopitiam adopts a local translation technique
that translates modified code and splices it into the already translated program. The whole code is retranslated
only when major revisions are made.

4 Discussion and future work

The most challenging aspects of developing Kopitiam are done. The difficult part has been figuring out how to
integrate the Java IDE of Eclipse with Coq, but that aspect is complete and working well. We improve significantly
on our previous release [21] where Kopitiam only supported translation of Java code into Coq definitions which
had to be verified completely in the Coq perspective. For this release, the Java perspective is entirely new and we
are able to conduct proofs directly within the Java editor. The Coq perspective has also gained several key features
such as proof completion, syntax highlighting and the proof outline.

There are things we wish to improve, both on the IDE side (for usability reasons) and in the back-end Charge!
(for performance and expressiveness reasons). Currently, programs must fit into one file. The subset of Java we
support is defined in Section 3.4. Additionally, these further restrictions are imposed on the language: only a single
return statement at the end of the method body is supported; the primitive types must be integers, booleans, and
object references; finally, class-to-class inheritance and interfaces are not supported.

Adding more language features is a two-step process. Charge! has to be developed to include the theoretical
results required, and Kopitiam must be extended to allow easy access to these results. We have developed theories
to reason about inheritance using interfaces [5], and we plan to add support for this in the near future. We are also
making Charge! modular by adding support for unimplemented specifications and program composition. This will
allow classes to be verified independently and then combined to form a complete program.

There are three aspects of the user interface that require attention. The first is the way we write specifications,
frames, and loop invariants. Currently, they are passed as raw data to Charge!. We plan to support a domain specific
language in the antiquotes, with proper syntax highlighting, that hides implementation details from the users, such
as the environment monad, as seen in Figure 6, namely fresh names, backquotes and /V. Secondly, Kopitiam
generates fresh names when quantifiers are moved to the Coq context. These names are typically not the ones
chosen by the user, but ones generated by Charge!, which can also be seen in Figure 6. Charge! uses higher-order
abstract syntax to handle binders, which makes it impossible to get a handle on their names in Coq. Two ways
around this are either to change how binders are modelled in Charge! or to extend the functionality of Coq to allow
these bound names to be retrieved. Finally, we plan to redesign the goal viewer in the Java perspective. Currently,
both the Coq and the Java perspectives use the same goal viewer, and the user sees the goal as a complete Hoare
triple, which is the internal representation of the program in Charge! (see Figure 5). The ideal is to only see the
precondition of the triple, which is the current program state, properly split into views describing the heap, and
views describing the stack. This will make working in Kopitiam much like using a debugger, where users step
through the program and are presented with a clear view of the program state.

We still have a few performance issues. These are mostly related to the Coq back-end. Charge! handles the
symbolic execution of commands as the user steps through the program in the Java editor, and this can be slow if
the next command has a precondition that is difficult to prove. We plan to rewrite our heuristics using reflective
tactics, similar to the ones used by Chlipala in his Bedrock framework [12], and this will speed up proof search
considerably.
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The largest case study we have verified using Charge! is the snapshotable trees library from the C5 library [22].
Currently, this formalisation only exists as a Coq theory and a next logical step is to certify the library using
Kopitiam.

We are currently using Kopitiam in a master course on software verification based on the Software Foundations
book [29]2 by Pierce et al. So far, student feedback has been very positive and the Coq perspective of Kopitiam is
proving capable of dealing with all material and exercises presented in the book.

5 Related work

Several tools for program verification of varying complexity have appeared in the last decades. Like in Kopi-
tiam, source code is typically annotated with specifications, after which the tools check if these specifications are
satisfied.

Many tools strive for automation, which by necessity limits their expressivity. Typically, they produce a
large number of lemmas that are automatically discharged by an automatic theorem prover, such as Z3 [24] or
SPASS [35]. Examples of such tools are Spec] for C] [2] and ESC/Java2 for Java [13]. A few tools also use
separation logic, like Smallfoot [6], Space Invader [11], SLAyer [7], and jStar [14].

To verify full functional correctness of programs, interactive techniques are required. The options that have
been explored have followed one of three paths. The first is to generate proof obligations from annotated programs,
feed them to an interactive proof assistant and have the user discharge the proof obligations manually. The second
is to write the program, its specifications, and the proof of correctness entirely in an interactive proof assistant.
Finally, a development environment for verified software can be developed from the ground up, possibly hooking
into external proof assistants as required.

The first approach is used by tools like Jahob [19] and Loop [33]. Loop translates JML-annotated Java pro-
grams to the proof assistant PVS, which is then used interactively to discharge the goals. Jahob uses its own speci-
fication language and uses both interactive proof assistants (Isabelle and Coq) and automatic theorem provers (e.g.
SPASS, CVC3, and Z3) to discharge the goals. The disadvantage to this approach is that it is difficult to keep the
proof script synchronised with the program – once the script has been generated, any changes to the program will
not automatically propagate to its proof and there is a danger that proofs refer to old instances of the programs.
Also, neither tool uses separation logic, making it difficult to reason modularly about programs with mutable state.

The second approach (programming directly in a proof assistant) has had great success. Two notable exam-
ples are the verified L4 micro-kernel by Klein et al. [18] and the verified optimising C compiler CompCert by
Leroy [20]. These two projects have set the standard for state-of-the-art formally verified software today, but each
also required a Herculean effort to complete. Both projects verify around 7000 lines of code, yet their proof sizes
are orders of magnitude larger (around 50000 lines of code for CompCert and 200000 for the L4 kernel); the
L4 kernel required around 25 man years to complete, CompCert around 10. For the L4 kernel, the Simpl library
by Schirmer [31] was used to translate C code to Isabelle. The CompCert compiler is written in the functional
language Gallina, which is used inside Coq, and then extracted to an executable OCaml program.

The third approach (building the development environment from scratch) has been used for designing de-
velopment environments such as KeY [1], Verifast [16] and Why3 [10]. KeY and Verifast have both been used
successfully to verify Java and JavaCard programs [23,28]. They both use first-order logics (Dynamic logic for
KeY and separation logic for Verifast), and they both use custom-made IDEs and interactive verification environ-
ments. Verifast integrates Z3 to discharge many proof obligations automatically. Why3 certifies programs written
in the functional program WhyML, which can be extracted to executable OCaml code. It is the only one of these
three tools that hooks into a general-purpose interactive proof assistant (Coq) to allow users to discharge proof
obligations interactively. Why3 also hooks into a wide range of automatic theorem provers to help discharge proof
obligations automatically. The advantage of this approach is that a lot of work is done automatically by the tool.
The disadvantage is that these external provers are treated as trusted oracles which dramatically increases the size
of the code base we have to trust as we have to assume that these tools are bug-free, as opposed to trusting only the
Coq kernel. The Sledgehammer tool for Isabelle by Blanchette et al. [9] is designed to hook automatic theorem
provers into interactive ones in a safe manner by providing techniques for the interactive proof assistant to replay
the proofs generated by the automatic ones, but these techniques have not yet been implemented in Coq.

The work that mostly resembles ours comes from the Mobius project and Mobius PVE [3], which integrates
several verification environments for Java with Eclipse. It includes the JACK framework that takes JML-annotated

2 http://www.cis.upenn.edu/~bcpierce/sf/

11

http://www.cis.upenn.edu/~bcpierce/sf/


Java code, generates proof obligations using a weakest precondition calculus, and discharges these proof obliga-
tions either with automatic or interactive proof assistants, including Coq. Mobius PVE comes with the ProverEd-
itor (previously called CoqEditor) perspective for Eclipse that, like Kopitiam, allows users to develop Coq theo-
ries [17]. By using this perspective, JACK keeps the whole development cycle in Eclipse.

Comparison Kopitiam sets itself apart from all other tools in that it is based on separation logic, it is hooked up to
a general-purpose interactive proof-assistant, and it allows programs to be written and verified in an industry-grade
IDE. All these points are important. Tools not based on separation logic are unlikely to scale to larger programs;
moreover, extending on general-purpose well maintained frameworks like Coq and Eclipse, both of which are
arguably leaders in their respective fields, is preferable to building custom-made versions of our own; designing
any of these two systems from scratch would be full fledged research and engineering projects in their own right.

Of the interactive tools listed above, only Verifast is based on separation logic. Jahob, JACK and Loop all
generate proof obligations for general-purpose proof assistants but these are all stored in separate files and not
actively kept synchronised with the code. Only JACK uses Eclipse, whereas Verifast, KeY and Why3 use their
own custom-built IDEs.

6 Conclusions

Kopitiam provides the closest integration to date between an industry-grade IDE and a general-purpose proof
assistant. The ability to step through the source code of a program when developing its proof is instructive, and
provides an intuitive interface for programmers and proof developers alike. Moreover, Kopitiam provides a devel-
opment environment for Coq theories where users can define program models, postulate lemmas and theorems,
and prove these directly in Eclipse. Kopitiam also generates certificates, checkable by Coq, for each verified pro-
gram. Finally, since we use an expressive higher-order separation logic we are able to model both the semantics
of the Java programming language as well as the Java programs themselves in Coq. This means that the proof
certificates are unified theorems, checkable by the Coq kernel, that guarantee that a verified program follows its
specifications with respect to the operational semantics of our model of Java. This ensures that the trusted code
base is kept very small. The only two things we have to trust are the model of Java in Charge! and the Coq kernel.
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