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ABSTRACT
We develop a mechanized proof of Featherweight Java with
Assignment and Immutability in the Coq proof assistant.
This is a step towards more machine-checked proofs of a
non-trivial type system. We used object immutability close
to that of IGJ [9] . We describe the challenges of the mech-
anisation and the encoding we used inside of Coq.

Categories and Subject Descriptors
D.3.1 [Programming languages]: Formal Definitions and
Theory—Semantics; F.3.2 [Logics and meanings of pro-
grams]: Semantics of Programming Languages—Operational
semantics

General Terms
Languages, Theory

Keywords
immutability, coq, automated theorem provers, type systems

1. INTRODUCTION
Object immutability is a useful language property that

allows for better reasoning and sharing of objects. Our im-
mutability definition follows that of IGJ [9]: immutable ob-
jects can be declared transitively by utilising the mutability
parameter, however immutability of fields can still be de-
clared explicitly inside immutable objects. For simplicity
we do not model readonly references present in IGJ [8].

An immutable object cannot be modified, and only pure
(side-effect free with respect to the receiver) methods can
be called on such an object. A mutable object can be mod-
ified and mutating methods can be called on that object.
Our immutability is parametric and as a result we support
transitively immutable objects. All fields of an immutable
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object are assigned in the constructor. Objects cannot be
both immutable and mutable. Methods annotated with the
pure keyword are only allowed to read fields and call other
pure methods.

We provide a simple type system, based on Featherweight
Java [3] with assignment and object immutability. The main
contribution of this paper is a formalisation of the type sys-
tem and a soundness proof in the Coq Proof Assistant. Our
Coq development extends the Cast-Free Featherweight Java
formalisation [2], which does not handle assignment. We in-
troduce a store typing context to support assignment, which
to our knowledge has not been mechanized. We highlight
the encodings we used, and explain the differences between
a proof on paper and formalizing it inside a theorem prover.
Our Coq sources are publically available1.

Example.
We define a parametrized class Cell, where the mutable

instantiation can get and set the interned object, whereas
the immutable instantiation can only get the interned ob-
ject, provided initially in the constructor. We chose to use
transitive mutability in this example.

class Cell<M> extends Object {
Object<M> data;
Cell<M> (Object<M> data) {
this.data = data;

}
Object<M> getData pure () {
return this.data;

}
void setData mutating (Object<M> data) {
this.data = data;

}
}
...
new Cell<immutable>(new Object<immutable>()).setData(...);

The call to a Cell object in the above line that calls a mu-
tating method on an immutable object is not allowed by our
language (encoded by FJ + AI, or Featherweight Java with
Assignment and Immutability type system described next).

2. FJ + AI TYPE SYSTEM
The syntax is given in Figure 1. An expression may be

null, an address location, a variable, an error, a field ac-
cess, a field assignment, a method call, a new expression or
a sequence of two expressions. A value can be either null

1http://www.ecs.vuw.ac.nz/~mackayjuli/FJAI.zip
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e ::= null | ι | x | err | ι.f | ι.f = e | e.m(e) | new T(e) | e; e

v ::= null | ι
T ::= N <I>

C ::= class N <I> extends N{T f; K M}
K ::= T(T f){super(f); this.f=f;}
M ::= T m P(T x){return e;}
I ::= mutable | immutable | X
P ::= mutating | pure
Pr ::= C; e

Figure 1: FJ+AI Syntax

or a location. A type is a class name (N) parameterized by
a mutability parameter. A class declaration is a class name,
a class mutability parameter, a super class name, a list of
fields a constructor K and a list of methods. A constructor
of a class calls the constructor of the super class, and then
assigns values to the fields declared in the class (handled by
evaluation of the new expression subsequently). A method
declaration has a return type, a method name, a pure or
mutating annotation, a list of parameters and a body. Mu-
tability (I) can be either a definite mutability parameter
(mutable or immutable), or a mutability variable (X). Fi-
nally, a program Pr consists of a list of class declarations
and an expression to be evaluated.

2.1 Subtyping and Functions
Subtyping is defined by three subtyping rules. S-Refl, S-

Trans and S-Extend. The reflexivity and transitivity rules
are standard [3] and we omit them. The interesting rule
shown below is for inheritance (S-Extend) that restricts
the subtyping to types with the same mutability parameter.
This splits the inheritance tree into one that is mutable, and
another that is immutable. Object <immutable> roots the
immutable tree, Object <mutable> roots the mutable one.

C<I> extends D<I>

C<I> <: D<I>
(S-Extend)

The inheritance hierarchy is given in Figure 2, and is split by
the mutability parameter. The split inheritance hierarchy is
elaborated on in Section 5.
The functions for field and method lookup are standard as
found in FJ [3].

2.2 Typing
An expression can be well-typed according to seven typing

rules as shown in Figure 3. There are also two typing rules
for method typing (T-Meth-Pure and T-Meth-Mut), as
well as one for class typing (T-Class). An expression has
type T in the context of two partial functions, an environ-
ment Γ and a store typing ∆. Γ maps variables to types and
∆ maps locations to types.

Figure 2: Inheritance hierarchy including mutabil-
ity.

Γ; ∆ ` x : Γ(x) (T-Var) Γ; ∆ ` null : T (T-Null)

Γ; ∆ ` ι : ∆(ι) (T-Loc)

Γ; ∆ ` e : C <M> fType(f, C <M>) = T

Γ; ∆ ` e.f : T
(T-Field)

fields(C) = T f

Γ; ∆ ` e : T′ T′<:T

Γ; ∆ ` new C<I>(e) : C<I>
(T-New)

Γ; ∆ ` e : C <mutable> Γ; ∆ ` e′ : T′

fType(f, C <mutable>) = T T′<:T

Γ; ∆ ` e.f = e′ : T
(T-Assign)

Γ; ∆ ` e : C <mutable>

mType(m, C <mutable>) = D→ T

Γ; ∆ ` e : E E<:D

Γ; ∆ ` e.m(e) : T
(T-Invk-Mut)

Γ; ∆ ` e : C <immutable>

mType(m, C <immutable>) = D→ T

Γ; ∆ ` e : E E<:D m pure in C

Γ; ∆ ` e.m(e) : T
(T-Invk-Imm)

this : C<immutable>, C x; ∅ ` e : T
class C extends D

if mType(m,D<I>) = D→ T′

then C = D and T<:T′

m pure in D and m pure in C

T m pure(C x){return e;}OK IN C <I>
(T-Meth-Pure)

this : C<mutable>, C x; ∅ ` e : T
I = mutable ∨ I = X class C extends D

if mType(m,D<I>) = D→ T′ then C = D and T<:T′

if m pure in D then m pure in C else
if m mutating in D then m mutating in C

T m mutating(C x){return e;}OK IN C <I>
(T-Meth-Mut)

TC fC ∩ fields(D) = ∅
∀ M ∈ M, M OK IN C <I>

class C <I> extends D{TC fC; K M}OK
(T-Class)

Figure 3: FJ+AI Typing Rules

A variable has type T in the context of an environment Γ
if there is a mapping to T in Γ (T-Var). A location ι in a
store H has type T in a store typing ∆ for H if ∆ maps ι
to T (T-Loc). A field access e.f has type T if e has type
C<I> and f has type T in class C (T-Field). An assignment
e.f = v has type T if e has type C<mutable>, f has type
T in class C and v has type T′, that is a subtype of T (T-
Assign). A new expression new C<I>(e) has type C<I> if e
are well-typed with respect to the types of the fields of class
C (T-New).

There are two typing rules for method invocations, one for
method calls on mutable objects and another for immutable
objects. T-Invk-Mut allows typing on method calls to mu-
table receivers. A method call e.m(e) has type T if e has type
C<mutable>, m has type D→ T in class C and e are well-typed
with respect to D. T-Invk-Imm is similar except the method
m must be pure, since the receiver has type C<immutable>.

A method m is well-typed for a type C<I> in one of two
cases. Firstly, if the method is pure (T-Meth-Pure) then
the body of the method must be well-typed with an im-

mutable receiver and with respect to an empty store typing.
Only the receiver is required to be mutable, and not and



H(ι) = new C<M>(v) fields(C) = C f

ι.fi;H −→ vi;H
(R-Field)

H(ι) = new C<M>(...) mBody(m, C<M>) = (x; e)

ι.m(v);H −→ [ι/this,v/x]e;H
(R-Invk)

ι /∈ dom(H)
H′ = H, ι 7→ new C<M>(v)

new C<M>(v);H −→ ι;H′
(R-New)

fields(C) = C f H(ι) = new C <M>(v)
H′ = H[ι 7→ new C <M>(..., vi−1, v, vi+1, ...)]

ι.fi = v;H −→ v;H′
(R-Assign)

v; e;H −→ e;H
(R-Seq)

Figure 4: FJ+AI Reduction Rules

other method parameters. This means that the method is
not strictly side-effect free, only side effect free with respect
to the receiver. If the method overrides a method of the
super class then the return type must be a subtype of the
overridden method, and the parameter types must be the
same. Secondly, a method m is well-typed for a type C<I> if
m is mutating (T-Meth-Mut) and the body is well-typed for
a mutable receiver in the context of an empty store typing.
The mutability of the type C<I> must be either mutable or a
mutability variable. Again if the method overrides a method
of the super class then the return type must subtype the re-
turn type of the overridden method, and the types of the
parameters must be the same. For both T-Meth-Pure and
T-Meth-Mut, the pure/mutating annotation must be the
same for overridden methods.

A class declaration is well-typed (T-Class) if the fields
declared in the class declaration do not duplicate any fields
of the super class and all declared methods are well-typed.

2.3 Reduction
Expression reduction is described by a series of reduction

rules shown in Figure 4. We omit the context reduction
rules for brevity but they can be found in our technical re-
port [5]. The reduction rules R-Field, R-New, R-Assign
and R-Invk show reduction for field accesses, allocation,
field assignment and method invocation respectively. A field
access returns the value of a field of a location in the store.
new expression adds a new location to the store and returns
the address of that location. A field assignment changes the
store by replacing a value of a field of an existing location in
the store and returns that value. A method invocation re-
duces to the body of the method substituted by the method
parameters and the receiver for the this variable.

3. FJ + AI COQ ENCODING
The Coq encoding has two parts. Firstly a set of defini-

tions corresponding to the syntax, reduction rules and typ-
ing rules was created, followed by proofs for type soundness
of the encoded language.

3.1 Definitions
The definitions of the language can be broken down into

three different types of definitions. Firstly the syntactic
elements of the language such as the various expressions,
classes, as well as structures such as stores, class tables and
environments, form the basis of the encoding. These are fol-

lowed by definitions for subtyping and then substitution.The
final two parts of the definitons deal directly with the typing
and reduction rules of Sections 2.2 and 2.3.

3.1.1 Syntax Definitions
Classes in our encoding are defined inductively much like

natural numbers are defined in Coq. A class can be created
in one of two ways, as Object (analogous to 0 in the Coq
definition of natural numbers), or by extending an exist-
ing class, C extends D (analogous to Successor). To avoid
ambiguity between two direct subclasses of a class D, this
constructed class has to be identified by a unique Class-
Name. The subclass relationship (described later) becomes
much like the “less than” relationship of natural numbers.

Inductive ClassName : Type :=|Class : nat -> ClassName.
Inductive class : Type :=
| Object : class
| Extend : ClassName -> class -> class.

Notation "C ’extends’ D" := (Extend C D) (at level 0).

Mutability and pure/mutating annotation for methods are
defined as follows: 2

Inductive mutability : Type :=
| mutable : mutability
| immutable : mutability
| variable : mutability.

Inductive meth_mut : Type :=
| pure : meth_mut
| mutating : meth_mut.

Types are encoded as a class followed by an mutability
parameter. The notation C <<M>> is used throughout the
encoding to indicate a type of class C followed by a mutabil-
ity parameter M.

Inductive ty : Type :=
| Ty : class -> mutability -> ty.

Notation "C ’<<’ M ’>>’" := (Ty C M) (at level 0).

Method and Class declarations are inductively defined be-
low. meth is a method name. args is a list of variable,
type pairs. flds is a list of field, type pairs. mths is a list
method declarations. A class table (ClassTable) as defined
as a list of class declarations. Throughout the encoding, a
single class table CT is used3.

Inductive MethDecl : Type :=
| mDecl : meth -> ty -> meth_mut -> args -> exp -> MethDecl.

Inductive ClassDecl : Type :=
| cDecl : class -> mutability -> flds -> mths -> ClassDecl.

Notation ClassTable := (list ClassDecl).
Parameter CT : ClassTable.

The possible expressions are defined below, and are taken
directly from the syntax shown in Figure 1. var is an iden-
tifier for variables. meth is a method name. field is a field
name.

2In order to provide the method annotation pure, there had
to be some alternate annotation mutating, as a default no
annotation method could not be created. This is somewhat
cumbersome, and is obviously not what would be used if not
for the restrictions of Coq.
3Currently there is a single Admitted proof in the encoding:
CT_OK (that a particular class table CT is OK). CT is the
class table used in all instances where a specific class table
is required, and is the one that is in the soundness proofs.
Admitting this proof merely acts as a global assumption,
instead of assuming it in every proof, or using a generic
class table as a parameter in every function. While this is
not ideal, it simplified the functions and proofs.



Inductive exp : Type :=
| e_null : exp
| e_var : var -> exp
| e_new : class -> mutability -> list exp -> exp
| e_meth : exp -> meth -> list exp -> exp
| e_field : exp -> field -> exp
| e_loc : nat -> exp
| e_assign : exp -> field -> exp -> exp
| e_err : exp
| e_seq : exp -> exp -> exp.

Stores are represented as a list of pairs. Each pair consists
of a type and a list of values corresponding to the object’s
fields. A location e_loc n points to the nth element of the
store. Store typings are functions from the locations of a
store to types. As with stores they are also represented by
a list, this time of types. The nth element in a store maps
to the nth element of the relevant store typing.

Definition store := list (ty * (list exp)).
Definition store_typing := list ty.

3.1.2 Subtyping
The encoded definition of the subclass relation is given

below. A class C0 is a subclass of another class C1 in three
cases, reflexivity (S_Refl), transitivity (S_Trans) and exten-
sion (S_Extends).

Inductive subclass : class -> class -> Prop :=
| S_Refl : forall C, subclass C C
| S_Trans : forall C D E, subclass C D ->

subclass D E -> subclass C E
| S_Extends : forall C D C0 mutC fs ms,

C = C0 extends D ->
In (cDecl C mutC fs ms) CT ->
subclass C D.

Subtyping in the encoding is given as a predicate on types.
A type T0 = C0<<mut0>> is considered a subtype of another
type T1 = C1<<mut1>> if C0 is a subclass of C1, and mut0 =

mut1.

Definition subtype (T1 T2 : ty) : Prop :=
exists mut0, exists2 C, exists2 D,

subclass C D & (T2 = D <<mut0>>) & (T1 = C <<mut0>>).

3.1.3 Substitution
When a method is called, the arguments are substituted

into the body of the method. A recursive function is defined
to substitute the parameters into the body of the method,
and any subexpressions in the body. The function subst
takes an expression (the body of the method) and a rela-
tion mapping variables to expressions as inputs. For all ex-
pressions except variables, subst simply applies itself to all
subexpressions. In the case of variables, if the variable is
in the domain of the relation E, then it is replaced by its
image, else nothing happens. get x E returns the mapping
of x in E. Below is an abridged version of subst, showing
only variable substitution, the full function can be found in
Appendix A.

Fixpoint subst (E : SubstRel)
(e : exp) : exp := match e with

| e_var x => match get x E with
| None => e_var x
| Some e0 => e0
end

Instances of objects with variable mutability need to have
their instance mutability substituted into various parts of
the class declaration. The following functions handle the
substitution of mutability into mutability parameters (subst
_mut), types (subst_ty), pairs (subst_pair : field / type

and variable / type pairs) and expressions (subst_mut_exp :
new expressions in method bodies that use the mutability of
the class). All these functions take two inputs: a mutability
parameter to be substituted and an object to be substituted
into. These functions can be found in Appendix A.

3.1.4 Expression Typing
The typing predicate encodes the type rules of Section 2.2.

It takes an environment (Gamma), a store typing (Delta),
an expression (e) and a type (T) as inputs. typing Gamma
Delta e T corresponds to Gamma, Delta ` e : T. The follow-
ing type rules are all part of the same predicate with the
following header:

Inductive typing :
env -> store_typing -> exp -> ty -> Prop :=

T_Var encodes typing for variables. The variable is repre-
sented by e_var x. Gamma is required to be valid (env_ok).
This combined with requiring that (x,T) be in Gamma en-
sures that T is the correct type in the environment. The
type T is also required to be valid (ok_type).

| T_Var : forall Gamma Delta x T, env_ok Gamma ->
In (x,T) Gamma -> ok_type T CT ->
typing Gamma Delta (e_var x) T

T_Null provides the type rule for null expressions. The rule
is straight forward, and a null expression is well typed for
all valid types.

| T_Null : forall Gamma Delta T,
ok_type T CT ->
typing Gamma Delta e_null T

T_Loc encodes typing for locations. The location is given by
e_loc i. The ith position in the store typing is retrieved,
and the returned type is the type of the location. As a
requirement, i < stLength Delta, i.e. i is in the store typ-
ing. Again the type T must be OK.

| T_Loc : forall Gamma Delta i T,
i < stLength Delta -> ok_type T CT ->
store_typing_lookup i Delta = T ->
typing Gamma Delta (e_loc i) T

T_Field encodes the type rule for field accesses. validField
C0 fi Ti is a function that simply requires that if fields
C0 fs (shown in Appendix B) holds for some fs, then (fi,
Ti) must be in fs. Since Ti may use the mutability vari-
able of C0, then we have to substitute mutC0 into Ti (T =
subst_ty mutC0 Ti).

| T_Field : forall Gamma Delta e0 C0 fi Ti mutC0 T,
typing Gamma Delta e0 C0 <<mutC0>> ->
validField C0 fi Ti -> ok_type Ti CT ->
T = subst_ty mutC0 Ti ->
typing Gamma Delta (e_field e0 fi) T

T_Assign encodes typing of field assignments. Again the
field fi must be valid, as with T_Field. The receiver must
be annotated as mutable, and the assigned expression must
have a type T that is a subtype of Ti with mutable substi-
tuted into it, where Ti is the type of the field.

| T_Assign : forall Gamma Delta e0 C0 fi Ti e T,
typing Gamma Delta e0 C0 <<mutable>> ->
validField C0 fi Ti ->
subtype T (subst_ty mutable Ti) ->
typing Gamma Delta e T ->
typing Gamma Delta (e_assign e0 fi e) T

T_Invk encodes the type rule for method calls. To be well-
typed, the method must be a valid method (method in Ap-
pendix B) for the class of the receiver (C0). If the receiver
is not mutable, then the method must be annotated as pure



(mut0 <> mutable -> mutM = pure). This restriction in-
cludes receivers with variable mutability to avoid type errors
when substituting mutability parameters into method bod-
ies. The method parameters must subtype the types of the
parameters defined in the method declaration. The method
call type must then have the mutability of the receiver sub-
stituted into it (T = (subst_ty mut0 T0)).

| T_Invk : forall Gamma Delta e0 C0 es
e T0 T m As mut0 mutM,

typing Gamma Delta e0 C0 <<mut0>> ->
method C0 (mDecl m T0 mutM As e) ->
(mut0 <> mutable -> mutM = pure) ->
subtypings Gamma Delta es
(List.map (subst_ty mut0) (range As)) ->

ok_types (range As) CT -> ok_type T0 CT ->
T = (subst_ty mut0 T0) ->
typing Gamma Delta (e_meth e0 m es) T

T_New is the encoding of the typing rule of new expressions.
The mutability of the initialized object (mutC) must not be a
variable (mutability_defined mutC). The fields of C have to
be fetched, and the parameters must have types that subtype
their types. C <<mutC>> must be an valid type (ok_type C
<<mutC>> CT).

| T_New : forall Gamma Delta C es fs Ts mutC,
mutability_defined mutC ->
fields C fs -> range fs = Ts ->
subtypings Gamma Delta es Ts ->
ok_type C <<mutC>> CT ->
typing Gamma Delta

(e_new C mutC es) C <<mutC>>

T_Seq encodes the type rule for sequences. The encoding is
simple, and merely requires both expressions e1 and e2 to
be well-typed.

| T_Seq : forall Gamma Delta e1 e2 T1 T2,
typing Gamma Delta e1 T1 ->
typing Gamma Delta e2 T2 ->
typing Gamma Delta (e1 ;; e2) T2

Another two predicates used along with typing are subtyp-
ing and subtypings. subtyping is a combination of the
typing and subtype predicates. The subtypings predicate
simply maps the subtyping predicate to a list of expressions
and a list types.

with subtyping : env -> store_typing ->
exp -> ty -> Prop :=

| T_Sub : forall Gamma Delta e T T’,
typing Gamma Delta e T ->
subtype T T’ ->
ok_type T’ CT ->
subtyping Gamma Delta e T’

with subtypings : env -> store_typing ->
list exp -> list ty -> Prop :=

| T_Nil : forall Gamma Delta,
subtypings Gamma Delta nil nil

| T_Subs : forall Gamma Delta e T es Ts,
subtypings Gamma Delta es Ts ->
subtyping Gamma Delta e T ->
subtypings Gamma Delta (e::es) (T::Ts).

3.1.5 Method and Class Typing
Method typing is encoded in the definition below. Instead

of spliting the method typing up, it was encoded as a single
predicate. Different cases were captured using implications.
The most important aspect of the method typing was the
typing of the body. The body of all methods must be well-
typed for a mutable receiver, and an immutable receiver
if it is annotated as pure. (mutC = immutable -> mutM =

pure) requires all methods for immutable types to be pure.
Since meth_ok is only used during class typing in the encod-
ing, this means all methods in a class with an mutability
parameter of immutable must be pure. If the mutability
parameter is defined (mutability_defined mutC), then the
method body must be well-typed without any mutability
substitution, or in other words, the body may not make use
of any mutability parameters.

The second part of the method typing ensures that if the
method overrides a method from the super class, then the
method must conform to the typing requirements, i.e. the
parameter types must be the same, and the return type must
subtype the return type of the overridden method. The pure
annotation must also be the same.

Definition meth_ok (decl : MethDecl) (T : ty): Prop :=
forall C mutC T0 m e0 mutM D As Cn,

decl = mDecl m T0 mutM As e0 -> T = C <<mutC>> ->
subtyping ((this, C <<mutable>>)::

(List.map (subst_pair mutable) As)) nil
(subst_mut_exp mutable e0)

(subst_ty mutable T0) /\
(mutC = immutable -> mutM = pure) /\
(mutM = pure ->
subtyping ((this, C <<immutable>>)::

(List.map (subst_pair immutable) As)) nil
(subst_mut_exp immutable e0)
(subst_ty immutable T0)) /\

(mutability_defined mutC ->
subtyping ((this, C <<mutC>>)::As) nil e0 T0) /\
C = Cn extends D /\
(forall T0’ mutM’ Bs e0’,

method D (mDecl m T0’ mutM’ Bs e0’) ->
(range As = range Bs) /\
(subtype T0 T0’) /\ (mutM = mutM’)).

Notation "decl ’OK_IN’ C" := (meth_ok decl C) (at level 0).

The header for Class typing is as follows:

Definition class_ok (decl : ClassDecl): Prop := ...

and is a straightforward encoding of the T-Class rule from
Section 2.2. A class declaration is well-formed if all the
methods and all the fields are well formed. Methods are
well-formed according to meth_ok, and fields are well-formed
if the field types are well-formed, and there are no duplicate
fields. The body of class_ok can be found in Appendix C.

Class tables must also be well-formed, and this is captured
by the inductive predicate CT_ok, that holds for a given class
table. Informaly a class table is well-formed if there are no
conflicts in class name, and all types are well-formed. A
more formal description, along with the body of the predi-
cate are provided in Appendix C.

Inductive CT_ok : ClassTable -> Prop

3.1.6 Reduction
The reduction predicate takes two expression / store pairs

(e, H) and (e’, H’) as inputs. The predicate holds if (e,

H) reduces to (e’, H’). Reduction has the following header,
and all reductions that follow are part of the same predicate.

Inductive reduction :
exp * store -> exp * store -> Prop :=

R_Field is the encoding for field reductions. For a loca-
tion e_loc i, the contents of the location are accessed with
store_lookup i H. The fields of the class are then accessed
using fields C fs (shown in Appendix B). In order to en-
sure that the correct field is retrieved, the fields must be
valid (ok_fields fs), i.e. there must be no duplicates. The
fields (fs) and field values vs are then zipped, and the value
corresponding to f is returned (In (f,v) fv).



| R_Field : forall C i H fs vs fv f v mutC,
store_lookup i H = (C <<mutC>>,vs) ->
fields C fs -> ok_fields fs ->
zipFlds fs vs fv -> In (f,v) fv ->
(e_field (e_loc i) f) / H --> v / H

R_Invk encodes the reduction rule for method calls. As in
R_Field, the contents of e_loc i are retrieved. The param-
eters of the method call must be values (values vs), and the
method must be valid for the class of the receiver (method
in Appendix B). The parameters and their corresponding
types are zipped together to create a substitution relation
R, and substituted into the body, which is then returned.

| R_Invk : forall H i C m xs vs e R es T0 mutC mutM,
store_lookup i H = (C <<mutC>>,es) ->
values vs -> SubstRelZip xs vs R ->
method C (mDecl m T0 mutM xs e) ->
(e_meth (e_loc i) m vs) / H -->

(subst ((this,e_loc i)::R)
(subst_mut_exp mutC e)) / H

R_New encodes the reduction of new expressions. Since the
store is a list, indexing the positions of the store gives the
first element at position 0 and the last at position i − 1,
where i is the length of the store (stLength H). Thus if a
new location is appended to the store, its address will be i.
The new location is then appended to the end of the store,
and e_loc i is returned.

| R_New : forall H H’ i C vs mutC,
stLength H = i -> values vs ->
H’ = stSnoc H (C <<mutC>>,vs) ->
(e_new C mutC vs) / H --> (e_loc i) / H’

R_Assign encodes the reduction of a field assignment. As in
R_Field, the contents of the location e_loc i are retrieved,
along with the fields of the object, and the two are zipped
together. The zipping is done in this case to ensure that
the fields and the values are the same length. The index of
the field f is identified by lookup_index n fs = Some (f,
T), and the nth position of vs is then replaced by the as-
signed variable v (vs’ = replace n v vs). The new object
with the new set of values then replaces the contents of the
location (H’ = replace i (C <<mutC>>,vs’) H), and v is
returned.

| R_Assign : forall H H’ C i n fs vs vs’ fv v f T mutC,
store_lookup i H = (C <<mutC>>,vs) ->
value v -> fields C fs ->
ok_fields fs -> zipFlds fs vs fv ->
lookup_index n fs = Some (f, T) ->
vs’ = replace n v vs ->
H’ = replace i (C <<mutC>>,vs’) H ->
e_assign (e_loc i) f v / H --> v / H’

R_Seq encodes the reduction for sequences. The reduction
is straightforward, only requiring that the first expression in
the sequence be a value (value v), and then returning the
second expression.

| R_Seq : forall v e H, value v -> v ;; e / H --> e / H

3.2 Soundness Proofs
We state the theorems in English but refer the reader to

Appendix D for the Coq translation.

3.2.1 Preservation
Proof of type preservation is standard in all cases except

when dealing with method call reduction. During reduc-
tion of a method call there are two substitutions into the
method body. First, parameters are substituted into the

body and then the mutability of the receiver. Type preserva-
tion for substitution of parameters is proven in Substitution
Preserves Typing [5]. In order for a method invocation to be
well typed, a method annotated as pure cannot mutate the
receiver, and all method calls to immutable objects must be
pure. This must also hold for subexpressions of the method
body. Since some objects may be initialized as either mu-
table or immutable, when the mutability is substituted into
the method body, the body must still be well-typed. This
is proved by the theorem method_implies_typing [5]. The
Coq statement for Preservation is split into two cases that
are resolved using mutual induction; one case for reduction,
and one for reduction on lists.

Theorem 1. If Γ,∆,` e : T , e;H −→ e′;H′ where e′ 6=
err and H is well-typed with respect to ∆ then ∃∆′, T ′ s.t.
∆′ extends ∆, Γ,∆′ ` e′ : T ′ and T ′ <: T .

3.2.2 Progress
In the same way that the statement for Preservation is

split into cases for both single expressions and lists, Progress
is solved using a mutual inductive scheme on typing for ex-
pressions, subtyping and subtyping on lists. The proof of
Progress is straightforward.

Theorem 2. If Γ,∆ ` e : T , then either

(a) e is a value, or

(b) ∀H s.t. H is well-typed with respect to ∆, ∃e′,H′ s.t.
e;H −→ e′;H′

3.2.3 Immutability Guarantee
The guarantee that immutable objects do not mutate af-

ter they have been constructed is given below. Informally
the theorem states that the fields of immutable objects in
locations in a store will not change for any reduction of any
well-typed expression. Since the field values are either loca-
tions or null values, requiring that the fields of immutable
objects do not change does not require that any possible
fields of those fields will not change, i.e. transitivity is not
required. The immutablilty guarantee is straightforward for
all cases except assignment and new expressions, since these
are the only expressions that change the store. new expres-
sions do not modify any existing locations, and so is resolved
easily. For assignment, the fact that the expression is well-
typed requires that the receiver is mutable, resulting in a
contradiction.

Theorem 3. If e;H −→ e′;H′, Γ,∆ ` e : T , e 6= err,
and H is well-typed with respect to ∆ then ∀ι if ∆(ι) =
C <immutable>, H(ι) = (T, v) and H′(ι) = (T ′, v′) then
v = v′

4. RELATED WORK
We relate our work to two different research areas - one

being immutability, whereas the other is mechanisation of
object-oriented type systems.

Immutability.
Developers using off-the-shelf Java can annotate variables

with the final keyword. A field declared final can only be
assigned to once in the constructor, a variable declared fi-

nal can also only be assigned once. Methods cannot be an-
notated at all. The const keyword in C++ can also be used



to annotate method’s arguments and receivers. However,
neither annotation supports transitivity, only the annotated
variable is protected, not the object it refers to. Our object
immutability supports transitivity for both the mutability
parameter and method immutability annotations.

Different variants of immutability have been the subject
of research recently [8, 9, 6, 10]. We follow mainly the im-
mutable object [9] discipline, but in our formalisation the
subtyping tree of mutable and immutable classes do not
share a common root. Another variant are read-only refer-
ences [8]. In this discipline each reference is either read-only
or normal. A read-only reference is an immutable handle of
the object, via which no modification can be done. The same
object may be mutable if accessed via a normal reference,
which may coexist.

Mechanisation.
To our knowledge, there are no mechanized formalisations

of type systems with immutability, they are proven on paper
solely. The basic formalisation of Featherweight Java [2], on
which we based our development, does not support assign-
ment and immutability. Kim and Ryu [4] extended the FJ
formalisation for a core Fortress type system. Their focus is
multiple dispatch and multiple inheritance, they do not con-
sider assignment. Strnǐska et al [7] provide a formalisation in
Ott of Featherweight Java. Based on that Delaware et al [1]
formalized FJ with composition features, and formalized a
constraint-based typing.

5. DISCUSSION
As mentioned in Section 2.1, our type system uses a split

inheritance hierarchy, separating mutable from immutable

types. This is different to the subtyping rules of IGJ [9],
which include the mutability parameter readonly. In this
case mutable and immutable both extend readonly, and
allow covariance with respect to the mutability parameter.
This is done to allow more flexible generic subtyping. In the
case of FJ + AI, the absence of generic types means that
this hierarchy is not needed, and a reasonable alternative
that excludes a readonly parameter may seem to be to al-
low mutable to extend immutable, but this would potentially
violate the immutability guarantee, where an immutable ref-
erence points to a mutable object. Such a situation could
not guarantee that the object does not mutate.

A central advantage to mechanized soundness proofs using
tools such as Coq is a greater assurance that the proofs and
the type system itself is correct. While Coq can provide a
guarantee that for a given type system the soundness proofs
are correct, it is always possible to encode a type system
that claims to be correct, but contains inconsistencies with
the intended type system.

An example of this occurred during the encoding of this
type system especially when encoding the well-formedness
rule for method declarations and method override (meth_ok).
Initially the encoding, through negligence, required all method
bodies to be well-typed for only a mutable receiver. This
disallowed methods to be called on any immutable receiver,
whether or not they were pure. An error like this can be
hard to pick up, and can cause any soundness proofs made
on such a type system invalid.

The use of Coq to prove soundness presents several simi-
larities and differences to a soundness proof on paper. Simi-
larities between the two proofs are the proof techniques used

Defns Facts Lemmas Properties Total
FJ+A 575 852 306 528 2261
FJ+AI 675 990 376 759 2800

Table 1: A comparison of FJ+A and FJ+AI with
respect to the number of lines of code.

Facts Lemmas Properties Total
FJ+A 51 14 6 71
FJ+AI 66 17 7 90

Table 2: A comparison of FJ+A and FJ+AI with
respect to the number of theorems used.

(induction, contradiction, etc.), whereas the differences be-
tween the proofs are derived from the way the type system
is encoded using Coq. An example of this would be the
check found in R-New, ι /∈ dom(H). This is not needed in
the encoding since the new location is simply appended to
the end of the store, and is identified by its position in the
store. This difference comes from the difference in the way a
store is conceptually represented, and how it is represented
in Coq. A similar difference can be seen in the way different
lists of values are zipped together throughout the encoding,
this is usually done to match up various corresponding val-
ues, such as field names and field values, whereas on paper
how values are linked to field names is not explicitly stated.
These methods all attempt to emulate the different mecha-
nisms of the type system that are not directly translatable
in Coq.

An obvious, but effort consuming aspect Coq proofs re-
quire are the additional proofs related to metatheory that
are generally taken implicitly when performing paper proofs.
Much of the proofs done in the formalism are proofs regard-
ing seemingly obvious conclusions, such as

Theorem 4. Object<I> <: C<I> ⇒ C = Object

This also accounts for much of the increase in complexity
when adding a new feature such as immutability to an en-
coding.

Table 1 and Table 2 give a comparison of the complexity
of the two encodings; Featherweight Java with Assignment
(FJ + A) and Featherweight Java with Assignment and Im-
mutability (FJ + AI). Table 1 compares the two encodings
by the number of lines of code, and Table 2 compares them
by the number of theorems used. As can be seen there is
a 24% increase in the total number of lines used in FJ +
AI over that of FJ + I, while the total number of theorems
used increased by 27%. This gives an idea of the increase in
complexity the addition of immutability to the type system
creates.

6. CONCLUSION AND FUTURE WORK
We have presented a mechanized formalisation of transi-

tive object immutability for Featherweight Java with assign-
ment. The Coq development consists of roughly 3000 lines
of proof script; a moderate size. The trusted code base of
the proof is Coq itself, which is a widely used proof assistant
based on the Calculus of Inductive Construction (CiC).

In the future we plan to modularly extend our formali-
sation with other immutability variants and incorporate an
ownership discipline. We chose object immutability as op-



posed to class immutability or readonly references since it is
closer to our next encoding target of ownership, due to the
parameterisation of class declarations. Our formalisation
has presented some interesting results, and is a good step-
ping stone to a formalisation combining both immutability
and ownership.
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APPENDIX
A. SUBSTITUTION

Fixpoint subst (E : SubstRel)
(e : exp) : exp :=

match e with
| e_var x => match get x E with

| None => e_var x
| Some e0 => e0
end

| e_new C mut es => e_new C mut
(List.map (subst E) es)

| e_meth e0 m es => e_meth
(subst E e0) m
(List.map (subst E) es)

| e_field e1 f => e_field
(subst E e1) f

| e_loc n => e
| e_assign i f e0 => e_assign

(subst E i) f (subst E e0)
| e_null => e_null
| e_err => e_err
| e_seq e1 e2 => e_seq

(subst E e1) (subst E e2)
end.

Definition subst_mut (mut0 : mutability)
(M : mutability)
: mutability :=

match M with
| mutable => M
| immutable => M
| variable => mut0

end.

Definition subst_ty (mut0 : mutability)
(T : ty) : ty :=

match T with
C <<mutC>> => C <<subst_mut mut0 mutC>>

end.

Definition subst_pair {A : Type}
(mut0 : mutability)
(X : A * ty) : A * ty :=

match X with
| (a, T) => (a, (subst_ty mut0 T))

end.

Fixpoint subst_mut_exp (mut0 : mutability)
(e : exp) : exp :=

match e with
| e_new C variable es => e_new C mut0

(List.map (subst_mut_exp mut0) es)
| e_new C mutable es => e_new C mutable

(List.map (subst_mut_exp mut0) es)
| e_new C immutable es => e_new C immutable

(List.map (subst_mut_exp mut0) es)
| e_meth e0 m es => e_meth

(subst_mut_exp mut0 e0) m
(List.map (subst_mut_exp mut0) es)

| e_field e0 f => e_field
(subst_mut_exp mut0 e0) f

| e_assign e0 f e1 => e_assign
(subst_mut_exp mut0 e0) f
(subst_mut_exp mut0 e1)

| e_seq e1 e2 => e_seq
(subst_mut_exp mut0 e1)
(subst_mut_exp mut0 e2)

| e_loc n => e
| e_var n => e
| e_null => e
| e_err => e

end.

B. METHOD AND FIELD LOOKUP
Predicate method C decl is used to determine whether a

method call with method declaration decl is a valid method
call on an expression of class C. A method call on an expres-
sion of class C is valid in one of two cases. The first (m_this)
is when the method declaration decl is defined in the list
of methods (ms) for class C in the class table CT, and the
second is when a method m is inherited from the superclass
D. A method inherited from a class’ super class requires that
there be no method of the same name in the list of declared
methods for that class.

Inductive method : class ->
MethDecl -> Prop :=

| m_this : forall decl T0 m As e0 C fs ms mutX mutM,
decl = mDecl m T0 mutM As e0 ->
In (cDecl C mutX fs ms) CT ->
In decl ms ->
method C decl

| m_inherit : forall C D mutX fs ms Cn
decl m T0 mutM As e0,

decl = mDecl m T0 mutM As e0 ->
In (cDecl C mutX fs ms) CT ->
(forall T0’ mutM’ As’ e0’,



~ In (mDecl m T0’ mutM’ As’ e0’) ms) ->
C = Cn extends D ->
method D decl ->
method C decl.

The fields predicate corresponds to the function of the
same name in the FJ type system [3]. fields C fs holds
for a class C and a list of fields fs if fs are the available fields
for class C. This would hold in one of two cases, firstly if C
= Object, and fs = nil (the empty list), or if C 6= Object.
In the second case, the fields fs are the fields defined in the
class declaration of C in the class table CT, appended with
the fields of D (where C extends D).

Inductive fields : class -> flds -> Prop :=
| fields_obj : fields Object nil
| fields_extends : forall C C0 Cf D Df mutX ms,

C = C0 extends D ->
fields D Df ->
In (cDecl C mutX Cf ms) CT ->
fields C (concat Cf Df).

C. CLASS TYPING

Definition class_ok
(decl : ClassDecl): Prop :=

forall C ms fs mutC,
decl = cDecl C mutC fs ms ->
(ok_meths ms /\
(forall fC, fields C fC -> ok_fields fC) /\
(forall Ci muti fi, (In (fi, Ci <<muti>>) fs ->

ok_type Ci <<muti>> CT) /\
(muti = mutC \/ mutability_defined muti)) /\

(forall m T0 As e0 mutM,
(In (mDecl m T0 mutM As e0) ms ->
(mDecl m T0 mutM As e0) OK_IN (C <<mutC>>)) /\
forall C0 mut0, T0 = C0 <<mut0>> ->
mut0 = mutC \/ mutability_defined mut0) /\
(ok_type T0 CT) /\
(forall xi Ci muti, In (xi,Ci <<muti>>) As ->
(muti = mutC \/ mutability_defined muti) /\
ok_type Ci <<muti>> CT))).

Notation "’CLASS’ decl ’OK’" :=
(class_ok decl) (at level 0).

For a class table to be well formed, one of two cases must
hold. Firstly, all empty class tables are well formed (nil).
Secondly, for a non-empty class table, each class in the class
table must extend some other class (C = C0 extends D), or
in other words a well-formed class table may not contain
a declaration for Object. The class must be unique in the
class table, or there may not be any duplicates in the class
table. Finally, the mutability parameter must conform to
the mutability parameter of the super class, i.e. the type D
<<mutx>> must be an valid type (ok_type D <<mutx>> CTbl).

Inductive CT_ok : ClassTable -> Prop :=
| ok_nil : CT_ok nil
| ok_head : forall C C0 D fs ms CTbl mutx,

CLASS (cDecl C mutx fs ms) OK ->
C = C0 extends D ->
(forall mut0 mut1,
~subtype D <<mut0>> C <<mut1>>) ->

(forall mutx’ fs’ ms’,
~In (cDecl C mutx’ fs’ ms’) CTbl) ->

ok_type (D <<mutx>>) CTbl ->
CT_ok CTbl ->
CT_ok ((cDecl C mutx fs ms)::CTbl).

D. COQ THEOREM STATEMENTS

Theorem Preservation :
(forall p p’, reduction p p’ ->
(forall Gamma Delta T e e’ H H’,
(e,H) = p -> (e’,H’) = p’ ->
e’ <> e_err ->
store_well_typed Delta H ->
env_ok Gamma ->
typing Gamma Delta e T ->
(exists Delta’,
ST_Extends Delta’ Delta ->
store_well_typed Delta’ H’ ->
subtyping Gamma Delta’ e’ T))) /\

(forall p p’, ListReduction p p’ ->
(forall Gamma Delta Ts es es’ H H’,
(es,H) = p -> (es’,H’) = p’ ->
~ In e_err es’ ->
store_well_typed Delta H ->
env_ok Gamma ->
subtypings Gamma Delta es Ts ->
(exists Delta’, ST_Extends Delta’ Delta ->

store_well_typed Delta’ H’ ->
subtypings Gamma Delta’ es’ Ts))).

Theorem Progress :
(forall Gamma Delta e T,
typing Gamma Delta e T ->
Gamma = nil ->
(value e \/
(forall H, store_well_typed Delta H ->
exists e’,
exists H’, e / H --> e’ / H’))) /\

(forall Gamma Delta e T,
subtyping Gamma Delta e T ->
Gamma = nil ->
(value e \/
(forall H, store_well_typed Delta H ->
exists e’,
exists H’, e / H --> e’ / H’))) /\

(forall Gamma Delta es Ts,
subtypings Gamma Delta es Ts ->
Gamma = nil ->
(values es \/
(forall H, store_well_typed Delta H ->
exists es’,
exists H’, ListReduction (es, H) (es’, H’)))).

Theorem Immutability_Guarantee :
(forall p p’, reduction p p’ ->
(forall e H e’ H’ Delta Gamma T,
(e, H) = p -> (e’,H’) = p’ ->
subtyping Gamma Delta e T ->
e’ <> e_err ->
store_well_typed Delta H ->
(forall i C T T’ vs vs’, i < stLength H ->
store_typing_lookup i Delta = C <<immutable>> ->
store_lookup i H = (T, vs) ->
store_lookup i H’ = (T’, vs’) ->
vs = vs’))) /\
(forall p p’, ListReduction p p’ ->
(forall es H es’ H’ Delta Gamma Ts,
(es, H) = p -> (es’, H’) = p’ ->
subtypings Gamma Delta es Ts ->
~ In e_err es’ ->
store_well_typed Delta H ->
(forall i C T T’ vs vs’, i < stLength H ->
store_typing_lookup i Delta = C <<immutable>> ->
store_lookup i H = (T, vs) ->
store_lookup i H’ = (T’, vs’) ->
vs = vs’))).


