A Lightweight Story-Comprehension Approach
to Game Dialogue

Robert van Leeuwen, Yun-Gyung Cheong, and Mark J. Nelson

Center for Computer Games Research
ITU Copenhagen
Copenhagen, Denmark
luivatra@gmail.com, yugc@itu.dk,mjas@itu.dk

Abstract. In this paper we describe Answery, a rule-based system that
allows authors to specify game characters’ background stories in natural
language. The system parses these background stories, applies transfor-
mation rules to turn them into semantic content, and generates dialogue
during gameplay by posing it as a question-answering problem. By the
means of simple categorization combined with rule inference engine, our
system can generate answers efficiently. Our initial pilot study shows that
this approach is promising.

Keywords: story comprehension, question and answer, dialogue

1 Introduction

An important part of story-driven videogames is the dialogue. To fully partici-
pate in gameplay, dialogue should be dynamic, varying based on players’ actions
and the game state. Adding a complication to achieving this goal, most games
are made by teams with diverse skills; for example, engineers write the code and
gameplay systems, and designers and writers may be able to perform lightweight
scripting but are typically not programmers.

A common way of factoring engineering versus design/writing is as follows. A
programmer implements gameplay systems, and exposes certain attributes that
can be modified by a designer via an interface. Character traits are particularly
common to expose in this manner, such as a particular character’s personality
and skills. On the dialogue side, the programmer builds a dialogue system that,
while simple enough to be used by non-programmers, can query attributes and
the current game state in order to vary the dialogue. Common approaches include
branching dialogue trees that use conditional tests, and templated dialogue that
substitutes certain words or phrases according to the values of variables.

As character attributes and in-game interaction vary more, there is a content-
authoring bottleneck, since authors must write dialogue for all permutations of
possible situations [9]. In our work, we are motivated by the idea that part of
a character’s personality is formed by their backstory, which can take on very
different characteristics for different characters, and impact the story in varying
ways—so backstory cannot be boiled down to a small number of traits in fixed



2 Robert van Leeuwen, Yun-Gyung Cheong, and Mark J. Nelson

slots. Instead, our system allows the author to specify character backstories in
natural language.

There have been several experiments with natural language as an authoring
method for interactive stories [7,11]. Nelson [11] argues “the natural language in
which to write interactive fiction is natural language”, and overhauled the popu-
lar Inform authoring system to use a natural-language-like syntax in Inform 7. It
remains only natural-language-like, because it uses a strict deterministic parser,
in which the language’s concrete syntax, despite looking like natural language,
is really a sort of programming language. We wish to relax that restriction by
using a broad-coverage off-the-shelf parser. This means that more input is ac-
cepted, but that the result of a parse is more ambiguous semantically than a
programming language’s abstract syntax tree.

Transformation rules supply the semantic content, specifying how grammat-
ical components in a parse structure are to be mapped to character-backstory at-
tributes. This approach has some similarities to the hybrid approach of Khoury [8],
which also uses a statistical parser followed by a rule-processing step to achieve
broad coverage with semantic specificity. In addition, we retain the original sur-
face text to use in the question-answering phase, both to synthesize and to rank
question answers, allowing linguistic features not captured in the semantic map-
ping step to still make their way into answers.

A particular feature of the videogame-dialogue setting is that, during the
authoring phase, speed is not a major consideration, and authors are willing to
do at least moderate iteration to correct errors; whereas during gameplay, the
system must be efficient and lightweight. This differs from the situation with
many query-answering systems, which use shallow NLP techniques to scan a
large database of texts to find segments responsive to a query online, rather
than doing full parses of all the source texts ahead of time. In the videogame
setting, it’s preferable to do heavyweight processing beforehand. In addition,
some degree of errors in parsing author input are acceptable, since authors can
notice the misparses of their character backstories, and reword them to avoid
errors; but during gameplay, speed is critical and error rates should be low.

2 System architecture

Answery takes a story background containing facts about story characters writ-
ten in natural language, and outputs a relevant answer to a question about the
backstory. As shown in Figure 1, Answery consists of four components: parser,
post-parse processing, reasoning, and answer ranker. The first step is to parse
the input story text into a grammatical functional structure, for which we use
an off-the-shelf statistical parser that outputs word dependencies. Since pars-
ing is the focus of this work, we constrain the input text to simple sentences.
In post-parse processing, the sentence is split into core parts of the sentence
(nouns and verbs) and decorative elements such as adjective and adverb. The

! http://www.inform?7 . com



A Lightweight Story-Comprehension Approach to Game Dialogue 3

core facts are given to the reasoning engine to infer high-level knowledge using
simple rule-based schemas. In the final step, candidate answers are ranked based
on their similarity to the given question.

story & .grammatical
question function . fact
——> Parser Post-parse |~ Reasoning
processor .
, \ , inferred
fact

Answer A

answere— P
| Ranker Knowledge

Fig. 1. The system architecture

2.1 Parser

We employ RASP (Robust Accurate Statistical Parser) [1], a corpus-trained sta-
tistical parser. The parser labels each word part-of-speech tag (POS), indicating
the grammatical function. RASP uses a hidden Markov model (HMM) to de-
termine POS as the most likely sentence structure. The output of the parser
consists of a list of Grammar Relations (GR), where the format is represented as
a tuple of (type sub-type head dependent initial). In the tuple, type, head, and
dependent are mandatory parameters while the rest are optional. For instance,
when 7T am Frodo” is given as input, the parser returns two GRs— (ncsubj be
I), (xcomp be Frodo)—representing a non-clausal subject and a complement,
respectively.

2.2 Post-parse processing component

The post-parsing step extracts facts based on patterns in the grammar relations
frequently found in the training set.

(ncsuby,],?)p + (xcomp,3,4)p - (27174)
where 1 == 3
(4.type = NP1 OR j.lype = NN1 OR j.type = JJ)

In the example pattern above, the first line consists of a head and a tail,
separated by ’—’. The rest of the lines are conditions for the rule application.
This pattern will extract a fact of (2,1,4) if 2 GR~elements of type ncsubj and
xcomp appear where the values for 1 and 3 are identical, and the type of 4
falls in one of the options (NP1, NN1, or JJ) in the second rule. Following the
CLAWS4 Tagset [6], NP1 means singular proper noun, NN1 denotes singular



4 Robert van Leeuwen, Yun-Gyung Cheong, and Mark J. Nelson

Table 1. Fact categorization rule examples

Category Condition Rule
location If a pronoun is preceded by a preposition indicating a position

property If a fact is an adjective, adverb or is positioned after a determiner
timeproperty If a fact is a general adverb or a nominal adverb of time
reason If a conjunction is preceded by a verb in a 3-tuple fact

time If a fact is a time-related adverb, preposition conjunction, or

temporal noun

common noun, and JJ denotes general (comparative) adjective. When the input
example is (ncsubj be I) and (zcomp be Frodo), the system can infer the core
fact (I,be,Frodo). This pattern language also converts the query into an easier
sentence for answer retrieval. For instance, the question ” Are you Frodo?” can
be converted into ” Am I Frodo?” (interpreting from the character’s perspective)
then checked with the fact in the story knowledge base, (I, be, Frodo). When it
matches with a fact in the story, the answer is yes.

2.3 Reasoning component

The reasoning component performs two roles: fact categorization and inference.
The fact tuples are asserted into a reasoning engine (Jess [5], a Rete-based
forward-chaining engine [4]) and used to infer high-level knowledge based on
rules and relationships between types. A categorization inference rule is defined
as a pair, of condition and category, as shown in Table 1. A fact is categorized
into the category in the left-hand column when it meets the condition defined
in the right-hand column. When a fact fails to match any conditions, its default
category is noun in this study. When a question is given, the system determines
candidate fact categories based on Table 2. For instance, if the question contains
”when”, the system returns the facts in the categories of Time or TimeProperty.

2.4 Answer ranker

When multiple answers are available for a given query, the ranker estimates the
relevance of each answer, based on syntactic and word similarity between the
query and the answer. Word similarity is simply percentage of words that ap-
pear in both the question and answer. Syntactic similarity considers the parts of

Table 2. Question type and candidate answer types

Question type Candidate answer types

Who Person
What Noun,Property, TimeProperty
When Time, TimeProperty

Where
Why

Location
Reason




A Lightweight Story-Comprehension Approach to Game Dialogue 5

speech words appear as in both the question and answer. Take an example of a
background story containing two sentences: ” John killed George” and ” George
killed John”. With the query ”Who killed John?”, word similarity rates the two
sentences equally relevant. However, the second sentence, ” George killed John”,
has higher syntactic similarity, since the part of the speech of John is the object,
the same as in the query sentence. The weighted sum of these similarities ranges
from 0.0 and 1.0. Four combinations of weights for syntactic similarity/word
similarity (i.e., 0.5/0.5, 0.75/0.25, 0.25/0.75, 0.0/1.0) were tested to find the op-
timal setting. In addition, a predefined value is used as threshold to determine
if any potential answer is sufficiently good to be returned at all. When no an-
swers are over the threshold, Answery returns "I do not know.” On the other
hand, it returns "I do not understand” if no matching patterns are found. We
give distinct importance to different word types in ranking answers. Nouns are
weighted highly (1.0 in this study) as they are key to sentence comprehension,
while common verbs (be, have, do) are given low weights (0.05 in this study).

3 Evaluation and Discussion

In order to evaluate the effectiveness of the system we collected 9 different story
backgrounds from different authors. These stories are divided into two sets: 5
stories and 67 questions for each story in the training set and 4 stories and
40 questions for each story in the test set. We re-wrote these stories in simple
sentence forms to make the text input to Answery conform to the constraints in
parsing. One story example used in the study is shown in 2. The training set is
used to extract 23 patterns for the post-parse processing phase and 15 rules for
the fact categorization.

I am Frodo. I am a hobbit and am born in Bag End. Bag End is a town in The Shire.
Hobbits like tobacco and beer. I love walking. I am very interested in Elves. Elves live
in Rivendel, far to the east of Bag End. I have an uncle called Bilbo. Bilbo is very rich
so Bilbo and I live in a big house and don’t have to work for a living. The gardener’s
son, Sam, is my best friend. Sam and I love to go out and drink a lot of beer. Gandalf
is a wizard and is an old friend of Bilbo. Gandalf makes amazing fireworks. Lately
Bilbo has been acting strange. Gandalf thinks Bilbo is acting strange because the ring
he carries around is evil. Bilbo decides to move to Rivendel so Bilbo can live in peace
amongst the elves. Bilbo gives the ring to me before he leaves. After some months
Gandalf tells me the ring is very evil and has to be destroyed. To destroy the ring
I have to bring the ring to Rivendel. Sam and I walk to Bree, a town between Bag
End and Rivendel. In Bree we stay at an inn and meet Strider. Strider is a friend of
Gandalf and helps us avoid evil creatures. The evil creatures are after the ring. After
many hardships we reach Rivendel.

Fig. 2. A story background example



6 Robert van Leeuwen, Yun-Gyung Cheong, and Mark J. Nelson

Table 3. Evaluation Results

Set Correct answer False positive False negative
Training 329 (98.2%) 2 (0.6%) 4 (1.2%)
Test 147 (91.0%) 11 (6.9%) 2 (1.3%)

Table 3 shows the results of a pilot evaluation, which found high preci-
sion (91%) in generating correct answers. The system generated correct answers
98.2% in the training set and 91% in the test set. False negatives are when the
system returned no answer to the query despite correct answers existing. False
positives are when the system returned an answer even though no relevant infor-
mation existed in the backstory. For instance, the correct answer for the question
”"Where can I get a lot of money?” is ”I don’t know”, but the system returned
the incorrect answer ”Sam and I drink a lot of beer” due to the phrase ”a lot
of” appearing in both the query and answer. Note that the system achieves
high precision in answering to questions with its relatively poor performance
of fact categorization. Among the 239 facts, 27 facts were incorrectly classified,
resulting in 11.3% error. Location and Time classes account for the majority of
these errors, because Locations are often classified as Noun or Person, and Time
keywords are often recognized as a Property.

Situating these numbers is complicated by the lack of an agreed-upon bench-
mark problem, however. Chen et al. [3] reported 53% accuracy when questions
are available, and 43% of total questions, but their results are not directly compa-
rable. Their system is fully automated, extracting domain knowledge (analogous
to the inference schemas in our system) from text without manual processing,
and their characters answer players’ questions based on factual information de-
rived from Wikipedia, rather than fictional backstories.

4 Conclusions and Future Work

This paper describes a lightweight ontology-based story comprehension system.
Answery takes a story background as input and returns a relevant answer to a
question, by parsing the story background, mapping it to core character traits,
and then evaluating grammatical and semantic similarities between question
and answer sentences. In a pilot study we carried out the system showed high
precision in generating answers to W-questions and yes/no questions. We ac-
knowledge that the high performance achieved in this pilot study is not directly
comparable to the state of the art in the question and answer community, due to
our syntactic restrictions on the input text. However, we believe that this project
is a practical solution to alleviate the game designer’s burden in authoring game
dialogue.

Our future work is two-fold: system improvement and user experience evalu-
ation. First, we plan to use a lexical database such as WordNet [10] to enhance
categorization accuracy, since it can be used to build useful semantic-distance
metrics [2]. Second, we will look into how authors and players perceive the sys-



A Lightweight Story-Comprehension Approach to Game Dialogue 7

tem. For authors, it can be compared to more traditional slot-based authoring
approaches; for players, it will be interesting to observe player behavior when
incorrect answers are presented, as an attempt to understand the impact of
different kinds of dialogue errors in games.

Acknowledgements

This work has been supported in part by the EU FP7 ICT project SIREN
(project no: 258453).

References

10.

11.

Briscoe, T., Carroll, J., Watson, R.: The second release of the RASP system. In:
COLING/ACL 2006 Interactive Presentation Sessions. pp. 77-80 (2006)

. Budanitsky, A., Hirst, G.: Semantic distance in WordNet: An experimental,

application-oriented evaluation of five measures. In: Workshop on WordNet and
other Lexical Resources (2001)

Chen, G., Tosch, E., Artstein, R., Leuski, A., Traum, D.R.: Evaluating conversa-
tional characters created through question generation. In: Proceedings of FLAIRS
2011. pp. 343-344 (2011)

Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19, 17-37 (1982)

Friedman-Hill, E.: Jess in Action. Person Education (2003)

Garside, R., Smith, N.: A hybrid grammatical tagger: CLAWS4. In: Garside, R.,
Leech, G., McEnery, A. (eds.) Corpus Annotation: Linguistic Information from
Computer Text Corpora, pp. 102-121. Longman (1997)

Kacmarcik, G.: Using natural language to manage NPC dialog. In: Proceedings of
the 2nd Artificial Intelligence and Interactive Digital Entertainment Conference.
pp. 115-117 (2006)

Khoury, R., Karray, F., Kame, M.S.: Keyword extraction rules based on a part-
of-speech hierarchy. International Journal of Advanced Media and Communication
2(2), 138-153 (2008)

. Mateas, M.: The authoring bottleneck in creating Al-based interactive stories. In:

Proceedings of the AAAT 2007 Fall Symposium on Intelligent Narrative Technolo-
gies (2007)

Miller, G.A.: WordNet: A lexical database for English. Communications of the
ACM 38(11), 39-41 (1995)

Nelson, G.: Natural language, semantic analysis, and interactive fiction.
Online whitepaper. http://www.inform-fiction.org/I7Downloads/Documents/
WhitePaper.pdf (2006)



