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Abstract

The overall topic of this thesis is modular reasoning for higher-order languages
with state. The thesis consists of four mostly independent chapters that each deal
with a different aspect of reasoning about higher-order languages with state. The
unifying theme throughout all four chapters is higher-order separation logic.

The first chapter presents a higher-order separation logic for a higher-order
subset of C]. One of the interesting issues that arises when reasoning about higher-
order code in an imperative language, is the combination of mutable variables and
variable capture. In C], anonymous methods can have externally observable state
effects on both the heap and the stack, through captured variables. However,
despite state effects on the stack it is still not possible to alias stack variables in
this subset of C]. We exploit this to define a logic that allows us to treat captured
variables as resources, without breaking Hoare’s assignment rule.

The second chapter is concerned with the problem of reasoning about shar-
ing in a higher-order concurrent language. When specifying shared mutable data
structures, the appropriate specification depends on how clients intend to share
instances of the data structures. To ensure modular reasoning, we need a generic
specification that clients can refine with their desired sharing discipline. In the
second chapter we present a new higher-order separation logic and a new style of
specification that clients can refine with a sharing discipline of their choice.

The third chapter of the thesis is a case study of the C] joins library. What
makes this library interesting as a case study is that it combines a lot of advanced
features (higher-order code with effects, concurrency, recursion through the store,
shared mutable state, and fine-grained synchronization) to implement a high-level
interface for defining synchronization primitives in C]. Due to the declarative
nature of this interface, synchronization primitives implemented using the joins
library admit fairly simple informal correctness arguments. We present an abstract
specification of the joins library that extends these informal correctness arguments
to fully formal partial correctness proofs. Using the logic developed in the second
chapter, we verify a lock-based implementation of the joins library against this
abstract joins specification.

The last chapter is concerned with the problem of extending a pure depen-
dent type theory with effects. The motivation is to take advantage of an existing
implementation of a pure dependent type theory to obtain an implementation of
a formal proof system based on higher-order separation logic. In particular, we
extend the Calculus of Inductive Constructions with monadically encapsulated
stateful and potentially non-terminating computations. The monadic computa-
tion types are indexed with pre- and postconditions and act as partial correctness
specifications. The type theory supports local reasoning about state through a
notion of disjointness strongly inspired by separation logic.
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Introduction

Almost all software contains errors that cause incorrect results or unexpected be-
havior with varying consequences. It has been a long-standing vision of computer
science to eliminate such errors by proving the absence of errors through math-
ematical techniques. However, despite over 40 years of research the cost-benefit
ratio of formal verification is still too high for widespread adoption. One barrier
to cost-effective verification is the lack of techniques for modular specification and
verification for realistic programming languages.

Programming languages typically provide various ways of decomposing code
into libraries that interact through well-defined interfaces. Provided these inter-
faces do not expose internal implementation details, this decomposition allows
libraries to be developed, tested, and maintained independently. Modular reason-
ing techniques should support a similar decomposition, allowing libraries to be
verified independently, through formal interface specifications that abstract the
intended behavior of each library.

Higher-order separation logic is one attempt at achieving modular reasoning
about partial correctness properties for higher-order languages with state. In the
following section we give a brief introduction to higher-order separation logic,
followed by a discussion of open problems.

Background

The languages that we consider in this thesis all feature global state and allow
libraries to interact through shared mutable data structures. Shared mutable data
structures are difficult to reason about due to the possibility of aliases – i.e.,
syntactically distinct references pointing to the same location in memory.

Local reasoning about state. Separation logic [21] is an extension of Hoare
logic [12], developed to support local reasoning about shared mutable data struc-
tures. It achieves this by internalizing a concept of a resource and a concept of
disjointness in the logic. Disjointness is internalized through a new connective, ∗,
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called separating conjunction. P ∗ Q asserts ownership of a resource that can be
split into two disjoint parts, such that one satisfies P and the other satisfies Q.

Intuitively, a resource represents some information about the current state and
some rights to change this state [8]. Standard separation logic takes heap cells as
its primitive resources. In particular, x.f 7→ v is a resource representing the fact
that the current value of heap cell x.f is v and the exclusive right to change the
value of this heap cell. Since this resource asserts exclusive right to change heap
cell x.f, the information it represents is invariant under any rights asserted by any
disjoint resources.

To update the state, specifications must assert explicit ownership of resources
with rights justifying the given update. Hence, specifications preserve any asser-
tions about disjoint resources, as expressed by the frame rule:

{P}c{Q}
{P ∗ R}c{Q ∗ R}

Informally, due to separation, R is invariant under any changes to the state per-
mitted by rights owned by P, and any changes to the state made by c are justified
by rights owned by P. Hence, the assertion R is invariant under any changes to
the state made by c.

This allows separation logic to support local reasoning about shared mutable
data structures. In particular, specifications need only mention the resources used
to justify potential state effects, as any disjoint resources will automatically be
preserved.

Modular reasoning about libraries. Operations on data structures are typ-
ically specified by defining a representation predicate that relates a model of the
data structure with a concrete heap representation. The concrete state effects of
an operation can then be expressed in terms of the model. For instance, we might
specify a push method for a stack as follows:

∀α : seq Val. {stack(x, α)}x.Push(y){stack(x,y :: α)}
Here stack(x, α) is a representation predicate, relating the model – a list of ele-
ments in the case of a stack – with a concrete heap representation. If the stack
is implemented in terms of a singly-linked list, the stack representation predicate
might be defined as follows:

stack(x, α) = ∃y : Val. x.head 7→ y ∗ lst(y, α) (1)

in terms of the following list representation predicate:

lst(x, ε) = x =Val null

lst(x,y :: α) = ∃z : Val. x.next 7→ z ∗ x.value 7→ y ∗ lst(z, α)
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Higher-order separation logic [3] extends separation logic with higher-order quan-
tification. This allows library specifications to hide their internal data representa-
tion from clients, by existentially quantifying over representation predicates used
to specify the library. For instance, we can specify a simple stack library as follows:

∃stack : Val× seq Val→ Prop.

{emp}new Stack(){ret. stack(ret, ε)} ∧
∀α : seq Val. {stack(x, α)}x.Push(y){stack(x,y :: α)} ∧
∀α : seq Val. ∀y : Val. {stack(x,y :: α)}x.Pop(){ret. stack(x, α) ∗ ret = y}

Clients can thus be verified against an abstract library specification and linked
with any library implementation satisfying the abstract library specification. Con-
versely, when reasoning about higher-order library methods, we can use universal
quantification over representation predicates to reason abstractly about function
arguments. To illustrate, consider extending the stack library with a ForEach

method that applies the given function argument to each element of the stack.

∀I : seq Val× seq Val→ Prop. ∀α : seq Val.

{stack(x, α) ∗ I(α, ε) ∗ ∀β, η : seq Val. b 7→ (y).{I(y :: β, η)}{I(β,y :: η)}}
x.ForEach(b)

{stack(x, α) ∗ I(ε, rev(α))}

(2)

Here I is a representation predicate chosen by the caller of ForEach, to abstractly
describe the effects of the given function argument. Intuitively, I(α, β) describes
the state after having called the given function argument on each element of β,
with the elements in α still to go. We thus assert, using a nested Hoare triple [23],
that the given function argument (b) should satisfy the specification:

∀β, η : seq Val. b 7→ (y).{I(y :: β, η)}{I(β,y :: η)}
That is, when called with argument y in a state where y is the next stack element
up for processing, the function argument should process y according to the chosen
representation predicate (I).

Higher-order separation logic thus supports local reasoning about disjoint re-
sources and formal interface specifications that abstract internal data representa-
tions across library boundaries. This is a step towards modular reasoning. In the
next section we discuss some open problems.

Open problems

Separation logic is a rapidly advancing field and some of the problems discussed
in this section have already been addressed by others within the last 4 years, some
we address in this thesis, and some are still open.
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Logical resources. As we sketched in the previous section, separation logic
achieves local reasoning about state through resources and the concept of rights.
Standard separation logic provides primitive resources based on individual heap
cells with a very coarse-grained notion of rights (such as the exclusive right to
update a given heap cell). This induces a very coarse-grained notion of disjointness.
Representation predicates defined in terms of primitive resources simply inherit
this coarse-grained notion of disjointness. For instance, the stack representation
predicate defined in (1) inherits its notion of disjointness from the primitive heap
cell resources used to specify the data representation. Since these primitive heap
cell resources cannot be shared, the stack as a whole cannot be shared:

stack(x, α) ∗ stack(x, β)⇒ ⊥

To support local reasoning at the level of abstract data structures, we need ways
of lifting the notion of rights from the underlying heap cells, to the operations
exposed by the abstract data structure. By lifting the notion of rights, we can
construct logical resources that support sharing disciplines expressed at the level
of the abstract data structure instead of the underlying data representation.

Specifications. In the introduction we defined modular reasoning as allowing
libraries to be verified independently through formal interface specifications that
abstractly describe the intended behavior. This definition implicitly assumes that
for the libraries we are interested in verifying we can define a single abstract
specification that covers all intended uses of the library. This is not an obviously
valid assumption, especially in the presence of higher-order features or sharing.

For instance, it is not at all clear that the specification of ForEach proposed
above, (2), is sufficiently general to capture the state effects of all sensible function
arguments for ForEach.

Furthermore, as sketched above, to support local reasoning about abstract data
structures, we need logical resources with rights corresponding to the operations of
the data structure. Since the appropriate notion of rights depends on the intended
use of the data structure, clients should be able to construct these logical resources.
To support local and modular reasoning about abstract data structures we thus
need a single formal interface specification that hides internal data representations
through abstract representation predicates and allows clients to construct logical
resources from these abstract representation predicates.

Real world. Finally, to verify larger and more realistic examples we need sepa-
ration logics for more realistic programming languages and computer support for
carrying out proofs in these logics.
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Contents

This dissertation consists of four articles and three technical reports organized into
four chapters. The unifying goal throughout all four chapters is modular reasoning
about partial correctness properties using higher-order separation logic, and each
chapter deals with one of the open problems sketched above. With the exception
of Chapters 2 and 3, each chapter can be read independently.

Each chapter starts with an article containing a self-contained introduction.
This section provides a more informal and high-level overview of each chapter.
Since the chapters are mostly independent, related and future work is addressed
in each chapter. We include some references in this introduction; however, we refer
the reader to the articles for more detailed references.

Chapter 1: State in C]

Most of the early work on separation logic focused on low-level imperative lan-
guages without higher-order features. More recently, we have seen separation log-
ics for higher-order functional languages with state [14, 16]. The first chapter of
the thesis concerns the problem of reasoning about state in a higher-order imper-
ative language. In particular, we present a new higher-order separation logic for a
subset of C] that includes delegates (i.e., type-safe function pointers), anonymous
methods, and generics.

Variable capture. The main difficulty introduced in C] is the combination of
mutable variables and variable capture. In particular, in C] anonymous methods
capture the location rather than the value of captured variables and the lifetime of
captured variables is extended to the lifetime of the capturing delegate. Delegates
can thus modify local variables from enclosing scopes. To illustrate the issue,
consider the following snippet of C] code:

public int Sum(Stack〈int〉 s) {
int sum = 0;
s.ForEach((n) => { sum = sum + n; });
return sum;
}
This method computes the sum of the elements of the given stack of integers. It
achieves this by applying the anonymous delegate, (n) => { sum = sum + n; }, to
each element of the stack, thus adding each element, n, to the running total, sum.
As the above example illustrates, delegates can thus have externally observable
state effects on both the heap and the stack.
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This poses a problem for the treatment of variables in separation logic. In
particular, in separation logic, pre- and postconditions are usually assertions about
the heap, expressed in terms of the stack. This suffices for describing state effects
on the heap, but not the stack. Furthermore, since variables cannot be aliased,
it is sound to reason about variable assignments using Hoare’s assignment rule
(i.e., substitution). Variable capture does not introduce aliasing of variables, so
we should still be able to reason about assignments using Hoare’s assignment rule.
In the first chapter, we present a higher-order separation logic with assertions for
reasoning about the stack, without breaking Hoare’s assignment rule. Verification
of code without variable capture is thus unaffected by this extension of the logic.

Variables-as-resources. We present a higher-order separation logic extended
with assertions for reasoning about the location of a stack variable and the contents
and ownership of a given stack location. In particular, x

s7→ v is a new primitive
resource representing the fact that the stack location of stack variable x contains
v and the exclusive right to modify this location. Furthermore, &x denotes the
stack location of the stack variable x. With these ingredients we can specify the
anonymous delegate from the Sum method as follows:

∀v. (n).{&sum
s7→ v}{&sum

s7→ v + n}

Intuitively, this specification expresses that the delegate, if it terminates, adds its
argument (n) to sum. Note that if we had simply referred directly to sum in the
postcondition, then this would have referred to sum’s current value. Instead, we
use the stack points-to predicate to assert the value of sum at the entry and exit
of a call to the anonymous delegate.

The logic thus features two ways of reasoning about stack variables – through
the context and through variables-as-resources [5, 18]. While a variable is still in
scope, we can switch freely between these two modes of reasoning. For instance,
reading from the bottom up, the following rule switches from reasoning about a
stack variable x through the context (φ, x) to stack assertions (l

s7→ x):

φ;ψ ` {∃x : Val. (l
s7→ x ∗ P)}C{∃x : Val. (l

s7→ x ∗ Q)} x 6∈ φ
φ, x;ψ ` {&x = l ∧ P}C{Q}

Pre- and postconditions are thus assertions on pairs of heaps and stacks, expressed
in terms of the stack (i.e., the context). To ensure that these two modes of rea-
soning about the stack do not introduce aliasing (which would break Hoare’s as-
signment rule), the stack context implicitly asserts ownership of the locations of
its stack variables. This ensures that for each variable we only reason about its
current value using one of these modes at any given point in a proof. The above
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proof rule thus requires that x 6∈ φ. This means we can use stack assertions to
specify the state effects of delegates on the stack and switch to context reasoning
when verifying delegate bodies against these specifications.

Abstraction. We usually use existentially quantified representation predicates
to abstract over internal state on the heap. Since our representation predicates
now describe both the stack and the heap, we can also abstract over internal state
on the stack. To illustrate, consider the following C] snippet:

public Action〈int〉 Counter() {
int count = 0;
return (() => { count++; return count; });
}
This method returns a delegate that returns the number of times it has been
invoked. We can give this method a concrete specification that reveals the local
state:

{emp}
Counter()

{ret. ∃l : Loc. l
s7→ 0 ∗ ∀n. ret 7→ {l s7→ n}{ret. ret = n + 1 ∗ l s7→ n + 1}}

or use existential quantification to abstract over the stack points-to predicate. As
this example illustrates, we can also reason about captured variables after they
have gone out of scope, by existentially quantifying over the stack location of the
out-of-scope captured variable.

The first chapter consists of an article and a technical appendix. The article
gives an overview of the logic and its semantics. The full logic and semantics is
defined in the accompanying technical appendix. The technical appendix is not a
self-contained work and assumes the reader is familiar with the preceding article.
The article has been published at ECOOP 2010.

Chapter 2: State, sharing and concurrency in C]

One of the open problems we mentioned in the introduction was the need for
specifications of abstract data structures that allow clients to choose a sharing
discipline that matches their intended use. In the second chapter we take a step
towards solving this problem, in the context of a higher-order concurrent subset
of C].
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Abstract data structure resources. To illustrate the problem, consider a
simple counter with methods to increment and read the current count. Assume
this counter satisfies the following specification, which enforces a single exclusive
owner and allows that owner to track the exact value of the counter:

{countere(x,n)} x.Read() {ret. countere(x,n) ∧ ret = n}
{countere(x,n)} x.Increment() {countere(x,n + 1)}

countere(x,n) ∗ countere(x,m)⇒ ⊥

The countere(x,n) resource represents the fact that the current count is exactly
n and the exclusive right to increment the current count. Assume this counter
also satisfies the following specification, which allows unrestricted sharing of the
counter by only providing each owner with a lower-bound on the current count
[20]:

{counters(x,n)} x.Read() {ret. counters(x, ret) ∧n ≤ ret}
{counters(x,n)} x.Increment() {counters(x,n + 1)}

counters(x,n)⇔ counters(x,n) ∗ counters(x,n)

The counters(x,n) resource represents the fact that the current count is at least
n and the non-exclusive right to increment the current count. This illustrates
two different ways of constructing a counter resource that results in two different
sharing disciplines. The appropriate sharing discipline depends on the intended
use of the counter. It should thus be up to the client to pick a sharing discipline
that matches the client’s intended use. To support modular reasoning, we thus
want a single abstract counter specification that allows us to define countere and
counters and derive both of these specifications.

In a first-order sequential setting without reentrancy, the first counter specifica-
tion suffices. In the absence of reentrancy and interleavings, clients can construct
new counter resources in terms of the abstract countere predicate. In particular,
clients can define counters from countere and derive the counters specification. Un-
fortunately, this is not sound in a higher-order concurrent setting with reentrancy.
For instance, there exists non thread-safe counter implementations (without inter-
nal synchronization) that satisfy the first counter specification, but not the second.

In the second chapter of the thesis we propose a new higher-order separation
logic and a new style of specification for thread-safe implementations of shared
mutable data structures. This new style of specification allow clients to reason
about the atomic points inside library methods where the abstract state changes.
This gives clients the ability to construct logical resources with a sharing discipline
that matches the intended use of the thread-safe data structure in question.
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Higher-order resources. Resources allow us to share ownership of mutable
data structures through the notion of rights. However, we also use shared mutable
data structures to control access to other mutable data structures. The canonical
example is a lock. In separation logic, we control access to mutable data structures
through ownership transfer. To support reasoning about sharing of mutable data
structures through a shared mutable data structure, our new logic features higher-
order resources. In particular, we extend the concept of rights to allow rights to
specify ownership transfer protocols of resources.

To illustrate, consider a library for scheduling independent tasks for parallel
execution. One might implement such a library using a bag to share all the tasks
scheduled for execution between a set of worker threads. For this particular use-
case the appropriate bag specification might be as follows:

{bags(x,P) ∗ P(y)} x.Push(y) {bags(x,P)}
{bags(x,P)} x.Pop() {ret. bags(x,P) ∗ (ret = null ∨ P(ret))}

bags(x,P)⇔ bags(x,P) ∗ bags(x,P)

This specification allows unrestricted sharing of the bag, but does not allow owners
to track the contents of the bag. Instead, it allows clients of the bag to associate
additional resources with each element of the bag, through the P predicate. Upon
pushing an element y, the client is thus required to transfer P(y) to the bag. Con-
versely, upon popping an element, if the bag returns a non-null element ret, then
P(ret) is transferred from the bag to the client.

The bags resource thus represents: the fact that there exists a bag with some
multiset of elements X that owns the resources ~x∈XP(x), the right to add elements
to this bag by transferring the resources associated with the given element from
client to bag, and the right to remove elements from this bag by transferring the
resources associated with the given elements from bag to client. This makes bags
a higher-order resource.

Once we start reasoning about sharing of a data structure through a shared mu-
table data structure, we immediately encounter the problem of sharing a shared
mutable data structure through itself. This is tricky to reason about. A pre-
vious logic with higher-order resources [10] failed to address this issue and was
consequently unsound. To ensure soundness, we impose certain restrictions on
higher-order resources in our logic, including a stratification of the construction
of resources. In particular, we introduce an ordering on resources and prevent
resources from specifying ownership transfer protocols on resources greater than
or equal to itself in the ordering. 1

1Since the submission of this thesis, we have presented a new model and accompanying logic
without these restriction [24].
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The logic. The higher-order separation logic that we propose in Chapter 2 is
a general-purpose logic for reasoning about C] code that combines concurrency,
state, sharing and reentrancy. It features a higher-order extension of concurrent
abstract predicates [9] to reason about shared state in a concurrent setting. Con-
current abstract predicates partitions the state into regions with protocols govern-
ing how the state in each region is allowed to evolve. To allow clients to construct
logical resources from instances of abstract data structures, we extend concur-
rent abstract predicates with a way of synchronizing two regions so they evolve in
lock-step. To support higher-order resources we extend concurrent abstract pred-
icates with state-independent higher-order protocols. The logic features guarded
recursion [4] to reason about reentrancy. We prove soundness of the logic by con-
structing a model. The presentation of the model is strongly inspired by the Views
framework [8].

When reasoning about stability and atomic updates, most previous work on
concurrent abstract predicates have resorted to working directly in the model. To
avoid this, we define an extensive proof system for reasoning about concurrent
abstract predicates in the logic.

Chapter 2 consists of an article and a technical report. The article contains
an overview of the logic and its semantics, but is mainly concerned with our
specification pattern for thread-safe shared mutable data structures. The full logic
and semantics is given in the accompanying technical report. The article has been
published at ESOP 2013.

Chapter 3: The joins library

The third chapter of the thesis is a case study of the C] joins library [2, 22].
This is a C] library for defining synchronization primitives, based on the joins
calculus [11]. What makes it interesting as a verification and specification challenge
is that it combines a lot of advanced features, including higher-order code, state,
concurrency, sharing, and reentrancy. We specify and verify the library using the
higher-order separation logic from Chapter 2. In addition to being an interesting
specification and verification challenge the case study is thus also intended to
demonstrate that the logic from Chapter 2 scales to realistic examples.

Joins. To define a synchronization primitive using the joins library one declares
a set of channels and chords. Clients interact by sending messages on channels,
which are received by chords. There are two types of channels, synchronous and
asynchronous channels. Sending a message on a synchronous channel blocks the
sender until the message has been received. Chords consist of a channel pattern



CONTENTS 14

and a continuation given as a delegate. A chord may fire when the pattern matches
a set of messages by atomically consuming the matched messages before executing
the continuation. Once the continuation terminates, the consumed messages are
received and any blocked senders of the received messages are allowed to continue.

To illustrate how the library works and the challenges involved in reasoning
about clients, consider the following joins implementation of a reader/writer lock.

class RWLock {
public SyncChannel acqR, acqW, relR, relW;
private AsyncChannel unused, shared, writer;
private int readers = 0;

public RWLock() {
Join join = new Join();
// ... initialize channels ...

join.When(acqR).And(unused).Do(() => { readers++; shared.Call(); });
join.When(acqR).And(shared).Do(() => { readers++; shared.Call(); });
join.When(acqW).And(unused).Do(() => { writer.Call(); });
join.When(relW).And(writer).Do(() => { unused.Call(); });
join.When(relR).And(shared).Do(() => {
if (−−readers == 0) unused.Call() else shared.Call(); });

unused.Call();
}
}
This example declares four public synchronous channels for clients of the lock to
acquire and release the lock (acqR, ...), and three private asynchronous channels
(unused, ...). The statement join.When(ch1).And(ch2).Do(b) defines a new chord
with continuation b and a pattern that matches a pending message from each
channel ch1 and ch2. The statement ch.Call() sends a message on the channel ch.

To see how this implements a reader/writer lock, note that each chord consumes
exactly one asynchronous message (i.e., a message on an asynchronous channel)
and sends exactly one asynchronous message. Furthermore, the unused channel
is initialized with exactly one pending message. The asynchronous channels thus
satisfy the invariant that there is at most one pending asynchronous message at
any given point in time. If this pending asynchronous message is on the unused
channel, there are currently no readers or writers; if it is on the shared channel,
there is at least one reader; and if it is on the writer channel, there is exactly
one writer. The asynchronous channels thus encode the state of the lock, and the
readers field encode the actual number of readers in the shared state. One can thus
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read the first chord as asserting that the lock may grant a read request when there
are no readers or writers, by incrementing the number of readers and transitioning
to a state with at least one reader.

Challenges. Note that several of the continuations in the above example have
state effects (i.e., they modify the readers field). Note further that despite the fact
that multiple continuations may execute in parallel, the continuations in the above
example do not synchronize access to the readers field. Intuitively, this is sound
because of the invariant on the number of pending asynchronous messages, which
ensures that between consuming and sending an asynchronous message only the
continuation of the chord that consumed the message is running. Note further
that all of the continuations make reentrant calls back into the joins library by
sending messages on channels.

To reason about joins clients like the reader/writer lock we thus need a specifi-
cation that supports continuations with state effects that make reentrant calls back
into the joins library. The second chord even matches and sends a message on the
same channel (shared). Since one can encode recursion by matching and sending
on the same channel, the joins specification must also support continuations that
encode recursion through the store through the joins library. This illustrates some
of the challenges of specifying the joins library.

Joins specification. In the third chapter of the thesis we propose an abstract
specification of the joins library that supports stateful reentrant continuations.
The basic idea behind the abstract joins specification is to allow clients of the
joins library to pick an ownership transfer protocol for each channel. An ownership
transfer protocol consists of a channel precondition and a channel postcondition.
The channel precondition describes the resources the sender is required to transfer
to the recipient upon sending a message on the channel. The channel postcondition
describes the resources the recipient is required to transfer back to the sender
upon receiving a message on the channel. The client picks an ownership transfer
protocol for each channel up front. As the client adds chords, the client then has
to prove that each chord satisfies the chosen protocol. To support reentrant calls,
the client is allowed to assume channels obey the chosen protocol when proving
that continuations satisfy the chosen protocol.

To demonstrate that this abstract joins specification is sufficiently strong to rea-
son about interesting clients, we verify a series of classic synchronization primitives
implemented using the joins library. To demonstrate that the joins specification is
not too strong (i.e., that it is actually implementable), we verify a naive lock-based
implementation of the joins library against our abstract joins specification.

The two main challenges in verifying the joins implementation is reentrancy
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and sharing. Since our abstract joins specification explicitly supports reentrant
continuations, some of the abstract joins representation predicates have to refer
to themselves recursively. We thus define these abstract join representation predi-
cates by guarded recursion. Moreover, since the joins library is itself implemented
using shared mutable state, we need to prove that these low-level shared mutable
data structures enforce the high-level ownership transfer protocol chosen by the
client. We use the higher-order extension of concurrent abstract predicates from
Chapter 2 to prove this.

Chapter 3 consists of a paper and a technical report. The paper presents
the abstract joins specification and illustrates how to use it by verifying a series of
classic synchronization primitives. The technical report includes a full proof outline
of the lock-based joins implementation against the abstract joins specification. The
paper has been published at ECOOP 2013. The paper is self-contained and can
be read independently of the rest of the thesis. The technical report assumes the
reader is familiar with the logic introduced in Chapter 2.

Chapter 4: State and non-termination in CIC

The fourth chapter of the thesis addresses the problem of extending the Calculus
of Inductive Constructions [1] with stateful, potentially non-terminating compu-
tations.

Dependent type theories such as the Calculus of Inductive Constructions (CIC)
provide powerful languages for integrated programming, specification, and verifi-
cation. However, to maintain soundness, they typically require all computations
to be pure and terminating, severely limiting their use as general purpose pro-
gramming languages. The goal of the Hoare Type Theory project is to extend a
pure dependent type theory with effects, to obtain a general-purpose programming
language with integrated support for specification and verification [16, 17].

Hoare Type Theory extends pure dependent type theories with effects by en-
capsulating effectful computations with monadic computation types. To extend
the principle of specifications-as-types to effectful computations these computation
types – also called Hoare types – are further indexed with pre- and postconditions.
Hoare types, written {p}x : τ{q}, act as partial correctness specifications. Like
separation logic, Hoare Type Theory internalizes a notion of disjointness to support
local reasoning about state. The Hoare Type Theory approach has previously been
used to extend both the Calculus of Constructions [6] and the Extended Calcu-
lus of Constructions [15] with state and potentially non-terminating computations
[16, 19].

Neither of these prior versions of Hoare Type Theory embed into CIC. In the
fourth chapter of the thesis we present a new version of Hoare Type Theory that
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extends CIC with stateful, potentially non-terminating computations. The reason
why CIC is so important and our main reason for targeting CIC is Coq – the
implementation of CIC. By presenting our type theory as an extension of CIC, we
get an implementation for free, as an axiomatic extension of Coq.

While our treatment of state is strongly inspired by previous versions of Hoare
Type Theory, our treatment of non-termination is new. For the purposes of this
introduction, we will thus focus on our treatment of non-termination.

Non-termination in dependent type theories. Allowing unrestricted recur-
sion breaks the principle of propositions-as-types, as one can construct a non-
terminating term of false (i.e., the type of proofs of the proposition false). Fol-
lowing Constable and Smith, we add partiality by introducing a type O(τ) of po-
tentially non-terminating computations of type τ , along with the following fixed
point principle for typing recursively defined computations:

fixτ : (O(τ)→ O(τ))→ O(τ)

Unfortunately, in sufficiently expressive dependent type theories, there exist types
for which the above fixed point principle is unsound [7]. For instance, in type
theories with subset-types, the fixed point principle allows reasoning by a form of
fixed point induction, which is only sound for admissible predicates. Previous type
theories based on the idea of partial types that admit fixed points have approached
the admissibility issue in roughly two different ways:

• The notion of admissibility is axiomatized in the type theory and explicit
admissibility conditions are required in order to use fix. This approach has,
e.g., been investigated by Crary in the context of Nuprl [7]. The resulting
type theory is expressive, but admissibility conditions lead to significant
proof obligations, particularly when using Σ types.

• The underlying dependent type theory is restricted in such a way that one
can only form types that are trivially admissible. This was the approach used
in prior work on Hoare Type Theory to extend the Calculus of Constructions
with effects [19]. That version of Hoare Type Theory excluded strong Σ types
(and, more generally, dependent inductive types) from the Set universe, to
ensure that all types were trivially admissible. Since the Set universe of CIC
does feature dependent inductive types, this approach does not scale to CIC.

In the fourth chapter we explore a third approach, which ensures that all types
are admissible, not by limiting the underlying standard dependent type theory,
but by limiting only the partial types. The limitation on partial types consists
of equating all effectful computations at a given type: if M and N are both of
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type O(τ), then they are propositionally equal. Thus, with this approach, the only
way to reason about effectful computations is through their type, rather than via
equality or predicates. With sufficiently expressive types, the type of an effectful
computation can serve as a partial correctness specification of the computation.
This approach allows us to restrict attention to a subset of admissible types that is
closed under the standard dependent type formers, including dependent inductive
types.

Impredicative Hoare Type Theory. Using this new approach to partiality we
present a new impredicative variant of Hoare Type Theory – dubbed iHTT – that
embeds into CIC. To demonstrate the soundness of iHTT we construct a model of
iHTT. The model is based on a standard realizability model of partial equivalence
relations (PERs) and assemblies over a combinatory algebra [13]. These give rise
to a model of the Calculus of Constructions, that models the Set universe using
PERs. Restricting to complete PERs (i.e., PERs closed under limits of ω-chains)
over a suitable universal domain yields a model of recursion in a simply-typed
setting and a dependently-typed setting without dependent inductive types. Our
contribution is in identifying a set of complete monotone PERs that models a full
dependent type universe (including dependent inductive types) and recursion.

Our model shows the soundness of Hoare Type Theory with higher-order store
and justifies the first implementation of Hoare Type Theory with higher-order
store as an axiomatic extension of Coq. The implementation is available at:

http://www.itu.dk/people/kasv/ihtt.tgz

Chapter 4 consists of a paper. The paper is an extended version of a paper pub-
lished at TLCA 2011. The paper presents our new approach to non-termination,
a new version of impredicative Hoare Type Theory, and a model of iHTT.



CONTENTS 19

Summary of contributions

In this thesis we present two new higher-order separation logics for C]. The first
logic is concerned with the problem of reasoning about state effects on the stack,
without introducing explicit reasoning about aliasing on the stack. We achieve
this with a new non-standard variables-as-resources extension of higher-order sep-
aration logic.

The second logic is concerned with the problem of reasoning about shared
mutable data structures in a higher-order concurrent setting. The second logic is
a higher-order variant of concurrent abstract predicates, extended with support for
synchronizing multiple regions and higher-order protocols. We present a new way
of specifying thread-safe shared mutable data structures in this logic that allow
clients to refine specifications with a sharing discipline that matches the intended
use. We also present an extensive proof system for reasoning about concurrent
abstract predicates.

We demonstrate that this second logic scales to realistic examples by verifying
the C] joins library. This library combines state, sharing, concurrency, and reen-
trancy to realize a high-level interface for defining synchronization primitives. We
give an abstract specification of the joins library and illustrates its use by verifying
a series of classic synchronization primitives implemented using the joins library.
To demonstrate that the specification is realizable, we verify a naive lock-based
implementation against this abstract joins specification.

Finally, we present a new approach for extending pure dependent type theo-
ries with monadically encapsulated potentially non-terminating computations. By
collapsing the propositional equality on these potentially non-terminating compu-
tations, we can restrict attention to a subset of admissible types that includes a
full dependent type universe and dependent inductive types. We apply this ap-
proach to extend CIC with stateful, potentially non-terminating computations.
This justifies the first implementation of Hoare Type Theory with higher-order
store.
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List of Publications

During my PhD I’ve coauthored five articles and three technical reports. This
thesis includes the four articles and three technical reports for which I am the
primary author. Below is a list of the articles and technical reports.

The following articles are joint work with Lars Birkedal and Matthew Parkinson:

• Verifying Generics and Delegates.

• Modular Reasoning about Separation for Concurrent Data Structures.

• Joins: A Case Study in Modular Specification of a Concurrent Reentrant
Higher-order Library.

and so are the following technical reports:

• Verifying Generics and Delegates: Technical Appendix.

• Higher-order Concurrent Abstract Predicates.

• Verification of the Joins Library in Higher-order Separation Logic.

The first article was published at ECOOP 2010, the second at ESOP 2013 and the
third at ECOOP 2013.

The following article is joint work with Lars Birkedal and Aleksandar Nanevski:

• Partiality, State and Dependent Types.

The fourth article was published at TLCA 2011. The article included in the thesis
is an extended version of the published article.

The fifth article is joint work with Neelakantan Krishnaswami, Jonathan Aldrich,
Lars Birkedal and Alexandre Buisse:

• Design Patterns in Separation Logic.

The fifth article was published at TLDI 2009. My contribution to this work was
primarily related to the Coq formalization; hence, this work is not part of the
thesis.
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Verifying Generics and Delegates
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Abstract. Recently, object-oriented languages, such as C], have been
extended with language features prevalent in most functional languages:
parametric polymorphism and higher-order functions. In the OO world
these are called generics and delegates, respectively. These features allow
for greater code reuse and reduce the possibilities for runtime errors.
However, the combination of these features pushes the language beyond
current object-oriented verification techniques.
In this paper, we address this by extending a higher-order separation
logic with new assertions for reasoning about delegates and variables. We
faithfully capture the semantics of C] delegates including their capture
of the l-value of a variable, and that “stack” variables can live beyond
their “scope”. We demonstrate that our logic is sound and illustrate its
use by specifying and verifying a series of interesting and challenging
examples.

1 Introduction

There has been a recent trend for object-oriented languages, like C], to adopt
features such as generics (parametric polymorphism) and delegates (first class
functions). These features help the programmer improve code reuseability and
reliability by providing greater abstraction at the level of types. However, C]

type safety falls short of proving that programs do the right thing, it simply
prevents certain classes of errors.

Program verification enables proofs that programs do the right thing, and
there has been a lot of work on verifying object-oriented languages, for exam-
ple [6, 8, 2, 1]. However, the majority of this work falls short of reasoning about
features such as generics or delegates.

Higher-order separation logic (HOSL) [3, 9] and Hoare Type Theory (HTT) [11,
18] have both been developed to reason about higher-order functional languages.
HOSL and HTT uses quantification over propositions to allow reasoning about
parametric polymorphism, and HTT uses nested Hoare triples to allow reasoning
about first class functions.

We borrow ideas from HOSL to extend a separation logic for object-oriented
programs [16, 14, 15] to reason about generics and delegates. Unfortunately, the
combination is not straightforward. Neither, HTT nor HOSL deal with the com-
bination of mutable variables and first class functions that we have in C]. In
particular, anonymous C] delegates have a surprising behaviour for capturing
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variables. First, they capture the l-value, i.e., the location of the variable, rather
than just its value, and secondly, captured variables can live beyond their static
scope, if they have been captured, and can thus not always be allocated on the
stack. These two aspects complicate the logic.

Just as C] hides these implementation details from the programmer, so should
the program logic and in particular one should be able to reason about captured
and escaped variables as if they were on the stack. Our key aims for reason-
ing about delegates and captured/escaped variables are thus that (1) Hoare’s
assignment rule should remain valid; and (2) reasoning should be standard for
programs that do not use these complicated features.

Simply throwing all variables onto the heap would violate both (1) and (2).
Likewise, treating variables as resource [5, 17] would also complicate proofs of
programs that do not take advantage of delegates with captured variables. In-
stead, we will use an operational semantics where local variables do reside on
the stack and extend the assertion logic with new assertions for reasoning about
the location and value of stack variables.

For escaped variables we need to be able to assert the existence of an es-
caped variable on the stack and reason about its value, and for a delegate with
captured variables we need to be able to reason about the captured variables’
current values as well as their value at the call- and exit-site of the delegate. To
accomplish this, we introduce a new assertion, lookup L as x in P. Here L is
a term denoting a location on the stack and lookup simply binds the contents
of this stack location to x in the assertion P. Of course, we need to ensure that
this does not introduce any aliasing in reasoning about the stack, as this would
invalidate Hoare’s assignment rule.

Our resulting system has the following properties:

1. Programs that use generics (but do not use delegates) can be verified using
higher-order separation logic reasoning.

2. Programs that use named delegates can be verified using nested triples [19].

3. Programs that use anonymous delegates with escaping local variables can be
verified using lookup to refer to escaped variables.

In summary, the key contributions of the paper are:

– Application of higher-order separation logic, in particular quantification over
predicates in the assertion logic, to allow reasoning about programs that use
generics.

– The first logic to deal with C] 2.0 style delegates, involving anonymous
methods and variable capture.

– Illustration of the utility of our logic with a series of examples.

– Formal semantics and soundness of our logic.

We stress that the soundness of the logic is non-trivial; indeed, we develop a new
model of separation logic in order to reason about delegates that can capture
mutable variables.
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In this paper, we do not address inheritance. However, we believe this is
an orthogonal issue that can be dealt with in the same way as Parkinson and
Bierman [16, 15].

The rest of the paper is structured as follows. We begin, in §2, by showing
how a higher-order separation logic can be used to reason about object-oriented
programs using generics. Then, in §3, we carefully explain the intricacies of
C] delegates and how they can capture variables, and extend the logic to reason
about delegates. In §4, we present a short case study using the logic. We then, §5,
rigorously define the formal semantics of the logic and demonstrate its soundness.
Finally, we close by discussing related work, §6 and conclusions and future work,
§7.

See [20] for an extended technical appendix to the present paper with more
details and proofs.

2 Generics

Generics allow for greater code reuse, by allowing the programmer to abstract
over types. In this section we illustrate how to reason about generic methods
using higher-order features of the logic.

Consider a simple example of a Node class, that stores items of a generic
type:

public class Node〈X〉 {
Node〈X〉 next;
X item;

}
Here we see the Node class takes a type parameter X that is the type of the
elements it stores.

Typically, in reasoning about Java or C] programs the representation of
classes in separation logic is done through predicates. Generics extends the no-
tion of a class to enable it to take other classes as arguments, hence we must
similarly extend the logical representation to predicates that can take predicates
as arguments. Thus we leave first-order separation logic and move to higher-order
separation logic.

Our assertion logic is an intuitionistic higher-order logic over a simply typed
term language, derived from [3]. We use ω to range over types, which are gener-
ated by the following grammar:

ω ::= ω × ω | ω → ω | Val | Class | Prop | Int.
The set of types is closed under products and function spaces. Val is the type of
mathematical values; it includes all C] values and strings, and is closed under
formation of pairs, such that mathematical sequences and other mathematical
objects can be conveniently represented.3 The type Class represents the set of

3 We use a single universe Val for the universe of mathematical values to avoid also
having to quantify over types in the logic and because such a single universe is also
used in the jStar tool [7].
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all syntactic generic class identifiers as generated by the grammar presented in
Section 5. Assertions are terms of type Prop.

Terms are typed with the typing judgment

φ;ψ ` M : ω,

where φ is a program variable context, and ψ a logical variable context. Through-
out the paper we assume the two contexts to be disjoint and that variables are
not repeated in either context. (In the extended version [20] of this paper, there
is also a context ∆ of type variables; but since we do not need that for the
examples in this paper we have omitted it, to simplify the notation.)

The usual specification style of separation logic for describing data structures
is to define a predicate at the meta-level which describes how a mathematical
structure is represented on the heap. Using higher-order logic allows us to define
these representation predicates inside the logic [3], and to define them abstractly
in terms of representation predicates for abstracted types.

For the generic Node class defined above we can, for instance, define a generic
representation predicate of the following type:

` list : Val× Val× (Val× Val→ Prop)→ Prop.

The predicate is defined as follows:

list(n, [],P)
def
= n =Val null

list(n, v :: xs,P)
def
= ∃n′, x : Val. n.next 7→ n′ ∗ n.item 7→ x

∗ P(x, v) ∗ list(n′, xs,P).

To simplify notation, we use standard notation for mathematical sequences ([]
for the empty sequence, and v :: xs for the sequence with head element v and
tail xs) that are officially represented as elements in the type Val.

Thus list(n, xs,P) expresses that n is a representation of a list of objects,
where each object represents the corresponding value in the sequence xs, as
described by representation predicate P. A reference n represents the sequence
xs if n is null and xs is the empty sequence, or if n is a reference to an object o
such that o’s item field is a representation of the head of xs and o’s next field is
a representation of the tail of the sequence.

We can now give the constructor the following specification:

public Node(X item, Node next) { ... }
∀v : Val, ys : Val, P : Val × Val →Prop,
{ P(item, v) ∗ list(next, ys, P) }
{ r. list(r, v::ys, P) }

where the r in the post-condition is a binder for the return value. So the con-
structor takes a reference to an X object, which represents the value v and a
reference to a Node〈X〉 object, representing the list of values ys and produces a
Node〈X〉 object which represents the list of values v :: ys.

Here is a simple example of how we can specify a generic append operation:
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class List {
public static Node〈X〉 append〈X〉(Node〈X〉 front,

Node〈X〉 tail) {
if(front == null)
return tail;

else {
Node〈X〉 tmp = append〈X〉(front.next, tail);
front.next = tmp;
return front;
}
} ∀P : Val × Val →Prop, xs, ys : Val.
{ list(front, xs, P) ∗ list(tail, ys, P) }
{ r. list(r, xs@ys, P) }

}

The proof is straightforward, and we provide a detailed proof outline in the
extended version [20].

Next we consider a client of this class that appends two lists of numbers.

{ list(xs,[1,2,3],Int) ∗ list(ys,[4,5,6],Int) }
zs = List.append〈Integer〉(xs,ys);

{ list(zs,[1,2,3,4,5,6],Int) }

Here Int : Val × Val → Prop is a predicate such that Int(i, v) holds if i points
to an Integer object representing the number v.

Thus we see that it is very simple to specify generic programs by being
correspondingly generic in the logic, via quantification over predicates. This is
as one would hope, given the earlier work on HOSL and HTT mentioned in the
introduction. We now turn to the more challenging issue of delegates.

3 Delegates

In this section we recall the semantics of C] delegates (Subsection 3.1); show
how to reason about methods using delegates via the delegate call rule (Subsec-
tion 3.2); and then show how to specify named delegates (Subsection 3.3) and
anonymous delegates (Subsection 3.4).

3.1 Understanding C] delegates

A C] delegate type describes the parameter types and return type of a method,
and is thus very similar to an ML function type. An instance of a C] delegate
type refers to a method with a compatible signature, and is thus very similar to
an ML function (in this paper we ignore that a delegate can refer to multiple
such methods, all of which get invoked when the delegate is invoked).

We will use the following delegate types in our examples in this paper:
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public delegate void Action();
public delegate void Action〈X〉 (X x);
public delegate Y Func〈Y〉 ();
public delegate Y Func〈X,Y〉 (X x);

The first two are used for delegates that do not return a result, and the last two
for delegates that return a result of type Y. The first and third do not take an
argument and the second and fourth take an argument of type X. Overloading
will resolve which Action or Func type is meant.

Methods can then take delegates as arguments; for instance, here is how one
writes an apply method that takes a delegate with no formal parameters as
argument and calls it:

public void apply(Action f) { f(); }
This might look very “functional” and simple, but, of course, the argument
delegate may have lots of effects, using local state on both the stack and the
heap.

As an example of the kind of programs we are interested in verifying, consider
the following imperative fold method:

public static void fold〈X〉(Node〈X〉 lst, Action〈Node〈X〉〉 f) {
if(lst != null) { Node〈X〉 tmp = lst.next; f(lst); fold(tmp, f); }
}
This method takes a list and a delegate as arguments and applies the delegate
to each element in the list, from left to right. An important feature of this
implementation is that it remembers the value of the next pointer before calling
the delegate f. This allows the delegate to update the next pointer of the current
node while preserving that fold applies the delegate to all the nodes of the list.
No accumulator value is passed explicitly as an argument to the delegate, since
the delegate can maintain an accumulator value itself using local state, as in the
following example:

class Reverse〈X〉 {
Node〈X〉 head;
public void flip(Node〈X〉 x) { x.next = head; head = x; }
public Node〈X〉 reverse(Node〈X〉 lst)
{ head = null; fold〈X〉(lst, flip); return head; }

}
This method uses the fold method to reverse a list in-place. It uses the head
field to point to the head of the part of the list reversed so far and folds the flip
method, which adds a node to the front of head, over the given list, thus ending
up with a reversed list. In Section 3.3, we show how to reason about delegates
referring to named methods.

Anonymous methods introduce new complications in the form of captured
and potentially escaping variables, because they are declared inline and are al-
lowed to refer to local variables from enclosing scopes. To illustrate, consider the
following example:
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public Func〈int〉 counter() {
int x=0;
return delegate () { return ++x; };
}

This method returns a delegate that has captured the l-value (the location) of
the local variable x. Calling the returned delegate will return the number of times
the delegate has been called. The strange aspect to this code is that x is scoped
to the body of the method counter and thus escapes its scope when the delegate
is returned.

One can thus also use captured variables to associate local state with a
delegate; for instance, one can implement reverse using a captured variable in
place of the head field as follows:

public static Node〈X〉 reverse〈X〉(Node〈X〉 lst) {
Node〈X〉 head = null;
fold〈X〉(lst, delegate (Node〈X〉 x) { x.next = head; head = x; });
return head;
}

C] compilers compile such programs by rewriting them into equivalent C] pro-
grams without the inline delegate or the captured variable, by introducing a new
class with a field corresponding to the captured variable and a method corre-
sponding to the inline delegate. So, while head appears to be a local variable on
the stack to the programmer, in fact it ends up on the heap, after the rewriting
done by the C] compiler.

One could verify the rewritten program, without local state on the stack,
with a higher-order separation logic with nested Hoare triples. However, this
would mean explicitly reasoning about aliasing of captured local variables in the
logic, even though there is no aliasing of captured local variables in the original
program. Alternatively, one could devise a storage model for the program logic
with no stack at all, but only a heap and an environment, so that all mutation
would happen in the heap (as for ML-like languages). For imperative languages,
such as Java and C], such an approach would, however, lead to proof rules
that are more complicated to use than the standard Hoare / Separation logic
rules. Instead, we define a storage model where all local variables do reside on
the stack and a program logic that treats captured variables as normal stack
variables. The operational semantics thus never pops values from the stack, to
allow for references to escaped variables.

3.2 Reasoning about Methods that use Delegates

To reason about delegates we extend our higher-order assertion logic with nested
Hoare triples [19], written

M 7→ 〈(ū).{P} {d.Q}〉,
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for asserting that M denotes a reference to a method satisfying the given spec-
ification. The specification includes a context, ū, that specifies the delegate’s
formal parameters. Variable d binds the return value in Q. When d does not
occur in Q we omit d. The typing rule for the new assertion is given below.

φ;ψ ` M : Val φ;ψ, ū ` P : Prop φ;ψ, ū, d : Val ` Q : Prop

φ;ψ ` M 7→ 〈(ū).{P} {d.Q}〉 : Prop
(1)

As the typing rule shows, we allow P and Q to refer to program variables and
logical variables from the context. In the case of program variables, references
to x ∈ φ in P and Q refer to x’s current value on the stack.

Using this nested triple assertion, we can specify apply as follows:

public void apply(Action f) { f(); }
∀P,Q : Prop.{ P ∗ f 7→ 〈{P} {Q}〉 } { Q ∗ f 7→ 〈{P} {Q}〉 }

The specification universally quantifies over the delegate’s pre and post-condition,
to allow apply to be called with any delegate. For modularity, it is essential that
this specification is strong enough for verifying calls with delegates with local
state on the heap and/or stack — in the following sections we show that this
is indeed the case by demonstrating how to verify calls to apply with named
delegates (with local state on the heap) and anonymous delegates (with local
state on both the heap and the stack).

The pre and post-condition both contain the delegate assertion f 7→〈{P} {Q}〉.
This specifies what the delegate parameter will do. The pre-condition addition-
ally contains the delegate’s pre-condition P, which enables the body to call the
delegate. The post-condition of apply contains the post-condition of the delegate.
We can see the verification outline as

{ P ∗ f 7→ 〈{P} {Q}〉 }
f()
{ Q ∗ f 7→ 〈{P} {Q}〉 }

To call a delegate we require two things: an assertion about the delegate being
called, here f 7→〈{P} {Q}〉, and the pre-condition specified in that assertion, here
P. The post-condition of the call is simply the pre-condition with the delegate’s
pre-condition replaced by the delegate’s post-condition, Q.

The apply method did not deal with parameters. We can adapt the apply
method for delegates with a single argument as follows

public void apply〈X〉(Action〈X〉 f, X x) { f(x); }
∀P,Q : Val →Prop.{ P(x) ∗ f 7→ 〈(v).{P(v)} {Q(v)}〉 }

{ Q(x) ∗ f 7→ 〈(v).{P(v)} {Q(v)}〉 }

The logical variables P and Q take a parameter for the argument given to the
delegate. In the pre-condition of apply, we have P(x), which is the pre-condition
of the delegate instantiated with the argument with which it will be called. We
give an outline of the verification of the body below.
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{ P(x) ∗ f 7→ 〈(v).{P(v)} {Q(v)}〉 }
{ P(v)[x/v] ∗ f 7→ 〈(v).{P(v)} {Q(v)}〉 }
f(x)
{ Q(v)[x/v] ∗ f 7→ 〈(v).{P(v)} {Q(v)}〉 }
{ Q(x) ∗ f 7→ 〈(v).{P(v)} {Q(v)}〉 }
Here we see that we must provide the pre-condition of the delegate with the
argument substituted into the parameter, P(v)[x/v], and similarly for the post-
condition.

Now we have presented informally how we can call delegates; next, we present
the formal details. We begin by presenting the overall form of our proof system
and then the general proof rule for calling a delegate. Hoare triples in our spec-
ification logic take the form:

Γ ;φ;ψ ` {P}s{Q} /M

where Γ is a method context, assigning specifications to methods, and φ and ψ
are as for assertions;4 P and Q are assertions, both well-typed in φ, ψ; and M is
a finite set of variables (an over-approximation of the set of variables in φ that
s might modify, explained in Section 3.4.)

The proof rule for calling a delegate is shown below.

r 6∈ FV(R) R = y 7→ 〈(ū).{P} {d.Q}〉
Γ ; r, y, x̄;ψ ` {R ∗ P[x̄/ū]}r = y(x̄){R ∗ Q[x̄/ū, r/d]} / {r}

The rule expresses that if y points to a delegate, then we can call the delegate if
its precondition P holds, with actual arguments x̄ substituted in for the formal
arguments ū. To simplify the presentation of the proof system, we do not allow
delegates to modify their formal arguments (this is formalized in the delegate
definition rule below). Furthermore, the rule only applies to delegates that have
not captured r, y or x̄ (we will see why in Section 3.4). Hence, neither the formal
nor the actual parameters will be modified by the call, so we can also substitute
the actual arguments for the formal arguments in the post-condition along with
r for the return-value binder d.

3.3 Reasoning about Named Delegates

A delegate referring to a named method can refer to a static method, an open
instance method or a closed instance method; in this section we will consider
delegates referring to closed instance methods (i.e., a reference to a method and
a target object) as we can associate local state with such delegates through the
target object. Furthermore, we will only consider delegates referring to exactly
one method.

The difficulty in reasoning about delegates is that they can maintain local
state, however, since C] lacks global variables, methods and named delegates can

4 Again, in the extended version [20] there is also a context, ∆, of type variables.
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only maintain local state across calls on the heap. We can reason about methods
with local state on the heap by referring to the fields with the local state in
the pre- and post-condition of the method. For instance, an increment method
implemented with a count field would get the following specification:

public class Counter {
public int count;
int increment() { return this.count++;}
∀n. { this.count 7→ n } { this.count 7→ n + 1 }
}
Note, we could abstract the details of the field name using standard techniques
for abstraction in separation logic [16]. For simplicity, we leave it concrete here.

We can specify an increment delegate as follows: (the assertion x : Counter
holds iff x has dynamic type Counter)

x = new Counter();
{ x.count 7→ 0 ∗ x : Counter }
{ x : Counter }

f = x.increment;
{ ∀n. f 7→ 〈{(this.count 7→ n)} {(this.count 7→ n + 1)}〉[x/this]}
{ x.count 7→ 0 ∗ ∀n. f 7→ 〈{x.count 7→ n} {x.count 7→ n + 1}〉 }
To create a named delegate, we take the original method specification and replace
this with the target object x. Since delegate specifications can refer to logical
variables from the context, universal quantification in the assertion logic can be
used to introduce the logical variables used in the method’s specification, here
n.

We can duplicate delegate assertions, which enables the logical variables in a
delegate specification to be instantiated without losing the general specification.
For example, the following holds in the logic:

∀n. f 7→ 〈{x.count 7→ n} {x.count 7→ n+1}〉
` ∀n. f 7→ 〈{x.count 7→ n} {x.count 7→ n+1}〉
∗ ∀n. f 7→ 〈{x.count 7→ n} {x.count 7→ n+1}〉

This is due to the storage model defined in Section 5: the heap is split into a
field heap and a closure heap and since the closure heap is never modified and
only ever extended, it does not have to be separated by separating conjunction.

The proof rule for creating a delegate referring to a closed instance method
is given below:

Γ (C,m) = 〈(ū;ψ).{P} {d.Q}〉
Γ ; x, y;− ` {y : C}x = y.m{∀ψ. x 7→ 〈(ū).{P[y/this]} {d.Q[y/this]}〉} / {x}

where Γ (C,m) = 〈(ū;ψ).{P} {d.Q}〉 looks up the specification of the method
to which the delegate is being created, and ψ are the logical variables for the
specification.

To illustrate that the specification given to the previously verified apply
method is strong enough for verifying calls with delegates with local state on

33



the heap, consider calling apply with an increment counter. In a state where the
current count is m one can verify a call to apply with delegate f from above by
instantiating P and Q with the terms x.count 7→m and x.count 7→m+1.

{ x.count 7→ m ∗ ∀n. f 7→ 〈{x.count 7→ n} {x.count 7→ n + 1}〉 }
{ x.count 7→ m ∗ f 7→ 〈{x.count 7→ m} {x.count 7→ m+1}〉 }
{ (P ∗ f 7→ 〈{P} {Q}〉)[x.count 7→ m/P, x.count 7→ m+1/Q] }

apply(f);
{ (Q ∗ f 7→ 〈{P} {Q}〉)[x.count 7→ m/P, x.count 7→ m+1/Q] }
{ x.count 7→ m+1 ∗ f 7→ 〈{x.count 7→ m} {x.count 7→ m+1}〉 }
{ x.count 7→ m+1 }

3.4 Reasoning about Anonymous Delegates

In this section we extend our treatment of delegates to cover anonymous methods
with captured variables that can escape their scope. First, we consider reasoning
about delegates with captured variables while the captured variables are still in
scope, followed by delegates with captured variables that have gone out of scope.

Reasoning about captured variables still in scope Anonymous delegates can have
local state, not only on the heap as we saw with named delegates above, but
also on the stack. For example, the following code snippet

int x = 0;
Func〈int〉 f = delegate () { x++; };
apply(f);
assert(x==1);

binds a delegate to f, which captures the local stack variable x. The call to apply
causes a call to the delegate, which increments the x variable from the enclosing
scope. Hence, the assertion will succeed.

Now let us consider the specification of the delegate. Intuitively, the delegate
specification should express that for any stack and heap where x has the value
n, the delegate is safe to execute and if it terminates, x will have the value n+ 1
on the terminal stack. That is, in the pre- and postcondition of the delegate, we
want to refer to the value of x on the stack upon entry to, and exit from, the
delegate, respectively.

To express this we extend the logic with two new terms, written

L
s7→ N and &x

and a new type Loc of stack locations. The & operator can only be applied to
stack variables, and &x denotes the location of x on the stack. The L

s7→ N term
is a points-to predicate for the stack: it asserts that the location denoted by L is
allocated on the stack and that this location contains the value denoted by N.
The typing rules for L

s7→ N and & are given below.

φ;ψ ` L : Loc φ;ψ ` N : Val

φ;ψ ` L
s7→ N : Prop

x ∈ φ
φ;ψ ` &x : Loc

(2)
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With these extensions, the specification can be expressed as follows:

Func〈int〉 f = delegate () { x++; };
{ ∀n. f 7→ 〈{&x

s7→ n} {&x
s7→ n+1}〉 }

Note that if we simply referred directly to x in the the specification then this
would refer to x’s current value. Whereas, when used in a pre/post-condition
of a delegate assertion, the stack points-to predicate refers to the stack upon
entry/exit of a call to the delegate. In effect, the stack points-to predicate thus
allows us to delay the evaluation of a variable, and the & term allows us to
specify the variable to evaluate.

In the above specification, we only need to refer to the value of the captured
variable once in the pre- and post-condition and can thus use the stack points-
to predicate directly. However, in general, it is more convenient with a term
lookup L as x in P for asserting that the location denoted by L is allocated and
that P holds with the contents of this stack location bound to x. We can define
such a term in terms of the stack points-to predicate as follows:5

lookup L as x in P
def
= ∃x : Val. (L

s7→ x ∗ P)

The creation of an anonymous delegate is given by the following rule:

ū ∩M = ∅ ȳ, ū ∩ FVA(P,Q) = ∅ ȳ ⊆ FV(B)
Γ ; ȳ, ū;ψ ` {P}B{d.Q} /M

Γ ; ȳ, x;ψ ` {emp}
x = delegate(Ḡū) {B}

{x 7→ 〈(ū).{lookup &ȳ as ȳ in P} {d.lookup &ȳ as ȳ in Q}〉} / {x}

where FVA(P) denotes the set of variables x, such that &x occurs in P and B is
a method body,

B ::= G x̄; s; return x;

Note that, implicitly ȳ and ū are disjoint.
To ensure that substituting the actual arguments for the formal arguments in

the delegate call rule correctly captures C]’s calling convention, we prevent the
delegate from modifying or capturing its arguments, hence the premises ū 6∈ M
and ū 6∈ FVA(P,Q). The captured variables used in the body from the context,
ȳ, are bound in the specification using a lookup term to allow their evaluation
to be postponed until the point of call, and return. The premise ȳ 6∈ FVA(P,Q),
which prevents nested delegates from capturing variables from any but the inner-
most enclosing scope, is just to simplify the rule slightly. The technical report
[20] contains a generalized rule without this restriction.

It might seem like L
s7→ N and & opens up the possibility of aliasing stack

variables in the logic, which would invalidate Hoare’s assignment rule. This is
not the case, as we will explain in Section 5.1 (basically, variables in the program

5 Whenever we use this abbreviation we will implicitly assume that x 6∈ FV(L).
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variable context are implicitly separated from stack variables mentioned in the
pre- and post-condition of a Hoare triple, outside of a delegate assertion.)

When we come to calling the delegate, we need to be able to evaluate lookup
in the current state. We use a structural rule to enable this evaluation:

Γ ;φ;ψ ` {lookup l as x in P}s{lookup l as x in Q} /M

Γ ;φ, x;ψ ` {&x = l ∧ P}s{Q} /M ∪ {x} (3)

The rule is hiding two different evaluations of x, one at the beginning and one at
the end. These may evaluate to different values, so we must ensure that we have
not framed any facts about x that could be invalidated, hence this rule includes x
in the modified set. Note that the assertions P and Q cannot refer to the address
of x, since lookup L as x in P binds x as a logical variable in P. Furthermore,
by our implicit assumption about the program variable context, this rule only
applies if x 6∈ φ. The x 6∈ φ restriction is vital to the soundness of the rule, as
will be explained in Section 5.2.

Using (3) we can verify the call of the anonymous increment delegate given
above:

{ x = 0 ∗ f 7→ 〈{lookup &x as y in y=0} {lookup &x as y in y=1}〉 }
{ &x = l ∗ x = 0 ∗ f 7→ 〈{lookup l as y in y=0} {lookup l as y in y=1}〉 }
{ lookup l as x in (x = 0 ∗ f 7→ 〈{lookup l as y in y=0} {lookup l as y in y=1}〉) }
{ (lookup l as x in x = 0) ∗ f 7→ 〈{lookup l as y in y=0} {lookup l as y in y=1}〉 }

apply(f);
{ (lookup l as x in x = 1) ∗ f 7→ 〈{lookup l as y in y=0} {lookup l as y in y=1}〉 }
{ lookup l as x in (x = 1 ∗ f 7→ 〈{lookup l as y in y=0} {lookup l as y in y=1}〉) }

{ x = 1 ∗ f 7→ 〈{lookup l as y in y=0} {lookup l as y in y=1}〉 }
Here we instantiate P and Q from the apply specification as lookup l as y in y=0,
and lookup l as y in y=1, respectively. This proof outline uses the following key
property of the lookup binder to rearrange the assertions:

(lookup L as x in P) ∗ Q ⇔ lookup L as x in (P ∗ Q) (x /∈ FV(Q))

Reasoning about captured variables that have escaped their scope Consider the
following counter method from the introduction:

public Func〈int〉 counter() {
int x = 0;
return delegate () { return ++x; };
}
The interesting aspect is how to verify the body of counter.

{emp}
int x = 0;
{x=0}

Func〈int〉 f = delegate () { return ++x; };
{x=0 ∗ ∀n. S(f,&x,n)) }
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return f;
{d. x=0 ∗ ∀n. S(d,&x,n)) }
{???}
where

S = λ(f,l,n). f 7→ { lookup l as x in x = n } { d. lookup l as x in x = d = n + 1 }
The final step of the proof, marked ???, deals with leaving the scope of the vari-
able x. Typically, this would be dealt with by existential quantification. However,
since the variable x is still accessible through the delegate and its value may
change, existential quantification does not suffice. Instead, we assert that there
exists a stack location:

{d. ∃l. lookup l as x in x=0 ∗ ∀n. S(d,l,n)) }
The existential is used to quantify over the location of the variable, and lookup
allows us to bind its value. Importantly, lookup asserts that there is a stack
location disjoint from those already in scope. Indeed we have the following im-
plication in the logic:

(lookup L as x in P) ∗ (lookup L′ as x in Q) ⇒ L 6= L′ (4)

Thus, if we call counter twice, we will reason correctly about the different stack
locations for their internal state.

The general case is given by the variable declaration rule:

Γ ;φ, z;ψ ` {P ∧ z = null}B{d.Q} /M

Γ ;φ;ψ ` {P}Gz; B{d.∃l : Loc. lookup l as z in Q[l/&z]} /M \ z

This degenerates into the standard rule if z 6∈ FV (Q).

The frame rule With the introduction of captured variables, it is no longer
possible to determine syntactically from a statement which stack variables it
might modify. Hence, we have extended our Hoare triples with a finite set M of
variables:

Γ ;φ;ψ ` {P}s{Q} /M

to give an explicit over-approximation of which variables in φ, s modifies. We
restrict M to variables in scope, since we have no way of referring to variables
not in scope, nor any useful syntactic approximation of which assertions a given
assertion makes about out-of-scope variables.

To ensure that one cannot frame on assertions about potentially modified
out-of-scope variables, we let separating conjunction separate out of scope vari-
ables (as expressed by (4)). Our language satisfies the standard heap frame
property and heap safety monotonicity (used for showing the standard frame
rule sound), and it also satisfies a corresponding stack frame property and stack
safety monotonicity. We can thus prove the soundness of the following frame
rule:

Γ ;φ;ψ ` R : Prop Γ ;φ;ψ ` {P}s{Q} /M M ∩ FVV(R) = ∅
Γ ;φ;ψ ` {P ∗ R}s{Q ∗ R} /M
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since P has to assert the existence of any out-of-scope variables potentially mod-
ified by s. Here FVV(R) denotes the set of free value variables, which is defined
as follows for variables and &:

FVV(x) = {x} FVV(&x) = ∅

and like FV(R) for every other case. Hence, one can frame on assertions that refer
to the address of a variable; intuitively, since the address cannot be modified,
only the contents stored at that address.

4 Case study

In this section we return to the fold/reverse example from Section 3. We show
how to specify fold, such that one can verify calls with delegates with local state
and use it to verify the second reverse method, which maintains its local state
on the stack.

We can give fold the following specification:

public void fold〈X〉(Node〈X〉 lst, Action〈Node〈X〉〉 f) {...}
∀xs,ys : Val. ∀P : Val × Val →Prop.
∀Q : Val × Val →Prop.
{ list(lst,xs,P) ∗ Q(lst,ys) ∗ ∀v,ys : Val, ∀n’, x : Val,

f 7→ 〈(n).{n.next 7→ n’ ∗ n.item 7→ x ∗ P(x, v) ∗ Q(n, ys)} {Q(n’, v::ys)}〉 }
{ Q(null, rev(xs) @ ys) }

The code and specification is easiest to understand as an imperative form of
a fold-left function, where the accumulator is not passed around explicitly, but
rather maintained as local state by the delegate. Then Q(n,ys) is an accumulator
predicate, intended to describe the current state, after having folded over ys and
where the next node to be visited is n. In the pre-condition of the folding-delegate
we explicitly mention n.next and n.item, to allow the delegate to modify these
fields. The rev in the post-condition is a function for reversing a list in the logic.

Define Q’ as follows:

Q’ = λl : Loc. λn : Val. λys : Val. lookup l as head in list(head, ys, P)

Then we can verify the reverse method as follows by instantiating fold’s accumu-
lator predicate Q with Q’(l), where l is a logical variable introduced to refer to
the location of the captured head variable:

public static Node〈X〉 reverse〈X〉(Node〈X〉 lst) {
{ list(lst, xs, P) }

Node〈X〉 head = null;
{ list(lst, xs, P) ∗ head = null }

Action〈Node〈X〉〉 f = delegate (Node〈X〉 n) {
{ n.next 7→ n’ ∗ n.item 7→ x ∗ P(x, v) ∗ list(head, ys, P) }

n.next = head; head = n;
{ list(head, v::ys, P) }
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};
{ l = &head ∧ list(lst, xs, P) ∗ head = null ∗ ∀v,ys,x,n’ : Val,

f 7→ 〈(n).{lookup l as h in n.next 7→ n’ ∗ n.item 7→ x ∗ P(x, v) ∗ list(h, ys, P)}
{lookup l as h in list(h, v::ys, P)}〉 }

{ lookup l as head in list(lst, xs, P) ∗ head = null ∗ ∀v,ys,x,n’ : Val,
f 7→ 〈(n).{n.next 7→ n’ ∗ n.item 7→ x ∗ P(x, v) ∗ Q’(l, n, ys)}

{Q’(l, n’, v::ys)}〉 }
{ list(lst, xs, P) ∗ Q’(l, lst, []) ∗ ∀v,ys,x,n’ : Val,

f 7→ 〈(n).{n.next 7→ n’ ∗ n.item 7→ x ∗ P(x, v) ∗ Q’(l, n, ys)}
{Q’(l, n’, v::ys)}〉 }

fold〈X〉(lst, f);
{ Q’(l, null, rev(xs)@[]) }
{ lookup l as head in list(head, rev(xs)@[], P) }
{ list(head, rev(xs), P) }
return head;
{ r. list(r, rev(xs), P) }
}

In this example, we did not use the first parameter of Q, which is a reference
to the next node in the list. This field is primarily useful for delegates which do
not modify the node’s next field, to express that there is a list segment ending
with next-pointer n. Consider, for instance a map method which takes a delegate
whose action on a list element is described by a function f in the logic. Then we
could take the accumulator predicate to be:

Q(n, ys) = list−segment(lst, n, map(f, ys), P)

where the second argument to list−segment is the value of the next field of the
last node in the list, if the list is non-empty.

Filter As a second example we consider a generic filter method for the List class,
that takes as argument a delegate which is called on each element of the list to
determine whether or not it should be included in the filtered list:

class List {
public static Node〈X〉 filter〈X〉(Node〈X〉 lst, Func〈X,bool〉 f) {
if(lst == null) return null;
else {

Node〈X〉 tmp = filter(lst.next, f);
if(f(lst.item)) { lst.next = tmp; return lst; } else return tmp;
}
} ∀xs : Val, p : Val →Val, P : Val →Prop,
{ list(lst, xs, P) ∗ ∀v : Val. f 7→ 〈(x).{P(x,v)} {r. P(x,v) ∗ r = p(v) }〉 }
{ r. list(r, filter(xs, p), P) }

}
The filter(xs, p) in the post-condition is a mathematical function, which filters
the sequence xs using the predicate p. The precondition asserts that f should be
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a reference to a delegate, which, when called with a reference x representing the
value v, should return p(v).

We can verify a simple client of the filter class that filters the even numbers
in a list of integers.

{ m : Math ∗ list(x,[1,2,3,4],Int) }
d = m.isEven;
{ list(x,[1,2,3,4],Int) ∗ ∀v : Val. d 7→ 〈(i).{Int(i,v)} {r. Int(i,v) ∗ r=even(v)}〉 }
List〈Integer〉.filter(x,d);
{ list(x,filter([1,2,3,4],even),Int) }
{ list(x,[2,4],Int) }
where we assume the Math class has the following isEven method:

public boolean isEven(Integer i) { return i.intValue()%2==0; }
∀v : Val. { Int(i,v) } { r. Int(i, v) ∗ r = even(v) }

5 Semantics and Soundness of Proof Rules

In this section we formalize the syntax and operational semantics of the fragment
of the C] programming language that we consider and the semantics of our logic.
For reasons of space, many details and proofs have been omitted, please see [20]
for details.

The language that we consider is a subset of C] with the most basic object-
oriented and imperative features of C] and with a restricted syntax to simplify
the presentation of the proof system. The syntax of the language is given in
Figure 1. In the syntax we use the following metavariables: f ranges over field
names, m over method names, C over class names, x, y and z over program
variables, and T over type variables. We denote the set of field names by F, the
set of method names by M, the set of class names by C, the set of generic class
names by T, and the set of variables by Ap. We use an overbar for sequences.

For the operational semantics we assume countable disjoint infinite sets O,
Ls, and Lh of object identifiers, stack locations and heap locations, respectively.
We take values to be object identifiers, heap locations, and null. An environment
is a finite function from variables to stack locations and a stack is a finite function
from stack locations to values:

V def
= O ] Lh ] {null} Ep

def
= Ap

fin→ Ls S def
= Ls

fin→ V

A heap is a tuple (hv, ht, hc) of finite functions, where hv is a field heap, mapping
object identifiers and field names to values; ht is a type heap, mapping object
identifiers to class names; and hc is a closure heap, mapping heap locations to
delegates. A delegate is either an object identifier and a method name or an
environment and an anonymous method body.

H def
= (O× F fin→ V)× (O fin→ T)× (Lh

fin→ D)

D def
= (O×M) ] (Ep × A∗p × A∗p × P× Ap)
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G ::= C〈G〉 | T Generic class

L ::= class C〈T〉 : G {Ḡ f̄; M̄} Class definition

M ::= Gm(Ḡ z̄) {B} Method definition
B ::= Ḡ x̄; s; return x; Method body

s ::= Statement
x = y assignment
x = null initialization
x = y.f field access
x.f = y field update
x = y.m(z̄) method invocation
x = (G)y cast
if (x == y) {s1} else {s2} conditional
x = new C〈Ḡ〉() object creation
x = delegate (Ḡ z̄) {B} anonymous delegate
x = y.m named delegate
x = y(z̄) delegate application
s1; s2 sequential composition

Fig. 1. Syntax of a simplified C]

The operational semantics is defined as a big-step semantics with step-indices
corresponding to a small-step semantics. It takes configurations, (P,E, S,H, s),
consisting of a program P , mapping class and method names to method bodies,
an environment E, a stack S, a heap H, and a statement s to err or a termi-
nal stack and heap. The operational semantics of the fragment of the language
without generics and delegates is standard and omitted. Instead, we just give the
following two rules for constructing and invoking an anonymous delegate. When
constructing an anonymous delegate we store the relevant part of the current
stack environment along with the delegate; we restore it again when invoking
the delegate:

l 6∈ Dom(Hc) S′ = S[E(x) 7→ l]
Ec = E|FV(s,r)\(x̄∪z̄) H ′ = Hc[l 7→ (Ec, x̄, z̄, s, r)]

(P,E, S,H, x = delegate (Ḡx̄) {Ḡz̄; s; return r}) ⇓1 (S′, H ′)

l̄x, l̄z 6∈ Dom(S) Hc(S(E(y))) = (Ec, x̄, z̄, s, r)
(P,Ec[x̄ 7→ l̄x, z̄ 7→ l̄z], S[l̄x 7→ S(E(ū)), l̄z 7→ null], H, s) ⇓n (S′, H ′)

(P,E, S,H, x = y(ū)) ⇓n+1 (S′[E(x) 7→ S′(Ec[x̄ 7→ l̄x, z̄ 7→ l̄z](r))], H ′)

We use the notation Hc to refer to the closure heap of H and Hc[x 7→ y] for the
heap H where the closure heap has been extended to map x to y. For each rule
we implicitly assume all applications with finite functions to be defined.

A configuration is safe for n steps if it cannot fault in n steps or less:
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Definition 1. (P,E, S,H, s) : safen iff ∀m ≤ n. (P,E, S,H, s) 6⇓m err

In addition to the usual safety monotonicity and frame property the language
satisfies the following stack monotonicity and stack frame properties:

Lemma 1. If (P,E, S1, H, s) : safen and S1#S2 then (P,E, S1 ∪ S2, H, s) :
safen.

Lemma 2. If (P,E, S1, H, s) : safen, S1#S2, and (P,E, S1∪S2, H, s) ⇓n (S′, H ′)
then there exists an S′1 such that S′ = S′1 ∪ S2, S′1#S2, and (P,E, S1, H, s) ⇓n
(S′1, H

′).

5.1 Assertion logic

The proof system consists of two layers: an assertion logic for reasoning about
program states and a specification logic for reasoning about the effects of pro-
grams. In this subsection we formalize the syntax and semantics of the assertion
logic. The assertion logic is an intuitionistic higher-order logic over a typed term
language. The terms of the language are generated by the following grammar:

P,Q, L,M,N ::= x | λx : ω.M | M N | (M,N) | fst M | snd M
| ⊥ | > | P ∨ Q | P ∧ Q | P⇒ Q | ∀x : ω.M | ∃x : ω.M | M =ω N
| P ∗ Q | P−∗ Q | emp | M.f 7→ N | M : N | null
| M 7→ 〈(ū).{P} {d.Q}〉 | L

s7→ N | &x

where ω ranges over types generated by the following grammar:

ω ::= ω → ω | ω × ω | Prop | Loc | Val | Int | Class

Assertions are terms of type Prop. We will follow the convention of using P and
Q for assertions and predicates, L for terms of type Loc, and M and N for general
terms. The terms are typed with the typing judgment, φ;ψ ` M : ω, where φ is
a program variable context, and ψ a logical variable context. The typing rules
include all the usual rules of higher-order separation logic [3], extended with the

typing rule for delegate assertions,
s7→, and the address-of operator (rules (1) and

(2)).
To ensure the soundness of Hoare’s assignment rule, we need to ensure that

s7→ does not introduce any aliasing of stack variables into the logic. Intuitively, we
achieve this by only allowing

s7→ to assert the existence and value of out-of-scope
stack locations. More formally, the meaning of an assertion, φ;ψ ` P : Prop, is
given in terms of the meaning of the program variables in φ, i.e., the part of
the stack in scope. To reason about out-of-scope stack locations, we interpret
assertions as sets of stacks and heaps. Intuitively, this second stack is the “rest of
the stack” in the specification logic; see the definition of the semantics of triples
in Section 5.2. Aliasing is thus avoided, by restricting

s7→ to this second stack
(see the semantics of

s7→ below), which is disjoint from the part of the stack in
scope.
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We follow [15] in indexing the interpretation of the specification logic with
step-indices, to allow verification of mutually recursive methods. Furthermore,
since we now have specifications in the assertion logic, we also step-index the
interpretation of assertions. This idea comes from current work by the second
author jointly with Thamsborg and Støvring.

Definition 2. The types are interpreted as follows:

Jω → ω′K = JωK→ Jω′K Jω × ω′K = JωK× Jω′K JClassK = T
JValK = Val JLocK = Ls JIntK = Z

JPropK = {U ∈ P↑(N× S×H) | ∀π ∈ Perm(Ap). ∀a ∈ U. π(a) ∈ U}

where Val is the least set satisfying,

Val ∼= V ] Strings ]Val×Val,

and where the ordering on N× S×H is defined as follows

(n, S,H) ≤ (m,S′, H ′) iff m ≤ n ∧ S v S′ ∧H v H ′

with v given by the point-wise extension of the following order on finite func-
tions:

f ≤ g iff Dom(f) ⊆ Dom(g) ∧ ∀x ∈ Dom(f). f(x) = g(x).

and the permutation action is given by atom-permutation on Ap and P and the
trivial action on N,O,F,C,Ls,Lh, and V.

Assertions are thus interpreted as step-indexed subsets of stacks and heaps,
downwards-closed in the step-index and upwards closed in extensions of the stack
and heap and equivariant under permutations of the closures and environments
on the closure heap. Permutations are used to ensure that program and logical
variables in the specification logic context are α-convertible (see Rule (α) in [20]).

Lemma 3. Let L = (JPropK,⊆), then L is a complete BI-algebra [3], with BI
structure (I, ∗,−∗) given by:

I = ∅
U ∗ V = {(n,C ∪ C ′, (hv ∪ h′v, ht, hc)) | C#C ′ ∧ hv#h′v ∧

(n,C, (hv, ht, hc)) ∈ U ∧ (n,C ′, (h′v, ht, hc)) ∈ V }
U −∗ V =

⋃
{W ∈ JPropK |W ∗ U ⊆ V }

for U, V ∈ JPropK.
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Definition 3. A term-in-context, φ;ψ ` M : ω, is interpreted as a set-theoretic
function:

Jφ;ψ ` M : ωK : JφK× JψK→ JωK
where

JφK = {(E,S) ∈ Ep × S | E injective ∧ φ = Dom(E) ∧ Rng(E) = Dom(S)}
JψK = Πx ∈ Dom(ψ). Jψ(x)K.

The standard part of the assertion logic is interpreted using a BI-hyperdoctrine
over the category Set, induced by the complete BI algebra L (as in Example 6
in [3]). The interpretation is written out in full in [20].

The new assertion forms are interpreted as follows:

Jφ;ψ ` &x : LocK((E,S), ϑ) = E(x)

Jφ;ψ ` L
s7→ N : PropK((E,S);ϑ) =

{(n,C,H) ∈ N× S×H | l ∈ Dom(C) ∧ C(l) = Jφ;ψ ` N : ValK((E,S);ϑ)}

where l = Jφ;ψ ` L : LocK((E,S), ϑ). For delegate assertions, we just show the
interpretation of anonymous delegate assertions:

Jφ;ψ ` R 7→ 〈(ū).{P} {d.Q}〉 : PropK((E,S), ϑ) =

{(n, , (hv, ht, hc)) ∈ N× S×H | ∃Ec, x̄, z̄, s, r.
(hc(Jφ;ψ ` R : ValK((E,S), ϑ) = (Ec, x̄, z̄, s, r) ∧
∀m ≤ n. ∀k ≤ m. ∀C ∈ S. ∀H ∈ H. ∀l̄x, l̄z ∈ Ls \ (Dom(C) ∪ Rng(Ec)). ∀v̄x ∈ V.
(m− 1, C,H) ∈ Jφ;ψ, ū ` P : PropK((E,S), ϑ[ū 7→ v̄x]) ⇒

(E′, C[l̄x 7→ v̄x, l̄z 7→ null], H, s) : safek ∧
(E′, C[l̄x 7→ v̄x, l̄z 7→ null], H, s) ⇓k (C ′, H ′) ⇒

(m− k,C ′ \ l̄x;H ′) ∈ Jφ;ψ, ū, d ` Q : PropK((E,S), ϑ[ū 7→ v̄x, d 7→ C ′(E′(r))])

where E′ = Ec[x̄ 7→ l̄x, z̄ 7→ l̄z] and f \ U is shorthand for f |Dom(f)\U .

Note that in the interpretation of the delegate assertion, we use the current
stack to give meaning to the program variables in φ in the pre- and postcondition,
but we do not use this stack when running the body. This allows us to refer to
the value of captured variables upon entry to and exit from a delegate call using
s7→, even for variables currently in scope.

Theorem 1. The standard part of the higher-order assertion logic is sound.

Proof. As in [3].

Theorem 2. The following rules are sound.

φ;ψ ` M : Val φ;ψ, ū | P′ ` P φ;ψ, ū, d | Q ` Q′

φ;ψ | M 7→ 〈(ū).{P} {d.Q}〉 ` M 7→ 〈(ū).{P′} {d.Q′}〉
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φ;ψ ` L, L′ : Loc φ;ψ, x ` P,Q : Prop

φ;ψ | lookup L as x in P ∗ lookup L′ as x in Q ` L 6= L′

φ;ψ ` L : Loc φ;ψ, x ` P : Prop φ;ψ ` Q : Prop

φ;ψ | (lookup L as x in P) ∗ Q a` lookup L as x in (P ∗ Q)

The soundness of the second rule follows from the BI-structure on L, and the
soundness of the third rule follows from the fact that the meaning of a term is
independent of the meaning of logical variables that do not appear free in the
term.

5.2 Specification Logic

The specification logic has Hoare triples as its only propositions (it can straight-
forwardly be extended to a full first-order logic over Hoare triples as atomic
propositions). A triple-in-context is interpreted as a downwards-closed set of
step-indices:

Jφ;ψ ` {P}s{Q} /MK : JφK× JψK→ P↓(N)

as follows:

Jφ;ψ ` {P}s{Q} /M : SpecK((E,S);ϑ) = {n ∈ N |
∀m ≤ n. ∀k ≤ m. ∀C ∈ S. ∀H ∈ H.

(m− 1, C,H) ∈ Jφ;ψ ` P : PropK((E,S);ϑ) ∧ C#S ⇒
(E;C ∪ S;H; s) : safek ∧
(E;C ∪ S;H; s) ⇓k (S′;H ′)⇒

(m− k;S′ \ E(φ);H ′) ∈ Jφ;ψ ` Q : PropK((E,S′|E(φ));ϑ) ∧
∀x ∈ φ \M. S(E(x)) = S′(E(x))}

and entailment is interpreted as:

JΓ ;φ;ψ ` {P}s{Q} /MK = ∀n ∈ N. ∀(E,S) ∈ JφK. ∀ϑ ∈ JψK.
n ∈ JΓ : MCtxK⇒ n+ 1 ∈ Jφ;ψ ` {P}s{Q} /MK((E,S), ϑ)

where n ∈ JΓ : MCtxK expresses that all the method specifications in Γ hold for
at least n steps.

In the interpretation of Hoare triples above, S corresponds to the part of the
stack in scope and C to the “rest of the stack”. Since we restrict attention to
disjoint S and C, the following specification holds trivially for any φ, ψ, s, Q, N,
and M,

φ, x;ψ ` {&x
s7→ N}s{Q} /M

as x’s stack location must be in the domain of S and any stack C in the inter-
pretation of the precondition.

Theorem 3. The specification logic is sound.
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6 Related and Future Work

Our work has built on Parkinson and Bierman’s separation logic for object-
oriented programs [16, 14, 15]. Their work did not deal with generics or delegates.
In the functional programming world, higher-order separation logic [3, 9] and
Hoare type theory [11, 18] have both dealt with parametric polymorphism and
first-class functions. We have used ideas from those approaches to extend the
separation logic for object-oriented programs.

Our logic uses an assertion that contains a delegate specification. Something
similar was used in Hoare Type Theory [11] (using types as specifications), for
reasoning about ML-like functions. Recently, a foundational study of the inter-
action between nested triples and higher-order frame rules have been performed
by Schwinghammer et al. [19], who restricted attention to an idealized language
with immutable variables and storable code (rather than functions / delegates).
Here our focus has instead been on treating delegates as they appear in a real
language like C]; future work will show whether we can combine our present
logic with more advanced higher-order frame rules.

There have been other approaches to reasoning about delegates in object-
oriented languages. Müller and Ruskiewicz [10] have a specification for each
delegate type, and then every instance of that type must satisfy the specification.
This makes it difficult to specify a generic filter method, as you would require
a different type for each semantic filter operation. If the delegate passed to the
filter is pure, that is it doesn’t modify the heap, then it can be used directly in
the specification. However, impure methods cannot be used in specifications.

To address this, Nordio et al. [12] add to the assertions the ability to ab-
stractly assert that a delegates’ pre- and post-conditions, (d.pre(x) and d.post(x))
hold for the argument supplied (x). This means they can express the filter specifi-
cation, by saying every element of the list satisfies the delegate’s post-condition,
even if the delegate is not pure. However, more complex examples where the
implementation must impose a structure on the delegates’ specification, such as
the fold method, cannot be handled by [12] as it stands. In the fold example,
we require one step’s post-condition to tie up with the next steps pre-condition,
that is, we accumulate a result. With filter, each delegate call is independent of
the others. It is unclear how Nordio et al.’s work could be extended to the fold
example. Nordio et al.’s work has been implemented on top of Spec]. It remains
future work to implement our solution.

Both of these works focus on C]1.0 style delegates, so they do not need to
address the issues of anonymous methods, or the subtleties of variable escape in
C]. This is one of the key contributions of this paper.

Yoshida et al. [21] have studied such a language with higher-order functions
and local state. Their hiding quantifier has some similarity with our lookup as-
sertion. They make a distinction between l-values and r-values of a local variable,
unlike Hoare logic, so to regain Hoare’s assignment axiom, they extend the defi-
nition of substitution. It would be interesting to see if our approach to escaping
local state could be used in their language.
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Variable side-conditions have been a problem for concurrent separation logic [13].
Bornat et al.’s [5, 17] variables as resources is another approach to treating vari-
ables by separating them using a separating conjunction. We do not believe our
new

s7→ assertion can be used to reason about shared variable concurrency, be-
cause we cannot split knowledge of a variable using permissions [4]. However, for
the sequential setting our approach does not complicate reasoning about stan-
dard programs. If we had adapted variables as resources [5, 17] to our setting,
proofs not involving escaping variables would have to be altered. Now we can
simply treat the majority of variables in the same way as Hoare logic.

In future work we plan to combine the present development with the earlier
work of Parkinson and Bierman [16, 15] on inheritance. Since the semantics of
our logic is based on the semantics used earlier in [16, 15] we are confident that
this will be possible. We also plan to extend jStar [7] to allow for semi-automatic
verification of programs with generics.

7 Conclusion

We have shown how to apply higher-order separation logic, in particular quantifi-
cation over predicates, to reason about generics. Earlier work on separation logic
for OO languages [15] used restricted forms of quantification over predicates for
reasoning about abstraction; here we show how pleasingly straightforward quan-
tification over predicates applies to reasoning about generics. This is as should
be expected from the earlier work on HOSL and HTT mentioned above.

Moreover, we have developed the first logic for reasoning about C] 2.0 style
delegates, involving anonymous methods and capture of variables. To reason
about escaping variables, we introduced the assertion

lookup l as x in P

and the term &x denoting the address of local variable x, with associated proof
rules. Soundness was proved by a new model of separation logic in which the
truth value of an assertion, relative to a stack corresponding to the topmost stack
frame, is a subset of pairs of heaps and stacks (these stacks containing values
for escaped variables). We have demonstrated the applicability of the logic via
several small, but non trivial, examples.

8 Acknowledgements

We would like to thank our anonymous reviewers for their comments and in
particular, for suggesting that lookup could be defined in terms of

s7→.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
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1 Programming Language

1.1 Syntax

We use the notation x̄ for finite sequences.

G ::= C〈G〉 | T Generic class

L ::= class C〈T〉 : G {Ḡf̄; M̄} Class definition
M ::= G m (Ḡū) {B} Method definition
B ::= Ḡz̄; s; return r; Method body
s ::= Statement

x = y assignment
x = null initialization
x = y.f field access
x.f = y field update
x = y.m(z̄) method invocation
x = (G)y cast
if (x == y) {s1} else {s2} conditional
x = new C〈Ḡ〉() object creation
x = delegate (Ḡz̄) {B} inline delegate
x = delegate y.m named delegate
x = y(z̄) delegate application
s1; s2 sequential composition

1.2 Operational Semantics

For the operational semantics we assume disjoint countably infinite sets of stack locations, Ls,
heap locations, Lh, variables, Ap, type variables At, class identifiers, C, method identifiers, M,
field identifiers, F, and object identifiers, O.

l ∈ Ls locations
o ∈ O object identifiers
v ∈ V = Lh ]O ] {null} values

a, b, c, r, u, x, y, z ∈ Ap variables
C,D ∈ C class identifiers

f ∈ F field identifiers
m ∈ M method identifiers
T ∈ At type variables

B def
= L(s) statements

T def
= {w ∈ L(G) | FTV(w) = ∅} generic classes

δ ∈ Et
def
= At

fin→ T type environment

E ∈ Ep
def
= Ap

fin→ Ls environment

C, S ∈ S def
= Ls

fin→ V stack

H ∈ H def
= (O× F fin→ V) × (O fin→ T× Et) × (Lh

fin→ D) heap

D def
= (Et × Ep × A∗p × A∗p × B× Ap) ] (O×M) delegate

P ∈ P def
= (C fin→ A∗t × F∗)× (C×M fin→ A∗p × A∗p × B× Ap) program

where FTV is the set of free type variables. We use the notation A∗ for the set of finite lists of
A elements. We take the permutation action on to be atom-permutation on Ap, At, and B, and
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the trivial action on Ls, O, V, C, F, M.

The operational semantics is given as a big-step semantics, with step-indices corresponding
to a small-step semantics.

S′ = S[E(x) 7→ S(E(y))]

(P, δ, E, S,H, x = y) ⇓1 (S′, H)

S′ = S[E(x) 7→ null]

(P, δ, E, S,H, x = null) ⇓1 S
′, H)

S′ = S[E(x) 7→ H(S(E(y)), f)]

(P, δ, E, S,H, x = y.f) ⇓1 (S′, H)

H ′ = H[(S(E(x)), f) 7→ S(E(y))]

(P, δ, E, S,H, x.f = y) ⇓1 (S,H ′)

l̄x, l̄z, lt 6∈ Dom(S)
Ht(E(S(y))) = (C, δm) P (C,m) = (x̄, z̄, s, r) E′ = [this 7→ lt, x̄ 7→ l̄x, z̄ 7→ l̄z]

(P, δm, E
′, S[lt 7→ S(E(y)), l̄x 7→ S(E(ū)), l̄z 7→ null], H, s) ⇓n (S′, H ′)

(P, δ, E, S,H, x = y.m(ū)) ⇓n+1 (S′[S(E(x)) 7→ S′(E′(r))], H ′)

H3(S(E(y))) ≤ JGK(δ) S′ = S[E(x) 7→ S(E(y))]

(P, δ, E, S,H, x = (G)y) ⇓1 (S′, H)

S(E(y)) = null S′ = S[E(x) 7→ null]

(P, δ, E, S,H, x = (G)y) ⇓1 (S′, H)

S(E(x)) = S(E(y)) (P, δ, E, S, s1) ⇓n (S′, H ′)

(P, δ, E, S,H, if (x == y) then s1 else s2) ⇓n+1 (S′, H ′)

o 6∈ Dom(Ht) H ′ = H[o 7→ C〈JḠK(δ)〉, (o, f̄) 7→ null]
P (C) = (T̄, f̄)

∣∣T̄
∣∣ =

∣∣Ḡ
∣∣ FTV(Ḡ) = ∅ S′ = S[E(x) 7→ o]

(P, δ, E, S,H, x = new C〈Ḡ〉()) ⇓1 (S′, H ′)

l 6∈ Dom(Hc) S′ = S[E(x) 7→ l] Ec = E|FV(s,r)\(x̄∪z̄) H ′ = H[l 7→ (δ, Ec, x̄, z̄, s, r)]

(P, δ, E, S,H, x = delegate (Ḡx̄) {Ḡz̄; s; return r}) ⇓1 (S′, H ′)

l 6∈ Dom(Hc) H ′ = Hc[l 7→ (S(E(y)),m)] S′ = S[E(x) 7→ l]

(P, δ, E, S,H, x = delegate y.m) ⇓1 (S′, H ′)

l̄x, l̄z, lt 6∈ Dom(S) Hc(S(E(y))) = (o,m)
Ht(o) = (C, δc) P (C,m) = (x̄, z̄, s, r) E′ = [this 7→ lt, x̄ 7→ l̄x, z̄ 7→ l̄z]

(P, δc, E
′, S[lt 7→ S(E(y)), l̄x 7→ S(E(ū)), l̄z 7→ null], H, s) ⇓n (S′, H ′)

(P, δ, E, S,H, x = y(ū)) ⇓n+1 (S′[S(E(x)) 7→ S′(E′(r))], H ′)
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l̄x, l̄z 6∈ Dom(S) Hc(S(E(y))) = (δc, Ec, x̄, z̄, s, r)
(P, δc, Ec[x̄ 7→ l̄x, z̄ 7→ l̄z], S[l̄x 7→ S(E(ū)), l̄z 7→ null], H, s) ⇓n (S′, H ′)

(P, δ, E, S,H, x = y(ū)) ⇓n+1 (S′[E(x) 7→ S′(E′(r))], H ′)

(P, δ, E, S,H, s1) ⇓n (S′, H ′) (P, δ, E, S′, H ′, s2) ⇓m T

(P, δ, E, S,H, s1; s2) ⇓n+m T

(P, δ, E, S,H, s1) ⇓n err

(P, δ, E, S,H, s1; s2) ⇓n err

We use the notation P (C) for π1(P )(C) and P (C,m) for π2(P )(C,m). Furthermore, we use
[x̄ 7→ ȳ] as shorthand for [x1 7→ y1, ..., xn 7→ yn], with the implicit assumption that the two
sequences have the same length. We omit most of the rules for exceptional termination.

1.3 Metatheory

Lemma 1.

(P, δ, E, S,H, s) ⇓n (S′, H ′)⇒ (P, δ, π(E), S, π(H), π(s)) ⇓n (S′, π(H ′))

and
(P, δ, E, S,H, s) : safen ⇒ (P, δ, π(E), S, π(H), π(s)) : safen

Lemma 2. If x 6∈ FV (s) then

(P, δ, E, S,H, s) ⇓n (S′, H ′)⇒ (P, δ, E \ x, S,H, s) ⇓n (S′, H ′)

Lemma 3 (Safety monotonicity). If S1#S2, H1#H2, and (P, δ, E, S1, H1, s) : safen then

(P, δ, E, S1 ∗ S2, H1 ∗H2, s) : safen

Lemma 4 (Heap frame property). If

(P, δ, E, S,H1 ∗H2, s) ⇓n (S′, H ′)

and (P, δ, E, S,H1, s) : safen then there exists a H ′1 such that H ′ = H ′1 ∗H2 and

(P, δ, E, S,H1, s) ⇓n (S′, H ′1)

Lemma 5 (Stack frame property). If

(P, δ, E, S1 ∗ S2, H, s) ⇓n (S′, H ′)

and (P, δ, E, S1, H, s) : safen then there exists an S′1 such that S′ = S′1 ∗ S2 and

(P, δ, E, S1, H, s) ⇓n (S′1, H
′)
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2 Assertion Logic

2.1 Syntax

ω, ω′ ::= ω → ω′ | ω × ω′ | Prop | Class | Val | Int | Loc Types
M,N, L,P,Q,R ::= P ∨ Q | P ∧ Q | P⇒ Q | > | ⊥ | ∀x : ω.P | ∃x : ω.P Propositions

| P ∗ Q | P−∗ Q | emp | M.f 7→ N | M =ω N

| L
s7→ N | M 7→ 〈(x̄).{P} {d.Q}〉 | M:N

| λx : ω.M | M N | x | &x | null Other terms

The judgments of the assertion logic are of the forms:

∆;φ;ψ ` M : ω, ∆;φ;ψ ` M = N : ω, ∆;φ;ψ | P1, ...,Pn ` Q

where ∆ is the type variable context, φ is the program variable context and ψ is the logic variable
context, which are defined as follows:

∆ ::= ∆,T | ε type variable context
φ ::= φ, x : Val | ε program variable context
ψ ::= ψ, a : ω | ε logic variable context

Variables cannot be repeated in the program or logic variable context and the same variable
cannot appear in both the program and logic variable context. Since program variables are
always of type Val we will never write the type.

Definition 1 (Value substitution).

(R 7→ 〈(ū).{P} {d.Q}〉)[M/x] = R[M/x] 7→ 〈(ū).{P[M/x]} {d.Q[M/x]}〉
(L

s7→ N)[M/x] = L[M/x]
s7→ N[M/x]

&y[M/x] = &x

y[M/x] =

{
M if y = x

y otherwise

assuming ū, d, and y are fresh for x.

Definition 2 (Location substitution).

(R 7→ 〈(ū).{P} {d.Q}〉)[M/&x] = R[M/&x] 7→ 〈(ū).{P[M/&x]} {d.Q[M/&x]}〉
(L

s7→ N)[M/&x] = L[M/&x]
s7→ N[M/&x]

&y[M/&x] =

{
M if x = y

&y otherwise

y[M/&x] = y

assuming ū, d, and y are fresh for x.

Definition 3 (Free variables).

FV(M 7→ 〈(ū).{P} {d.Q}〉) = FV(M) ∪ (FV(P) ∪ FV(Q)) \ (ū ∪ {d})
FV(L

s7→ N) = FV(L) ∪ FV(N)

FV(&x) = {x}
FV(x) = {x}
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Definition 4 (Free value variables).

FVV(M 7→ 〈(ū).{P} {d.Q}〉) = FVV(M) ∪ (FVV(P) ∪ FVV(Q)) \ (ū ∪ {d})
FVV(L

s7→ N) = FV(L) ∪ FVV(N)

FVV(&x) = ∅
FVV(x) = {x}

Definition 5 (Free location variables).

FVA(M 7→ 〈(ū).{P} {d.Q}〉) = FVA(M) ∪ (FVA(P) ∪ FVA(Q)) \ (ū ∪ {d})
FVA(L

s7→ N) = FVA(L) ∪ FVA(N)

FVA(&x) = {x}
FVA(x) = ∅

Definition 6 (Lookup).

lookup L as x in P
def
= ∃x : Val. (L 7→ x ∗ P)

2.2 Typing rules

Well-formed terms ∆;φ;ψ ` R : ω

∆;φ;ψ ` M : Val ∆;φ;ψ, ū : Val ` P : Prop ∆;φ;ψ, ū : Val, d : Val ` Q : Prop

∆;φ;ψ ` M 7→ 〈(ū).{P} {d.Q}〉 : Prop

∆;φ;ψ, x : ω ` P : Prop Q ∈ {∃,∀}
∆;φ;ψ ` Qx : ω. P : Prop

∆;φ;ψ ` L : Loc ∆;φ;ψ ` N : Val

∆;φ;ψ ` L
s7→ N : Prop

∆;φ;ψ ` > : Prop ∆;φ;ψ ` ⊥ : Prop ∆;φ;ψ ` emp : Prop

op ∈ {∧,∨, ∗,−∗,⇒} ∆;φ;ψ ` P : Prop ∆;φ;ψ ` Q : Prop

∆;φ;ψ ` P op Q : Prop

∆;φ;ψ ` M : Val ∆;φ;ψ ` N : Class

∆;φ;ψ ` M:N : Prop

x ∈ φ
∆;φ;ψ ` &x : Loc

∆,T;φ;ψ ` T : Class

∆;φ;ψ ` Ḡ : Class

∆;φ;ψ ` C〈Ḡ〉 : Class ∆;φ;ψ ` null : Val

∆;φ, x;ψ ` x : Val ∆;φ;ψ, a : ω ` a : ω
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∆;φ;ψ, x : ω ` M : ω′

∆;φ;ψ ` λx : ω. M : ω → ω′
∆;φ;ψ ` M : ω → ω′ ∆;φ;ψ ` M : ω

∆;φ;ψ ` M N : ω′

∆;φ;ψ ` M : Val ∆;φ;ψ ` N : Val

∆;φ;ψ ` M.f 7→ N : Prop

∆;φ;ψ ` M : ω ∆;φ;ψ ` N : ω

∆;φ;ψ ` M =ω N : Prop

2.3 Proof rules

Standard HO intuitionistic separation logic, extended with the following rules:

∆;φ;ψ ` M : Val ∆;φ;ψ, ū | P′ ` P ∆;φ;ψ, ū, d | Q ` Q′

∆;φ;ψ | M 7→ 〈(ū).{P} {d.Q}〉 ` M 7→ 〈(ū).{P′} {d.Q′}〉

∆;φ;ψ ` L, L′ : Loc ∆;φ;ψ, x ` P,Q : Prop

∆;φ;ψ | lookup L as x in P ∗ lookup L′ as x in Q ` L 6= L′

∆;φ;ψ ` L : Var ∆;φ;ψ, x ` P : Prop ∆;φ;ψ ` Q : Prop

∆;φ;ψ | (lookup L as x in P) ∗ Q a` lookup L as x in (P ∗ Q)

2.4 Semantics

Types JωK ∈ Set

Jω → ω′K = JωK→ Jω′K
Jω × ω′K = JωK× Jω′K

JPropK = {U ∈ P↑(N× S×H) | ∀π ∈ Perm(Ap). ∀a ∈ U. π(a) ∈ U}
JValK = Val

JLocK = Ls
JClassK = T

JIntK = Z

where Val is the least set satisfying:

Val ∼= V ] Strings ]Val×Val

The order on N× S×H is given as follows:

(n, S, (hv, ht, hc)) ≤ (m,S′, (h′v, h
′
t, h
′
c)) iff

m ≤ n ∧ S ≤ S′ ∧ hv ≤ h′v ∧ ht ≤ h′t ∧ hc ≤ h′c
where all the finite functions are ordered as follows:

f ≤ g iff Dom(f) ⊆ Dom(g) ∧ ∀x ∈ Dom(f). f(x) = g(x)
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Contexts JφK, JψK, J∆K ∈ Set

S ∈ JφK = {(E,S) ∈ Ep × S | E injective ∧Dom(E) = φ ∧ Rng(E) = Dom(S)}
ϑ ∈ JψK = Π(x : ω) ∈ ψ. JωK
δ ∈ J∆K = {δ ∈ Et | Dom(δ) = ∆}

Propositions and Terms J∆;φ;ψ ` M : ωK : J∆K× JφK× JψK→ JωK

J∆;φ;ψ ` > : PropK(δ; (E,S);ϑ) = N× S×H
J∆;φ;ψ ` ⊥ : PropK(δ; (E,S);ϑ) = ∅

J∆;φ;ψ ` emp : PropK(δ; (E,S);ϑ) = N× S×H
J∆;φ;ψ ` P ∧ Q : PropK(δ; (E,S);ϑ) = {B ∈ N× S×H |

B ∈ J∆;φ;ψ ` P : PropK(δ; (E,S);ϑ) ∧
B ∈ J∆;φ;ψ ` Q : PropK(δ; (E,S);ϑ)}

J∆;φ;ψ ` P ∨ Q : PropK(δ; (E,S);ϑ) = {B ∈ N× S×H |
B ∈ J∆;φ;ψ ` P : PropK(δ; (E,S);ϑ) ∨
B ∈ J∆;φ;ψ ` Q : PropK(δ; (E,S);ϑ)}

J∆;φ;ψ ` P ∗ Q : PropK(δ; (E,S);ϑ) = {(n,C, (hv, ht, hc)) ∈ N× S×H | ∃C1, C2, h1, h2.

C1#C2 ∧ h1#h2 ∧ C = C1 ∪ C2 ∧ hv = h1 ∪ h2∧
(n,C1, (h1, ht, hc)) ∈ J∆;φ;ψ ` P : PropK(δ; (E,S);ϑ) ∧
(n,C2, (h2, ht, hc)) ∈ J∆;φ;ψ ` Q : PropK(δ; (E,S);ϑ)}

J∆;φ;ψ ` P⇒ Q : PropK(δ; (E,S);ϑ) = {B ∈ N× S×H | ∀B′ ≥ B.
B′ ∈ J∆;φ;ψ ` P : PropK(δ; (E,S);ϑ)⇒
B′ ∈ J∆;φ;ψ ` Q : PropK(δ; (E,S);ϑ)}

J∆;φ;ψ ` ∀a : ω.P : PropK(δ; (E,S);ϑ) =
⋂

v∈JωK
J∆;φ;ψ, a : ω ` P : PropK(δ; (E,S);ϑ, a 7→ v)

J∆;φ;ψ ` ∃a : ω.P : PropK(δ; (E,S);ϑ) =
⋃

v∈JωK
J∆;φ;ψ, a : ω ` P : PropK(δ; (E,S);ϑ, a 7→ v)

J∆;φ, ψ ` M =ω N : PropK(δ; (E,S);ϑ) = {B ∈ N× S×H | ∃m,n ∈ JωK.
m = J∆;φ;ψ ` M : ωK(δ; (E,S);ϑ) ∧
n = J∆;φ;ψ ` N : ωK(δ; (E,S);ϑ) ∧m = n}

J∆;φ;ψ, a : ω ` a : ωK(δ; (E,S);ϑ) = ϑ(a)

J∆;φ;ψ ` M N : ωK(δ; (E,S), ϑ) =

(J∆;φ;ψ ` M : ω′ → ωK(δ; (E,S);ϑ))(J∆;φ;ψ ` N : ω′K(δ; (E,S);ϑ))

J∆;φ;ψ ` λa : ω.M : ω → ω′K(δ; (E,S);ϑ) =

λv : JωK. J∆;φ;ψ, a : ω ` M : ω′K(δ; (E,S);ϑ[a 7→ v])
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J∆;φ;ψ ` C〈Ḡ〉 : ClassK(δ; (E,S);ϑ) = C〈J∆;φ;ψ ` Ḡ : ClassK(δ; (E,S);ϑ)〉
J∆;φ;ψ ` e : C : PropK(δ; (E,S);ϑ) = {(n,C, (hv, ht, hc)) ∈ N× S×H | ∃o ∈ O,C ∈ C, δ′ ∈ Et.

inO(o) = J∆;φ;ψ ` e : ValK(δ; (E,S);ϑ) ∧
ht(o) = J∆;φ;ψ ` C : ClassK(δ; (E,S);ϑ)}

J∆;φ;ψ ` M.f 7→ N : PropK(δ; (E,S);ϑ) = {(n,C, (hv, ht, hc)) ∈ N× S×H | ∃o ∈ O.
inOid(o) = J∆;φ;ψ ` M : ValK(δ; (E,S);ϑ) ∧
hv(o, f) = J∆;φ;ψ ` N : ValK(δ; (E,S);ϑ)}

J∆,T;φ;ψ ` T : ClassK(δ; (E,S);ϑ) = δ(T)

J∆;φ, x;ψ ` x : ValK(δ; (E,S);ϑ) = S(E(x))

J∆;φ;ψ ` null : ValK(δ; (E,S);ϑ) = null

J∆;φ, x;ψ ` &x : LocK(δ; (E,S);ϑ) = E(x)

J∆;φ;ψ ` L
s7→ N : PropK(δ; (E,S);ϑ) = {(n,C,H) ∈ N× S×H | l ∈ Dom(C) ∧

C(l) = J∆;φ;ψ ` N : ValK(δ; (E,S);ϑ)}
where l = J∆;φ;ψ ` L : LocK(δ; (E,S);ϑ).

J∆;φ;ψ ` M 7→ 〈(ū).{P} {d.Q}〉 : PropK(δ, (E,S), ϑ) =

{(n, , (hv, ht, hc)) ∈ N× S×H | ∃o, δc, Ec, x̄, z̄, s, r.
hc(J∆;φ;ψ ` M : ValK(δ, (E,S), ϑ) = (δc, Ec, x̄, z̄, s, r) ∧
∀m ≤ n. ∀k ≤ m. ∀C ∈ S. ∀H ∈ H. ∀l̄x, l̄z ∈ Loc \ (Dom(C) ∪ Rng(Ec)). ∀v̄x ∈ Val.

(m− 1, C,H) ∈ J∆;φ;ψ, ū ` P : PropK(δ, (E,S), ϑ[ū 7→ v̄x]) ⇒
(δc;E

′
c, C[l̄x 7→ v̄x, l̄z 7→ null], H, s) : safek ∧

(δc;E
′
c, C[l̄x 7→ v̄x, l̄z 7→ null], H, s) ⇓k (C ′, H ′) ⇒

(m− k,C ′ \ l̄x;H ′) ∈ J∆;φ;ψ, ū, d ` Q : PropK(δ; (E,S), ϑ[ū 7→ v̄x, d 7→ C ′(E′c(r))])

∨
hc(J∆;φ;ψ ` M : ValK(δ, (E,S), ϑ) = (o,m) ∧ ht(o) = (C, δc) ∧ P (C,m) = (x̄, z̄, s, r) ∧
∀m ≤ n. ∀k ≤ m. ∀C ∈ S. ∀H ∈ H. ∀l̄x, l̄z, lt ∈ Ls \Dom(C). ∀v̄x ∈ V.
(m− 1, C,H) ∈ J∆;φ;ψ, ū ` P : PropK(δ, (E,S), ϑ[ū 7→ v̄x]) ⇒

(δc, E
′, C[l̄u 7→ v̄x, l̄z 7→ null, lt 7→ o], H, s) : safek ∧

(δc, E
′, C[l̄u 7→ v̄x, l̄z 7→ null, lt 7→ o], H, s) ⇓k (C ′, H ′) ⇒

(m− k,C ′ \ l̄x;H ′) ∈ J∆, φ;ψ, ū, d ` Q : PropK(δ, (E,S), ϑ[ū 7→ v̄x, d 7→ C ′(E′(r))])

where E′c = Ec[x̄ 7→ l̄x, z̄ 7→ l̄z] and E′ = [this 7→ lt, x̄ 7→ l̄x, z̄ 7→ l̄z].

Entailment J∆;φ;ψ | P1, ...,Pn ` QK : 2

J∆;φ;ψ | P1, ...,Pn ` QK = ∀δ ∈ J∆K. ∀(E,S) ∈ JφK. ∀ϑ ∈ JψK.

 ⋂

1≤i≤n
J∆;φ;ψ ` Pi : PropK(δ; (E,S);ϑ)


 ⊆ J∆;φ;ψ ` Q : PropK(δ; (E,S);ϑ)
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2.5 Metatheory

Lemma 6. Let

P = {U ∈ P↑(N× S×H) | ∀π ∈ Perm(Ap). ∀a ∈ U. π(a)}

Then (P,⊆) is a complete BI-algebra, with BI structure (I, ∗,−∗) given by:

I = ∅
U ∗ V = {(n,C ∪ C ′, (hv ∪ h′v, ht, hc)) | C#C ′ ∧ hv#h′v ∧

(n,C, (hv, ht, hc)) ∈ U ∧ (n,C ′, (h′v, ht, hc)) ∈ V }
U −∗ V =

⋃
{W ∈ JPropK |W ∗ U ⊆ V }

for U, V ∈ JPropK.
Lemma 7 (Alpha renaming). If ∆;φ;ψ ` P : ω then,

∀δ ∈ J∆K. ∀(E,S) ∈ JφK. ∀ϑ ∈ JψK.
J∆;φ;ψ ` P : ωK(δ; (E,S);ϑ) = J∆;π(φ);π(ψ) ` π(P) : ωK(δ; (π(E), S);π(ϑ))

Lemma 8 (Weakening and strengthening). If ∆;φ;ψ ` P : ω, x 6∈ φ ∪ ψ then,

∀δ ∈ J∆K. ∀(E,S) ∈ JφK. ∀ϑ ∈ JψK. ∀l ∈ Ls \ Rng(S). ∀v1 ∈ Val. ∀v2 ∈ Jω′K.
J∆;φ;ψ ` P : ωK(δ; (E,S);ϑ) = J∆;φ, x;ψ ` P : ωK(δ; (E[x 7→ l], S[l 7→ v1]);ϑ)

= J∆;φ;ψ, x : ω′ ` P : ωK(δ; (E,S);ϑ[x 7→ v2])

Lemma 9. If ∆;φ;ψ ` P : ω then,

∀δ ∈ J∆K. ∀E,S1, S2. ∀ϑ ∈ JψK. ((E,S1), (E,S2) ∈ JφK ∧ ∀x ∈ FVV(P). S1(E(x)) = S2(E(x))) ⇒
J∆;φ;ψ ` P : ωK(δ; (E,S1);ϑ) = J∆;φ;ψ ` P : ωK(δ; (E,S2);ϑ)

Lemma 10 (Substitution (Logical variable)). If ∆;φ;ψ, a : ω ` P : ω′ and ∆;φ;ψ ` M : ω then,

∀δ ∈ J∆K. ∀(E,S) ∈ JφK. ∀ϑ ∈ JψK.
J∆;φ;ψ, a : ω ` P : ω′K(δ; (E,S);ϑ, a 7→ J∆;φ;ψ ` M : ωK(δ; (E,S);ϑ))

= J∆;φ;ψ ` P[M/a] : ω′K(δ; (E,S);ϑ)

Lemma 11 (Substitution (Program variable)). If ∆;φ, x;ψ ` P : ω and ∆;φ, x;ψ ` M : Val
then,

∀δ ∈ J∆K. ∀(E,S) ∈ Jφ, xK. ∀ϑ ∈ JψK.
J∆;φ, x;ψ ` P : ωK(δ; (E,S[E(x) 7→ J∆;φ, x;ψ ` M : ValK(δ; (E,S);ϑ)]);ϑ)

= J∆;φ, x;ψ ` P[M/x] : ωK(δ; (E,S);ϑ)

Lemma 12 (Splitting). If ∆;φ, x;ψ ` P : ω then,

∀δ ∈ J∆K. ∀(E,S) ∈ JφK. ∀ϑ ∈ JψK. ∀l ∈ Ls \Dom(S). ∀v ∈ V.
J∆;φ, x;ψ ` P : ωK(δ; (E[x 7→ l], S[l 7→ v]);ϑ)

= J∆;φ;ψ, x : Val, y : Loc ` P[y/&x] : ωK(δ; (E,S);ϑ[x 7→ v, y 7→ l])
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Corollary 1 (Splitting). If ∆;φ;ψ, x : Val ` P : ω then,

∀δ ∈ J∆K. ∀(E,S) ∈ JφK. ∀ϑ ∈ JψK. ∀l ∈ Ls \Dom(S). ∀v ∈ Val.

J∆;φ, x;ψ ` P : ωK(δ; (E[x 7→ l], S[l 7→ v]);ϑ) = J∆;φ;ψ, x : Val ` P : ωK(δ; (E,S);ϑ[x 7→ v])

Lemma 13. If ∆;φ;ψ ` L : Loc and ∆;φ;ψ, x : Val ` P : Prop then,

∀δ ∈ J∆K. ∀(E,S) ∈ JφK. ∀ϑ ∈ JψK.
J∆;φ;ψ ` lookup L as x in P : PropK(δ; (E,S);ϑ) =

{(n,C,H) ∈ N× S×H | l ∈ Dom(C) ∧
(n,C \ l,H) ∈ J∆;φ;ψ, x : Val ` P : PropK(δ; (E,S);ϑ[x 7→ C(l)])}

where l = J∆;φ;ψ ` L : LocK(δ; (E,S);ϑ).

3 Specification Logic

3.1 Syntax

S,T ::= {P}s{Q} /M | {P}s{d.Q} /M Specifications
M ∈ Pfin(Ap)

MS ::= C〈∆〉.m : 〈(φ;ψ).{P} {d.Q}〉 method specification
Γ ::= Γ,MS | ε program context

We use the notation Γ(C) to lookup C’s type variables and Γ(C,m) to lookup m’s specification.

3.2 Typing rules

Well-formed Specifications ∆;φ;ψ ` S : Spec

∆;φ;ψ ` P : Prop ∆;φ;ψ ` Q : Prop M ⊆ φ
∆;φ;ψ ` {P}s{Q} /M : Spec

∆;φ;ψ ` P : Prop ∆;φ;ψ, d : Val ` Q : Prop M ⊆ φ
∆;φ;ψ ` {P}B{d.Q} /M : Spec

Well-formed Contexts Γ : Context

∆;−;ψ, φ, this ` P : Prop ∆;−;ψ, φ, this, d ` Q : Prop

C〈∆〉.m : 〈(φ;ψ).{P} {d.Q}〉 : Context-Spec

Note that we do not allow P and Q to refer to the location of this or φ.

ε : Context

Γ : Context MS : Context-Spec

Γ,MS : Context
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3.3 Proof rules

Statements Γ;φ;ψ ` {P}s{Q} /M

∆;φ, x, y;ψ ` P : Prop

Γ; ∆;φ, x, y;ψ ` {[y/x]P}x = y{P} / {x}

∆;φ, x;ψ ` P : Prop

Γ; ∆;φ, x;ψ ` {[null/x]P}x = null{P} / {x}

Γ; ∆;φ, x, y;` {x.f 7→ }x.f = y{x.f 7→ y} / ∅

Γ; ∆;φ, x, y; a ` {y.f 7→ a}x = y.f{y.f 7→ a ∧ x = a} / {x}

fields(C) = f1, ..., fn

Γ; ∆; x;− ` {emp}x = new C〈∆〉(){x : C〈∆〉 ∧ x.f1 7→ null ∗ · · · ∗ x.fn 7→ null} / {x}

Γ(C) = ∆ Γ(C,m) = 〈(x̄;ψ).{P} {d.Q}〉
Γ; ∆; r, y, ū;ψ ` {[ū/x̄, y/this]P ∧ y : C〈∆〉}r = y.m(ū){[ū/x̄, y/this, r/d]Q} / {r}

Γ(C) = ∆ Γ(C,m) = 〈(ū;ψ).{P} {d.Q}〉
Γ; ∆; x, y;− ` {y : C〈∆〉}x = y.m{∀ψ. x 7→ 〈(ū).{P[y/this]} {d.Q[y/this]}〉} / {x}

ū 6∈ M ū 6∈ FVA(P,Q) ȳ ⊆ FV(B) Γ; ∆; ȳ, ū;ψ ` {P}B{d.Q} /M
Γ; ∆; ȳ, x;ψ, l̄ ` {l̄ = &ȳ}

x = delegate(Ḡū) {B}
{x 7→ 〈(ū).{lookup l̄ as z̄ in P[l̄/&ȳ][z̄/ȳ]} {d.lookup l̄ as z̄ in Q[l̄/&ȳ][z̄/ȳ]}〉} / {x}

(anondel)

R = y 7→ 〈(ū).{P} {d.Q}〉 x 6∈ FV(R) y ∈ φ
Γ; ∆;φ, x̄, x;ψ ` {R ∗ P[x̄/ū]}x = y(x̄){R ∗ Q[x̄/ū, r/d]} / {x} (delcall)

Γ; ∆;φ, x, y;ψ ` {P ∧ x = y}s1{Q} /M1 Γ; ∆;φ, x, y;ψ ` {P ∧ ¬(x = y)}s2{Q} /M2

Γ; ∆;φ, x, y;ψ ` {P}if (x == y) {s1} else {s2}{Q} /M1 ∪M2
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Structural Rules Γ; ∆;φ;ψ ` {P}s{Q} /M

Γ; ∆;φ;ψ, a : ω ` {P}s{Q} /M2 a 6∈ FV (P)

Γ; ∆;φ;ψ ` {P}s{∀a : ω.Q} /M2

Γ; ∆;φ;ψ ` {P}s1{Q} /M1 Γ; ∆;φ;ψ ` {Q}s2{R} /M2

Γ; ∆;φ;ψ ` {P}s1; s2{R} /M1 ∪M2

(seq)

∆;φ;ψ | P ` P′ Γ; ∆;φ;ψ ` {P′}s{Q′} /M ∆;φ;ψ | Q′ ` Q

Γ; ∆;φ;ψ ` {P}s{Q} /M

∆;φ;ψ ` R : Prop Γ; ∆;φ;ψ ` {P}s{Q} /M FVV(R) ∩M = ∅
Γ; ∆;φ;ψ ` {P ∗ R}s{Q ∗ R} /M (frame)

Γ; ∆;φ;ψ ` {P}s{Q} /M
Γ; ∆;φ, x;ψ ` {P}s{Q} /M

Γ; ∆;φ;ψ ` {P}s{Q} /M
Γ; ∆;π(φ);π(ψ) ` {π(P)}π(s){π(Q)} / π(M)

(α)

Γ; ∆;φ;ψ ` {P1}s{Q1} /M1 Γ; ∆;φ;ψ ` {P2}s{Q2} /M2 op ∈ {∧,∨}
Γ; ∆;φ;ψ ` {P1 op P2}s{Q1 op Q2} /M1 ∪M2

Γ; ∆;φ;ψ, x : ω ` {P}s{Q} /M ∆;φ;ψ ` R : ω FV(R) ∩M = ∅
Γ; ∆;φ;ψ ` {P[R/x]}s{Q[R/x]} /M

Γ; ∆;φ;ψ ` {lookup l as x in P}s{lookup l as x in Q} /M
Γ; ∆;φ, x;ψ ` {&x = l ∧ P}s{Q} /M ∪ {x} (lookup)

Method definitions Γ ` M : Γ′

Γ; ∆, φ, x;ψ ` {P[x/d]}return x; {d.P} / ∅

Γ; ∆;φ;ψ ` {P}s{Q} /M1 Γ; ∆;φ;ψ ` {Q}s; return x{d.R} /M2

Γ; ∆;φ;ψ ` {P}s; s; return x{d.R} /M1 ∪M2

∆;φ;ψ | P ` P′ Γ; ∆;φ;ψ ` {P′}B{d.Q′} /M ∆;φ;ψ | Q′ ` Q

Γ; ∆;φ;ψ ` {P}B{d.Q} /M
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Γ; ∆;φ, z̄;ψ ` {P ∧ z̄ = null}s; return x{d.Q} /M
Γ; ∆;φ;ψ ` {P}Ḡz̄; s; return x{d.∃l̄ : Var. lookup l̄ as z̄ in Q[l̄/&z̄]} /M \ z̄ (localvar)

Γ(C) = ∆ this, ū 6∈ M ∪ FVA(P,Q)
MS = C〈∆〉.m : 〈(ū;ψ).{P} {d.Q}〉

Γ,MS; ∆; ū, this;ψ ` {P}Ḡz̄; s; return x{d.Q} /M
Γ,MS ` G m(Ḡū) {Ḡz̄; s return x; } : MS

Class definitions Γ ` L : Γ′

Γ ` K : ΓK M̄ = M1 · · ·Mn ∀i ∈ {1, · · · , n}. Γ ` Mi : Γi

Γ ` class C〈T̄〉 : D {public C̄f̄; ĀKM̄} : ΓK,Γ1, · · · ,Γn

Programs ψ ` {P}L̄; C̄ x̄; s{Q} /M

L̄ = L1 · · · Ln Γ = Γ1, · · · ,Γn Γ ` Li : Γi, ∀i ∈ {1, · · · , n} Γ;−; x̄;ψ ` {P}s{Q} /M
ψ ` {P}L̄; C̄ x̄; s{Q} /M
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3.4 Semantics

Specifications J∆;φ;ψ ` S : SpecK : J∆K× JφK× JψK→ {U ∈ P↓(N) | 0 ∈ U}

J∆;φ;ψ ` {P}s{Q} /M : SpecK(δ; (E,S);ϑ) = {n ∈ N |
∀m ≤ n. ∀k ≤ m. ∀C ∈ S. ∀H ∈ H.

(m− 1, C,H) ∈ J∆;φ;ψ ` P : PropK(δ; (E,S);ϑ) ∧ C#S ⇒
(δ;E;C ] S;H; s)) : safek ∧
(δ;E;C ] S;H; s) ⇓k (S′;H ′)⇒

(m− k;S′ \ E(φ);H ′) ∈ J∆;φ;ψ ` Q : PropK(δ; (E,S′|E(φ));ϑ) ∧
∀x ∈ φ \M. S(E(x)) = S′(E(x))}

J∆;φ;ψ ` {P}Ḡz̄; s; return x{d.Q} /M : SpecK(δ; (E,S);ϑ) = {n ∈ N |
∀m ≤ n. ∀k ≤ m. ∀C ∈ S. ∀H ∈ H. ∀l̄z ∈ Loc \ (Dom(C) ∪Dom(S)).

(m− 1, C,H) ∈ J∆;φ;ψ ` P : PropK(δ, (E,S);ϑ) ∧ C#S ⇒
(δ;E′;C ] S[l̄z 7→ null];H; s) : safek ∧
(δ;E′;C ] S[l̄z 7→ null];H; s) ⇓k (S′;H ′)⇒

(m− k;S′ \ E(φ);H ′) ∈ J∆;φ;ψ ` Q : PropK(δ; (E,S′|E(φ));ϑ[d 7→ S′(E′(x))]) ∧
∀x ∈ φ \M. S(E(x)) = S′(E(x))}

where E′ = E[z̄ 7→ l̄z].

Context Specification JMS : Context-SpecK : {U ∈ P↓(N) | 0 ∈ U}

JC〈∆〉.m : 〈(ū;ψ).{P} {d.Q}〉 : Context-SpecK = {n ∈ N |
∀m ≤ n. ∀k ≤ m. ∀x̄, z̄, s, r. ∀C ∈ S. ∀ϑ ∈ JψK. ∀δ ∈ J∆K. ∀lt, l̄x, l̄z 6∈ Dom(C). ∀vt, v̄x ∈ V.
P (C) = ∆ ∧ P (C,m) = (x̄, z̄, s, r) ∧
(m− 1, C,H) ∈ J∆;−;ψ, this, ū ` P : PropK(δ; ([], []);ϑ[this 7→ vt, ū 7→ v̄x]) ⇒

(δ;E,C[lt 7→ vt, l̄x 7→ v̄x, l̄z 7→ null], H, s) : safek ∧
(δ;E,C[lt 7→ vt, l̄x 7→ v̄x, l̄z 7→ null], H, s)) ⇓k (S′, H ′) ⇒

(m− k, S′ \ lt ∪ l̄z, H ′) ∈ J∆;−;ψ, this, ū, d ` Q : PropK(δ, ([], []);ϑ′)}
where E = [this 7→ lt, x̄ 7→ l̄x, z̄ 7→ l̄z] and ϑ′ = ϑ[this 7→ vt, ū 7→ v̄x, d 7→ S′(E(r))].

Context JΓ : ContextK : {U ∈ P↓(N) | 0 ∈ U}

JΓ : ContextK =
⋂

MS∈Γ

JMS : Context-SpecK

Entailment JΓ; ∆;φ;ψ ` S : SpecK : 2

JΓ; ∆;φ;ψ ` S : SpecK = ∀n ∈ N. ∀(E,S) ∈ JφK. ∀ϑ ∈ JψK. ∀δ ∈ J∆K.
n ∈ JΓ : ContextK⇒ n+ 1 ∈ JΓ; ∆;φ;ψ ` S : SpecK(δ; (E,S);ϑ)
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Others

JΓ ` public C m(C̄ū) B : MSK = ∀n ∈ N. n ∈ JΓ : ContextK⇒ n+ 1 ∈ JC.m : MS : Context-SpecK

JΓ ` class C〈T̄〉 : G {public C̄f̄; ĀKM̄} : MSK , M̄SK =

Dom(M̄S) = Dom(M̄) ∧ JΓ; T̄ ` K : ΓKK ∧ ∀i ∈ Dom(M̄). JΓ; T̄ ` M̄i : M̄SiK

Jψ ` {P}L̄; C̄x̄; s{Q} /MK = JΓ;−; x̄;ψ ` {P}s{Q} /MK ∧ ∀i ∈ Dom(L̄). JΓ ` L̄i : ΓiK

where Γi = spec(L̄i) and Γ = Γ1, ...,Γn.

3.5 Metatheory

Lemma 14. If Γ; ∆;φ;ψ ` {P}s{Q} /M then FV (s) ⊆ φ.

Lemma 15. If ∀i ∈ Dom(L̄). JΓ ` L̄i : ΓiK then JΓ : ContextK = N.

Lemma 16. Rule (α) is sound.

∀π ∈ Perm(Ap). JΓ; ∆;φ;ψ ` {P}s{Q} /MK = JΓ; ∆;π(φ);π(ψ) ` {π(P)}π(s){π(Q)} / π(M)K

Proof. Let n,m, k ∈ N such that k ≤ m ≤ n+ 1. Assume n ∈ JΓ : ContextK,

(m− 1, C,H) ∈ J∆;π(φ);π(ψ) ` π(P) : PropK(δ; (E,S);ϑ)

and C#S. By alpha-renaming and equivariance it follows that,

(m− 1, C, π−1(H)) ∈ J∆;φ;ψ ` P : PropK(δ; (π−1(E), S);π−1(ϑ))

Hence,
(π−1(E), C ] S, π−1(H), s) : safem

and thus by alpha-renaming,
(E,C ] S,H, π(s)) : safem

Correctness: If
(E,C ] S,H, π(s)) ⇓k (S′, H ′)

then by alpha-renaming,

(π−1(E), C ] S, π−1(H), s) ⇓k (S′, π−1(H ′))

and thus,

(m− k, S′ \ π−1(E)(φ), π−1(H ′)) ∈ J∆;φ;ψ ` Q : PropK(δ; (π−1(E), S′|π−1(E)(φ));π
−1(ϑ))

and by alpha-renaming and equivariance we thus have that,

(m− k, S′ \ E(π(φ)), H ′) ∈ J∆;π(φ);π(ψ) ` π(Q) : PropK(δ; (E,S′|E(π(φ)));ϑ)
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Lemma 17. Rule (frame) is sound.

Γ; ∆;φ;ψ ` R : Prop Γ; ∆;φ;ψ ` {P}s{Q} /M FVV(R) ∩M = ∅
Γ; ∆;φ;ψ ` {P ∗ R}s{Q ∗ R} /M

Proof. Let n,m, k ∈ N such that k ≤ m ≤ n+ 1. Assume n ∈ JΓ : ContextK,

(m− 1, C1, H1) ∈ J∆;φ;ψ ` P : PropK(δ; (E,S);ϑ)

(m− 1, C2, H2) ∈ J∆;φ;ψ ` R : PropK(δ; (E,S);ϑ)

C1#C2, H1#H2, and (C1 ] C2)#S.

By assumption,
J∆;φ;ψ ` {P}s{Q} /MK(δ; (E,S);ϑ, n+ 1)

and thus,
(E,C1 ] S,H1, s) : safem

and by safety monotonicity,

(E,C1 ] C2 ] S,H1 ]H2, s) : safem

Correctness: If
(E,C1 ] C2 ] S,H1 ]H2, s) ⇓k (S′, H ′)

then by the stack and heap frame properties it follows that there exists a S′1 and H ′1 such that,

(E,C1 ] S,H1, s) ⇓k (S′1, H
′
1)

and S′ = C2 ] S′1 and H ′ = H2 ]H ′1. Hence,

(m− k, S′1 \ E(φ), H ′1) ∈ J∆;φ;ψ ` Q : PropK(δ; (E,S′|E(φ));ϑ)

Furthermore,

J∆;φ;ψ ` R : PropK(δ; (E,S);ϑ) = J∆;φ;ψ ` R : PropK(δ; (E,S′|E(φ));ϑ)

since ∀x ∈ FVV(R). S(E(x)) = S′(E(x)) and thus, by upwards-closure,

(m− k,C2 \ E(φ), H2) ∈ J∆;φ;ψ ` R : PropK(δ; (E,S′|E(φ));ϑ)

and thus finally,

(m− k, (S′1 ] C2) \ E(φ), H ′1 ]H2) ∈ J∆;φ;ψ ` P ∗ R : PropK(δ; (E,S′|E(φ));ϑ)
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Lemma 18. Rule (seq) is sound.

Γ; ∆;φ;ψ ` {P}s1{Q} /M1 Γ; ∆;φ;ψ ` {Q}s2{R} /M2

Γ; ∆;φ;ψ ` {P}s1; s2{R} /M1 ∪M2

Proof. Let n,m, k ∈ N such that k ≤ m ≤ n+ 1. Assume n ∈ JΓ : ContextK,
(m− 1, C,H) ∈ J∆;φ;ψ ` P : PropK(δ; (E,S);ϑ)

and C#S.

Safety: By assumption,

J∆;φ;ψ ` {P}s1{Q} /M1K(δ; (E,S);ϑ;n+ 1)

and thus,
(E;C ] S;H; s1) : safem

Hence, for any l ≤ k if (E;C ]S;H; s1 s2) ⇓l err then there exists l1, l2, S
′, and H ′ such that,

(E;C ] S;H; s1) ⇓l1 (S′, H ′)

(E;S′;H ′; s2) ⇓l2 err

and l = l1 + l2. Hence,

(m− l1;S′ \ E(φ);H ′) ∈ J∆;φ;ψ ` Q : PropK(δ; (E,S′|E(φ));ϑ)

and thus
(E; (S′ \ E(φ)) ] S′|E(φ);H

′, s2) : safem−l1+1

Since l1 + l2 = l ≤ k ≤ m it follows that l2 ≤ m− l1 + 1 and thus

(E;S′;H ′, s2) 6⇓l2 err

which is a contradiction.

Correctness: If
(E;C ] S;H; s1; s2) ⇓k (S′, H ′)

then there exists k1, k2, S
′′, and H ′′ such that,

(E;C ] S;H; s1) ⇓k1 (S′′, H ′′)

(E;S′′, H ′′; s2) ⇓k2 (S′, H ′)

and k = k1 + k2. Hence,

(m− k1;S′′ \ E(φ);H ′′) ∈ J∆;φ;ψ ` Q : PropK(δ; (E,S′′|E(φ));ϑ)

Furthermore, by assumption,

J∆;φ;ψ ` {Q}s2{R} /M2K(δ; (E,S′′|E(φ));ϑ;n+ 1)

Since 1 ≤ k1 we have it follows that k2 ≤ (m− k1 + 1) ≤ n+ 1 and thus,

(m− k1 + 1− k2;S′ \ E(φ);H ′) ∈ J∆;φ;ψ ` R : PropK(δ; (E,S′|E(φ));ϑ)

and by upwards-closure:

(m− k;S′ \ E(φ);H ′) ∈ J∆;φ;ψ ` R : PropK(δ; (E,S′|E(φ));ϑ)
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Lemma 19. Rule (lookup) is sound.

Γ; ∆;φ;ψ ` {lookup l as x in P}s{lookup l as x in Q} /M
Γ; ∆;φ, x;ψ ` {&x = l ∧ P}s{Q} /M ∪ {x}

Proof. Let n,m, k ∈ N such that k ≤ m ≤ n+ 1. Assume n ∈ JΓ : ContextK,

(m− 1;C;H) ∈ J∆;φ, x;ψ ` &x = l ∧ P : PropK(δ; (E,S);ϑ)

and C#S. Then ϑ(l) = E(x) and,

(m− 1;C;H) ∈ J∆;φ, x;ψ ` P : PropK(δ; (E,S);ϑ)

and by splitting,

(m− 1;C;H) ∈ J∆;φ;ψ, x ` P : PropK(δ; (E|φ, S \ E(x));ϑ[x 7→ S(E(x))])

By the definition of lookup it thus follows that,

(m− 1;C[E(x) 7→ S(E(x))];H) ∈ J∆;φ;ψ ` lookup l as x in P : PropK(δ; (E|φ, S \ E(x));ϑ)

and by assumption:

J∆;φ;ψ ` {lookup l as x in P}s{lookup l as x in Q} /MK(δ; (E|φ;S \ E(x));ϑ;n+ 1)

Safety: Hence,

(E|φ; (C[E(x) 7→ S(E(x))) ] (S \ E(x));H; s) : safek

and by weakening,
(E;C ] S;H; s) : safek

Correctness: Furthermore, if

(E;C ] S;H; s) ⇓k (S′, H ′)

then since x 6∈ FV(s) it follows that,

(E|φ;C ] S;H; s) ⇓k (S′, H ′)

and thus,

(m− k;S′ \ E(φ);H ′) ∈ J∆;φ;ψ ` lookup l as x in Q : PropK(δ; (E|φ, S′|E(φ));ϑ)

By the definition of lookup we thus have that E(x) ∈ Dom(S′ \ E(φ)) and

(m− k;S′ \ E(φ, x);H ′) ∈ J∆;φ;ψ, x ` Q : PropK(δ; (E|φ, S′|E(φ));ϑ[x 7→ (S′ \ E(φ))(E(x))])

and by splitting,

(m− k;S′ \ E(φ, x);H ′) ∈ J∆;φ, x;ψ ` Q : PropK(δ; (E,S′|E(φ,x));ϑ)
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Lemma 20. Rule (anondel) is sound.

ū ∪ ȳ = FV(B) Γ; ∆; ȳ, ū;ψ ` {P}B{d.Q} /M ū 6∈ M
∆; ȳ;ψ, ū ` P : Prop ∆; ȳ;ψ, ū, d ` Q : Prop

Γ; ∆; ȳ, x;ψ, l̄ ` {l̄ = &ȳ}
x = λū. {B};

{x 7→ 〈(ū).{lookup l̄ as z̄ in P[l̄/&ȳ][z̄/ȳ]} {d.lookup &l as z̄ in Q[l̄/&ȳ][z̄/ȳ]}〉} / {x}

Proof. Let n,m, k ∈ N such that k ≤ m ≤ n+ 1. Assume n ∈ JΓ : ContextK,

(m− 1, C,H) ∈ J∆; ȳ, x;ψ, l̄ ` l̄ = &ȳ : PropK(δ; (E,S);ϑ)

and C#S. If,
(E;C ] S;H; x = λū.{B}; ) ⇓k (S′, H ′)

then S′ = C ] S[E(x) 7→ l] and H ′ = H[l 7→ (δ, Ec,B)]) where Ec = E|ȳ, k = 1 and
l 6∈ Dom(C ] S).

Let k′ ≤ m′ ≤ m− 1, Cc ∈ S, Hc ∈ H, l̄x, l̄z ∈ Loc \ (Dom(Cc) ∪ Rng(Ec)), v̄x ∈ V such that,

(m′ − 1, Cc, Hc) ∈ J∆; ȳ, x;ψ, l̄, ū ` lookup l̄ as z̄ in P[l̄/&ȳ][z̄/ȳ] : PropK(δ; (E,S′);ϑ[ū 7→ v̄x])

Hence,

(m′−1, Cc\E(ȳ), Hc) ∈ J∆; ȳ, x;ψ, l̄, ū, z̄ ` P[l̄/&ȳ][z̄/ȳ] : PropK(δ; (E,S′);ϑ[ū 7→ v̄x, z̄ 7→ Cc(E(ȳ))])

and by strengthening and renaming,

(m′ − 1, Cc \ E(ȳ), Hc) ∈ J∆;−;ψ, l̄, ū, ȳ ` P[l̄/&ȳ] : PropK(δ; ([], []);ϑ[ū 7→ v̄x, ȳ 7→ Cc(E(ȳ))])

and splitting,

(m′−1, Cc\E(ȳ), Hc) ∈ J∆; ȳ, ū;ψ ` P : PropK(δ; ([ȳ 7→ E(ȳ), ū 7→ l̄u], [E(ȳ) 7→ Cc(E(ȳ)), l̄u 7→ v̄x]);ϑ|ψ)

Futhermore, by assumption,

J∆; ȳ, ū;ψ ` {P}B{Q} /MK(δ; ([ȳ 7→ E(ȳ), ū 7→ l̄u], [E(ȳ) 7→ Cc(E(ȳ)), l̄u 7→ v̄x]);ϑ|ψ;n+ 1)

and since k′ ≤ m′ ≤ n+ 1,

(δ, E′;Cc \ E(ȳ) ] [E(ȳ) 7→ Cc(E(ȳ)), l̄u 7→ v̄x, l̄z 7→ null];Hc, s) : safek′

where E′ = [ȳ 7→ E(ȳ), ū 7→ l̄u, z̄ 7→ l̄z]. Safety follows by safety monotonicity.

Correctness: If,

(δ, E′;Cc[l̄u 7→ v̄x, l̄z 7→ null];Hc; s) ⇓k′ (S′′, H ′′)

then,

(m′−k′, S′′\E′(ū, ȳ), H ′′) ∈ J∆; ȳ, ū;ψ, d ` Q : PropK(δ; ([ȳ 7→ E(ȳ), ū 7→ l̄u], S′′|E′(ū,ȳ));ϑ|ψ[d 7→ S′′(E′(r))])

and since ū 6∈ M, S′′(l̄u) = v̄x. By splitting and renaming we thus have that,

(m′ − k′, S′′ \ E′(ȳ, ū), H ′′) ∈ J∆;−;ψ, l̄, z̄, ū, d ` Q[l̄/&ȳ][z̄/ȳ] : PropK(δ; ([], []);ϑ′)
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where ϑ′ = ϑ[z̄ 7→ S′′(E(ȳ)), ū 7→ v̄x, d 7→ S′′(E′(r))]. By weakening,

(m′ − k′, S′′ \ E(ȳ, ū), H ′′) ∈ J∆; ȳ, x;ψ, l̄, z̄, ū ` Q[l̄/&ȳ][z̄/ȳ] : PropK(δ; (E,S′);ϑ′)

and hence,

(m′ − k′, S′′ \ l̄u, H ′′) ∈ J∆; ȳ, x;ψ, l̄, ū, d ` lookup l̄ as z̄ in Q[l̄/&ȳ][z̄/ȳ] : PropK(δ; (E,S′);ϑ′′)

where ϑ′′ = ϑ[ū 7→ v̄x, d 7→ S′′(E′(r))].

Lemma 21. Rule (delcall) is sound.

R = y 7→ 〈(ū).{P} {d.Q}〉 x 6∈ FV(R) y ∈ φ
Γ; ∆;φ, x̄, x;ψ ` {R ∗ P[x̄/ū]}x = y(x̄); {R ∗ Q[x̄/ū, x/d]} / {x}

Proof. Let n,m, k ∈ N such that k ≤ m ≤ n+ 1. Assume n ∈ JΓ : ContextK,

(m− 1;C1;H1) ∈ J∆;φ, x̄, x;ψ ` y 7→ 〈(ū).{P} {d.Q}〉 : PropK(δ; (E,S);ϑ)

(m− 1;C2;H2) ∈ J∆;φ, x̄, x;ψ ` P[x̄/ū] : PropK(δ; (E,S);ϑ)

H1(E(y)) = (δc, Ec, ū, z̄, s, r)

C1#C2, H1#H2, and (C1 ] C2)#S.

By strengthening, splitting, renaming and upwards-closure it follows that,

(m− 1;C1;H1) ∈ J∆;φ, x̄;ψ ` y 7→ 〈(ū).{P} {d.Q}〉 : PropK(δ; (E|φ,x̄, S|E(φ,x̄));ϑ)

and
(m− 2;C2;H2) ∈ J∆;φ, x̄;ψ, ū ` P : PropK(δ; (E|φ,x̄, S|E(φ,x̄));ϑ[ū 7→ S(E(x̄))])

Hence,
(δc, E

′
c;C2[l̄u 7→ S(E(x̄)), l̄z 7→ null];H2; s) : safem−1

where E′c = Ec[ū 7→ l̄u, z̄ 7→ l̄z].

Correctness: If
(δc, E;C ] S;H, x = y(x̄); ) ⇓k (S′, H ′)

then
(δc, E

′
c;C ] S[l̄u 7→ S(E(x̄)), l̄z 7→ null];H; s) ⇓k−1 (S′′, H ′′)

and S′ = S′′[E(x) 7→ S′′(E′c(r))] and H ′ = H ′′. By the stack and heap frame property there
exists C ′2 and H ′2 such that,

(δc, E
′
c;C2[l̄u 7→ S(E(x̄)), l̄z 7→ null];H2; s) ⇓k−1 (C ′2, H

′
2)

and S′′ = C1 ] S ] C ′2 and H ′′ = H1 ]H ′2. Hence,

((m− 1)− (k − 1);C ′2 \ l̄u;H ′2) ∈ J∆;φ, x̄;ψ, ū, d ` Q : PropK(δ; (E|φ,x̄, S|E(φ,x̄));ϑ
′)

where ϑ′ = ϑ[ū 7→ S(E(x̄)), d 7→ C ′2(E′c(r))]. Since S′′(E(φ, x̄)) = S(E(φ, x̄)), by splitting and
renaming it follows that,

(m− k;C ′2 \ l̄u;H ′2) ∈ J∆;φ, x̄;ψ, x ` Q[x̄/ū, x/d] : PropK(δ; (E|φ,x̄, S′′|E(φ,x̄));ϑ[x 7→ C ′2(E′c(r))])
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and by splitting again,

(m− k;C ′2 \ l̄u;H ′2) ∈ J∆;φ, x̄, x;ψ ` Q[x̄/ū, x/d] : PropK(δ; (E,S′′|E(φ,x̄)[E(x) 7→ C ′2(E′c(r))]);ϑ)

Hence, by upwards-closure,

(m− k; (S ] C ′2) \ E(φ, x̄, x);H ′2) ∈ J∆;φ, x̄, x;ψ ` Q[x̄/ū, x/d] : PropK(δ; (E,S′|E(φ,x̄,x));ϑ)

and since 1 ≤ k and x 6∈ FV(R) it follows by upwards-closure and strengthening and weakening
that,

(m− k;C1;H1) ∈ J∆;φ, x̄, x;ψ ` y 7→ 〈(ū).{P} {d.Q}〉 : PropK(δ; (E,S′|E(φ,x̄,x));ϑ)

Lemma 22. Rule (localvar) is sound.

Γ; ∆;φ, z̄;ψ ` {P ∧ z̄ = null}s; return x{d.Q} /M
Γ; ∆;φ;ψ ` {P}Ḡz̄; s; return x{d.∃l̄ : Var. lookup l̄ as z̄ in Q[l̄/&z̄]} /M \ z̄

Proof. Let n,m, k ∈ N such that k ≤ m ≤ n+ 1. Assume n ∈ JΓ : ContextK,

(m− 1;C;H) ∈ J∆;φ;ψ ` P : PropK(δ; (E,S);ϑ)

C#S and l̄z ∈ Ls \Dom(C ] S). By weakening,

(m− 1;C;H) ∈ J∆;φ, z̄;ψ ` P : PropK(δ; (E′, S′);ϑ)

for E′ = E[z̄ 7→ l̄z] and S′ = S[l̄z 7→ null]. Since C#S′,

(E′, C ] S′, H, s) : safek

and if,
(E′, C ] S′, H, s) ⇓k (S′′, H ′′)

then

(m− k;S′′ \ E′(φ, z̄);H ′) ∈ J∆;φ, z̄;ψ, d ` Q : PropK(δ; (E′, S′E′(φ,̄z));ϑ[d 7→ S′′(E′(x))])

splitting the zs into their values and locations we get:

(m− k;S′′ \ E′(φ, z̄);H ′) ∈ J∆;φ;ψ, z̄, l̄, d ` Q[l̄/&z̄] : PropK(δ; (E′|φ, S′E′(φ));ϑ
′)

where ϑ′ = ϑ[d 7→ S′′(E′(x)), z̄ 7→ S′′(l̄z), l̄ 7→ l̄z]. Thus, by definition,

(m− k, S′′ \ E′(φ);H ′) ∈ J∆;φ;ψ, l̄, d ` lookup l̄ as z̄ in Q[l̄/&z̄] : PropK(δ; (E′|φ, S′E′(φ));ϑ
′′)

where ϑ′′ = ϑ[d 7→ S′′(E′(x)), l̄ 7→ l̄z].
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4 Examples

Proof outline of append

public static Node〈X〉 append〈X〉(Node〈X〉 front, Node〈X〉 tail) {
Node〈X〉 tmp, tmp2;
{ list(front, xs, P) ∗ list(tail, ys, P) }
if(front == null) {
{ front = null ∧ list(front, xs, P) ∗ list(tail, ys, P) }
{ xs = [] ∧ list(tail, ys, P) }
{ list(tail, xs@ys, P) }
return tail;
{ r. list(r, xs@ys, P) }
} else {
{ front != null ∧ list(front, xs, P) ∗ list(tail, ys, P) }
{ ∃v, xs’, n, x. xs = v::xs’ ∧ front.next 7→ n ∗ front.item 7→ x

∗ P(x, v) ∗ list(n, xs’, P) ∗ list(tail, ys, P) }
tmp2 = front.next;
{ ∃v, xs’, x. xs = v::xs’ ∧ front.next 7→ tmp2 ∗ front.item 7→ x

∗ P(x, v) ∗ list(tmp2, xs’, P) ∗ list(tail, ys, P) }
tmp = append〈X〉(tmp2, tail);
{ ∃v, xs’, x. xs = v::xs’ ∧ front.next 7→ tmp2 ∗ front.item 7→ x

∗ P(x, v) ∗ list(tmp, xs’@ys, P) }
front.next = tmp;
{ ∃v, xs’, x. xs = v::xs’ ∧ front.next 7→ tmp ∗ front.item 7→ x

∗ P(x, v) ∗ list(tmp, xs’@ys, P) }
{ list(front, xs@ys, P) }
return front;
{ r. list(r, xs@ys, P) }
}
}
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Chapter 2

State, sharing and concurrency in
C]
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Abstract. In a concurrent setting, the usage protocol of standard sep-
aration logic specifications are not refinable by clients, because standard
specifications abstract all information about potential interleavings. This
breaks modularity, as libraries cannot be verified in isolation, since the
appropriate specification depends on how clients intend to use the library.

In this paper we propose a new logic and a new style of specifica-
tion for thread-safe concurrent data structures. Our specifications allow
clients to refine usage protocols and associate ownership of additional
resources with instances of these data structures.

1 Introduction

Why? One of the challenges of specifying the abstract behavior of a library is
that the appropriate specification depends on the context in which the library is
going to be used. Consider the case of simple bag library with operations to push
and pop elements from the bag. In a sequential setting the standard separation
logic specification is:

{bage(x,X)} x.Push(y) {bage(x,X ∪ {y})}
{bage(x,X)} x.Pop() {ret. (X = ∅ ∧ ret = null ∧ bage(x,X)) ∨

(∃Y. X = Y ∪ {ret} ∧ bage(x,Y))}
bage(x,X) ∗ bage(x,Y)⇒ ⊥

Here bage is an abstract predicate, i.e., implicitly existentially quantified, so
that clients cannot depend on its definition [2], x is a reference to a bag object,
and X and Y range over multisets of elements. The implication in the third line
expresses that the bage predicate cannot be duplicated. Hence this specification
enforces that clients follow a strict usage protocol, with a single exclusive owner
of the bag object. On the other hand, this specification allows the owner of the
bag to track the exact contents of the bag. In other words, bage(x,X) asserts
full ownership of the bag and that the bag contains exactly the objects in the
multiset X.

Now consider a client of the bag library and suppose this client wants to
implement a bag of independent tasks scheduled for execution. This client might
not care about the exact contents of the bag, only that each task in the bag
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owns the resources necessary to perform its task. In addition, this client might
wish to share the bag to allow multiple users to schedule tasks for execution.
Thus this client might prefer the following specification for shared bags:

{bags(x,P) ∗ P(y)} x.Push(y) {bags(x,P)}
{bags(x,P)} x.Pop() {ret. bags(x,P) ∗ (ret = null ∨ P(ret))}

bags(x,P)⇒ bags(x,P) ∗ bags(x,P)

This specification allows more sharing, but it does not track the exact contents
of the bag. Instead, it allows clients to associate additional resources with each
element of the bag using the P predicate, and to freely share the bag as expressed
by the implication in the third line. Clients thus transfer P(y) to the bag when
pushing y, and receive P(ret) from the bag, when pop returns a non-null element.

In a sequential first-order setting without reentrancy, the standard separation
logic specification suffices. Using techniques from fictional separation logic [11],
clients can refine the standard specification to allow the additional sharing of
the shared bag specification. However, in a concurrent setting, it is easy to come
up with a non-thread-safe implementation (without synchronization), that sat-
isfies the standard specification (as it enforces a single exclusive owner), but not
the shared bag specification. Hence, in a higher-order concurrent setting with
reentrancy, this type of refinement is unsound!

What? The key challenge is to provide a logic that enables clients to refine
the specifications to their requirements in a concurrent setting. In this paper
we propose such a logic, called Higher-Order Concurrent Abstract Predicates
(HOCAP), and a new style of specification for thread-safe concurrent data struc-
tures.3 This style of specification allows clients to refine the usage protocol and
associate ownership of additional resources with instances of the data structure,
in a concurrent higher-order setting.

How? Observe first that while it is not sound to refine specifications to al-
low more sharing in a concurrent setting, it is sound to refine specifications to
permit less sharing. Thus we will start with a weak specification that allows
unrestricted sharing of instances of the data structure, and then let clients refine
this specification as needed.

To reason about sharing we partition the state into regions, with protocols
governing how the state in each region is allowed to evolve, following earlier work
on concurrent abstract predicates [5]. Our new program logic, HOCAP, also uses
phantom fields – a logical construct akin to auxiliary variables, that only occur
in the logic.

To support abstract refinement of library specifications, we propose to verify
the implementation using a region to share the concrete state of the implementa-
tion, with a fixed protocol that relates the concrete state of the implementation

3 We consider a concurrent data structure thread-safe if each of its methods has one
or more synchronization points, where the abstract effects of the method appear to
take affect. See Related Work for a discussion of the relation to linearizability.

74



with an abstract description of the state of the data structure. To refine this spec-
ification, clients define a region of their own, with a protocol on the abstract state
of the data structure. For soundness, these two regions must evolve in lock-step
and synchronize when the abstract state changes (in synchronization points).
We do so by giving each region a half permission to a shared phantom field;
synchronization can then be enforced since updating a phantom field requires
full permission. Half permissions have previously been used to synchronize local
and shared state [14]; here we are using it to synchronize two shared regions.

For the bag example, we introduce a phantom field cont that contains the
abstract state of the bag: a multiset of references to the elements in the bag.
The bag constructor also returns a half permission to the phantom field cont:

{emp}new Bag(){ret. bag(ret) ∗ retcont
1/27−→ ∅}

Here retcont
1/27−→ ∅ asserts partial ownership of the phantom cont field. Since the

client obtains half the cont permission upon calling the constructor, the library
cannot update the cont field on its own. To allow the library to update cont

in synchronization points, we therefore transfer the library’s half-permission to
the client and require the client to update the phantom field with the abstract
effects of the method, and then transfer a half-permission back to the library.
When the client updates the phantom field, the client is forced to prove that the
abstract effects of the method is permitted by whatever protocols the client may
have imposed on the abstract state.

We express the update to the phantom cont field using a view-shift [4]. Con-
ceptually, a view-shift corresponds to a step in the instrumented semantics that
does not change the concrete machine state. View-shifts, written P v Q, thus
generalize assertion implication by allowing updates to phantom fields (given
sufficient permission) and ownership transfer between the local state and shared
regions.

The bag push method thus requires the client to provide a view-shift, to
update the abstract state from X to X ∪ {y} in the synchronization point:

∀X. xcont
1/27−→ X ∗ P v xcont

1/27−→ X ∪ {y} ∗ Q

{bag(x) ∗ P}x.Push(y){bag(x) ∗ Q}
Here, P and Q are universally quantified and thus picked by the client. Hence,
the client can use P and Q to perform further updates of the instrumented state
in the synchronization point and relate the new abstract state with its local
state. We thus refer to P and Q as synchronization pre- and post-conditions.

Likewise, the bag pop operation requires two view-shifts; one, in case the bag
is empty in the synchronization point, and another, in case the bag is non-empty
in the synchronization point:

xcont
1/27−→ ∅ ∗ P v xcont

1/27−→ ∅ ∗ Q(null)

∀X. ∀y. xcont
1/27−→ X ∪ {y} ∗ P v xcont

1/27−→ X ∗ Q(y)

{bag(x) ∗ P}x.Pop(){bag(x) ∗ Q(ret)}
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Finally, the bag predicate is freely duplicable:

bag(x)⇒ bag(x) ∗ bag(x)

Note that since P and Q are universally quantified — our logic is higher order —
the client could potentially pick instantiations referring to the library’s region,
thus introducing self-referential region assertions. To prevent this, we introduce
a notion of region type and a notion of support, as an over-approximation of
the types of regions a given assertion refers to. Our formal bag specification
(presented in Section 3) thus impose support restrictions on P and Q to ensure
the client does not introduce self-referential region assertions.

We also use region types to break a possible circularity in the model caused
by higher-order protocols. In particular, instead of assigning protocols to indi-
vidual regions, we assign parameterized protocols to region types. This allows
us to reason about higher-order protocols that refer to the region types – and
thus, implicitly, the protocol – of other regions. We show that this well-behaved
subset of higher-order protocols, called state-independent protocols, suffices for
sophisticated libraries, such as the Joins library [16].

To summarize, our new logic and specification methodology allows clients to
refine the usage protocol of the bag. It also allows clients to transfer ownership
of resources to the bag, by transferring them to a client region synchronized with
the abstract state of the bag.

Related work. Jacobs and Piessens introduced the idea of parameterizing the
specification of concurrent methods with ghost code, to be executed in synchro-
nization points [10]. Here we build on their idea, but use a much stronger logic
based on CAP [5], to address the two main problems with their approach.

Instead of regions with protocols, Jacobs and Piessens use ghost objects –
data structures built from ghost variables – with handles that represent par-
tial information about the data structure and permissions to modify it. This
approach is problematic since ghost objects are entirely first-order; while they
can refer to other ghost objects, they cannot take ownership of state. Hence,
they cannot derive the shared bag specification, as it explicitly allows clients to
associate additional resources with each element in the bag. Instead, they let the
client create the synchronization primitive (locks in their examples) protecting
the concurrent data structure. This allows the client to pick a lock invariant
containing both the state of the concurrent data structure and any additional
resources the client may have associated with the data structure. But this breaks
abstraction completely; in particular, it exposes internal implementation details
to the client (the synchronization primitive used) and it requires the client to re-
prove the shared bag specification every time it is needed. We solve this problem
using higher-order protocols.

The other main problem with the approach in [10] is a lack of support for
reasoning about ghost objects. Jacobs and Piessens provide a single instance
– ghost bags – that has been verified directly in the semantics. Any further
ghost objects have to be defined in terms of ghost bags or proven directly in
the semantics. It is unclear how expressive these ghost objects are; for instance,
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whether they can express monotonic state changes. Here, we address this issue
by providing a generic logic for reasoning about CAP.

CAP was designed to verify concurrent data structures [5]. However, the orig-
inal specifications and proofs are non-modular in the sense that implementations
have been verified against unrefinable specifications with fixed usage protocols.

Recently, Dodds et. al. introduced a higher-order variant of CAP to give a
generic specification for a library for deterministic parallelism [6]. While their
proofs make explicit use of nested region assertions and higher-order protocols,
the authors failed to recognize the semantic difficulties these features introduce.
Consequently, their reasoning is unsound. In particular, their higher-order rep-
resentation predicates are not stable. (See Appendix E for concrete counter-
examples.)

Another approach for achieving modular reasoning is to prove concurrent
implementations to be contextual refinements of coarse-grained counterparts –
thus taking the coarse-grained counterparts as specifications. Previous efforts
for proving such contextual refinements have mostly focused on indirect proofs
through a linearizability property on traces of concurrent libraries [9, 7]. So far,
this approach lacks support for transfer of ownership of resources between client
and library. More recently, there has been work on proving such contextual re-
finements directly, using logical relations [21]. Unless combined with a program
logic, both of these approaches restrict all reasoning to statements about contex-
tual refinement or contextual equivalence. As our approach demonstrates, if a
Hoare-style specification is what we are ultimately interested in, then contextual
refinement is unnecessary; what we really want is a generic specification that is
refinable by clients.

Conceptually, linearizability aims to provide a fiction of atomicity to clients
of concurrent libraries. Our approach does not. Instead, we aim to allow clients
to reason about changes of the abstract state in synchronization points inside
concurrent libraries. To illustrate the distinction, consider an extension of the
bag library with a Push2(x, y) method that takes two elements and pushes
them one at a time (i.e., with the implementation Push(x); Push(y)). This
method is not linearizable, as it has two synchronization points. However, it still
has a natural specification expressed in terms of two view-shifts, one for each
synchronization point:

∀X. xcont
1/27−→ X ∗ P v xcont

1/27−→ X ∪ {y} ∗ Q

∀X. xcont
1/27−→ X ∗ Q v xcont

1/27−→ X ∪ {z} ∗ R

{bag(x) ∗ P}x.Push2(y,z){bag(x) ∗ R}

From this specification, a client can derive a natural shared bag specification:

{bags(x,P) ∗ P(y) ∗ P(z)}x.Push2(y, z){bags(x,P)}

Contributions. We propose a new style of specification for thread-safe concur-
rent data structures. Using protocol synchronization, this style of specification
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allows clients to refine the usage protocol of concurrent data structures. More-
over, using nested region assertions and state-independent higher-order proto-
cols, our specification style allows clients to associate additional resources with
the data structure.

Technically, we realize the ideas by developing HOCAP, a higher-order sep-
aration logic for a subset of C] featuring named delegates and fork concurrency.
The logic allows two or more protocols to be synchronized and evolve in lock-step.
In addition, we support nested region assertions, state-independent higher-order
protocols, and guarded recursive assertions. We present a step-indexed model
of the logic and use it to prove the logic sound. We emphasize that unlike ear-
lier versions of CAP, our logic includes sufficient proof rules for carrying out all
proofs (including stability proofs) of examples in the logic, i.e., without passing
to the semantics.

Lastly, we demonstrate the power and utility of the logic by verifying a library
for executing tasks in parallel, based on Doug Lea’s Fork/Join framework [12].
We have also used to logic to specify and verify the Joins library [16] and clients
thereof, but that will be described in a separate paper.

2 The logic

Our logic is a general program logic for a subset of C], featuring delegates re-
ferring to named methods4 and an atomic compare-and-swap statement. New
threads are allocated via a fork statement that forks a delegate. Each thread has
a private stack, but all threads share a common heap. We use an interleaving
semantics.

The specification logic is an intuitionistic higher-order logic over a simply
typed term language, and the assertion logic an intutionistic higher-order sepa-
ration logic over the same simply typed term language. Types are closed under
the usual type constructors,→, ×, and +. Basic types include the type of asser-
tions, Prop, the type of specifications, Spec, the type of C] values, Val, and the
type of fractional permissions, Perm.

2.1 Concurrent Abstract Predicates

Recall that the basic idea behind CAP is to provide an abstraction of possible
interference from concurrently executing threads, by partitioning the state into
regions, with protocols governing how the state in each region is allowed to
evolve. Requiring all assertions to be stable – i.e., closed under protocols – and
proving all specifications with respect to arbitrary stable frames, then achieves
thread-local reasoning about shared mutable state.

4 Anonymous delegates in C] may capture the l-values of free variables and hence the
semantics and logic for anonymous methods is non-trivial, see our earlier paper [19].
Those semantic issues are orthogonal to what we discuss in the present paper and
hence we omit anonymous delegates here.
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Following earlier work on CAP [5], we use a shared region assertion, written

P
r,t,a

, which asserts that r is a region and that the resources in region r satisfies
the assertion P. Unlike earlier versions, the region assertion is also annotated
with a region type t and a protocol argument a, since we assign parameter-
ized protocols to region types instead of regions, as mentioned above. Region
assertions are freely duplicable and thus satisfy,

P
r,t,a ⇔ P

r,t,a ∗ P
r,t,a

(1)

Protocols consist of named actions and updates to a shared region requires own-
ership of a named action justifying the update. Protocols are specified using
protocol assertions, written protocol(t, I). Here t is a region type and I is a para-
metric protocol. We use the following notation for a parametric protocol I with
parameter a and named actions α1, ..., αn:

I(a) = (α1 : (∆1). P1  Q1; · · · ;αn : (∆n). Pn  Qn)

Here ∆i is a context of logical variables relating the action precondition Pi with
the action post-condition Qi. The action αi thus allows updates from states
satisfying Pi to states satisfying Qi. We use I(a)[αi] to refer to the definition of the
αi action in protocol I applied to argument a. Hence, I(a)[αi] = (∆i). Pi  Qi.

We use P
r,t,a

I
as shorthand for P

r,t,a
∗ protocol(t, I).

We can distinguish different client roles in protocols through ownership of
named actions. An action assertion [α]rπ asserts fractional ownership of the
named action α on region r with fraction π. Fractions are used to allow multiple
clients to use the same action. We can split or reassemble action assertions using
the following property,

[α]rp+q ⇔ [α]rp ∗ [α]rq (2)

where p, q, p + q are terms of type Perm – permissions in (0, 1].
An assertion p is stable if it is closed under interference from the environment.

In the absence of self-referential region assertions and higher-order protocols, the

region assertion, P
r,t,a

I
is stable if P is closed under all I(a) actions:5

∀ỹ. valid(P ∧ Pi(ỹ)⇒ ⊥) ∨ valid(Qi(ỹ)⇒ P)

for all i, where I(a)[αi] = (x̃). Pi(x̃) Qi(x̃).

Example. To illustrate reasoning about sharing, consider a counter with read
and increment methods. Since the count can only be increased, this counter
satisfies the specification of a monotonic counter [15]:

{counter(x, n)} x.Increment() {counter(x, n + 1)}
{counter(x, n)} x.Read() {ret. counter(x, ret) ∗ n ≤ ret}
counter(x, n)⇒ counter(x, n) ∗ counter(x, n)

5 This is a formula in the specification logic; P and Q are assertions and for an assertion
P, valid(P) is the specification that expresses that P is valid in the assertion logic.
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Here counter(x, n) asserts that n is a lower-bound on the current count. Hence
we expect that this predicate can be freely duplicated, as expressed by the third
line above.

To verify a counter implementation against this specification, we place the
current count in a shared region, with a protocol that allows the current count
to be increased. Assertions about lower bounds are thus invariant under the
protocol. If the counter implementation maintains the current count in field
count, then we can specify the counter protocol as follows:

counter(x, n)
def
= ∃r, π. [incr]rπ ∗ ∃m. n ≤ m ∗ x.count 7→ m

r,Counter,x

I

where I is a parametric protocol with parameter x and a single action incr, that
allows the count field of x to be increased:

I(x) = (incr : (m, k : N). x.count 7→ m ∗ m ≤ k x.count 7→ k)

Here we have used a fixed region type Counter for the counter region r. Since
fractional permissions can always be split (2), and region assertions always dupli-
cated (1), it follows that counter(x, n)⇒ counter(x, n) ∗ counter(x, n), as required
by the specification. Since the shared region assertion in counter(x, n) contains
no self-referential region assertions or higher-order protocols, to prove it stable,
it suffices to show that,

∀m, k. valid((∃m : N. n ≤ m ∗ x.count 7→ m) ∧ (x.count 7→ m ∗m ≤ k)⇒ ⊥) ∨
valid(x.count 7→ k⇒ (∃m : N. n ≤ m ∗ x.count 7→ m))

This follows easily by case analysis on n ≤ k.6 Lastly, to verify the implementa-
tion of Increment and Read, we have to prove they satisfy the protocol, namely
that they do not decrease the current count. This is easy.

2.2 Higher-order Concurrent Abstract Predicates

As the above example illustrates, we can use CAP to reason about a shared
counter by imposing a protocol on the shared count field. Since this is a protocol
on a primitive resource (the count field), first-order CAP suffices. To reason
about examples, such as the shared bag, which associates ownership of general
resources – through the P predicate – with a shared bag, we need Higher-Order
CAP. In particular, to define the bags predicate requires region and protocol
assertions containing the predicate variable P.

To support modular reasoning about region and protocol assertions contain-
ing predicate and assertion variables, ideally, we want to treat predicate and
assertion variables as black boxes. For instance, consider the assertion,

Q
def
= P

r,t,−
∗ protocol(t, I) (3)

6 As usual, ≤ is a decidable predicate so we are free to do case analysis on n ≤ k.
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where I is the parametric protocol I(−) = (τ : P P) expressed in terms of the
assertion variable P. Treating P as a black box, Q is clearly stable if P is stable,
as Q asserts that P holds of the resources in region r, which is clearly closed
under the protocol I. However, in general P could itself be instantiated with re-
gion and protocol assertions, introducing the possibility of self-referential region
assertions and turning I into a higher-order protocol. This makes reasoning sig-
nificantly more challenging. In particular, some self-referential region assertions
do not admit modular stability proofs, as there exists instantiations of P with
stable assertions for which Q is not stable. Furthermore, higher-order protocols
introduce a circularity in the definition of the model.

Self-referential region assertions. To see how self-referential region asser-
tions can break the modularity of stability proofs, consider assertion p below:

P
def
= x 7→ 0 ∗ y 7→ 0

r′,t′,− ∗ protocol(t′, J),

where J is the protocol with a single α action that allows the y variable to be
changed from 0 to 1, provided region r owns variable x and x is zero:

J(−) =
(
α : x 7→ 0

r,t,− ∗ y 7→ 0 x 7→ 0
r,t,− ∗ y 7→ 1

)

Then P is stable, because P asserts full ownership of the x variable, ensuring
that the environment cannot perform the α action, as x cannot also be owned
by region r. However, the region assertion q defined above is not stable when

instantiated with this P, as P
r,t,−

asserts that region r does own x, thus allowing
the environment to perform the α action. As this example illustrates, some self-
referential region assertions thus do not admit modular stability proofs. A similar
problem occurs when reasoning about atomic updates to shared regions.

Support. To ensure modular reasoning about stability and atomic updates
to shared regions, we require clients to explicitly prove that their instantia-
tions of predicate variables do not introduce self-referential region assertions. To
facilitate these proofs, we introduce a notion of support, which gives an over-
approximation of the types of regions a given assertion refers to.

An assertion P is supported by a set of region types A, if P is invariant under
arbitrary changes to the state and protocol of any region of a region type not
in A. To support modular reasoning about hierarchies of concurrent libraries,
instead of reasoning directly in terms of sets of regions, we introduce a partial
order on region types and reason in terms of upwards-closed sets of region types.
More formally, we introduce a new type, RType, of region types with a partial
order ≤ : RType × RType → Spec, with a bottom element ⊥ : RType and
finite meets. We say that an assertion P is dependent on region type t if it is
supported by the set of region types greater than or equal to t. We introduce two
new specification assertions, dep, indep : RType×Prop→ Spec for asserting that
an assertion is dependent and independent of a given region type, respectively.
Figure 2 in Appendix A contains a set of natural inference rules for dep and
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indep, for instance, one expressing that if P is dependent on region type t1, then

P
r,t2,a

is dependent on the greatest lower bound, of t1 and t2.

Whenever we reason about region assertions, P
r,t,a

we thus require that P is
independent of the region type t. This excludes self-referential region assertions
through protocols (such as in (3)), and through nested region assertions (such

as P
r,t,a

r,t,a

).

Stability. General higher-order protocols would introduce a circularity in the
definition of the model. We break this circularity by exploiting the indirection
of region types – i.e., that we assign protocols to region types instead of indi-
vidual regions. This allows us to support protocols with assertions about the
region types of regions, but without assertions about the protocols assigned to
those region types. Technically, we enforce this restriction by ignoring protocol
assertions in action pre- and post-conditions when interpreting protocols. The
parameterized higher-order protocol I,

I(x) = (x 7→ 0 ∗ protocol(t, J) x 7→ 1 ∗ protocol(t, J))

is thus interpreted as I(x) = (x 7→ 0 x 7→ 1). The interpretation simply ignores
the protocol(t, J) assertion (See definition of act in the technical report).

In the absence of self-referential region assertions, a region assertion P
r,t,a

I
is

stable under the α action, if P is closed under the action pre- and post-condition
of the α action of I(a) and I is a first-order protocol. If I is a higher-order protocol,

then the assertion P
r,t,a

I
is stable under the α action, if P is closed under the

action pre- and post-condition of the α action of I(a) and p is also protocol-pure.
We thus have the following proof-rule for stability:

I(a)[α] = (x̃).Ip(x̃) Iq(x̃) ∀x̃. valid(P ∧ Ip(x̃)⇒ ⊥) ∨ valid(Iq(x̃)⇒ P)
indept(P) indept(Q) stable(P ∗ Q) pureprotocol(P) purestate(Q)

stablerα

(
P

r,t,a

I
∗ Q
) SA

Here pureprotocol and purestate are propositions in the specification logic; pureprotocol(P)
expresses that P is invariant under any changes to protocols and purestate(P) ex-
presses that P is invariant under any change to the local or shared state. Figures
3 and 4 in Appendix A give inference rules for proving pureprotocol and purestate
assertions. The SA proof-rule thus allows us to prove stability of region asser-
tions, by first “pulling out” any protocol assertions, Q, from the region assertion.
We say that an assertion is expressible using state-independent protocols if the
protocol assertions can be “pulled out” in this sense. Formally,

sip
def
= λP : Prop. ∃Q,R : Prop. valid(P⇔ Q ∗ R) ∧ pureprotocol(Q) ∧ purestate(R)

In particular, if P ⇔ Q ∗ R and purestate(R), then P
r,t,a

I
⇔ Q

r,t,a

I
∗ R. Thus, if

sip(P), then P
r,t,a

I
can be rewritten to a form that satisfies the pureprotocol premise

of the SA rule. Expressibility using state-independent protocols is closed under
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conjunction and separating conjunction, but in general not under disjunction
or existential quantification. To achieve closure under existential quantification,
∃x : X. P(x), we have to impose a stronger restriction on the predicate family P.
Namely, P has to be uniformly expressible using state-independent protocols:

usipX
def
= λP : X→ Prop. ∃R : Prop. ∃Q : X→ Prop. purestate(R) ∧

∀x ∈ X. (P(x)⇔ Q(x) ∗ R) ∧ pureprotocol(Q(x))

Then we have that usipX(P)⇒ sip(∃x ∈ X. P(x)).

2.3 View-shifts.

Phantom state. Proofs in Hoare logic often employ auxiliary variables [13],
as an abstraction of the history of execution and state. To support this style
of reasoning, without changing the formal operational semantics, we instrument
our abstract semantics with phantom fields.

We thus extend our logic with a phantom points-to assertion, written xf
p7→ v,

which asserts partial ownership, with fraction p, of the phantom field f on object
x, and that the current value of the phantom field is v.

Phantom fields live in the instrumented state and are thus updated through

view-shifts. Updating a phantom field requires full ownership of the field (xf
17→

v1 v⊥ xf
17→ v2).7 A fractional phantom field permission can be split and re-

assembled arbitrarily. As a partial fraction only confers read-only ownership, two
partial fractional assertions must agree on the current value of a given phantom

field (xf
p17→ v1 ∗ xf

p27→ v2 ⇒ v1 = v2). To create a phantom field f we require that
the field does not already exist, so that we can take full ownership of the field.
We thus require all phantom fields of an object o to be created simultaneously
when o is first constructed (in the proof rule for contructors, see the technical
report [20]).

Simultaneous updates. To support synchronization of two regions by split-
ting ownership of a common phantom field, we need to update the value of the
phantom field in both regions simultaneously. Previous versions of CAP have
only supported sequences of independent updates to single regions. To support
synchronization of protocols we thus extend CAP with support for simultaneous
updates of multiple regions.

We have chosen a semantics that requires that updates of regions have the
same action granularity (you cannot have one simultaneous update of two re-
gions, where the update of one region is justified by one action, and the update
of the other region is justified by two actions). This is a choice; it simplifies sta-
bility proofs, but it means that we must explicitly track which regions that may
have been updated by a view-shift. (See Section B in Appendix for examples
illustrating this choice.) We thus index the view-shift relation with a region type
t. The indexed view-shift relation, vt, thus describes a single update that, in

7 The view-shift is annotated with the ⊥ region type; we explain the reason for such
annotations on view-shifts in the following.
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pureperm(P1) indept1ut2(P1,P2,Q1,Q2) t2 6≤ t1

P1

r,t1,a

I
∗ P2  r,t2 Q1

r,t1,a

I
∗ Q2 P1 ∗ P2 vt1ut2 Q1 ∗ Q2

P1

r,t1,a

I
∗ P2 vt2 Q1

r,t1,a

I
∗ Q2

VSNOpen

indept1ut2(P1,P2,Q1,Q2) t2 6≤ t1

P1

r,t1,a

I
∗ P2  r,t2 Q1

r,t1,a

I
∗ Q2 P1 ∗ P2 v⊥ Q1 ∗ Q2

P1

r,t1,a

I
∗ P2 vt2 Q1

r,t1,a

I
∗ Q2

VSOpen

P vt Q stable(R)

P ∗ R vt Q ∗ R
VSFrame

P vt1 Q t1 ≤ t2

P vt2 Q
VSWeaken

Fig. 1. Selected view-shift proof rules

addition to updating the local state, may update multiple shared regions with
region types not greater than or equal to t, where each update must be justified
by a single action. The indexed view-shift relation is thus not transitive.

Figure 1 contains a selection of proof rules for view-shifts. The two main
rules, VSNOpen and VSOpen, are used to open a region, to allow access to
the resources in that shared region. Both rules allow us to open a region and
perform a nested view-shift on the contents of that region. This is how we reason
about simultaneous updates to multiple regions in the logic). Rule VSNOpen
allows the nested view-shift to modify further regions, while VSOpen does not
(note the use of region type ⊥ on the nested view shift in VSOpen). Both rules
require a proof the update is possible –

P1 ∗ P2 vt1ut2 Q1 ∗ Q2 and P1 ∗ P2 v⊥ Q1 ∗ Q2,

respectively – and a proof that the update is allowed by the protocol, denoted

P1

r,t1,a

I
∗ P2  r,t2 Q1

r,t1,a

I
∗ Q2

and explained below.
Since actions owned by shared regions cannot be used to perform updates

to shared regions, the VSNOpen rule further requires that P1 does not assert
ownership of any local action permissions (pureperm(P1)). This ensures that no
local action permissions from P1 were used to justify any actions performed in
the nested view-shift. Since VSOpen does not allow the nested view-shift to
update any regions, this restriction is unnecessary for the VSOpen rule.

Update allowed. The update allowed relation, P  r,t Q, asserts that the
update described by P and Q to region r is justified by an action owned by P.

Thus the basic proof rule for the update allowed relation is:

indept2(P(ṽ),Q(ṽ)) t2 6≤ t1 I(a)[α] = (x̃). P(x̃) Q(x̃)

P(ṽ)
r,t1,a

I
∗ [α]rπ  r,t2 Q(ṽ)

r,t1,a

I
∗ [α]rπ

UAAct
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Since the update allowed relation simply asserts that any update described by
P and Q is allowed, it satisfies a slightly non-standard rule of consequence, that
allows strengthening of both the pre- and post-condition. From this non-standard
rule-of-consequence, it follows that the update allowed relation satisfies the a
frame rules that allows arbitrary changes to the context:

P⇒ P′ P′  r,t Q′ Q⇒ Q′

P r,t Q
UAConseq

P s,t Q

P ∗ R1  s,t Q ∗ R2

UAF

3 Concurrent Bag

We now return to the concurrent bag from the introduction, and show how
to formalize the informal specification from the introduction. Next, we show
how to derive the two bag specifications from the introduction, using protocol
synchronization, nested region assertions, and higher-order protocols.

Specification. In the introduction we proposed a refineable bag specification
with phantom variables to force protocol synchronization and with view-shifts
to synchronize client and library in synchronization points. In the formal speci-
fication we restrict the synchronization pre- and post-conditions, P and Q, using
region types, to ensure that the client’s instantiation does not introduce self-
referential region assertions. Upon creation of new bag instances, the client picks
a region type t for that bag instance and the client is then required to prove that
all its synchronization pre- and post-conditions are independent of region type
t. The formal refinable bag specification is:

{emp}new Bag(){ret. bag(t, ret) ∗ retcont 1/27−→ ∅}

stable(P) stable(Q) indept(P) indept(Q)

∀x. xcont 1/27−→ ∅ ∗ P(x) vt xcont
1/27−→ ∅ ∗ Q(x, null)

∀X. ∀x, y. xcont 1/27−→ X ∪ {y} ∗ P(x) vt xcont
1/27−→ X ∗ Q(x, y)

{bag(t, x) ∗ P(x)}x.Pop(){bag(t, x) ∗ Q(x, ret)}

stable(P) stable(Q) indept(P) indept(Q)

∀X. ∀x, y. xcont 1/27−→ X ∗ P(x, y) vt xcont
1/27−→ X ∪ {y} ∗ Q(x, y)

{bag(t, x) ∗ P(x, y)}x.Push(y){bag(t, x) ∗ Q(x, y)}

bag(t, x)⇔ bag(t, x) ∗ bag(t, x) dept(bag(t, x))

The indept assumptions on the synchronization pre- and post-conditions ensure
that P and Q do not introduce self-referential region assertions. Furthermore,
the index on the view-shifts, vt, ensures that the granularity of actions match
between the library and any client protocols.

See Appendix C for a proof outline of a fine-grained bag implementation
against this refineable bag specification.
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Exclusive owner. We now show how to derive the standard specification with
a single exclusive owner. This specification is very simple to derive; we simply
let the exclusive owner of the bag keep the 1/2 permission of the phantom field
containing the abstract state of the bag: bage(t, x,X)

def
= bag(t, x) ∗ xcont

1/27−→ X.

Shared bag. The derivation of the shared bag specification is more interesting,
as it uses both protocol synchronization and higher-order protocols. We begin
by formalizing the shared bag specification in our logic:

depr(P)

deprut(bag(t, x,P))

stable(P) indept(P) usipVal(P)

{emp}new Bag(){ret. bag(t, ret,P)}

{bags(t, x,P) ∗ P(y)}x.Push(y){bags(t, x,P)}

{bags(t, x,P)}x.Pop(){ret. bags(t, x,P) ∗ (ret = null ∨ P(ret))}

bags(t, x,P)⇔ bags(t, x,P) ∗ bags(t, x,P)

This corresponds to the specification from the introduction, except with restric-
tions on predicate P to ensure it is expressible using state-independent protocols
and does not introduce self-referential protocol or region assertions.

With these restrictions on P we can now derive the shared bag specification
from our generic specification. The idea is to introduce a new region containing
the state associated with each element currently in the bag:

bags(t, x,P)
def
= ∃r : RId. ∃π : Perm. ∃t1, t2 : RType.

t ≤ t1 ∧ t ≤ t2 ∧ t1 6≤ t2 ∧ t2 6≤ t1 ∧ indept(P) ∧ usip(P) ∧

bag(t1, x) ∗ q(x,P)
r,t2,x

I(P)
∗ [Upd]rπ

q(x,P)
def
= ∃X : Pm(Val). xcont

1/27−→ X ∗~y∈XP(y)

I(P)(x)
def
= (Upd : q(x,P) q(x,P))

The parametric protocol I(P) allows the bag to be changed arbitrarily, provided
the region still contains the state associated with each element currently in the
bag. From the assumption that each P(x) is stable and that usipVal(P) it follows
that q(x,P) is stable and sip(q(x,P)). Hence, there exists R,S : Prop such that
q(x,P) ⇔ R ∗ S, pureprotocol(S) and purestate(R). Thus, bags(t, x,P) is equivalent
to the following assertion:

∃r, π, t1, t2. t ≤ t1 ∧ t ≤ t2 ∧ t1 6≤ t2 ∧ t2 6≤ t1 ∧ bag(t1, x) ∗ S
r,t2,x

I(P)
∗ R ∗ [Upd]rπ

Hence, to prove bags(t, x,P) stable, it suffices to prove stability of S
r,t2,x

I(P)
∗ R.

Applying rule SA, it thus suffices to prove,

valid(q(x,P) ∧ S⇒ ⊥) ∨ valid(q(x,P)⇒ S)
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and the right disjunct follows easily from the assumption that q(x,P)⇔ R ∗ S.
To derive the shared bag specification for push, we thus have to transfer the

resources associated with the element being pushed, P(y), to the client region
containing the element resources. We thus instantiate P and Q in the generic

bag specification with P(y) ∗ q(x,P)
r,t2,x

I(P)
∗ [Upd]rπ and q(x,P)

r,t2,x

I(P)
∗ [Upd]rπ,

respectively.
We thus have to provide a view-shift to synchronize the abstract state of the

library protocol with our client protocol r:

∀X : Pm(Val). xcont
1/27−→ X ∗ P(y) ∗ q(x,P)

r,t2,x

I(P)
∗ [Upd]rπ vt1

xcont
1/27−→ (X ∪ {y}) ∗ q(x,P)

r,t2,x

I(P)
∗ [Upd]rπ

Since xcont
1/27−→ X ∗ P(y) ∗ [Upd]rπ and q(x,P) are all independent of region type

t, by rule VSOpen it suffices to prove that the change to region r is allowed and
possible. The update is easily shown to be allowed by the Upd action, using the
UAAct rule and update action frame rule (UAF). To show the possibility of
the view shift it suffices to prove that:

xcont
1/27−→ X ∗ P(y) ∗ ∃Z : Pm(Val). xcont

1/27−→ Z ∗~z∈ZP(z) ∗ [Upd]rπ v⊥
xcont

1/27−→ (X ∪ {y}) ∗ ∃Z : Pm(Val). xcont
1/27−→ Z ∗~z∈ZP(z) ∗ [Upd]rπ

which follows easily, as xcont
1/27−→ X ∗ xcont

1/27−→ Z⇒ X = Z.
Note that to provide a view-shift to synchronize the abstract state of the

library protocol with the client protocol, we were essentially forced to update
the phantom field cont in the client region, which in turn forced us to transfer
ownership of P(y) to the client region.

4 Concurrent Runner

The concurrent runner is a small library for parallelizing divide-and-conquer al-
gorithms, inspired by Doug Lea’s Fork/Join framework [12]. Clients interact with
the library by registering a delegate for parallelization. The library then provides
methods for scheduling executions of the registered delegate using a set of worker
threads. In general, this delegate could have side-effects. The registered delegate
is also allowed to schedule itself for execution, leading to recursion through the
store through the library. The concurrent runner thus makes for an interesting
specification challenge, as it requires a specification that supports higher-order
code with effects and recursion through the store through the library. It also
makes for an interesting verification challenge, as the library is implemented us-
ing shared mutable state. In particular, the implementation uses a shared bag
to share tasks scheduled for execution between the worker threads.

To demonstrate that our approach scales, we have verified the concurrent run-
ner. The proof uses the shared bag specification derived in the previous section.
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We use nested Hoare triples and guarded recursion to reason about delegates and
recursion. See Appendix D for a detailed explanation of the concurrent runner
and a proof outline of the implementation.

5 Semantics
In this section we sketch the model and the interpretation of our logic. Due to lack
of space, we focus on parts presented in Section 2. The full model, interpretation
and accompanying soundness proof can be found in the technical report [20].

The presentation of the model is strongly inspired by the Views framework
presentation [4]. The model is an instance of the Views framework extended
with step-indexing to model guarded recursion, and thread local state to model
dynamic allocation of threads.

The basic structure of the model is defined below. Assertions are modeled as
step-indexed predicates on instrumented states (M). Instrumented states con-
sist of three components, a local state, a shared state and an action model. The
local state specifies the current local resources. The shared state is further par-
titioned into regions and each region consists of a local state, a region type and
a protocol parameter. The action model maps region types to parameterized
protocols, which are functions from a tuple containing a protocol argument, a
region identifier and an action identifier to an action. Lastly, actions are modeled
as certain step-indexed relations on shared states. In particular, actions are not
relations on shared states and action models, and thus do not support general
higher-order protocols. Actions do however support state-independent protocols,
through the region type indirection.

LState
def
= Heap× PHeap× Cap SState

def
= RId ⇀ (LState× RType×Val)

M def
= LState× SState×AMod AMod

def
= RType ⇀ ((Val× RId×AId)→ Act)

Cap
def
= {f ∈ RId×AId→ [0, 1] | ∃R ⊆fin RId. ∀r ∈ RId \R. ∀α ∈ AId. f(r, α) = 0}

Act
def
= {R ∈ P(N× SState× SState) |

∀(i, s1, s2) ∈ R. ∀j ≤ i. ∀r ∈ RId \ dom(s2). ∀n ∈ RType. ∀l, l′ ∈ LState.

s1 ≤ s2 ∧ (j, s1, s2[r 7→ (l′, n)]) ∈ R ∧
(j, s1[r 7→ (l, n)], s2[r 7→ (l′, n)]) ∈ R}

Prop
def
= {U ∈ P(N×M) | ∀(i,m1) ∈ U. ∀j ≤ i. ∀m2 ∈M.

(m1 =j m2 ∨m1 ≤ m2)⇒ (j,m2) ∈ U}
Spec

def
= {U ∈ P(N) | ∀i ∈ U. ∀j ≤ i. j ∈ U}

The semantics of both the assertion logic and specification logic is step-indexed.
The specification logic is step-indexed to allow reasoning about mutual recur-
sion. The assertion logic is step-indexed to support nested triples (which embed
specifications in the assertion logic) [18] and guarded recursive predicates [1, 3].
Specifications are thus modeled as downwards closed subsets of numbers, and
assertions are modeled as step-indexed predicates on instrumented states, that
are downwards closed in the step-index and upwards closed inM. The upwards
closure in M ensures that assertions are closed under allocation of new regions
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and protocols (the ordering ≤ onM is defined as expected). To define guarded
recursive functions and predicates, the types of our logic are modeled as sets
with a step-indexed equivalence relation, =i, and terms and predicates are mod-
eled as non-expansive functions. However, as this part of the model is mostly
orthogonal to CAP, we will elide the details, which can be found in the technical
report [20].

Comparison with previous models of CAP. The original model of (first-
order) CAP [5] employed a syntactic treatment of actions to break a circularity
in the definition of worlds. Our model follows the previous model of higher-
order CAP (without higher-order protocols) [6] in treating actions semantically.
However, to support higher-order protocols we introduce a new indirection, in the
form of region types. Actions are thus relations on shared states, which include
the region types of allocated regions. Actions can thus implicitly refer to the
protocol on regions through the region type indirection. While previous work has
only considered CAP for a first-order programming language, our HOCAP is for
a higher-order programming language. We thus step-index both the specification
and assertion logic, instead of just the specification logic.

Model operations. Separating conjunction is interpreted as the lifting of the
partial commutative •M function to Prop (point-wise in the step-index). The •M
function expresses how to compose two instrumented states. Two instrumented
states are combinable if they agree on the shared state and action model, by
combining their local states, using •LState. Local states are combined using the
standard combination function, •], on disjoint partial functions, on the heap
and phantom heap component, and by point-wise summing up the action per-
missions.

While assertions are modeled as step-indexed predicates on instrumented
states, which include phantom fields, protocols, and regions, the operational
semantics operates on concrete states, which are simply heaps. The main sound-
ness theorem (Theorem 1) expresses that any step in the concrete semantics
has a corresponding step in the instrumented semantics. This is expressed in
terms of an erasure function, b−c ∈ M ⇀ Heap, that erases the instrumenta-
tion from an instrumented state. The erasure of an instrumented state is simply
the combination of the local state and all shared regions.

d(l, s)e def
= l •LState

∏

r∈dom(s)

s(r).l

b(l, s, ς)c def
=

{
h if (h, ph, c) = d(l, s)e and π1(dom(ph)) ⊆ objs(h)

undef otherwise

Interference. The interference relation RAi ⊆ M×M describes possible in-
terference from the environment. It is defined as the reflexive, transitive closure
of the single-action interference relation, R̂Ai (defined below), that describes pos-
sible environment interference using at most one action on each region. Defining
RAi as the reflexive, transitive closure of R̂Ai forces a common action granular-
ity on updates to multiple regions with protocols referring to each other (see
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Appendix B). In addition to the step-index i ∈ N, the single-action interference
relation is also indexed by a set A ∈ P(RType) of region types of those regions
that are allowed to change and that actions justifying those changes are allowed
to depend on.

(l1, s1, ς1) R̂Ai (l2, s2, ς2) iff l1 = l2 ∧ s1 ≤ s2 ∧ ς1 ≤ ς2 ∧ d(l1, s1)e defined ∧
(∀r ∈ dom(s1). s1(r) = s2(r) ∨ (∃α. s1(r).t ∈ A ∧

(d(l1, s1)e.c)(r, α) < 1 ∧ (i, s1|A, s2|A) ∈ ς1(s1(r).t)(s1(r).a, r, α)))

s|A def
= λr ∈ RId.

{
s(r) if r ∈ dom(s) and s(r).t ∈ A
undef otherwise

In particular, the R̂Ai relation expresses that the environment is not allowed
to change the local state (l1 = l2), but it is allowed to allocate new regions
and protocols (s1 ≤ s2 and ς1 ≤ ς2). Furthermore, the environment is allowed
to update the resources of any region r with a region type in A (s1(r).t ∈ A),
provided the update is justified by an action α that is partially owned by the
environment (d(l1, s1)e(r, α) < 1).

An assertion is stable if it is closed under interference to all region types:

stable(p)
def
= {i ∈ N | ∀j ≤ i. ∀(m1,m2) ∈ RRType

j . (j,m1) ∈ p⇒ (j,m2) ∈ p}

Previous models of CAP have only permitted multiple independent updates,
whereas our model supports multiple dependent updates. Previous models thus
lack the A-index that we use to enforce a common action granularity on updates
to multiple dependent regions.

View-shifts. View-shifts describe a step in the instrumented semantics that
correspond to a no-op in the concrete semantics. To perform a view-shift from p
to q we thus have to prove that for every concrete state c in the erasure of some
instrumented state m ∈ p there exists an instrumented state m′ ∈ q such that c
is in the erasure of m′.

p vt q def
= {i ∈ N | ∀m ∈M. ∀j ∈ N. 0 ≤ j ≤ i ⇒

bp ∗ {(j,m)}cj ⊆ bq ∗ {(j,m′) | m R̂
{t′|t 6≤t′}
j m′}cj}

To allow framing on view-shifts (rule VSFrame in Section 2.3) we bake in
framing under certain stable frames. The frames in question depend on the
region index t ∈ RType. In particular, vt permits a single simultaneous update
of multiple regions with region types not greater than or equal to t, each justified
by a single action. Hence, we require that vt is closed under arbitrary frames
that are stable under a single simultaneous update of multiple regions with
region types not greater than or equal to t, each justified by a single action, i.e.,
R̂{t

′|t6≤t′}.

Support. In Section 2.2 we introduced specification logic assertions indep and
dep, to internalize a notion of region type support in the logic, to allow explicit
proofs of the absence of self-referential region assertions. Their meaning is defined
in terms of the following supp assertion, which asserts that p is supported by the
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set of region types A ∈ P(RType). Formally, suppA(p) asserts that p is closed
under arbitrary shared states that agree on all regions of type A (s|A = s′|A)
and arbitrary action models that are A equivalent (ς ≡A ς ′).

suppA(p)
def
= {i ∈ N | ∀j ≤ i. ∀(j, (l, s, ς)) ∈ p. ∀s′. ∀ς ′.

s|A = s′|A ∧ ς ≡A ς ′ ⇒ (j, (l, s′, ς ′)) ∈ p}
Intuitively, two action models are considered A-equivalent if they agree on the
regions of types in A (but they are allowed to differ on regions of types not in
A). An assertion p is then dependent on region type t ∈ RType if p is supported
by the set of region types greater than or equal to t, and independent if it is
supported by the set of region types not greater than or equal to t:

dept(p)
def
= supp{t′|t≤t′}(p) indept(p)

def
= supp{t′|t 6≤t′}(p)

Purity. To reason about state-independent protocols and nested view-shifts we
have introduced several types of purity; namely, state, protocol and permission
purity. Since our assertion logic is intuitionistic, we interpret purity as closure
under arbitrary changes to the state, protocols, and permissions, respectively. For

instance, pureprot(p)
def
= {i ∈ N | ∀j ≤ i. ∀(j, (l, s, ς)) ∈ p. ∀ς ′. (j, (l, s, ς ′)) ∈ p}.

Soundness. The main soundness theorem expresses that for any derivable
Hoare triple, {p}c̄{q}, if c̄ is executed with a local stack s as thread t, with a
global heap h that is in the erasure of some instrumented state in p(s), then, if
t (and any threads t may have forked) terminates, then the terminal heap h′ is
in the erasure of some instrumented state in q(s′), where s′ is the terminal stack
of t.

Theorem 1. If Γ ` (∆).{P}c̄{Q} then for all ϑ ∈ [[Γ ]], thread identifiers t ∈
TId, stacks s ∈ [[∆]], and heaps h ∈ b[[Γ ;∆ ` P : Prop]](ϑ, s)c, if

(h, {(t, s, c̄)})→ (h′, {(t, s′, skip)} ] T ′)

and T ′ is irreducible then h′ ∈ b[[Γ ;∆ ` Q : Prop]](ϑ, s′)c.

6 Conclusion and Future Work

We have proposed a new style of specification for thread-safe data structures
that allows the client to refine the specification with a usage protocol, in a
concurrent setting. We have shown how to apply it to the bag and concurrent
runner example. To realize this style of specification we have presented a new
higher-order separation logic with Concurrent Abstract Predicates, that sup-
ports state-independent higher-order protocols and synchronization of multiple
regions. We have also used the logic to specify and verify Joins, a sophisticated
library implemented using higher-order code and shared mutable state.

We have demonstrated that our logic and style of specification scales to
implementations of fine-grained concurrent data structures without helping [8].
Future work includes investigating concurrent data structures that use helping.
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A Proof rules

dept(⊥) dept(>)

t1 ≤ t2
dept2(P)

dept1(P)

op ∈ {∨,∧, ∗,⇒}
dept(P) dept(Q)

dept(P op Q)

dept1(P)

dept1ut2( P
r,t2,a

)

dept1(I)

dept1ut2(protocol(t2, I)) dept([α]rπ)

dept(P) Q ∈ {∃, ∀}
dept(Qx. P(x))

t1 6≤ t2 dept1(P) t2 6≤ t1

indept2(P)

t1 6≤ t2 indept1(P)

indept1( P
r,t2,a

)

Fig. 2. Proof rules for dependence and independence. To simplify the presentation we
also use indep and dep for the point-wise lifting of indep and dep to predicates.

B On the granularity of Actions

As mentioned in Section 2.3, to support synchronization of protocols we extend
CAP with simultaneous updates of multiple regions. This raises questions about
the granularity of actions. For instance, it seems natural that the following view-
shift should hold, by sequencing the α action followed by the β action:

xf 7→ 0
r,t,−
I
∗ [α]r1 ∗ [β]r1 v xf 7→ 2

r,t,−
I
∗ [α]r1 ∗ [β]r1

I(−) =

(
α : xf 7→ 0 xf 7→ 1

β : xf 7→ 1 xf 7→ 2

)

However, it is not clear whether the following view-shift should hold,

xf 7→ 0
r,t,−
I
∗ xg 7→ 0

r′,t′,−

J
∗ [α]r1 ∗ [β]r1 ∗ [η]r

′
1

v xf 7→ 2
r,t,−
I
∗ xg 7→ 2

r′,t′,−

J
∗ [α]r1 ∗ [β]r1 ∗ [η]r

′
1

(4)

J(−) =
(
η : xg 7→ 0 ∗ xf 7→ 0

r,t,−
 xg 7→ 2 ∗ xf 7→ 2

r,t,−)

as it requires a simultaneous update of two regions, r and r′, using two actions
on r and one action on r′. We have chosen a semantics that does not allow the
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pureprotocol(⊥) pureprotocol(>)

pureprotocol(P) pureprotocol(Q) op ∈ {∨,∧, ∗,⇒}
pureprotocol(P op Q)

∀x : X. pureprotocol(P(x))

pureprotocol(∃x : X. P(x))

∀x : X. pureprotocol(P(x))

pureprotocol(∀x : X. P(x))

pureprotocol(P)

pureprotocol( P
r,t,a

) pureprotocol([α]rπ) pureprotocol(x 7→ (∆).{P}{Q})

pureprotocol(x.f
π7→ v) pureprotocol(xf

π7→ v)

Fig. 3. pureprotocol proof rules

purestate(⊥) purestate(>)

purestate(P) purestate(Q) op ∈ {∨,∧, ∗,⇒}
purestate(P op Q)

∀x : X. purestate(P(x))

purestate(∃x : X. P(x))

∀x : X. purestate(P(x))

purestate(∀x : X. P(x))

purestate(protocol(t, I))

Fig. 4. purestate proof rules
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granularity of actions to differ when updating multiple regions. Thus, in our
logic, (4) does not hold. This is a choice; it simplifies stability proofs, but it
means that we must explicitly track which regions that may have been updated
by a view-shift. We thus index the view-shift relation with a region type t. The
indexed view-shift relation, vt, thus describes a single update that, in addition
to updating the local state, may update multiple shared regions with region
types not greater than or equal to t, where each update must be justified by a
single action. The indexed view-shift relation is thus not transitive.

C Proof of Bag specification

In the main text we showed how to derive the exclusive owner and shared bag
specification from the refineable bag specification. In this section we sketch how
to prove that a concurrent bag implementation satisfies the refinable specifica-
tion. In particular, we sketch a proof of a non-locking concurrent bag, imple-
mented using compare-and-swap.

Representation predicates. As mentioned in the introduction, the idea is
to share the concrete state of the concurrent bag using a shared region. To allow
the client to refine the specification, we store the abstract state of the concurrent
bag in a phantom field and let the client keep a half-permission to the phantom
field. The library protocol thus has to relate the concrete state of the concurrent
bag with its abstract state (i.e., a multiset of elements).

In our implementation, the bag is represented as a singly-linked list. An
abstract state given by a multiset of elements X is thus related to a concrete
state containing a singly-linked list with the elements of X. We can express this
relation between the concrete and abstract state as follows:

q(x)
def
= ∃h : Val. ∃l : seq Val. x.head 7→ h ∗ lstr(h, l) ∗ xcont

1/27−→ mem(l)

where lstr is the following list-representation predicate:

lstr(x, ε)
def
= x = null

lstr(x, v :: l)
def
= ∃y : Val. x.value 7→ v ∗ x.next 7→ y ∗ lstr(y, l)

and mem : seq Val → Pm(Val) returns the multiset of elements of the given
sequence. The bag predicate thus asserts that there exists a shared region con-
taining the concrete and abstract state of the bag, which is currently related by
q, and a protocol that enforces that the concrete and abstract state is always
related by q:

bag(t, x)
def
= ∃r : RId. ∃π ∈ Perm. ∃s : RType.

t ≤ s ∧ q(x)
r,s,x
∗ protocol(s, I) ∗ [Upd]rπ
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where I is the following parametric protocol:

I(x) = (Upd : q(x) q(x))

Note that the lstr representation predicate only asserts read-only ownership of
the underlying singly-linked list8. By only asserting read-only ownership of the
underlying singly-linked list, we ensure that once an element has been added to
the list, its next-field never changes; this is used in the correctness proof of Pop.
The bag predicate is trivially stable using the SA rule, and freely duplicable.

Proof outline.

using Interlocked;

internal class Node〈A〉 {
internal Node〈A〉 next;
internal A value;

public Node(A value) {
{this.next 7→ null ∗ this.value 7→ null}

this.value = value;
{this.next 7→ null ∗ this.value 7→ value}
}
}

public class Bag〈A〉 where A : class {
internal Node〈A〉 head;

public Bag() {
{this.head 7→ null ∗ thiscont 7→ ∅}
{∃l, x. this.head 7→ x ∗ thiscont

1/27−→ mem(l) ∗ lstr(x, l) ∗ thiscont
1/27−→ ∅}

{bag(t, this) ∗ thiscont
1/27−→ ∅}

}
In the bag constructor, we introduce a phantom field cont, a region type s, and
a region with region type s, initialized with ownership of the head field and a
half-permission to the cont field.

public void Push(A x) {
Node〈A〉 nHead; Node〈A〉 oHead; Node〈A〉 tmp;

{bag(t, this) ∗ P}
{t ≤ s ∗ q(this)

r,s,this

I
∗ [Upd]rπ ∗ P}

nHead = new Node〈A〉(x);

{t ≤ s ∗ q(this)
r,s,this

I
∗ [Upd]rπ ∗ P ∗ nHead.next 7→ ∗ nHead.value 7→ x}

8 We use x.f 7→ v as shorthand for ∃p ∈ Perm. x.f
p7→ v.
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do {
oHead = this.head;
nHead.next = oHead;

{t ≤ s ∗ q(this)
r,s,this

I
∗ [Upd]rπ ∗ P ∗ nHead.next 7→ oHead ∗ nHead.value 7→ x}

tmp = CompareExchange〈Node〈A〉〉(ref head, nHead, oHead);

{t ≤ s ∗ q(this)
r,s,this

I
∗ [Upd]rπ ∗ ((tmp = oHead ∗ Q) ∨

(tmp 6= oHead ∗ P ∗ nHead.next 7→ oHead ∗ nHead.value 7→ x))}
} while (tmp != oHead);

{t ≤ s ∗ q(this)
r,s,this

I
∗ [Upd]rπ ∗ Q}

{bag(t, this) ∗ Q}
}

The Push method allocates a new node and inserts it at the front of the list,
using compare-and-swap to atomically update the head field. The synchroniza-
tion point of this method, if it terminates, occurs when the compare-and-swap
succeeds. At this point, we transfer ownership of the newly allocated node to
the shared region, and use the client-provided view-shift to update the phantom
cont field (thus synchronizing with any protocols the client may have imposed
on the abstract state). To verify the atomic compare-and-swap, we use a proof
rule corresponding to VSNOpen, for “opening” the shared r region to perform
a nested atomic update (rule OpenA in the accompanying technical report).

public A Pop() {
Node〈A〉 oHead; Node〈A〉 nHead; Node〈A〉 tmp;
A res; bool done;

{bag(t, this) ∗ P}
done = false;

{bag(t, this) ∗ ((done = false ∗ P) ∨ (done = true ∗ Q(res)))}
while(!done) {

{bag(t, this) ∗ done = false ∗ P}
{t ≤ s ∗ q(this)

r,s,this

I
∗ [Upd]rπ ∗ done = false ∗ P}

oHead = this.head;

{t ≤ s ∗ q(this)
r,s,this

I
∗ [Upd]rπ ∗ done = false

∗ ((oHead = null ∗ Q(null)) ∨ (∃l. oHead 6= null ∗ lstr(oHead, l) ∗ P))}
if (oHead == null) {

{t ≤ s ∗ q(this)
r,s,this

I
∗ [Upd]rπ ∗ done = false ∗ Q(null)}

res = null;
done = true;

{bag(t, this) ∗ done = true ∗ Q(res)}
} else {

{∃l. t ≤ s ∗ q(this)
r,s,this

I
∗ [Upd]rπ ∗ done = false ∗ oHead 6= null ∗ lstr(oHead, l) ∗ P}
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{∃l. t ≤ s ∗ q(this)
r,s,this

I
∗ [Upd]rπ ∗ done = false

∗ oHead.next 7→ y ∗ oHead.value 7→ v ∗ lstr(y, l) ∗ P}
nHead = oHead.next;

{∃l. t ≤ s ∗ q(this)
r,s,this

I
∗ [Upd]rπ ∗ done = false

∗ oHead.next 7→ nHead ∗ oHead.value 7→ v ∗ lstr(nHead, l) ∗ P}
tmp = CompareExchange〈Node〈A〉〉(ref head, nHead, oHead);

{t ≤ s ∗ q(this)
r,s,this

I
∗ [Upd]rπ ∗ done = false

∗ ((tmp = oHead ∗ Q(v) ∗ oHead.value 7→ v) ∨ (tmp 6= oHead ∗ P))}
if (tmp == oHead) {

{t ≤ s ∗ q(this)
r,s,this

I
∗ [Upd]rπ ∗ done = false ∗ Q(v) ∗ oHead.value 7→ v}

res = oHead.value;
done = true;

{bag(t, this) ∗ done = true ∗ Q(res)}
} else {

{t ≤ s ∗ q(this)
r,s,this

I
∗ [Upd]rπ ∗ done = false ∗ P}

{bag(t, this) ∗ done = false ∗ P}
}
}
}

{bag(t, this) ∗ Q(res)}
return res;

{ret. bag(t, this) ∗ Q(ret)}
}
}

D Concurrent Runner

In this section we consider a more advanced example, which uses the concurrent
bag library to implement a simple library for parallelizing divide-and-conquer
algorithms. The library is inspired by Doug Lea’s Fork/Join framework [12].

The API for the library is given in Figure 5. The library consists of a runner
class for parallelizing executions of a delegate. The constructor takes as argu-
ment a delegate and the number of worker threads to create. Calling Fork on a
concurrent runner schedules the registered delegate for execution with the given
argument. Fork further returns a task representing the scheduled computation.
Calling Join on the returned task causes the caller to wait until the given task
has completed. While the caller is waiting, it turns into a worker thread, helping
to execute tasks from the underlying pool. Once the given task has completed,
Join returns the return-value of the terminated delegate.

Note that the runner constructor takes as argument a delegate, which itself
takes as argument a runner. This is to allow the delegate to schedule parallel
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public class Runner〈A,B〉
public Runner(Func〈Runner〈A,B〉,A,B〉 body, int n)
public Task〈A,B〉 Fork(A a)

public class Task〈A,B〉
public B Join()

Fig. 5. Concurrent Runner API

executions of itself on smaller sub-problems. In particular, when a scheduled task
with argument a on a runner r is chosen for execution, the delegate is called with
runner r and argument a. The delegate can thus schedule itself for execution by
calling Fork on its runner argument. We can thus implement a concurrent version
of a naive fibonacci divide-and-conquer computation as follows:

public int parFib(Runner〈int,int〉 f, int a) {
if (a < 25) return seqFib(a);
else {

Task〈int, int〉 t1 = f.Fork(a − 1);
Task〈int, int〉 t2 = f.Fork(a − 2);
return t1.Join() + t2.Join();
}
}

public int fib(int n, int a) {
return (new Runner〈int, int〉(parFib, n)).Fork(a).Join();
}
Here fib creates a new concurrent runner with n worker threads and schedules
parFib for execution with argument a. parFib itself computes the fibonacci
number of its argument a. When a is below a certain threshold, it uses a se-
quential fibonacci implementation, seqFib, to avoid the overhead of scheduling
a task. Otherwise, it schedules itself recursively to compute the desired result.

The reason we have chosen this API, which requires the client to choose a
fixed delegate upon constructing the runner, instead of letting Fork take the del-
egate as argument, is that this API better illustrates the challenges of verifying
the Joins library.

Specification. To verify the concurrent runner implementation, we first need
a specification. We want a specification that supports concurrent execution of
effectful delegates. The idea behind the concurrent runner specification is to let
the client pick a specification for the delegate, and require that the client proves
the delegate satisfies the given specification. To allow the delegate to schedule
new executions of itself for execution, we explicitly allow the delegate to assume
it is called with a concurrent runner with a delegate that satisfies the chosen
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specification. The delegate specification simply consists of a pre-condition P,
indexed by the argument, and a post-condition Q, indexed by the argument and
return value. The pre-condition describes the resources the delegate needs to
perform its task, while the post-condition describes the resources the delegate
transfers back to the owner of the task. We can express this formally as follows:

indept(P) indept(Q) stable(P) stable(Q) usip(P) usip(Q){
b 7→ (r,a). {runner(t,r,P,Q) ∗ P(a)}

{ret. runner(t,r,P,Q) ∗ Q(a, ret)}

}

new Runner(b,n)

{ret. runner(t, ret,P,Q)}

Upon creation of a new concurrent runner the client thus chooses a delegate
pre-condition P and post-condition Q. The client is then required to prove that
the supplied delegate satisfies the chosen specification. This is expressed using
a nested Hoare triple [17], which asserts that b refers to a delegate satisfying
the given specification. In the case of the concurrent runner, the delegate is
allowed to use the resources described by its pre-condition, P(a), and is required
to transfer back the resources described by its post-condition, Q(a, ret). The
runner(t,r,P,Q) assertion further allows the delegate to assume it is called with
a concurrent runner r with a delegate that satisfies the specification chosen by
the client.

To schedule the registered delegate for execution with argument a, the client
thus has to transfer the state needed by the delegate, P(a). When scheduling a
delegate, the client is given exclusive ownership of the returned task.

{runner(t, x,P,Q) ∗ P(arg)}x.Fork(arg){ret. task(ret, x,P,Q,arg)}

Ownership of a task gives the client the right to join the task, and take ownership
of the state returned by the scheduled computation.

{runner(t, y,P,Q) ∗ task(x, y,P,Q, a)}x.Join(){ret. Q(a, ret)}

While tasks have exclusive owners, the concurrent runner itself can be freely
shared, to allow multiple threads to schedule tasks concurrently.

runner(t, x,P,Q)⇔ runner(t, x,P,Q) ∗ runner(t, x,P,Q)

With this specification it is easy to show that parFib implements fibonacci.

Representation predicates. The concurrent runner library is implemented
using shared mutable state. In particular, each concurrent runner maintains
a bag of scheduled tasks, which is shared between each worker thread. Upon
creation of the concurrent runner, each worker thread enters an infinite loop,
in which they keep popping and running tasks from the bag. Tasks can be in
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one of two states, pending and executed. They start in the pending state and
transition to the executed state once they have been popped and executed.

To verify the implementation, we use the shared bag specification to share
the bag of tasks between each worker thread. We let each task own the resources
needed by the delegate to perform the given task (i.e., the resources described
by the delegate pre-condition P ). We can thus define the runner representation
predicate as follows:

runner(t, x,P,Q)
def
= ∃y, z : Val. ∃t1, t2 : RType.

t ≤ t1 ∧ t ≤ t2 ∧ t1 6≤ t2 ∧ t2 6≤ t1 ∧ usip(P) ∧ usip(Q)

∧ stable(P) ∧ stable(Q) ∧ indept(P) ∧ indept(Q)

∗ x.bag 7→ y ∗ x.body 7→ z ∗ protocol(t2, I(Q))

∗ bags(t1, y, λy : Val. isTask(t2, y, x,P,Q))

∗ .

(
z 7→ (r,a). {runner(t,r,P,Q) ∗ P(a)}

{ret. runner(t,r,P,Q) ∗ Q(a, ret)}

)

where I(Q) is the parametric protocol defined after the isTask predicate below.
Note that, since we explicitly allow the delegate to assume it is called with a
concurrent runner satisfying the chosen specification, the runner representation
predicate needs to refer to itself to specify the registered delegate. Hence, we
define runner by guarded recursion, as signaled by the use of the so-called later
operator, ..

The isTask(t, y, x,P,Q) representation predicate asserts that y refers to a task
in the pending state, and asserts ownership of the resources required to perform
the given task. Thus, when a worker thread pops a task from the shared bag, it
takes ownership of the resources needed to execute the delegate. Upon termina-
tion of the delegate, the resources produced by the delegate must be transferred
back to the owner of the task, upon joining the task. To achieve this, we asso-
ciate a shared region with each task, that owns the field containing the state of
the task. This allows us to impose a protocol on the task state, that forces the
worker thread to transfer the resources produced by the delegate to this shared
region, when changing the state of the task from pending to executed. Lastly, to
ensure only the owner of the task can take ownership of the resources, we give
the owner of the task exclusive ownership of the action required to do so. We
thus define isTask as follows:

isTask(t, x, y,P,Q)
def
= ∃r : RId. ∃a : Val.

x.runner 7→ y ∗ x.arg 7→ a ∗ P(a) ∗ protocol(t, I(Q))

∗ x.state 7→ 0 ∗ x.res 7→ r,t,(x,a) ∗ [Exec]r1 ∗ [SetRes]r1
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where I(Q) is the parametric protocol,

I(Q)(x, a) =




SetRes : x.state 7→ 0 ∗ x.res 7→ null  
∃r : Val. x.state 7→ 0 ∗ x.res 7→ r

Exec : ∃r : Val. x.state 7→ 0 ∗ x.res 7→ r  
∃r : Val. x.state 7→ 1 ∗ x.res 7→ r ∗ Q(a, r)

Join : ∃r : Val. x.state 7→ 1 ∗ x.res 7→ r ∗ Q(a, r)  
∃r : Val. x.state 7→ 1 ∗ x.res 7→ r

τ1 : ∃r : Val. x.state 7→ 0 ∗ x.res 7→ r  
∃r : Val. x.state 7→ 0 ∗ x.res 7→ r

τ2 : ∃r : Val. x.state 7→ 1 ∗ x.res 7→ r ∗ Q(a, r)  
∃r : Val. x.state 7→ 1 ∗ x.res 7→ r ∗ Q(a, r)




The owner of the isTask assertion thus owns P(a) and the full Exec action, to
change the state of the task from pending (0) to executed (1), by transferring
Q(a, r) to the shared region. Conversely, the owner of the task asserts full own-
ership of the Join action, allowing only the owner to grab Q(a, r), once the task
has been executed:

task(x, y,P,Q, a)
def
= ∃r : RId. ∃t : RType.

x.runner 7→ y ∗ x.arg 7→ a ∗ protocol(t, I(Q)) ∗ [Join]r1 ∗ [τ1]r1 ∗ [τ2]r1

∗ (x.state 7→ 0 ∗ x.res 7→ ) ∨
(∃r : Val. x.state 7→ 1 ∗ x.res 7→ r ∗ Q(a, r))

r,t,(x,a)

To ensure that the isTask predicate is expressible using state-independent proto-
cols, we use a parametric task protocol I(Q) and existentially quantify over the
task region type t2 in the runner predicate instead of the isTask predicate.

Stability. The isTask predicate is trivially stable under the Exec action, as it
asserts full ownership of Exec. Its region assertion is also trivially expressible
using state-independent protocols. It is thus also stable under the Join action,
by rule SA, as (x.state 7→ 0 ∗ ...) ∧ (x.state 7→ 1 ∗ ...) ⇒ ⊥. As isTask makes no
assertions about the value of the res field, it is also easily shown to be stable
under the SetRes, τ1 and τ2 actions, using rule SA.

Furthermore, the predicate λy : Val. isTask(t, x, y,P,Q) is uniformly express-
ible using state-independent protocols, for any fixed t, y, P and Q, as P is uni-
formly expressible using state-independent protocols. Stability of runner thus
follows easily from the stability of bags.

Lastly, task is trivially stable under the Join action, and by rewriting task
using the usip(Q) assumption, it is easily proven to be stable under the Exec,
SetRes, τ1, and τ2 actions, using the SA rule.
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Proof outline. In this section we sketch the proof of concurrent runner im-
plementation, in the form of a proof outline. To keep the size of the outline
manageable, we will not write out the assumptions about stability, indepen-
dence or expressibility using state-independent protocols on P and Q; nor will
we write out the assumptions about the ordering on region types t, t1 and t2,
when working with the runner predicate. Define Sdel as follows:

Sdel(t, b,P,Q)
def
= .

(
b 7→ (r,a). {runner(t,r,P,Q) ∗ P(a)}

{ret. runner(t,r,P,Q) ∗ Q(a, ret)}

)

public class Runner〈A,B〉 {
internal readonly Func〈Runner〈A,B〉,A,B〉 body;
internal readonly Bag〈Task〈A,B〉〉 bag;

public Runner(Func〈Runner〈A,B〉, A, B〉 body, int n) {
int i;

{body 7→ (r, a). {runner(t, r,P,Q) ∗ P(a)}{ret. runner(t, r,P,Q) ∗ Q(a, ret)}
∗ this.bag 7→ null ∗ this.body 7→ null}
this.bag = new Bag〈Task〈A,B〉〉();
this.body = body;

{Sdel(t, body,P,Q) ∗ this.bag 7→ b ∗ this.body 7→ body
∗ bags(t1, b, λy : Val. isTask(t2, y, x,P,Q))}

{Sdel(t, body,P,Q) ∗ this.bag 7→ b ∗ this.body 7→ body
∗ bags(t1, b, λy : Val. isTask(t2, y, x,P,Q)) ∗ protocol(t2, I(Q))}

{runner(t, ret,P,Q)}
i = 0;
while (i < n) {

{runner(t, ret,P,Q)}
{runner(t, ret,P,Q) ∗ runner(t, ret,P,Q)}

new Thread(runTasks).Start();
i++;

{runner(t, ret,P,Q)}
}

{runner(t, ret,P,Q)}
}

The proof of the runner constructor is fairly straightforward; since assertions are
downwards-closed in the step-index, we have P ⇒ .P, allowing us to “forget a
step”. The body and bag fields are never modified are their assignment in the
constructor. We can thus freely share read-only access to these fields. Further-
more, nested Hoare triples are freely duplicable, allowing us to duplicate the
runner assertion and transfer a runner assertion to each new worker thread. Note
that the runner constructor also allocates a new task region type t2 with the
parametric protocol I(Q).

public Task〈A,B〉 Fork(A arg) {
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{runner(t, this,P,Q) ∗ P(arg)}
{Sdel(t, body,P,Q) ∗ this.bag 7→ b ∗ this.body 7→ body
∗ bags(t1, b, λy : Val. isTask(t2, y, this,P,Q))
∗ protocol(t2, I(Q)) ∗ protocol(t2, I(Q))}
Task〈A,B〉 task = new Task〈A, B〉(this, arg);

{Sdel(t, body,P,Q) ∗ this.bag 7→ b ∗ this.body 7→ body
∗ bags(t1, b, λy : Val. isTask(t2, y, this,P,Q)) ∗ protocol(t2, I(Q))
∗ isTask(t2, task, this,P,Q) ∗ task(task, this,P,Q, arg)}
tasks.Push(task);

{Sdel(t, body,P,Q) ∗ this.bag 7→ b ∗ this.body 7→ body
∗ bags(t1, b, λy : Val. isTask(t2, y, this,P,Q))
∗ protocol(t2, I(Q)) ∗ task(task, this,P,Q, arg)}
return task;

{ret. task(ret, this,P,Q, arg)}
}

The Fork method constructs a new task, resulting in an isTask assertion – assert-
ing the task is concurrently pending and the resources and permission needed
to execute it – and a task assertion – asserting ownership of the task. The fork
method transfers the isTask assertion to the shared bag by calling Push and
returns the task assertion to the caller.

internal void runTasks() {
{runner(t, this,P,Q)}

while(true) {
{runner(t, this,P,Q)}

runTask();
{runner(t, this,P,Q)}
}

{runner(t, this,P,Q)}
}

internal void runTask() {
{runner(s, this,P,Q)}

Task〈A,B〉 t = tasks.Pop();
{s ≤ s1 ∗ runner(s, this,P,Q) ∗ (t = null ∨ isTask(s1, t, this,P,Q))}

if (t != null) {
{s ≤ s1 ∗ runner(s, this,P,Q) ∗ isTask(s1, t, this,P,Q)}

t.Run();
{runner(s, this,P,Q)}
}

{runner(s, this,P,Q)}
}
}

The runTasks and runTask methods are internal methods used by the worker
threads to pop and execute tasks. Their proofs are fairly obvious.
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public class Task〈A, B〉 {
internal readonly Runner〈A,B〉 runner;
internal readonly A arg;
internal int state = 0;
internal B res;

internal Task(Runner<A,B> runner, A arg) {
{P(arg) ∗ protocol(t, I(Q)) ∗ this.runner 7→ null
∗ this.arg 7→ null ∗ this.state = 0 ∗ this.res 7→ null}
this.runner = runner;
this.arg = arg;

{P(arg) ∗ protocol(t, I(Q)) ∗ this.runner 7→ runner
∗ this.arg 7→ arg ∗ this.state = 0 ∗ this.res 7→ null}

{isTask(t, this, runner,P,Q) ∗ task(this, runner,P,Q, arg)}
}

In the task constructor, we allocate a new region and transfer ownership of the
status and res field to this new region. We explicitly do not allocate a new region
type, but use the existing task region type t, allocated by the runner constructor.

internal void Run() {
Func〈Runner〈A,B〉,A,B〉 body;
Runner〈A,B〉 runner;
A arg; B tmp;

{t ≤ t2 ∗ runner(t, x,P,Q) ∗ isTask(t2, this, x,P,Q)}
runner = this.runner;
body = this.body;
arg = this.arg;

{t ≤ t2 ∗ runner(t, x,P,Q) ∗ P(arg) ∗ [SetRes]r1 ∗ [Exec]r1

∗ this.state 7→ 0 ∗ this.res 7→ null
r,t2,(this,arg) ∗ protocol(t2, I(Q))}

{t ≤ t2 ∗ runner(t, x,P,Q) ∗ Sdel(t, body,P,Q) ∗ P(arg) ∗ [SetRes]r1 ∗ [Exec]r1

∗ this.state 7→ 0 ∗ this.res 7→ null
r,t2,(this,arg) ∗ protocol(t2, I(Q))}

tmp = body(runner, arg);
{t ≤ t2 ∗ runner(t, x,P,Q) ∗ Sdel(t, body,P,Q) ∗ Q(arg, tmp) ∗ [SetRes]r1 ∗ [Exec]r1

∗ this.state 7→ 0 ∗ this.res 7→ null
r,t2,(this,arg) ∗ protocol(t2, I(Q))}

this.res = tmp;
{t ≤ t2 ∗ runner(t, x,P,Q) ∗ Sdel(t, body,P,Q) ∗ Q(arg, tmp) ∗ [SetRes]r1 ∗ [Exec]r1

∗ this.state 7→ 0 ∗ this.res 7→ tmp
r,t2,(this,arg) ∗ protocol(t2, I(Q))}

state = 1;
{runner(t, x,P,Q)}
}

To run a task, we first duplicate the nested Hoare triple assertion about the
runner delegate, Sdel(...). From the isTask assertion, we know the task is pending,
we own the resources necessary to execute the delegate and permission to change
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its status afterwards. Each of the atomic updates, this.res = tmp and status = 1,
requires a proof that the update satisfies the protocol. See the technical report
for proof rules and examples of how we prove such atomic updates.

public B Join() {
Runner〈A,B〉 runner; B tmp;

{runner(t, y,P,Q) ∗ task(this, y,P,Q, a)}
runner = this.runner;

{runner(t, runner,P,Q) ∗ task(this, runner,P,Q, a)}
while (state != 1) {

{runner(t, runner,P,Q) ∗ task(this, runner,P,Q, a)}
runner.runTask();

{runner(t, runner,P,Q) ∗ task(this, runner,P,Q, a)}
}

{ ∃r : Val. this.state 7→ 1 ∗ this.res 7→ r ∗ Q(a, r)
r,t2,(this,a)

∗ [Join]r1 ∗ [τ1]r1 ∗ [τ2]r1 ∗ protocol(t2, I(Q))}
tmp = this.res;

{Q(a, tmp)}
return tmp;

{ret. Q(a, ret)}
}
}

Finally, the Join method uses the τ action to continually test whether the task
has executed. If this test succeeds, from the definition of the task() predicate,
the client knows the shared region contains the resources produced by the task.
Using the Join action, the client can thus transfer these resources from the
shared region to its local state.

E Modular Reasoning for Deterministic Paral-
lelism

As mentioned in the introduction, Dodds et. al., recently proposed a higher-
order variant of Concurrent Abstract Predicates [6] in their paper on “Modular
Reasoning for Deterministic Parallelism”. In their paper, the authors define a
model for a higher-order variant of CAP and give proof rules for the specification
logic, but not the CAP parts. Stability and atomic updates are left as semantic
proof obligations in the model. The authors use this logic to verify a library for
deterministic parallelism. The proof explicitly uses higher-order protocols and
higher-order region assertions, without any restrictions to ensure the absence of
self-referential region or protocol assertions or that the higher-order protocols
are expressible using state-independent protocols. Instead of proving semantic
proofs of stability and atomic updates in their model, the authors give informal
proofs. This style of informal proof is unsound in the model proposed in [6]
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in the presence of some self-referential region or protocol assertions and some
state-dependent higher-order protocols.

To illustrate one stability counterexample in the presence of state-dependent
protocols, define P as follows:

P
def
= (x 7→ 0 ∗ ( y 7→ 0

r

I
∨ y 7→ 0

r

J
)) ∨ (x 7→ 1 ∗ y 7→ 0

r

J
)

where I and J are protocols with a single α action:

I
def
= (α : y 7→ 1 y 7→ 2) J

def
= (α : y 7→ 1 y 7→ 3)

Then P is stable, because both α actions require that y 7→ 1, which is impossible
when P holds. Note that this P is not expressible using state-independent pro-
tocols, as the protocol assertions cannot be “pulled outside” the disjunctions.
This P does not support modular stability proofs, due to the interpretation of
protocols, which ignores protocol assertions in protocols. In particular, define Q
as follows, where K is the protocol with a single α action:

Q
def
= emp ∨ P

r′

K
K

def
= (α : emp P)

Then Q is not stable in the model proposed in [6], as the interpretation of K
ignores any assertions P makes about protocols on r. Thus for P to be stable, it
would have to be closed under the action emp  x 7→ 1, which it is not, if the
protocol on region r is I.

In the presence of state-dependent higher-order protocols it is thus unsound
to treat propositional variables (referring to stable assertions) in protocols as
black boxes. This renders the informal stability argument for the box and fut
representation predicates defined in Figure 8 of [6] unsound.
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1 Mini C]

In this section we define the syntax and semantics of a subset of C], dubbed mini C]. In
addition to the basic object-oriented and imperative features of C], this subset includes
named delegates, fork concurrency, and compare-and-swap. We use a restricted syntax
to simplify the presentation of the proof system.

1.1 Syntax

The syntax of the language is given below. In the syntax we use the following metavari-
ables: f ranges over field names, m over method names, C over class names, x, y, z, o,
and n over program variables. We denote the set of field names by FName, the set of
method names by MName, the set of class names by CName, and the set of statements
by Stm. We use an overbar for sequences.

L ::= class C {Cf; M̄} Class definition
M ::= C m(Cx) {Cy; s̄; return z} Method definition
s ::= Statement

x = y assignment
x = null initialization
x = y.f field access
x.f = y field update
if (x == y) {s̄1} else {s̄2} conditional
x = new C() object creation
x = delegate y.m named delegate
x = y.m(z̄) method invocation
x = y(z̄) delegate application
fork(x) fork process
x = CAS(y.f, o, n) compare-and-swap

A new thread is forked by calling fork with a reference to a named delegate referring
to a method with no parameters. The language does not feature a join statement1, and
the return value of a forked delegate is simply ignored. Each thread has a private stack,
but all threads share a common heap.

The compare-and-swap statement, x = CAS(y.f, o, n), atomically compares the value
of field f of object y with the value of o, and updates it with the value of n, if they match.
In this case CAS also sets x to y; otherwise, CAS sets x to null.

The statement syntax does not include sequential composition. Instead we take the
body of a method to be a sequence of statements. We use ; for concatenation of statement
sequences. Hence, when we write s1; s2 for s1, s2 ∈ seq Stm, it does not implicitly follow
that s1 is non-empty.

1However, using compare-and-swap it is possible to code join-like functionality, and the logic is
sufficiently strong to reason about such an encoding.
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1.2 Operational Semantics

The operational semantics is a small-step interleaving semantics, giving a strong memory
model. The semantic domains used in the definition of the operational semantics are
defined below. We assume disjoint countably infinite sets of thread identifiers (TId),
object identifiers (OId), and closure identifiers (CId).

t ∈ TId thread identifiers
o ∈ OId object identifiers
c ∈ CId closure identifiers

v ∈ CVal ::= null | o | c C] values

OHeap def
= OId× FName fin

⇀ CVal object heap

THeap def
= OId fin

⇀ CName type heap

CHeap def
= CId fin

⇀ OId×MName closure heap

h ∈ Heap def
= OHeap× THeap× CHeap heap

l ∈ Stack def
= Var fin

⇀ CVal stack

TCStack def
= seq (Stm + (Stack× Var× Var)) thread call stack

x, y, z ∈ Thread def
= TId× Stack× TCStack thread

T ∈ TPool def
= {U ∈ Pfin(Thread) | utid(U)} thread pool

Prg def
= (Heap ] {�})× TPool program

Here utid expresses that thread identifiers are unique in a given thread pool:

utid(U) = ∀x, y ∈ U. x.t = y.t⇒ x = y for U ∈ Pfin(Thread)

We use x.t, x.l, and x.s to refer to the first, second and third component of a thread
x ∈ Thread. We use h.o, h.t and h.c to refer to the object, type and closure heap of a
heap h ∈ Heap.

A normal machine configuration consists of a heap and a pool of threads. The heap
is global and shared between every thread. Each thread consists of a thread identifier, a
private stack, and a call stack. Since we are using a small-step semantics, the call stack
includes explicit returns to restore the stack at the end of method calls. The call stack
is thus a sequence of programming language statements and method returns. Method
returns consists of the stack prior to the method call, the variable the method return
value should be assigned to, and the variable containing the method return value. We
use return (l, x, y) as notation for method returns. Formally, return (l, x, y) is notation
for inr(l, x, y) ∈ Stm+(Stack×Var×Var). We use stm(s) as notation for map(inl)(s) ∈
TCStack when s ∈ Stm. We use · for cons-ing on call stacks and ; for concatenation of
call stacks.
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A faulty machine configuration consists of a special fault heap, �, and a thread pool.
We use this faulty configuration to indicate memory errors, such as an attempt to access
a field that does not exist.

The presentation of the operational semantics is inspired by the Views framework
[3], and factors the small-step program evaluation relation, →, into a labelled thread
pool evaluation relation, a→, and an action semantics, [[−]]. The labelled thread pool
evaluation relation, a→, defines the local effects (i.e., stack effects) of executing a single
thread for one step of execution. The action semantics defines the global effects (i.e.,
heap effects) of executing an atomic action. These are related through the action label
(a) of the thread pool evaluation relation. This factorization simplifies the definition of
safety in Section 4. Due to this factorization, the labelled thread pool evaluation relation
non-deterministically “guesses” the right values when reading from and allocating on the
heap. For instance, the Read rule “guesses” the current value v of the given field in the
heap. The semantics of the read(−) action then enforces that the “guess” was correct,
through the Step rule.

Actions Act ∈ Sets

a ∈ Act ::= id | read(o, f, v) | write(o, f, v) | cas(o, f, vo, vn, r)
| oalloc(T, o) | calloc(o,m, c) | otype(o, T ) | ctype(c, T, o,m) | �

where c ∈ CId, o ∈ OId, f ∈ FName, v, vo, vn, r ∈ CVal, T ∈ CName, m ∈ MName.

Single-step semantics of non-forking statements

→ ⊆ (Stack× (Stm + (Stack× Var× Var)))× Act× (Stack× TCStack)

We use body(T,m) to refer to the body of method m from the T class. We use fields(T )
to refer to the names of the fields defined by class T . Naturally, both body and fields are
partial functions.

x, y ∈ dom(l)

(l, inl(x = y))
id−→ (l[x 7→ l(y)], ε)

Assign

x, y ∈ dom(l) l(x) ∈ OId v ∈ CVal

(l, inl(y = x.f))
read(l(x),f,v)−−−−−−−−→ (l[y 7→ v], ε)

Read

x, y ∈ dom(l) l(x) ∈ OId

(l, inl(x.f = y))
write(l(x),f,l(y))−−−−−−−−−−→ (l, ε)

Write
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x, y, o, n ∈ dom(l) l(y) ∈ OId v ∈ CVal

(l, inl(x = CAS(y.f, o, n)))
cas(l(y),f,l(o),l(n),v)−−−−−−−−−−−−→ (l[x 7→ v], ε)

CAS

x, y ∈ dom(l) l(x) = l(y)

(l, inl(if (x == y) {s1} else {s2})) id−→ (l, stm(s1))
IfT

x, y ∈ dom(l) l(x) 6= l(y)

(l, inl(if (x == y) {s1} else {s2})) id−→ (l, stm(s2))
IfF

x ∈ dom(l) o ∈ OId

(l, inl(x = new T ))
oalloc(T,o)−−−−−−→ (l[x 7→ o], ε)

CAlloc

x, y ∈ dom(l) l(y) ∈ OId c ∈ CId

(l, inl(x = delegate y.m))
calloc(l(y),m,c)−−−−−−−−−→ (l[x 7→ c], ε)

DAlloc

x, y, z̄ ∈ dom(l) l(y) ∈ OId T ∈ CName
body(T,m) = C m(Cx){Cy; s̄2; return r}

(l, inl(x = y.m(z̄)))
otype(l(y),T )−−−−−−−−→ ([this 7→ l(y), x̄ 7→ l(z̄), ȳ 7→ null], stm(̄s2); return (l, x, r))

MCall

x, y, z̄ ∈ dom(l) l(y) ∈ CId T ∈ CName o ∈ OId
body(T,m) = C m(Cx){Cy; s̄2; return r}

(l, inl(x = y(z̄)))
ctype(l(y),T,o,m)−−−−−−−−−−→ ([this 7→ o, x̄ 7→ l(z̄), ȳ 7→ null], stm(̄s2); return (l, x, r))

DCall

x ∈ dom(l2) y ∈ dom(l1)

(l1, return (l2, x, y))
id−→ (l2[x 7→ l1(y)], ε)

Return

All of the above rules require that the local stack variables involved exist on the stack
and contain values in the right semantic domains. For instance, the Read rule requires
that x and y exist on the stack and that x contains an object identifier. If these conditions
are not met, read should fault, as expressed by the following rule.

x 6∈ dom(l) ∨ y 6∈ dom(l) ∨ l(x) 6∈ OId

(l, inl(y = x.f))
�−→ (l, ε)

ReadF

The other fault cases are similar and have been omitted.
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Single-step semantics → ⊆ Thread× Act× TPool

(l, s)
a−→ (l′, s1)

(t, l, s · s2)
a−→ {(t, l′, s1; s2)}

seq

x ∈ dom(l) l(x) ∈ CId T ∈ CName o ∈ OId
body(T,m) = void m(){Cy; s̄2; return r} t1 6= t2

(t1, l, inl(fork(x)) · s1)
ctype(l(x),T,o,m)−−−−−−−−−−→ {(t1, l, s1), (t2, [this 7→ o, ȳ 7→ null], stm(̄s2))}

Fork

There is a corresponding fault rule for fork, in case the stack variables involved are
not defined or contain values in the wrong semantic domains or the delegate refers to a
method that does not exist.

Thread pool evaluation → ⊆ TPool× Act× TPool

x ∈ T x
a→ T ′ utid((T \ {x}) ∪ T ′)

T
a→ (T \ {x}) ∪ T ′

Single-step program evaluation → ⊆ Prg× Prg

T
a→ T ′ h′ ∈ [[a]](h)

(h, T )→ (h′, T ′)
Step

Multi-step program evaluation →n ⊆ Prg× Prg

(h, T )→0 (h, T )

(h, T )→ (h′′, T ′′) (h′′, T ′′)→n (h′, T ′)

(h, T )→n+1 (h′, T ′)

Irreducibility irr ∈ Thread→ 2, irr ∈ TPool→ 2

irr(x)
def
= ∀a ∈ Act. ∀T ∈ TPool. x 6 a−→ T for x ∈ Thread

irr(T )
def
= ∀x ∈ T. irr(x) for T ∈ TPool
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Action semantics [[−]] : Act× Heap→ P(Heap ] {�})

[[id]](h) = {h}
[[�]](h) = {�}

[[read(o, f, v)]](h) =





{h} if (o, f) ∈ dom(h) and h(o, f) = v

∅ if (o, f) ∈ dom(h) and h(o, f) 6= v

{�} if (o, f) 6∈ dom(h)

[[write(o, f, v)]](h) =

{
{h[(o, f) 7→ v]} if (o, f) ∈ dom(h)

{�} if (o, f) 6∈ dom(h)

[[cas(o, f, vo, vn, r)]](h) =





{h} if (o, f) ∈ dom(h), h(o, f) 6= vo and r = null
{h[(o, f) 7→ vn]} if (o, f) ∈ dom(h), h(o, f) = vo and r = o

{�} if (o, f) 6∈ dom(h)

[[oalloc(T, o)]](h) =





{h[(o, f̄) 7→ null, o 7→ T ]} if o /∈ dom(h) and fields(T ) = f̄

∅ if o ∈ dom(h)

{�} if fields(T ) is undefined

[[calloc(o,m, c)]](h) =

{
{h[c 7→ (o,m)]} if c /∈ dom(h)

∅ if c ∈ dom(h)

[[otype(o, T )]](h) =





{h} if o ∈ dom(ht) and ht(o) = T

∅ if o ∈ dom(ht) and ht(o) 6= T

{�} if o 6∈ dom(ht)

[[ctype(c, T, o,m)]](h) =





{h} if c ∈ dom(h), o ∈ dom(ht), h(c) = (o,m) and ht(o) = T

∅ if c ∈ dom(h), o ∈ dom(ht), and h(c) 6= (o,m) or ht(o) 6= T

{�} if c 6∈ dom(h) or o 6∈ dom(ht)

Action semantics [[−]] : Act× (Heap ] {�})→ P(Heap ] {�})

[[a]](x) =

{
[[a]](x) if x ∈ Heap
{�} if x = �
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Modifies set
mod1 : Stm→ P(Var)
mod : seq Stm→ P(Var)

mod1(x = y) = {x}
mod1(x = null) = {x}
mod1(x = y.f) = {x}

mod1(x = new C) = {x}
mod1(x = delegate y.m) = {x}
mod1(x = CAS(y.f, o, n)) = {x}

mod1(x = y.m(z̄)) = {x}
mod1(x = y(z̄)) = {x}
mod1(x.f = y) = ∅
mod1(fork(x)) = ∅

mod1(if (x == y) {s̄1} else {s̄2}) = mod(̄s1) ∪mod(̄s2)

mod(ε) = ∅
mod(s1; s̄2) = mod1(s1) ∪mod(̄s2)
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2 Logic

In this section we define a proof system for reasoning about mini C] programs. The proof
system consists of several components.

• A higher-order separation logic for reasoning about mutable data structures. The
main ingredient is a separating conjunction connective, written p ∗ q, which asserts
that p and q holds disjointly.

• A higher-order variant of concurrent abstract predicates for reasoning about shared
mutable data structures. Concurrent abstract predicates partitions the state into
regions with protocols to describe how the state in each region is allowed to evolve.
This allows local reasoning about shared mutable data structures, by providing an
abstraction of possible environment interference.

• A higher-order specification logic for modular reasoning about libraries. This allows
libraries to be specified abstractly, by existentially quantifying over representation
predicates in library specifications. Since representation predicates describe both
the state and possible interference, this allows specifications to abstract both the
internal data-representation and any internal parallelism.

• An embedding from assertions into specifications, to allow specifications to expose
axioms about representation predicates to clients. An embedding from specifica-
tions into assertions, to allow reasoning about delegates.

• A later modality and guarded recursion for reasoning about mutually recursive
methods and recursion through the store. The later modality internalizes a notion
of an execution step into the proof system. This allows reasoning about mutually
recursive methods, by induction on execution steps.

• Phantom fields to record an abstraction of the state and history of execution.

Combined into one proof system, these features allow us to reason abstractly about
libraries and clients that combine shared mutable data structures, concurrency, and re-
cursion through the store. For a realistic example that combines all these features, see
our work on the Joins library [6, 7].

2.1 Syntax

Conceptually, the program logic consists of two layers: an assertion logic for reasoning
about program states and a specification logic for reasoning about programs. Since
the language features delegates, we allow specifications to be embedded in assertions.
Likewise, to allow library specifications to expose axioms about representation predicates
to clients, we also allow assertions to be embedded in specifications. Formally, the proof
system thus contains a single term language, defined below, containing both specifications
and assertions.
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Terms M,N,P,Q,S,T,F ::= λx : τ. M | M N | x
| ⊥ | > | M ∨ N | M ∧M | M⇒ N
| ∀x : τ. P | ∃x : τ. P | M =τ N
| P ∗ Q | P−∗ Q | emp
| M.F 7→ N | MF 7→ N | M 7→ N.M | M:N
| C | m | f | null
| ⊥ | M ≤ N | M u N

| P
R,T,M | protocol(R,M,N) | [M]RN | p

| pureprotocol(P) | purestate(P) | pureperm(P)

| depT(P) | indepT(P) | stable(P) | stableRA(P)
| P v Q | P vT Q | (∆).{P}〈s〉{Q} | (∆).{P}〈s〉T{Q}
| P N,M Q | P N,M

(∆).〈s〉 Q
| .M | fixτ (M) | guardedτ (M)
| valid(P) | asn(S)
| M.N : (∆).{P}{x.Q} | M : (∆).{P}{x.Q}
| (∆).{P}s̄{Q}

where p is a fraction in (0, 1].

We use a type system to carve out specifications and assertions from this common
term language. The set of types is generated by the following grammar:

Types τ, σ ::= 1 | τ → σ | τ × σ | Prop | Spec
| Val | Class | Method | Field
| Perm | Action | Region | RType

and includes the standard type constructors for a simply-typed lambda calculus. Basic
types include the type of assertions, Prop, the type of specifications, Spec, and the type of
mathematical values, Val. The Val type includes all C] values and strings, and is closed
under formation of pairs, such that mathematical sequences and other mathematical
objects can be conveniently represented.2 In addition, basic types include Class, Method,
and Field, the types of C] classes, methods and fields, respectively. Finally, basic types
include the type of permissions, Perm, the type of action identifiers, Action, the type of
region identifiers, Region, and the type of region types, RType.

As a convention, we mostly use meta-variables P and Q for terms of type Prop, S and
T for terms of type Spec, C for terms of type Class, and F for terms of type Field. We
also use P and T for terms of type Perm and RType, respectively.

2We use a single universe Val for the universe of mathematical values to avoid also having to quantify
over types in the logic. We omit explicit encodings of pairs and write (v1, ..., vn) for tuples coded as
elements of Val.
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2.2 Typing

Terms are typed with the typing judgment Γ; ∆ ` M : τ , where Γ is a logical variable
context and ∆ a program variable context, and τ is a well-formed type. Well-formed
types are given by the ` τ : Type judgment. The type system thus consists of the
following judgments:

` τ : Type τ is a well-formed type
Γ; ∆ ` M : τ M is a well-formed term of type τ

where
Γ ::= Γ, x : τ | ε logical variable context
∆ ::= ∆, x : Val | ε program variable context

Specifications do not have any free program variables and are thus typed with an empty
program variable context, ∆. Hence, we use Γ ` M : τ as shorthand for Γ;− ` M : τ .
We write Γ,∆ for the concatenation of Γ and ∆. Thus, Γ,∆ ` M : τ is shorthand for
Γ,∆;− ` M : τ .

Well-formed types ` τ : Type

` τ : Type ` σ : Type
` τ × σ : Type

` τ : Type ` σ : Type
` τ → σ : Type

` 1 : Type ` Prop : Type ` Spec : Type

` Class : Type ` Method : Type ` Field : Type ` Val : Type

` Perm : Type ` Action : Type ` Region : Type ` RType : Type

Well-formed terms Γ; ∆ ` M : τ

Lambda calculus typing

` τ : Type (x : τ) ∈ Γ

Γ; ∆ ` x : τ

(x : Val) ∈ ∆

Γ; ∆ ` x : Val

Γ, x : τ ; ∆ ` M : σ

Γ; ∆ ` λx : τ. M : τ → σ

Γ; ∆ ` M : τ → σ Γ; ∆ ` M : τ

Γ; ∆ ` M N : σ

To distinguish variables in the logic and meta-logic, we mostly use sans-serif identi-
fiers, such as x in the logic, and italic identifiers, such as x in the meta-logic.
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Assertion typing

Γ; ∆ ` ⊥ : Prop Γ; ∆ ` > : Prop

Γ; ∆ ` P : Prop Γ; ∆ ` Q : Prop
Γ; ∆ ` P ∧ Q : Prop

Γ; ∆ ` P : Prop Γ; ∆ ` Q : Prop
Γ; ∆ ` P ∨ Q : Prop

Γ; ∆ ` P : Prop Γ; ∆ ` Q : Prop
Γ; ∆ ` P⇒ Q : Prop

Γ; ∆ ` M : τ Γ; ∆ ` N : τ

Γ; ∆ ` M =τ N : Prop

Γ, x : τ ; ∆ ` P : Prop
Γ; ∆ ` ∀x : τ. P : Prop

Γ, x : τ ; ∆ ` P : Prop
Γ; ∆ ` ∃x : τ. P : Prop

Separation logic typing

Γ; ∆ ` emp : Prop
Γ; ∆ ` P : Prop Γ; ∆ ` Q : Prop op ∈ {∗,−∗}

Γ; ∆ ` P op Q : Prop

C] typings

x ∈ ∆

Γ; ∆ ` x : Val Γ; ∆ ` null : Val

Γ; ∆ ` C : Class Γ; ∆ ` m : Method Γ; ∆ ` f : Field

Γ; ∆ ` M : Val Γ; ∆ ` C : Class
Γ; ∆ ` M:C : Prop

Γ; ∆ ` M : Val Γ; ∆ ` F : Field Γ; ∆ ` N : Val
Γ; ∆ ` M.F 7→ N : Prop

Γ; ∆ ` M : Val Γ; ∆ ` F : Field Γ; ∆ ` N : Val
Γ; ∆ ` MF 7→ N : Prop

Γ; ∆ ` M1 : Val Γ; ∆ ` N : Val Γ; ∆ ` M2 : Method
Γ; ∆ ` M1 7→ N.M2 : Prop
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Specification & assertion embedding

Γ ` S : Spec
Γ; ∆ ` asn(S) : Prop

Γ;− ` P : Prop
Γ ` valid(P) : Spec

The embedding of specifications into the assertion logic allows us to define nested Hoare
triples [4] for delegates, by embedding a specification of the named method the delegate
refers to.

x 7→ (∆).{P}{r.Q} def
= ∃y : Val. ∃m : Method. ∃C : Class.

x 7→ y.m ∗ y : C ∗ asn(C.m : (∆).{P}{r.Q})

This asserts that x refers to a named method m on object y, that object y has dynamic
type C, and that the method m from the C class satisfies the given Hoare specification.

Guarded recursion typing

Γ; ∆ ` M : (τ → Prop)→ (τ → Prop)

Γ; ∆ ` fixτ (M) : τ → Prop
Γ; ∆ ` P : Prop
Γ; ∆ ` .P : Prop

Γ; ∆ ` M : (τ → Prop)→ (τ → Prop)

Γ; ∆ ` guardedτ (M) : Spec

We omit the type subscript from fix and guarded when it is clear from the context.

Region types typing

Γ; ∆ ` ⊥ : RType
Γ; ∆ ` M : RType Γ; ∆ ` N : RType

Γ; ∆ ` M ≤ N : Prop

Γ; ∆ ` M : RType Γ; ∆ ` N : RType
Γ; ∆ ` M u N : RType

Concurrent abstract predicates typing

Γ; ∆ ` P : Prop Γ; ∆ ` R : Region Γ; ∆ ` T : RType Γ; ∆ ` A : Val

Γ; ∆ ` P
R,T,A

: Prop

Γ; ∆ ` A : Action Γ; ∆ ` R : Region Γ; ∆ ` P : Perm

Γ; ∆ ` [A]RP : Prop

120



Γ; ∆ ` R : Region Γ; ∆ ` Ip, Iq : Val× Action× Val→ Prop
Γ; ∆ ` protocol(R, Ip, Iq) : Prop

Formally, protocols are given by a pair of parameterized action pre- and post-conditions
Ip and Iq. Formally, these are given as predicates on a protocol argument of type Val, an
action identifier of type Action and a action parameter of type Val.

We use the following informal notation for a parametric protocol I with parameter a
and actions α1, ..., αn:

I(a) =




α1 : (x1, ..., xk). p1(a, x1, ..., xk) q1(a, x1, ..., xk)

...
αn : (x1, ..., xk). pn(a, x1, ..., xk) qn(a, x1, ..., xk)




Here (a, x1, ..., xk) is a context of logical variables of type Val, relating the action pre-
condition pi with the action post-condition qi. Formally, this corresponds to the protocol
given by the following action pre- and post-conditions:

Ip(a, α, y) =

{
pi(a, π1(y), ..., πk(y)) if α = αi

⊥ if ∀i. α 6= αi

Iq(a, α, y) =

{
qi(a, π1(y), ..., πk(y)) if α = αi

⊥ if ∀i. α 6= αi

where π denotes the assumed projection operation on Val. Furthermore, we use P
r,t,(a1,...,ak)

I
as shorthand for

P
r,t,〈a1,...,ak〉
Ip,Iq

where 〈−〉 denotes the assumed pairing operator on Val and Ip and Iq are the formal
action pre- and post-conditions induced by the parametric protocol I.

0 < p ≤ 1

Γ; ∆ ` p : Perm Γ; ∆ ` a : Action

Γ ` P : Prop Γ ` Q : Prop
Γ ` P v Q : Spec

Γ ` T : RType
Γ ` P : Prop Γ ` Q : Prop

Γ ` P vT Q : Spec

Γ; ∆ ` P : Prop Γ; ∆ ` Q : Prop
Γ; ∆ ` T : RType Γ; ∆ ` R : Region

Γ ` P R,T
(∆).〈s〉 Q : Spec

Γ ` P : Prop Γ ` Q : Prop
Γ ` T : RType Γ ` R : Region

Γ ` P R,T Q : Spec

121



Γ ` P : Prop
Γ ` stable(P) : Spec

Γ ` P : Prop Γ ` R : Region Γ ` A : Action

Γ ` stableRA(P) : Spec

Γ ` P : Prop Γ ` T : RType
Γ ` depT(P) : Spec

Γ ` P : Prop Γ ` T : RType
Γ ` indepT(P) : Spec

Γ ` P : Prop
Γ ` pureperm(P) : Spec

Γ ` P : Prop
Γ ` purestate(P) : Spec

Γ ` P : Prop
Γ ` pureprotocol(P) : Spec

Specification typings

Γ ` ⊥ : Spec Γ ` > : Spec
Γ ` M : τ Γ ` N : τ

Γ ` M =τ N : Spec

Γ ` S : Spec Γ ` T : Spec
Γ ` S ∧ T : Spec

Γ ` S : Spec Γ ` T : Spec
Γ ` S ∨ T : Spec

Γ ` S : Spec Γ ` T : Spec
Γ ` S⇒ T : Spec

Γ ` S : Spec
Γ ` .T : Spec

Γ, x : τ ` S : Spec
Γ ` ∀x : τ. S : Spec

Γ, x : τ ` S : Spec
Γ ` ∃x : τ. S : Spec

Hoare typings

The specification logic features five atomic propositions for Hoare-style partial correctness
reasoning. The three basic Hoare-assertions (HoareS, HoareM and HoareC) are for
specifying statements, methods and constructors, respectively. The proof rules for these
assertions (See Section 2.3.5) enforce stability of the pre- and post-condition.

Γ; ∆ ` P : Prop Γ; ∆ ` Q : Prop FV(s) ⊆ vars(∆)

Γ ` (∆).{P}s{Q} : Spec
HoareS

Γ ` C : Class Γ ` M : Method
Γ; ∆, this ` P : Prop Γ; ∆, this, x ` Q : Prop

Γ ` C.M : (∆).{P}{x.Q} HoareM
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Γ ` C : Class Γ ` P : Prop Γ; x ` Q : Prop
Γ ` C : {P}{x.Q} HoareC

The specification logic features another two Hoare-assertions for specifying atomic state-
ments. These rules specifically do not enforce stability of the pre- and post-condition.

Γ; ∆ ` P : Prop Γ; ∆ ` Q : Prop
Γ ` (∆).{P}〈s〉{Q} : Spec

Γ; ∆ ` P : Prop Γ; ∆ ` Q : Prop Γ ` T : RType

Γ ` (∆).{P}〈s〉T{Q} : Spec

2.3 Logics

The specification logic is given by the specification entailment judgment

Γ | Φ ` S,

where S is a specification and Φ is a specification context:

Φ ::= Φ, S | ε

such that Γ ` S : Spec and Γ ` T : Spec for each assumption T in Φ.

The assertion logic is given by the assertion entailment judgment

Γ; ∆ | Φ | P ` Q

where P and Q are assertions, such that Γ; ∆ ` P : Prop and Γ; ∆ ` Q : Prop and Γ `
T : Spec for each assumption T in Φ. The assertion entailment includes the specification
context Φ, to allow the use of assertion assumptions embedded in specifications.

2.3.1 Assertion logic

The assertion logic includes a standard intuitionistic higher-order separation logic.

Γ; ∆ | Φ | ⊥ ` P Γ; ∆ | Φ | P ` >

Γ; ∆ | Φ | P ∗ Q ` P

Γ; ∆ | Φ | P ` Q Γ; ∆ | Φ | Q ` R

Γ; ∆ | Φ | P ` R
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Γ; ∆ | Φ | P ` R Γ; ∆ | Φ | Q ` R

Γ; ∆ | Φ | P ∨ Q ` R

Γ; ∆ | Φ | P ∨ Q ` R

Γ; ∆ | Φ | P ` R

Γ; ∆ | Φ | P ∨ Q ` R

Γ; ∆ | Φ | Q ` R

Γ; ∆ | Φ | P ∧ Q ` R

Γ; ∆ | Φ | P ` Q⇒ R

Γ; ∆ | Φ | P ` Q⇒ R

Γ; ∆ | Φ | P ∧ Q ` R

Γ; ∆ | Φ | P ` Q−∗ R
Γ; ∆ | Φ | P ∗ Q ` R

Γ; ∆ | Φ | P ∗ Q ` R

Γ; ∆ | Φ | P ` Q−∗ R

Γ;− | Φ | > ` P

Γ | Φ ` valid(P)

Γ | Φ ` valid(P)

Γ;− | Φ | > ` P

2.3.2 Specification logic

The specification logic includes a standard intuitionistic higher-order logic.

Γ | Φ,⊥ ` S Γ | Φ ` >
Γ | Φ, .S ` S

Γ | Φ ` S

Γ | Φ ` S Γ | Φ ` T

Γ | Φ ` S ∧ T

Γ | Φ ` S

Γ | Φ ` S ∨ T

Γ | Φ ` T

Γ | Φ ` S ∨ T

Γ | Φ ` S ∧ T

Γ | Φ ` S

Γ | Φ ` S ∧ T

Γ | Φ ` T

Γ | Φ ` S1 ∨ S2 Γ | Φ, Si ` T

Γ | Φ ` T

Γ | Φ,S ` T

Γ | Φ ` S⇒ T

Γ | Φ ` S⇒ T Γ | Φ ` S

Γ | Φ ` T

Γ | Φ ` ∀x : τ. S Γ ` M : τ

Γ | Φ ` S[M/x]

Γ, x : τ | Φ ` S x 6∈ FV(Φ)

Γ | Φ ` ∀x : τ. S

Γ | Φ ` S[M/x] Γ ` M : τ

Γ | Φ ` ∃x : τ. S

Γ, x : τ | Φ,S ` T x 6∈ FV(Φ,T)

Γ | Φ,∃x : τ. S ` T

Γ | M : τ

Γ | Φ ` M =τ M

Γ | Φ ` M =τ N Γ | Φ ` S[M/x]

Γ | Φ ` S[N/x]

Γ | Φ, S ` (∆).{P}s̄{Q}
Γ | Φ ` (∆).{P ∗ asn(S)}s̄{Q} AsnI

Γ | Φ ` (∆).{P ∗ asn(S)}s̄{Q}
Γ | Φ, S ` (∆).{P}s̄{Q} AsnE
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2.3.3 Guarded recursion and later modalities

The logic features a fixed-point operator fix on predicate functionals, which defines a
fixed-point when applied to guarded predicate functionals.

Γ ` M : (τ → Prop)→ (τ → Prop) Γ | Φ ` guarded(M)

Γ | Φ ` ∀x : τ. valid(fix(M)(x)⇔ M(fix(M))(x))

Definitions are guarded using the later modality, .. To support modular guardedness
proofs, we build non-expansiveness into the interpretation. A definition is thus guarded,
if it can be expressed as a composition of functions where one function is guarded:

Γ ` M1,M2,M3 : (τ → Prop)→ (τ → Prop) Γ | Φ ` guarded(M2)

Γ | Φ ` guarded(M3 ◦M2 ◦M1)

where M ◦N = λP : τ → Prop. M(N(P )). Furthermore, recursive predicates are guarded
if all occurrences of the recursive predicate appears under . operators:

Γ ` M : (τ → Prop)→ (τ → Prop)

Γ | Φ ` guarded(λP : τ → Prop. M ◦ (λx : τ. . P(x)))
guardI

Γ ` M : (τ → Prop)→ (τ → Prop)

Γ | Φ ` guarded(λP : τ → Prop. λx : τ. . (M ◦ P)(x))
guardE

The later modality internalizes a notion of step in the logic. If the specification S holds
for i steps of execution, then .S holds for i+1 steps of execution. This allows us to reason
about mutually recursive methods and recursion through the store, using the Loeb rule,
which internalizes induction on steps in the model. See Section 3.1 for an example that
uses recursion through the store.

Γ | Φ, .S ` S

Γ | Φ ` S
Loeb

Γ | Φ,S ` .S

The .-operator commutes with existentials over inhabited types (and every type is cur-
rently inhabited), and over separating conjunction.

Γ, x : τ ` P : Prop inhabited(τ)

Γ | Φ ` valid(.(∃x : τ. P)⇔ (∃x : τ. . P))

Γ ` P : Prop Γ ` Q : Prop
Γ | Φ ` valid(.(P ∗ Q)⇔ (.P ∗ .Q))

2.3.4 Concurrent abstract predicates

The logic includes a large set of inference rules for reasoning about concurrent abstract
predicates in the logic, without resorting to the semantics. This logic suffices for verifying
realistic examples such as the spin-lock in Section 3.2 and the joins library (See [6] and
accompanying technical report [7]). The logic for reasoning about concurrent abstract
predicates consists of several parts:
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• A logic for reasoning about stability. The logic allows stability proofs to be de-
composed into stability under individual actions. The corner-stone of the stability
logic is rule StableA, which allows one to prove stability of a region assertion
containing nested (but not self-referential) region assertions.

• A logic for reasoning about accesses and updates to resources in a shared region.
The main rule of this logic is OpenA, which allows a shared region to be “opened”,
moving the shared resources into the local state.

• A logic for reasoning about view-shifts on shared regions. Like the logic for rea-
soning about accesses and updates, the main rule, OpenV, allows a shared region
to be “opened”.

• A logic for reasoning about whether an atomic access or update to the resources of
a shared region is allowed by the protocol on the given region.

• A logic for reasoning about whether a view-shift on the resources of a shared region
is allowed by the protocol on the given region.

• A logic for reasoning about the region support of an assertion, to prove the absence
of self-referential region and protocol assertions.

• Logics for reasoning about whether assertions makes assertions about protocols and
state, respectively, to prove that assertions are expressible using state-independent
protocols.

Stability

Stability is closed under all the standard assertion connectives and quantifiers.

Γ | Φ ` stable(⊥) Γ | Φ ` stable(>) Γ | Φ ` stable(emp)

Γ | Φ ` stable(P) Γ | Φ ` stable(Q) op ∈ {∨,∧,⇒, ∗}
Γ | Φ ` stable(P op Q)

Γ | Φ ` ∀x : τ. stable(P)

Γ | Φ ` stable(∀x : τ. P)

Γ | Φ ` ∀x : τ. stable(P)

Γ | Φ ` stable(∃x : τ. P)

Stability decomposes into stability under every action, considered individually.

Γ ` P : Prop Γ ` R : Region

Γ | Φ ` (∀α : Action. stableRα(P))⇔ stable(P)
StableD
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Here the stableRα(P) specification expresses that the assertion P is stable under arbitrary
actions on any region other than R and the α action on region R (See definition stabler,A

on page 182 for the formal semantics of stableRα). A proposition P is thus stable if there
exists an R such that stableRα(P) holds for all actions α.

An assertion is stable under actions that it owns (StableOwn). Furthermore, a
region assertion is stable under an action if it is closed under every instantiation of the
action that satisfies the pre-condition (StableClosed).

Γ ` P : Prop Γ ` R : Region
Γ ` T : RType Γ ` A : Val Γ ` Ip, Iq : Val× Action× Val→ Prop

Γ | Φ ` stableRα
(
P

R,T,A

Ip,Iq
∗ [α]R1

) StableOwn

Γ ` R : Region Γ ` T : RType Γ ` A : Val Γ ` α : Action
Γ ` P,Q : Prop Γ ` Ip, Iq : Val× Action× Val→ Prop

Γ | Φ ` pureprotocol(P) Γ | Φ ` purestate(Q)

Γ | Φ ` stable(P ∗ Q) Γ | Φ ` indepT(P)
Γ | Φ ` ∀x : Val. valid((Ip(A, α, x) ∧ P)⇒ ⊥) ∨ valid(Iq(A, α, x)⇒ P)

Γ | Φ ` stableRα
(
P

R,T,A

Ip,Iq
∗ Q
) StableClosed

Since the underlying model lacks support for general higher-order protocols, the Stable-
Closed rule requires that the region assertion can be expressed using state-independent
protocols. We say an assertion R can be expressed using state-independent protocols if
it can be written as S ∗ P where S makes no assertions about protocols and P makes no
assertions about the state:

sip = λR : Prop. ∃S,P : Prop. valid(R⇔ S ∗ P) ∧ pureprotocol(S) ∧ purestate(P)

Here pureprotocol(S) asserts that S is invariant under arbitrary changes to protocols and
purestate(P) asserts that P is invariant under arbitrary changes to the local and shared
state.

For assertions that are expressible using state-independent protocols, protocol asser-
tions can be “pulled outside” region assertions, to allow the StableClosed rule to be
used. In particular, if valid(R⇔ (S ∗ P)), pureprotocol(S) and purestate(P), then

R
R,T,A

Ip,Iq
⇔ S

R,T,A

Ip,Iq
∗ P

The left-hand side is thus stable if and only if the right-hand side is, and we can apply
the StableClosed rule to the right-hand side.

Γ | Φ, S ` stable(P) Γ;− | Φ | P ` asn(S)

Γ | Φ ` stable(P)
StableAsn

When defining higher-order representation predicates, we will often use specification as-
sertions to constrain instantiations of assertion and predicate arguments. The above rule
allows us to copy such embedded specifications from an assertion P into the specification
context, when proving stability of P.
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View-shifts and atomic updates

The following rules provide a small logic for reasoning about view-shifts and atomic
statements that update or access resources in shared regions. The cornerstone of the logic
are the rules for opening a region (rules OpenV and OpenA). Standard separation logic
rules for updating and accessing state requires local ownership of a resource justifying
this update/access. The OpenV and OpenA rules allow us to open a region, temporarily
turning the region’s shared resources into local resources, for the duration of a view-shift
and an atomic statement, respectively. This allows us to use standard separation logic
rules to reason about updates to these temporarily local resources.

To reason about an update to a shared region, both rules require a proof that the
update is possible (the last hypothesis of each rule) and a proof that the update is
permitted by the protocol of the given region (the second to last hypothesis of each
rule). The following subsection contains rules for proving that the update of the region
is permitted by the protocol. Both rules further require explicit proofs of the absence of
self-referential region and protocol assertions, using the indep assumptions.

Γ ` R : Region Γ ` T1,T2 : RType Γ ` A : Val
Γ ` P1,P2,Q1,Q2 : τ → Prop Γ | Φ ` T2 6≤ T1

Γ | Φ ` indepT1uT2
(P1) Γ | Φ ` indepT1uT2

(P2)
Γ | Φ ` indepT1uT2

(Q1) Γ | Φ ` indepT1uT2
(Q2)

Γ | Φ ` ∃x : τ. P1(x)
R,T1,A ∗ P2(x) R,T2 ∃x : τ. Q1(x)

R,T1,A ∗ Q2(x)

Γ;− | Φ | ∃x : τ. P1(x) ∗ P2(x) ` ∃x : τ. Q1(x) ∗ Q2(x)

Γ | Φ ` ∃x : τ. P1(x)
R,T1,A ∗ P2(x) vT2 ∃x : τ. Q1(x)

R,T1,A ∗ Q2(x)
OpenV

To support modular stability proofs, action permissions owned by shared regions cannot
be used to justify updates to shared regions. The following rule, which “opens” the
shared region R thus explicitly requires that P1 does not assert local ownership of any
permissions. This ensures that no actions from P1 are used to justify updates in the
nested atomic update.

Γ,∆ ` R : Region Γ,∆ ` T1,T2 : RType Γ,∆ ` A : Val
Γ,∆ ` P1,P2,Q1,Q2 : τ → Prop

Γ,∆ | Φ ` T2 6≤ T1 Γ,∆ | Φ ` pureperm(P1)

Γ,∆ | Φ ` indepT1uT2
(P1) Γ,∆ | Φ ` indepT1uT2

(P2)
Γ,∆ | Φ ` indepT1uT2

(Q1) Γ,∆ | Φ ` indepT1uT2
(Q2)

Γ | Φ ` ∃x : τ. P1(x)
R,T1,A ∗ P2(x) R,T2

(∆).〈s〉 ∃x : τ. Q1(x)
R,T1,A ∗ Q2(x)

Γ | Φ ` (∆).{∃x : τ. P1(x) ∗ P2(x)}〈s〉T1uT2{∃x : τ. Q1(x) ∗ Q2(x)}
Γ | Φ ` (∆).{∃x : τ. P1(x)

R,T1,A ∗ P2(x)}〈s〉T2{∃x : τ. Q1(x)
R,T1,A ∗ Q2(x)}

OpenA
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Γ,∆ ` T1,T2,T3 : RType
Γ,∆ | Φ ` (T1 = T2 = ⊥) ∨ (T1 = T3 = ⊥) ∨ (T2 = T3 = ⊥)

Γ,∆ | Φ ` P vT1 P′ Γ | Φ ` (∆).{P′}〈s〉T2{Q′} Γ,∆ | Φ ` Q′ vT3 Q

Γ | Φ ` (∆).{P}〈s〉T1uT2uT3{Q}
ATrans

Γ,∆ | Φ ` T1 ≤ T2

Γ | Φ ` (∆).{P}〈s〉T1{Q}
Γ | Φ ` (∆).{P}〈s〉T2{Q}

Γ | Φ ` T1 ≤ T2

Γ | Φ ` P vT1 Q

Γ | Φ ` P vT2 Q

The following two rules are used for creating a new region and allocating a new region
type, respectively. To allocate a new region type, we pick a region type T1 and a protocol,
and get back a new region type T2 greater than or equal to T2 with the given protocol.
To allocate a new region, we pick a region type and get back a region identifier and the
full action permission for any finite number of action identifiers. The region allocation
rule further allows us to transfer some initial resources, P, to the shared region.

Γ ` P : Prop Γ ` α1, ..., αn : Action Γ ` A : Val Γ ` T : RType

Γ | Φ ` P v⊥ ∃R : Region. P
R,T,A ∗ [α1]R1 ∗ · · · ∗ [αn]R1

Γ ` T1 : RType Γ ` Ip, Iq : Val× Action× Val→ Prop

Γ | Φ ` emp v⊥ ∃T2 : RType. T1 ≤ T2 ∗ protocol(T2, Ip, Iq)

Γ ` T : RType Γ ` P1,P2,Q : Prop
Γ | Φ ` P1 vT Q Γ | Φ ` P2 vT Q

Γ | Φ ` P1 ∨ P2 vT Q

Γ ` P,Q,R : Prop
Γ | Φ ` P v Q Γ | Φ ` stable(R)

Γ | Φ ` P ∗ R v Q ∗ R

Γ ` T : RType Γ ` P,Q,R : Prop
Γ | Φ ` P vT Q Γ | Φ ` stable(R)

Γ | Φ ` P ∗ R vT Q ∗ R

Γ;− | Φ | P ` Q

Γ | Φ ` P v Q

Γ ` T : RType Γ,∆ ` P,Q : Prop
Γ | Φ ` (∆).{P}〈s〉T{Q} atomic(s)

Γ | Φ ` (∆).{P}s{Q}

Γ ` T : RType
Γ ` P,Q : Prop
Γ | Φ ` P vT Q

Γ | Φ ` P v Q
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Γ ` T : RType
Γ | Φ ` (∆).{y.f 7→ M}

〈x = CAS(y.f, o, n)〉T
{(x = y ∗ o = M ∗ y.f 7→ n) ∨ (x = null ∗ o 6= M ∗ y.f 7→ M)}

ACas

Atomic statements

atomic(x = CAS(y.f, o, n)) atomic(x = y) atomic(x.f = y) atomic(x = y.f)

Atomic update & view-shift allowed

The proof system includes two specifications assertions,

P R,T Q and P R,T
(∆).〈s〉 Q,

for asserting that a given view-shift/atomic update is permitted according to the protocol
on region R. More formally, P R,T Q asserts that for any step at the instrumented level
from P to Q that corresponds to a no-op at the concrete level, the update to region R
is justified by the protocol on region R using an action owned by P. Furthermore, the
action used to justify the update only depends on regions with region types greater than
or equal to T. The meaning of P  R,T

(∆).〈s〉 Q is almost the same, as it asserts that any
step at the instrumented level from P to Q that corresponds to the atomic statement s at
the concrete level is permitted by region R. See the definition of p r,A

a q and p r,A q
on page 187 for the formal semantics of P R,T

(∆).〈s〉 Q and P R,T Q.
There are several things worth noting about these assertions; first, they explicitly

do not enforce stability of the pre- and post-condition. In fact, they allow case analysis
on disjunctions and existentials in both P and Q – even inside region assertions. These
predicates also satisfy a non-standard rule of consequence that allows weakening of both
the pre- and post-condition. From this non-standard rule of consequence, we can further
derive an asymmetric frame rule that allows arbitrary changes to the context.

Since most of the proof rules for these two predicates are the same, we write P R,T
J Q

where J is defined as follows,

J ::= (∆).〈s〉 |

to refer to both variants at the same time.

Γ ` R : Region Γ ` T1,T2 : RType
Γ | Φ ` P R,T1

J Q Γ | Φ ` T1 ≤ T2

Γ | Φ ` P R,T2

J Q
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Γ | Φ ` ⊥ R,T
J Q Γ | Φ ` P R,T

J ⊥

Γ | Φ ` P1  R,T
J Q

Γ | Φ ` P2  R,T
J Q

Γ | Φ ` P1 ∨ P2  R,T
J Q

Γ | Φ ` P R,T
J Q1

Γ | Φ ` P R,T
J Q2

Γ | Φ ` P R,T
J Q1 ∨ Q2

Γ | Φ ` P1
R2,T2,A ∗ R R1,T1

J Q

Γ | Φ ` P2
R2,T2,A ∗ R R1,T1

J Q

Γ | Φ ` P1 ∨ P2
R2,T2,A ∗ R R1,T1

J Q

Γ | Φ ` P R2,A
J Q1

R1,T1 ∗ R
Γ | Φ ` P R2,A

J Q2
R1,T1 ∗ R

Γ | Φ ` P R2,A
J Q1 ∨ Q2

R1,T1 ∗ R

Γ ` P,P′,Q,Q′ : Prop Γ ` R : Region Γ ` T : RType
Γ;− | Φ | P′ ` P Γ | Φ ` P R,T Q Γ;− | Φ | Q′ ` Q

Γ | Φ ` P′  R,T Q′

Γ,∆ ` P,P′,Q,Q′ : Prop Γ,∆ ` R : Region Γ,∆ ` T : RType
Γ,∆ | Φ | P′ ` P Γ | Φ ` P R,T

(∆).〈s〉 Q Γ,∆ | Φ | Q′ ` Q

Γ | Φ ` P′  R,T
(∆).〈s〉 Q

′

Any view-shift and atomic update on a region R corresponding to an instance of an
action of the protocol on R is permitted, given partial ownership of said action.

Γ,∆ ` Ip, Iq : Val× Action× Val→ Prop Γ,∆ ` α : Action
Γ,∆ ` A,M : Val

Γ,∆ ` P : Perm Γ,∆ ` R : Region Γ,∆ ` T1,T2 : RType
Γ,∆ | Φ ` indepT2

(Ip(A, α,M), Iq(A, α,M)) Γ,∆ | Φ ` T2 6≤ T1

Γ | Φ ` Ip(A, α,M)
R,T1,A

Ip,Iq
∗ [α]RP  

R,T2

(∆).〈s〉 Iq(A, α,M)
R,T1,A

Ip,Iq
∗ [α]RP

AUAct

Γ ` Ip, Iq : Val× Action× Val→ Prop Γ ` α : Action
Γ ` A,M : Val Γ ` P : Perm Γ ` R : Region Γ ` T1,T2 : RType

Γ | Φ ` indepT2
(Ip(A, α,M), Iq(A, α,M)) Γ | Φ ` T2 6≤ T1

Γ | Φ ` Ip(A, α,M)
R,T1,A

Ip,Iq
∗ [α]RP  R,T2 Iq(A, α,M)

R,T1,A

Ip,Iq
∗ [α]RP

VSAct

Since P  R,T
(∆).〈s〉 Q assert that any step at the instrumented level from P to Q that

corresponds to the atomic statement s at the concrete level is permitted by region R, we
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can also prove P R,T
(∆).〈s〉 Q by proving that there exists no such step at the instrumented

level. This is useful after performing case analysis to exclude impossible cases, as illus-
trated by the spin-lock example in Section 3.2. The following rule provides one way of
proving that no such step exists at the instrumented level, by providing a concrete field
(x.f) whose actual value after the update (M2) is distinct from the assumed value (M1).

Γ | Φ ` (∆).{P1 ∗ P2}〈s〉{Q3} Γ,∆ | Φ ` M1 6= M2

Γ,∆ | Φ | Q1 ∗ Q2 ` x.f 7→ M1 Γ,∆ | Φ | Q3 ` x.f 7→ M2

Γ | Φ ` P1
R,T1 ∗ P2  S,T2

(∆).〈s〉 Q1
R,T1 ∗ Q2

AUFalse1

Dependence

The depT assertion internalizes a notion of region support, allowing explicit reasoning
about the absence of self-referential region and protocol assertions. In particular, depT(P)
asserts that P is invariant under arbitrary changes to shared regions and protocols of
regions with region types not greater than or equal to T. Conversely, indepT(P) asserts
that P is invariant under arbitrary changes to shared regions and protocols of regions
with region types greater than or equal to T.

Γ ` T : RType
Γ | Φ ` depT(⊥)

Γ ` T : RType
Γ | Φ ` depT(>)

Γ ` S : Spec
Γ ` T : RType

Γ | Φ ` depT(asn(S))

Γ | Φ ` depT(P) Γ | Φ ` depT(Q) op ∈ {∧,∨, ∗,⇒}
Γ | Φ ` depT(P op Q)

Γ | Φ ` ∀x : τ. depT(P) Q ∈ {∀,∃}
Γ | Φ ` depT(Qx : τ. P)

Γ | Φ ` T1 ≤ T2

Γ | Φ ` depT2
(P)

Γ | Φ ` depT1
(P)

Γ | Φ ` depT1
(P)

Γ | Φ ` depT1uT2
( P

R,T2,A
)

Γ | Φ ` ∀x : Val× Action× Val. depT1
(Ip(x))

Γ | Φ ` ∀x : Val× Action× Val. depT1
(Iq(x))

Γ | Φ ` depT1uT2
(protocol(T2, Ip, Iq))

Γ | Φ ` depT1
(P) Γ | Φ ` T1 6≤ T2 Γ | Φ ` T2 6≤ T1

Γ | Φ ` indepT2
(P)

Γ | Φ ` T1 6≤ T2 Γ | Φ ` indepT1
(P)

Γ | Φ ` indepT1
( P

R,T2,A
)
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Protocol purity

The pureprotocol predicate expresses that a given assertion is invariant under arbitrary
changes to currently allocated protocols. The pureprotocol predicate is closed under all the
usual connectives.

Γ | Φ ` pureprotocol(⊥) Γ | Φ ` pureprotocol(>)

Γ | Φ ` pureprotocol(P) Γ | Φ ` pureprotocol(Q) op ∈ {∧,∨, ∗,⇒}
Γ | Φ ` pureprotocol(P op Q)

Γ | Φ ` ∀x : τ. pureprotocol(P) Q ∈ {∃,∀}
Γ | Φ ` pureprotocol(Qx : τ. P)

The pureprotocol predicate is also closed under the mini C] specific state assertions.

Γ ` M : Val
Γ ` F : Field Γ ` N : Val

Γ | Φ ` pureprotocol(M.F 7→ N)

Γ ` M : Val
Γ ` F : Field Γ ` N : Val
Γ | Φ ` pureprotocol(MF 7→ N)

Γ ` N1,N2 : Val Γ ` M : Method
Γ | Φ ` pureprotocol(N1 7→ N2.M)

Γ ` M : Val Γ ` C : Class
Γ | Φ ` pureprotocol(M : C)

It is also closed under region and action assertions, but not protocol assertions.

Γ ` P : Prop Γ ` R : Region Γ ` T : RType Γ ` A : Val
Γ | Φ ` pureprotocol(P)

Γ | Φ ` pureprotocol

(
P

R,T,A
)

Γ ` A : Action Γ ` R : Region Γ ` P : Perm

Γ | Φ ` pureprotocol([A]RP)

Lastly, pureprotocol is closed under arbitrary embedded specifications.

Γ ` S : Spec
Γ | Φ ` pureprotocol(asn(S))
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State purity

The purestate predicate expresses that a given assertion is invariant under arbitrary
changes to the current local and shared state. The purestate predicate is closed under
all the usual connectives.

Γ | Φ ` purestate(⊥) Γ | Φ ` purestate(>)

Γ | Φ ` purestate(P) Γ | Φ ` purestate(Q) op ∈ {∧,∨, ∗,⇒}
Γ | Φ ` purestate(P op Q)

Γ | Φ ` ∀x : τ. purestate(P) Q ∈ {∃,∀}
Γ | Φ ` purestate(Qx : τ. P)

It is also closed under protocol assertions, but not region or action assertions.

Γ ` T : RType Γ ` Ip, Iq : Val× Action× Val→ Prop
Γ | Φ ` purestate(protocol(T, Ip, Iq))

The purestate predicate is also closed under embeddings of arbitrary specifications.

Γ ` S : Spec
Γ | Φ ` purestate(asn(S))

Permission purity

The pureperm predicate asserts that a given assertion is invariant under arbitrary owner-
ship transfer of action permissions. It is closed under all the usual connectives.

Γ | Φ ` pureperm(⊥) Γ | Φ ` pureperm(>)

Γ | Φ ` pureperm(P) Γ | Φ ` pureperm(Q) op ∈ {∧,∨, ∗,⇒}
Γ | Φ ` pureperm(P op Q)

Γ | Φ ` ∀x : τ. pureperm(P) Q ∈ {∃,∀}
Γ | Φ ` pureperm(Qx : τ. P)

The pureperm predicate is also closed under the mini C] specific state assertions.

Γ ` M : Val
Γ ` F : Field Γ ` N : Val
Γ | Φ ` pureperm(M.F 7→ N)

Γ ` M : Val
Γ ` F : Field Γ ` N : Val
Γ | Φ ` pureperm(MF 7→ N)
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Γ ` N1,N2 : Val Γ ` M : Method
Γ | Φ ` pureperm(N1 7→ N2.M)

Γ ` M : Val Γ ` C : Class
Γ | Φ ` pureperm(M : C)

It is also closed under region and protocol assertions, but not action assertions.

Γ ` P : Prop Γ ` R : Region Γ ` T : RType Γ ` A : Val
Γ | Φ ` pureperm(P)

Γ | Φ ` pureperm

(
P

R,T,A
)

Γ ` T : RType Γ ` Ip, Iq : Val× Action× Val→ Prop
Γ | Φ ` pureperm(protocol(T, Ip, Iq))

Lastly, pureperm is closed under embeddings of arbitrary specifications.

Γ ` S : Spec
Γ | Φ ` pureperm(asn(S))

Phantom state

Hoare logics commonly feature auxiliary variables to record an abstraction of the state
and history of execution. Auxiliary variables are updated through standard assignments,
but they are not allowed to affect the flow of execution. Phantom fields provide a purely
logical notion of an auxiliary variable. Phantom fields are updated through view-shifts
in the logic, instead of assignments in code. Updating a phantom fields requires full
ownership of said field.

Γ ` M : Val Γ ` F : Field Γ ` N : Val
Γ | Φ ` MF 7→ _ v MF 7→ N

Like ordinary fields, phantom fields have a fixed value at any given point in time.

Γ ` M : Val Γ ` F : Field Γ ` N1,N2 : Val
Γ | Φ ` MF 7→ N1 ∧MF 7→ N2 ⇒ N1 =Val N2

Phantom fields are allocated in the proof rule for constructor verification.

2.3.5 Hoare logic

Structural rules

Γ | Φ ` (∆).{P}s{Q} Γ,∆ | Φ ` stable(R) mod(s) ∩ FV(R) = ∅
Γ | Φ ` (∆).{P ∗ R}s{Q ∗ R}
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Γ,∆ | Φ ` stable(P) ∧ stable(Q)
Γ,∆ | Φ ` P v P′ Γ | Φ ` (∆).{P′}s{Q′} Γ,∆ | Φ ` Q′ v Q

Γ | Φ ` (∆).{P}s{Q}

Γ | Φ ` (∆).{P}s1{Q} Γ | Φ ` (∆).{Q}s2{R}
Γ | Φ ` (∆).{P}s1; s2{R}

Primitive statements

Γ; ∆ ` P : Prop Γ,∆ | Φ ` stable(P) x, y ∈ vars(∆)

Γ | Φ ` (∆).{P[y/x]}x = y{P}

x, y ∈ vars(∆)

Γ | Φ ` (∆).{x.f 7→ _}x.f = y{x.f 7→ y}

Γ;− ` M : Val x, y ∈ vars(∆)

Γ | Φ ` (∆).{x.f 7→ M}y = x.f{x.f 7→ M ∧ y =Val M}

Γ, z̄, this, ret | Φ ` stable(P) ∧ stable(Q)
Γ | Φ ` .(C.m : (z̄).{P}{ret.Q}) Γ ` C : Class

Γ | Φ ` (∆).{P[ū/z̄, y/this] ∗ y : C}x = y.m(ū){Q[ū/z̄, y/this, x/ret]}

Γ, z̄, this, ret | Φ ` stable(P) ∧ stable(Q)
Γ | Φ ` .(C.m : (z̄).{P}{ret.Q}) Γ ` C : Class

Γ | Φ ` (∆).{P[ū/z̄, y/this] ∗ y 7→ z.m ∗ z : C}x = y(ū){Q[ū/z̄, y/this, x/ret]}

Γ, this, ret | Φ ` stable(P) ∧ stable(Q)
Γ | Φ ` .(C : {P}{ret.Q})

Γ | Φ ` (∆).{P}x = new C(){Q[x/ret]}

Γ ` C : Class x, y ∈ vars(∆)

Γ | Φ ` (∆).{emp}x = y.m{x 7→ y.m}

Γ, this, ret | Φ ` stable(P) ∧ stable(Q)
Γ | Φ ` .(C.m : (−).{P}{ret.Q}) Γ ` C : Class Γ ` m : Method

Γ | Φ ` (∆).{P[y/this] ∗ x 7→ y.m ∗ y : C}fork(x){emp}

Γ | Φ ` (∆).{P ∗ x =Val y}s̄1{Q} Γ | Φ ` (∆).{P ∗ x 6=Val y}s̄2{Q}
Γ | Φ ` (∆).{P}if (x = y) then s̄1 else s̄2{Q}
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Method verification

To verify a method, we verify the method body.

C ∈ CName m ∈ MName
body(C,m) = C m(∆){Cy; s; return r} vars(∆, this) ∩mod(s) = ∅

Γ; ∆, this ` P : Prop Γ; ∆, this, ret ` Q : Prop
Γ | Φ ` (∆, ȳ, this).{P ∗ this : C}s{Q[r/ret]}

Γ | Φ ` C.m : (∆).{P}{ret.Q}

Mini C] lacks constructor bodies. To allocate a phantom field we require that the given
field does not already exist. Constructors are thus mainly useful for allocating phantom
fields, as objects cannot have phantom fields before they have been allocated (See defini-
tion of erasure on page 169 for the formal semantics). The constructor verification rule
thus allows the user to introduce an arbitrary (finite) number of phantom fields on the
newly created object.

C ∈ CName fields(C) = f̄ Γ; this ` P : Prop Γ; this, ret ` Q : Prop
Γ | Φ ` (ȳ, this).{P ∗ this.̄f 7→ null ∗ this_ 7→ _ ∗ this : C}skip{Q[this/ret]}

Γ | Φ ` C : {P}{ret.Q}
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3 Examples

In this section we present two examples to illustrate how to use the proof system. The first
example illustrates reasoning about recursion through the store using guarded recursion.
The second example illustrates higher-order concurrent abstract predicates using a spin-
lock.

3.1 Recursion through the store

To illustrate how the embedding of specifications in assertions combined with guarded
recursion allows us to reason about recursion through the store, consider the following
program.

using System;

class NatRec {
private Func <NatRec , int , int > r = null;

public NatRec(Func <NatRec , int , int > r) {
this.r = r;

}

public int comp(int n) {
return r(this , n);

}
}

class Factorial {
private int f(NatRec r, int n) {

if (n == 0) return 1; else return n * r.comp (n-1);
}

public static void fac(int m) {
NatRec fac = new NatRec(f);
return fac.comp(m);

}
}

This program implements a factorial computation using recursion through the store.
In particular, the NatRec constructor takes as argument a delegate that itself takes as
argument a NatRec instance and an integer, and returns an integer. When this delegate is
invoked in the comp method, NatRec calls the delegate with a reference to itself, allowing
the delegate to recursively call itself through the comp method. Since the factorial client
explicitly exploits this behavior of the NatRec class, we thus have to give a NatRec
specification that explicitly allows the client delegate to call the comp method on its
NatRec argument, and that this recursive call returns the factorial of its argument.

To specify NatRec, we require the client to choose a function on natural numbers
(f : N → N), representing the intended computation. The NatRec constructor then
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requires the client to provide a delegate that implements f , assuming that calling comp
on its NatRec argument, implements f . In this case, comp implements f . We can thus
specify NatRec as follows.

SNatRec
def
= ∀f ∈ N→ N. ∃rec : Val→ Prop.

NatRec : (r).{Idel(rec, f, r)}{rec(this)} ∧
NatRec.comp : (n).{rec(this)}{ret. rec(this) ∧ ret = f(n)}

where Idel : (Val→ Prop)× (N→ N)× Val→ Prop is defined as

Idel(rec, f, y)
def
= y 7→ (x, n).{rec(x)}{ret. rec(x) ∗ ret = f(n)}

Lemma 1.
− | − ` SNatRec

Proof.

• suppose f : N→ N

• define rec′ : (Val→ Prop)→ (Val→ Prop) as the following functional

rec′(p)(x)
def
= ∃y : Val. x.r 7→ y ∗ .Idel(p, f, y)

• define rec as the fixed-point of rec′

rec
def
= fix(rec′)

• since p is guarded in rec′, we have that

rec(x)⇔ ∃y : Val. x.r 7→ y ∗ .Idel(p, f, y)

• to prove the constructor we thus need to “forget a step”

public NatRec(Func <NatRec , int , int > r) {
{this.r 7→ null ∗ Idel(rec, f, r)}
{this.r 7→ null ∗ .Idel(rec, f, r)}

this.r = r;
{this.r 7→ r ∗ .Idel(rec, f, r)}
{rec(this)}

}

• and the proof of comp is similarly straight-forward

public int comp(int n) {
{rec(this)}

Func <NatRec , int , int > y; int z;
{rec(this)}
{∃y : Val. this.r 7→ y ∗ .Idel(rec, f, y)}

139



y = this.r;
{this.r 7→ y ∗ .Idel(rec, f, y)}
{this.r 7→ y ∗ .Idel(rec, f, y) ∗ .Idel(rec, f, y)}
{rec(this) ∗ .Idel(rec, f, y)}
{rec(this) ∗ .f 7→ (x, n).{rec(x)}{ret. rec(x) ∗ ret =N f(n)}}

z = f(this , n);
{rec(this) ∗ z =N f(n)}

return z;
{rec(this) ∗ ret =N f(n)}

}

Lemma 2.

− | SNatRec ` Factorial.fac : (n).{emp}{ret = n!}

Proof.

• Pick f to be ! : N→ N in SNatRec

• Then we first need to show that

Factorial.f : (x, n).{rec(x)}{rec(x) ∗ ret = n!}

which follows by a straight-foward proof:

private int f(NatRec x, int n) {
int m;
{rec(x)}

if (n == 0)
{rec(x) ∗ n = 0}

m = 1;
{rec(x) ∗m = n!}

else {
{rec(x)}

m = x.comp(n-1);
{rec(x) ∗m = (n− 1)!}

m = n * m;
{rec(x) ∗m = n!}

}
{rec(x) ∗m = n!}

return m;
{ret. rec(x) ∗ ret = n!}

}

• Now, we can embed this specification for f to derive the desired fac specification:
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public static void fac(int n) {
Func <NatRec , int , int > g; NatRec fac; int m;
{emp}

g = this.f;
{g 7→ (x, n).{rec(x)}{rec(x) ∗ ret = n!}

fac = new NatRec(g);
{rec(fac)}

m = fac.comp(n);
{rec(fac) ∗m = n!}

return m;
{ret. ret = n!}

}

3.2 Spin lock

To illustrate the use of higher-order concurrent abstract predicates, consider the following
spin-lock.

class Lock {
private int locked = 0;

public void Acquire() {
x = CAS(this.locked, 0, 1);
if(x != null)
Acquire();

}

public void Release() {
locked = 0;

}
}

It uses the private field locked to maintain the current state of the lock (0 for unlocked,
1 for locked) and a compare-and-swap to atomically acquire the lock.

The standard separation logic specification of a lock, associates a resource invariant
R with each lock, which describes the resources protected by the lock. The resource
invariant is thus transferred to the client upon acquiring the lock, and transferred back
upon releasing the lock. Since the resource invariant R might itself assert ownership of
shared resources using CAP, we require that R is stable, that it is independent of the
lock region type (picked by the client), and that it is expressible using state-independent
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protocols:

SLock = ∃islock, locked : RType× Prop× Val→ Prop.
∀t ∈ RType. ∀R : Prop. indept(R) ∧ sip(R) ∧ stable(R) ⇒

new Lock() : (-). {R} {ret. ∃s : RType. isLock(s,R, ret) ∗ t ≤ s}
Lock.Acquire : (-). {isLock(t,R, this)} {locked(t,R, this) ∗ R}
Lock.Release : (-). {locked(t,R, this) ∗ R} {isLock(t,R, this)}
∀x : Val. valid(isLock(t,R, x)⇔ isLock(t,R, x) ∗ isLock(t,R, x)) ∧

stable(isLock(t,R, x)) ∧ stable(locked(t,R, x))

The isLock(t,R, x) predicate asserts that x refers to a lock with resource invariant R. The
isLock(−) predicate is freely duplicable, allowing multiple clients to use the same lock.
Likewise, the locked(t,R, x) predicate asserts that x refers to a locked lock with resource
invariant R, and the permission to unlock it; locked(−) is thus not duplicable.

Lemma 3.

− | − ` SLock

Proof.

• Define the representation predicates isLock(−) and locked(−) as follows

isLock(t,R, x)
def
=

∃r : Region. ∃π : Perm. asn(stable(R) ∧ indept(R) ∧ sip(R))

∗ (x.locked 7→ 0 ∗ R ∗ [Unlock]r1) ∨ x.locked 7→ 1
r,t,(x,r)

I(R)
∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ

locked(t,R, x)
def
=

∃r : Region. ∃π : Perm. asn(stable(R) ∧ indept(R) ∧ sip(R))

∗ x.locked 7→ 1
r,t,(x,r)

I(R) ∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ ∗ [Unlock]r1

where I is the parametric protocol:

I(R)(x, r)
def
=




Lock : x.locked 7→ 0 ∗ R ∗ [Unlock]r1  x.locked 7→ 1

Unlock : x.locked 7→ 1 x.locked 7→ 0 ∗ R ∗ [Unlock]r1

[τ1] : x.locked 7→ 0 ∗ R ∗ [Unlock]r1  x.locked 7→ 0 ∗ R ∗ [Unlock]r1

[τ2] : x.locked 7→ 1 x.locked 7→ 1




• Next, we have to prove the representation predicates stable; we sketch the proof
for isLock(−); the proof for locked(−) is simpler. To prove isLock(−) stable, first
we apply rule StableAsn to extract the embedded specification assumptions from
isLock(−) about the resource invariant. It thus suffices to prove,

t : RType,R : Prop, x : Val | stable(R), indept(R), sip(R) ` stable(isLock(t,R, x))

142



From the sip(R) assumption, there exists S,P : Prop such that pureprotocol(S),
purestate(P) and valid(R ⇔ (S ∗ P)). We can use this decomposition of R into S
and P to pull out the region-assertions of R from the shared region in isLock(−).
That is, in the given context,

(x.locked 7→ 0 ∗ R ∗ [Unlock]r1) ∨ x.locked 7→ 1
r,t,(x,r)

I(R)
⇔

(x.locked 7→ 0 ∗ S ∗ [Unlock]r1) ∨ x.locked 7→ 1
r,t,(x,r)

I(R)
∗ P

Stability of isLock(−) thus reduces to,

Γ | Φ ` stable( (x.locked 7→ 0 ∗ S ∗ [Unlock]r1) ∨ x.locked 7→ 1
r,t,(x,r)

I(R)
∗ P)

where

Γ = t : RType,R,S,P : Prop, x : Val, r : Region, π : Perm
Φ = stable(S ∗ P), indept(S ∗ P), pureprotocol(S), purestate(P), valid(R⇔ S ∗ P)

By StableD this decomposes into stability under every action. We prove stability
under the Lock and Unlock actions, the remaining actions are similar. We thus
have to show that,

Γ | Φ ` stablerLock( (x.locked 7→ 0 ∗ S ∗ [Unlock]r1) ∨ x.locked 7→ 1
r,t,(x,r)

I(R)
∗ P)

and

Γ | Φ ` stablerUnlock( (x.locked 7→ 0 ∗ S ∗ [Unlock]r1) ∨ x.locked 7→ 1
r,t,(x,r)

I(R)
∗ P)

To apply the StableClosed rule we need to prove that,

Γ | Φ ` pureprotocol((x.locked 7→ 0 ∗ S ∗ [Unlock]r1) ∨ x.locked 7→ 1)

Γ | Φ ` purestate(P)

Γ | Φ ` stable(((x.locked 7→ 0 ∗ S ∗ [Unlock]r1) ∨ x.locked 7→ 1) ∗ P)

Γ | Φ ` indept(((x.locked 7→ 0 ∗ S ∗ [Unlock]r1) ∨ x.locked 7→ 1) ∗ P)

All of these follow fairly easily from the assumptions in Φ. Stability under the
Lock action thus reduces to

Γ | Φ ` valid(((x.locked 7→ 0 ∗ R ∗ [Unlock]r1) ∧
((x.locked 7→ 0 ∗ S ∗ [Unlock]r1) ∨ x.locked 7→ 1))⇒ ⊥) ∨

valid(x.locked 7→ 1⇒ ((x.locked 7→ 0 ∗ S ∗ [Unlock]r1) ∨ x.locked 7→ 1))
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and stability under the Unlock action reduces to

Γ | Φ ` valid(((x.locked 7→ 0 ∗ R ∗ [Unlock]r1) ∧
((x.locked 7→ 0 ∗ S ∗ [Unlock]r1) ∨ x.locked 7→ 1))⇒ ⊥) ∨

valid((x.locked 7→ 0 ∗ R ∗ [Unlock]r1) ⇒
((x.locked 7→ 0 ∗ S ∗ [Unlock]r1) ∨ x.locked 7→ 1))

In both cases we prove the second disjunct. The first obligation is trivial. The
second obligation follows from the assumption that valid(R⇔ S ∗ P).

• Next, we have to verify the lock methods. Below we give a rough proof-sketch of
Lock.Acquire. Formally, we first use the Loeb rule to perform Löb induction, to
reason about the recursive call.

public void Acquire () {
{isLock(t,R, this)}
{ (this.locked 7→ 0 ∗ R ∗ [Unlock]r1) ∨ this.locked 7→ 1

r,t,(this,r)

I(R)

∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ}
x = CAS(this.locked , 0, 1);

{(x = this ∗ this.locked 7→ 1
r,t,(this,r)

I(R)
∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ ∗ [Unlock]r1 ∗ R) ∨

(x = null ∗ this.locked 7→ 0 ∗ R ∗ [Unlock]r1
r,t,(this,r)

I(R)
∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ)}

{(x = this ∗ this.locked 7→ 1
r,t,(this,r)

I(R)
∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ ∗ [Unlock]r1 ∗ R) ∨

(x = null ∗ (this.locked 7→ 0 ∗ R ∗ [Unlock]r1) ∨ this.locked 7→ 1
r,t,(this,r)

I(R)

∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ)}
if(x == null) {

{ (this.locked 7→ 0 ∗ R ∗ [Unlock]r1) ∨ this.locked 7→ 1
r,t,(this,r)

I(R)
∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ}

{isLock(t,R, this)}
Acquire ();
{locked(t,R, this) ∗ R}

} else {

{ this.locked 7→ 1
r,t,(this,r)

I(R)
∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ ∗ [Unlock]r1 ∗ R}

{locked(t,R, this) ∗ R}
}
{locked(t,R, this) ∗ R}

}

The main step is the atomic compare-and-swap which accesses the locked field,
which is owned by the shared lock region. Note that the immediate post-condition
of the compare-and-swap is not stable. In particular, if the compare-and-swap fails,
then in the instant the compare-and-swap fails, the lock is already locked. However,
the owner of the lock is free to unlock the lock, hence it is not stable to assert the
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lock is locked. We thus immediately apply the rule of consequence, to weaken the
post-condition to something that is stable.

The next step is thus to verify the atomic update of the shared region:

(x). { (this.locked 7→ 0 ∗ R ∗ [Unlock]r1) ∨ this.locked 7→ 1
r,t,(this,r)

I(R)
∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ}

〈x = CAS(this.locked, 0, 1)〉




(x = this ∗ this.locked 7→ 1
r,t,(this,r)

I(R) ∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ ∗ [Unlock]r1 ∗ R) ∨

(x = null ∗ this.locked 7→ 0 ∗ R ∗ [Unlock]r1
r,t,(this,r)

I(R)
∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ)





By rule OpenA, this reduces to proving that the compare-and-swap performs the
state update on the shared region:

(x). {((this.locked 7→ 0 ∗ R ∗ [Unlock]r1) ∨ this.locked 7→ 1) ∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ}
〈x = CAS(this.locked, 0, 1)〉t

{
(x = this ∗ this.locked 7→ 1 ∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ ∗ [Unlock]r1 ∗ R) ∨
(x = null ∗ this.locked 7→ 0 ∗ R ∗ [Unlock]r1 ∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ)

}

and that this update is allowed:

(this.locked 7→ 0 ∗ R ∗ [Unlock]r1) ∨ this.locked 7→ 1
r,t,(this,r)

I(R)
∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ

 r,t
(x).〈x=CAS(this.locked,0,1)〉

(x = this ∗ this.locked 7→ 1
r,t,(this,r)

I(R) ∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ ∗ [Unlock]r1 ∗ R) ∨

(x = null ∗ this.locked 7→ 0 ∗ R ∗ [Unlock]r1
r,t,(this,r)

I(R)
∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ)

The first proof obligation follows by a fairly standard separation logic proof (us-
ing rule ACas). To prove that the update is allowed, it suffices (by the rule of
consequence) to prove,

(this.locked 7→ 0 ∗ R ∗ [Unlock]r1) ∨ this.locked 7→ 1
r,t,(this,r)

I(R)
∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ

 r,t
(x).〈x=CAS(this.locked,0,1)〉

(x = this ∗ this.locked 7→ 1
r,t,(this,r)

I(R) ) ∨

(x = null ∗ this.locked 7→ 0 ∗ R ∗ [Unlock]r1
r,t,(this,r)

I(R)
)

• From the update allowed rules, we can perform case analysis on each disjunction,
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obtaining the following four proof obligations:

this.locked 7→ 0 ∗ R ∗ [Unlock]r1
r,t,(this,r)

I(R)
∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ

 r,t
(x).〈x=CAS(this.locked,0,1)〉 (x = this ∗ this.locked 7→ 1

r,t,(this,r)

I(R) )

this.locked 7→ 0 ∗ R ∗ [Unlock]r1
r,t,(this,r)

I(R)
∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ

 r,t
(x).〈x=CAS(this.locked,0,1)〉 (x = null ∗ this.locked 7→ 0 ∗ R ∗ [Unlock]r1

r,t,(this,r)

I(R)
)

this.locked 7→ 1
r,t,(this,r)

I(R) ∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ

 r,t
(x).〈x=CAS(this.locked,0,1)〉 (x = this ∗ this.locked 7→ 1

r,t,(this,r)

I(R) )

this.locked 7→ 1
r,t,(this,r)

I(R) ∗ [Lock]rπ ∗ [τ1]rπ ∗ [τ2]rπ

 r,t
(x).〈x=CAS(this.locked,0,1)〉 (x = null ∗ this.locked 7→ 0 ∗ R ∗ [Unlock]r1

r,t,this

I(R)
)

The first three proof obligations follow directly from rule AUAct, using the Lock,
τ1 and τ2 action, respectively. The last obligation follows by rule AUFalse1, as a
compare-and-swap from 0 to 1 cannot update locked from 1 to 0. In particular, by
rule ACas it follows that

(x).{this.locked 7→ 1}〈x = CAS(this.locked, 0, 1)〉{this.locked 7→ 1}.
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4 Model

In this section we define a model for our proof system and prove some meta-theoretic
results about the model. The concrete interpretation of the logic is given in Section 5.
The model and its meta-theory is defined using a standard classical meta logic.

The presentation of the model is strongly inspired by the Views framework [3] presen-
tation. In the Views framework, the operational semantics of the underlying program-
ming language operates on concrete machine states, while assertions are predicates on
instrumented (abstract) machine states. The soundness of the logic ensures that any step
at the concrete level has a corresponding step at the instrumented level. Our model can
be seen as a concrete instance of the Views framework, instrumented with actions and
protocols for modeling the CAP-part of the logic and a phantom heap for modeling phan-
tom fields. In addition, everything is step-indexed to model the later modality, guarded
recursion, and the embeddings between the logics. The Views framework features shared
variable concurrency. Since mini C] features fork-concurrency and threads with local
stacks and a shared heap, we have generalized the Views framework with threads and
thread-local state. To model guardedness, we model types as sets equipped with a step-
indexed equivalence relation. Furthermore, to ensure modular reasoning about guard-
edness, we build non-expansiveness into the interpretation. The interpretation is thus
given in the category of step-indexed equivalence relations and non-expansive functions,
instead of the category of sets. We begin by defining the category of step-indexed equiv-
alence relations and non-expansive functions. This category is equivalent to the category
of bisected ultrametric spaces. Ultrametric spaces have previously been used to model
guarded recursion [5, 2, 1]. We prefer this equivalent but more concrete presentation in
terms of step-indexed equivalences.

Category of step-indexed equivalence relations ASets ∈ Cats

A step-indexed equivalence is a pair, (X, (=i)i∈N), consisting of a set X and a set of
equivalence relations, =i ⊆ X ×X, indexed by natural numbers i ∈ N. We require that
the step-indexed equivalence relations become coarser at lower step-indicies:

∀i ∈ N. ∀x, y ∈ X. x =i+1 y ⇒ x =i y

and that equality at every step-index corresponds to identity:

∀x, y ∈ X. (∀i ∈ N. x =i y)⇒ x = y

Given two step-indexed equivalence relations

X = (X,=X
i ) ∈ ASets Y = (Y,=Y

i ) ∈ ASets

let X →ne Y denote the set of non-expansive functions:

X →ne Y def
= {f : X → Y | ∀i ∈ N. ∀x, y ∈ X. x =X

i y ⇒ f(x) =Y
i f(y)}

Define ASets as the category of step-indexed equivalences and non-expansive functions.
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Embedding ∆ : Sets→ ASets ∈ Cats
U : ASets→ Sets ∈ Cats

The category of sets embeds into ASets via ∆. Furthermore, ∆ is a left-adjoint to the
forgetful functor, U .

∆(X)
def
= (X, ({(x, x) | x ∈ X})i∈N) U(X, (=i)i∈N)

def
= X

∆(f)
def
= f U(f)

def
= f

We will always write out ∆ explicitly, when embedding sets into ASets; however, we will
leave U implicit.

Cartesian closed structure 1,X × Y,X → Y ∈ ASets

1
def
= ({∗},=1

i )

X × Y def
= (X × Y,=X×Y

i )

X → Y def
= (X →ne Y,=X→Y

i )

where

∗ =1
i ∗ iff >

(x1, y1) =X×Y
i (x2, y2) iff x1 =X

i x2 ∧ y1 =Y
i y2

f =X→Y
i g iff ∀x ∈ X. f(x) =Y

i g(x)

for X = (X,=X
i ) ∈ ASets and Y = (Y,=Y

i ) ∈ ASets.

Semantic domains

The basic structure of the model is given by the following semantic domains. We assume
countably infinite and disjoint sets of region identifiers (RId) action identifiers (AId) and
region types (RId).

Instrumented states consist of three components: a local state, a shared state and
an action model. The local state specifies the current local resources. Local resources
consists of concrete fields, phantom fields and action permissions. The shared state is
partitioned into regions. Each region consists of a local state, a region type and a protocol
argument (of type Val). The local state component of a shared region specifies the local
resources currently owned by that region. The action model associates parameterized
protocols with region types. Parameterized protocols are represented as functions from
action argument to actions. An action argument consists of a protocol argument, a region
identifier and an action identifier. Lastly, actions are modeled as certain step-indexed
relations on shared states. This avoids the circularity that would arise from defining
actions as relations on shared states and action models, but it also means the model
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lacks support for general higher-order protocols. The model does however support state-
independent protocols through the region type indirection. In particular, as shared states
include region types and protocol arguments, actions can constrain the region types and
protocol arguments of other regions.

r ∈ RId region identifier
a ∈ AId action identifier

t ∈ RType region type

PHeap def
= OId× FName fin

⇀ Val phantom heap

l ∈ LState def
= Heap× PHeap× Cap local state

s ∈ SState def
= RId fin

⇀ (LState× RType× Val) shared state

t ∈ Token def
= RId× AId token

c ∈ Cap def
= {f ∈ Token→ [0, 1] | domr(f) finite} capability map

a ∈ Action def
= {R ∈ P(N× SState× SState) | good(R)} action

AArg def
= Val× RId× AId action argument

ς ∈ AMod def
= RType⇀ (AArg→ Act) action model

m ∈M def
= LState× SState× AMod instrumented states

We require that actions are good, meaning downwards-closed in the step-index, closed
under allocation of new regions and closed under arbitrary changes to additional regions.

good(R)
def
= ∀(i, s1, s2) ∈ R. ∀j ≤ i. ∀r ∈ RId \ dom(s2).

∀t ∈ RType. ∀a ∈ Val. ∀l, l′ ∈ LState.
s1 ≤ s2 ∧ (j, s1, s2) ∈ R ∧ (j, s1, s2[r 7→ (l′, t, a)]) ∈ R ∧
(j, s1[r 7→ (l, t, a)], s2[r 7→ (l′, t, a)]) ∈ R

s1 ≤ s2
def
= dom(s1) ⊆ dom(s2) ∧ (∀r ∈ dom(s1). s1(r).t = s2(r).t ∧ s1(r).a = s2(r).a)

domr(f)
def
= {r ∈ RId | ∃α ∈ AId. f(r, α) > 0}

We use m.l, m.s and m.a as shorthand to refer to the local state, shared state and action
model component of an instrumented state m, respectively. We use s(r).l, s(r).t and
s(r).a to refer to the local state, region type and protocol parameter component of a
shared region r from the shared state s. We use l.h, l.p, and l.c to refer to the heap, the
phantom heap and the capability map of a local state l ∈ LState.

Values Val ∈ Sets

Let Val denote the least set such that

Val ∼= CVal ] Strings ] (Val× Val)
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Region types RType ∈ Sets

Region types are simply modeled as strings, with the prefix-ordering. Values thus include
region types.

RType = Strings

We use t∗ as notation for {s ∈ RType | t is a prefix of s} when t ∈ RType.

Composition operators
•LState : LState× LState⇀ LState
•M :M×M⇀M

Instrumented and local states compose using the partial •LState and •M operators. Un-
definedness indicates the two states are incompatible and do not compose. For instance,
two local states that assert ownership of the same field are incompatible and do not
compose.

X •] Y def
=

{
X ∪ Y if X ∩ Y = ∅
undef otherwise

x •= y
def
=

{
x if x = y

undef otherwise

f •+ g
def
=

{
λx. f(x) + g(x) if ∀x. f(x) + g(x) ≤ 1

undef otherwise

(oh1, th1, ch1) •Heap (oh2, th2, ch2)
def
= (oh1 •] oh2, th1 •= th2, ch1 •= ch2)

(h1, ph1, c1) •LState (h2, ph2, c2)
def
= (h1 •Heap h2, ph1 •] ph2, c1 •+ c2)

(l1, s1, a1) •M (l2, s2, a2)
def
= (l1 •LState l2, s1 •= s2, a1 •= a2)

Extension ordering ≤M:M×M→ 2

m1 ≤M m2 iff ∃m ∈M. m2 = m1 •m

The extension ordering induced by • defines a partial order.

View V ∈ Sets

We interpret propositions in the assertion logic as certain step-indexed predicates on
instrumented states, called Views. In particular, we require that views are downwards-
closed in the step-index, closed under allocation of new regions and protocols, and
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upwards-closed in the local state and the local states of shared regions.

p, q ∈ V def
= {p ∈ P(N×M) |

(∀(i,m) ∈ p. ∀j ≤ i. ∀n ≥M m. (j, n) ∈ p) ∧
(∀(i,m1) ∈ p. ∀m2 ∈M. m1 =Mi m2 ⇒ (i,m2) ∈ p) ∧
(∀(i, (l, s, ς)) ∈ p. ∀r ∈ (RId \ dom(s)). ∀t ∈ RType. ∀lr ∈ LState. ∀a ∈ Val.

(i, (l, s[r 7→ (lr, t, a)], ς)) ∈ p) ∧
(∀(i, (l, s, ς)) ∈ p. ∀r ∈ (RType \ dom(ς)). ∀I ∈ AArg→ Act.

(i, (l, s, ς[r 7→ I])) ∈ p)}

where =Mi ⊆M×M is given by

(l1, s1, ς1) =Mi (l2, s2, ς2) iff l1 = l2 ∧ s1 = s2 ∧ dom(ς1) = dom(ς2) ∧
(∀r ∈ dom(ς1). ∀α ∈ AArg. ς1(r)(α)|i = ς2(r)(α)|i)

and R|i is given by

R|i = {(j, s1, s2) ∈ N× SState× SState | j ≤ i ∧ (j, s1, s2) ∈ R}

Assertions Prop ∈ ASets

We consider two semantic assertion propositions i-equivalent if they agree on all instru-
mented states for step-indexes strictly smaller than i.

Prop def
= (V, (=Vi )i∈N)

where =Vi ⊆ V × V is given by

p =Vi q iff ∀j < i. ∀m ∈M. (j,m) ∈ p⇔ (j,m) ∈ q

Specification Spec ∈ ASets

Likewise, we consider two semantic specification propositions i-equivalent if they agree
at step-indexes strictly smaller than i.

Spec def
= (P↓(N), (=

P↓(N)
i )i∈N)

where =
P↓(N)
i ⊆ P↓(N)× P↓(N) is given by

p =
P↓(N)
i q iff ∀j < i. j ∈ p⇔ j ∈ q

Region collapse p−q : LState× SState⇀ LState

p(l, s)q def
= l •LState Πr∈dom(s)π1(s(r))
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Action model extension (−) ≤ (=) : P(AMod× AMod)

ς1 ≤ ς2 def
= dom(ς1) ⊆ dom(ς2) ∧ ∀r ∈ dom(ς1). ς1(r) = ς2(r)

Shared state restriction (−)|(=) : SState× P(RType)→ SState

s|A(r)
def
=

{
s(r) if r ∈ dom(s) and s(r).t ∈ A
undef otherwise

Interference relation R̂
(−)
(=), R

(−)
(=) : P(RType)× N→ P(M×M)

The interference relation RAi describes possible interference from the environment. It is
defined as the reflexive, transitive closure of the single-action interference relation, R̂Ai ,
that describes possible environment interference using at most one action on each region.
This thus forces a common granularity on synchronized actions. In addition to the step-
index i, the single-action interference relation is also indexed by a set of region types
A. This is the types of regions that are allowed to change, and of regions that actions
justifying those changes are allowed to depend upon.

RAi
def
= (R̂Ai )∗

where (−)∗ denotes the reflexive, transitive closure operator on binary relations, and

(l1, s1, ς1) R̂Ai (l2, s2, ς2) iff
l1 = l2 ∧ s1 ≤ s2 ∧ ς1 ≤ ς2 ∧
∃c ∈ Cap. c = πc(p(l1, s1)q).

(∀r ∈ dom(s1). s1(r) = s2(r) ∨
(∃α ∈ AId. s1(r).t ∈ A ∧ c(r, α) < 1

∧ (i, s1|A, s2|A) ∈ ς1(s1(r).t)(s1(r).a, r, α)))

Stability stable : Prop→ Spec ∈ ASets

An assertion is stable at step-index i if it is closed under RRType
i .

stable(p)
def
= {i ∈ N | ∀j ≤ i. ∀(m1,m2) ∈ RRType

j . (j,m1) ∈ p⇒ (j,m2) ∈ p}

We also use stable as notation for the point-wise lifting of stable to predicates. Thus,
stable(p) is notation for {i ∈ N | ∀x ∈ X. i ∈ stable(p(x))} when p ∈ X → V.

For stable to be a well-defined morphism in ASets, we have to prove that stable
is non-expansive. To illustrate, we write out the proof of non-expansiveness of stable;
however, in general we will omit trivial non-expansiveness proofs.
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Lemma 4. stable is non-expansive:

∀p, q ∈ V. ∀i ∈ N. p =Vi q ⇒ stable(p) =
P↓(N)
i stable(q)

Proof.

• let j < i and assume j ∈ stable(p)

• let k ≤ j, (m1,m2) ∈ RRType
k , and (k,m1) ∈ q

• then (k,m1) ∈ p and thus, as j ∈ stable(p), (k,m2) ∈ p

• thus, (k,m2) ∈ q

Erasure b−c :M⇀ Heap

The erasure function, b−c, erases the instrumentation from instrumented states, yielding
a concrete state. Since CAP partitions the state into local and shared states, the erasure
first collapses the local and shared states. The erasure is then the heap component of
the collapsed local states. The erasure function further requires that the phantom heap
does not contain any phantom fields of objects that have not been allocated yet. This
allows us to allocate new phantom fields in constructors.

b(l, s, ς)c def
=

{
h if (h, ph, c) = p(l, s)q and π1(dom(ph)) ⊆ objs(h)

undef otherwise

where objs(oh, th, ch) = dom(th).

Step-indexed erasure b−c(=) : V × N→ P(Heap)

bpci def
= b{m ∈M | (i,m) ∈ p}c

View-shift v : Prop× Prop→ Spec ∈ ASets

Intuitively, a view-shift from p to q expresses that there exists a step at the instrumented
level from p to q, corresponding to a no-op at the concrete level.

p v q def
= {i ∈ N | ∀r ∈ V. ∀j ∈ N. 0 ≤ j ≤ i ∧ j ∈ stable(r)⇒ bp ∗ rcj ⊆ bq ∗ rcj}

We also use v as notation for the point-wise lifting of v to predicates. Thus, p v q is
notation for {i ∈ N | ∀x ∈ X. i ∈ (p(x) v q(x))} when p, q ∈ X → V.
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Atomic action sat : ∆(Act)× Prop× Prop→ Spec ∈ ASets

Likewise, an atomic action a from p to q expresses that there exists a step at the instru-
mented level from p to q, corresponding to the atomic action a at the concrete level.

a sat {p}{q} def
= {i ∈ N | ∀r ∈ V. ∀j ∈ N.

1 ≤ j ≤ i ∧ j ∈ stable(r)⇒ [[a]](bp ∗ rcj) ⊆ bq ∗ rcj−1}

Thread safety safei : Thread× V × (Stack→ V)→ 2

Informally, safety is supposed to establish a simulation between the concrete level and
the instrumented level, such that every step at the concrete level has a corresponding
step at the instrumented level.

Safety is expressed in terms of a single thread, as possible interference from the
environment is implicitly given by the pre-condition and post-condition through the
interference relation. Formally, this is captured by Theorem 1, which relates the execution
of an entire thread pool, to the safety of the individual threads.

safe0(x, p, q)
def
= >

safei+1(x, p, q)
def
= (irr(x) ∧ i+ 1 ∈ (p v q(x.l))) ∨

(∀T ∈ TPool. ∀a ∈ Act. ∀y ∈ Thread. x a−→ {y} ] T ∧ x.t = y.t ⇒
∃p′ ∈ {y} ] T → V.

(∀z ∈ {y} ] T. i+ 1 ∈ stable(p′(z))) ∧
i+ 1 ∈ (a sat {p}{p′(y) ∗~z∈T p′(z)}) ∧
safei(y, p

′(y), q) ∧
∀z ∈ T. safei(z, p′(z), λl′. >))

If a thread x is irreducible (i.e., x has terminate), then x is safe relative to p and q if
there exists a step at the instrumented level from p to q(x.l), corresponding to a no-op
at the concrete level.

If a thread x can take a single step to y (x.t = y.t ensures x and y have the same thread
id) with action a by spawning threads T , then x is safe relative to p and q if:

• there exists stable predicates p′(z) describing the intermediate state (at the instru-
mented level) of each thread z ∈ {y} ] T

• such that it is possible to take a step at the instrumented level from p to~z∈{y}]T p′(z)
(thus splitting the combined intermediate resources between each thread), corre-
sponding to the atomic action a at the concrete level

• and y is safe relative to p′(y) and q

• and all spawned threads z ∈ T are safe relative to p′(z) and any post-condition
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Since the post-condition q only describes the the terminal state of the initial thread x,
only y (the thread x after one step of execution) is required to be safe relative to q.

Thread safety safe : ∆(Thread)× Prop× (∆(Stack)→ Prop)→ Spec ∈ ASets

safe(x, p, q) def
= {i ∈ N | safei(x, p, q)}

Lemma 5. safe is non-expansive.

∀i ∈ N. ∀x ∈ Thread. ∀p1, p2 ∈ Prop. ∀q1, q2 ∈ Stack→ Prop.

p1 =Vi p2 ∧ (∀l ∈ Stack. q1(l) =Vi q2(l))⇒ safe(x, p1, q1) =
P↓(N)
i safe(x, p2, q2)

Proof. Follows by induction on i from the non-expansiveness of v and sat.

Statement safety safe : ∆(seq Stm)× (∆(Stack)→ Prop)2 → Spec ∈ ASets

safe(s, p, q) def
= {i ∈ N | ∀t ∈ TId. ∀l ∈ Stack. safei((t, l, stm(s)), p(l), q)}

4.1 Views meta-theory

In this section we develop some of the standard Views meta-theory for our step-indexed
multithreaded safety predicate, including the rule of consequence (Lemma 14), the frame
rule (Lemma 15), and sequential composition (Lemma 17). The main result is Theorem 1,
which relates the execution of a thread pool with the safety of the individual threads.

Separation logic connectives emp : Prop
∗ : Prop× Prop→ Prop ∈ ASets

emp
def
= N×M

p ∗ q def
= {(i,m) ∈ N×M | ∃m1,m2 ∈M. m = m1 •M m2 ∧ (i,m1) ∈ p ∧ (i,m2) ∈ q}

Image of an interference relation (−)(=) : P(V × V)× V → V

R(p)
def
= {(i,m′) ∈ N×M | (i,m) ∈ p ∧m R m′}

Lemma 6.

∀i ∈ N. ∀A ∈ P(RType).

(∀p, q ∈ V. RAi (p ∗ q) ⊆ RAi (p) ∗RAi (q)) ∧ (RAi (emp) ⊆ emp)
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Lemma 7.

∀i ∈ N. ∀j ≤ i. ∀A ∈ P(RType). RAi ⊆ RAj

Lemma 8.

∀i ∈ N. ∀A1, A2 ∈ P(RType). A1 ⊆ A2 ⇒ R̂A1
i ⊆ R̂A2

i

Lemma 9.

∀i ∈ N. ∀A ∈ P(RType). ∀p, q ∈ V. p ⊆ q ⇒ i ∈ (p vA q)

Lemma 10.

∀p, q, r ∈ V. (p v q) ∩ stable(r) ⊆ (p ∗ r v q ∗ r)

Lemma 11.

∀a ∈ Act. ∀p, q, r ∈ V. (a sat {p}{q}) ∩ stable(r) ⊆ (a sat {p ∗ r}{q ∗ r})

Lemma 12.

∀A ∈ P(RType). ∀a ∈ Act. ∀p, q, r ∈ V.
(a satA {p}{q}) ∩ stable(r) ⊆ (a satA {p ∗ r}{q ∗ r})

Lemma 13 (Basic v-closure).

∀i ∈ N. ∀a ∈ Act. ∀p, p′, q′, q ∈ V.
i+ 1 ∈ (p v p′) ∧ i+ 1 ∈ (a sat {p′}{q′}) ∧ i ∈ (q′ v q)⇒ i+ 1 ∈ (a sat {p}{q})

Proof.

• let r ∈ V and 1 ≤ j ≤ i+ 1

• then

bp ∗ rcj ⊆ bp′ ∗ rcj [[a]](bp′ ∗ rcj) ⊆ bq′ ∗ rcj−1 bq′ ∗ rcj−1 ⊆ bq ∗ rcj−1

• and thus
[[a]](bp ∗ rcj) ⊆ bq ∗ rcj−1

Lemma 14 (Consequence).

∀i ∈ N. ∀x ∈ Thread. ∀p, p′ ∈ V. ∀q′, q ∈ Stack→ V.
i ∈ (p v p′) ∧ i ∈ safe(x, p′, q′) ∧ i ∈ (q′ v q)⇒ i ∈ safe(x, p, q)
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Proof. By induction on i.

• Case i = 0: trivial.

• Case i = j + 1:

– if irr(x) then j + 1 ∈ (p v p′) ∩ (p′ v q′(xl)) ∩ (q′(xl) v q(xl))
– otherwise, suppose x a−→ {y} ] T
– by safety there thus exists

p′′ : {y} ] T → V

such that

∀z ∈ {y} ] T. j + 1 ∈ stable(p′′(z))
j + 1 ∈ (a sat {p′}{p′′(y) ∗ (~z∈T p′′(z))})
safej(y, p

′′(y), q′)

∀z ∈ T. safej(z, p′′(z), λ_. >)

– hence, by Lemma 13,

j + 1 ∈ (a sat {p}{p′′(y) ∗ (~x∈T p′′(x))})

– and by the induction hypothesis,

safej(y, p
′′(y), q)

Lemma 15 (Frame).

∀x ∈ Thread. ∀p, r ∈ V. ∀q ∈ Stack→ V.
safe(x, p, q) ∩ stable(r) ⊆ safe(x, p ∗ r, λl′. q(l′) ∗ r)

Proof. By induction on the step-index.

• Case i = 0: trivial.

• Case i = j + 1:

– if irr(x) then i ∈ (p v q(xl)) and thus i ∈ (p ∗ r v q(xl) ∗ r)
– otherwise, suppose x a−→ {y} ] T
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– by safety there thus exists

p′ : {y} ] T → V

such that

∀z ∈ {y} ] T. i ∈ stable(p′′(z))
i ∈ (a sat {p}{p′(y) ∗ (~z∈T p′(z))})
safej(y, p

′(y), q)

∀z ∈ T. safej(z, p′(z), λ_. >)

– hence, by Lemma 11,

i ∈ (a sat {p ∗ r}{p′(y) ∗ r ∗ (~z∈T p′(z))})

– and by the induction hypothesis,

safej(y, p
′(y) ∗ r, λl′. q(l′) ∗ r)

Lemma 16.

∀t ∈ TId. ∀l, l′ ∈ LState. ∀T ∈ TPool. ∀s1, s2, s3 ∈ TCStack. ∀a ∈ Act.

s1 6= ε ∧ (t, l, s1; s2)
a−→ {(t, l′, s3)} ] T ⇒

(∃s4 ∈ TCStack. (t, l, s1)
a−→ {(t, l′, s4)} ] T ∧ s3 = s4; s2)

Proof.

• Case seq:

– by definition,

(l, hd(s1))
a−→ (l′, s′1), s3 = s′1; tail(s1; s2), T = ∅

– hence, by seq,

(t, l, s1)
a−→ {(t, l′, s′1; tail(s1))}

– take s4 = s1; tail(s1)

• Case fork:

– by definition there exists an ld and sd such that

l′ = l, s3 = tail(s1; s2), T = {(t′, ld, sd)}
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– hence, by fork,

(t, l, s1)
a−→ {(t, l′, tail(s1))} ] T

– take s4 = tail(s1)

Lemma 17 (Sequential composition).

∀i ∈ N. ∀t ∈ TId. ∀l ∈ Stack. ∀s1, s2 ∈ Stm. ∀p ∈ V. ∀q, r ∈ Stack→ V.
i ∈ safe((t, l, s1), p, q) ∧ i ∈ safe(s2, q, r)⇒ i ∈ safe((t, l, s1; s2), p, r)

Proof. By induction on i.

• Case i = 0: trivial.

• Case i = j + 1:

– if irr(s1; s2) then irr(s1) and irr(s2) and thus

i ∈ (p v q(l)) ∩ (q(l) v r(l))

– otherwise, (t, l, s1; s2)
a−→ {(t, l′, s3)} ] T

– Case s1 = ε:

∗ from s1 = ε it follows that irr(s1) and thus i ∈ (p v q(l))
∗ hence, by Lemma 14,

safei((t, l, s2), p, r)

– Case s1 6= ε:

∗ by Lemma 16 there exists an s4 such that,

(t, l, s1)
a−→ {(t, l′, s4)} ] T, s3 = s4; s2

∗ let y denote (t, l′, s4)

∗ by safety of s1 there thus exists

p′ ∈ {y} ] T → V

such that

∀z ∈ {y} ] T. i ∈ stable(p′(z))
a sati

{
p
}{

p′(y) ∗~z∈T p′(z)
}

safej((t, l
′, s4), p′(y), q)

∀z ∈ T. safej(z, p′(z), λ_. >)
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∗ by downwards-closure it follows that

safej(s2, q, r)

∗ and thus, by the induction hypothesis,

safej((t, l
′, s4; s2), p′(y), r)

Theorem 1 (Evaluation safety). For any i, j ∈ N, T ∈ TPool,

p : T → V, q : T → Stack→ V, h ∈ b~x∈T p(x)cj

if

i < j, ∀x ∈ T. safej(x, p(x), q(x)), (T, h)→i (T ′, h′), irr(T ′)

j ∈ stable(p) j ∈ stable(q)

then
h′ ∈ b~x∈T q(x)(lx)cj−i

where
lx = y.l, if y ∈ T ′ and x.t = y.t

Proof. By induction on i.

• Case i = 0:

– since i = 0 it follows that T ′ = T and h′ = h

– hence irr(x) for every x ∈ T = T ′

– from safety it thus follows that j ∈ (p(x) v q(x)(x.l)) for every x ∈ T
– hence, by stability of p and q,

j ∈ (~x∈T p(x) v ~x∈T q(x)(x.l))

and thus

h′ = h ∈ b~x∈T p(x)cj ⊆ b~x∈T q(x)(x.l)cj = b~x∈T q(x)(lx)cj

• Case i = k + 1:

– suppose
(T, h)→ (T ′′, h′′)→k (T ′, h′)
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– there thus exists an x ∈ T and y ∈ T ′′ such that x.t = y.t,

x
a−→ {y} ] T ′′′, T ′′ = (T \ {x}) ∪ ({y} ] T ′′′), h′′ ∈ [[a]](h)

– from the safety of x there thus exists

p′ ∈ {y} ] T ′′′ → V
such that

∀z ∈ {y} ] T ′′′. j ∈ stable(p′(z))
a satj

{
p(x)

}{
p′(y) ∗ (~z∈T ′′′p′(z))

}

safej−1(y, p′(y), q(x))

∀z ∈ T ′′′. safej−1(z, p′(z), λl′. >)

– let

p′′ = [z ∈ (T \ {x}) 7→ p(z), z ∈ {y} ] T ′′′ 7→ p′(z)] : T ′′ → V
q′′ = [y 7→ q(x), z ∈ (T \ {x}) 7→ q(z), z ∈ T ′′′ 7→ λ_. >] : T ′′ → Stack→ V

– then ∀z ∈ T ′′. safej−1(z, p′′(z), q′′(z))

– from Lemma 11 it follows that

a satj
{
~x∈T p(x)

}{
p′(y) ∗ (~z∈T ′′′p′(z)) ∗ (~z∈(T\{x})p(z))

}

and thus

h′′ ∈ bp′(y) ∗ (~z∈T ′′′p′(z)) ∗ (~z∈(T\{x})p(z))cj−1 = b~x∈T ′′p′′(x)cj−1

– by the induction hypothesis it thus follows that

h′ ∈ b~z∈T ′′q′′(z)(lz)cj−1−k
= bq(x)(ly) ∗ (~z∈(T\{x})q(z)(lz)) ∗ (~z∈T ′′′>)cj−i
= bq(x)(ly) ∗ (~z∈(T\{x})q(z)(lz))cj−i

where lz = y.l if y ∈ T ′ and z.t = y.t.
– lastly, since x.t = y.t, lx = ly and thus,

h′ ∈ b(~z∈T q(z)(lz))cj−i

4.2 Guarded recursion meta-theory

In this section we develop the meta-theory for modeling guarded recursion. We define a
concrete fixed-point operator on predicates on views, and prove that it defines a fixed-
point when applied to guarded definitions (Corollary 2). We also develop a small theory
of guardedness, and prove that the fixed-point operator is non-expansive, even on non-
guarded definitions (Lemma 19).
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(−)(=) : ∀X : ASets. ((X →ne Prop)→ne (X →ne Prop))× N→ (X →ne Prop) ∈ Sets

f0
def
= λx ∈ X . N×M

fi+1
def
= f(fi)

Lemma 18.

∀X ∈ ASets. ∀f, g : (X → Prop)→ (X → Prop) ∈ ASets.
∀i ∈ N. f =i g ⇒ ∀j ∈ N. fj =i gj

Proof. By induction on j.

• Case j = 0: trivial, as f0 = (λx ∈ X . N×M) = g0.

• Case j = k + 1:

– by the induction hypothesis, fk =i gk

– hence, by f =i g, and non-expansiveness of g,

fj = f(fk) =i g(fk) =i g(gk) = gj

Guarded recursion

fix : ∀X : ASets. ((X → Prop)→ (X → Prop))→ (X → Prop) ∈ ASets

fix(f)
def
= λx ∈ X .

⋂

i∈N
[fi(x)]i

where [−]i : Prop→ Prop ∈ ASets is defined as,

[p]i = {(j,m) ∈ N×M | (j,m) ∈ p ∨ i ≤ j}

Lemma 19. fix is non-expansive.

∀X ∈ ASets. ∀f, g : (X → Prop)→ (X → Prop) ∈ ASets.
∀i ∈ N. f =i g ⇒ fix(f) =i fix(g)

Proof.

• assume x ∈ X , j ∈ N and m ∈M such that

j < i (j,m) ∈ fix(f)(x) =
⋂

k∈N
[fk(x)]k
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• hence, for every k ∈ N

(j,m) ∈ [fk(x)]k ⇔ (j,m) ∈ fk(x) ∨ k ≤ j

• hence, for every k > j, (j,m) ∈ fk(x)

• furthermore, by Lemma 18, fk =i gk

• hence, for every k > j,
(j,m) ∈ gk(x)

and thus (j,m) ∈ ⋂k∈N[gk(x)]k = fix(g)(x)

Lemma 20. fix(f) is non-expansive.

∀X ∈ ASets. ∀f : (X → Prop)→ (X → Prop) ∈ ASets. ∀x, y ∈ X .
x =i y ⇒ fix(f)(x) =i fix(f)(y)

Proof.

• let j ∈ N and m ∈M such that

j < i (j,m) ∈ fix(f)(x) =
⋂

k∈N
[fk(x)]k

• hence, for every k > j, (j,m) ∈ fk(x)

• furthermore, for every k ∈ N, fk is non-expansive and thus fk(x) =i fk(y)

• hence, for every k > j, (j,m) ∈ fk(y)

• and thus (j,m) ∈ ⋂k∈N[fk(y)]k = fix(f)(y)

Guarded guarded : ∀X : ASets.((X → Prop)→ (X → Prop))→ Spec ∈ ASets

guarded(f)
def
= {i ∈ N | ∀j ≤ i. ∀p, q ∈ X → Prop. p =j q ⇒ f(p) =j+1 f(q)}

Lemma 21. guarded is non-expansive.

∀X ∈ ASets. ∀f, g : (X → Prop)→ (X → Prop) ∈ ASets.
∀i ∈ N. f =i g ⇒ guarded(f) =i guarded(g)

Proof.
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• assume j < i such that j ∈ guarded(f)

• assume p, q ∈ X → Prop such that p =k q for k ≤ j

• since j ∈ guarded(f), f(p) =k+1 f(q)

• since k ≤ j < i, k + 1 ≤ i and thus

g(p) =k+1 f(p) =k+1 f(q) =k+1 g(q)

• hence, j ∈ guarded(g)

Lemma 22.

∀X ∈ ASets. ∀f : (X → Prop)→ (X → Prop) ∈ ASets.
∀i ∈ N. i ∈ guarded(f)⇒ fi =i fi+1

Proof. By induction on i ∈ N.

• Case i = 0: trivial, as there exists no j < 0

• Case i = j + 1:

– by the induction hypothesis, fi =i fi+1

– hence, since i ∈ guarded(f)

fi+1 = f(fi) =i+1 f(fi+1) = fi+2

Corollary 1.

∀X ∈ ASets. ∀f : (X → Prop)→ (X → Prop) ∈ ASets.
∀i ∈ N. i ∈ guarded(f)⇒ ∀j ∈ N. fi =i fi+j

Proof. By induction on j ∈ N.

• case j = 0: trivial, as =i is an equivalence relation

• case j = k + 1:

– by the induction hypothesis, fi =i fi+k

– hence, as i ∈ guarded(f),

fi =i fi+1 = f(fi) =i+1 f(fi+k) = fi+j

– and thus, by downwards-closure of =, fi =i fi+j
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Lemma 23.

∀X ∈ ASets. ∀f : (X → Prop)→ (X → Prop) ∈ ASets.
∀i ∈ N. i ∈ guarded(f)⇒ fi =i fix(f)

Proof.

• suppose x ∈ X , j < i, and m ∈M, then we need to show that

(j,m) ∈ fi(x)⇔ (j,m) ∈
⋂

k∈N
[fk(x)]k

• assume (j,m) ∈ ⋂k∈N[fk(x)]k

– then, in particular,

(j,m) ∈ [fi(x)]i = {(j,m) | (j,m) ∈ fi(x) ∨ i ≤ j}

– and thus (j,m) ∈ fi(x), as j < i

• assume (j,m) ∈ fi(x)

– clearly

⋂

k∈N
[fk(x)]k =


⋂

k≤j
[fk(x)]k


 ∩


⋂

k>j

[fk(x)]k




– and

(j,m) ∈
⋂

k≤j
[fk(x)]k

by definition of [−]i

– to prove (j,m) ∈ ⋂k>j [fk(x)]k, assume k ∈ N such that j < k

– case i ≤ k:
∗ then, by Corollary 1, fi =i fk

∗ and thus (j,m) ∈ fk(x) as j < i

– case k ≤ i:
∗ then, by Corollary 1, fk =k fi

∗ and thus (j,m) ∈ fk(x) as j < k
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Corollary 2.

∀X ∈ ASets. ∀f : (X → Prop)→ (X → Prop) ∈ ASets.
∀i ∈ N. i ∈ guarded(f)⇒ fix(f) =i f(fix(f))

Proof. By case analysis on i ∈ N.

• Case i = 0: trivial, as there is no j < 0

• Case i = j + 1:

– by Lemma 23

fix(f) =j+1 fj+1, fj =j fix(f)

– by guardedness of f we thus have that

fix(f) =j+1 fj+1 = f(fj) =j+1 f(fix(f))

Later . : Prop→ Prop ∈ ASets
. : Spec→ Spec ∈ ASets

.p
def
= {(i+ 1,m) ∈ N×M | (i,m) ∈ p} ∪ ({0} ×M)

.s
def
= {i+ 1 ∈ N | i ∈ s} ∪ {0}

Lemma 24.

∀i ∈ N. i ∈ stable(p)⇒ i+ 1 ∈ stable(.p)

Proof.

• let j ≤ i+ 1, (m1,m2) ∈ RRType
j and (j,m1) ∈ .p

• case j = 0:

– then (j,m2) ∈ .p holds trivially

• case j = k + 1:

– then (k,m1) ∈ p
– by Lemma 7, (m1,m2) ∈ RRType

k

– since k ≤ i it thus follows by stability of p that (k,m2) ∈ p
– and thus (j,m2) ∈ .p
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Lemma 25.

∀p, q ∈ Prop. p =i q ⇒ .p =i+1 .q

Lemma 26.

∀X ∈ ASets. ∀f, g, h ∈ (X → Prop)→ (X → Prop).

guarded(g) ⊆ guarded(h ◦ g ◦ f)

Proof.

• let p, q ∈ X → Prop such that p =i q

• then by non-expansiveness of f , f(p) =i f(q)

• hence, by guardedness of g, g(f(p)) =i+1 g(f(q))

• and thus, by non-expansiveness of h, g(h(f(p))) =i+1 h(g(f(q)))

Lemma 27.

∀X ∈ ASets. guarded(λp ∈ X → Prop. λx ∈ X . . p(x))

Proof.

• let j ≤ i and p, q ∈ X → Prop such that p =j q

• let x ∈ X

• then p(x) =j q(x) and thus, by Lemma 25, .p(x) =j+1 .q(x)

Lemma 28.

∀X ∈ ASets. ∀f : Prop→ Prop ∈ ASets.
guarded(λp ∈ X → Prop. λx ∈ X . . f(p(x)))

Proof.

• let j ≤ i and p, q ∈ X → Prop such that p =j q

• let x ∈ X

• then p(x) =j q(x)

• hence, by non-expansiveness of f , f(p(x)) =j f(q(x))

• and thus, by Lemma 25, .f(p(x)) =j+1 .f(q(x))
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4.3 Embedding meta-theory

In this section we develop the meta-theory related to the embedding of specifications into
assertions. The main result is the soundness of the AsnI and AsnE rules from Section
2.3.2 (Lemma 37 and Corollary 3).

The main difficulty is proving the soundness of the AsnI rule (Lemma 37), which
allows us to move an embedded specification from the pre-condition into the specification
context. Very informally, if

Γ | S ` {P}s̄{Q}
holds, then for every i ∈ [[S]], s̄ is safe for i steps relative to [[P]] and [[Q]]. Hence, if we
run s̄ for one step, then for every i ∈ [[S]] there exists a stable assertion p′i describing the
intermediate state, such that the continuation is safe for i − 1 steps relative to p′i and
[[Q]]. To prove s̄ safe for i steps relative to [[P ∗ asn(S)]] and [[Q]] we need a single stable
assertion to describe the intermediate state. The idea is to take this assertion to be the
disjunction of all the p′i assertions, only with each p′i cut-off at step-index i − 1, as the
continuation is only safe for i−1 steps relative to p′i. To formalize this we define a cutoff
operator, written dpei, which is false at every step-index j > i. Next, we prove that given
an N indexed family of pre-conditions p, such that for any n ∈ N, s is safe for n steps
relative to p(n) and q, then s is safe for any number of steps relative to

∨
ndp(n)en and

q (see Lemma 36).

Specification embedding asn : Spec→ Prop

asn(X)
def
= {(i,m) ∈ N×M | i ∈ X}

Validity embedding valid : Prop→ Spec

valid(p)
def
= {i ∈ N | ∀m ∈M. (i,m) ∈ p}

View cutoff d−e= : V × N→ V

dpei def
= {(j,m) ∈ N×M | (j,m) ∈ p ∧ j ≤ i}

Lemma 29.

∀i ∈ N. ∀p, q ∈ V. i ∈ (p v q)⇒ ∀j ∈ N. j ∈ (dpei v q)

Proof.

• let k ∈ N, r ∈ V, m ∈M and h ∈ Heap such that

0 ≤ k ≤ j k ∈ stable(r) (k,m) ∈ dpei ∗ r h ∈ bmc

168



• then k ≤ i and (k,m) ∈ p ∗ r

• hence, there exists an m′ ∈M such that (k,m′) ∈ q ∗ r and h ∈ bm′c

Lemma 30.

∀i ∈ N. ∀p, q ∈ V. dp ∗ qei = dpei ∗ dqei

Lemma 31.

∀i, j ∈ N. ∀p ∈ V. i ∈ stable(p)⇒ j ∈ stable(dpei)

Proof.

• let k ≤ j, (m1,m2) ∈ RRType
k and (k,m1) ∈ dpei

• then k ≤ i and thus by i-stability of p, (k,m2) ∈ p

Lemma 32.

∀i ∈ N. ∀a ∈ Act. ∀p, q ∈ V.
i ∈ (a sat {p}{q})⇒ ∀j ∈ N. j ∈ (a sat {dpei}{dqei−1})

Proof.

• suppose

k ∈ N, r ∈ V, 1 ≤ k ≤ j, k ∈ stable(r)
m ∈M, s ∈ bmc, (k,m) ∈ dpei ∗ r, s′ ∈ [[a]](s)

• then k ≤ i and (k,m) ∈ p ∗ r and thus (k,m) ∈ p ∗ drek

• by assumption there thus exists an m′ ∈M such that

(k − 1,m′) ∈ q ∗ drek, s′ ∈ bm′c

• hence, (k − 1,m′) ∈ dqei−1 ∗ r, as 1 ≤ k ≤ i

Lemma 33.

∀i ∈ N. ∀a ∈ Act. ∀p, q ∈ V. i ∈ (a sat {dpe0}{q})
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Lemma 34.

∀p1, p2, q1, q2 ∈ V. (p1 ∗ q1) ∪ (p2 ∗ q2) ⊆ (p1 ∪ p2) ∗ (q1 ∪ q2)

Lemma 35.

∀i ∈ N. ∀a ∈ Act. ∀p1, p2, q1, q2 ∈ V.
(a sat {p1}{q1}) ∩ a sat {p2}{q2}) ⊆ (a sat {p1 ∪ p2}{q1 ∪ q2})

Proof.

• suppose

1 ≤ j ≤ i, r ∈ V, j ∈ stable(r)
(j,m) ∈ (p1 ∪ p2) ∗ r, s ∈ bmc, s′ ∈ [[a]](s)

• by definition there exists m1,m2 ∈M such that

m ∈ m1 •m2, (j,m1) ∈ p1 ∪ p2, (j,m2) ∈ r

• Case (j,m1) ∈ p1:

– since (j,m) ∈ p1 ∗ r there exists an m′ ∈M such that

(j,m′) ∈ q1 ∗ r, s′ ∈ bm′c

– hence (j,m′) ∈ (q1 ∪ q2) ∗ r

• Case (j,m1) ∈ p2: as above

Lemma 36.

∀i ∈ N. ∀x ∈ Thread. ∀p ∈ N→ V. ∀q ∈ Stack→ V.
(∀j ∈ N. j ∈ safe(x, pj , q))⇒ i ∈ safe(x,

⋃

j∈N
dpjej , q)

Proof. By induction on i. As the base case is trivial, assume i > 0.

• Case irr(x):

– by assumption
∀i ∈ N. i ∈ (pi v q(x.l))

– hence, by Lemma 29

∀i, j ∈ N. i ∈ (dpjej v q(x.l))
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– and thus
∀i ∈ N. i ∈ (

⋃

j

dpjej v q(x.l))

• Case x a−→ {y} ] T :

– by assumption, for each j ∈ N+ there exists a

p′j : {y} ] T → V

such that

∀z ∈ {y} ] T. j ∈ stable(p′j(z))
j ∈ (a sat {pj}{p′j(y) ∗ (~z∈T p′j(z))})
safej−1(y, p′j(y), q)

∀z ∈ T. safej−1(z, p′j(z), λ_. >)

– hence, Lemmas 32 and 30,

∀k ∈ N. ∀j ∈ N+. k ∈ (a sat {dpjej}{dp′j(y)ej−1 ∗ (~z∈T dp′j(z)ej−1)})

– by Lemmas 34 and 35 we thus have that

∀k ∈ N. k ∈ (a sat {
⋃

j∈N+

dpjej}{


 ⋃

j∈N+

dp′j(y)ej−1


 ∗


~z∈T

⋃

j∈N+

dj′i(z)ej−1


})

– and thus, by Lemmas 33 and 35,

∀k ∈ N. k ∈ (a sat {
⋃

j∈N
dpjej}{


 ⋃

j∈N+

dp′j(y)ej−1


 ∗


~z∈T

⋃

j∈N+

dp′j(z)ej−1


})

– and by the induction hypothesis

safei−1(y,
⋃

j∈N
dp′j+1(y)ej , q)

∀z ∈ T. safei−1(z,
⋃

j∈N
dp′j+1(z)ej , λ_. >)

– furthermore, by Lemma 31, it follows that,

∀z ∈ {y} ] T. ∀i ∈ N. i ∈ stable(
⋃

j∈N
dp′j+1(z)ej)
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– lastly

∀z ∈ {y} ] T.
⋃

j∈N
dp′j+1(z)ej =

⋃

j∈N+

dp′j(z)ej−1

Lemma 37.

∀p, q ∈ Stack→ V. ∀X ∈ P↓(N). ∀s ∈ seq Stm.
X ⊆ safe(s, p, q)⇒ (∀i ∈ N. i ∈ safe(s, λl. p(l) ∗ asn(X), q))

Proof.

• suppose i ∈ N; if i = 0 then s is trivially safe; assume i > 0

• let t ∈ TId and l ∈ Stack

• Case irr((t, l, s)):

– then it suffices to show that i ∈ (p(l) ∗ asn(X)) v q(l)
∗ let j ∈ N, r ∈ V, m ∈M and h ∈ Heap such that

0 ≤ j ≤ i j ∈ stable(r) (j,m) ∈ p(l) ∗ asn(X) ∗ r h ∈ bmc

∗ then j ∈ X and thus j ∈ (p(l) v q(l))
∗ hence, there exists an m′ ∈M such that (j,m′) ∈ q(l) ∗ r and h ∈ bm′c

• Case (t, l, s)
a−→ {y} ] T :

– by assumption, for every j ∈ X there exists a p′j ∈ {y} ] T → V such that

∀z ∈ {y} ] T. j ∈ stable(p′j(z))
j ∈ (a sat {p}{p′j(y) ∗ (~z∈T p′j(z))})
safej−1(y, p′j(y), q)

∀z ∈ T. safej−1(z, p′j(z), λ_. >)

– for each j ∈ N, take p′′j ∈ {y} ] T → V to be

p′′j =

{
p′j if j ∈ X
λz. ⊥ otherwise

– then for every j ∈ N

safej(y, p
′′
j+1(y), q)

∀z ∈ T. safej(z, p′′j+1(z), λ_. >)

172



– hence, by Lemma 36,

safei(y,
⋃

j

dp′′j+1(y)ej , q)

∀z ∈ T. safei(z,
⋃

j

dp′′j+1(z)ej , λ_. >)

– take p′ ∈ {y} ] T → V to be

p′(z) =
⋃

j

dp′′j+1(z)ej

– then ∀z ∈ {y} ] T. ∀i ∈ N. i ∈ stable(p′(z))
– it thus suffices to prove that,

i ∈ (a sat {p ∗ asn(X)}{p′(y) ∗ (~z∈T p′(z))})

∗ suppose j ∈ N, 1 ≤ j ≤ i, r ∈ V, m ∈M and h, h′ ∈ Heap such that

j ∈ stable(r) (j,m) ∈ p ∗ asn(X) ∗ r h ∈ bmc h′ ∈ [[a]](h)

∗ then j ∈ X and (j,m) ∈ p ∗ r
∗ hence j ∈ (a sat {p}{p′j(y) ∗ (~z∈T p′j(z))})
∗ there thus exists an m′ ∈M such that h′ ∈ bm′c and

(j − 1,m′) ∈ p′j(y) ∗ (~z∈T p′j(z)) ∗ r

∗ hence
(j − 1,m′) ∈ p′(y) ∗ (~z∈T p′(z)) ∗ r

Lemma 38.

∀p ∈ V. ∀X ∈ P↓(N).

X ⊆ (p v p ∗ asn(X))

Proof.

• let i ∈ X

• suppose j ∈ N such that 0 ≤ j ≤ i and r ∈ V such that j ∈ stable(r)

• by downwards-closure of X, j ∈ X

• hence
∀m ∈M. (j,m) ∈ p ∗ r ⇒ (j,m) ∈ p ∗ asn(X) ∗ r
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• and thus
bp ∗ rcj ⊆ bp ∗ asn(X) ∗ rcj

Corollary 3.

∀p, q ∈ Stack→ V. ∀X ∈ P↓(N).

(∀i ∈ N. i ∈ safe(s, p ∗ asn(X), q))⇒ (X ⊆ safe(s, p, q))

4.4 CAP meta-theory

In this section we develop the CAP meta-theory of the model. The main results are the
soundness of rule StableClosed (Lemma 60) and OpenA (Lemma 68).

Region assertion region : ∆(RId)×∆(RType)×∆(Val)× Prop→ Prop ∈ ASets

region(r, t, a, p)
def
= {(i, (l, s, ς)) ∈ N×M |

r ∈ dom(s) ∧ s(r).t = t ∧ s(r).a = a ∧ (i, (s(r).l, s, ς)) ∈ p}

We use p r,t,a as shorthand for region(r, t, a, p).

Action interpretation act : RType× (Val× AId× Val→ V)2 → AArg→ Action

The act function takes as argument a region type and an action pre- and post-condition
and interprets them as an action. Since actions are step-indexed relations on shared
states, the interpretation ignores the action model component of the action pre- and
post-condition, by existentially quantifying over the action model.

act(t, p, q)
def
= λ(a, r, α) ∈ Val× RId× AId.

{(i, s1, s2) ∈ N× SState× SState |
∃l1, l2 ∈ LState. ∃ς1, ς2 ∈ AMod. ∃v ∈ Val.

(i, (l1, s1, ς1)) ∈ p(a, α, v) ∧ (i, (l2, s2, ς2)) ∈ q(a, α, v) ∧
s1(r) = (l1, t, a) ∧ s2(r) = (l2, t, a) ∧ s1 ≤ s2 ∧ ς1 ≤ ς2}

Lemma 39.

∀r ∈ RId. ∀t ∈ RType. ∀a ∈ Val. ∀α ∈ AId.
∀i ∈ N. ∀p1, p2, q1, q2 ∈ Val× AId× Val→ Prop.

(∀x ∈ Val× AId× Val. p1(x) =Vi+1 p2(x) ∧ q1(x) =Vi+1 q2(x)) ⇒
act(t, p1, q1)(a, r, α)|i ⊆ act(t, p2, q2)(a, r, α)|i
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Proof.

• assume (j, s1, s2) ∈ act(t, p1, q1)(a, r, α)|i
• then j ≤ i and there exists l1, l2 ∈ LState, ς1, ς2 ∈ AMod, and v ∈ Val such that

(j, (l1, s1, ς1)) ∈ p1(a, α, v) (j, (l2, s2, ς2)) ∈ q1(a, α, v) si(r) = (li, t, a)

• hence,

(j, (l1, s1, a)) ∈ p2(a, α, v) (j, (l2, s2, a)) ∈ q2(a, α, v)

• and thus, (j, s1, s2) ∈ act(t, p2, q2)(a, r, α)|i

Protocol assertion

protocol : ∆(RType)× (∆(Val)×∆(AId)×∆(Val)→ Prop)2 → Prop ∈ ASets

The protocol function corresponds to the protocol assertion in the logic.

protocol(t, p, q)
def
= {(i, (l, s, ς)) ∈ N×M |

∀x ∈ AArg. ς(t)(x)|i = act(t, p, q)(x)|i}
At index i, it asserts that the protocol on the given region type is i-equal to the

protocol given by the action pre- and post-conditions p and q. We specifically do not
require strict equality, to ensure that assertion is closed under i-equality, as required. In
particular, this ensures that,

∀(i,m1) ∈ protocol(t, p, q). ∀m2. m1 =i m2 ⇒ (i,m2) ∈ protocol(t, p, q)
Lemma 40. protocol is non-expansive.

∀t ∈ RId. ∀i ∈ N. ∀p1, p2, q1, q2 ∈ Val× AId× Val→ Prop.

(∀x ∈ Val× AId× Val. p1(x) =Vi p2(x) ∧ q1(x) =Vi q2(x)) ⇒
protocol(t, p1, q1) =Vi protocol(t, p2, q2)

Proof.

• assume j < i and (j,m) ∈ protocol(t, p1, q1)

• then
∀x ∈ AArg. πa(m)(t)(x)|j = act(t, p1, q1)(x)|j

• and by Lemma 39 and downwards-closure of =Vi ,

∀x ∈ Val× AId× Val. act(t, p1, q1)(x)|j = act(t, p2, q2)(x)|j

• hence (j,m) ∈ protocol(t, p2, q2)
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Action assertion action : ∆(AId)×∆(RId)×∆(Perm)→ Prop ∈ ASets

action(α, r, p)
def
= {(i,m) ∈ N×M | p ≤ (m.l.c)(r, α)}

Shared state equivalence ≡(−) : P(RType)→ P(SState× SState)

s1 ≡A s2
def
= dom(s1) = dom(s2) ∧ (∀r ∈ dom(s1). s1(r).t = s2(r).t ∧ s1(r).a = s2(r).a) ∧

(∀r ∈ dom(s1). s1(r).a ∈ A⇒ s1(r).l = s2(r).l)

Action model restriction (−)|(=) : AMod× P(RType)→ AMod

ς|A(t)
def
=





λα ∈ AArg.
{(i, s1, s2) ∈ SState× SState | ∃s′1, s′2 ∈ SState.
s1 ≡A s′1 ∧ s2 ≡A s′2 ∧ (i, s′1, s

′
2) ∈ ς(t)(α)}

if t ∈ dom(ς)

undef otherwise

Action model extension ≤(−) : P(RType)→ P(AMod× AMod)

ς1 ≤A ς2 def
= ∀t ∈ dom(ς1). ∀α ∈ AArg. ∀(i, s1, s2) ∈ ς1(t)(α). ∃s′1, s′2 ∈ SState.

t ∈ dom(ς2) ∧ s1 ≡A s′1 ∧ s2 ≡A s′2 ∧ (i, s′1, s
′
2) ∈ ς2(t)(α)

Action model equivalence ≡(−) : P(RType)→ P(AMod× AMod)

ς1 ≡A ς2 def
= ς1 ≤A ς2 ∧ ς2 ≤A ς1

Protocol purity pureprotocol : Prop→ Spec ∈ ASets

pureprotocol(p)
def
= {i ∈ N | ∀j ≤ i. ∀(j, (l, s, ς)) ∈ p. ∀ς ′ ∈ AMod. (j, (l, s, ς ′)) ∈ p}

Permission purity pureperm : Prop→ Spec ∈ ASets

pureperm(p) = {i ∈ N | ∀j ≤ i. ∀(j, ((h, c), s, ς)) ∈ p. ∀c′ ∈ Cap. (j, ((h, c′), s, ς)) ∈ p}

State purity purestate : Prop→ Spec ∈ ASets

purestate(p)
def
= {i ∈ N | ∀j ≤ i. ∀(l, s, ς) ∈ p. ∀l′ ∈ LState. ∀s′ ∈ SState. (l′, s′, ς) ∈ p}
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Single-step view-shift v(−) : ∆(P(RType))→ Prop× Prop→ Spec ∈ ASets

p vA q def
= {i ∈ N | ∀m ∈M. ∀j ∈ N. 0 ≤ j ≤ i ⇒

bp ∗ {(j,m)}cj ⊆ bq ∗ {(j,m′) | m R̂Aj m′}cj}

Single-step atomic action

sat(−) : ∆(P(RType))→ ∆(Action)× Prop× Prop→ Spec ∈ ASets

a satA {p}{q} def
=

{i ∈ N | ∀m ∈M. ∀j ∈ N. 1 ≤ j ≤ i ⇒
[[a]](bp ∗ {(j,m)}cj) ⊆ bq ∗ {(j − 1,m′) | m R̂Aj−1 m

′}cj−1}

Lemma 41.

∀A,B ∈ P(RType). ∀p, q ∈ V. ∀a ∈ Act. a satA {p}{q} ⊆ a satA∪B {p}{q}

Lemma 42.

∀A ∈ P(RType). ∀p, q ∈ V. ∀a ∈ Act. a satA {p}{q} ⊆ a sat {p}{q}

Lemma 43.

∀A,B ∈ P(RType). ∀s1, s2 ∈ SState. s1 ≡A s2 ⇒ s1 ≡A\B s2

Lemma 44.

∀A,B ∈ P(RType). ∀ς1, ς2 ∈ AMod. ς1 ≤A ς2 ⇒ ς1 ≤A\B ς2

Lemma 45.

∀A ∈ P(RType). ∀ς ∈ AMod. ς ≡A ς|A

Lemma 46.

∀A ∈ P(RType). ∀ς1, ς2 ∈ AMod. ∀t ∈ dom(ς1). ∀α ∈ AArg.
ς1 ≤A ς2 ⇒ ς1(t)(α) ⊆ ς2|A(t)(α)

Lemma 47.

∀A ∈ P(RType). ∀ς ∈ AMod. ∀t ∈ dom(ς). ∀α ∈ AArg. ς(t)(α) ⊆ ς|A(t)(α)
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Lemma 48.

∀i ∈ N. ∀l, l′ ∈ LState. ∀s1, s2, s
′
1, s
′
2 ∈ SState. ∀ς1, ς2 ∈ AMod.

(s1 ≡A s′1 ∧ s2 ≡A s′2 ∧ p(l, s1)q = p(l′, s′1)q ∧
(∀r ∈ dom(s1). s1(r) = s2(r)⇒ s′1(r) = s′2(r))) ⇒

(l, s1, ς1) R̂RType
i (l, s2, ς2)⇒ (l′, s′1, ς1|A) R̂RType

i (l′, s′2, ς2|A)

Proof.

• by definition of R̂RType
i

s1 ≤ s2 ς1 ≤ ς2

and there exists a c = πc(p(l, s1)q) such that for all r ∈ dom(s1):

s1(r) = s2(r) ∨ (∃α ∈ AId. c(r, α) < 1 ∧ (i, s1, s2) ∈ ς1(s1(r).t)(s1(r).a, r, α))

• from the definition of ≡A and (−)|A it thus follows that,

s′1 ≤ s′2 ς1|A ≤ ς2|A

• let r ∈ dom(s′1) = dom(s1)

– case s1(r) = s2(r):

∗ by assumption s′1(r) = s′2(r)

– case c(r, α) < 1, (i, s1, s2) ∈ ς1(s1(r).t)(s1(r).a, r, α):

∗ by definition of (−)|A it thus follows that

(i, s′1, s
′
2) ∈ (ς1|A)(s1(r).t)(s1(r).a, r, α)

4.4.1 Support

Support assertion supp(−)(=) : ∆(P(RType))× Prop→ Spec ∈ ASets

suppA(p)
def
= {i ∈ N | ∀j ≤ i. ∀(j, (l, s, ς)) ∈ p. ∀s′ ∈ SState. ∀ς ′ ∈ AMod.

s|A = s′|A ∧ ς ≡A ς ′ ⇒ (j, (l, s′, ς ′)) ∈ p}

We use suppA(p1, ..., pn) as shorthand for suppA(p1) ∩ · · · ∩ suppA(pn).

Lemma 49.

∀A ∈ P(RType). ∀s1, s2 ∈ SState. s1|A ≡A s2 ⇒ s1|A = s2
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Proof.

• by definition of ≡A, dom(s1|A) = dom(s2)

• and for every r ∈ dom(s1|A), ((s1|A)(r)).t ∈ A

• and thus, ((s1|A)(r)).l = (s2(r)).l

Lemma 50.

∀A ∈ P(RType). ∀R ∈ Action. ∀i ∈ N. ∀s1, s2 ∈ SState.
s1 ≤ s2 ∧ (i, s1|A, s2|A) ∈ R⇒ (i, s1, s2) ∈ R

Proof. Follows from the assumption that good(R).

Lemma 51.

∀A,B ∈ P(RType). ∀p ∈ V. suppA(p) ⊆ suppA∪B(p)

Lemma 52.

∀A ∈ P(RType). ∀r ∈ RId. ∀t ∈ RType. ∀a ∈ Val. ∀p ∈ V.
suppA\{t}(p) ⊆ suppA∪{t}( p r,t,a)

Proof.

• let l ∈ LState, s, s′ ∈ SState, and ς, ς ′ ∈ AMod such that

(j, (l, s, ς)) ∈ p r,t,a s|A∪{t} = s′|A∪{t} ς ≡A∪{t} ς ′

• then s(r).t = t and (j, (s(r).l, s, ς)) ∈ p

• and since s|A\{t} = s′|A\{t} and ς ≡A\{t} ς ′ it follows that

(j, (s(r).l, s′, ς ′)) ∈ p

• and since region r has region type t it follows that s(r) = s′(r) and thus,

(j, (l, s′, ς ′)) ∈ p r,t,a

Lemma 53.

∀A ∈ P(RType). ∀i ∈ N. ∀t ∈ RType. ∀Ip, Iq ∈ Val× AId× Val→ V.
(∀x ∈ Val× AId× Val. i ∈ suppA\{t}(Ip(x), Iq(x))) ⇒

i ∈ suppA∪{t}(protocol(t, Ip, Iq))
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Proof.

• let j ≤ i, l ∈ LState, s, s′ ∈ SState, and ς, ς ′ ∈ AMod such that

(j, (l, s, ς)) ∈ protocol(t, Ip, Iq) s|A∪{t} = s′|A∪{t} ς ≡A∪{t} ς ′

• then

∀x ∈ AArg. ς(t)(x)|j = act(t, Ip, Iq)(x)|j

• it thus suffices to show that ∀x ∈ AArg. ς(t)(x)|j = ς ′(t)(x)|j
• let (a, r, α) ∈ AArg

• assume (k, s1, s2) ∈ ς ′(t)(a, r, α)|j :

– then, by Lemma 46, (k, s1, s2) ∈ ς|A∪{t}(t)(a, r, α)

– hence, there exists s′1, s′2 ∈ SState such that

s1 ≡A∪{t} s′1 s2 ≡A∪{t} s′2 (k, s′1, s
′
2) ∈ ς(t)(a, r, α)

– hence, there exists l1, l2 ∈ LState, ς ′′, ς ′′′ ∈ AMod, and v ∈ Val such that

(k, (l1, s
′
1, ς
′′)) ∈ Ip(a, α, v) (k, (l2, s

′
2, ς
′′′)) ∈ Iq(a, α, v)

and

s′i(r) = (li, t, a) s′1 ≤ s′2 ς ′′ ≤ ς ′′′

– since si ≡A∪{t} s′i it follows that

si|A\{t} = s′i|A\{t} si(r) = (li, t, a)

– since i ∈ suppA\{t}(Ip(a, α, v), Iq(a, α, v)) it thus follows that

(k, (l1, s1, ς
′′)) ∈ Ip(a, α, v) (k, (l2, s2, ς

′′′)) ∈ Iq(a, α, v)

– and thus, (k, s1, s2) ∈ ς(t)(a, r, α)|j
• assume (k, s1, s2) ∈ ς(t)(a, r, α)|j :

– then there exists l1, l2 ∈ LState, ς ′′, ς ′′′ ∈ AMod, and v ∈ Val such that

(k, (l1, s1, ς
′′)) ∈ Ip(a, α, v) (k, (l2, s2, ς

′′′)) ∈ Iq(a, α, v)

and

si(r) = (li, t, a) s1 ≤ s2 ς ′′ ≤ ς ′′′
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– since i ∈ suppA\{t}(Ip(a, α, v), Iq(a, α, v)) we thus have that,

(k, (l1, s1|A\{t}, ς ′′)) ∈ Ip(a, α, v) (k, (l2, s2|A\{t}, ς ′′′)) ∈ Iq(a, α, v)

– and thus (k, s1|A\{t}, s2|A\{t}) ∈ ς(t)(a, r, α)

– hence, by ς ≡A∪{t} ς ′, there exists s′1, s′2 ∈ SState such that

s1|A\{t} ≡A∪{t} s′1 s2|A\{t} ≡A∪{t} s′2 (k, s′1, s
′
2) ∈ ς ′(t)(α)

– hence, by Lemmas 43 and 49,

s′1 = s1|A\{t} s′2 = s2|A\{t}

– and thus, by Lemma 50,

(k, s1, s2) ∈ ς ′(t)(a, r, α)

Lemma 54.

∀A ∈ P(RType). ∀p1, p2 ∈ V.
suppA(p1) ∩ suppA(p2) ⊆ suppA(p1 ∩ p2) ∩ suppA(p1 ∪ p2)

Lemma 55.

∀A ∈ P(RType). ∀p1, p2 ∈ V. suppA(p1) ∩ suppA(p2) ⊆ suppA(p1 ⇒ p2)

Lemma 56.

∀A ∈ P(RType). ∀p1, p2 ∈ V. suppA(p1) ∩ suppA(p2) ⊆ suppA(p1 ∗ p2)

Proof.

• let l ∈ LState, s, s′ ∈ SState and ς, ς ′ ∈ AMod such that

(j, (l, s, ς)) ∈ p1 ∗ p2 s|A = s′|A ς ≡A ς ′

• hence, there exists l1, l2 ∈ LState such that

l = l1 • l2 (j, (l1, s, ς)) ∈ p1 (j, (l2, s, ς)) ∈ p2

• hence, (j, (l1, s
′, ς ′)) ∈ p1 and (j, (l2, s

′, ς ′)) ∈ p2 and thus (j, (l, s′, ς ′)) ∈ p1 ∗ p2
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4.4.2 Stability

Interference decomposition R̂
(=)
(−) ∈ N× (RId× P(AId))→ P(M×M)

(l1, s1, ς1) R̂r,Ai (l2, s2, ς2) iff
l1 = l2 ∧ s1 ≤ s2 ∧ ς1 ≤ ς2 ∧
∃c ∈ Cap. c = πc(p(l1, s1)q).

(∀r′ ∈ dom(s1). s1(r′) = s2(r′) ∨
(∃α ∈ AId. (r′ = r ⇒ α ∈ A) ∧ c(r′, α) < 1

∧ (i, s1, s2) ∈ ς1(s1(r).t)(s1(r).a, r, α)))

Stability decomposition stable(−) : ∆(P(AId)× RId)→ Prop→ Spec ∈ ASets

stabler,A(p)
def
= {i ∈ N | ∀j ≤ i. ∀m,m′ ∈M. (j,m) ∈ p ∧m R̂r,Ai m′ ⇒ (j,m′) ∈ p}

Lemma 57.

∀i ∈ N. ∀r ∈ RId. R̂r,AId
i = R̂RType

i

Lemma 58.

∀i ∈ N. ∀A1, A2 ∈ P(AId). ∀r ∈ RId. A1 ⊆ A2 ⇒ R̂r,A1
i ⊆ R̂r,A2

i

Lemma 59.

∀A1, A2 ∈ P(AId). ∀r ∈ RId. ∀p ∈ V.
stabler,A1(p) ∩ stabler,A2(p) ⊆ stabler,A1∪A2(p)

Lemma 60.

∀i ∈ N. ∀p, q ∈ V. ∀Ip, Iq : Val× AId× Val→ V.
∀r ∈ RId. ∀t ∈ RType. ∀a ∈ Val. ∀α ∈ AId.
i ∈ stable(p ∗ q) ∧ i ∈ suppA\{t}(p, q) ∧
i ∈ pureprotocol(p) ∧ purestate(q) ∧
(∀v : Val. ((Ip(a, α, v) ∩ p) ⊆ ⊥) ∨ (Iq(a, α, v) ⊆ p))
⇒ i ∈ stabler,{α}( p ∗ q r,t,a

Ip,Iq
)

Proof.

• assume

j ≤ i (j, (l, s, ς)) ∈ p ∗ q r,t,a
Ip,Iq

(l, s, ς) R̂
r,{α}
j (l, s′, ς ′)
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• then (j, (s(r).l, s, ς)) ∈ p and (j, (l, s, ς)) ∈ q

• case s(r) = s′(r):

– by Lemma 45, ς ≡A\{t} ς|A\{t}, and hence, since i ∈ suppA\{t}(p, q),

(j, (s(r).t, s[r 7→ (l, t, a)], ς|A\{t})) ∈ p ∗ q

– by Lemma 58 it follows that (l, s, ς) R̂r,AId
j (l, s′, ς ′) and thus, by Lemma 57,

(l, s, ς) R̂RType
j (l, s′, ς ′)

– and since p(l, s)q = p(s(r).l, s[r 7→ (l, t, a)])q,

s ≡A\{t} s[r 7→ (l, t, a)] s′ ≡A\{t} s′[r 7→ (l, t, a)]

and

∀r′ ∈ dom(s[r 7→ (l, t, a)]).

s(r′) = s′(r′)⇒ (s[r 7→ (l, t, a)])(r′) = (s′[r 7→ (l, t, a)])(r′)

it follows from Lemma 48 that,

(s(r).l, s[r 7→ (l, t, a)], ς|A\{t}) R̂RType
j (s(r).l, s′[r 7→ (l, t, a)], ς ′|A\{t})

– hence, by stability of p ∗ q,

(j, (s(r).l, s′[r 7→ (l, t, a)], ς ′|A\{t})) ∈ p ∗ q

– and, since i ∈ suppA\{t}(p, q),

(j, (s′(r).l, s′, ς ′)) ∈ p ∗ q

– hence,
(j, (l, s′, ς ′)) ∈ p ∗ q r,t,a

Ip,Iq

• case s(r) 6= s′(r):

– then (j, s, s′) ∈ ς(t)(a, r, α)

– hence, there exists l1, l2 ∈ LState, ς ′′, ς ′′′ ∈ AMod, and v ∈ Val such that

(j, (l1, s, ς
′′)) ∈ Ip(a, α, v) s(r) = (l1, t, a)

(j, (l2, s
′, ς ′′′)) ∈ Iq(a, α, v) s′(r) = (l2, t, a)

– case Ip(a, α, v) ∩ p ⊆ ⊥:
∗ since i ∈ pureprotocol(p), (j, (s(r).l, s, ς ′′)) ∈ p
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∗ hence (j, (s(r).l, s, ς)) ∈ ⊥, which is a contradiction

– case Iq(a, α, v) ⊆ p:
∗ then (j, (s′(r).l, s′, ς ′′′)) ∈ p
∗ since i ∈ pureprotocol(p) we thus have that (j, (s′(r).l, s′, ς ′)) ∈ p
∗ furthermore, since (j, (l, s, ς)) ∈ q, ς ≤ ς ′ and i ∈ purestate(q),

(j, (ε, s′, ς ′)) ∈ q

and thus (j, (l, s′, ς ′)) ∈ p ∗ q r,t,a
Ip,Iq

4.4.3 View shifts

Lemma 61.

∀i ∈ N. ∀A ∈ P(RType). ∀m1,m2,m3,m4 ∈M.

m1 R̂
∅
i m2 ∧m2 R̂

A
i m3 ∧m3 R̂

∅
i m4 ⇒ m1 R̂

A
i m4

Lemma 62.

∀A ∈ P(RType). ∀p, p′, q, q′ ∈ Prop.

(p vA p′) ∩ (a sat∅ {p′}{q′}) ∩ (q′ v∅ q) ⊆ (a satA {p}{q}) ∧
(p v∅ p′) ∩ (a satA {p′}{q′}) ∩ (q′ v∅ q) ⊆ (a satA {p}{q}) ∧
(p v∅ p′) ∩ (a sat∅ {p′}{q′}) ∩ (q′ vA q) ⊆ (a satA {p}{q})

Proof.

• let 1 ≤ j ≤ i, m1,m2 ∈M and h, h′ ∈ Heap such that

(j,m1) ∈ p h ∈ bm1 •m2c h′ ∈ [[a]](h)

• then there exists m′1,m′2 ∈M such that

(j,m′1) ∈ p′ h ∈ bm′1 •m′2c m2 R̂
A
j m′2

• hence, there exists m′′1,m′′2 ∈M such that

(j − 1,m′′1) ∈ q′ h′ ∈ bm′′1 •m′′2c m′2 R̂
∅
j−1 m

′′
2

• hence, there exists m′′′1 ,m′′′2 ∈M such that

(j − 1,m′′′1 ) ∈ q h′ ∈ bm′′′1 •m′′′2 c m′′2 R̂
∅
j−1 m

′′′
2
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• hence, by Lemma 61, m2 R̂
A
j−1 m

′′′
2 and thus

(p vA p′) ∩ (a sat∅ {p′}{q′}) ∩ (q′ v∅ q) ⊆ (a satA {p}{q})

• the other cases follow the same structure

Lemma 63.

∀i ∈ N. ∀Ip, Iq ∈ Val× AId× Val→ Prop. ∀t ∈ RType.

i ∈ (emp v∅ ∃s ∈ RType. t ≤ s ∗ protocol(s, Ip, Iq))

Proof.

• let j ≤ i, l1, l2 ∈ LState, s ∈ SState, ς ∈ AMod and h ∈ Heap such that

(j, (l1, s, ς)) ∈ emp h ∈ b(l1, s, ς) • (l2, s, ς)c

• by assumption dom(ς) is finite and thus t∗ \ dom(ς) is infinite

• pick s ∈ RType such that s ∈ t∗ \ dom(ς)

• then
(l2, s, ς) R̂

∅
j (l2, s, ς[s 7→ act(s, Ip, Iq)])

• and

(j, (l1, s, ς[s 7→ act(s, Ip, Iq)])) ∈ protocol(s, Ip, Iq)

• and lastly,

h ∈ b(l1, s, a[s 7→ act(s, Ip, Iq)]) • (l2, s, a[s 7→ act(s, Ip, Iq)])c

Lemma 64.

∀i ∈ N. ∀A ∈ Pfin(AId). ∀t ∈ RType. ∀a ∈ Val. ∀p ∈ Prop.

i ∈ (p v∅ ∃r : RId. p r,t,a ∗~α∈A[α]r1)

Proof.

• let j ≤ i, l1, l2 ∈ LState, s ∈ SState, ς ∈ AMod and h ∈ Heap such that

(j, (l1, s, ς)) ∈ p h ∈ b(l1, s, ς) • (l2, s, ς)c
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• by assumption dom(s) ∪ domr(πc(l1 • l2)) is finite

• pick r ∈ RId such that r 6∈ dom(s) ∪ domr(πc(l1 • l2))

• then
(l2, s, ς) R̂

∅
j (l2, s[r 7→ (l1, t, a)], ς)

• and

(j, ((ε, [(r,A) 7→ 1]), s[r 7→ (l1, t, a)], ς)) ∈ p r,t,a ∗~α∈A[α]r1

• and lastly,

h ∈ b((ε, [(r,A) 7→ 1]), s[r 7→ (l1, t, a)], ς) • (l2, s[r 7→ (l1, t, a)], ς)c

Phantom points-to (−)(=) 7→ (≡) : ∆(OId)×∆(FName)×∆(Val)→ Prop ∈ ASets

xf 7→ y
def
= {(i,m) ∈ N×M | (m.l.p)(x, f) = y}

Lemma 65.

∀t ∈ RType. ∀x ∈ OId. ∀f ∈ FName. ∀v1, v2 ∈ Val.

∀i ∈ N. i ∈ (xf 7→ v1 v∅ xf 7→ v2)

Proof.

• let j ≤ i, r ∈ Prop, m1,m2 ∈M and h ∈ Heap such that

(j,m1) ∈ xf 7→ v1 h ∈ bm1 •m2c

• hence, (x, f) ∈ dom(m1.l.p) and (x, f) 6∈ dom(m2.l.p)

• thus,

(j,m1[(x, f) 7→p v2]) ∈ xf 7→ v2 bm1 •m2c = bm1[(x, f) 7→p v2] •m2c

where m[(x, f) 7→p v] is notation for ((m.l.h,m.l.p[(x, f) 7→ v],m.l.c),m.s,m.a)

186



Atomic update allowed

 (−)
(=) : ∆(RId× P(RType))×∆(Action)→ Prop× Prop→ Spec ∈ ASets

p r,A
a q

def
= {i ∈ N | ∀j ≤ i. ∀m1,m2 ∈M. ∀h1 ∈ bm1c. ∀h2 ∈ bm2c.

1 ≤ j ∧ (j,m1) ∈ p ∧ (j − 1,m2) ∈ q ∧ h2 ∈ [[a]](h1) ⇒
∃α ∈ AId.

(m1.l.c)(r, α) > 0 ∧
(j − 1, (m1.s)|A, (m2.s)|A) ∈ (m1.a)((m1.s)(r).t)((m1.s)(r).a, r, α)}

View shift allowed  (−) : ∆(RId× P(RType))→ Prop× Prop→ Spec ∈ ASets

p r,A q
def
= {i ∈ N | ∀j ≤ i. ∀m1,m2 ∈M. ∀h ∈ bm1c. ∀h ∈ bm2c.

(j,m1) ∈ p ∧ (j,m2) ∈ q ⇒
∃α ∈ AId.

(m1.l.c)(r, α) > 0 ∧
(j, (m1.s)|A, (m2.s)|A) ∈ (m1.a)((m1.s)(r).t)((m1.s)(r).a, r, α)}

Lemma 66.

∀i ∈ N. ∀A ∈ P(RType). ∀r ∈ RId. ∀t ∈ RType. ∀b ∈ Val. ∀p1, p2, q1, q2 ∈ Prop.

valid(p1 ∗ p2 ⇒ q1 ∗ q2) ∩ suppA\{t}(p1, p2, q1, q2) ∩ ( p1
r,t,b ∗ p2  r,A∪{t} q1

r,t,b ∗ q2)

⊆ ( p1
r,t,b ∗ p2 vA∪{t} q1

r,t,b ∗ q2)

Proof.

• let j ≤ i, (l1, s, ς), (l2, s, ς), (l3, s, ς) ∈M and h ∈ Heap such that

(j, (l1, s, ς)) ∈ p1
r,t,b (j, (l2, s, ς)) ∈ p2

and

h ∈ b(l1, s, ς) • (l2, s, ς) • (l3, s, ς)c

• thus

(lr, s, ς) ∈ p1 s(r) = (l1, t, b)

where lr = s(r).l
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• since i ∈ suppA\{t}(p1, p2), we thus have that

(j, (lr, sr, ς)) ∈ p1 (j, (l2, sr, ς)) ∈ p2

where sr = s[r 7→ (ε, t, b)]

• and by upwards-closure, (j, (lr • l1, sr, ς)) ∈ p1

• hence, there exists (l′1, s
′, ς ′), (l′2, s

′, ς ′) ∈M such that

(j, (l′1, s
′, ς ′)) ∈ q1 (j, (l′2, s

′, ς ′)) ∈ q2

and

(lr • l1, sr, ς) • (l2, sr, ς) = (l′1, s
′, ς ′) • (l′2, s

′, ς ′)

• hence, s′ = sr, ς ′ = ς and lr • l1 • l2 = l′1 • l′2
• since i ∈ suppA\{t}(q1, q2) it follows that

(j, (ε, s′r, ς)) ∈ q1
r,t,b (j, (l′2, s

′
r, ς)) ∈ q2

where s′r = s[r 7→ (l′1, t, b)]

• furthermore, as

b(l1, s, ς) • (l2, s, ς) • (l3, s, ς)c = b(lr • l1, sr, ς) • (l2, sr, ς) • (l3, sr, ς)c
= b(l′1, sr, ς) • (l′2, sr, ς) • (l3, sr, ς)c
= b(ε, s′r, ς) • (l′2, s

′
r, ς) • (l3, s

′
r, ς)c

it suffices to prove that (l3, s, ς) R̂
A∪{t}
j (l3, s

′
r, ς)

• since i ∈ ( p1
r,t,b ∗ p2  r,A∪{t} q1

r,t,b ∗ q2) there exists an α ∈ AId such that

πc(l1 • l2)(r, α) > 0 (j, s|A∪{t}, s′r|A∪{t}) ∈ ς(t)(b, r, α)

• and for all r′ ∈ dom(s) such that r 6= r′, s(r′) = s′r(r
′)

Lemma 67.

∀i ∈ N. ∀A,B ∈ P(RType). ∀l ∈ LState. ∀s1, s2, s
′
1, s
′
2 ∈ SState. ∀ς1, ς2 ∈ AMod.

s1 ≡A s′1 ∧ s2 ≡A s′2 ∧ (∀r ∈ dom(s′1|RType\(A∪B)). s
′
1(r) = s′2(r)) ∧ p(l, s1)q = p(l, s′1)q ∧

(∀r ∈ dom(s′1|B). ∃α ∈ AId. πc(p(l1, s1)q)(r, α) < 1 ∧
(i, s′1|A∪B, s′2|A∪B) ∈ ς1(s′1(r).t)(s′1(r).a, r, α)) ⇒

(l, s1, ς1) R̂Ai (l, s2, ς2)⇒ (l, s′1, ς1) R̂A∪Bi (l, s′2, ς2)
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Proof.

• by assumption, s1 ≤ s2 and ς1 ≤ ς2
• since, s1 ≡A s′1 and s2 ≡A s′2, s′1 ≤ s′2
• let r ∈ dom(s′1) = dom(s1)

• case s′1(r) = s′2(r): trivial

• case s′1(r) 6= s′2(r):

– case r ∈ dom(s′1|B):
∗ by assumption, there exists an α ∈ AId such that

πc(p(l, s′1)q)(r, α) < 1 (i, s′1|A∪B, s′2|A∪B) ∈ ς1(s′1(r).t)(s′1(r).a, r, α)

– case r ∈ dom(s′1|A):
∗ then s1(r) = s′1(r) 6= s′2(r) = s2(r)

∗ there thus exists an α ∈ AId such that πc(p(l, s1)q)(r, α) < 1 and

(i, s1|A, s2|A) ∈ ς1(s1(r).g)(s1(r).a, r, α)

∗ hence, πc(p(l, s′1)q)(r, α) < 1 and

(i, s′1|A∪B, s′2|A∪B) ∈ ς1(s′1(r).t)(s′1(r).a, r, α)

– case r ∈ dom(s′1|RType\(A∪B)): trivial

Lemma 68.

∀A ∈ P(RType). ∀a ∈ Act. ∀r ∈ RId. ∀t ∈ RType. ∀b ∈ Val. ∀p1, p2, q1, q2 ∈ X → Prop.
suppA\{t}(p1, p2, q1, q2) ∩ pureperm(p1) ∩

(∃x : X. p1(x)
r,t,b ∗ p2(x) r,A∪{t}

a ∃x : X. q1(x)
r,t,b ∗ q2(x)) ∩

(a satA\{t} {∃x : X. p1(x) ∗ p2(x)}{∃x : X. q1(x) ∗ q2(x)})

⊆ (a satA∪{t} {∃x : X. p1(x)
r,t,b ∗ p2(x)}{∃x : X. q1(x)

r,t,b ∗ q2(x)})

Proof.

• let 1 ≤ j ≤ i, (l1, s, ς), (l2, s, ς), (l3, s, ς) ∈M, x ∈ X and h, h′ ∈ Heap such that

(j, (l1, s, ς)) ∈ p1(x)
r,t,b

(j, (l2, s, ς)) ∈ p2(x)

and

h ∈ b(l1, s, ς) • (l2, s, ς) • (l3, s, ς)c h′ ∈ [[a]](h)
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• thus

(lr, s, ς) ∈ p1(x) s(r) = (l1, t, b)

where lr = (s(r).l

• since i ∈ suppA\{t}(p1, p2) ∩ pureperm(p1), we thus have that

(j, ((lr.h, lr.p, ε), sr, ς)) ∈ p1(x) (j, (l2, sr, ς)) ∈ p2(x)

where sr = s[r 7→ ((ε, ε, lr.c), t, b)]

• and by upwards-closure, (j, ((lr.h, lr.p, ε) • l1, sr, ς)) ∈ p1(x)

• furthermore,

b(l1, s, ς) • (l2, s, ς) • (l3, s, ς)c = b((lr.h, lr.p, ε) • l1, sr, ς) • (l2, sr, ς) • (l3, sr, ς)c

• hence, there exists (l′1, s
′, ς ′), (l′2, s

′, ς ′), (l′3, s
′, ς ′) ∈M, and x′ ∈ X such that

(j − 1, (l′1, s
′, ς ′)) ∈ q1(x′) (j − 1, (l′2, s

′, ς ′)) ∈ q2(x′) (l3, sr, ς) R̂
A\{t}
j−1 (l′3, s

′, ς ′)

and

h′ ∈ b(l′1, s′, ς ′) • (l′2, s
′, ς ′) • (l′3, s

′, ς ′)c

• since i ∈ suppA\{t}(q1, q2), we thus have that,

(j − 1, (ε, s′r, ς
′)) ∈ q1(x′)

r,t,b
(j − 1, (l′2, s

′
r, ς
′)) ∈ q2(x′)

where s′r = s[r 7→ (l′1, t, b)]

• furthermore, as s′(r) = sr(r) = ((ε, ε, πc(lr)), t, b) it follows that

h′ ∈ b(ε, s′r, ς ′) • (l′2, s
′
r, ς
′) • (l′3, s

′
r, ς
′)c

• since

i ∈ (∃x : X. p1(x)
r,t,b ∗ p2(x) r,A∪{t}

a ∃x : X. q1(x)
r,t,b ∗ q2(x))

there exists an α ∈ AId such that,

πc(l1 • l2)(r, α) > 0 (j − 1, s|A∪{n}, s′r|A∪{t}) ∈ ς(t)(b, r, α)

• lastly, since sr ≡A\{t} s and s′ ≡A\{t} s′r it thus follows from Lemma 67 that,

(l3, s, ς) R̂
A∪{t}
j−1 (l′3, s

′
r, ς
′)
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4.4.4 Atomic update allowed

Lemma 69.

∀A ∈ P(RType). ∀r ∈ RId. ∀a ∈ Act. ∀p1, p2, q1, q2 ∈ Prop.

(p1  r,A
a q1) ⊆ (p1 ∗ p2  r,A

a q1 ∗ q2)

Proof. Follows from the fact that p ∗ q ⊆ p.

Lemma 70.

∀Ip, Iq ∈ Val× AId× Val→ Prop. ∀t ∈ RType. ∀r ∈ RId. ∀a ∈ Act. ∀b, v ∈ Val. ∀π ∈ Perm.

suppA∪{t}(Ip(b, α, v), Iq(b, α, v)) ⊆ ( Ip(b, α, v)
r,t,b

Ip,Iq
∗ [α]rπ  r,A∪{t}

a Iq(b, α, v)
r,t,b

Ip,Iq
∗ [α]π)

Proof.

• let 1 ≤ j ≤ i, (l1, s1, ς1), (l2, s2, ς2) ∈M, h, h′ ∈ Heap such that

(j, (l1, s1, ς1)) ∈ Ip(b, α, v)
r,t,b

Ip,Iq
∗ [α]rπ

(j − 1, (l2, s2, ς2)) ∈ Iq(b, α, v)
r,t,b

Ip,Iq
∗ [α]rπ

and

h ∈ b(l1, s1, ς1)c h′ ∈ b(l2, s2, ς2)c h′ ∈ [[a]](h)

• then ς1(t)(b, r, α)|j = act(t, Ip, Iq)(b, r, α)|j
• furthermore,

(j, (s1(r).l, s1, ς1)) ∈ Ip(b, α, v) (j − 1, (s2(r).l, s2, ς2)) ∈ Iq(b, α, v)

• and, since i ∈ suppA(Ip(b, α, v), Iq(b, α, v)),

(j, (s1(r).l, s1|A∪{t}, ς1)) ∈ Ip(b, α, v) (j − 1, (s2(r).l, s2|A∪{t}, ς2)) ∈ Iq(b, α, v)

• and thus, (j − 1, s1|A∪{t}, s2|A∪{t}) ∈ act(t, Ip, Iq)(b, r, α)|j = ς1(t)(b, r, α)|j
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Points-to (−).(=) 7→ (≡) : ∆(OId)×∆(FName)×∆(CVal)→ Prop ∈ ASets

x.f 7→ y
def
= {(i,m) ∈ N×M | (m.l.h.o)(x, f) = y}

Lemma 71.

∀A,B ∈ P(RType). ∀p1, p2, q1, q2, q3 ∈ Prop. ∀t ∈ RType. ∀r ∈ RId.
∀a ∈ Act. ∀x ∈ OId. ∀b ∈ Val. ∀v1, v2 ∈ CVal. ∀f ∈ FName. v1 6= v2 ⇒

suppA\{t}(p1, p2, q1, q2) ∩ (a sat {p1 ∗ p2}{q3}) ∩
(valid((q1 ∗ q2)⇒ x.f 7→ v1)) ∩ (valid(q3 ⇒ x.f 7→ v2))

⊆ ( p1
r,t,b ∗ p2  r,B

a q1
r,t,b ∗ q2)

Proof.

• let j ∈ N, m1,m2 ∈M and h, h′ ∈ Heap such that

(j,m1) ∈ p1
r,t,b ∗ p2 (j,m2) ∈ q1

r,t,b ∗ q2

and

h ∈ bm1c h′ ∈ bm2c h′ ∈ [[a]](h)

• since j ∈ suppA\{t}(p1, p2, q1, q2) it thus follows that

(j, (m1.l • (m1.s)(r).l, (m1.s)[r 7→ ⊥],m1.a)) ∈ p1 ∗ p2

(j, (m2.l • (m2.s)(r).l, (m2.s)[r 7→ ⊥],m2.a)) ∈ q1 ∗ q2

where s[r 7→ ⊥] is notation for s|dom(s)\{r}

• and

bm1c = b(m1.l • (m1.s)(r).l, (m1.s)[r 7→ ⊥],m1.a)c
bm2c = b(m2.l • (m2.s)(r).l, (m2.s)[r 7→ ⊥],m2.a)c

• hence, there exists an m3 ∈M such that

(j − 1,m3) ∈ q3 h′ ∈ bm3c

• hence,

(j − 1, (m2.l • (m2.s)(r).l, (m2.s)[r 7→ ⊥],m2.a)) ∈ x.f 7→ v1

(j − 1,m3) ∈ x.f 7→ v2

• and thus v1 = h′(x, f) = v2, contradicting v1 6= v2.
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5 Interpretation

In this section we define the interpretation of the logic in the model, and sketch the
soundness of a few representative proof rules.

Types [[` τ : Type]] ∈ ASets

Types are interpreted as step-indexed equivalence relations. All base types except propo-
sitions and specifications have a plain identity as the step-indexed equivalence. Specifica-
tions and assertion propositions are considered i-equal if the agree up to level i. Products
and function spaces are interpreted using the cartesian closed structure of ASets.

[[` 1 : Type]] = 1

[[` τ → σ : Type]] = [[` τ : Type]]→ [[` σ : Type]]
[[` τ × σ : Type]] = [[` τ : Type]]× [[` σ : Type]]
[[` Prop : Type]] = Prop
[[` Spec : Type]] = Spec

[[` Val : Type]] = ∆(Val)
[[` Class : Type]] = ∆(CName)

[[` Method : Type]] = ∆(MName)
[[` Field : Type]] = ∆(FName)

[[` Region : Type]] = ∆(RId)

[[` Action : Type]] = ∆(AId)

[[` RType : Type]] = ∆(RType)
[[` Perm : Type]] = ∆((0, 1])

Context [[Γ]] ∈ ASets, [[∆]] ∈ ASets

[[Γ, x : τ ]]
def
= [[Γ]]× [[` τ : Type]] [[ε]]

def
= 1

[[∆, x : Val]] def
= [[∆]]× [[` Val : Type]] [[ε]]

def
= 1

Terms [[Γ; ∆ ` M : τ ]] : [[Γ]]× [[∆]]→ [[τ ]] ∈ ASets

Terms are interpreted as morphisms in ASets and thus as non-expansive functions.
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Lambda calculus

[[Γ; ∆ ` x : τ ]](ϑ, δ) = πx(ϑ)

[[Γ; ∆ ` x : Val]](ϑ, δ) = πx(δ)

[[Γ; ∆ ` λx : τ. M : τ → σ]](ϑ, δ) = λv ∈ [[` τ : Type]]. [[Γ, x : τ ; ∆ ` M : σ]]((ϑ, v), θ)

[[Γ; ∆ ` M N : σ]](ϑ, δ) = ([[Γ; ∆ ` M : τ → σ]](ϑ, δ))([[Γ; ∆ ` N : τ ]](ϑ, δ))

Assertion logic

[[Γ; ∆ ` ⊥ : Prop]](ϑ, δ) = ∅
[[Γ; ∆ ` > : Prop]](ϑ, δ) = N×M

[[Γ; ∆ ` P ∧ Q : Prop]](ϑ, δ) = [[Γ; ∆ ` P : Prop]](ϑ, δ) ∩ [[Γ; ∆ ` Q : Prop]](ϑ, δ)

[[Γ; ∆ ` P ∨ Q : Prop]](ϑ, δ) = [[Γ; ∆ ` P : Prop]](ϑ, δ) ∪ [[Γ; ∆ ` Q : Prop]](ϑ, δ)

[[Γ; ∆ ` P⇒ Q : Prop]](ϑ, δ) = {(i,m) ∈ N×M | ∀j ≤ i. ∀n ≥ m.
(j, n) ∈ [[Γ; ∆ ` P : Prop]](ϑ, δ) ⇒
(j, n) ∈ [[Γ; ∆ ` Q : Prop]](ϑ, δ)}

[[Γ; ∆ ` ∀x : τ. P : Prop]](ϑ, δ) =
⋂

v∈[[`τ :Type]]

[[Γ, x : τ ; ∆ ` P : Prop]]((ϑ, v), δ)

[[Γ; ∆ ` ∃x : τ. P : Prop]](ϑ, δ) =
⋃

v∈[[`τ :Type]]

[[Γ, x : τ ; ∆ ` P : Prop]]((ϑ, v), δ)

Specification logic

[[Γ ` ⊥ : Spec]](ϑ) = ∅
[[Γ ` > : Spec]](ϑ) = N

[[Γ ` S ∧ T : Spec]](ϑ) = [[Γ ` S : Spec]](ϑ) ∩ [[Γ ` T : Spec]](ϑ)

[[Γ ` S ∨ T : Spec]](ϑ) = [[Γ ` S : Spec]](ϑ) ∪ [[Γ ` T : Spec]](ϑ)

[[Γ ` S⇒ T : Spec]](ϑ) = {i ∈ N | ∀j ≤ i.
j ∈ [[Γ ` S : Spec]](ϑ) ⇒
j ∈ [[Γ ` T : Spec]](ϑ)}

[[Γ ` ∀x : τ. S : Spec]](ϑ) =
⋂

v∈[[`τ :Type]]

[[Γ, x : τ ` S : Spec]]((ϑ, v))

[[Γ ` ∃x : τ. S : Spec]](ϑ) =
⋃

v∈[[`τ :Type]]

[[Γ, x : τ ` S : Spec]]((ϑ, v))

[[Γ ` M =τ N : Spec]](ϑ) = {i ∈ N | [[Γ ` M : τ ]](ϑ) =i [[Γ ` N : τ ]](ϑ)}
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Separation logic

[[Γ; ∆ ` emp : Prop]](ϑ, δ) = emp

[[Γ; ∆ ` P ∗ Q : Prop]](ϑ, δ) = [[Γ; ∆ ` P : Prop]](ϑ, δ) ∗ [[Γ; ∆ ` Q : Prop]](ϑ, δ)

[[Γ; ∆ ` P−∗ Q : Prop]](ϑ, δ) = {(i,m) ∈ N×M | ∀j ≤ i. ∀m′ ≥ m. ∀m′′ ∈M.

(m′ •m′′ defined ∧ (j,m′′) ∈ [[Γ; ∆ ` P : Prop]](ϑ, δ))

⇒ (j,m′ •m′′) ∈ [[Γ; ∆ ` Q : Prop]](ϑ, δ)}

C]

[[Γ; ∆ ` x : Val]](ϑ, δ) = δ(x)

[[Γ; ∆ ` null : Val]](ϑ, δ) = null
[[Γ; ∆ ` C : Class]](ϑ, δ) = C

[[Γ; ∆ ` m : Method]](ϑ, δ) = m

[[Γ; ∆ ` f : Field]](ϑ, δ) = f

[[Γ; ∆ ` M.F 7→ N : Prop]](ϑ, δ) = {(i,m) ∈ N×M | ∃o ∈ OId. ∃v ∈ CVal. ∃f ∈ FName.
o = [[Γ ` M : Val]](ϑ, δ) ∧
f = [[Γ ` F : Field]](ϑ, δ) ∧
v = [[Γ ` N : Val]](ϑ, δ) ∧
(m.l.h.o)(o, f) = v}

[[Γ; ∆ ` MF 7→ N : Prop]](ϑ, δ) = {(i,m) ∈ N×M | ∃o ∈ OId. ∃v ∈ CVal. ∃f ∈ FName.
o = [[Γ ` M : Val]](ϑ, δ) ∧
f = [[Γ ` F : Field]](ϑ, δ) ∧
v = [[Γ ` N : Val]](ϑ, δ) ∧
(m.l.p)(o, f) = v}

[[Γ; ∆ ` N1 7→ N2.M : Prop]](ϑ, δ) = {(i,m) ∈ N×M | ∃c ∈ CId. ∃o ∈ OId. ∃m ∈ MName.
c = [[Γ ` N1 : Val]](ϑ, δ) ∧
o = [[Γ ` N2 : Val]](ϑ, δ) ∧
m = [[Γ ` M : Method]](ϑ, δ) ∧
πc(πh(πl(m)))(c) = (o,m)}

[[Γ; ∆ ` M : C : Prop]](ϑ, δ) = {(i,m) ∈ N×M |
(m.l.h.t)([[Γ ` M : Val]](ϑ, δ)) = [[Γ ` C : Class]](ϑ, δ)}
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Embeddings and guarded recursion

[[Γ ` valid(P) : Spec]](ϑ) = valid([[Γ;− ` P : Prop]](ϑ))

[[Γ ` guardedτ (M) : Spec]](ϑ) = guarded([[Γ ` M : (τ → Prop)→ (τ → Prop)]](ϑ))

[[Γ ` .S : Spec]](ϑ) = .([[Γ ` S : Spec]](ϑ))

[[Γ; ∆ ` asn(S) : Prop]](ϑ, δ) = asn([[Γ ` S : Spec]](ϑ))

[[Γ; ∆ ` fixτ (M) : τ → Prop]](ϑ, δ) = fix([[Γ; ∆ ` M : (τ → Prop)→ (τ → Prop))]](ϑ, δ))

[[Γ; ∆ ` .P : Prop]](ϑ, δ) = .([[Γ; ∆ ` P : Prop]](ϑ, δ))

Region Types

[[Γ; ∆ ` ⊥ : RType]](ϑ, δ) = the empty string
[[Γ; ∆ ` M ≤ N : Prop]](ϑ, δ) = {(i,m) ∈ N×M |

[[Γ; ∆ ` N : RType]](ϑ, δ) ∈ ([[Γ; ∆ ` M : RType]](ϑ, δ))∗}
[[Γ; ∆ ` M u N : RType]](ϑ, δ) = longest common prefix of

[[Γ; ∆ ` M : RType]](ϑ, δ) and [[Γ; ∆ ` N : RType]](ϑ, δ)

Concurrent abstract predicates

[[Γ; ∆ ` P
R,T,A

: Prop]](ϑ, δ) = region([[Γ; ∆ ` R : Region]](ϑ, δ),

[[Γ; ∆ ` T : RType]](ϑ, δ),
[[Γ; ∆ ` A : Val]](ϑ, δ),
[[Γ; ∆ ` P : Prop]](ϑ, δ))

[[Γ; ∆ ` protocol(T, Ip, Iq) : Prop]](ϑ, δ) = protocol([[Γ; ∆ ` T : RType]](ϑ, δ),
[[Γ; ∆ ` Ip : Val× Action× Val→ Prop]](ϑ, δ),

[[Γ; ∆ ` Iq : Val× Action× Val→ Prop]](ϑ, δ))

[[Γ; ∆ ` [A]RP : Prop]](ϑ, δ) = action([[Γ; ∆ ` A : Action]](ϑ, δ),

[[Γ; ∆ ` R : Region]](ϑ, δ),

[[Γ; ∆ ` P : Perm]](ϑ, δ))
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[[Γ ` stable(P) : Spec]](ϑ) = stable([[Γ ` P : Prop]](ϑ))

[[Γ ` stableRA(P) : Spec]](ϑ) = stable
[[Γ`R:Region]](ϑ)
{[[Γ`A:Action]](ϑ)}([[Γ ` P : Prop]](ϑ))

[[Γ ` depT(P) : Spec]](ϑ) = supp([[Γ`T:RType]](ϑ))∗([[Γ ` P : Prop]](ϑ))

[[Γ ` indepT(P) : Spec]](ϑ) = suppRType\([[Γ`T:RType]](ϑ))∗([[Γ ` P : Prop]](ϑ))

[[Γ ` pureprotocol(P) : Spec]](ϑ) = pureprotocol([[Γ ` P : Prop]](ϑ))

[[Γ ` purestate(P) : Spec]](ϑ) = purestate([[Γ ` P : Prop]](ϑ))

[[Γ ` pureperm(P) : Spec]](ϑ) = pureperm([[Γ ` P : Prop]](ϑ))

[[Γ ` P v Q : Spec]](ϑ) = [[Γ ` P : Prop]](ϑ) v [[Γ ` Q : Prop]](ϑ)

[[Γ ` P vT Q : Spec]](ϑ) = [[Γ ` P : Prop]](ϑ) vRType\([[Γ`T:RType]](ϑ))∗ [[Γ ` Q : Prop]](ϑ)

[[Γ ` P R,T Q : Spec]](ϑ) = {i ∈ N | ∃r ∈ RId. ∃t ∈ RType.
r = [[Γ ` R : Region]](ϑ) ∧
t = [[Γ ` T : RType]](ϑ) ∧
i ∈ ([[Γ ` P : Prop]](ϑ) r,RType\t∗ [[Γ ` Q : Prop]](ϑ))}

[[Γ ` P R,T
(∆).〈s〉 Q : Spec]](ϑ) = {i ∈ N | ∃p, q ∈ [[∆]]→ Prop. ∃r ∈ RId. ∃t ∈ RType.

∀l, l′ ∈ Stack. ∀a ∈ Act.
r = [[Γ ` R : Region]](ϑ) ∧
t = [[Γ ` T : RType]](ϑ) ∧
p = λδ ∈ [[∆]]. [[Γ; ∆ ` P : Prop]](ϑ, δ) ∧
q = λδ ∈ [[∆]]. [[Γ; ∆ ` Q : Prop]](ϑ, δ) ∧
(l, s)

a−→ (l′, ε) ∧
i ∈ (||p||∆(l) r,RType\t∗

a ||q||∆(l′))}
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Hoare assertions

[[Γ ` (∆).{P}s̄{Q}]](ϑ) =

{i ∈ N | ∃p, q ∈ [[∆]]→ Prop. ∀j ≤ i. ∀t ∈ TId. ∀l ∈ Stack.
p = λδ ∈ [[∆]]. [[Γ; ∆ ` P : Prop]](ϑ, δ) ∧
q = λδ ∈ [[∆]]. [[Γ; ∆ ` Q : Prop]](ϑ, δ) ∧
safej((t, l, stm(̄s)), ||p||∆(l), ||q||∆)}

[[Γ ` C.M : (∆).{P}{r.Q}]](ϑ) =

{i ∈ N | ∃p ∈ [[∆, this]]→ Prop. ∃q ∈ [[∆, this, r]].

∃c ∈ CName. ∃m ∈ MName.
∀j ≤ i. ∀t ∈ TId. ∀l ∈ Stack. ∀ot ∈ OId. ∀vȳ ∈ CVal.
p = λδ ∈ [[∆, this]]. [[Γ; ∆ ` P : Prop]](ϑ, δ) ∧
q = λδ ∈ [[∆, this, z]]. [[Γ; ∆ ` Q[z/r] : Prop]](ϑ, δ) ∧
c = [[Γ; ∆ ` C : Class]](ϑ) ∧
m = [[Γ; ∆ ` M : Method]](ϑ) ∧
body(c,m) = {Cy; s̄; return z} ∧
safej((t, (l[this 7→ ot, ȳ 7→ vȳ]), stm(̄s)), ||p||∆,this(l[this 7→ ot]), ||q||∆,this,z)}

[[Γ ` (∆).{P}〈s〉{Q} : Spec]](ϑ) =

{i ∈ N | ∃p, q ∈ [[∆]]→ Prop. ∀j ≤ i. ∀t ∈ TId. ∀l, l′ ∈ Stack. ∀a ∈ Act.
p = λδ ∈ [[∆]]. [[Γ; ∆ ` P : Prop]](ϑ, δ) ∧
q = λδ ∈ [[∆]]. [[Γ; ∆ ` Q : Prop]](ϑ, δ) ∧
(l, s)

a−→ (l′, ε) ∧
j ∈ (a sat {||p||∆(l)}{||q||∆(l′)})}

[[Γ ` (∆).{P}〈s〉T{Q} : Spec]](ϑ) =

{i ∈ N | ∃p, q ∈ [[∆]]→ Prop. ∃rt ∈ RType. ∀j ≤ i. ∀t ∈ TId. ∀l, l′ ∈ Stack. ∀a ∈ Act.
p = λδ ∈ [[∆]]. [[Γ; ∆ ` P : Prop]](ϑ, δ) ∧
q = λδ ∈ [[∆]]. [[Γ; ∆ ` Q : Prop]](ϑ, δ) ∧
rt = [[Γ ` T : RType]](ϑ) ∧
(l, s)

a−→ (l′, ε) ∧
j ∈ (a satRType\rt∗ {||p||∆(l)}{||q||∆(l′)})}

where || − ||∆ : ([[∆]]→ V)→ (Stack→ V) is defined as follows:

||p||∆(l)
def
=

{
p(l(x1), ..., l(xn)) if ∆ = x1, ..., xn and x1, ..., xn ∈ dom(l)

∅ otherwise
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Assertion logic entailment [[Γ; ∆ | Φ | P ` Q]] : 2

[[Γ; ∆ | Φ | P ` Q]] =

∀ϑ ∈ [[Γ]]. ∀δ ∈ [[∆]]. ∀i ∈ [[Φ]](ϑ). ∀m ∈M.

(i,m) ∈ [[Γ; ∆ ` P : Prop]](ϑ, δ)⇒ (i,m) ∈ [[Γ; ∆ ` Q : Prop]](ϑ, δ)

Specification logic entailment [[Γ | S1, ...,Sn ` T]] : 2

[[Γ | S1, ...,Sn ` T]] = ∀ϑ ∈ [[Γ]].


 ⋂

i∈{1,...,n}
[[Γ ` Si : Spec]](ϑ)


 ⊆ [[Γ ` T : Spec]](ϑ)

5.1 Soundness

We have already proven the soundness of the most important proof rules for CAP, guarded
recursion, the embeddings and phantom state in Section 4. In this section we consider the
soundness of the Hoare logic. In particular, we prove the soundness of two representative
proof rules, namely the frame rule (Lemma 75) and the proof rule for forking a new
thread (Lemma 77).

Since framing of assertions is explicitly build into the interpretation of the safe pred-
icate, the soundness of the frame rule reduces to proving that if mod(̄s)∩FV(R) = ∅ then
the interpretation of R is the same in initial and terminal stack of s̄. Lemma 74 expresses
that mod is an over-approximation of the set of modified stack variables. Note that
mod is only defined on sequences of statements (i.e., mod is not defined on thread call
stacks) and this lemma is explicitly stated in terms of a sequence of statements. Since
method and delegate calls introduce a new stack frame, which is restored upon their
return, we can ignore the bodies of method and delegate calls. This is achieved using
Lemma 73, which allows us strengthen the post-condition of s1; s2, by strengthening the
post-condition of s2 (under an arbitrary pre-condition).

Lemma 72 (FV). If Γ; ∆ ` M : τ then

∀ϑ ∈ [[Γ]]. ∀δ1, δ2 ∈ [[∆]].

(∀x ∈ FV(M). δ1(x) = δ2(x))⇒ [[Γ; ∆ ` M : τ ]](ϑ, δ1) = [[Γ; ∆ ` M : τ ]](ϑ, δ2)

Lemma 73.

∀i ∈ N. ∀t ∈ TId. ∀l ∈ Stack. ∀s1, s2 ∈ TCStack. ∀p ∈ Prop. ∀q, q′ ∈ Stack→ Prop.
(∀j ≤ i. ∀r ∈ Prop. ∀l′ ∈ LState. safej((t, l

′, s2), r, q)⇒ safej((t, l
′, s2), r, q′)) ⇒

safei((t, l, s1; s2), p, q)⇒ safei((t, l, s1; s2), p, q′)

Proof. By induction on i. As safety is trivial for i = 0, assume i = j + 1.
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• Case irr(s1; s2) or s1 = ε:

– then s1 = ε

– hence safei((t, l, s2), p, q) and thus

safei((t, l, s2), p, q′)

• Case (t, l, s1; s2)
a−→ {(t, l′, s′)} ] T and s1 6= ε:

– by Lemma 16 there thus exists an s′1 such that s′ = s′1; s2

– furthermore, by safety there exists a

p′ ∈ {(t, l′, s′1; s2)} ] T → Prop

such that

∀z ∈ {(t, l′, s′1; s2)} ] T. i ∈ stable(p′(z))
a sati

{
p
}{

p′(t, l′, s′1; s2) ∗~z∈T p′(z)
}

safej((t, l
′, s′1; s2), p′(t, l′, s′1; s2), q)

∀z ∈ T. safej(z, p′(z), λ_. >)

– hence, by the induction hypothesis,

safej((t, l
′, s′1; s2), p′(t, l′, s′1; s2), q′)

Lemma 74 (Modifies clause).

∀i ∈ N. ∀t ∈ TId. ∀l ∈ Stack. ∀s ∈ seq Stm. ∀p ∈ Prop. ∀q ∈ Stack→ Prop. ∀x ∈ Var.
x ∈ dom(l) ∧ x 6∈ mod(s) ∧ safei((t, l, stm(s)), p, q) ⇒

safei((t, l, stm(s)), p, λl′ ∈ LState. q(l′) ∧ l(x) = l′(x))

Proof. By induction on i. As safety is trivial for i = 0, assume i = j + 1.

• Case irr(t, l, s):

– by assumption
p vi q(l)

– and clearly,
q(l) = (q(l) ∧ l(x) = l(x))

• Case (t, l, s)
a−→ {(t, l′, s′)} ] T :

– Case Seq followed by MCall:
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∗ there exists y, z, ū, r ∈ Var and sb, s′′ ∈ seq Stm such that

s = (y = z.m(ū); s′′) s′ = sb; return (l, y, r); s′′

and T = ∅
∗ since x 6∈ mod(s), x 6= y and x 6∈ mod(s′′)
∗ by safety of s there exists a p′ ∈ Prop such that

i ∈ stable(p′) i ∈ (a sat {i}{p}p′)

safej((t, l
′, sb; return (l, y, r); s′′), p′, q)

∗ by Lemma 73 it thus suffices to prove

∀k ≤ j. ∀p′′ ∈ Prop. ∀l′ ∈ LState.
safek((t, l

′, return (l, y, r); s′′), p′′, q) ⇒
safek((t, l

′, return (l, y, r); s′′), p′′, λl′ ∈ LState. q(l′) ∧ l(x) = l′(x))

Case (t, l′, return (l, y, r); s′′) id−→ (t, l[y 7→ l′(r)], s′′):
· by assumption there thus exists a p′′′ ∈ Prop such that

k ∈ stable(p′′′) k ∈ (id sat {p′′}{p′′′})

safek−1((t, l[y 7→ l′(r)], s′′), p′′′, q)

· hence, by the induction hypothesis (as x 6∈ mod(s′′)):

safek−1((t, l[y 7→ l′(r)], s′′), p′′′, λl′ ∈ LState. q(l′)∧(l[y 7→ l′(r)])(x) = l′(x))

· hence, as x 6= y:

safek−1((t, l[y 7→ l′(r)], s′′), p′′′, λl′ ∈ LState. q(l′) ∧ l(x) = l′(x))

– Case Seq followed by DCall: same as above

– Case Seq followed by Assign/FRead/FWrite/IfT/IfF/CAlloc/DAlloc:

∗ then there exists s1 ∈ Stm and s′1, s2 ∈ seq Stm such that

s = s1; s2 s′ = s′1; s2 x 6∈ mod(s′) T = ∅

∗ by safety there thus exists a p′ ∈ Prop such that

i ∈ stable(p) i ∈ (a sat {p}{p′})

safej((t, l
′, s′), p′, q)
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∗ and, by the induction hypothesis,

safej((t, l
′, s′), p′, λl′′ ∈ LState. q(l′) ∧ l′(x) = l′′(x))

∗ since x 6∈ mod(s), l(x) = l′(x) and thus,

safej((t, l
′, s′), p′, λl′′ ∈ LState. q(l′) ∧ l(x) = l′′(x))

– Case Fork: similar to the above cases

Lemma 75 (Frame rule). The following rule is sound.

Γ | Φ ` (∆).{P}s̄{Q} mod(̄s) ∩ FV(R) = ∅
Γ | Φ ` (∆).{P ∗ R}s̄{Q ∗ R}

Proof.

• suppose ϑ ∈ [[Γ]] and i ∈ [[Φ]]

• as safety is trivial for i = 0, assume i = j + 1

• let

p = λδ ∈ [[∆]]. [[Γ; ∆ ` P : Prop]](ϑ, δ)

q = λδ ∈ [[∆]]. [[Γ; ∆ ` Q : Prop]](ϑ, δ)

r = λδ ∈ [[∆]]. [[Γ; ∆ ` R : Prop]](ϑ, δ)

• suppose t ∈ TId and l ∈ Stack

• by assumption,
safei((t, l, s̄), ||p||∆(l), ||q||∆)

• hence, by Lemma 15,

safei((t, l, s̄), ||p||∆(l) ∗ ||r||∆(l), λl′ ∈ Stack. ||q||∆(l′) ∗ ||r||∆(l))

• since mod(s) ∩ FV(R) = ∅ it thus follows by Lemma 74 that,

safei((t, l, s̄), ||p||∆(l)∗||r||∆(l), λl′ ∈ Stack. ||q||∆(l′)∗||r||∆(l)∧
∧

x∈FV(R)

l′(x) = l(x))

• hence, by Lemma 72,

safei((t, l, s̄), ||p||∆(l) ∗ ||r||∆(l), λl′ ∈ Stack. ||q||∆(l′) ∗ ||r||∆(l′))
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Lemma 76.

∀i ∈ N. ∀t ∈ TId. ∀l ∈ Stack. ∀s ∈ seq Stm. ∀p ∈ Prop. ∀q ∈ Stack→ Prop.
safei((t, l, stm(s)), p, q)⇒ safei((t, l, stm(s)), p, λ_. >)

Lemma 77 (Forking). The following proof rule is sound.

Γ | Φ ` .(C.m : (−).{P}{ret.Q}) Γ ` C : Class Γ ` m : Method
Γ,∆ | Φ ` stable(P) ∧ stable(Q)

Γ | Φ ` (∆).{P[y/this] ∗ x 7→ y.m ∗ y : C}fork(x){emp}

Proof.

• suppose ϑ ∈ [[Γ]], i ∈ [[Φ]], t ∈ TId, and l ∈ Stack

• as safety is trivial if i = 0 assume i = j + 1

• suppose (t, l, fork(x))
a−→ {(t, l′, s′)} ] T

• then there exists C ∈ CName, o ∈ OId, mb ∈ MName, r, ȳ ∈ Var, l′′ ∈ Stack,
t′ ∈ TId, s̄ ∈ Stm such that,

a = ctype(l(x),C, o,mb) T = {(t′, l′′, s̄)} l′′ = [this 7→ o, ȳ 7→ null]

and

body(C,mb) = void mb(){Cy; s̄; return r} l′ = l s′ = ε

• let

C = [[Γ ` C : Class]](ϑ)

m = [[Γ ` m : Method]](ϑ)

p1 = λδ ∈ [[this]]. [[Γ; this ` P : Prop]](ϑ, δ)

q1 = λδ ∈ [[this, r]]. [[Γ; this, r ` Q[r/ret] : Prop]](ϑ, δ)

p2 = λδ ∈ [[∆]]. [[Γ; ∆ ` P[y/this] : Prop]](ϑ, δ)

p3 = λδ ∈ [[∆]]. [[Γ; ∆ ` x 7→ y.m ∗ y : C : Prop]](ϑ, δ)

p4 = λδ ∈ [[∆]]. [[Γ; ∆ ` P[y/this] ∗ x 7→ y.m ∗ y : C : Prop]](ϑ, δ)

= λδ ∈ [[∆]]. p2(δ) ∗ p3(δ)

q2 = λδ ∈ [[∆]]. [[Γ; ∆ ` emp : Prop]](ϑ, δ)

= λδ ∈ [[∆]]. emp

• then

i ∈ (ctype(l(x),C, o,mb) sat {||p2||∆(l)}{||p2||∆(l) ∗ l(y) = o ∗mb = m ∗ C = C})
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• suppose l(y) = o, mb = m, and C = C (safety follows trivially otherwise)

• hence, as l(y) = o,
||p2||∆(l) = ||p1||this(l′′)

• furthermore, by assumption,

i ∈ stable(||p2||∆(l)) safej((t
′, l′′, sb), ||p1||this(l′′), ||q||this,r)

• and thus
safej((t

′, l′′, sb), ||p2||∆(l), ||q||this,r)

• hence, by Lemma 76,

safej((t
′, l′′, sb), ||p2||∆(l), λ_. >)

• and
safej((t, l, ε), l(y) = o ∗mb = m ∗ C = T, ||q2||∆)

as p v emp for all p ∈ Prop

Theorem 2 (Soundness). The specification logic and the assertion logic is sound:

If Γ; ∆ | Φ | P ` Q then [[Γ; ∆ | Φ | P ` Q]].
If Γ ` Φ ` S then [[Γ ` Φ ` S]].

Theorem 3. If Γ | Φ ` (∆).{P}s̄{Q} then for all

ϑ ∈ [[Γ]] i ∈ [[Φ]](ϑ) l ∈ [[∆]]

and

t ∈ TId j ≤ i h ∈ b||λδ. [[Γ; ∆ ` P : Prop]](ϑ, δ)||∆(l)ci

if
(h, {(t, l, stm(̄s))})→j (h′, {(t, l′, ε)} ] T ′)

and T ′ is irreducible then h′ ∈ b||λδ. [[Γ; ∆ ` Q : Prop]](ϑ, δ)||∆(l′)ci−j.
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Abstract. We present a case study of formal specification for the C]

joins library, an advanced concurrent library implemented using both
shared mutable state and higher-order methods. The library is specified
and verified in HOCAP, a higher-order separation logic extended with a
higher-order variant of concurrent abstract predicates.

1 Introduction

It is well-known that modular specification and verification of concurrent higher-
order imperative programs is very challenging. In the last decade good progress
has been made on reasoning about subsets of these programming language fea-
tures. For example, higher-order separation logic with nested triples has proved
useful for modular specification and verification of higher-order imperative pro-
grams that use state with little sharing, e.g., [23, 16, 15]. Nested triples support
specification of higher-order methods and higher-order quantification allows li-
brary specifications to abstract over the internal state maintained by the library
and the state effects of function arguments.

Likewise, concurrent abstract predicates [7] has proved useful for reasoning
about shared mutable data structures in a concurrent setting. Concurrent ab-
stract predicates (CAP) extends separation logic with protocols governing access
to shared mutable state. Thus CAP supports modular specification of shared mu-
table data structures that abstract over the internal sharing, e.g., [5]. However,
CAP does not support modular reasoning about external sharing – the sharing
of other mutable data structures through a shared mutable data structure. For
instance, CAP does not support modular reasoning about locks3 – the canonical
example of a shared mutable data structure used to facilitate external sharing.

We have recently proposed HOCAP [26], a new program logic which combines
higher-order separation logic with concurrent abstract predicates and extends
concurrent abstract predicates with state-independent higher-order protocols. To
reason about external sharing through a data structure, we parameterise the
specification of the data structure with assertions that clients can instantiate to
describe the resources they wish to share through the data structure. Higher-
order protocols allow us to impose protocols on these external resources when

3 See Section 6 for a discussion of this issue.



reasoning about the implementation of the data structure. State-independent
higher-order protocols allow us to reason about non-circular external sharing
patterns.

HOCAP is thus intended as a general purpose program logic for modular
specification and verification of concurrent higher-order imperative programs
with support for modular reasoning about both internal and external sharing.
We have previously verified simple examples in HOCAP. In this paper we report
on an extensive case study of a sophisticated and realistic library that combines
all these challenges in one, to test whether HOCAP can in fact be used to give
an abstract formal specification.

In particular, we explore how to give a modular specification to a concurrent
library that features internal sharing and is used to facilitate external shar-
ing. Clients interact with the library using reentrant callbacks. The specification
should thus abstract over the internal state while allowing abstract reasoning
about external sharing through the library and reentrant calls back into the li-
brary. Furthermore, the specification should of course be strong enough to reason
about clients, and weak enough to allow the implementation of the library to be
verified against the specification.

Our case study of choice is the C] joins library [20]. The joins library, which is
based on the join calculus [8, 9], provides a declarative concurrency model based
on message passing. Declarative message patterns are used to specify synchro-
nisation conditions and function arguments are used to specify synchronisation
actions. Synchronisation actions might themselves cause new messages to be sent,
leading to reentrant callbacks. The joins concurrency model is useful for defining
new synchronisation primitives – i.e., to facilitate external sharing. Finally, the
library itself is implemented using internal state.

In this paper we present a formal specification of a subset of the C] joins
library in HOCAP. The specification is expressed in terms of the high-level join
primitives exposed by the library and hides all internal state from clients. More-
over, we test the specification of the joins library by verifying a number of syn-
chronisation primitives for which there are already accepted specifications in the
literature. For example, we verify that a reader-writer lock implemented using
joins can be proved to satisfy the standard separation logic specification for a
reader-write lock. We have chosen to focus on synchronisation primitives because
synchronisation primitives are specifically designed to facilitate external sharing.

In addition to its role as a case study of a higher-order reentrant concurrent
library, the specification of the joins library is itself interesting. The main idea
behind the specification is to allow clients of the joins library to impose ownership
transfer protocols at the level of the join primitives exposed by the library.
As illustrated with several examples, this leads to natural and short proofs of
synchronisation primitives implemented using the joins library.

We have also verified a simple lock-based implementation of the joins library.
However, in this paper we focus on the joins specification and the use thereof,
since the main point is to investigate how HOCAP can be used to give ab-
stract specifications for concurrent higher-order imperative libraries. We refer



the interested reader to the accompanying technical report for details about the
verification of the joins implementation [25]. This paper does not require the
reader to understand all the details of HOCAP.

Outline. The remainder of the paper is organised as follows. In Section 2
we give an extensive introduction to the joins library using a series of examples
to explain each feature of the library. Along the way, we sketch how one can
reason informally, in separation-logic style, about the correctness of the appli-
cations. In Section 3 we summarise the necessary bits of HOCAP. This leads
us to Section 4, where we introduce the formal specification of the joins library.
In Section 5 we revisit a couple of the example applications and show how the
informal proof sketches from Section 2 can be turned into formal proofs using
the formal specification from Section 4. Finally, we evaluate and discuss the case
study in Section 6.

2 Introducing joins

The joins concurrency model is based on the concept of messages, which are used
both for synchronisation and communication between threads. Conceptually, a
join instance consists of a single message pool and a number of channels for
adding messages to this pool. Channels come in two varieties, synchronous and
asynchronous. Sending a message via a synchronous channel adds the message
to the message pool and blocks the sender until the message has been received.
Asynchronous channels simply add messages to the message pool, without block-
ing the sender.

The power of the joins calculus stems from how messages are received. One
declares a set of chords, each consisting of a pattern (a condition on the message
pool) and a continuation. When a pattern matches a set of messages in the
message pool, the chord may fire, causing the continuation to execute. Crucially,
once a chord fires, the messages that matched the pattern are removed from
the message pool atomically, making them unavailable for future matches. Upon
termination of the continuation, the clients that added the removed messages
via synchronous channels are woken up and allowed to continue. We say that a
message has been received when it has been matched by a chord and the chord
continuation has terminated.

In the rest of this section we introduce the C# joins library, one feature at
a time. Each new feature is introduced with a joins example of a synchronisa-
tion primitive implemented using this feature. For each example, we sketch an
informal proof of the synchronisation primitive in separation logic. The exam-
ples thus serve both to introduce the joins library and motivate the main ideas
behind our formal specification of the joins library.

We take as a starting point Russo’s joins library for C] [20], with a slightly
simplified API. In particular, we have omitted value-carrying channels, as value-
carrying channels do not add any conceptual difficulties.



2.1 Synchronous channels

Sending a message via a synchronous channel causes the sender to block until the
message has been received. To illustrate, we consider the example of a 2-barrier
– an asymmetric barrier restricted to two clients.

Implementation. One can implement a 2-barrier as a joins instance with
two synchronous channels – one for each client to signal its arrival. Clients should
block at the barrier until both clients have signalled their arrival. This can be
achieved with a single chord with a pattern that allows it to fire when there is
a pending message on both channels (i.e., when both clients have arrived). The
C] code for a 2-barrier is given in Figure 1.

class TwoBarrier {
private SyncChannel ch1;
private SyncChannel ch2;

public TwoBarrier() {
Join j = new Join();
ch1 = new SyncChannel(j);
ch2 = new SyncChannel(j);
Pattern p = j.When(ch1).And(ch2);
p.Do();
}

public void Arrive1() { ch1.Call(); }
public void Arrive2() { ch2.Call(); }
}

Fig. 1. Joins 2-barrier implementation.

The TwoBarrier constructor creates
a join instance, j, and two synchronous
channels, ch1 and ch2, attached to the
underlying message pool of this join
instance. Next, the constructor cre-
ates a patternp that matches any pair
of messages in the message pool con-
sisting of a ch1 message (i.e., a mes-
sage added via the ch1 channel) and
a ch2 message. Lastly, it registers this
pattern as a chord without a continua-
tion. Hence, this chord may fire when
there is a pending message on both
channels and when it fires, it atom-
ically removes and receives these two
messages from the message pool. Each
Arrive method signals the client’s ar-
rival by sending a message on the cor-
responding channel using the Call method.

All the examples we consider in this article follow the same structure as the
above example: the constructor creates a join instance with accompanying chan-
nels and registers a number of chords. After this initialisation phase, the chords
and channels stay fixed and interaction with the joins instance is limited to the
sending of messages.

We now sketch a proof of this 2-barrier implementation using separation
logic. Recall that separation logic assertions, say P and Q, describe and assert
ownership of resources and that P ∗Q holds if P and Q describe (conceptually)
disjoint resources. The logic will be introduced in greater detail in Section 4
when we get to the formal specification and formal reasoning.

Desired specification. From the point of view of resources, a barrier al-
lows clients to exchange resources. We call these resources external as they are
typically external to the barrier data structure itself. On arrival at the barrier
each client may transfer ownership of some resource to the barrier, which is then
redistributed atomically once both clients have arrived. For the purpose of this



introduction we will make the simplifying assumption that each client transfers
the same resource to the barrier on each arrival and that these resources are
redistributed in the same way at each round of synchronisation. In Section 5.2
we consider a general specification without these simplifying assumptions.

Under these assumptions we can specify the barrier in terms of two predi-
cates, Bin

i and Bout
i , where Bin

i describes the resources client i transfers to the
barrier upon arrival, and Bout

i describes the resources client i expects to receive
back from the barrier upon leaving. These predicates thus describe the external
resources clients intend to share through the barrier. Since a barrier can only
redistribute resources (i.e., it cannot create resources out of thin air), the com-
bined resources transferred to the barrier must imply the combined resources
transferred back from the barrier: Bin

1 ∗Bin
2 ⇒ Bout

1 ∗Bout
2 .

The client of the barrier is thus free to pick any Bin
i and Bout

i predicates
satisfying the above redistribution property. We can now express the expected
specification of a 2-barrier b in terms of these abstract predicates:

{Bin
1 } b.Arrive1() {Bout

1 } {Bin
2 } b.Arrive2() {Bout

2 }
That is, for client 1 to arrive at the barrier (i.e., to callArrive1), it has to provide
the resource described by Bin

1 , and if the call to Arrive1 terminates (i.e., client 1
has left the barrier), it will have received the resource described by Bout

1 .
Proof sketch. The main idea behind our specification of the joins library

is to allow clients to impose an ownership transfer protocol on messages. An
ownership transfer protocol consists of a channel precondition and a channel
postcondition for each channel. The channel precondition describes the resources
the sender is required to transfer to the recipient when sending a message on
the channel. The channel postcondition describes the resources the recipient is
required to transfer to the sender upon receiving the message.

In the 2-barrier example, sending a message on a channel corresponds to
signalling one’s arrival at the barrier. The channel preconditions of the barrier
thus describe the resources clients are required to transfer to the barrier upon
their arrival. Hence, we take each channel precondition to be the corresponding
Bin predicate: Pch1 = Bin

1 and Pch2 = Bin
2 . Throughout this section we use the

notation Pch to refer to the channel precondition of channel ch and Qch to refer
to the channel postcondition.

The barrier implementation features a single chord that matches and receives
both arrival messages, once both clients have arrived. The channel postconditions
of the barrier thus describes the resources the barrier is required to transfer
back to the clients, once both clients have arrived. We thus take each channel
postcondition to be the corresponding Bout predicate: Qch1 = Bout

1 and Qch2 =
Bout

2 .
One can thus think of the channel pre- and postconditions as specifications

for channels. Since the channel postcondition describes the resources transferred
back to the sender once its message has been received, one should think of
it as a partial correctness specification. In particular, without any chords to
receive messages on a given channel we can pick any channel postcondition, as
no message sent on that channel will ever be received. Conversely, whenever



we add a new chord we have to prove that it satisfies the chosen ownership
transfer protocol. For chords without continuations, this reduces to proving that
the preconditions of the channels that match the chord’s pattern imply the
postconditions of these channels.

The 2-barrier consists of a single chord that matches any pair of messages
consisting of ach1 message and ach2 message. Correctness thus reduces to proving
Pch1∗Pch2 ⇒ Qch1∗Qch2, which follows from the assumed redistribution property.

2.2 Asynchronous channels

The previous example illustrated the use of synchronous channels that block the
sender until its message has been received. The joins library also supports asyn-
chronous channels, allowing messages to be sent without blocking the sender.
A lock is a simple example that illustrates the use of both asynchronous and
synchronous channels. Acquiring a lock must wait for the previous thread using
the lock to finish: it is synchronous. However, releasing a lock need not wait for
the next thread to attempt to acquire it: it is asynchronous.

Implementation. We can implement a lock using the joins library as follows:

class Lock {
private SyncChannel acq;
private AsyncChannel rel;

public Lock() {
Join j = new Join();
acq = new SyncChannel(j);
rel = new AsyncChannel(j);
j.When(acq).And(rel).Do();
rel.Call();
}

public void Acquire() { acq.Call(); }
public void Release() { rel.Call(); }
}

Fig. 2. A Joins implementation of a lock.

We use two channels acq and rel

to represent the two actions one can
perform on a lock. The join instance
has a single chord with a pattern that
matches any pair of messages con-
sisting of an acq message and a rel

message. Thus, to acquire the lock,
a thread sends a message on the acq

channel; the call will block until the
chord fires, which can only happen if
there is a rel message in the message
pool. The lock is thus unlocked if and
only if there is a pending rel message
in the message pool. The release can
happen asynchronously; it does not
have to wait for the next thread to
attempt to acquire the lock.

The lock is initially unlocked by
calling rel.

Desired specification. Locks are used to ensure exclusive access to some
shared resource. We can specify a lock in separation logic in terms of an abstract
resource predicate R (picked by the client of the lock) as follows:

{R} new Lock() {emp} {emp} l.Acquire() {R} {R} l.Release() {emp}
When the lock is unlocked the resource described by R is owned by the lock.
Upon acquiring the lock, the client takes ownership of R, until it releases the
lock again. Since the lock is initially unlocked, creating a new lock requires
ownership of R to be transferred to the lock. This is the standard separation logic



specification for a lock [17, 10, 11]. Here R thus describes the external resources
shared through the lock.

Proof sketch. Informally, we can understand the rel message as moving
the resource protected by the lock from the thread to the join instance, and
the acq message as doing the converse. This can be stated more formally using
channel pre- and postconditions as follows: Pacq = emp, Qacq = R, Prel = R,
and Qrel = emp.

Recall that channel postconditions describe the resources the recipient is
required to transfer to the sender upon receiving the message. Since the sender
of a message on an asynchronous channel has no way of knowing if its message
has been received, channel postconditions do not make sense for asynchronous
channels. We thus require channel postconditions for asynchronous channels to
be empty, emp.

As before, to prove that the acq and rel chord satisfies the channel postcon-
ditions, we have to show that the combined channel preconditions imply the
combined channel postconditions: Pacq ∗Prel ⇒ Qacq ∗Qrel. This follows directly
from the fact that ∗ is commutative.

2.3 Continuations

So far, every chord we have considered has simply matched and removed mes-
sages from the message pool. In general, a chord can have a continuation that
is executed when the chord fires, before any blocked synchronous senders are
allowed to continue.

Continuations can, for instance, be used to automatically send a message
on a certain channel when a chord fires. Thus they can be used to encode a
state machine. Moreover, one can also ensure that a state of the state machine is
correlated with the history or state of the synchronisation primitive that one is
implementing. To illustrate, we extend the lock from the previous example into
a biased reader/writer lock.4

A reader/writer lock [4] generalises a lock by introducing read-only permis-
sions. This allows multiple readers to access a shared resource concurrently. To
determine whether a read or write access request should be granted, three states
suffice: (idle) no readers or writers, (writer) exactly one writer, or (shared) one
or more readers. In the idle state there are no readers or writers, so it is safe to
grant both read and write access. In the shared state, as one client has already
been granted read access, it is only safe to grant read access. We can express
this as a state machine as follows:

4 Biased here means that this reader/writer implementation may starve the writer
thread. It is possible to extend this implementation into an unbiased reader/writer
lock by introducing an additional asynchronous channel to distinguish between
whether or not there are any pending writers when a reader request has been granted.



idleshared writer

acqR

relR

acqW

relW

acqR, relR

Here acqR and acqW refers to the acquire read and acquire write operation, and
relR and relW refers to the release read and release write operation.

Implementation. The idea is to encode this state machine using three asyn-
chronous channels, idle, shared, andwriter, with the invariant that there is at most
one pending asynchronous message in the message pool at any given time. This
gives a direct encoding of the three states in the above state machine, and adds
a fourth intermediate state (when there is no pending message on any of the
three asynchronous channels). The intermediate state is necessary for the imple-
mentation, as it does not transition atomically between the states of the above
state machine. The joins implementation is given below.

class RWLock {
private SyncChannel acqR, acqW, relR, relW;
private AsyncChannel idle, shared, writer;
private int readers = 0;

public RWLock() {
Join j = new Join();
// ... initialise channels ...

j.When(acqR).And(idle).Do(AcqR);
j.When(acqR).And(shared).Do(AcqR);
j.When(relR).And(shared).Do(RelR);
j.When(acqW).And(idle).Do(writer.Call);
j.When(relW).And(writer).Do(idle.Call);

idle.Call();
}

private void AcqR() {
readers++;
shared.Call();
}

private void RelR() {
if (−−readers == 0)
idle.Call();

else
shared.Call();

}

public void AcquireR() { acqR.Call(); }
public void AcquireW() { acqW.Call(); }
public void ReleaseR() { relR.Call(); }
public void ReleaseW() { relW.Call(); }
}

We use three asynchronous channels to encode the current state in the above
state machine and thus to determine whether a read or write access can be
granted. In addition, we use the readers field to count the actual number of
readers, to determine which state to transition to when releasing a reader. Note
that the continuation given to Do is a named C] delegate, and that in all five
cases, the given continuation sends a message on an asynchronous channel. These
calls are reentrant calls back into the joins library, making these continuations
reentrant callbacks.

Note further that all five chords consume exactly one asynchronous message
and sends exactly one asynchronous message. Between consuming and sending
the asynchronous message, there are no pending asynchronous messages and
the reader/writer is in the previously mentioned fourth state. Hence, between



consuming and sending an asynchronous message, no other chord can fire and
the currently executing continuation has exclusive access to the internal state of
the reader/writer lock (i.e., the readers field).

Desired specification. The standard separation logic specification for a
reader/writer lock is expressed using counting permissions [2]. Counting permis-
sions allow a full write permission to be split into any number of read permis-
sions, counting the total number of read permissions, to allow them to be joined
up to a full write permission later. The standard specification is given below in
terms of an abstract resource predicate for writing to the resource Rwrite and
an abstract resource predicate for reading the resource Rread.

{Rwrite}new RWLock() {emp}
{emp} l.AcquireR() {Rread}
{emp} l.AcquireW() {Rwrite}
{Rread} l.ReleaseR() {emp}
{Rwrite} l.ReleaseW() {emp}

(1)

To avoid introducing counting permissions directly, we specify the reader/write
lock in terms of an additional family of abstract resource predicates R(n), in-
dexed by n ∈ N, satisfying that R(0) is the full write permission Rwrite, and
R(n) is the permission left after splitting off n read permissions. Thus R should
satisfy, ∀n ∈ N. R(n)⇔ Rread ∗R(n+ 1) and R(0)⇔ Rwrite. Note that a client
of the reader/writer lock is free to pick any Rwrite, Rread and R that satisfies
these two properties.

Proof sketch. The three asynchronous channels encode the current state
of the reader/writer lock. The channel preconditions of the three asynchronous
channels thus describe the resources owned by the reader/writer lock in the idle,
shared and writer state, respectively. In the idle state (no readers or writers),
the reader/writer lock owns the readers field and the full write permission, and
the readers field contains 0. In the shared state (one or more readers), the read-
er/writer lock owns the readers field and the remaining permission after splitting
off n read permissions and the readers field contains n. Lastly, in the writer state
(exactly one writer), the writer owns the full resource and the reader/writer lock
only owns the readers field.

P idle = readers 7→ 0 ∗R(0) Pwriter = readers 7→ 0

Pshared = ∃n ∈ N. n > 0 ∗readers 7→ n ∗R(n)

Since idle, shared, and writer are asynchronous, their channel postconditions must
be empty (as explained earlier).

For the synchronous channels we can read off their channel pre- and post-
conditions directly from the desired specification (1):

PacqR = emp QacqR = Rread PacqW = emp QacqW = R(0)

PrelR = Rread QrelR = emp PrelW = R(0) QrelW = emp

To register a chord without a continuation we had to show that the combined
channel preconditions implied the combined channel postconditions. What about



the present case with a proper continuation? Since the continuation runs before
the release of any blocked synchronous callers, we have to show that the contin-
uation transforms the combined channel preconditions to the combined channel
postconditions. For the reader/writer lock we thus have to show the proof obliga-
tions on the left in Figure 3. These proof obligations are all completely standard
and mostly trivial separation logic proofs. For instance, the proof of the first
obligation is given on the right in Figure 3. Note that in this proof we use the

{PacqR ∗ P idle} AcqR() {QacqR ∗Q idle}
{PacqR ∗ P shared} AcqR() {QacqR ∗Q shared}
{P relR ∗ P shared} RelR() {Q relR ∗Q shared}
{PacqW ∗ P idle} writer.Call() {QacqW ∗Q idle}
{P relW ∗ Pwriter} idle.Call() {Q relW ∗Qwriter}

{PacqR ∗ Pidle}
{readers 7→ 0 ∗R(0)}
readers++;
{readers 7→ 1 ∗R(0)}
{readers 7→ 1 ∗Rread ∗R(1)}
shared.Call();
{Rread}
{QacqR ∗Qidle}

Fig. 3. Left: Proof obligations for the reader/writer lock chords. Right: A proof sketch
for the first proof obligation of the reader/writer lock.

channel pre- and postcondition of the shared channel. These proofs thus have a
similar character to partial correctness proofs of a recursive method, where one
is allowed to assume the specification of a method while proving that its body
satisfies the assumed specification. Here we assume the shared channel obeys the
chosen ownership transfer protocol while proving that the first chord obeys the
chosen protocol.

2.4 Nonlinear patterns

The public interface of the 2-barrier in Section 2.1 is slightly non-standard, as it
has two distinct arrival methods. A more standard barrier interface would pro-
vide a commonArrive method, for both clients. The joins library also supports an
implementation of a barrier with such an interface, through the use of nonlinear
patterns. Nonlinear patterns match multiple messages from the same channel.

Implementation. We can thus implement a more standard 2-barrier as a
joins instance with a single synchronous arrival channel and a single chord with
a nonlinear pattern that matches two messages on the arrival channel. Clearly
this generalises to an n-barrier, which can be implemented as follows.

class Barrier {
private SyncChannel arrive;

public Barrier(int n) {
Join j = new Join(); arrive = new SyncChannel(j); Pattern p = j.When(arrive);
for(int i = 1; i < n; i++) { p = p.And(arrive); };
p.Do();
}

public void Arrive() { arrive.Call(); }



}

This code registers a single chord with a pattern that matches n messages on
the synchronous arrive channel.

Desired specification. As before, assume predicates Bin
i and Bout

i (picked
by the client), where Bin

i describes the resources client i transfers to barrier upon
arrival and Bout

i describes the resources client i expects to receive back from the
barrier upon leaving. These predicates should satisfy the following redistribution
property, ~i∈{1,...,n}Bin

i ⇒ ~i∈{1,...,n}Bout
i , to allow the barrier to redistribute

the combined resources, once every client has arrived.

From the informal description of Bin
i and Bout

i one might thus expect an
n-barrier b to satisfy the following specification:

{Bin
i } b.Arrive() {Bout

i }

That is, if a client transfers Bin
i to the barrier upon arrival, it should receive back

Bout
i from the barrier upon leaving. However, this specification is not quite right.

In particular, what prevents client i from impersonating client j when it arrives
at the barrier? To apply the redistribution property to the combined resources
transferred to the barrier we need to ensure that when client i arrives at the
barrier, it actually transfers Bin

i to the barrier, even if it also happens to own
Bin
j . Hence, while the barrier implementation no longer distinguishes between

clients, we still need a way to distinguish clients logically. We can achieve this
by introducing a client identity predicate, id(i) to assert that the owner is client
i. By making this predicate non-duplicable, we can enforce that clients cannot
impersonate each other.

We can now express a correct barrier specification in terms of this id predicate
as follows:

{emp} new Barrier(n) {~i∈{1,...,n}id(i)} {Bin
i ∗ id(i)} b.Arrive() {Bout

i ∗ id(i)}

Upon creation of a new n-barrier we get back n id assertions. These are then
distributed to each client to witness their identity when they arrive at the barrier.

Proof sketch. Our proof sketch of the 2-barrier in Section 2.1 exploited
that the implementation used distinct channels to signal the arrival of each client,
which allowed us to pick different channel pre- and postconditions for each client.
Since the above implementation uses a single arrival channel we have to pick a
common channel pre- and postcondition that works for every client. We can
achieve this using a logical argument to relate the channel precondition and the
channel postcondition. In this case we index the channel pre- and postcondition
with the client identifier i: Parrive(i) = Bin

i ∗ id(i) and Qarrive(i) = Bout
i ∗ id(i).

For the id predicate to witness the identity of clients, it must be non-duplicable.
That is, it must satisfy, id(i) ∗ id(j)⇒ i 6= j. To define the id predicate such that
it satisfies the above property, we need to introduce a bit more of our logic. We
return to this example in Section 5.2.



3 Logic

The program logic is a higher-order separation logic [1] with support for rea-
soning about concurrency, shared mutable data structures [7, 6], and recursive
delegates [23]. We use this one program logic to reason about both clients of the
joins library, and an implementation of the joins library.

Our program logic is a general purpose logic for reasoning about higher-order
concurrent C] programs. We have presented the logic in a separate paper [26].
The full logic and its soundness proof is included in the accompanying technical
report [24] of that paper. For the present paper we limit our attention to those
features necessary to verify our client examples. To this end, it suffices to consider
a minor extension of higher-order separation logic with fractional permissions,
phantom/auxiliary state and nested triples [21].

Higher-order separation logic. Every specification in Section 2 was ex-
pressed in terms of abstract resource predicates, such as the lock invariant R.
This is easily and directly expressible in a higher-order logic, by quantification
over predicates [1, 19].

Our assertion logic is an intuitionistic higher-order separation logic over a
simply typed term language. The set of types is closed under function space and
products, and includes the type of propositions, Prop, the type of specifications,
Spec, and the type of mathematical values, Val. The Val type includes all C]

values and strings, and is closed under formation of pairs, such that mathematical
sequences and other mathematical objects can be conveniently represented.5

Fractional permissions. The notion of ownership in standard separation
logic is very limited, supporting only two extremes: exclusive ownership and no
ownership. To formalise the examples from the previous section we need a mid-
dle ground of read-only permissions, which can be freely duplicated. Fractional
permissions [3] provide a popular solution to this problem, by annotating the

points-to predicate with a fraction p ∈ (0, 1], written x.f
p7→ v. Full permission

corresponds to p = 1 and grants exclusive access to the field f . Permissions can

be split and combined arbitrarily (x.f
p7→ v ∗x.f q7→ v ⇔ x.f

p+q7→ v). Any fraction
less than 1 grants partial read-only access to the field f . We write x.f 7→ v as

shorthand for x.f
17→ v and x.f 7→ v as shorthand for ∃p ∈ (0, 1]. x.f

p7→ v.
Phantom state. Auxiliary variables [18] are commonly used as an abstrac-

tion of the history of execution and state in Hoare logics. Normally, one declares
a subset of program variables as auxiliary variables that can be updated using
standard variable assignments, but are not allowed to affect the flow of execu-
tion. To support this style of reasoning, we extend separation logic with phantom
state. Like standard auxiliary variables, phantom state allows us to record an
abstraction of the history of execution, but unlike standard auxiliary variables,
phantom state is purely a logical construct (i.e., the operational semantics of
the programming language is not altered to accommodate phantom state and

5 We use a single universe Val for the universe of mathematical values to avoid also
having to quantify over types in the logic. We omit explicit encodings of pairs and
write (v1, ..., vn) for tuples coded as elements of Val.



phantom state is not updated through programming level assignments). When
combined with logical arguments, phantom state allows us to logically distinguish
and relate multiple messages on the same channel, as needed for the n-barrier
example.

Phantom state extends objects with a logical notion of phantom fields and an

accompanying phantom points-to predicate, written xf
p7→ v, to make assertions

about the value and ownership of these phantom fields. To support read-only
phantom fields, we further enrich the notion of ownership with fractional per-

missions. Thus xf
p7→ v asserts the ownership of phantom field f of object x,

with fractional permission p, and that this phantom field currently contains
the value v. Like the normal points-to predicate, phantom points-to satisfies

xf
p17→ v1 ∗ xf p27→ v2 ⇒ v1 = v2 as phantom fields contain a single fixed value at

any given point in time.

Phantom fields are updated using a view shift. The notion of a view shift
comes from the Views framework for compositional reasoning about concur-
rency [6], and generalises assertion implication. A view shift from assertion p to
assertion q is written p v q. Views shifts can be applied to pre- and postcondi-
tions using the following generalised rule of consequence:

p v p′ {p′}c{q′} q′ v q
{p}c{q}

Given full ownership (fractional permission 1) of a phantom field f , one can

perform a logical update of the field (xf
17→ v1 v xf 17→ v2). To create a phantom

field f we require that the field does not already exist, so that we can take full
ownership of the field. We thus require all phantom fields of an object o to be
created simultaneously when o is first constructed.

Figure 4 contains a selection of inference rules from our program logic, related
to view shifts and phantom state.

Nested triples. To reason about delegates we use nested triples [21]. We
write x 7→ {P}{Q} to assert that x refers to a delegate satisfying the given
specification.

p⇒ q

p v q
p v q

p ∗ r v q ∗ r
p v p′ {p′}c{q′} q′ v q

{p}c{q}

xf
17→ v1 v xf 17→ v2 xf

p17→ v1 ∗ xf p27→ v2 ⇒ v1 = v2 xf
p7→ v ∗ xf q7→ v ⇔ xf

p+q7→ v

Fig. 4. Selected program logic inference rules

Reasoning about the implementation. Fractional permissions introduce
a more lenient ownership discipline that allows for read-only sharing. To verify
the implementation of the joins library, we need even more general forms of
sharing. To reason about general sharing patterns we base our logic on concurrent
abstract predicates [7].



Conceptually, concurrent abstract predicates (CAP) partitions the heap into
a set of regions that each come with a protocol governing how the state in
that region may evolve. This allows stable assertions – assertions that are closed
under changes permitted by the protocol – to be freely duplicated and shared.
To ensure soundness, the logic requires that all pre- and postconditions in the
specification logic are stable. We thus introduce a new type, SProp, of stable
assertions.

Concurrent abstract predicates with first-order protocols (i.e., protocols that
only refer to the state of their own region) suffice for reasoning about sharing
of primitive resources such as individual heap cells. To reason about sharing
of shared resources requires higher-order protocols that can relate the state of
multiple regions. In general, to reason about sharing of shared resources re-
quires reasoning about circular sharing patterns. HOCAP extends concurrent
abstract predicates with a limited form of higher-order protocols – called state-
independent higher-order protocols – and introduce partial orders to explicitly
rule out these circular sharing patterns.

Since we are using the same program logic to reason about join clients and
the underlying join implementation, join clients could themselves use CAP to de-
scribe shared resources when picking the channel pre- and postconditions. This
could potentially introduce circular sharing patterns. To simplify the presenta-
tion and focus on the main ideas behind our specification of the joins library
we have chosen to present a specification that does not allow clients to use
CAP in their channel pre- and postconditions. This allows us to give a simple
specification without any proof obligations about the absence of circular shar-
ing patterns. In the accompanying technical report, we define a stronger joins
specification that does allow clients to use CAP, but requires clients to prove
the absence of circular sharing patterns. In the technical report we verify the
joins implementation against this stronger specification. See Section 6 for further
discussion.

To prevent joins clients from using CAP, we introduce a new type, LProp, of
local propositions. Every predicate expressible in the language of higher-order
separation logic extended with phantom state and nested triples is of type LProp,
provided all higher-order quantifications quantify over LProp rather than Prop.
However, LProp is not closed under region and action assertions for reasoning
about shared mutable data structures using CAP. All assertions of type LProp
are trivially stable and LProp is thus a subtype of SProp. We thus require all
channel pre- and postconditions to be of type LProp. This ensures that clients
do not introduce circular sharing patterns.6

For details about the logic see our HOCAP paper and accompanying technical
report [26, 24].

6 This circular sharing pattern has been allowed by the first two authors recent
work [22].



4 Joins specification

In this section we present our formal specification for the joins library.
The full specification of the joins library is presented in Figure 5. To sim-

plify the specification and exposition of the joins library, we require all channels
and chords be registered before clients start sending messages.7 Formally, we
introduce three phases:

ch: This phase allows new channels to be registered.
pat: This phase allows new chords to be registered.
call: This phase allows messages to be sent.

A newly created join instance starts in the ch phase. Once all channels have been
registered, it transitions to the pat phase. Once all chords have been registered,
it transitions to the call phase. In the call phase, the only way to interact with
the join instance is by sending messages on its channels.

The specification is expressed in terms of a number of abstract representation
predicates. We use three join representation predicates, joinch, joinpat and joincall
– one for each phase – which will be explained below. In addition, we use two
representation predicates for channels and patterns:

ch(c, j): This predicate asserts that c refers to a channel registered with join
instance j.

pat(p, j,X): This predicate asserts that p refers to a pattern on join instance j
that matches the multi-set of channels X.

These representation predicates are all existentially quantified in the specifica-
tion; clients thus reasons abstractly in terms of these predicates.

Channel initialisation phase. In the first phase we use the join repre-
sentation predicate: joinch(A,S, j). This predicate asserts that j refers to a join
instance with asynchronous channels A and synchronous channels S.

The join constructor (Join) returns a new join instance in the ch phase with
no registered channels.

The two rules for creating and registering new channels (Sync and Async)
take as argument a join instance j in the ch phase and return a reference to
a new channel. In both cases, we get back a ch assertion, ch(r,j), that asserts
that this newly created channel is registered with join instance j. In addition,
both postconditions explicitly assert that this newly created channel is distinct
from all previously registered channels, r /∈ A ∪ S. As the channel predicate is
duplicable (ch(c, j)⇔ ch(c, j)∗ch(c, j)), to allow multiple clients to use the same
channel, we have to state this explicitly.

Chord initialisation phase. In the second phase we use the join repre-
sentation predicate: joinpat(P,Q, j). This predicate asserts that j refers to a join
instance with channel preconditions P and channel postconditions Q. Here P
and Q are functions that assign channel pre- and postconditions to each channel.

7 This restriction rules out reasoning about self-modifying synchronisation primitives.
We are not aware of any examples of self-modifying join clients.



To relate the pre- and postcondition of a channel (as needed, e.g., in the n-barrier
example to distinguish clients), we index each channel pre- and postcondition
with a logical argument of type Val.8 Formally P and Q are thus functions of
type P,Q : Val× τchan → LProp where τchan is the type of channel references.9

Once sufficient channels have been registered, the join instance can transition
into the chord initialisation phase using a view shift:

∀c, a. c ∈ A⇒ Q(a, c) = emp

joinch(A,S, j) v joinpat(P,Q, j)

This forces all channel pre- and postconditions to be fixed before any chords
can be registered. This rule explicitly requires that the channel postconditions
of asynchronous channel are empty, emp, as explained in Section 2.2.

Rules When and And create a new singleton pattern, and add new channels
to an existing pattern, respectively. Note that a pattern matches a multi-set of
channels and the set-union in And is thus multi-set union.

The rules forDo are more interesting. Rule Do1 deals with patterns without
a continuation. Recall from our informal proof sketches that to add a new chord
without a continuation we showed that the combined channel preconditions of
the chord pattern implied the combined channel postconditions. Our specifica-
tion generalises this to require that the combined channel preconditions can be
view shifted to the combined channel postconditions. This generalisation allows
us to perform logical updates of phantom state when the chord fires. We will see
why this is useful in Section 5.2.

Furthermore, since our channel pre- and postconditions are now indexed by
a logical argument, we have to prove that we can perform this view shift for any
logical arguments (we have a logical argument for each channel). Formally,

∀Y ∈ Pm(Val× τchan). πch(Y ) = X ⇒ ~y∈Y P (y) v ~y∈YQ(y)

where Pm(−) denotes the finite power multi-set operator and πch is the power set
lifting of π2. Y thus associates a logical argument with each channel. To register
a chord that matches channels x and y, this thus reduces to two universally
quantified logical arguments, say a and b:

∀a, b ∈ Val. P (a, x) ∗ P (b, y) v Q(a, x) ∗Q(b, y)

The rule for Do with a continuation (Do2) is very similar, but instead of
requiring a view-shift, it takes a delegateb that transforms the combined precon-
ditions into the combined postconditions. Crucially, the delegate is given access
to the join instance in the message phase. This enables it to send messages, as
used in the reader/writer lock example (Section 2.3).

Message phase. The final phase allows messages to be sent. We use a third
abstract predicate, joincall(P,Q, j), with the same parameters as the previous
abstract predicate joinpat(P,Q, j). Once all chords have been registered, the join

8 As Val is closed under pairs this allows us to encode an arbitrary number of logical
arguments of type Val.

9 Formally, τchan is simply a synonym for Val, introduced to improve the exposition.



instance can transition into the third phase using a view shift: joinpat(P,Q, j) v
joincall(P,Q, j).

The only operation in the third phase is to send messages using Call. The
rule for sending a message is very similar to the standard method call rule: we
provide the precondition P (a, c) and get back the postcondition Q(a, c). Here a
is the logical argument, which the client is free to pick.

Both the joincall and ch(−) predicate is freely duplicable, to allow multiple
clients to send messages on the same channel:

ch(c, j)⇔ ch(c, j) ∗ ch(c, j)

joincall(P,Q, j)⇔ joincall(P,Q, j) ∗ joincall(P,Q, j)
Reasoning about joins. We have verified a simple lock-based implemen-

tation of the joins library (see the accompanying technical report for details).
We have thus given concrete definitions of the abstract predicates pat, ch, joinch,
joinpat, joincall and proved that the implementation satisfies a generalisation of
the joins specification in Figure 5.

5 Reasoning with joins

In this section we revisit the lock and the n-barrier example, and sketch their
formal correctness proofs in terms of our formal specification of the joins library.
The lock example is intended to illustrate the joins specification in general, and
has thus been written out in full. The n-barrier example is intended to illustrate
the use of logical arguments and phantom state.

5.1 Lock

We begin by formalising the previous informal lock specification. As mentioned
in Section 3, to avoid reasoning about sharing of shared mutable data struc-
tures through themselves, we require all channel pre- and postconditions to be
local assertions – i.e., assertions of type LProp. Since the channel pre- and post-
conditions are defined in terms of the lock resource invariant, the lock resource
invariant must be a local assertion. The formal specification of the lock is thus:

∀R : LProp. ∃ lock : Val→ SProp.

{R}new Lock() {r. lock(r)}
{lock(l)} l.Acquire() {lock(l) ∗R}

{lock(l) ∗R} l.Release() {lock(l)}
∧ ∀x : Val. lock(x)⇔ lock(x) ∗ lock(x)

This specification introduces an explicit lock representation predicate, lock, which
is freely duplicable.

We now formalise the proof sketch of the joins-based lock implementation
from Section 2. Hence, for any predicate R, we have to define a concrete lock

predicate and show that the above specifications for the lock operations hold for
the concrete lock predicate.



Channel initialisation phase

{emp}new Join() {r. joinch(∅, ∅, r)}
Join

{joinch(A,S, j)}new SyncChannel(j) {r. joinch(A,S ∪ {r}, j) ∗ ch(r, j) ∗ r /∈ A ∪ S} Sync

{joinch(A,S, j)}new AsyncChannel(j) {r. joinch(A ∪ {r}, S, j) ∗ ch(r, j) ∗ r /∈ A ∪ S} Async

Chord initialisation phase

{
joinpat(P,Q, j) ∗ ch(c, j)

}
j.When(c)

{
r. joinpat(P,Q, j) ∗ pat(r, j, {c})

} When

{
joinpat(P,Q, j) ∗

pat(p, j,X) ∗ ch(c, j)

}
p.And(c)

{
joinpat(P,Q, j)∗

pat(p, j,X ∪ {c})

} And

∀Y ∈ Pm(E). πch(Y ) = X ⇒ ~y∈Y P (y) v ~y∈YQ(y)
{
joinpat(P,Q, j) ∗ pat(p, j,X)

}
p.Do()

{
joinpat(P,Q, j)

} Do1





joinpat(P,Q, j) ∗ pat(p, j,X) ∗~z∈Zch(z, j) ∗
∀Y ∈ Pm(E). πch(Y ) = X ⇒

b 7→
{
joincall(P,Q, j) ∗
~z∈Zch(z, j) ∗~y∈Y P (y)

}{
~y∈YQ(y)

}





p.Do(b)
{
joinpat(P,Q, j)

}

Do2

Message phase

{joincall(P,Q, j) ∗ ch(c, j) ∗ P (a, c)}c.Call() {joincall(P,Q, j) ∗Q(a, c)} Call

Phase transitions

∀c, a. c ∈ A⇒ Q(a, c) = emp

joinch(A,S, j) v joinpat(P,Q, j) joinpat(P,Q, j) v joincall(P,Q, j)

ch(c, j)⇔ ch(c, j) ∗ ch(c, j) joincall(P,Q, j)⇔ joincall(P,Q, j) ∗ joincall(P,Q, j)

Abstract predicates

pat : τpat × τjoin × Pm(τchan)→ SProp ch : τchan × τjoin → SProp
joinch : Pm(τchan)× Pm(τchan)→ SProp
joinpat, joincall : (E → LProp)× (E → LProp)×Val→ SProp

Here Pm(X) denotes the set of finite multi-subsets of X and

τjoin = τchan = τpat
def
= Val E def

= Val× τchan
πch(X)

def
= {π2(x) | x ∈ X} : Pm(E)→ Pm(τchan)

Fig. 5. Specification of the joins library.



The channel pre- and postconditions do not change relative to the infor-
mal proof. For any pair of channels ca and cr we define the channel pre- and
postcondition, P (ca, cr), Q(ca, cr) : E → LProp, as follows:

P (ca, cr)(a, c) =





emp if c = ca

R if c = cr

⊥ otherwise

Q(ca, cr)(a, c) =





R if c = ca

emp if c = cr

⊥ otherwise

In the proof, ca will be instantiated with the acquire channel and cr with the
release channel. Note that the logical argument a is simply ignored.

The lock predicate then asserts that there exists some join instance and that
fields acq and rel refer to channels with the above channel pre- and postcondition.

lock(x) = ∃a, r, j : Val. a 6= r ∧ x.acq 7→ a ∗ x.rel 7→ r

∗ ch(a, j) ∗ ch(r, j) ∗ joincall(P (a, r), Q(a, r), j)

We explicitly require that a and r are distinct to ensure that the above definition
of P and Q by case analysis on the second argument is well-defined. The lock
predicate only asserts partial ownership of fields acq and rel, to allow the lock

predicate to be freely duplicated.
Below is a full proof outline for the lock constructor.

public Lock() {
Join j; Pattern p;
{this.acq 7→ null ∗ this.rel 7→ null ∗R}
j = new Join();
{this.acq 7→ null ∗ this.rel 7→ null ∗R ∗ joinch(∅, ∅, j)}
acq = new SyncChannel(j);
rel = new AsyncChannel(j);
{R ∗ this.acq 7→ a ∗ this.rel 7→ r ∗ joinch({r}, {a}, j) ∗ a 6= r ∗ ch(a, j) ∗ ch(r, j)}
{R ∗ this.acq 7→ a ∗ this.rel 7→ r ∗ joinpat(P (a, r), Q(a, r), j) ∗ a 6= r ∗ ch(a, j) ∗ ch(r, j)}
p = j.When(acq).And(rel);
{R ∗ this.acq 7→ a ∗ this.rel 7→ r ∗ a 6= r ∗ joinpat(P (a, r), Q(a, r), j)

∗ ch(a, j) ∗ ch(r, j) ∗ pat(p, j, {a, r})}
p.Do();
{R ∗ this.acq 7→ a ∗ this.rel 7→ r ∗ joinpat(P (a, r), Q(a, r), j) ∗ a 6= r ∗ ch(a, j) ∗ ch(r, j)}
{R ∗ this.acq 7→ a ∗ this.rel 7→ r ∗ joincall(P (a, r), Q(a, r), j) ∗ a 6= r ∗ ch(a, j) ∗ ch(r, j)}
rel.Call();
{this.acq 7→ a ∗ this.rel 7→ r ∗ joincall(P (a, r), Q(a, r), j) ∗ a 6= r ∗ ch(a, j) ∗ ch(r, j)}
{lock(this)}
}

The call to Do further requires that we prove:

∀Y ∈ Pm(E). πch(Y ) = {a, r} ⇒ ~y∈Y P (a, r)(y) v ~y∈YQ(a, r)(y)

which follows easily from the commutativity of ∗.
The full proof outline forAcquire is given below. The proof forRelease is similar.

public void Acquire() {
SyncChannel c;



{lock(this)}
{this.acq 7→ a ∗ this.rel 7→ r ∗ joincall(P (a, r), Q(a, r), j) ∗ a 6= r ∗ ch(a, j) ∗ ch(r, j)}
c = this.acq;
{this.acq 7→ c ∗ this.rel 7→ r ∗ joincall(P (c, r), Q(c, r), j) ∗ c 6= r ∗ ch(c, j) ∗ ch(r, j)}
c.Call();
{this.acq 7→ c ∗ this.rel 7→ r ∗ joincall(P (c, r), Q(c, r), j) ∗ c 6= r
∗ ch(c, j) ∗ ch(r, j) ∗Q(c, r)(0, c)}

{lock(this) ∗R}
}

When we call the acq channel we have to pick a logical argument a. Since the
channel pre- and postcondition ignores the a, we can pick anything. In the above
proof we arbitrarily picked 0, hence the Q(c, r)(0, c) in the postcondition.

5.2 n-barrier

In this section we formalise a proof of the n-barrier from Section 2.4. This exam-
ple illustrates how logical arguments combined with phantom state allows us to
logically distinguish messages on a single channel. The example also illustrates
the use of a non-trivial view-shift to update a phantom field upon firing of a
chord.

Desired specification. In Section 2.4 we gave an informal specification of
an n-barrier, under the assumption that clients transferred the same resources to
the barrier at every round of synchronisation, and that the barrier redistributed
these resources in the same way at every round of synchronisation. As these
assumptions are unrealistic, we start by generalising the specification.

The simplified n-barrier specification was expressed in terms of two asser-
tions Bin

i and Bout
i that described the resources client i transferred to and from

the barrier at every round of synchronisation. Here, instead, we take Bin and
Bout to be predicates indexed by a client identifier i and the current round of
synchronisation m. The general n-barrier specification is given in Figure 6.

∀n ∈ N. ∀Bin, Bout : {1, ..., n} × N→ LProp.

(∀m ∈ N. ~i∈{1,...,n} B
in
i (m) v ~i∈{1,...,n}B

out
i (m))) ⇒

∃barrier : Val→ SProp. ∃client : Val× {1, ..., n} × N→ SProp.

{n = n}new Barrier(n) {ret. barrier(ret) ∗~i∈{1,...,n}client(ret, i, 0)}
∧ ∀i ∈ {1, ..., n}. ∀m ∈ N.

{barrier(b) ∗ client(b, i,m) ∗Bin
i (m)}

b.Arrive()

{barrier(b) ∗ client(b, i,m+ 1) ∗Bout
i (m)}

∧ ∀x : Val. barrier(x)⇔ barrier(x) ∗barrier(x)

Fig. 6. General n-barrier specification. This specification requires that the number of
clients, n, is known statically. This simplifies the exposition. We can also specify and
verify a specification without this assumption.



Herebarrier is the barrier representation predicate, which can be freely duplicated.
The client predicate plays two roles: namely, (1) to witness the identity of each
barrier client (like the id predicate from Section 2.4), and (2) to ensure that every
client of the barrier agrees on the round of synchronisation, m, whenever they
arrive at the barrier. These two properties are necessary to ensure that we can
redistribute the combined resources when every client has arrived at the barrier.
When one creates a new n-barrier, one thus receives n client predicates – one for
each client – each with 0 as the current round of synchronisation. The current
round of synchronisation is incremented by one at each arrival at the barrier.

Predicate definitions. We start by giving concrete definitions for the ab-
stract barrier and client predicate. Hence, assume n ∈ N clients and abstract
predicates Bin, Bout : {1, ..., n} × N→ LProp satisfying,

∀m ∈ N. ~i∈{1,...,n} B
in
i (m) v ~i∈{1,...,n}B

out
i (m) (2)

Since the n-barrier only has a single channel, we need to pick a single channel
pre- and postcondition that works for every client, for every round of synchro-
nisation. We thus take the logical argument for the arrival channel to be a pair
consisting of a client identifier i and the current synchronisation round m. From
the specification above, when client i arrives for synchronisation round m it
transfers Bin

i (m) to the barrier and expects to receive back Bout
i (m). In addition,

the client gives up its client predicate and gets back a new one, with the same
logical client identifier i and an incremented synchronisation round, m+ 1. For
any barrier b and channel c1 we thus define the channel pre- and postcondition
P (b, c1), Q(b, c1) : E → LProp as follows:

P (b, c1)((i,m), c) =

{
client(b, i,m) ∗Bin

i (m) if c = c1

⊥ otherwise

Q(b, c1)((i,m), c) =

{
client(b, i,m+ 1) ∗Bout

i (m) if c = c1

⊥ otherwise

Here the (i,m) is the logical argument consisting of the logical client identifier
i and synchronisation round m. In the proof, c1 will be instantiated with the
arrival channel.

Above, we defined the channel pre- and postcondition in terms of an abstract
client predicate, which we have not defined yet. We thus need to define client. This
is the main technical challenge of the proof. So, to motivate its definition, we
start by considering what properties the client predicate should satisfy. Recall
that we use the client predicate to (1) witness the identity of clients, and to (2)
ensure that clients agree on the current round of synchronization when they
arrive at the barrier.

To witness the identity of clients, disjoint client predicates must refer to dis-
tinct clients, as expressed by property (3) below. To ensure that clients agree
on the current round of synchronisation, the client predicate should also satisfy
(4). Lastly, to update the current round of synchronisation when every client



has arrived at the barrier, the client predicate should satisfy (5).

∀b, i, j,m. client(b, i,m) ∗client(b, j,m)⇒ i 6= j (3)

∀b, i, j,m, k. client(b, i,m) ∗client(b, j, k)⇒ m = k (4)

∀b,m. ~i∈{1,...,n} client(b, i,m) v ~i∈{1,...,n}client(b, i,m+ 1) (5)

Note that (5) is consistent with (4), since we update all n client predicates simul-
taneously.

We can satisfy (4) and (5) by introducing a phantom field to keep track of
the current round of synchronisation. By giving each client 1/n-th permission of
this phantom field, we ensure that every client agrees on the current round of
synchronisation, (4). Furthermore, given all n client predicates, these fractions
combine to the full permission, allowing the phantom field to be updated arbi-
trarily, and thus in particular, to be incremented; thus satisfying (5). We can
satisfy (3) by associating each client identifier i with a non-duplicable resource
•i in the logic, and requiring ownership of •i in the client predicate. We thus

define client as follows, client(b, i,m) = bround
1/n7−→ m ∗ •bi , where •bi is defined as

follows: •bi = ∃v : Val. bi 7→ v.
The barrier predicate is now trivial to define:

barrier(b) = ∃j, c : Val. b.arrive 7→ c ∗ joincall(P (b, c), Q(b, c), j) ∗ ch(c, j)

It simply asserts thatarrive refers to a channel on a join instance with the channel
pre- and postcondition we defined above.

Proof. Now that we have defined aclient predicate satisfying (3), (4), and (5),
we can proceed with the verification of the n-barrier. The main proof obligation
is proving that the barrier chord satisfies the postconditions of the channels it
matches. Since the barrier chord matches n arrival messages, by rule Do1 we
thus have to prove that:

∀Y ∈ Pm(E). πch(Y ) = {cn1} ⇒ ~y∈Y P (b, c1)(y) v ~y∈YQ(b, c1)(y)

To simplify the exposition, we consider the case for n = 2. The proof for n > 2
follows the same structure. For n = 2 the above proof obligation reduces to:

∀i1, i2,m1,m2.

client(b, i1,m1) ∗Bin
i1(m1) ∗client(b, i2,m2) ∗Bin

i2(m2) v
client(b, i1,m1 + 1) ∗Bout

i1 (m1) ∗client(b, i2,m2 + 1) ∗Bout
i2 (m2)

(6)

At this point we cannot directly apply the user-supplied redistribution property,
(2), as it requires that m1 = m2 and i1 6= i2. First, we need to use properties
(3) and (4) to constrain what logical arguments clients could have chosen when
they send their arrival messages. By property (4) it follows that m1 = m2.
Furthermore, from property (3) it follows that i1 and i2 are distinct. Since i1, i2 ∈
{1, 2}, (6) thus reduces to:

∀m. client(b, 1,m) ∗Bin
1 (m) ∗client(b, 2,m) ∗Bin

2 (m) v
client(b, 1,m+ 1) ∗Bout

1 (m) ∗client(b, 2,m+ 1) ∗Bout
2 (m)

(7)



Using the redistribution property, (2), and (5) it follows that,

∀m. Bin
1 (m) ∗Bin

2 (m) v Bout
1 (m) ∗Bout

2 (m)

∀m. client(b, 1,m) ∗client(b, 2,m) v client(b, 1,m+ 1) ∗client(b, 2,m+ 1)

Combining these two we thus get (7). We have thus proven (6). Note that here
we implicitly used the ability to perform a view shift when a chord fires, to
increment the value of the phantom field round.

The verification of the constructor andArrive method is now straightforward.

In summary, using logical arguments and phantom state we can thus show
that the generalised n-barrier from Section 2.4 satisfies the generalised barrier
specification. While the proof is more technically challenging than any of the
previous examples, it is still a high-level proof about barrier concepts. Informally,
we proved that clients agree on the current synchronisation round and that
clients identify themselves correctly; both natural proof obligations for a barrier.

6 Discussion

We first relate our specification of joins and the clients thereof to earlier work
and then evaluate what we have learned about HOCAP from this case study.

In terms of reasoning about external sharing, O’Hearn’s original concurrent
separation logic supports reasoning about shared variable concurrency using
critical regions [17]. This was subsequently extended to a language with locking
primitives by Hobor et al. [11] and Gotsman et al. [10], and to a language with
barrier primitives by Hobor et al. [12]. In all four cases, the underlying synchro-
nisation primitives were taken as language primitives and their soundness was
proven meta-theoretically.

Concurrent abstract predicates by Dinsdale-Young et al. [7] extends standard
separation logic with support for reasoning about shared mutable state by impos-
ing protocols on shared resources. Dinsdale-Young et al. used this logic to verify
a spin-lock implemented using compare-and-swap. The spin-lock was verified
against a non-standard lock specification without built-in support for reasoning
about external sharing. Hence, to reason about external sharing, clients would
have to define a protocol of their own, relating ownership of the shared resources
with the state of the lock. This type of reasoning is not modular, as it requires
the specification of concurrent libraries to expose internal implementation de-
tails of synchronisation primitives, to allow clients to define a protocol governing
the external sharing.

Jacobs and Piessens recently extended their VeriFast tool with support for
fine-grained concurrency [14] and verified a lock-based barrier implementation
[13] inspired by [11]. They verify the implementation against a specification
without built-in support for reasoning about external sharing. Compared to our
barrier specification, their specification is thus fairly low-level, requiring clients
of the barrier to use auxiliary variables to encode who has arrived and what
resources they have transferred to the barrier.



The goal of this case study was to test whether HOCAP supports modu-
lar reasoning about concurrent higher-order imperative libraries. To this end,
we have proposed an abstract specification of the C] joins library, expressed
in terms of high-level join primitives. We have demonstrated that this abstract
specification suffices for formal reasoning about a series of classic synchronisa-
tion primitives, which allow for external sharing. Compared to previous work on
verifying synchronisation primitives using separation logic, our specifications are
stronger and our proofs are considerably simpler. Thus, from this perspective,
our case study supports the thesis that HOCAP is useful for modular reasoning
about concurrent higher-order imperative libraries. However, as explained in Sec-
tion 3, the joins specification presented in this paper is restricted to local pre-
and postconditions for channels, which means that synchronization primitives
implemented using joins can only have local assertions as resource invariants.
Recall, e.g., the lock specification in Section 5.1, where the resource invariant
ranges over LProp, which means that clients of the lock cannot use CAP when
picking a resource invariant for the lock. In the technical report [25] we have
presented a stronger specification of joins, which does allow clients to use CAP
for such resource invariants, but that is at the expense of complicating the spec-
ification, to avoid circular sharing patterns. Thus future work includes finding
stronger models of HOCAP that support simple specifications and circular shar-
ing patterns.
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1 Introduction

In this technical report we define a formal specification for the joins library and verify
a naive lock-based implementation against this specification. We assume the reader is
familiar with the joins library and has read the accompanying article [3]. We take as our
program logic the higher-order version of concurrent abstract predicates described in [4]
and formally defined in [2]. We assume the reader is familiar with this logic.

The joins library implementation makes for an interesting verification challenge, as it
combines state, sharing, concurrency and reentrancy, in a realistic and reasonably small
library. We use our higher-order variant of Concurrent Abstract Predicates to reason
about sharing and concurrency and we use representation predicates defined by guarded
recursion and nested Hoare triples to reason about reentrancy.

2 Implementation

We start by sketching our naive lock-based implementation. Figure 1 defines the static
structure of the implementation. The implementation consists of seven main classes:

• Join: Join objects represent join instances. Each join object consists a list of reg-
istered chords and a list of registered channels. Conceptually, we think of a join
instance as having a single common message pool. However, in the implementation,
each channel maintains its own pool of messages. Each join object contains a lock
to synchronize access to its internal state. Since we have restricted attention to
non-self-modifying join clients, once all chords and channels have been registered,
all internal state is fixed, except the message pools. The lock is thus only necessary
to synchronize access to message pools.

• Pattern: Pattern objects represent conditions on the message pool. The type of
conditions supported by this version of the joins library can be represented as a
list of channels – representing the condition that matches a distinct message from
each channel in the list.

• Chord: Chord objects represent chords, which are simply implemented as a pair
consisting of a Pattern and an Action (a standard C] delegate type for delegates
without a return value).

• MessagePool, Message: The abstract MessagePool class implements a message pool.
Each message pool consists of a list of pending messages. Each message consists
of an integer status field indicating whether the message has been received. This
status field is thus 0 (not received) for all pending messages. When a message
is matched by a pattern it is removed from its message pool and once the chord
continuation has terminated its status field is set to 1 (received).

• AsyncChannel, SyncChannel: AsyncChannel and SyncChannel objects represent chan-
nels. They both inherit from the abstract MessagePool class.
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Join
∼ chords : List<Chord>
∼ channels : List<Channel>

+ When(SyncChannel) : Pattern
∼ CheckChords() : void

Chord
∼ cont : Action
∼ pat : Pattern

Pattern
∼ channels : List<Channel>

∼ Matches() : List<Message>
+ Do(Action) : void
+ And(Channel) : Pattern

<<abstract>>
MessagePool

∼ queue : List<Message>

∼ AddMessage() : Message
∼ Pop() : Message
∼ Push(Message) : void

SyncChannel

∼ join : Join

+ AsyncChannel(Join)
+ Call() : void

AsyncChannel

∼ join : Join

+ SyncChannel(Join)
+ Call() : void

Message

∼ status : int

0..*

1
0..*

1

0..*

1..*

Figure 1: Class diagram
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The meat of the implementation is the Call methods for sending a message on a
channel. Both Call methods start by acquiring the join lock. Once the lock has been
acquired, in each case they add a new pending message to the message pool of the
given channel (using the AddMessage method). In the asynchronous case, this is all
that happens; Call simply releases the lock and returns. However, in the synchronous
case, the method enters a busy-loop, constantly checking whether its message has been
received and firing any chords ready to fire (using the CheckChords method). To support
reentrant callbacks, the CheckChords method releases and reacquires the join lock before
executing chord continuations.

The CheckChords method iterates through the list of chords, checking if each chord is
ready to fire (using the Matches method). Whenever it encounters a chord ready to fire,
it (1) removes the messages that matched the chord pattern from their message pools, (2)
releases the join lock (to allow continuations to send messages on the same join instance
without dead-locking), (3) calls the continuation, (4) reacquires the join lock and (5)
updates the status of all the matched messages to 1 (received).

The Matches method optimistically tries to match and remove a pending message
from each channel of the given pattern (using the Pop method). If it succeeds, it simply
returns a list of the messages it matched. If it fails, it adds back the messages already
removed to their respective message pools (using the Push method), and returns null.
This Matches implementation, which optimistically matches messages is unnecessary in
our lock-based implementation, as the thread already owns the global message pool lock
at this point. However, this implementation is easier to verify and adapt to a proof of
the non-locking implementation, for which it is required.

The implementation makes use of three auxiliary classes: Lock, List and Pair. The
Lock class implements a spin-lock. The List class implements a singly-linked list. It
supports methods Push, Pop and Count, to modify and query lists. In addition, it sup-
ports higher-order methods ForEach and Map, to iterate over lists. Lastly, the Pair class
implements a pair.

3 Specification

The abstract specification of the joins library is given below. This is a generalized
version of the specification that appears in the accompanying article [3]. In particular,
this specification supports channel pre- and post-conditions expressed using CAP. Since
the overall idea behind the specification remains unchanged, the reader is referred to the
accompanying article for an explanation of the specification. To support channel pre- and
post-conditions expressed using CAP we require that channel pre- and post-conditions
are uniformly expressible using state independent protocols, that they are independent
of the chosen region type (t) and stable.
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∃joininit-ch : RType× Pm(Val)× Pm(Val)×Val→ Prop.
∃joininit-path, joincall : RType× (Val×Val→ Prop)× (Val×Val→ Prop)×Val→ Prop.

∃chan : Val×Val→ Prop. ∃pattern : Val×Val× Pm(Val)→ Prop.
∀t : RType. ∀P,Q : Val×Val→ Prop. ∀CA,CS ,X,Z : Pm(Val). ∀a, c, j : Val.

usip(P,Q) ∧ indept(P) ∧ indept(Q) ∧ stable(P) ∧ stable(Q)⇒
Join : (-). {emp} {ret. joininit-ch(t, ∅, ∅, ret)}

SyncChannel : (j). {joininit-ch(t,CA,CS , j)}
{ret. joininit-ch(t,CA,CS ∪ {ret}, j) ∗ chan(ret, j) ∗ ret 6∈ CA ∪ CS}

AsyncChannel : (j). {joininit-ch(t,CA,CS , j)}
{ret. joininit-ch(t,CA ∪ {ret},CS , j) ∗ chan(ret, j) ∗ ret 6∈ CA ∪ CS}

Join.When : (c).
{
joininit-pat(t,P,Q, this) ∗ chan(c, j)

}
{
ret. joininit-pat(t,P,Q, this) ∗ pattern(ret, j, { c})

}

Pattern.And : (c).
{
joininit-pat(t,P,Q, j) ∗ pattern(this, j,X) ∗ chan(c, j)

}
{
ret. joininit-pat(t,P,Q, j) ∗ pattern(ret, j,X ∪ {c})

}

Pattern.Do : (act).





joininit-pat(t,P,Q, j) ∗ pattern(this, j,X) ∗~z∈Zchan(z, j) ∗
∀Y : Pm(Val×Val). πchan(Y) = X⇒

act 7→ {joincall(t,P,Q, j) ∗~z∈Zchan(z, j) ∗~y∈YP(y)}
{~y∈YQ(y)}





{
joininit-pat(t,P,Q, j)

}

AsyncChannel.Call,SyncChannel.Call : (-). {joincall(t,P,Q, j) ∗ chan(this, j) ∗ P(a, this)}
{joincall(t,P,Q, j) ∗ chan(this, j) ∗ Q(a, this)}

valid (joincall(t,P,Q, j)⇔ joincall(t,P,Q, j) ∗ joincall(t,P,Q, j))

valid (chan(c, j)⇔ chan(c, j) ∗ chan(c, j))

stable(joininit-ch) ∧ stable(joininit-pat) ∧ stable(joincall) ∧ stable(chan) ∧ stable(pattern)

(∀a : Val. ∀c ∈ CA. Q(a, c) = emp)⇒ joininit-ch(t,CA,CS , j) v joininit-pat(t,P,Q, j)

joininit-pat(t,P,Q, j) v joincall(t,P,Q, j)
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4 Proof

In the previous sections we introduced our naive lock-based implementation of the joins
library and formalized our high-level joins specification as a proposition in our specifica-
tion logic. In this section we prove that our naive lock-based implementation satisfies this
specification. As the full implementation consists of approximately 150 lines of mini C#
code, to make the proof manageable, the proof is written in the form of proof outlines
(that is, code with inline assertions about the current state at that point of execution).

We thus have to instantiate each of the existentially quantified predicates from the
specification and prove that every method satisfies its specification with these instan-
tiations. In addition, the implementation contains several internal methods that also
needs to be specified and verified. For the Message, MessagePool, and Pattern classes it
is possible to define their representation predicates independently of the rest of the joins
library. However, for the remaining classes this is not the case due to the possibility of
reentrant continuations. We will thus start by verifying the Message, MessagePool and
Pattern classes.

The proofs of the List class and Pair class are completely standard, and have thus been
omitted. Their specifications are given in Section 4.6. The Lock specification and proof
follows by a slightly generalization of the spin-lock example in [2]. The Lock specification
is also given in Section 4.6.

4.1 The Message class

Message objects are very simple; they consist of a single integer field, status, which indi-
cates whether the message has been received (status = 0) or not (status = 1). However,
conceptually, message objects are significantly more complicated: When a client sends
a synchronous message the client (1) creates a new message, (2) transfers ownership of
the channel pre-condition to the message, (3) enters a busy-loop waiting for someone to
receive the message, before (4) transferring back ownership of the channel post-condition
to the sender. During the busy-loop, (3), other threads are allowed to match the mes-
sage and receive the message, transferring ownership of the channel pre-condition from
the message to the continuation and ownership of the channel post-condition from the
continuation back to the message.

Conceptually, messages can thus be in one of four states, pending, removed, received,
and released. Each message starts out in the pending state. When a message is matched
by a pattern it transitions to the removed state. When the continuation of the chord
that matched the message terminates, it transitions to the received state. Lastly, when
the client that inserted the message in the first place notices that the message has been
received, and exits its busy-loop, the message transitions to the released state. In the
pending state the message owns its channel pre-condition and the status field is 0. In
the removed state the status field is 0, but it no longer owns its channel precondition. In
the received state the status field is 1 and it owns its channel postcondition. Lastly, in
the released state the status field is 1, but it no longer owns its channel post-condition.
Crucially, while every thread is allowed to transition messages from the pending state to
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the removed and received state, only the client that inserted the message is allowed to
transition the message to the released state.

We can thus specify the Message constructor in terms of three message representation
predicates, msgprotocol(−), pending(−) and msg(−), as follows:

new Message : (-). {P(a, c) ∗msgprotocol(t,P,Q)}
{ret. pending(t,P,Q, ret, c) ∗msg(t,P,Q, a, ret, c)}

Here msgprotocol(t,P,Q) asserts that the protocol on region type t is a message proto-
col. The pending(t,P,Q, ret, c) predicate asserts that ret refers to a message on channel
c that is currently in the pending state and asserts permission to transition the message
to the removed and received state and asserts ownership of the channel pre-condition.
Likewise, msg(t,P,Q, a, ret, c) asserts that ret refers to a message on channel c that is
currently in the pending, removed or received state and asserts permission to transi-
tion the message from the received state to the released state.

These predicates should thus satisfy,

pending(t,P,Q, x, c) v ∃a : Val. P(a, c) ∗ removed(t,P,Q, a, x, c)
Q(a, c) ∗ removed(t,P,Q, a, x, c) v received(t,P,Q, x, c)

msg(t,P,Q, a, x, c) ∗ received(t,P,Q, x, c) v Q(a, c)

Here removed(t,P,Q, a, x, c) asserts that x refers to a message on channel c in the removed
state and asserts permission to transition it to the received state. Likewise, received(t,P,Q, x, c)
simply asserts that x refers to a message on channel c in the received state.

When adding a new message to the message pool, the client that created the message
thus keeps the msg(−) assertion, and transfer ownership of the pending(−) assertion to
the message pool. All the message pools are protected by a global lock, allowing the
pending(−) assertions (and thus channel pre-conditions) to be shared through the lock.

Predicate definitions

We can express this sharing and ownership pattern in CAP, using a shared region to trans-
fer the channel post-condition from the message recipient to the sender of the message.
We need two actions, Insert, for transferring ownership of the channel post-condition to
the shared region, and Remove, for transferring ownership of the channel post-condition
out of the shared region. Given channel pre-conditions P and channel post-conditions Q
the protocol on message x on channel c with logical argument a is:

I(Q)(x, c, a)
def
=




Insert : x.status 7→ 0 x.status 7→ 1 ∗ Q(a, c)
Remove : x.status 7→ 1 ∗ Q(a, c) x.status 7→ 1

τ1 : x.status 7→ 0 x.status 7→ 0

τ2 : x.status 7→ 1 ∗ Q(a, c) x.status 7→ 1 ∗ Q(a, c)
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Here I(Q) is thus a parametric protocol with parameters (x, c, a). We can now define the
message representation predicates as follows:

msgprotocol(t,P,Q) def
= protocol(t, I(Q))

pending(t,P,Q, x, c) def
= ∃r : RId. ∃π ∈ Perm. ∃a : Val.

xlarg
_7→ a ∗ P(a, c) ∗ [Insert]r1 ∗ [τ1]rπ ∗ [τ2]rπ

∗ x.status 7→ 0
r,t,(x,a,c)

I(Q)

removed(t,P,Q, a, x, c) def
= ∃r : RId. ∃π ∈ Perm.

xlarg
_7→ a ∗ [Insert]r1 ∗ [τ1]rπ ∗ [τ2]rπ

∗ x.status 7→ 0
r,t,(x,a,c)

I(Q)

received(t,P,Q, x, c) def
= ∃r : RId. ∃π ∈ Perm. ∃a : Val.

xlarg
_7→ a ∗ [Insert]r1 ∗ [τ1]rπ ∗ [τ2]rπ

∗ x.status 7→ 1 ∗ (Q(a, c) ∨ emp)
r,t,(x,a,c)

I(Q)

msg(t,P,Q, a, x, c) def
= ∃r : RId. ∃π ∈ Perm.

xlarg
_7→ a ∗ [Remove]r1 ∗ [τ1]rπ ∗ [τ2]rπ

∗ x.status 7→ 0 ∨ (x.status 7→ 1 ∗ Q(a, c)) r,t,(x,a,c)

I(Q)

Stability

By assumption, all channel pre- and post-conditions are uniformly expressible using state-
independent protocols:

∃R : Prop. ∃SP , SQ : Val×Val→ Prop. purestate(R) ∧
(∀x : Val×Val. (P(x)⇔ SP (x) ∗ R) ∧ pureprotocol(SP (x))) ∧
(∀x : Val×Val. (Q(x)⇔ SQ(x) ∗ R) ∧ pureprotocol(SQ(x)))

Assuming that channel pre- and post-conditions are independent of the message region
type t, by rule StableA we can thus prove stability of the message representation pred-
icates by proving that the boxed assertions are closed under actions potentially owned
by the environment. For instance, pending(−) asserts the status field is 0 which is stable
as it also asserts full ownership of the only action that allows the status field to change,
namely, the Insert action. Formally, we prove that,

∀x, c, a : Val. ∀t : RType. (∀a, c : Val. indept(P(a, c)) ∧ indept(Q(a, c))) ⇒
stable(pending(t,P,Q, x, c)) ∧ stable(removed(t,P,Q, a, x, c)) ∧
stable(received(t,P,Q, x, c)) ∧ stable(msg(t,P,Q, a, x, c))
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Proof outline

The proof of the constructor is now fairly straightforward: we allocate a new phantom
field, larg, set the status field to 0, and setup a new region with region type t and region
arguments (x, a, c).

public class Message {
public int status;

public Message() {
{thislarg 7→ a ∗ this.status 7→ _ ∗ P(a, c) ∗ protocol(t, I(Q))}

this.status = 0;
{thislarg 7→ a ∗ this.status 7→ 0 ∗ P(a, c) ∗ protocol(t, I(Q))}
{∃r ∈ RId. thislarg 7→ a ∗ this.status 7→ 0

r,t,(x,a,c)

I(Q)

∗ [Insert]r1 ∗ [Remove]r1 ∗ [τ1]r1 ∗ [τ2]r1 ∗ P(a, c)}
{pending(t,P,Q, this, c) ∗msg(t,P,Q, a, this, c)}

}
}

4.2 The MessagePool class

The abstractMessagePool class implements a message pool. Each message pool maintains
a list of pending messages. Message pools supports three methods:

• AddMessage: The AddMessage method creates a new message, adds it to the mes-
sage pool and returns a reference to the new message.

• Pop: The Pop method optimistically tries to pop a pending message from the
message pool, returning null if there are no pending messages.

• Push: The Push method adds a given message to the message pool.

Formally, the MessagePool class satisfies the following specification.

MessagePool.AddMessage : (-). {pool(t,P,Q, this) ∗ P(a, this)}
{ret. pool(t,P,Q, this) ∗msg(t,P,Q, a, ret, this)}

MessagePool.Pop : (-). {pool(t,P,Q, this)}
{ret. pool(t,P,Q, this) ∗ (ret = null ∨ pending(t,P,Q, ret, this)}

MessagePool.Push : (m). {pool(t,P,Q, this) ∗ pending(t,P,Q, m, this)}
{pool(t,P,Q, this)}

Here the pool(t,P,Q, x) predicate asserts ownership of the message pool x. The AddMes-
sage method thus returns the msg(−) assertion, representing the message sender handle,
but keeps the pending(−) assertion, representing the message receiver handle.
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Predicate definitions

The pool(−) predicate simply asserts that the queue field refers a list and each element
of that list is a message in the pending state.

pool(t,P,Q, c) def
= ∃x : Val. ∃M : Pm(Val). c.queue 7→ x ∗ lst(x,M)

∗ protocol(t, I(Q)) ∗~m∈Mpending(t,P,Q,m, c)

Proof outline

public abstract class MessagePool {
public List<Message> queue;

public MessagePool() {
{this.queue 7→ null ∗ protocol(t, I(Q))}

this.queue = new List<Message>();
{∃x. this.queue 7→ x ∗ lst(x, ∅)}
{pool(t,P,Q, this)}

}

public Message AddMessage() {
List<Message> q; Message m;
{pool(t,P,Q, this) ∗ P(a, this)}

m = new Message();
{pool(t,P,Q, this) ∗ pending(t,P,Q,m, this) ∗msg(t,P,Q, a,m, this)}

q = this.queue;
{this.queue 7→ q ∗ lst(q,M) ∗ protocol(t, I(Q)) ∗~m∈Mpending(t,P,Q,m, this)
∗ pending(t,P,Q,m, this) ∗msg(t,P,Q, a,m, this)}

q.Push(m);
{this.queue 7→ q ∗ lst(q, {m} ∪M) ∗ protocol(t, I(Q)) ∗~m∈Mpending(t,P,Q,m, this)
∗ pending(t,P,Q,m, this) ∗msg(t,P,Q, a,m, this)}

{this.queue 7→ q ∗ lst(q, {m} ∪M) ∗ protocol(t, I(Q)) ∗~m∈{m}∪Mpending(t,P,Q,m, this)
∗ msg(t,P,Q, a,m, this)}

{pool(t,P,Q, this) ∗msg(t,P,Q, a,m, this)}
return m;
{ret. pool(t,P,Q, this) ∗msg(t,P,Q, a, ret, this)}

}

public Message Pop() {
List<Message> q; Message m;
{pool(t,P,Q, this)}

q = this.queue;
{this.queue 7→ q ∗ lst(q,M) ∗ protocol(t, I(Q)) ∗~m∈Mpending(t,P,Q,m, this)}
{lst(q,M) ∗~m∈Mpending(t,P,Q,m, this)}
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if (q.Count > 0) {
{lst(q,M) ∗~m∈Mpending(t,P,Q,m, this) ∗M 6= ∅}

m = q.Pop();
{lst(q,M′) ∗~m∈Mpending(t,P,Q,m, this) ∗M = M′ ∪ {m}}
{∃M. lst(q,M) ∗ (~m∈Mpending(t,P,Q,m, this)) ∗ pending(t,P,Q,m, this)}

} else {
{lst(q,M) ∗~m∈Mpending(t,P,Q,m, this)}

m = null;
{lst(q,M) ∗~m∈Mpending(t,P,Q,m, this) ∗m = null}

}
{∃M. lst(q,M) ∗ (~m∈Mpending(t,P,Q,m, this)) ∗ (m = null ∨ pending(t,P,Q,m, this)}
{∃M. this.queue 7→ q ∗ lst(q,M) ∗ protocol(t, I(Q)) ∗~m∈Mpending(t,P,Q,m, this)
∗ (m = null ∨ pending(t,P,Q,m, this)}

{pool(t,P,Q, this) ∗ (m = null ∨ pending(t,P,Q,m, this)}
return m;
{ret. pool(t,P,Q, this) ∗ (ret = null ∨ pending(t,P,Q, ret, this)}

}

public void Push(Message m) {
List<Message> q;
{pool(t,P,Q, this) ∗ pending(t,P,Q,m, this)}

q = this.queue;
{this.queue 7→ q ∗ lst(q,M) ∗ protocol(t, I(Q))
∗ pending(t,P,Q,m, this) ∗~m∈Mpending(t,P,Q,m, this)}

{this.queue 7→ q ∗ lst(q,M) ∗ protocol(t, I(Q))
∗ ~m∈{m}∪M pending(t,P,Q,m, this)}
q.Push(m);
{this.queue 7→ q ∗ lst(q, {m} ∪M) ∗ protocol(t, I(Q))
∗ ~m∈{m}∪M pending(t,P,Q,m, this)}

{pool(t,P,Q, this)}
}

}

4.3 The Pattern class

Pattern objects represent conditions on the message pool. This version of the joins library
supports conditions of the form:

match a distinct message from each channel x from the multiset of channels X

Conditions are thus implemented as a list of channels representing the multiset X.
In addition to its public methods, the Pattern class has an internal method, Matches

to determine whether the pattern matches the current message pool. If it does, Matches
returns a list of messages that matches the pattern; otherwise, it returns null. Its speci-
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fication is as follows:

Pattern.Matches : (-)
{patterninternal(this, j,X) ∗~x∈Xpool(t,P,Q, x)}{
ret. ∃Y : Pm(Val×Val). patterninternal(this, j,X) ∗~x∈Xpool(t,P,Q, x)

(ret = null ∨ (lst(ret, π2(Y)) ∗~(c,m)∈Ypending(t,P,Q,m, c) ∗ π1(Y) = X))

}

Here patterninternal(p, j,X) asserts that p refers to a condition on join instance j that
matches a distinct message from each channel of the multiset of channels X.

Predicate definitions

The pattern(p, j,X) predicate asserts full ownership of the underlying the underlying list of
channels, whereas patterninternal(p, j,X) only asserts read-only ownership. Both predicates
assert that all the channels of the pattern belong to the correct join instance j using the
chan(-) predicate:

pattern(p, j,X) def
= ∃x : Val. p.join 7→ j ∗ p.channels 7→ x ∗ lst(x,X) ∗~c∈Xchan(c, j)

patterninternal(p, j,X)
def
= ∃x : Val. p.join _7→ j ∗ p.channels _7→ x ∗ lstr(x,X) ∗~c∈Xchan(c, j)

The chan(c,j) predicate asserts that c refers to a channel registered with join instance
j. For a channel to be registered with a join instance j, its join field should contain a
reference to j and the channel should be in the channel list of join instance j. Since we
require that the chan(-) predicate be duplicable, it cannot assert full ownership of the
channel list of join instance j. Furthermore, since we use the chan(-) predicate in the
join initialization phases (while the channel list is still growing), chan(-) cannot assert
read-only ownership of the underlying channel list either. Instead, we extend the join
instance j with a phantom field chans containing a finite multiset of channels, with a
protocol that restricts modifications to addition of new channels:

chan(c, j) def
= ∃t ∈ RType. jregc

_7→ t ∗ c.join _7→ j ∗ c ∈t jchans

Here c ∈t jchans asserts that the channel c is a member of the finite multiset that chans
contains:

c ∈t jchans
def
= ∃r : RId. ∃X : Pm(Val). jchans 7→ X

r,t,j

I
∗ c ∈ X

where I is the parametric protocol:

I(j) = (Add : (Y : Pm(Val), x : Val) : jchans 7→ Y  jchans 7→ Y ∪ {x})

Clearly c ∈t jchans is stable as the protocol only allows new channels to be added. Fur-
thermore, the chan(−) predicate is freely duplicable:

chan(c, j)⇔ chan(c, j) ∗ chan(c, j)
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Proof outline

Morally, Matches is implemented as follows,

internal List<Message> Matches() {
List<Pair<Message, Channel>> consumed = new List<Pair<Message, Channel>>();
bool rollback;

channels.ForEach(ch => {
if(!rollback) {
Message msg = ch.Pop();
if (msg != null)
consumed.Push(new Pair<Message, Channel>(msg, ch));

else
rollback = true;

}
});

if(rollback) {
consumed.ForEach(p => {
p.snd.Push(p.fst);

});
return null;

} else {
return consumed.Map(List.pi2<Message, Channel>);

}
}

using the higher-order List.ForEach method to optimistically try to Pop a message from
each channel of the pattern. However, as mini C# lacks anonymous delegates (to avoid
the difficulties of reasoning about variable capture [1]) we introduce an explicit inner
class, Inner, with fields to replace the captured variables consumed and rollback.

Define inner(−) as the following representation predicate. inner(−) describes the loop
invariant of the first ForEach call. Informally, inner(t,P,Q, x,X,Y) asserts that either the
consumed field refers to a list of messages, with one message from each channel in the
multiset Y, or rollback is true.

inner(t,P,Q, x,X,Y) =
∃Z : Pm(Val×Val). ∃r, y : Val.

x.consumed 7→ y ∗ lstpair(y,Z) ∗~x∈Xpool(t,P,Q, x)
~(c,m)∈Z pending(t,P,Q,m, c) ∗ x.rollback 7→ r ∗ (r = true ∨ π1(Z) = Y)

public class Inner {
public List<Pair<Channel, Message>> consumed;
public bool rollback;
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public Inner() {
{this.consumed 7→ null ∗ this.rollback 7→ _ ∗~x∈Xpool(t,P,Q, x)}

consumed = new List<Pair<Channel, Message>>();
rollback = false;
{this.consumed 7→ x ∗ lstpair(x, ∅) ∗ this.rollback 7→ false ∗~x∈Xpool(t,P,Q, x)}
{inner(t,P,Q, this,X, ∅)}

}

public void Pop(Channel ch) {
List<Pair<Channel, Message>> con;
Pair<Channel, Message> p;
Message msg;
{inner(t,P,Q, this,X,Y) ∗ ch ∈ X}

con = this.consumed;
{this.consumed 7→ con ∗ lstpair(con,Z) ∗~x∈Xpool(t,P,Q, x) ∗~(c,m)∈Zpending(t,P,Q,m, c)
∗ this.rollback 7→ r ∗ (r = true ∨ π1(Z) = Y) ∗ ch ∈ X}
{lstpair(con,Z) ∗ pool(t,P,Q, ch) ∗~(c,m)∈Zpending(t,P,Q,m, c)
∗ this.rollback 7→ r ∗ (r = true ∨ π1(Z) = Y)}

if (!rollback) {
{lstpair(con,Z) ∗ pool(t,P,Q, ch) ∗~(c,m)∈Zpending(t,P,Q,m, c)
∗ this.rollback 7→ false ∗ π1(Z) = Y}

msg = ch.Pop();
{lstpair(con,Z) ∗ pool(t,P,Q, ch) ∗~(c,m)∈Zpending(t,P,Q,m, c)
∗ this.rollback 7→ false ∗ π1(Z) = Y
∗ (msg = null ∨ pending(t,P,Q,msg, ch))}

if (msg != null) {
{lstpair(con,Z) ∗ pool(t,P,Q, ch) ∗~(c,m)∈Zpending(t,P,Q,m, c)
∗ this.rollback 7→ false ∗ π1(Z) = Y ∗ pending(t,P,Q,msg, ch))}

con.Push(new Pair<Channel, Message>(ch, msg));
{lstpair(con, {(ch,msg)} ∪ Z) ∗ pool(t,P,Q, ch) ∗~(c,m)∈{(ch,msg)∪Zpending(t,P,Q,m, c)
∗ this.rollback 7→ false ∗ π1(Z) = Y)}

} else {
{lstpair(con,Z) ∗ pool(t,P,Q, ch) ∗~(c,m)∈Zpending(t,P,Q,m, c)
∗ this.rollback 7→ false ∗ π1(Z) = Y ∗msg = null)}

rollback = true;
{lstpair(con,Z) ∗ pool(t,P,Q, ch) ∗~(c,m)∈Zpending(t,P,Q,m, c)
∗ this.rollback 7→ true ∗ π1(Z) = Y)}

}
}
{∃Z. lstpair(con,Z) ∗ pool(t,P,Q, ch) ∗~(c,m)∈Zpending(t,P,Q,m, c)
∗ this.rollback 7→ r ∗ (r = true ∨ π1(Z) = {ch} ∪ Y)}
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{∃Z. this.consumed 7→ con ∗ lstpair(con,Z) ∗~x∈Xpool(t,P,Q, x) ∗~(c,m)∈Zpending(t,P,Q,m, c)
∗ this.rollback 7→ r ∗ (r = true ∨ π1(Z) = {ch} ∪ Y)}

{inner(t,P,Q, this,X, {ch} ∪ Y)}
}

}

public class Pattern {
internal List<Channel> channels = new List<Channel>();
internal Join join;

internal Pattern(Channel ch, Join join) {
{this.channels 7→ null ∗ this.join 7→ null}

Channels channels = new List<Channel>();
{this.channels 7→ null ∗ this.join 7→ null ∗ lst(channels, ∅)}

channels.Push(ch);
{this.channels 7→ null ∗ this.join 7→ null ∗ lst(channels, {ch})}

this.channels = channels;
this.join = join;
{this.channels 7→ channels ∗ this.join 7→ join ∗ lst(channels, {ch})}

}

internal List<Message> Matches() {
Inner inner; Message msg; List<Message> msgs; List<Channel> chs;
{patterninternal(this, j,X) ∗~x∈Xpool(t,P,Q, x)}

msgs = null;
chs = this.channel;
{this.join _7→ j ∗ this.channels _7→ chs ∗ lstr(chs,X)
∗ msgs = null ∗ (~x∈Xchan(x, j) ∗ pool(t,P,Q, x))}
{lstr(chs,X) ∗msgs = null ∗~x∈Xpool(t,P,Q, x)}

inner = new Inner();
{lstr(chs,X) ∗msgs = null ∗ inner(t,P,Q, inner,X, ∅)

∗ ∀Y. inner.Pop 7→ (ch). {inner(t,P,Q, inner,X,Y) ∗ ch ∈ X}
{inner(t,P,Q, inner,X, {ch} ∪ Y)} }

chs.ForEach(inner.Pop);
{lstr(chs,X) ∗msgs = null ∗ inner(t,P,Q, inner,X,X)}
{lstr(chs,X) ∗msgs = null ∗~x∈Xpool(t,P,Q, x)

∗ inner.consumed 7→ y ∗ lstpair(y,Y) ∗~(c,m)∈Ypending(t,P,Q,m, c)
∗ inner.rollback 7→ r ∗ (r = true ∨ π1(Y) = X)}

if(inner.rollback) {
{lstr(chs,X) ∗msgs = null ∗~x∈Xpool(t,P,Q, x)

∗ inner.consumed 7→ y ∗ lstpair(y,Y) ∗~(c,m)∈Ypending(t,P,Q,m, c)
∗ inner.rollback 7→ true}

inner.consumed.ForEach(Push);
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{lstr(chs,X) ∗msgs = null ∗~x∈Xpool(t,P,Q, x)
∗ inner.consumed 7→ y ∗ lstpair(y,Y) ∗ inner.rollback 7→ true}

{lstr(chs,X) ∗~x∈Xpool(t,P,Q, x) ∗msgs = null}
} else {
{lstr(chs,X) ∗msgs = null ∗~x∈Xpool(t,P,Q, x)

∗ inner.consumed 7→ y ∗ lstpair(y,Y) ∗~(c,m)∈Ypending(t,P,Q,m, c)
∗ inner.rollback 7→ false ∗ π1(Y) = X}

msgs = inner.consumed.Map(pi2<Channel, Message>);
{lstr(chs,X) ∗ lst(msgs, π2(Y)) ∗~x∈Xpool(t,P,Q, x)

∗ inner.consumed 7→ y ∗ lstpair(y,Y) ∗~(c,m)∈Ypending(t,P,Q,m, c)
∗ inner.rollback 7→ false ∗ π1(Y) = X}

}
{lstr(chs,X) ∗~x∈Xpool(t,P,Q, x)

∗ (msgs = null ∨ (lst(msgs, π2(Y)) ∗~(c,m)∈Ypending(t,P,Q,m, c) ∗ π1(Y) = X))}
{this.join _7→ j ∗ this.channels _7→ chs ∗ lstr(chs,X) ∗ (~x∈Xchan(x, j) ∗ pool(t,P,Q, x))

∗ (msgs = null ∨ (lst(msgs, π2(Y)) ∗~(c,m)∈Ypending(t,P,Q,m, c) ∗ π1(Y) = X))}
{patterninternal(this, j,X) ∗~x∈Xpool(t,P,Q, x)

∗ (msgs = null ∨ (lst(msgs, π2(Y)) ∗~(c,m)∈Ypending(t,P,Q,m, c) ∗ π1(Y) = X))}
return msgs;

}

internal void Push(Pair<Channel, Message> p) {
Channel ch; Message msg;
{∃c,m. pair(p, c,m) ∗ pending(t,P,Q,m, c) ∗ pool(t,P,Q, c)}

ch = p.Fst();
msg = p.Snd();
{pair(p, ch,msg) ∗ pending(t,P,Q,msg, ch) ∗ pool(t,P,Q, ch)}

ch.Push(msg);
{pair(p, ch,msg) ∗ pool(t,P,Q, ch)}
{pool(t,P,Q, ch)}

}

internal B pi2<A,B>(Pair<A,B> p) {
return p.snd;

}

public Pattern And(Channel ch) {
List<Channel> chs;
{pattern(this, j,X) ∗ chan(ch, j)}

chs = this.channels;
{this.channels 7→ chs ∗ lst(chs,X) ∗~c∈Xchan(c, j) ∗ chan(ch, j)}

chs.Push(ch);
{this.channels 7→ chs ∗ lst(chs, {ch} ∪ X) ∗~c∈{ch}∪Xchan(c, j)}
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{pattern(this, j, {ch} ∪ X)}
return this;

}

public void Do(Action cont) {
Chord chord = new Chord(this, cont);
join.chords.Push(chord);

}
}

To verify the Do method we first need to define the last representation predicates.

4.4 The AsyncChannel, SyncChannel, Chord and Join classes

For the Message, MessagePool and Pattern classes it was possible to define each of their
representation predicates independently of the rest of the joins library. However, this
is not the case for the AsyncChannel, SyncChannel, Chord and Join classes, due to the
possibility of the reentrant continuations. In this section we will thus define the re-
maining representation predicates up front, followed by proof outlines for the rest of the
implementation.

Predicate definitions

We start by defining the internal representation predicates for joins instances in the third
phase. At this point in time all channels and chords have already been initialized and
the only way to interact with the joins instance is by sending messages. Except for the
underlying message pools, all the state maintained by the joins instance is thus fixed.
It is thus sufficient for most of these representation predicates to only assert read-only
permission, allowing them to be freely duplicated.

The chord representation predicate, chord(f,P,Q, c, j), asserts that c refers to a chord
registered with joins instance j. Chord continuations are specified in terms of the
joincall(−) predicate, which in turn is defined in terms of the chord(−) predicate. We
thus initially define the chord(−) predicate in terms of an abstract joincall(−) predicate
f, closing the loop using guarded recursion in the definition of the joincall(−) predicate
below.

chord(f,P,Q, c, j) def
=

∃x, y : Val. ∃X,Z : Pm(Val).
c.pat

_7→ x ∗ patterninternal(x, j,X) ∗ c.cont
_7→ y ∗~z∈Zchan(z, j)

∗ (∀Y ∈ Pm(Val×Val). πchan(Y) = X ⇒
. y 7→ {f(j) ∗~z∈Zchan(z, j) ∗~y∈YP(y)}{~y∈YQ(y)})

The internal join representation predicate, joininternal(t, f,P,Q, j), asserts that j refers to
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a join instance.

joininternal(t, f,P,Q, j)
def
= ∃x, y : Val. ∃X,Y : Pm(Val).

j.channels
_7→ x ∗ lstr(x,X)

∗ j.chords
_7→ y ∗ lstr(y,Y)

∗~c∈Xchan(c, j) ∗ pool(t,P,Q, c)
∗~c∈Ychord(f,P,Q, c, j)
∗ (∀a : Val. ∀x ∈ X. x : AsyncChannel⇒ Q(a, x) = emp)

We can now define the joincall(−) predicate by guarded recursion:

joincall(t,P,Q)
def
= fix(λf : Val→ Prop. λj : Val. ∃l : Val. ∃t1, t2, t3 ∈ RType.

t ≤ t1 ∗ t ≤ t2 ∗ t ≤ t3 ∗ jregl
_7→ t1 ∗ jregm

_7→ t2 ∗ jregc
_7→ t3

∗ j.lock
_7→ l ∗ isLock(t1, l, joininternal(t2, f,P,Q, j)))

This is well-defined as the occurrence of f in chord(−) is guarded by .. Furthermore,
the lock specification (See Section 4.6) requires that the resource invariant – in this case
joininternal(t2, f,P,Q, j) – is expressible using first-order protocols. By assumption, the
channel pre- and post-conditions are uniformly expressible using first-order protocols.
Hence, for a fixed t : RType, joininternal(t, f,P,Q, j) is expressible using state-independent
protocols, as the parameterized message protocols used in the pool(−) predicate, the
chan(−) predicate and the protocols used by the channel pre- and post-conditions, can
all be pulled out under all the existential quantifiers. Formally, we prove that,

∀t : RType. ∀f : Val→ Prop. ∀j : Val. ∃S,T : Prop.
pureprotocol(S) ∧ purestate(T) ∧ valid(joininternal(t, f,P,Q, j)⇔ S ∗ T)

This is provable without any assumptions about f, as f is only used in the pre-condition of
a nested triple. Stability of joincall(−) thus follows from the stability of isLock(−). To sim-
plify the notation, in the following proofs we will use joincall(t,P,Q, j) and joincall(t,P,Q)(j)
interchangeably.

In the running phase no new chords or channels can be registered with the join
instance and read-only permissions thus suffices. In the initialization phase this is not
the case and joininit-ch(−) and joininit-pat(−) thus assert full ownership of the channel and
chord list:

joininit-ch(t,CA,CS , j)
def
= ∃x, y, l : Val. ∃tl, tc ∈ RType.

j.channels 7→ x ∗ lst(x,CA ∪ CS) ∗~c∈CA∪CS
chan(c, j)

∗ j.chords 7→ y ∗ lst(y, ∅)
∗ j.lock 7→ l ∗ lock(tl, l)
∗ jregl 7→ tl ∗ jregm 7→ _ ∗ jregc

_7→ tc ∗ t ≤ tc ∗ t ≤ tl

∗ (∀c ∈ CA. c : AsyncChannel)
∗ (∀c ∈ CS . c : SyncChannel)
∗ jchans 7→tc

= CA ∪ CS
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Here jchans 7→t
= CA ∪ CS asserts that the phantom field chans contains exactly CA ∪ CS

and full ownership of the [Add] action:

jchans 7→t
= X

def
= ∃r : RId. jchans 7→ X

r,t,j

I
∗ [Add]r1

where I is the previously defined protocol from Section 4.3. The joininit-ch(−) further
asserts that j.lock refers to an uninitialized lock (See Section 4.6), as the lock invariant
depends on the channel pre- and post-conditions provided by the client in the view-shift
to joininit-pat(−). The lock is initialized in the view shift from joininit-pat(−) to joincall(−).

Chord continuations can send messages on channels on their own join instance. In
the definition of joininit-pat(−) we thus use the previously defined joincall(−) predicate to
give meaning to chords:

joininit-pat(t,P,Q, j)
def
= ∃x, y : Val. ∃X,Y : Pm(Val). ∃tl, tc ∈ RType.

j.channels 7→ x ∗ lst(x,X) ∗~c∈Xchan(c, j)
∗ j.chords 7→ y ∗ lst(y,Y) ∗~c∈Ychord(joincall(t,P,Q),P,Q, c, j)

∗ j.lock 7→ l ∗ lock(tl, l)
∗ jregl 7→ tl ∗ jregm 7→ _ ∗ jregc

_7→ tc ∗ t ≤ tl ∗ t ≤ tc

∗ (∀a : Val. ∀c ∈ X. c : AsyncChannel⇒ Q(a, c) = emp)
∗ jchans 7→tc

= X

Proof outlines

internal class Chord {
internal Pattern pat;
internal Action cont;

internal Chord(Pattern pat, Action cont) {
{this.pat 7→ null ∗ this.cont 7→ null}

this.cont = cont;
this.pat = pat;
{this.pat 7→ pat ∗ this.cont 7→ cont}

}
}

Now we can verify the Do method from the Pattern class:

class Pattern {
...

public void Do(Action cont) {
{joininit-pat(t,P,Q, j) ∗ pattern(this, j,X) ∗~z∈Zchan(z, j)
∗ ∀Y : Pm(Val×Val). πchan(Y) = X⇒

cont 7→ {joincall(t,P,Q, j) ∗~z∈Zchan(z, j) ∗~y∈YP(y)}{~y∈YQ(y)}}
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Chord chord = new Chord(this, cont);
{joininit-pat(t,P,Q, j) ∗ pattern(this, j,X) ∗~z∈Zchan(z, j)
∗ ∀Y : Pm(Val×Val). πchan(Y) = X⇒

cont 7→ {joincall(t,P,Q, j) ∗~z∈Zchan(z, j) ∗~y∈YP(y)}{~y∈YQ(y)}
∗ chord.pat 7→ this ∗ chord.cont 7→ cont}

{joininit-pat(t,P,Q, join) ∗ chord(joincall(t,P,Q),P,Q, chord, join)}
join.chords.Push(chord);
{joininit-pat(t,P,Q, join)}

}
}

public class AsyncChannel : MessagePool {
Join join;

public AsyncChannel(Join j) {
List<Message> chans;
{joininit-ch(t,CA,CS , j) ∗ this : AsyncChannel ∗ this.join 7→ null}
{joininit-ch(t,CA,CS , j) ∗ this : AsyncChannel ∗ this.join 7→ null ∗ this 6∈ CA ∪ CS}

this.join = j;
{joininit-ch(t,CA,CS , j) ∗ this : AsyncChannel ∗ this.join 7→ j ∗ this 6∈ CA ∪ CS}

chans = join.channels;
{j.channels 7→ chans ∗ lst(chans,CA ∪ CS) ∗~c∈CA∪CS

chan(c, j) ∗ this 6∈ CA ∪ CS
∗ j.chords 7→ y ∗ lst(y, ∅) ∗ (∀c ∈ CA. c : AsyncChannel) ∗ (∀c ∈ CS . c : SyncChannel)
∗ jregl 7→ _ ∗ jregm 7→ _ ∗ jregc

_7→ tc ∗ t ≤ tc
∗ jchans 7→tc

= CA ∪ CS ∗ this : AsyncChannel ∗ this.join 7→ j}
chans.Push(this);
{j.channels 7→ chans ∗ lst(chans, {this} ∪ CA ∪ CS) ∗~c∈CA∪CS

chan(c, j) ∗ this 6∈ CA ∪ CS
∗ j.chords 7→ y ∗ lst(y, ∅) ∗ (∀c ∈ CA. c : AsyncChannel) ∗ (∀c ∈ CS . c : SyncChannel)
∗ jregl 7→ _ ∗ jregm 7→ _ ∗ jregc

_7→ tc ∗ t ≤ tc
∗ jchans 7→tc

= CA ∪ CS ∗ this : AsyncChannel ∗ this.join 7→ j}
{j.channels 7→ chans ∗ lst(chans, {this} ∪ CA ∪ CS) ∗~c∈CA∪CS

chan(c, j) ∗ this 6∈ CA ∪ CS
∗ j.chords 7→ y ∗ lst(y, ∅) ∗ (∀c ∈ CA. c : AsyncChannel) ∗ (∀c ∈ CS . c : SyncChannel)
∗ jregl 7→ _ ∗ jregm 7→ _ ∗ jregc

_7→ tc ∗ t ≤ tc
∗ jchans 7→tc

= {this} ∪ CA ∪ CS ∗ this : AsyncChannel ∗ chan(this, j)}
{joininit-ch(t,CA ∪ {this},CS , j) ∗ chan(this, j) ∗ this 6∈ CA ∪ CS}

}

public void call() {
Join j; Lock l;
{this : AsyncChannel ∗ joincall(t,P,Q, j) ∗ chan(this, j) ∗ P(a, this)}
{joincall(t,P,Q, j) ∗ this.join 7→ j ∗ P(a, this) ∗ Q(a, this)}

j = this.join;
{joincall(t,P,Q, j) ∗ this.join 7→ j ∗ P(a, this) ∗ Q(a, this)}
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l = j.lock;
l.Acquire();
{jregl

_7→ tl ∗ jregm
_7→ tm ∗ j.lock

_7→ l ∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, j))

∗ joininternal(tm, joincall(t,P,Q),P,Q, j) ∗ this.join 7→ j ∗ P(a, this) ∗ Q(a, this)}
{joininternal(tm, joincall(t,P,Q),P,Q, j) ∗ P(a, this)}
{pool(tm,P,Q, this) ∗ P(a, this)}

AddMessage();
{∃x : Val. pool(tm,P,Q, this) ∗msg(tm,P,Q, a, x, this)}
{joininternal(tm, joincall(t,P,Q),P,Q, j)}
{jregl

_7→ tl ∗ jregm
_7→ tm ∗ j.lock

_7→ l ∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, j))

∗ joininternal(tm, joincall(t,P,Q),P,Q, j) ∗ Q(a, this)}
l.Release();
{joincall(t,P,Q, j) ∗ Q(a, this)}

}
}

Since the channel pre- and post-condition predicates P and Q are indexed by channel
references, when creating a new channel, the client needs to know the newly created
channel is distinct from existing channels (this 6∈ CA ∪ CS). Intuitively, this should
obviously hold in the channel constructor; formally, we use the fact that this.join 7→ null
and that all channels registered with a join instance refers back to that join instance (See
the definition of the chan(−) predicate).
public class SyncChannel : MessagePool {
Join join;

public SyncChannel(Join j) {
List<Message> chans;
{joininit-ch(t,CA,CS , j) ∗ this : SyncChannel ∗ this.join 7→ null}
{joininit-ch(t,CA,CS , j) ∗ this : SyncChannel ∗ this.join 7→ null ∗ this 6∈ CA ∪ CS}

this.join = j;
{joininit-ch(t,CA,CS , j) ∗ this : SyncChannel ∗ this.join 7→ j ∗ this 6∈ CA ∪ CS}

chans = join.channels;
{j.channels 7→ chans ∗ lst(chans,CA ∪ CS) ∗~c∈CA∪CS

chan(c, j) ∗ this 6∈ CA ∪ CS
∗ j.chords 7→ y ∗ lst(y, ∅) ∗ (∀c ∈ CA. c : AsyncChannel) ∗ (∀c ∈ CS . c : SyncChannel)
∗ jregl 7→ _ ∗ jregm 7→ _ ∗ jregc

_7→ tc ∗ t ≤ tc
∗ jchans 7→tc

= CA ∪ CS ∗ this : SyncChannel ∗ this.join 7→ j}
chans.Push(this);
{j.channels 7→ chans ∗ lst(chans, {this} ∪ CA ∪ CS) ∗~c∈CA∪CS

chan(c, j) ∗ this 6∈ CA ∪ CS
∗ j.chords 7→ y ∗ lst(y, ∅) ∗ (∀c ∈ CA. c : AsyncChannel) ∗ (∀c ∈ CS . c : SyncChannel)
∗ jregl 7→ _ ∗ jregm 7→ _ ∗ jregc

_7→ tc ∗ t ≤ tc
∗ jchans 7→tc

= CA ∪ CS ∗ this : SyncChannel ∗ this.join 7→ j}
{j.channels 7→ chans ∗ lst(chans, {this} ∪ CA ∪ CS) ∗~c∈CA∪CS

chan(c, j) ∗ this 6∈ CA ∪ CS
∗ j.chords 7→ y ∗ lst(y, ∅) ∗ (∀c ∈ CA. c : AsyncChannel) ∗ (∀c ∈ CS . c : SyncChannel)
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∗ jregl 7→ _ ∗ jregm 7→ _ ∗ jregc
_7→ tc ∗ t ≤ tc

∗ jchans 7→tc
= {this} ∪ CA ∪ CS ∗ this : SyncChannel ∗ chan(this, j)}

{joininit-ch(t,CA,CS ∪ {this}, j) ∗ chan(this, j) ∗ this 6∈ CA ∪ CS}
}

public void call() {
Join j; Message msg; bool done; Lock l;
{this : SyncChannel ∗ joincall(t,P,Q, j) ∗ chan(this, j) ∗ P(a, this)}

j = this.join;
{joincall(t,P,Q, j) ∗ chan(this, j) ∗ P(a, this)}

l = j.lock;
l.Acquire();
{jregl

_7→ tl ∗ jregm
_7→ tm ∗ jregc

_7→ tc ∗ j.lock
_7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc

∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, j))
∗ joininternal(tm, joincall(t,P,Q),P,Q, j) ∗ chan(this, j) ∗ P(a, this)}
{pool(tm,P,Q, this) ∗ P(a, this)}

Message msg = AddMessage();
{pool(tm,P,Q, this) ∗msg(tm,P,Q, a,msg, this)}
{jregl

_7→ tl ∗ jregm
_7→ tm ∗ jregc

_7→ tc ∗ j.lock
_7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc

∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, j))
∗ joininternal(tm, joincall(t,P,Q),P,Q, j) ∗msg(tm,P,Q, a,msg, this)}

done = false;
{jregl

_7→ tl ∗ jregm
_7→ tm ∗ jregc

_7→ tc ∗ j.lock
_7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc

∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, j))
∗ joininternal(tm, joincall(t,P,Q),P,Q, j)
∗ (done = true ∗ Q(a, this)) ∨ (done = false ∗msg(tm,P,Q, a,msg, this))}

while (!done) {
{jregl

_7→ tl ∗ jregm
_7→ tm ∗ jregc

_7→ tc ∗ j.lock
_7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc

∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, j))
∗ joininternal(tm, joincall(t,P,Q),P,Q, j) ∗msg(tm,P,Q, a,msg, this))}

j.checkChords();
{jregl

_7→ tl ∗ jregm
_7→ tm ∗ jregc

_7→ tc ∗ j.lock
_7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc

∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, j))
∗ joininternal(tm, joincall(t,P,Q),P,Q, j) ∗msg(tm,P,Q, a,msg, this))}

if (msg.status == Status.Released) {
{jregl

_7→ tl ∗ jregm
_7→ tm ∗ jregc

_7→ tc ∗ j.lock
_7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc

∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, j))
∗ joininternal(tm, joincall(t,P,Q),P,Q, j) ∗ Q(a, this)}

done = true;
{jregl

_7→ tl ∗ jregm
_7→ tm ∗ jregc

_7→ tc ∗ j.lock
_7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc

∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, j))
∗ joininternal(tm, joincall(t,P,Q),P,Q, j) ∗ Q(a, this) ∗ done = true}

} else {
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{jregl
_7→ tl ∗ jregm

_7→ tm ∗ jregc
_7→ tc ∗ j.lock

_7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc
∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, j))
∗ joininternal(tm, joincall(t,P,Q),P,Q, j) ∗msg(tm,P,Q, a,msg, this))}

l.Release();
{joincall(t,P,Q, j) ∗ jregl

_7→ tl ∗ jregm
_7→ tm ∗ jregc

_7→ tc ∗msg(tm,P,Q, a,msg, this))}
Thread.Sleep(1);
{joincall(t,P,Q, j) ∗ jregl

_7→ tl ∗ jregm
_7→ tm ∗ jregc

_7→ tc ∗msg(tm,P,Q, a,msg, this))}
l.Acquire();
{jregl

_7→ tl ∗ jregm
_7→ tm ∗ jregc

_7→ tc ∗ j.lock
_7→ l ∗ t ≤ tl ∗ tm ∗ t ≤ tc

∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, j))
∗ joininternal(tm, joincall(t,P,Q),P,Q, j) ∗msg(tm,P,Q, a,msg, this))}

}
}
{jregl

_7→ tl ∗ jregm
_7→ tm ∗ jregc

_7→ tc ∗ j.lock
_7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc

∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, j))
∗ joininternal(tm, joincall(t,P,Q),P,Q, j) ∗ Q(a, this)}

l.Release();
{joincall(t,P,Q, j) ∗ Q(a, this)}

}
}

In the proof of the SyncChannel.Call method, when the busy loop releases the lock, the
client keeps some fractional permission of the read-only phantom fields containing the
region types. This ensures that when the client re-acquires the lock and eliminates the
existentially quantified region types, they match the region types from the loop invariant.

4.5 The Join class

public class Join {
public LinkedList<Chord> chords;
public LinkedList<Channel> channels;
public Lock lock;

public Join() {
{thisregl 7→ _ ∗ thisregc 7→ _ ∗ thisregm 7→ _ ∗ thischans 7→ _
∗ this.channels 7→ null ∗ this.chords 7→ null ∗ this.lock 7→ null}

channels = new LinkedList<Channel>();
chords = new LinkedList<Chord>();
lock = new Lock();
{thisregl 7→ _ ∗ thisregc 7→ _ ∗ thisregm 7→ _ ∗ thischans 7→ _
∗ this.channels 7→ c ∗ this.chords 7→ ch ∗ this.lock 7→ l
∗ lst(c, ∅) ∗ lst(ch, ∅) ∗ lock(tl, l) ∗ t ≤ tl}
{thisregl 7→ tl ∗ thisregc 7→ tc ∗ thisregm 7→ _ ∗ thischans 7→ ∅
∗ this.channels 7→ c ∗ this.chords 7→ ch ∗ this.lock 7→ l
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∗ lst(c, ∅) ∗ lst(ch, ∅) ∗ lock(tl, l) ∗ t ≤ tl ∗ t ≤ tc}
{joininit-ch(t, ∅, ∅, this)}

}

public Pattern When(SyncChannel ch) {
{joininit-pat(t,P,Q, this) ∗ chan(ch, this)}

Pattern pat = new Pattern(ch, this);
{joininit-pat(t,P,Q, this) ∗ chan(ch, this)
∗ pat.channels 7→ x ∗ pat.join 7→ this ∗ lst(x, {ch})}

{joininit-pat(t,P,Q, this) ∗ pattern(pat, this, {ch})}
return pat;
{ret. joininit-pat(t,P,Q, this) ∗ pattern(ret, this, {ch})}

}

internal void checkChord(Chord c) {
List<Message> consumed; Action act; Pattern pat;
{thisregl

_7→ tl ∗ thisregm
_7→ tm ∗ thisregc

_7→ tc ∗ this.lock
_7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc

∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, this))
∗ joininternal(tm, joincall(t,P,Q),P,Q, this)
∗ chord(joincall(t,P,Q),P,Q, c, this)}

pat = c.pat;
act = c.cont;
{∃Z. thisregl

_7→ tl ∗ thisregm
_7→ tm ∗ thisregc

_7→ tc
∗ this.lock _7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc
∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, this))
∗ joininternal(tm, joincall(t,P,Q),P,Q, this)
∗ (~z∈Zchan(z, this)) ∗ patterninternal(pat, this,X)
∗ ∀Y ∈ Pm(Val×Val). πchan(Y) = X⇒

. act 7→ (-). {joincall(t,P,Q)(this) ∗~z∈Zchan(z, this) ∗~y∈YP(y)}
{~y∈YQ(y)}

}

consumed = pat.Matches();
{∃Y,Z. thisregl

_7→ tl ∗ thisregm
_7→ tm ∗ thisregc

_7→ tc
∗ this.lock _7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc
∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, this))
∗ joininternal(tm, joincall(t,P,Q),P,Q, this)
∗ (~z∈Zchan(z, this)) ∗ patterninternal(pat, this,X)
∗ ∀Y ∈ Pm(Val×Val). πchan(Y) = X⇒

. act 7→ (-). {joincall(t,P,Q)(this) ∗~z∈Zchan(z, this) ∗~y∈YP(y)}
{~y∈YQ(y)}

∗ (consumed = null ∨ (lst(consumed, π2(Y)) ∗~(c,m)∈Ypending(tm,P,Q,m, c) ∗ π1(Y) = X))}
if (consumed != null) {
{∃Y,Z. thisregl

_7→ tl ∗ thisregm
_7→ tm ∗ thisregc

_7→ tc
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∗ this.lock _7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc
∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, this))
∗ joininternal(tm, joincall(t,P,Q),P,Q, this)
∗ (~z∈Zchan(z, this)) ∗ patterninternal(pat, this,X)
∗ ∀Y ∈ Pm(Val×Val). πchan(Y) = X⇒

. act 7→ (-). {joincall(t,P,Q)(this) ∗~z∈Zchan(z, this) ∗~y∈YP(y)}
{~y∈YQ(y)}

∗ lst(consumed, π2(Y)) ∗~(c,m)∈Ypending(tm,P,Q,m, c) ∗ π1(Y) = X}
{∃Z,W. thisregl

_7→ tl ∗ thisregm
_7→ tm ∗ thisregc

_7→ tc
∗ this.lock _7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc
∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, this))
∗ joininternal(tm, joincall(t,P,Q),P,Q, this)
∗ (~z∈Zchan(z, this)) ∗ patterninternal(pat, this,X)
∗ ∀Y ∈ Pm(Val×Val). πchan(Y) = X⇒

.act 7→ (-). {joincall(t,P,Q)(this) ∗~z∈Zchan(z, this) ∗~y∈YP(y)}
{~y∈YQ(y)}

∗ lst(consumed, {m | (c,m, a) ∈W}) ∗ {c | (c,m, a) ∈W} = X
∗ (~(c,m,a)∈WP(a, c) ∗ removed(tm,P,Q, a,m, c))}

lock.Release();
{∃Z,W. thisregl

_7→ tl ∗ thisregm
_7→ tm ∗ thisregc

_7→ tc
∗ joincall(t,P,Q, this) ∗ (~z∈Zchan(z, this))

∗ . act 7→
(-).
{
joincall(t,P,Q)(this) ∗~z∈Zchan(z, this) ∗~y∈{(a,c)|(c,m,a)∈W}P(y)

}
{
~y∈{(a,c)|(c,m,a)∈W}Q(y)

}

∗ lst(consumed, {m | (c,m, a) ∈W}) ∗ {c | (c,m, a) ∈W} = X
∗ (~(c,m,a)∈WP(a, c) ∗ removed(tm,P,Q, a,m, c))}

act();
{∃W. thisregl

_7→ tl ∗ thisregm
_7→ tm ∗ thisregc

_7→ tc
∗ joincall(t,P,Q, this)
∗ lst(consumed, {m | (c,m, a) ∈W})
∗ (~(c,m,a)∈WQ(a, c) ∗ removed(tm,P,Q, a,m, c))}

lock.Acquire();
{∃W. thisregl

_7→ tl ∗ thisregm
_7→ tm ∗ thisregc

_7→ tc
∗ this.lock _7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc
∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, this))
∗ joininternal(tm, joincall(t,P,Q),P,Q, this) ∗ lst(consumed, {m | (c,m, a) ∈W})
∗ (~(c,m,a)∈WQ(a, c) ∗ removed(tm,P,Q, a,m, c))}

consumed.ForEach(Release);
{∃W. thisregl

_7→ tl ∗ thisregm
_7→ tm ∗ thisregc

_7→ tc
∗ this.lock _7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc
∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, this))
∗ joininternal(tm, joincall(t,P,Q),P,Q, this) ∗ lst(consumed, {m | (c,m, a) ∈W})}

}
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{thisregl
_7→ tl ∗ thisregm

_7→ tm ∗ thisregc
_7→ tc

∗ this.lock _7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc
∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, this))
∗ joininternal(tm, joincall(t,P,Q),P,Q, this)}

}

internal void checkChords() {
LinkedList<Chord> chords;
{thisregl

_7→ tl ∗ thisregm
_7→ tm ∗ thisregc

_7→ tc ∗ this.lock
_7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc

∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, this))
∗ joininternal(tm, joincall(t,P,Q),P,Q, this)}

chords = this.chords;
{thisregl

_7→ tl ∗ thisregm
_7→ tm ∗ thisregc

_7→ tc ∗ this.lock
_7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc

∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, this))
∗ joininternal(tm, joincall(t,P,Q),P,Q, this)
∗ lstr(chords,Y) ∗~c∈Ychord(joincall(t,P,Q),P,Q, c, this)}

chords.ForEach(checkChord);
{thisregl

_7→ tl ∗ thisregm
_7→ tm ∗ thisregc

_7→ tc ∗ this.lock
_7→ l ∗ t ≤ tl ∗ t ≤ tm ∗ t ≤ tc

∗ locked(tl, l, joininternal(tm, joincall(t,P,Q),P,Q, this))
∗ joininternal(tm, joincall(t,P,Q),P,Q, this)}

}

public void Release(Message msg) {
{Q(a, c) ∗ removed(tm,P,Q, a,msg, c)}

msg.status = Status.Released;
{emp}

}
}

4.6 Auxiliary classes

The above proof outlines assume auxiliary classes Lock, List and Pair satisfying the fol-
lowing specifications.

The Lock class

The Lock class implements a spin-lock, using a compare-and-swap to atomically acquire
the lock. The standard separation logic specification of a lock, associates a resource
invariant R with each lock, which is transferred to the client upon acquiring the lock,
and transferred back upon releasing the lock. Since the resource invariant R might itself
assert ownership of resourced shared using CAP, we require that R is stable, that it
is independent of the lock region type (picked by the client), and that it is expressible
using state-independent protocols. To support the joins’ view-shift from joininit-pat(−)
to joincall(−) we further introduce a corresponding lock initialization phase, allowing the
resource invariant R to be picked using a view-shift. We thus assume the following
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specification for the Lock library.

∃lock : RType×Val→ Prop. ∃islock, locked : RType× Prop×Val→ Prop.
∀t ∈ RType. ∀R : Prop. indept(R) ∧ sip(R) ∧ stable(R) ⇒

new Lock() : (-). {emp} {ret. ∃s : RType. lock(s, ret) ∗ t ≤ s}
Lock.Acquire : (-). {isLock(t,R, this)} {locked(t,R, this) ∗ R}
Lock.Release : (-). {locked(t,R, this) ∗ R} {isLock(t,R, this)}
∀x : Val. R ∗ lock(t, x) v isLock(t,R, x)
∀x : Val. stable(lock(t, x)) ∧ stable(isLock(t,R, x)) ∧ stable(locked(t,R, x))
valid (∀x : Val. isLock(t,R, x)⇔ isLock(t,R, x) ∗ isLock(t,R, x))

Here the lock(t, x) predicate asserts that x refers to an uninitialized and unlocked lock.
The lock is initialized by picking a resource invariant R using the view shift:

R ∗ lock(t, x) v isLock(t,R, x)

The isLock(t,R, x) predicate asserts that x refers to an initialized lock with resource
invariant R. The isLock(−) predicate is freely duplicable, allowing multiple clients to use
the same lock. Lastly, the locked(t,R, x) predicate asserts that x refers to an initialized
and locked lock with resource invariant R.

With the exception of the delayed choice of resource invariant R, this specification
matches the Lock specification from the Example section in [2]. The proof is thus exactly
the same, except that the lock region is created in the view-shift when the resource
invariant is picked, instead of in the constructor. We will thus not repeat the proof. We
refer the interested reader to the Example section in [2].

List class

In the case of the List class, which implements a linked list library, we assume a slightly
weaker specification than usual. In particular, for our purposes, we do not care about
the ordering of elements, only how many times each element appears in a given list. We
thus represent the abstract state of a list as a multiset of elements. Since a lot of the lists
maintained by join instances are read-only once the join instance transitions to the call
phase, we index the list representation predicate with a fractional permission, to permit
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read-only sharing.

∃lst : Val× Perm× Pm(Val)→ Prop.
∀I : Pm(Val)→ Prop. ∀Jp, Jq : Val→ Prop. ∀K : Pm(Val×Val)→ Prop. ∀π : Perm. ∀X : Pm(Val).

new List : (-). {emp} {ret. lst(ret, 1,X)}
List.Push : (y). {lst(this, 1,X)} {lst(this, 1, {y} ∪ X)}
List.Pop : (-). {lst(this, 1,X) ∗ X 6= ∅}

{ret. ∃Y : Pm(Val). lst(this, 1,Y) ∗ X = {ret} ∪ Y}
List.Count : (-). {lst(this, π,X)} {ret. lst(this, π,X) ∗ ret = |X|}

List.ForEach : (f).





lst(this, π,X) ∗ I(∅,X) ∗~x∈XJp(x) ∗

∀Y,Z ∈ Pm(Val). f 7→
(x). {I(Y, {x} ∪ Z) ∗ Jp(x) ∗ x ∈ X}
{I({x} ∪ Y,Z) ∗ Jq(x)}





{lst(this, π,X) ∗ I(X, ∅) ∗~x∈XJq(x)}

List.Map : (f).

{
lst(this, π,X) ∗ K(∅) ∗ ∀Y ∈ Pm(Val×Val). f 7→ (x). {K(Y) ∗ x ∈ X}

{ret. K({(x, ret)} ∪ Y)}

}

{ret. lst(this, π,X) ∗ ∃Y : Pm(Val×Val). lst(ret, 1, π2(Y)) ∗ K(Y) ∗ π1(Y) = X}
valid ( ∀x : Val. ∀p, q : Perm.

(∃r : Perm. p+ q = r ∗ lst(x, r,X))⇔ lst(x, p,X) ∗ lst(x, q,X))
stable(lst(x, π,X))

The list representation predicate, lst(x, π,X), thus asserts that x refers to a linked list
containing elements X, with fractional permission π. Modifying a list requires full own-
ership, whereas querying (Count) and iterating (ForEach, Map) only requires read-only
permission. In the proof outlines we use lstr(x,X) as shorthand for ∃π : Perm. lst(x, π,X)
and lst(x,X) as shorthand for lst(x, 1,X). We thus have that

lstr(x,X)⇔ lstr(x,X) ∗ lstr(x,X)
We omit the completely standard higher-order separation logic proof that a singly-

linked list implementation satisfies the above specification.

Pair class

Lastly, the Pair class implements pairing.

∃pair : Val×Val×Val→ Prop.
∀x, y, z : Val.

new Pair : (x, y). {emp} {ret. pair(ret, x, y)}
Pair.Fst : (-). {pair(this, x, y)} {ret. pair(this, x, y) ∗ ret = x}
Pair.Snd : (-). {pair(this, x, y)} {ret. pair(this, x, y) ∗ ret = y}
stable(pair(z, x, y))
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The pair representation predicate, pair(x, y, z), asserts that x refers to a pair consisting
of y and z.

We use lstpair(x,X) as shorthand for,

lstpair(x,X)
def
= ∃Y : Pm(Val×Val×Val).

lst(x, π1(Y)) ∗~(a,y,z)∈Ypair(a, y, z) ∗ {(y, z) | (a, y, z) ∈ Y} = X

where X ∈ Pm(Val×Val), to specify lists of pairs.
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State and non-termination in CIC
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Abstract. Partial type theories allow reasoning about recursively-defined
computations using fixed-point induction. However, fixed-point induc-
tion is only sound for admissible types and not all types are admissible
in sufficiently expressive dependent type theories.

Previous solutions have either introduced explicit admissibility con-
ditions on the use of fixed points, or limited the underlying type theory.
In this paper we propose a third approach, which supports Hoare-style
partial correctness reasoning, without admissibility conditions, but at
a tradeoff that one cannot reason equationally about effectful computa-
tions. The resulting system is still quite expressive and useful in practice,
which we confirm by an implementation as an extension of Coq.

1 Introduction

Dependent type theories such as the Calculus of Inductive Constructions [2]
provide powerful languages for integrated programming, specification, and veri-
fication. However, to maintain soundness, they typically require all computations
to be pure and terminating, severely limiting their use as general purpose pro-
gramming languages.

Constable and Smith [9] proposed adding partiality by introducing a type©τ
of potentially non-terminating computations of type τ , along with the following
fixed point principle for typing recursively defined computations:

if M :©τ →©τ then fix(M) :©τ

Unfortunately, in sufficiently expressive dependent type theories, there exists
types τ for which the above fixed point principle is unsound [10]. For instance,
in type theories with subset-types, the fixed point principle allows reasoning by
a form of fixed point induction, which is only sound for admissible predicates
(a predicate is admissible if it holds for the limit whenever it holds for all fi-
nite approximations). Previous type theories based on the idea of partial types
which admit fixed points have approached the admissibility issue in roughly two
different ways:

1. The notion of admissibility is axiomatized in the type theory and explicit
admissibility conditions are required in order to use fix. This approach has, e.g.,
been investigated by Crary in the context of Nuprl [10]. The resulting type theory
is expressive, but admissibility conditions lead to significant proof obligations,
in particular, when using Σ types.
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2. The underlying dependent type theory is restricted in such a way that one
can only form types that are trivially admissible. This approach has, e.g., been
explored in recent work on Hoare Type Theory (HTT) [21]. The restrictions
exclude usage of subset types and Σ types, which are often used for expressing
properties of computations and for modularity. Another problem with this ap-
proach is that since it limits the underlying dependent type theory one cannot
easily implement it as a simple extension of existing implementations.

In this paper we explore a third approach, which ensures that all types are
admissible, not by limiting the underlying standard dependent type theory, but
by limiting only the partial types. The limitation on partial types consists of
equating all effectful computations at a given type: if M and N are both of type
©τ , then they are propositionally equal. Thus, with this approach, the only way
to reason about effectful computations is through their type, rather than via
equality or predicates. With sufficiently expressive types, the type of an effectful
computation can serve as a partial correctness specification of the computation.
Our hypothesis is that this approach allows us to restrict attention to a subset
of admissible types, which is closed under the standard dependent type formers
and which suffices for reasoning about partial correctness.

To demonstrate that this approach scales to expressive type theories and
to effects beyond partiality, we extend the Calculus of Inductive Constructions
(CIC) [2] with stateful and potentially non-terminating computations. Since rea-
soning about these effectful computations is limited to their type, our partial
types are further refined into a Hoare-style partial correctness specifications,
and have the form ST τ (P,Q), standing for computations with pre-condition P ,
post-condition Q, that diverge or terminate with a value of type τ .

The resulting type theory is an impredicative variant of Hoare Type The-
ory [17], which differs from previous work on Hoare Type Theory in the scope of
features considered and the semantic approach. In particular, this paper is the
first to clarify semantically the issue of admissibility in Hoare Type Theory.

Impredicative Hoare Type Theory (iHTT) features the universes of proposi-
tions (prop), small types (set), and large types (type), with prop included in
set, set included in type, and axioms prop:type and set:type. The prop and set
universes are impredicative, while type is predicative. There are two main chal-
lenges in building a model to justify the soundness of iHTT: (1) achieving that
Hoare types are small (ST τ s : set), which enables higher-order store; that is,
storing side-effectful computations into the heap, and (2) supporting arbitrary Σ
types, and more generally, inductive types. In this respect iHTT differs from the
previous work on Hoare Type Theory, which either lacks higher-order store [19],
lacks strong Σ types [21], or whose soundness has been justified using specific
syntactic methods that do not scale to fully general inductive definitions [17, 18].

The model is based on a standard realizability model of partial equivalence
relations (PERs) and assemblies over a combinatory algebra A. These give rise
to a model of the Calculus of Constructions [14], with set modelled using PERs.
Restricting PERs to complete PERs (i.e., PERs closed under limits of ω-chains)
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over a suitable universal domain, allows one to model recursion in a simply-typed
setting [4], or in a dependently-typed setting, but without strong Σ types [21].

Our contribution is in identifying a set of complete monotone PERs that
are closed under Σ types and Hoare types. Complete PERs do not model Σ
types because, given a chain of dependent pairs, in general, due to dependency,
the second components of the chain are elements of distinct complete PERs.
To apply completeness, we need a fixed single complete PER. Monotonicity
will equate the first components of the chain and give us the needed single
complete PER for the second components. Monotonicity further forces a trivial
equality on Hoare types, equating all effectful computations satisfying a given
specification. However, it does not influence the equality on the total, purely
functional, fragment of iHTT, ensuring that we still model CIC. This is sufficient
for very expressive Hoare-style reasoning, and avoids admissibility conditions on
the use of fix.

As iHTT is an extension of CIC, we have implemented iHTT as an axiomatic
extension of Coq [1]. The implementation is carried out in Ssreflect [12] (a recent
extension of Coq), based on the previous implementation of predicative Hoare
Type Theory [19]. The implementation is available at:

http://www.itu.dk/people/kasv/ihtt.tgz.

2 Hoare types by example

To illustrate Hoare types, we sketch a specification of a library for arrays in
iHTT. We assume that array indexes range over a finite type ι:setfin, that the
elements of ι can be enumerated as ι0, ι1, . . . , ιn, and that equality between these
elements can be decided by a function � � : ι→ ι→ bool.

Each array is implemented as a contiguous block of locations, each location
storing a value from the range type τ :set. The space occupied by the array is
uniquely determined by ι, τ , and the pointer to the first element, justifying that
the array type be defined as this first pointer.

array : setfin → set→ set = λι. λτ.ptr.

Here, ptr is the type of pointers, which we assume isomorphic to nat. Each
array is essentially a stateful implementation of some finite function f :ι→τ . To
capture this, we define a predicate indexed by f , that describes the layout of an
array in the heap.

shape : (array ι τ)→ (ι→ τ)→ heap→ prop =
λa. λf. λh. h = a 7→ f ιo • a+1 7→ f ι1 • · · · • a+n 7→ f ιn.

In other words, h stores an array a, representing a finite function f , if shape a f h
holds, that is, if h consists of n+1 consecutive locations a, a+1, . . . , a+n, storing
f ι0, f ι1, . . . , f ιn, respectively. The property is stated in terms of singleton heaps
a+k 7→ f ιk, connected by the operator • for disjoint heap union. Later in the
text, we will also require a constant empty denoting the empty heap.
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The type of arrays comes equipped with several methods for accessing and
manipulating the array elements. For example, the method for reading the value
at index k:ι can be given the following type.

read : Πa:array ι τ.Πk:ι.
ST τ (λh.∃f. shape a f h,

λr. λh. λm.∀f. shape a f h→ r = f k ∧m = h)

Informally, read a k is specified as a stateful computation whose precondition
permits the execution only in a heap h which stores a valid array at adress a
(∃f. shape a f h). The postcondition, on the other hand, specifies the result of
executing read a k as a relation between output result r:τ , input heap h and
output heap m. In particular, the result r is indeed the array value at index k
(r = f k), and the input heap is unchanged (m = h).

Unlike in ordinary Hoare logic, but similar to VDM [6], our postcondition is
parametrized wrt. both input and the output heaps in order to directly express
the relationship between the two. In particular, when this relationship depends
on some specification-level value, such as f above, the dependency can be ex-
pressed by an ordinary propositional quantification.

Hoare types employ small footprint specifications, as in separation logic [20],
whereby the specifications only describe the parts of the heap that the compu-
tation traverses. The untraversed parts are by default invariant. To illustrate,
consider the type for the method new that generates a fresh array, indexed by ι,
and populated by the value x:τ .

new : Πx:τ.ST (array ι τ) (λh. h = empty, λa. λh. λm. shape a (λz. x) m)

The type states not that new x can only run in an empty heap, but that new x
changes the empty subheap of the current heap into a heap m containing an array
rooted at a and storing all x’s. In other words, new is adding fresh pointers, and
the resulting array a itself is fresh. On the other hand, unlike in separation logic,
we allow that the specifications can directly use and quantify over variables of
type heap. For completeness, we next simply list without discussion the types
of the other methods for arrays.

new from fun : Πf :ι→τ.ST (array ι τ) (λh. h = empty, λa hm. shape a f m)
free : Πa:array ι τ.ST unit (λh. ∃f. shape a f h, λr hm.m = empty)
write : Πa:array ι τ.Πk:ι.Πx:τ.

ST unit (λh. ∃f. shape a f h, λr hm.∀f. shape a f h→
shape a (λz. if z � � k then x else f(z)) m)

At this point, we emphasize that various type theoretic abstractions are quite
essential for practical work with Hoare types. The usefulness of Π types and the
propositional quantifiers is apparent from the specification of the array methods.
But the ability to structure specification is important too. For example, we can
pair pre- and postconditions into a type spec τ = (heap → prop) × (τ →
heap→ heap→ prop), which is then used to specify the fixpoint combinator.

fix : Πα:set. Πβ:α→set. Πs:Πx. spec (β x).
(Πx.ST (β x) (s x)→ Πx.ST (β x) (s x))→ Πx.ST (β x) (s x).
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Structuring proofs and specifications with programs is also necessary, and is
achieved using dependent records (i.e., Σ types), which we illustrate next.

The first example of a dependent record is the setfin type. This is an algebraic
structure containing the carrier type σ, the operation � � for deciding equality on
σ, and a list enumerating σ’s elements. Additionally, setfin needs proofs that
� � indeed decides equality, and that the enumeration list contains each element
exactly once. Using the record notation [x1:τ1, . . . xn:τn] instead of the more
cumbersome Σx1:τ1 . . . Σxn:τn. 1, the setfin type is defined as follows.

setfin = [σ : set, enum : list σ, � � : σ → σ → bool,
eqp : ∀x y:σ. x � � y = true ⇐⇒ x = y,
enump : ∀x:σ. count x enum = 1]

The above dependent record refines a type. In practice, we will also use records
that refine values. For example, in programming, arrays are often indexed by
the type of bounded integers In = [x : nat, boundp : x ≤ n]. In can be extended
with appropriate fields, to satisfy the specification for setfin, but the important
point here is that the elements of In are dependent records containing a number
x and a proof that x ≤ n. Of course, during actual execution, this proof can
be ignored (proofs are computationally irrelevant), but it is clearly important
statically, during verification.

Finally, the library of arrays itself can be ascribed a signature which will serve
as an interface to the client programs. This signature too is a dependent record,
providing types for all the array methods. Just as in the case of setfin and In,
the signature may also include properties, similar to object invariants [13, 15].
For example, we have found it useful in practice to hide from the clients the
definitions of the array type and the array shape predicate, but expose that two
arrays in stable states; that is, between two method calls, stored in compatible
heaps must be equal (i.e., that the shape predicate is “functional”):

functional : Πshape.∀a1 a2 f1 f2 h1 h2. shape a1 f1 h1 → shape a2 f2 h2 →
(∃j1 j2. h1 • j1 = h2 • j2)→ a1 = a2 ∧ f1 = f2 ∧ h1 = h2.

Then the signature for arrays indexed by ι, containing values of type τ , is pro-
vided by the following dependent record parametrized by ι and τ .

ArraySig = Πι:setfin. Πτ :set.
[array : set, shape : array→ (ι→ τ)→ heap→ prop,
funcp : functional shape, read : Πa:array. Πk:ι. . . .].

Therefore, Σ types are central for building verified libraries of programs, speci-
fications and proofs.

3 Semantics

In this section we present a model for impredicative Hoare Type Theory. We
will introduce the relevant parts of iHTT as the model is defined. The full type
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theory is defined in Appendix A. In presenting the model, we first focus on the
set-universe, and then scale up to cover all of iHTT.

Since the purely-function fragment of IHTT is terminating, we take our uni-
verse of realizers to be a universal pre-domain with a suitable sub-domain for
modelling stateful and potentially non-terminating computations.

Definition 1. Let V denote a pre-domain satisfying the following recursive pre-
domain equation:

V ∼= 1 + N + (V× V) + (V→c V⊥) + T (V) +H(V)

where →c is the space of continuous functions and

T (V)
def
= H(V)→c ((V×H(V)) + 1)⊥

H(V)
def
= {h : ptr→c V⊥ | supp(h) finite ∧ h(null) = ⊥}

supp(h : ptr→ V⊥)
def
= {l ∈ ptr | h(l) 6= ⊥}

The first four summands of V model the underlying dependent type theory, and
T (V) and H(V) model computations and heaps, respectively. The ordering on
T (V) is the standard pointwise order and the ordering on H(V) is as follows:

h1 ≤ h2 iff supp(h1) = supp(h2) ∧ ∀n ∈ supp(h1). h1(n) ≤ h2(n)

Let in1, inN, in×, in→, inT , and inH denote injections into V corresponding to
each of the above summands.

V defines a partial combinatory algebra (PCA) with the following partial
application operator:

Definition 2. Let · : V× V⇀ V denote the function,

a · b =

{
f(b) if a = in→(f) ∧ f(b) 6= ⊥
undef otherwise

We recall some notation and definitions. If R ⊆ A × A is a PER then its
domain, denoted |R|, is {x ∈ A | (x, x) ∈ R}. If R,S ⊆ A × A are PERs, then
R→ S is the PER {(α, β) ∈ A×A | ∀x, y ∈ A. (x, y) ∈ R⇒ (α ·x, β ·y) ∈ S}. If
R ⊆ A×A is a PER and f : A→ B then f(R) denotes the PER {(f(x), f(y)) |
(x, y) ∈ R} ⊆ B × B. For a subset X ⊆ A, we use ∆(X) to denote the PER
{(x, y) | x ∈ X ∧ y ∈ X}. Lastly, if R ⊆ A × A is a PER, we use [R] to denote
the set of R equivalence classes.

Definition 3 (Per(A)). The category of PERs, Per(A), over a partial combi-
natory algebra (A, ·), has PERs over A as objects. Morphisms from R to S are
set-theoretic functions f : [R]→ [S], such that there exists a realizer α ∈ A such
that,

∀e ∈ |R|. [α · e]S = f([e]R)
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Per(V) is cartesian closed and thus models simple type theory. To model recur-
sion, note that a realized set-theoretic function is completely determined by its
realizers (i.e., Per(V)(R,S) ∼= [R → S]) and that we have the standard least
fixed-point operator on the sub-domain of computations of V. This lifts to a
least fixed-point operator on those PERs that are admissible on the sub-domain
of computations:

Definition 4.

1. A PER R ⊆ A×A on a pre-domain A is complete if, for all chains (ci)i∈N
and (di)i∈N such that (ci, di) ∈ R for all i, also (tici,tidi) ∈ R.

2. A PER R ⊆ A×A on a domain A is admissible if it is complete and ⊥ ∈ |R|.

Let CPer(A) and AdmPer(A) denote the full sub-categories of Per(A) consisting
of complete PERs and admissible PERs, respectively.

Definition 5. Define u : V→c (T (V)→c T (V)) as follows,

u(x)(y)
def
=

{
z if x · inT (y) = inT (z)

⊥ otherwise

and let lfp denote the realizer in→(λx. [inT (tn(u(x))n)]).

Lemma 1. Let R ∈ AdmPer(T (V)), then

lfp ∈ |(inT (R)→ inT (R))→ inT (R)|

and for all α ∈ |inT (R)→ inT (R)|,

α · (lfp · α) inT (R) lfp · α

Proof. See Lemma 6 in Appendix C.1, which generalizes the fixed point operator
to impredicative Π types into an admissible PER.

The above development is standard and suffices to model fixed points over
partial types in a non-stateful, simply-typed setting. However, it does not extend
directly to a stateful dependently-typed setting: Assume ` τ : type and x : τ `
σ : type. Then τ is interpreted as a PER R ∈ Per(V), and σ as an [R]-indexed
family of PERs S ∈ [R]→ Per(V), and ` Σx : τ.σ : type as the PER ΣR(S):

ΣR(S) = {(in×(a1, b1), in×(a2, b2)) | a1 R a2 ∧ b1 S([a1]R) b2}.

In general, this PER is not chain-complete even if R and each Sx is: given a
chain (ai, bi)i∈N, we do not know in general that [ai]R = [aj ]R and hence cannot
apply the completeness of Sx to the chain (bi)i∈N for any x ∈ [R].

To rectify this problem we impose the following monotonicity condition on
the PERs, which ensures exactly that ai R aj , for all i, j ∈ N, and hence that
ΣR(S) is chain-complete.
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Definition 6 (CMPer(A)). A PER R ⊆ A×A on a pre-domain A is monotone
if, for all x, y ∈ |R| such that x ≤ y, we have (x, y) ∈ R. Let CMPer(A) denote
the full sub-category of Per(A) on the complete monotone PERs.

Restricting to complete monotone PERs forces a trivial equality on any par-
ticular Hoare type, as all of the elements of the type have to be equal to the
diverging computation. However, it does not trivialize the totality of Hoare types,
as we can still interpret each distinct Hoare type, ST τ s, as a distinct PER R,
containing the computations that satisfy the specification s.

Restricting to complete monotone PERs does not collapse the equality on
types in the purely functional fragment of iHTT, as these types are all interpreted
as PERs without a bottom element in their domain. In particular, Π-types,
which are modelled as elements of V→ V⊥, picks out only those elements that
map to non-bottom on their domain.

We shall see later that the monotonicity condition is also used to interpret
partial types with a post-condition, which induces a dependency similar to that
of Σ types, in the semantics of partial types.

3.1 iHTT

So far, we have informally introduced a PER model of a single dependent type
universe extended with partial types. The next step is to scale the ideas to a
model of all of iHTT, and to prove that we do indeed get a model of iHTT. We
start by showing that CMPERs and assemblies form a model of the underlying
dependent type theory. Next, we sketch the interpretation of iHTT specific fea-
tures such as heaps and computations in the model. Lastly, we show that the
model features W-types at both the set and type universe.

Underlying DTT. We begin by defining a general class of models for the
dependent type theory underlying iHTT, and then present a concrete instance
based on complete monotone PERs.

To simplify the presentation and exploit existing categorical descriptions of
models of the Calculus of Constructions, the model will be presented using the
fibred approach of [14]. To simplify the definition of the interpretation function,
we consider a split presentation of the model (i.e., with canonical choice of all
fibred structure, preserved on-the-nose).

Definition 7 (Split iHTT structure). A split iHTT structure is a structure

C D E B→

B B

IelIprf P

qr

such that
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– P is a split closed comprehension category,
– Iel and Iprf are split fibred reflections
– the coproducts induced by the Iel reflection are strong (i.e., P ◦ Iel is a split

closed comprehension category), and
– there exists objects Ωel, Ωprf ∈ E1 such that {Ωel} is a split generic object for

the q fibration and {Ωprf} is a split generic object for the r fibration, where
{−} = Dom ◦ P : E→ B.

The idea is to model contexts in B, and the three universes, prop, set,
and type in fibres of C, D and E, respectively. The split closed comprehension
category structure models unit, Π and Σ types in the type universe. The split
fibred reflections models the inclusion of prop into set and set into type and
induces unit, Π and weak Σ types in prop and set. Lastly, the split generic
objects models the axioms prop : type and set : type, respectively.

The concrete model we have in mind is mostly standard: the contexts and the
type universe will be modelled with assemblies, the set universe with complete
monotone PERs, and the prop universe with regular subobjects of assemblies.
We begin by defining a category of uniform families of complete monotone PERs.
Uniformity refers to the fact that each morphism is realized by a single α ∈ V.

Definition 8 (UFam(CMPer(A))).

– Objects are pairs (I, (Si)i∈|I|) where I ∈ Asm(V) and each Si ∈ CMPer(V).
– Morphisms from (I, Si) to (J, Tj) are pairs (u, (fi)i∈|I|) where

u : I → J ∈ Asm(V) and fi : [Si]→ [Tu(i)]

such that there exists an α ∈ V satisfying

∀i ∈ |I|. ∀ei ∈ EI(i). ∀ev ∈ |Si|. α · ei · ev ∈ fi([ev]Si
)

Recall [14] that the standard category UFam(Per(A)) is defined in the same
manner, using all PERs instead of only the complete monotone ones.

Let RegSub(Asm(V)) denote the standard category of regular subobjects
of assemblies and UFam(Asm(V)) the standard category of uniform families
of assemblies (see [14] for a definition). There is a standard split fibred re-
flection of UFam(Per(A)) into UFam(Asm(A)): the inclusion views a PER R
as the assembly ([R], id[R]) [14]. This extends to a split fibred reflection of
UFam(CMPer(A)) into UFam(Asm(V )) by composing with the following re-
flection of UFam(CMPer(A)) into UFam(Per(A)).

Lemma 2. The inclusion I : UFam(CMPer(A)) → UFam(Per(A)) is a split
fibred reflection.

Proof (Sketch). We show that CMPer(A) is a reflective sub-category of Per(A);
the same construction applies to uniform families, by a point-wise lifting. The
left-ajoint, R : Per(A)→ CMPer(A) is given by monotone completion:

R(S) = S R([α]R→S) = [α]R→S
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where R
def
=
⋂{S ∈ CMPer(V) | R ⊆ S} for a PER R ∈ Per(V).

Let S ∈ Per(A) and T ∈ CMPer(A). Since the underlying realizers are con-
tinuous functions, we have that (see Lemma 7 in Appendix C)

S → T = S → T

which induces the adjoint-isomorphism:

CMPer(A)(R(S), T ) ∼= [S → T ] = [S → T ] ∼= Per(A)(S, I(T ))

Lemma 3. The coproducts induced by the

Iel : UFam(CMPer(V))→ UFam(Asm(V))

reflection are strong.

Proof. Let I ∈ Asm(V),X ∈ UFam(CMPer(V))I and Y ∈ UFam(CMPer(V)){X}.
Then the induced coproduct, ΣX(Y ), is given by the family of complete mono-
tone PERs,

ΣX(Y ) =








(α, β) |
∃x, y ∈

∐

x∈[Xi]

[Y(i,x)].

α ∈ E∐
i
(x) ∧ β ∈ E∐

i
(y) ∧ x ∼i y







i∈|I|

where

E∐
i
(a, b) = {in×(d, e) | d ∈ a ∧ b ∈ e}
x ^i y iff E∐

i
(x) ∩ E∐

i
(y) = ∅

and ∼i is the transitive closure of ^i.

Since Iel(X) and Iel(Y ) are modest sets, ^i is the equality relation on∐
x∈[Xi]

[Y(i,x)], and the above PER thus reduces to the monotone completion of
the standard PER interpretation of Σ types.

ΣX(Y ) = ({(in×(a1, b1), in×(a2, b2)) | a1 Xi a2 ∧ b1 Y(i,[a1]Xi
) b2})i∈|I|

Since each Xi and each Y(i,x) is a complete monotone PER, the standard PER
interpretation of Σ types is already a complete monotone PER (see Lemma 8 in
Appendix C) and thus,

ΣX(Y ) = ({(in×(a1, b1), in×(a2, b2)) | a1 Xi a2 ∧ b1 Y(i,[a1]Xi
) b2})i∈|I|

The coproducts thus coincide with the coproducts induced by the UFam(Per(V))→
UFam(Asm(V)) reflection, which are strong [14, Section 10.5.8].

Theorem 1. The diagram below forms a split iHTT structure.
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RegSub(Asm(V)) UFam(CMPer(V)) UFam(Asm(V)) Asm(V)→

Asm(V) Asm(V)

Interpretation. Except for impredicative Σ types and the axiom set : type,
the interpretation of the underlying dependent type theory in the above concrete
split iHTT structure is exactly the standard PER-assembly interpretation. The
type set is interpreted as the set of complete monotone PERs over V, instead of
the set of all PERs over V. Impredicative Σ types are interpreted as the mono-
tone completion of the standard PER-assembly interpretation. For completeness,
we have written out the concrete interpretation of the underlying dependent type
theory in Appendix B.

As terms generally have multiple typing derivations in dependent type the-
ories, the interpretation function is typically defined as a partial function on
pre-terms and pre-contexts, and later shown to be defined on well-typed terms
and contexts [23]. Formally, the interpretation is given by three mutually recur-
sive partial functions,

[[−]]
Ctx

: Ctx ⇀ obj(Asm(V))

[[−]]
Type

: Ctx× Term ⇀ obj(UFam(Asm(V)))

[[−]]
Term

: Ctx× Term ⇀ hom(UFam(Asm(V)))

where Ctx is the set of pre-contexts and Term the set of pre-terms (defined in
Appendix A.1), such that,

[[Γ ` A]]
Type ∈ UFam(Asm(V))Ctx

[[Γ ]]

[[Γ ` M]]
Term ∈ UFam(Asm(V))Ctx

[[Γ ]] (1[[Γ ]]
Ctx

, [[Γ ` A]]
Type

)

for well-typed types, Γ ` A : type, and well-typed terms, Γ ` M : A. Terms of
small types, Γ ` M : el(τ), are thus interpreted as morphisms in UFam(CMPer(V))
fibres as follows:

[[Γ ` M : el(τ)]]
Term ∈ UFam(Asm(V))I(1I, [[Γ ` el(τ)]]

Type
)

= UFam(Asm(V))I(1I, Iel([[Γ ` τ ]]
Term

))

∼= UFam(CMPer(V))I(1I, [[Γ ` τ ]]
Term

)

where I = [[Γ ]]
Ctx

. Furthermore, global sections in UFam(CMPer(V)) fibres are
uniquely determined by their realizers:

UFam(CMPer(V))I(1I,X) ∼=


 ⋂

i∈|I|
∆(EI(i))→ Xi




272



for I ∈ Asm(V) and X ∈ UFam(CMPer(V))I . We can thus define the interpre-
tation of terms of small types by giving the underlying realizer. This is the view
we will employ when defining the interpretation of the basic computations of
iHTT.

Heaps. Pre- and post-conditions in iHTT are expressed as predicates over a
type heap, of heaps. In addition to a constant denoting the empty heap, this
type features the following operations: upd, free, max, dom, and peek. upd and
free updates and frees the value at a given location, respectively. peek returns
the value (if any) at a given location. dom decides whether a given location is
allocated and max returns the largest allocated location (and 0 for the empty
heap). The max operation allows one to define a recursion operator on heaps.
From these low-level operations we can define the high-level operations such as
points-to ( 7→) and disjoint union (•) used in Section 2.

heap is a large type (i.e., heap : type). The types of the built-in operations
are as follows.

empty : heap

upd : Πτ : set. heap→ el(nat)→ el(τ)→ heap

free : heap→ el(nat)→ heap

max : heap→ el(nat)

dom : heap→ el(nat)→ bool

peek : heap→ el(nat)→ el(1) + (Στ : set. el(τ))

We use h[m 7→τ v] as shorthand for upd τ h m v and h \m as shorthand for
free h m. These operations satisfy the heap axioms in Appendix A.11, which
include several axioms relating the basic operations in addition to an induction
principle and an extensionality principle for heaps.

We would like to model the values of heap as elements of H(V). How-
ever, with this interpretation of heap we cannot interpret the update operation,
h[m 7→τ v], as the definition would not be independent of the choice of realizer
for v. Rather, we introduce a notion of a world, which gives a notion of heap
equivalence and interpret a heap as a pair consisting of a world and an equiva-
lence class of heaps in the given world. A world is a finite map from locations to
small semantic types:

W def
= ptr

fin
⇀ CMPer(V)

and two heaps h1, h2 ∈ H(V) are considered equivalent in a world w ∈ W iff
their support equals the domain of the world and their values are point-wise
related by the world:

h1 ∼w h2 iff supp(h1) = supp(h2) = Dom(w) ∧ ∀l ∈ Dom(w). h1(l) w(l) h2(l)

A typed heap is then a pair consisting of a world and an equivalence class of
domain-theoretic heaps,

Ht
def
=
∐

w∈W
[∼w]
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and heap is interpreted as the set of typed heaps with the underlying domain-
theoretic heaps as realizers:

[[Γ ` heap]]
Type

= (Ht, (w,U) 7→ inH(U))i∈|I|

for I = [[Γ ]]
Ctx

. That is, for each i, we have the assembly with underlying set
Ht and with realizability map Ht → P (V) given by (w,U) 7→ inH(U). The
realizers themselves do not have to contain any typing information, as we in-
terpret small types with trivial realizability information (i.e., [[Γ ` set : type]] =
∇(CMPer(V))). Let I = [[Γ ]], then

[[Γ ` empty]]
Term
i = ([], {[]})

[[Γ ` upd]]
Term
i (R)(w, [h]w)([n])([v]) = (w[n 7→ R], [h[n 7→ v]]w[n 7→R])

[[Γ ` free]]
Term
i (w, [h]w)([n]) = (w|dom(w)\n, [h|dom(w)\n])

[[Γ `max]]
Term
i (w, [h]w) = [inN(max{n ∈ N | h(n) 6= ⊥ ∨ n = 0})]

[[Γ ` dom]]
Term
i (w, [h]w)([n]) =

{
[inN(0)] if w(n) defined

[inN(1)] otherwise

[[Γ ` peek]]
Term
i (w, [h]w)([n]) =

{
inl(w(n), [h(n)]w(n)) if w(n) defined

inr([∗]) otherwise

In the interpretation of update, the world is used to ensure that the interpretation
is independent of the choice of realizer v for N2. Since the underlying domain-
theoretic heaps do not contain any typing information, the world is also used in
the interpretation of peek, to determine the type of the value stored at the given
location.

Note that iHTT has “strong” update and that the world is modified to con-
tain the new type (semantically, the per R) upon update. Thus our notion and
use of worlds is different from the use of worlds in models of “weak” ML-like
reference types, e.g. [5]; in particular, note that we do not index every type by
a world, but only use worlds to interpret the type of heaps and the operations
thereon (see also the next subsection for further discussion).

Theorem 2. The heap axioms in Appendix A.11 hold in the model.

Hoare Types. We are now ready to sketch the interpretation of Hoare-types.
The idea is to interpret Hoare-types as PERs on elements of T (V) that satisfy
the given specification, but with a trivial equality. Specifically, given a partial
correctness specification, we define an admissible subset X ⊆ T (V) of computa-
tions satisfying the specification, and interpret the associated Hoare type as the
PER,

R = inT (∆(X)) = {(inT (f), inT (g)) | f ∈ X ∧ g ∈ X}
The trivial equality ensures that R is trivially monotone and admissibility on
the sub-domain of computations follows from admissibility of X.
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Assume a semantic pre-condition P ∈ Ht → 2, a small semantic type R ∈
CMPer(V), and a semantic post-condition Q ∈ [R]×Ht×Ht → 2. As explained
in the previous section, the pre- and post-condition is expressed in terms of a
typed heaps, Ht, instead of the underlying domain theoretic heaps. The subset of
computations satisfying the specification is thus defined using the usual “forall
initial worlds, there exists a terminal world”-formulation, known from models of
ML-like references [5]. However, as iHTT supports strong update and dealloca-
tion, the terminal world is not required to be an extension of the initial world.
Specifically, define hoare(R,P,Q) as the following subset of T (V):

hoare(R,P,Q)
def
= {f ∈ T (V) |

∀w ∈W. ∀h ∈ |∼w |. P (w, [h]w) = > ⇒
(f(h) = ⊥ ∨ ∃v′, h′. f(h) = (v′, h′) ∧ v′ ∈ |R| ∧

h′ ∈ {h′ ∈ H(V) | ∃w′ ∈W. Q([v′]R)(w, [h]w)(w′, [h′]w′) = >})}

where (−) denotes the chain-completion operator on T (V). The explicit chain-
completion of the post-condition is required because of the existential quan-
tification over worlds. Furthermore, since the post-condition is indexed by the
return value [v′]R, monotonicity is used to collapse a chain of domain-theoretic
values v1 ≤ v2 ≤ · · · into a single type-theoretic value [v1]R, when proving that
hoare(R,P,Q) is an admissible subset of T (V).

A Hoare-type in the is now interpreted as follows:

[[Γ ` st τ (P,Q)]]
Type
i = inT (∆(hoare([[Γ ` τ ]]i, [[Γ ` P]]i, [[Γ ` Q]]i)))

The previous model of iHTT [21] featured a non-trivial computational equal-
ity. However, the previous model lacked the worlds introduced in the previous
section and with it a useful notion of heap equivalence. As a result, the compu-
tational equality in the previous model was very strict, rendering the structural
rule for existentials in Hoare logic unsound. The new model validates all the
usual structural rules of Hoare-logic.

Computations. iHTT contains five basic computations for returning a value,
reading from the heap, writing to the heap, allocating a location and deallocation
a location. These basic computations are given by the following terms, where
{P}τ{Q} is shorthand for st τ (P,Q)T :

ret : Πτ : set. Πv : τ. {λ .>}τ{λr, hi, ht. hi = ht ∧ r = v}
read : Πτ : set. Πl : nat.

{λh. dom h l = true}τ{λr, hi, ht. hi = ht ∧ peek ht l = inr(τ, r)}
write : Πτ : set. Πl : nat. Πv : τ.

{λh. dom h n = true}τ{λr, hi, ht. ht = hi[l 7→τ v]}
alloc : Πτ : set. Πv : τ.

{λ .>}nat{λr, hi, ht. ht = hi[r 7→τ v] ∧ r 6= 0 ∧ dom hi r = false}
dealloc : Πl : nat. {λh. dom h l = true}1{λ , hi, ht. ht = hi \ l}
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In addition, iHTT contains a term, bind, for combining a two computations in
a sequential composition:

bind : Πτ, σ : set. Πs1 : spec τ. Πs2 : τ → spec σ.

st τ s1 → (Πv : τ. stσ (s2 v))→
{λhi. π1(s1) hi ∧ ∀xht. π2(s1) x hi ht ⇒ π1(s2 x) hm}

σ

{λr, hi, ht. ∃x, h. π2(s1) x hi ht ∧ π2(s2) r h ht}

and a term, do, which corresponds to the structural rule of consequence in
Hoare-logic:

do : Πτ : set. Πs1, s2 : spec τ. conseq s1 s2 → st τ s1 → st τ s2

where conseq is specification implication:

conseq : Πτ : set. spec τ → spec τ → prop

conseq = λτ. λs1. λs2. (∀i. π1(s2) i⇒ π1(s1) i) ∧
(∀y, i,m. π1(s2) i⇒ π2(s1) y i m⇒ π2(s2) y i m)

Lastly, for each type A iHTT contains a fixed point operator, fixA, for com-
putations with an argument of type A:

fixA : Πτ : set. Πs : spec τ.

((Πx : A. st τ s)→ (Πx : A. st τ s))→ Πx : A. st τ s

Below we give the interpretation of the basic computations, by giving the
underlying realizers. As a notational convenience, we write λx. f as shorthand
for in→(λx. f). Let I = [[Γ ]], then,

[[Γ ` ret]] = λei. λ . λev. inT (λh. (ev, h))

[[Γ ` read]] = λei. λ . λn. inT (λh. if h(n) 6= ⊥ then (h(n), h) else err)

[[Γ ` write]] = λei. λ . λn. λev.

inT (λh. if h(n) 6= ⊥ then (in1(∗), h[n 7→ ev]) else err)

[[Γ ` alloc]] = λei. λ . λev. inT (λh. let l = leastfree(h) in (l, h[l 7→ ev]))

[[Γ ` dealloc]] = λei. λn. λh.

inT (λh. if h(n) = ⊥ then err else (∗, h[n 7→ ⊥]))

[[Γ ` bind]] = λei. λ . λ . λ . λ . λm. λn. inT (bind(m,n))

[[Γ ` do]] = λei. λ . λ . λ . λ . λm. m

[[Γ ` fixA]] = λei. λ . λ . λm. in→(λv. inT ((tn(u(m))n)(v)))
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where

bind(m,n)
def
= λh. case πT (m)(h) of

(v, h′)⇒ πT (n · v)(h′)
err ⇒ err
⊥ ⇒ ⊥

leastfree
def
= λh. min{n ∈ N+ | h(n) = ⊥}

u(x : V)(y : V→ T (V))(z : V)
def
=

{
a if x · in→(λz. inT (y(z))) · z = inT (a)

⊥ otherwise

πT (x : V)
def
=

{
a if x ↓ and x = inT (a)

⊥T (V) otherwise

Theorem 3. The interpretation of computations is sound, i.e., well-typed com-
putations satisfy their specifications.

Proof. We prove three representative cases: bind, write, and fixA.
In the case of bind, the intermediate state in the execution of a sequen-

tial composition satisfies the chain-completion of the post-condition of the first
computation. To show that bind is sound, one uses that the underlying compu-
tations are continuous to reason about intermediate states added via the chain-
completion. Soundness follows from Lemma 9 in Appendix C.3.

The soundness of fixA follows from Lemma 6 in Appendix C.1, which gener-
alizes the the least fixed point operator on Per(V) to computations with a single
argument of a large type.

Lastly, the soundness of write follows from Lemma 10 in Appendix C.3.

W-types. The presentation of (co)-inductive types in CIC is based on an in-
tricate syntactic scheme of inductive families. So far, this presentation of (co)-
inductive types has eluded a categorical semantics. Martin-Löf type theory fea-
tures an alternative presentation, based on W-types (a type-theoretic formal-
ization of well-founded trees), which is strong enough to represent a wide range
of predicative inductive types in extensional models (such as ours) [11, 3]. Since
W-types in addition have a simple categorical semantics, we have chosen to show
that iHTT models inductive types by showing that it models W-types. Specifi-
cally, we show that it models W-types at both the type and set universe, and
that the W-types at the set universe supports elimination over large types.

Semantically, in the setting of locally cartesian closed categories, W-types are
modelled as initial algebras of polynomial functors [16]. In the setting of split
closed comprehension categories we define:

Definition 9. A split closed comprehension category P : E → B→ has split
W-types, if for every I ∈ B, X ∈ EI and Y ∈ E{X} the endo-functor,

PI,X,Y = ΣX ◦ΠY ◦ (πX ◦ πY )∗ : EI → EI
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has a chosen initial algebra αI,X,Y : PI,X,Y (WI,X,Y ) → WI,X,Y ∈ EI , which is
preserved on-the-nose by re-indexing functors.

As is well-known, Asm(V) is locally cartesian closed and all polynomial func-
tors on Asm(V) have initial algebras. This yields initial algebras for functors
PX,Y : UFam(Asm(V))1 → UFam(Asm(V))1 for X ∈ E1 and Y ∈ E{X}. This
lifts to an arbitrary context I ∈ Asm(V) by a point-wise construction, which
yields split W-types, as re-indexing in UFam(Asm(V)) is by composition:

Lemma 4. The split ccomp P : UFam(Asm(V))→ Asm(V)→ has split W-types.

Proof. W-types in Asm(V) are constructed from the W-types in Sets, by restrict-
ing to “heriditarily realized” trees (see Appendix C.4 for the full construction):
In the case where I = 1, assume X ∈ Asm(V) and Y ∈ UFam(Asm(V))X and
let TX,Y denote a solution to the set-isomorphism,

supX,Y :
∐

x∈|X|
|Yx| → TX,Y ∼= TX,Y

and let EX,Y : TX,Y → P(V) denote the unique function satisfying,

EX,Y (sup(x, f)) = {in×(ex, ef ) | ex ∈ EX(x) ∧ ∀y ∈ |Yx|. ∀ey ∈ EYx
(y).

ef · ey ∈ EX,Y (f(y))

}

Then WX,Y
def
= ({w ∈ TX,Y | EX,Y (w) 6= ∅}, EX,Y ) ∈ Asm(V) and sup :

PX,Y (WX,Y )→WX,Y is an initial PX,Y algebra, realized by the identity (Lemma
14 in Appendix C.4).

In the case of an arbitrary context I ∈ Asm(V), assumeX ∈ UFam(Asm(V))I
and Y ∈ UFam(Asm(V)){X}, then we define WI,X,Y and αI,X,Y by a point-wise
lifting:

WI,X,Y =
(
WXi,λy. Y(i,y)

)
i∈|I|

and
αI,X,Y =

(
idI ,

(
supXi,λy. Y(i,y)

)
i∈|I|

)

αI,X,Y is uniformly realized, since each of the underlying sup functions is real-
ized by the identitiy.

To show that these are further preserved on the nose by reindexing, assume
J ∈ Asm(V) and u : J → I ∈ Asm(V). Then,

u∗(αI,X,Y ) =
(
idJ ,

(
αXu(j),λy. Y(u(j),y)

)
j∈|J|

)
= αJ,u∗(X),{u(X)}∗(Y )

This models W-types in the type-universe. In addition, iHTT features small
W-types over small types, with elimination over large types. The idea is to model
these small W-types by forming the W-type in UFam(Asm(V)) and mapping it
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back into UFam(CMPer(V)) using the reflection. The reflection works by collaps-
ing an assembly into a PER by equating values with overlapping sets of realizers
and into a complete monotone PER by taking the monotone completion of said
PER. In the case where X and Y are in the image of Iel, the construction of
WI,X,Y sketched above yields a modest set (i.e., has no overlapping sets of re-
alizers) and furthermore, the induced PER is already monotone and complete.
This induces the following isomorphism, which allows us to model small W-types
with elimination over large types:

Lemma 5. For every I ∈ B, X ∈ UFam(CMPer(V))I , and Y ∈ UFam(CMPer(V)){X},
there is a chosen isomorphism,

WI,Iel(X),Iel(Y )
∼= Iel(Rel(WI,Iel(X),Iel(Y ))),

which is preserved on-the-nose by reindexing functors.

Proof (Sketch). There is a well-known equivalence between PERs and modest
sets. This extends to complete monotone PERs as follows: Define CMod(V) as
the full-subcategory of Mod(V), consiting of modest sets (X,EX), satisfying the
following two conditions,

∀x, y ∈ X. (∃a, b. a ∈ EX(x) ∧ b ∈ EX(y) ∧ a ≤ b)⇒ x = y

∀x ∈ X. ∀c : N→m V. (∀n ∈ N. c(n) ∈ EX(x))⇒ tnc(n) ∈ EX(x)

then Iel and Rel forms an equivalence between CMPer(V) and CMod(V) and
furthermore for every X ∈ CMod(V) there is a chosen isomorphism X ∼=
Iel(Rel(X)). This lifts to a fibred equivalence between UFam(CMPer(V)) and
UFam(CMod(V)), with chosen isomorphisms,X ∼= Iel(Rel(X)) forX ∈ UFam(CMod(V))I ,
preserved on the nose by re-indexing functors.

The result thus follows by showing that WX,Y ∈ CMPer(V) for X ∈ Asm(V)
and Y ∈ UFam(Asm(V))X , which follows by well-founded induction on TX,Y
(Lemma 15 in Appendix C.4).

4 Implementation

One of the advantages of weakening Hoare types instead of the underlying depen-
dent type theory – as in the case of [21] – is that it can simplify implementation
of the resulting type theory. In our case, presenting iHTT as an extension of
CIC allows for easy implementation as an axiomatic extension of the Coq proof
assistant.

Our implementation is based on the Coq infrastructure developed by Nanevski
et. al. [19], to support efficient reasoning about stateful computations in Coq.
This infrastructure defines a new Hoare type on top of the built-in Hoare type
with support for more efficient reasoning, based on ideas from separation logic.
Specifically, as illustrated in Section 2, this new Hoare type features (1) small
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footprint specifications and (2) efficient reasoning about heaps. Efficient reason-
ing about heaps is achieved by reasoning using the partial commutative monoid
(1+heap, •) instead of the total non-commutative monoid (heap, •), where heap
is the actual type of heaps and • is heap union [19].

Compared to Nanevski et. al.’s implementation of predicative Hoare Type
Theory (pHTT), this new implementation features higher-order store and im-
predicative quantification, but the predicative hierarchy lacks Hoare-types. The
new implementation is almost source compatible with verifications in pHTT that
do not exploit the predicative hierarchy.

Compared to the Ynot implementation of pHTT [18], in addition to im-
predicativity the main difference lies in the treatment of ghost variables. Post
conditions in Ynot are unary and thus employ ghost-variables to relate the pre-
and post-condition. Ynot expresses ghost variables of a specification as compu-
tationally irrelevant arguments to the computation. As Coq lacks support for
computationally irrelevant variables, Ynot extends Coq with an injectivity ax-
iom, which gives an embedding of set into the computationally irrelevant prop-
universe. This axiom is inconsistent with a proof irrelevant prop-universe and
thus in particular unsound in our model. Additionally, this limits Ynot’s ghost
variables to small types, whereas iHTT supports ghost variables of large types.

5 Related work

Our approach to partiality is based on the idea of partial types, as introduced
by Constable and Smith [9]. We have already discussed its relation to the work
on admissibility by Crary [10] in the introduction. Below we first discuss related
work on partiality, followed by related work on partial correctness reasoning.

Bove and Capretta [7] proposed representing a partial function f : A ⇀ B as
a total function f : Πa : A. P (a)→ B, defined by recursion over an inductively
defined predicative P : A→ prop, expressing the domain of the partial function.
This allows the definition of partial computations by general recursion, but does
not model non-termination, as f can only be applied to arguments on which
it terminates. Capretta [8] proposed an alternative co-inductive representation,
which does model non-termination, representing a partial function f : A ⇀ B as
a total function f : A → Bv, where Bv is co-inductive type of partial elements
of type B. This representation yields a least fixed point operator on finitrary
(continuous) endo-functions on A→ Bv. Capretta does not provide a fixed point
induction principle, but we believe such a principle would require admissibility
proofs.

Another alternative approach to partiality is to give a model of a language
featuring general recursion inside a dependent type theory. This allows one to
model and reason about partial computations inside the type theory, but does
not extend the type theory itself with partial computations. This approach has
for instance been studied and implemented by Reus et. al. [22], who formalized
Synthetic Domain Theory in the Lego proof checker. The resulting type theory
can be seen as a very expressive version of LCF. The synthetic approach allevi-
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ates the need for continuity proofs, but still requires admissibility proofs when
reasoning by fixed point induction.

Hoare-style specification logics is another line of closely related work. With
a collapsed computational equality, reasoning about a partial computation in
iHTT is limited to Hoare-style partial correctness reasoning, as in a specification
logic. With the modularity features provided by the underlying dependent type
theory (i.e., Σ types), iHTT can thus be seen as a modular specification logic
for a higher-order programming language.

6 Conclusion

We have presented a new approach for extending dependent type theory with
potentially non-terminating computations, without weakening the underlying de-
pendent type theory or adding restrictions on the use of fixed points in defining
partial computations. We have shown that it scales to very expressive dependent
type theories and effects beyond partiality, by extending the Calculus of Induc-
tive Constructions with stateful and potentially non-terminating computations.
We have further demonstrated that this approach is practical, by implementing
this extension of CIC as an axiomatic extension of the Coq proof assistant.

To justify the soundness of our extension of CIC, we have presented a realiz-
ability model of the theory. For lack of space, we have limited the presentation
to a single predicative universe, but the model can be extended to the whole
predicative hierarchy type ⊆ type1 ⊆ . . . of CIC.
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A Impredicative Hoare Type Theory

A.1 Syntax

Γ ::= ε | Γ, x : A
M,N, A,B, τ, σ,P,Q ::= x | set | prop | el(τ) | prf(P)

| ΠTx : A.B | AbsTx:A.B(M) | AppTx:A.B(M,N)
| ΠSx : A.τ | AbsSx:A.τ (M) | AppSx:A.τ (M,N)
| ∀x : A.P | AbsPx:A.P(M) | AppPx:A.P(M,N) | •P
| ΣTx : A.B | PairTx:A.B(M,N) | π1

x:A.B(M) | π2
x:A.B(M)

| ΣSx : A.τ | PairSx:A.τ (M,N) | unpack M as (x, y) in N
| A+B | inlA,B(M) | inrA,B(M)
| caseA,B M in inl(x)⇒ N1 | inr(x)⇒ N2

| WTx : A.B | supTx:A.B(M) | foldTx:A.B(M)
| WSx : τ.σ | supSx:τ.σ(M) | foldSx:τ.σ(M)
| 1 | ()
| bool | true | false | if M then N1 else N2

| nat | zero | succ M | M == N | M < N
| heap | empty | upd | free |max | dom | peek
| st | ret | read | write | alloc | dealloc | bind | do | fixA

A.2 Judgments

Γ Ctx Γ is a well-formed context

Γ ` A : type A is a type in context Γ

Γ ` M : A M is a term of type A in context Γ

Γ ` A = B : type A and B are convertible in context Γ

Γ ` M = N : A M and N are convertible in context Γ

We reserve the meta-variables A and B for types, the meta-variables τ and σ
for small types (terms of type set), and the meta-variables P and Q for propo-
sitions (terms of type prop).

A.3 Contexts

ε Ctx

x 6∈ Γ Γ ` A : type

Γ, x : A Ctx

A.4 Structural Rules

Γ ` A : type

Γ, x : A ` x : A
π

Γ ` M : A Γ, x : A,∆ ` J
Γ,∆[M/x] ` J [M/x]

sub
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Γ, x : A, y : A,∆ ` J
Γ, x : A,∆[x/y] ` J [x/y]

cont
Γ ` B : type Γ, x : A, y : B,∆ ` J

Γ, y : B, x : A,∆ ` J ex

Γ ` A : type Γ ` J
Γ, x : A ` J weak

Γ ` M : A Γ ` A = B : type

Γ ` M : B
conv

A.5 Types

ε ` set : type
type

ε ` prop : type
prop

Γ ` τ : set

Γ ` el(τ) : type
ElT

Γ, x : A ` B : type

Γ ` ΠTx : A. B : type
ΠT

Γ, x : A ` B : type

Γ ` ΣTx : A. B : type
ΣT

A.6 Small types

Γ ` 1 : set
1

Γ ` bool : set
bool

Γ ` nat : set
nat

Γ ` P : prop

Γ ` prf(P) : set
PrfT

Γ, x : A ` τ : set

Γ ` ΠSx : A. τ : set
ΠS

Γ, x : A ` τ : set

Γ ` ΣSx : A. τ : set
ΣS

A.7 Propositions

Γ, x : A ` P : prop

Γ ` ∀x : A.P : prop

Γ, x : A ` M : el(prf(P))

Γ ` λPx : A.M : el(prf(∀x : A.P))

Γ ` M : el(prf(∀x : A.P)) Γ ` N : A

Γ ` AppPx:A.P(M,N) : el(prf(P[N/x]))
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Using universal quantification, we define the usual logical connectives as fol-
lows:

P⇒ Q
def
= ∀x : el(prf(P)). Q

> def
= ∀P : prop. P⇒ Q

⊥ def
= ∀P : prop. P

P ∧Q
def
= ∀R : prop. (P⇒ Q⇒ R)⇒ R

P ∨Q
def
= ∀R : prop. (P⇒ R)⇒ (Q⇒ R)⇒ R

¬P
def
= P⇒ ⊥

∃x : A.P
def
= ∀R : prop. (ΠPx : A. (P⇒ R))⇒ R

a =A b
def
= ∀P : A→ prop. P(a)⇒ P(b)

A.8 Terms

Γ ` () : el(1)

Γ ` true : el(bool) Γ ` false : el(bool)

Γ ` M : bool Γ ` N1 : A Γ ` N2 : A

Γ ` if M then N1 else N2 : A

Γ ` zero : el(nat)

Γ ` M : el(nat)

Γ ` succ M : el(nat)

Γ ` M,N : el(nat)

Γ ` M == N : el(bool)

Γ ` M,N : el(nat)

Γ ` M < N : el(bool)

Γ, x : A ` M : B

Γ ` λTx : A. M : ΠTx : A. B

Γ ` M : ΠTx : B. A Γ ` N : B

Γ ` M N : A[N/x]

Γ, x : A ` M : el(τ)

Γ ` λSx : A. M : el(ΠSx : A. τ)

Γ ` M : el(ΠSx : A. τ) Γ ` N : A

Γ ` M N : el(τ [N/x])
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Γ ` M : A Γ ` N : B[M/x]

Γ ` (M,N)T : ΣTx : A. B

Γ ` M : A Γ ` N : el(τ [M/x])

Γ ` (M,N)S : el(ΣSx : A. τ)

Γ, z : el(ΣSx : A.τ) ` σ : set Γ, x : A, y : τ ` M : el(σ[(x, y)S/z])

Γ, z : el(ΣSx : A. τ) ` unpack z as (x, y) in M : el(σ)

Γ ` M : ΣTx : A.B

Γ ` fst M : A

Γ ` M : ΣTx : A.B

Γ ` snd M : B[fst M/x]

Γ ` M : A

Γ ` inlA,B(M) : A+B

Γ ` M : B

Γ ` inrA,B(M) : A+B

Γ ` M : A+B Γ, x : A ` N1 : C Γ, x : B ` N2 : C

Γ ` caseA,B M in inl(x)⇒ N1 | inr(x)⇒ N2 : C

A.9 W-types

Γ ` A : type Γ, x : A ` B : type

Γ ` WTx : A.B : type

Γ ` τ : set Γ, x : el(τ) ` σ : set

Γ ` WSx : τ.σ : set

Γ ` M : ΣTx : A. (B →Wx : A.B)

Γ ` supTx:A.B(M) :WTx : A.B

Γ ` M : ΣTx : el(τ). (el(σ)→ el(Wx : τ.σ))

Γ ` supSx:τ.σ(M) : el(WSx : τ.σ)

Γ ` A : type Γ, x : A ` B : type Γ ` X : type
Γ ` M : (ΣTx : A. (B → X))→ X

Γ ` foldTx:A.B(M) :WTx : A.B → X

Γ ` τ : set Γ, x : el(τ) ` σ : set Γ ` X : type
Γ ` M : (ΣTx : el(τ). (el(σ)→ X))→ X

Γ ` foldSx:τ.σ(M) : el(WSx : τ.σ)→ X

Γ ` A : type Γ, x : A ` B : type Γ ` X : type
Γ ` N1 : (ΣTx : A. (B → X))→ X Γ ` N2 : (WTx : A.B)→ X

C ≡ (ΣTx : A. (B →WTx : A.B))

Γ ` (∀y : C. N2(supTx:A.B(y)) = N1(π1(y), foldTx:A:B(N1) ◦ π2(y)))⇒ N2 = foldTx:A.B(N1)

Γ ` τ : set Γ, x : el(τ) ` σ : set Γ ` X : type
Γ ` N1 : (ΣTx : el(τ). (el(σ)→ X))→ X Γ ` N2 : (WSx : τ.σ)→ X

C ≡ (ΣTx : el(τ). (el(σ)→WSx : τ.σ))

Γ ` (∀y : C. N2(supSx:τ.σ(y)) = N1(π1(y), foldSx:τ.σ(N1) ◦ π2(y)))⇒ N2 = foldSx:τ.σ(N1)
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A.10 Heaps

For each term M : A below, iHTT contains a typing rule,

Γ ` M : A

empty : heap

upd : ΠT τ : set. heap→ el(nat)→ el(τ)→ heap

free : heap→ el(nat)→ heap

max : heap→ el(nat)

dom : heap→ el(nat)→ bool

peek : heap→ el(nat)→ el(1) + (ΣT τ : set. el(τ))

A.11 Heap axioms

For each propostion P below, iHTT contains a typing rule,

Γ ` •P : el(prf(P))

max empty =el(nat) zero

∀τ : set. ∀h : heap. ∀n : el(nat). ∀v : el(τ).

max (h[n 7→τ v]) =el(nat) if n < max h then max h else n

∀n : el(nat). peek empty n = inl ()

∀τ : set. ∀h : heap. ∀n : el(nat). ∀v : el(τ). ∀m : el(nat).

peek (h[n 7→τ v]) m = if n == m then inr Pairτ :set.el(τ)(τ, v) else peek h m

∀h : heap. ∀n,m : el(nat).

peek (h \ n) m = if n == m then inl () else peek h m

∀n : el(nat). dom empty n = false

∀τ : set. ∀h : heap. ∀n : el(nat). ∀v : el(τ). ∀m : el(nat).

dom (h[n 7→τ v]) m = if n == m then true else dom h m

∀h : heap. ∀nm : el(nat).

dom (h \ n) m = if n == m then false else dom h m
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∀h : heap. ∀α, β : set. ∀n,m : el(nat). ∀a : el(α). ∀b : el(β).

h[n 7→α a][m 7→β b] = if n == m then h[m 7→β b] else h[m 7→β b][n 7→α a]

∀h1, h2 : heap. (∀n : el(nat). peek h1 n = peek h2 n)⇒ h1 =heap h2

∀P : heap→ prop.

(∀h : heap. ∀α : set. ∀n : el(nat). ∀v : el(α). P h⇒max h < n⇒ P (h[n 7→α v]))⇒
P empty⇒ ∀h : heap. P h

where h[n 7→τ v] is shorthand for upd τ h n v and h\n is shorthand for free h n.

A.12 Computations

For each term M : τ below, iHTT contains a typing rule,

Γ ` M : el(τ)

st : ΠSτ : set. spec τ → set

ret : ΠSτ : set. ΠSv : el(τ). {λ .>}τ{λr, hi, ht. hi = ht ∧ r = v}
read : ΠSτ : set. ΠSl : el(nat).

{λh. dom h l = true}τ{λr, hi, ht. hi = ht ∧ peek ht l = inr(τ, r)}
write : ΠSτ : set. ΠSl : el(nat).

ΠSv : el(τ). {λh. dom h n = true}τ{λr, hi, ht. ht = hi[l 7→τ v]}
alloc : ΠSτ : set. ΠSv : el(τ).

{λ .>}nat{λr, hi, ht. ht = hi[r 7→τ v] ∧ r 6= 0 ∧ dom hi r = false}
dealloc : ΠSl : el(nat). {λh. dom h l = true}1{λ , hi, ht. ht = hi \ l}

do : ΠSτ : set. ΠSs1, s2 : spec τ. ΠSel(prf(conseq s1, s2)). el(st τ s1)→ el(st τ s2)

bind : ΠSτ, σ : set. ΠSs1 : spec τ. ΠSs2 : el(τ)→ spec σ.

el(st τ s1)→ (ΠSv : τ. stσ (s2 v))→
{λhi. π1(s1) hi ∧ ∀xht. π2(s1) x hi ht ⇒ π1(s2 x) hm}

σ

{λr, hi, ht. ∃x, h. π2(s1) x hi ht ∧ π2(s2) r h ht}
fixA : ΠSτ : set. ΠSs : spec τ.

((ΠSx : A. st τ s)→ (ΠSx : A. st τ s))→ ΠSx : A. st τ s

where

spec = λτ : set. (heap→ prop)× (τ → heap→ heap→ prop)

and {P}τ{Q} is shorthand for st τ (P,Q)T .
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A.13 Term definitional equality Γ ` M = N : A

Γ `M : A

Γ `M = M : A

Γ `M = N : A

Γ ` N = M : A

Γ `M1 = M2 : A Γ `M2 = M3 : A

Γ `M1 = M3 : A

Γ, x : A ` M : B Γ ` N : A U ∈ {S, T, P}
Γ ` (λUx : A. M) N = M[N/x] : B[M/x]

Γ ` M : A Γ ` N : B[M/x]

Γ ` fst (M,N)T = M : A

Γ ` M : A Γ ` N : B[M/x]

Γ ` snd (M,N)T = N : B[M/x]

Γ ` M : A Γ ` N : el(τ [M/x]) Γ, x : A, y : τ ` K : el(σ)

Γ ` unpack (M,N)S as (x, y) in K = K[M/x,N/y] : el(σ)

Γ ` M : A Γ, x : A ` N1 : C Γ, x : B ` N2 : C

Γ ` case inl(M) in inl(x)⇒ N1 | inr(x)⇒ N2 = N1[M/X] : C

Γ ` M : B Γ, x : A ` N1 : C Γ, x : B ` N2 : C

Γ ` case inr(M) in inl(x)⇒ N1 | inr(x)⇒ N2 = N2[M/X] : C

Γ ` M : ΣTx : A. (B →WTx : A.B) Γ ` N : (ΣTx : A. (B → X))→ X

Γ ` foldTx:A.B(N)(supTx:A.B(M)) = N(π1(M), foldTx:A.B(N) ◦ π2(M)) : X

Γ ` M : ΣTx : el(τ). (el(σ)→ el(WSa : τ.σ))

Γ ` N : (ΣTx : el(τ). (el(σ)→ X))→ X

Γ ` foldSx:τ.σ(N)(supSx:τ.σ(M)) = N(π1(M), foldSx:τ.σ(N) ◦ π2(M)) : X

A.14 Type definitional equality Γ ` A = B : type

Γ ` A : type

Γ ` A = A : type

Γ ` A = B : type

Γ ` B = A : type

Γ ` A = B : type Γ ` B = C : type

Γ ` A = C : type
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Γ ` A = A′ : type Γ, x : A ` B = B′ : type

Γ ` ΠTx : A.B = ΠTx : A′.B′ : type

Γ ` A = A′ : type Γ, x : A ` B = B′ : type

Γ ` ΣTx : A.B = ΣTx : A′.B′ : type

Γ ` A = A′ : type Γ, x : A ` B = B′ : type

Γ ` WTx : A.B =WTx : A′.B′

Γ ` A = A′ : type Γ ` B = B′ : type

Γ ` A+B = A′ +B′ : type

Γ ` τ = σ : set

Γ ` el(τ) = el(σ) : type
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B Interpretation

This appendix contains the concrete interpretation of the underlying dependent
type theory. The interpretation of terms of small types is defined in terms of a
realizer, which uniquely determines a morphism in the appropriate fibre category.

[[−]]
Ctx

: Ctx ⇀ obj(Asm(V))

[[−]]
Type

: Ctx× Term ⇀ obj(UFam(Asm(V)))

[[−]]
Term

: Ctx× Term ⇀ hom(UFam(Asm(V)))

B.1 Contexts Γ

[[ε]]
Ctx

= 1

[[Γ, x : A]]
Ctx

= (Σi∈IXi, (i, x) 7→ {(a, b) | a ∈ E(i) ∧ b ∈ EXi
(x)})

for (I, E) = [[Γ ]]
Ctx

and (Xi, EXi
) = [[Γ ` A]]

Type
.

B.2 Types Γ ` A : type

[[Γ ` set]]
Type
i = ∇(CMPer(V))

[[Γ ` prop]]
Type
i = ∇(2)

[[Γ ` el(τ)]]
Type
i = Iel([[Γ ` τ ]]

Term
i )

[[Γ ` ΠTx : A.B]]
Type

i =

({
f ∈

∏

i∈Xi

Y(i,x) | E∏
i
(f) 6= ∅

}
, E∏

i

)

[[Γ ` ΣTx : A.B]]
Type

i =

( ∐

x∈Xi

Y(i,x), E
∐

i

)

for (I, E) = [[Γ ]]
Ctx

, (Xi, EXi
) = [[Γ ` A]]

Type
, and (Y(i,x), EY(i,x)

) = [[Γ, x : A ` B]]
Type

,
where

E∏
i
(f) = {in→(α) | ∀x ∈ Xi. ∀ex ∈ EXi

(x). α · ex ∈ EY(i,x)
(f(x))}

E∐
i
(x, y) = {in×(α, β) | α ∈ EXi(x) ∧ β ∈ EY(i,x)

(y)}
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B.3 Small types Γ ` τ : set

[[Γ ` prf(P)]]
Term
i =

{
V× V if [[Γ ` P]]

Term
i = >

∅ if [[Γ ` P]]
Term
i = ⊥

[[Γ ` ΠSx : A.τ ]]
Term

i =
{

(a, b) | ∀x ∈ Xi. ∀e1, e2 ∈ EXi
(x). (a · e1, b · e2) ∈ R(i,x)

}

[[Γ ` ΣSx : A.τ ]]
Term

i =

{
(a, b) | ∃x, y ∈

∐

x∈Xi

[R(i,x)]. a ∈ E∐
i
(x) ∧ b ∈ E∐

i
(y) ∧ x ∼i y

}

for (I, E) = [[Γ ]]
Ctx

, (Xi, EXi
) = [[Γ ` A]]

Type
, and R(i,x) = [[Γ, x : A ` τ ]]

Term
,

where

E∐
i
(x, y) = {in×(α, β) | α ∈ EXi

(x) ∧ β ∈ y}
x ^i y iff E∐

i
(x) ∩ E∐

i
(y) 6= ∅

∼i is the transitive closure of ^i, and (−) denotes monotone completion.

B.4 Terms Γ ` M : A

[[Γ, x : A ` x]]
Term
(i,x) = x

[[Γ ` AbsTx:A.B(M)]]
Term

i = x ∈ Xi 7→ [[Γ, x : A ` M]]
Term
(i,x)

[[Γ ` AppTx:A.B(M,N)]]
Term

i = [[Γ ` M]]
Term
i ([[Γ ` N]]

Term
i )

[[Γ ` PairTx:A.B(M,N)]]
Term

i = ([[Γ ` M]]
Term
i , [[Γ, x : A ` N]]

Term
(i,[[Γ`M]]Term

i ))

[[Γ ` π1
x:A.B(M)]]

Term

i = π1([[Γ ` M]]
Term
i )

[[Γ ` π2
x:A.B(M)]]

Term

i = π2([[Γ ` M]]
Term
i )

[[Γ ` AbsSx:A.τ (M)]]
Term

= in→(λe.in→(λx. m(in×(e, x))))

[[Γ ` AppSx:A.τ (M,N)]]
Term

= in→


λe.

case m(e) of
in→(f) ⇒ f(n(e))
otherwise⇒ ⊥V




[[Γ ` PairSx:A.τ (M,N)]]
Term

= in→(λe. in×(m(e), n(in×(e,m(e)))))

[[Γ ` unpack M as (x, y) in N]]
Term

= in→


λe.

case m(e) of
in×(a, b) ⇒ n(in×(in×(e, a), b))
otherwise⇒ ⊥V




where m = [[Γ `M ]]
Term

and n = [[Γ ` N ]]
Term

.
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B.5 Base types and terms

[[Γ ` 1]]
Term
i = {(in1(∗), in1(∗))}

[[Γ ` ()]]
Term

= in→(λe. in1(∗))
[[Γ ` bool]]

Term
i = {(inN(1), inN(1)), (inN(2), inN(2))}

[[Γ ` nat]]
Term
i = {(inN(n), inN(n)) | n ∈ N}

[[Γ ` if M then N1 else N2]]
Term
i =

{
[[Γ ` N1]]

Term
i if [[Γ ` M]]

Term
i = [inN(1)]

[[Γ ` N2]]
Term
i if [[Γ ` M]]

Term
i = [inN(2)]

[[Γ ` true]]
Term

= in→(λe. inN(1))

[[Γ ` false]]
Term

= in→(λe. inN(2))

[[Γ ` zero]]
Term

= in→(λe. inN(0))

[[Γ ` succ M]]
Term

= in→


λe.

case m(e) of
inN(n) ⇒ inN(n+ 1)
otherwise⇒ ⊥V
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C Proofs

C.1 Recursion

Definition 10. Given X ∈ Asm(V) and R ∈ UFam(CMPer(V))X , let ΠX(R)
denote the complete monotone PER,

ΠX(R) = {(α, β) | ∀x ∈ |X|. ∀ex ∈ EX(x). (α · ex, β · ex) ∈ Rx}

Definition 11. Let u : V→ (V→ T (V))→ (V→ T (V)) denote

u(x : V)(y : V→ T (V))(z : V)
def
=

{
a if x · in→(λz. inT (y(z))) · z = inT (a)

⊥ otherwise

and let lfp denote in→(λe. tn in→(λz. inT ((u(e))n)(⊥V→T (V))(z))).

Lemma 6. Let X ∈ Asm(V) and R ∈ UFam(AdmPer(T (V))), then

lfp : |(ΠX(inT (R))→ ΠX(inT (R)))→ ΠX(inT (R))|

Proof. Assume α1 (ΠX(inT (R))→ ΠX(inT (R))) α2, then we need to show that

(lfp · α1, lfp · α2) = ( tn in→(λz. inT (((u(α1))n)(⊥V→T (V))(z))),

tn in→(λz. inT (((u(α2))n)(⊥V→T (V))(z)))) ∈ ΠX(inT (R))

which follows by chain-completeness from,

∀n ∈ N. in→(λz. inT ((u(α1))n(⊥V→H(V))(z))) ΠX(inT (R)) in→(λz. inT ((u(α2))n(⊥V→H(V))(z)))

which we prove by induction on n. The base case follows from the admissibility
of R. For the inductive case, assume

in→(λz. inT ((u(α1))n(⊥V→H(V))(z)))ΠX(inT (R)) in→(λz. inT ((u(α2))n(⊥V→H(V))(z)))

Assume x ∈ |X| and e1, e2 ∈ EX(x), then it follows by the induction hypothesis
and definition of ΠX(inT (R)) that,

(α1 · in→(λz. inT ((u(α1))n(⊥V→H(V))(z))) · e1,
α2 · in→(λz. inT ((u(α2))n(⊥V→H(V))(z))) · e2) ∈ inT (R)

and thus,

(in→(λz. inT ((u(α1))n(⊥)(z))) · e1, in→(λz. inT ((u(α2))n(⊥)(z))) · e2) ∈ inT (R)

as

in→(λz. int((u(αi))
n+1(⊥(z)))) · ei = inT ((u(αi))((u(αi))

n(⊥V→H(V)))(ei))

= αi · in→(λz. inT ((u(αi))
n(⊥)(z))) · ei
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C.2 Underlying DTT

Lemma 7. Let S, T ∈ Per(V). Then

S → T ⊆ S → T = S → T

where (−) denotes monotone completion operator:

R =
⋂
{S ∈ CMPer(V) | R ⊆ S}, R ∈ Per(V)

Proof. The S → T ⊆ S → T and S → T ⊆ S → T inclusions are obvious.

To show S → T ⊆ S → T , assume (α1, α2) ∈ S → T .

Define,

Ui
def
= {(x, y) | (αi · x, αi · y) ∈ T}

Ui is clearly a PER and by assumption S ⊆ Ui. Furthermore, Ui is monotone
and complete by continuity of αi and monotone and completeness of T . Hence,
S ⊆ Ui.

Define
U

def
= {(x, y) ∈ S | (α1 · x, α2 · y) ∈ T}

Since S ⊆ Ui, U is indeed a PER and by assumption S ⊆ U . Again, it follows
that U is monotone and complete from the continuity of αi , monotone and
completeness of T and that Ui ⊆ T . Hence, U = S and thus (α1, α2) ∈ S → T .

Lemma 8. Let S ∈ CMPer(V) and T : V/S → CMPer(V), then

ΣX(Y ) = {(in×(a1, b1), in×(a2, b2)) | a1 S a2 ∧ b1 T ([a1]S) b2} ∈ CMPer(V)

Proof. ΣS(T ) is clearly a PER.

To show thatΣS(T ) is monotone, assume (a1, b1), (a2, b2) ∈ |ΣS(T )|, a1 ≤ a2,
and b1 ≤ b2. Then a1 S a2 and b1 T ([a1]S) b2 and hence ((a1, b1), (a2, b2)) ∈
ΣS(T ).

To show that ΣS(T ) is complete, assume a1 ≤ a2 ≤ · · · , b1 ≤ b2 ≤ · · · , and
(ai, bi) ∈ |ΣS(T )|. Then by completeness,

⊔
n an ∈ |S|. Hence, by monotonicity,

ai S
⊔
n an for every i and thus bi ∈ |T ([

⊔
n an]S)| for every i, from which it

follows that
⊔
n bn ∈ |T ([

⊔
n an])| by completeness.

C.3 Computations

Definition 12. Let R ∈ CMPer(V), then

spec(R)
def
= (Ht → 2)× ([R]→ Ht → Ht → 2)
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Lemma 9. Let R,S ∈ CMPer(V), (p1, q1) ∈ spec(R), s2 ∈ [R]→ spec(S), and

m ∈ |∆(inT (hoare(R, p1, q1)))|
n ∈ |ΠI(R)(x ∈ [R] 7→ inT (∆(hoare(S, π1(s2(x)), π2(s2(x))))))|

then bind(m,n) ∈ hoare(S, p, q), where

p(hi ∈ Ht) = p1(hi) ∧ ∀x ∈ [R]. ∀ht ∈ Ht. q1(x)(hi)(ht)⇒ π1(s2(x))(ht)

and

q(x ∈ [S])(hi ∈ Ht)(ht ∈ Ht) = ∃y ∈ [R]. ∃h ∈ Ht. q1(y)(hi)(h) ∧ π2(s2(y))(x)(h)(ht)

Proof. Let w ∈W and h ∈ | ∼w | such that p([h]w).

By assumption, there exists an α ∈ V, such that m = inT (α) and α ∈
hoare(R, p1, p2). Since p1([h]w) we thus have that that α(h) 6= err. If α(h) = ⊥
then bind(m,n)(h) = ⊥ ∈ hoare(S, p, q), trivially. Hence, the only case we have
to consider is if α(h) = (v, h′). In this case v ∈ |R| and h′ ∈MQ, where

MQ
def
= {h′ ∈ H(V) | ∃w′ ∈W. q1([v]R)([h]w)([h′]w′)}

Since v ∈ |R| there exists a β such n · v = inT (β) and

β ∈ hoare(S, π1(s2([v]R)), π2(s2([v]R))).

Define N as the subset of intermediate states for which the terminal state of β
satisfies the post-condition:

N
def
= {h′ ∈ H(V) | β(h′) = ⊥ ∨ ∃v′, h′′. β(h′) = (v′, h′′) ∧

v′ ∈ |S| ∧ h′′ ∈MB(v′)}
MB(v′)

def
= {h′′ ∈ H(V) | ∃w′′ ∈W. π2(s2([v]R))([v′]S)([h]w)([h′′]w′′)}}

It is thus sufficient to show that MQ ⊆ N . To that end, we show that N is
chain-complete and that MQ ⊆ N . Chain-completeness of N follows from the
continuity of β and monotonicity of S.

To show that MQ ⊆ N , assume w′ ∈ W and h′ ∈ | ∼w′ | such that
q1([v]R)([h]w)([h′]w′). Since p([h]w), it follows that π1(s2([v]T ))([h′]w′) and hence
β(h′) = ⊥ or β(h′) = (v′, h′′) such that v′ ∈ |S| and h′′ ∈MS , where

MS = {h′′ ∈ Hu | ∃w′′ ∈W. π2(s2([v]R))([v′]S)([h′]w′)([h
′′]w′′)}

In the first case we trivially have that h′ ∈ N . For the second case we have to
prove that MS ⊆MB([v′]S), which follows from MS ⊆MB([v′]S).

Lemma 10. Let R ∈ CMPer(V), [n] ∈ [inN({(n, n) | n ∈ N})], en ∈ [n], v ∈
[R], and ev ∈ v, then

write(en, ev) = (λh. if h(n) 6= ⊥ then (in1(∗), h[en 7→ ev]) else err)

∈ hoare({(in1(∗), in1(∗))}, p, q(v))
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where

p((w, ) ∈ Ht)
def
= w(n) ↓

q(x ∈ [R])((w, [h]w) ∈ Ht)(ht ∈ Ht)
def
= ht = (w[n 7→ R], [h[n 7→ ev]])

Proof. Let w ∈ W and h ∈ | ∼w | such that p(w, [h]w). Then w(n) ↓ and thus
h(en) 6= ⊥. Hence,

write(en, ev)(h) = (in1(∗), h[en 7→ ev])

Furthermore, in1(∗) ∈ |{(in1(∗), in1(∗))}| and

q([in1(∗)])(w, [h]w)(w[n 7→ R], [h[en 7→ ev]])

C.4 W-types

In this appendix we construct W-types in Asm(V), from the W-types in Sets. We
take it as an axiom that Sets has W-types. From this axiom, we derive an induc-
tion principle and a dependent recursion principle for W-types in Sets (Lemmas
11 and 12). W-types in Asm(V) are then defined as a “hereditarily realized”
subset of the underlying W-type in Sets (Definition 13). From the dependent
recursion principle we derive a recursion principle on this “hereditarily realized”
subset (Lemma 13), which we use to prove that the “hereditarily realized” subset
is indeed a W-type in Asm(V) (Lemma 14).

Axiom 1 Let A ∈ Sets and B ∈ Fam(Sets)A, then there exists a set W with an
isomorphism, sup :

(∐
a∈ABa →W

) ∼= W , such that for any set X ∈ Sets and
function g : (

∐
a∈ABa → X) → X there exists a unique function h : W → X,

satisfying, ∀a ∈ A. ∀f ∈ Ba →W. h(sup(a, f)) = g(a, h ◦ f).

Given A ∈ Sets and B ∈ Fam(Sets)A, we use WA,B and supA,B to denote a
set and isomorphism satisfying the conditions of Axiom 1. Given a morphism g
as in Axiom 1, we use fold(g) to refer to the meadiating morphism induced by
g.

Lemma 11. Let A ∈ Sets, B ∈ Fam(Sets)A and V ⊆WA,B, such that

∀a ∈ A. ∀f ∈ Ba →WA,B . (∀b ∈ Ba. f(b) ∈ V )⇒ sup(a, f) ∈ V

then V = W .

Proof. Define g : (
∐
a∈ABa → V ) → V as the function, g(a, f) = sup(a, f).

Then by the uniqueness of fold(sup) we have that,

fold(g) = fold(sup) = idW

and thus W ⊆ V .
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Lemma 12. Let A ∈ Sets, B ∈ Fam(Sets)A, X ∈ Fam(Sets)W and

g : Πa∈AΠf∈Ba→W (Πb∈Ba
Xf(b))→ Xsup(a,f)

there exists a unique h : Πw∈WXw, satisfying,

∀a ∈ A. ∀f ∈ Ba →W. h(sup(a, f)) = g(a, f, h ◦ f)

Proof. Define g′ : (Σa∈ABa → Σw∈WXw)→ Σw∈WXw as follows,

g′(a, f) = (sup(a, λb ∈ Ba. π1(f(b))),

g(a, λb ∈ Ba. π1(f(b)), λb ∈ Ba. π2(f(b))))

and let h′ : W → Σw∈WXw denote the unique function satisfying,

∀a ∈ A. ∀f ∈ Ba →W. h′(sup(a, f)) = g′(a, h′ ◦ f) (1)

Define
V = {w ∈W | π1(h′(w)) = w}

then for any a ∈ A, f ∈ Ba → w, such that ∀b ∈ Ba. f(b) ∈ V , we have that

π1(h′(sup(a, f))) = π1(g′(a, h′ ◦ f)) = sup(a, λb ∈ Ba. π1(h′ ◦ f)(b)) = sup(a, f)

and thus V = W . Define h : Πw∈WXw as,

h(w) = π2(h′(w))

then

h(sup(a, f)) = π2(h′(sup(a, f))) = π2(g′(a, h′ ◦ f))

= g(a, λb ∈ Ba. π1(h′(f(b))), λb ∈ Ba. π2(h′(f(b))))

= g(a, f, h ◦ f)

To prove uniqueness, assume k : Πw∈WXw is another meadiating morphism.
Then k′ : W → Σw∈WXw defined as follows,

k′(w)
def
= (w, k(w))

satisfies (1):

k′(sup(a, f)) = (sup(a, f), g(a, f, k ◦ f))

= (sup(a, λb ∈ Ba. π1(k′(f(b)))),

g(a, λb ∈ Ba. π1(k′(f(b))), λb ∈ Ba. π2(k′(f(b)))))

= g′(a, k′ ◦ f)

and thus, k′ = h′ from which it follows that h = π2 ◦ h′ = π2 ◦ k′ = k.
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Definition 13. Given X ∈ Asm(V) and Y ∈ UFam(Asm(V))X , let ẆX,Y de-
note the assembly,

ẆX,Y = ({w ∈W|X|,|Y | | EW (w) 6= ∅}, EW )

where EW : W|X|,|Y | → P(V) denotes the unique function satisfying,

EW (sup(x, f)) = {in×(ex, ef ) | ex ∈ EX(x) ∧ ∀b ∈ |Yx|. ∀ey ∈ EYx
(y).

ef · ey ∈ EW (f(y))}

Lemma 13. Let X ∈ Asm(V), Y ∈ UFam(Asm(V))X , Z ∈ Sets and g :
(
∐
x∈|X|(|Yx| → Z)) → Z, then there exists a unique h : |ẆX,Y | → Z ∈ Sets

satisfying,

∀x ∈ |X|. ∀f ∈ |Yx| →W|X|,|Y |. EW (sup(x, f)) 6= ∅ ⇒ h(sup(x, f)) = g(x, h ◦ f)
(2)

Proof. Define Zw = {∗ | EW (w) 6= ∅} → Z and

g′ : Σx∈|X|Σf∈|Yx|→W|X|,|Y |(Πy∈|Yx|Zf(b))→ Zsup(x,f)

as follows,

g′(x ∈ |X|, f ∈ |Yx| →W|X|,|Y |, r ∈ Πy∈|Yx|Zf(b))(∗) = g(x, y ∈ |Yx| 7→ r(y)(∗))

which is well-defined, since if EW (sup(x, f)) 6= ∅, then EW (f(y)) 6= ∅ for every
y ∈ |Yx|. There thus exists a unique h′ : Πw∈WZw satisfying,

∀x ∈ |X|. ∀f ∈ |Yx| →W|X|,|Y |.

EW (sup(x, f)) 6= ∅ ⇒ h′(sup(x, f))(∗) = g(x, y ∈ |Yx| 7→ (h′ ◦ f)(b)(∗))

Lastly, define h : |ẆX,Y | → Z as h(v) = h′(v)(∗), then

∀x ∈ |X|. ∀f ∈ |Yx| →W|X|,|Y |. EW (sup(x, f)) 6= ∅ ⇒ h(sup(x, f)) = g(x, h ◦ f)

To show uniqueness, assume k : |ẆX,Y | → Z satisfying (2). Then,

k′(w ∈W|X|,|Y |) def
= x ∈ {∗ | EW (w) 6= ∅} 7→ k(w)

satisfies,

k′(sup(x, f))(∗) = k(sup(x, f)) = g(x, k ◦ f) = g(x, b ∈ Ba 7→ (k′ ◦ f)(b)(∗))

for x ∈ |X| and f ∈ |Yx| → W|X|,|Y |, with EW (sup(x, f)) 6= ∅. Hence k′ = h′

and thus h(v) = h′(v)(∗) = k′(v)(∗) = k(v).

Definition 14. Given X ∈ Asm(V) and Y ∈ UFam(Asm(V))X , let PX,Y :
Asm(V)→ Asm(V) denote the functor,

PX,Y (A) = ({(x, f) ∈ Σx∈|X||Yx| → |A| | EΠ(f) 6= ∅}, EP )

PX,Y (f : A→ B) = (x, g) 7→ (x, f ◦ g)
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where

EP (x, f) = {(ex, ef ) | ex ∈ EX(x) ∧ ef ∈ EΠx
(f)}

EΠx
(f) = {α | ∀y ∈ |Yx|. ∀ey ∈ EYx

(y). α · ey ∈ EA(f(y))}

Lemma 14. Let X ∈ Asm(V) and Y ∈ UFam(Asm(V))X then

sup|X|,|Y | : PX,Y (ẆX,Y )→ ẆX,Y ∈ Asm(V)

realized by the identity, is an initial PX,Y -algebra.

Proof. Given h : PX,Y (A) → A ∈ Asm(V), define u′ : |ẆX,Y | → |A| + 1 as the
unique map satisfying,

u′(sup(x, f)) =

{
inl(h(x, πl ◦ u′ ◦ f)) (∀y ∈ |Yx|. (πl ◦ u′ ◦ f)(y)↓) ∧ EΠx(πl ◦ u′ ◦ f) 6= ∅
inr(∗) otherwise

where πl : |A|+ 1 ⇀ |A| is defined as follows,

πl(x) =

{
y if x = inl(y)

undef otherwise

Assume eh is a h-realizer and define α and U as follows,

α
def
= in→(fix(λeu. λin×(ea, ef ). eh · (ea, eu ◦ ef )))

U
def
= {v ∈ |ẆX,Y | | ∃a ∈ |A|. u′(a) = inl(x) ∧ ∀ev ∈ EW (v). α · ev ∈ EA(a))}

where fix is the least fixed point operator on V→ V⊥.

To show that U = |ẆX,Y |, let x ∈ |X| and f : |Yx| → W|X|,|Y | such that
EΠ(x, f) 6= ∅ and assume that

∀y ∈ |Yx|. f(y) ∈ U

then it follows by the induction hypothesis that

∀y ∈ |Yx|. (πl ◦ u′ ◦ f)(y)↓ ∧EΠx
(πl ◦ u′ ◦ f) 6= ∅

and hence,

u′(sup(x, f)) = inl(h(x, πl ◦ u′ ◦ f))

Assume (ex, ef ) ∈ EW (sup(x, f)). Then (ex, α ◦ ef ) ∈ EP (x, πl ◦u′ ◦ f), since by
the induction hypothesis, α realizes πl ◦ u′ for w ∈ W|X|,|Y | in the image of f .
Hence, as eh realizes h,

α · (ex, ef ) = eh · (ex, α ◦ ef ) ∈ EA(h(x, πl ◦ u′ ◦ f))
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and thus sup(x, f) ∈ U .

Define u : |ẆX,Y | → |A| as

u = πl ◦ u′

then

u(sup(a, f)) = h(a, u ◦ f)

and u is further realized by α.

To prove uniqueness, assume v : |ẆX,Y | → |A| satisfying v◦sup = h◦PX,Y (v).
Then v′ = inl ◦ v satisfies

∀x. ∀f. v′(sup(x, f)) = inl(h(x, πl ◦ v′ ◦ f))

and thus by uniqueness of u′, u′ = v′ and thus u = v.

Definition 15. Let (X,EX) ∈ Asm(V) then (X,EX) is complete monotone iff

∀x, y ∈ X. (∃a, b ∈ V. a ∈ EX(x) ∧ b ∈ EX(y) ∧ a ≤ b)⇒ x = y

and

∀x ∈ X. ∀c : N→m V. (∀n ∈ N. c(n) ∈ EX(x))⇒ tnc(n) ∈ EX(x)

Lemma 15. Let X ∈ Asm(V) and Y ∈ UFam(Asm(V))X . If X is complete
monotone and Yx is complete monotone for each x ∈ |X|, then ẆX,Y is complete
monotone.

Proof. We prove

∀w ∈W|X|,|Y |.
(∀w′ ∈W|X|,|Y |. (∃a, b. a ∈ EW (w) ∧ b ∈ EW (w′) ∧ a ≤ b)⇒ w = w′) ∧
(∀c : N→m V. (∀n ∈ N. c(n) ∈ EW (w))⇒

⊔

n

c(n) ∈ EW (w))

by induction on w ∈W|X|,|Y |. Assume x1 ∈ |X| and f1 ∈ |Yx| →W|X|,|Y |.

We prove the first conjunct by induction on w′ ∈W|X|,|Y |. Assume x2 ∈ |X|
and f2 ∈ |Yx| → W|X|,|Y |, such that there exists (ex1

, ef1) ∈ EW (x1, f1) and
(ex2 , ef2) ∈ EW (x2, f2) with (ex1 , ef1) ≤ (ex2 , ef2). By monotonicity of X we
thus have that x1 = x2. Furthermore, given any y ∈ |Yx| and ef1 · ey ≤ ef2 · ey,
where ey ∈ EYx

(y), and thus f1(y) = f2(y), by the induction hypothesis for w.

The second conjunct follows easily from continuity of f1 realizers and the
induction hypothesis.
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