Structured Communication-Centered Programming for Web Services

MARCO CARBONE, IT University of Copenhagen
KOHEI HONDA, Queen Mary, University of London
NOBUKO YOSHIDA, Imperial College London

This article relates two different paradigms of descriptions of communication behavior, one focusing on
global message flows and another on end-point behaviors, using formal calculi based on session types. The
global calculus, which originates from a Web service description language (W3C WS-CDL), describes an
interaction scenario from a vantage viewpoint; the end-point calculus, an applied typed 7 -calculus, precisely
identifies a local behavior of each participant. We explore a theory of end-point projection, by which we can
map a global description to its end-point counterparts preserving types and dynamics. Three principles of
well-structured description and the type structures play a fundamental role in the theory.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory;
D.3.3 [Programming Languages]: Language Constructs and Features

General Terms: Theory, Design

Additional Key Words and Phrases: Communication, session types, process calculi, choreography, type
system, web services, end-point projection

ACM Reference Format:

Carbone, M., Honda, K., and Yoshida, N. 2012. Structured communication-centered programming for Web
services. ACM Trans. Program. Lang. Syst. 34, 2, Article 8 (June 2012), 78 pages.

DOI = 10.1145/2220365.2220367 http:/doi.acm.org/10.1145/2220365.2220367

1. INTRODUCTION

Communication-Centered Programming. The explosive growth of Internet in the
last decades has led to the de facto, global standards for naming schemes (URI, Domain
Names), communication protocols (HTTP, TCP/IP) and message formats (XML). These
elements offer a useful basis for building applications centring on communication
among distributed agents through these standards. Such communication-centered
applications are sometimes called Web services. Web services are an active area of
infrastructural development, involving the major standardization bodies such as W3C
and OASIS.

A concrete application area of communication-centered applications is business
protocols. A business protocol is a series of structured and automated interactions
among business entities. It is predominantly interdomain, is often required to satisfy
some regulations, and demands clear shared understanding about its meaning.
Some protocols such as industry standards will remain unchanged for a long time
once specified; others may undergo frequent updates. Because of its inherent

Authors’ addresses: M. Carbone, IT University of Copenhagen; email: carbonem@itu.dk; K. Honda, De-
partment of Electronic Engineering and Computer Science, Queen Mary, University of London; N. Yoshida,
Department of Computing, Imperial College London.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2012 ACM 0164-0925/2012/06-ART8 $10.00

DOI 10.1145/2220365.2220367 http://doi.acm.org/10.1145/2220365.2220367

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:2 M. Carbone et al.

interorganizational nature, there is a strong demand for a common standard for
specifying business protocols on a sound technical basis.

Global Description of Interaction. One of the standardization efforts for a language
to specify business protocols is the Web Services Choreography Description Language
(WS-CDL) [W3C WS-CDL Working Group 2004], developed by W3C WS-CDL Working
Group in collaboration with m-calculus experts including the present authors as
scientific advisors. WS-CDL is a specification language that offers a fully expressive
global description language for channel-based communication, equipped with general
control constructs (e.g., sequencing, conditionals and recursion), and is designed to
support type-based formal validation from the outset. The underlying intuition behind
the term choreography is:

Dancers dance following a global scenario without a single point of control

In choreography, the software designer no longer describes the behavior of the single
peers (end-point behavior) but establishes how the various interactions between
entities happen by giving a global description (choreography) of the system. In a
traditional approach, the architect would describe the communication operations, for
instance, an input, that must be performed at each peer. Unfortunately, this makes
it very difficult to have a global view of how the whole system being designed works.
On the other hand, choreography can picture the whole scenario of where and when a
communication has to happen. The architect will now decide that, for instance, there
will be a message from A to B and no longer think how this will be implemented at A
(sending a message) or B (waiting to receive a message).

WS-CDL is conceived as a language for describing such a “global scenario”: once
specified, this scenario is to be executed by individual distributed processes without
a single point of control.! Another significant feature of WS-CDL is its informal use
of sessions in communication: at the outset of each execution of a business protocol, a
session is the connection established between communicating parties so that messages
from one session can be distinguished from messages in other sessions.

End-Point Projection. A global description of communication behavior is useful
since it offers a clear view of its dynamic structure. Real execution of the descrip-
tion, however, is always through communication among distributed end-points that (as
the notion of choreography dictates) may as well involve no centralized control. Thus
we ask:

How can we project a global description to end-point processes so that their
interactions precisely realize the original global description?

Such a projection from a global scenario to end-point processes may be called end-point
projection. (EPP), following the design documents of WS-CDL. Having a universally
agreed and well-founded notion of EPP is fundamental as an engineering basis of pro-
tocols, ranging from design of sound protocols to their implementations as end-point
programs to run-time monitoring (see Section 8).

This Work. This article establishes a formal theory of EPP by introducing the two
typed calculi for interaction, a distilled version of WS-CDL (a global calculus) and an
applied r-calculus (an end-point calculus), and defining a mapping from the former to

1A related idea is orchestration where one master component, “conductor”, directly controls activity of one
or more slave components, which is useful when communicating parties can be placed under a common
administrative domain, see [Honda et al. 2007; O’Hanlon 2006].

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:3

the latter. This mapping is highly nontrivial due to the different nature of descriptions:
a global calculus directly describes interactions among multiple participants involving
sequencing, branching and recursion, which differs from the end-point-based descrip-
tion given in the m-calculus. A central contribution of this work is the identification of
three basic principles for global descriptions under which we can define a sound and
complete EPP, in the sense that, through a given EPP, all and only globally described
behavior is realized as communication among end-points. The three principles are:
connectedness (a basic local causality principle), well-threadedness (a stronger locality
principle based on session types [Bonelli et al. 2005; Dezani-Ciancaglini et al. 2006;
Gay and Hole 2005; Honda et al. 1998; Takeuchi et al. 1994; Vasconcelos et al. 2004])
and coherence (a consistency principle for description of each participant in a global
description). Schematically, the EPP mapping has the following shape:

I — A[P] | BIQ] | CIR] |...

where I is a global description, A, B, and C are participants of the protocol and P, @,
and R are projections of I onto A, B, and C respectively. We will show that, when ap-
plied to well-typed interactions following the three principles, the EPP mapping thus
defined satisfies type preservation, soundness and completeness. Furthermore, we will
show that EPP also guarantees liveness. The EPP theory opens a conduit between
global descriptions and accumulated studies on process calculi, allowing the use of the
latter’s rich theories for engineering aims. The EPP theory will be published as an
associated document of WS-CDL 1.0 [Carbone et al. 2006b] (which contains many ex-
amples and full technical details), and will form part of its open-source implementation
[PI4SOA 2008].

As an additional result, this article introduces a type inference result in session
types for both global and end-point calculus.

Contributions and Outline. This article is an expanded version of Carbone et al.
[2007], which differs from the conference version in several aspects. In particular,
apart from the full definitions omitted from the extended abstract, for instance, Sec-
tion 5, we have extended our theory by providing various algorithms for verifying the
properties required by our formalism (Sections 3, 4, 5), provided formal proofs of our
results and more examples (Section 6), and given an expanded discussion with the
updated related work and the possible extensions that can be addressed in the future.

After the illustration of the key concepts in Section 2, the article presents the fol-
lowing technical contributions.

— The typed global calculus and its semantics (Section 3). We prove the central proper-
ties of the type discipline, including the existence of the minimal typing (Proposition
3.21), which entails, under the annotation of bound names, a sound and complete
algorithmic type inference (Proposition 3.22); and the subject reduction 3.24 that
entails type safety.

— The typed endpoint calculus and its semantics (Section 4), for which we prove the
minimal typing property (Proposition 4.14); a sound and complete algorithmic type
inference (Proposition 4.15); and the subject reduction 4.17, which entails commu-
nication safety (Corollary 4.19).

— The theory of endpoint projection (Section 5), where we present the key criteria
for global specifications that enable consistent projection (Section 5.2, Section 5.3,
Section 5.5.1, and Section 5.6).

The emphasis is on illustrating, through concrete examples, how the EPP theory is
defined and used for generating correct end-point processes. The present version also
gives more detailed explanations of the typing systems of the global and end-point

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:4 M. Carbone et al.

calculi and their use for the EPP theory; and also provides comprehensive comparisons
with related work.

In the remainder, Section 2 outlines the key ideas with an example, while Sections 3
and 4 introduce the global calculus and end-point calculus respectively. Section 5 de-
velops the theory of end-point projection. In Section 6, we report an extended example
of a global description and its end-point projection. Section 7 contains related work
while Section 8 summarizes further results and applications of the EPP theory, and
concludes with further topics. Appendix A-F give the auxiliary definitions and proofs.

2. THE BUYER-SELLER PROTOCOL

Global Descriptions. We outline the key technical ideas of this work using an example
from [Ross-Talbot and Fletcher 2006], the “Buyer-Seller Protocol.” The participants
involved are a Buyer, a Seller and a Shipper. We describe the protocol with both text
and a sequence diagram.

Buyer _Seller Shipper

(1) Buyer asks Seller for quote; quoteCh
(2) Seller replies with a quote; quote
(3) Buyer accepts or rejects;
(4) In case of acceptance, accept '

(a) Seller orders from Shipper; delzv-Ch

(b) Shipper sends back details; . details

(c) Seller forwards to Buyer. + details
(5) In case of rejection,

(a) terminate. reject

v v v

The diagram is ambiguous at the branching (+) actions in (4) and (5): the purpose of
such diagrams is to offer an informal overview of the system omitting detailed control
structures (choices, loops, etc.) and manipulation of values/states. The reason why
such global descriptions (another well-known example is Message Sequence Charts
[Broy 2005; Broy et al. 2007; ITU 1996]) are practiced in engineering is because they
enable a clear grasp of the whole interaction structure, lessening synchronization and
other errors at the design stage.

WS-CDL is intended to extend the virtues of such global notations to a full fledged
description language. The global calculus, a model for WS-CDL, is built as formal-
ization for precisely describing diagrams of this sort. Before introducing its syntax
formally, we first outline its basic ideas using an example.

Figure 1(a) gives a description of the Buyer-Seller Protocol in the global calculus.
In (a), Line 1 describes Action (1) in the protocol. The quoteCh is a service channel,
which may be considered as a public URL for a specific service. The invocation marks
the start of a session between Buyer and Seller: the v-bound s is a session channel,
a fresh name to be used for later communication in this session. Unlike standard
process calculi, the syntax no longer describes input and output actions separately:
the information exchange between two parties is directly described as one interaction.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:5

(a) Protocol for Buyer-Seller Example (b) Protocol with Recursion

Buyer — Seller : quoteCh(v s).
rec X. {
Seller — Buyer : s(quote, ¢, x).
if reasonable(z)@Buyer then
{Buyer — Seller : s(accept).
Seller — Shipper : delivCh(v t).
Shipper — Seller : t(details, v, z).
Seller — Buyer : s(details, z, y). 0}
else
{Buyer — Seller : s(reject).
q@QSeller:=g@Seller—1. X } }

Buyer — Seller : quoteCh(v s).
Seller — Buyer : s(quote, 300, z). {
{Buyer — Seller : s(accept).
Seller — Shipper : delivCh(v t).
Shipper — Seller : t(details, v, z).
Seller — Buyer : s(details, z, y). 0 }
+
{Buyer — Seller : s(reject). 0} }

e e R N
e N R

Fig. 1. Business protocols in the Global Calculus.

Line 2 describes Action (2), Seller’s reply to Buyer. The session has already been
started and now the two participants communicate using the session channel s. In
addition, three factors involved: quote identifies the particular operation used in this
communication, 300 is the quote sent by Seller; x is a variable located at Buyer where
the communicated value will be stored (note that x is not bound).

Lines 3 and 8 describe Action (3), where Buyer communicates its choice (accept or
reject) to Seller through s. Two series of actions that follow these choices are combined
by + in Line 7. If accept is chosen, Seller invokes Shipper’s service channel delivCh,
creating a fresh session channel ¢ (Line 4). Then in Line 5, Shipper sends the shipping
details through ¢. Finally in Line 6, Seller forwards the details to Buyer by sending the
value stored in variable x: here the protocol terminates. In Line 8, Buyer communicates
reject, in which case the protocol immediately terminates.

Two Principles. Through our involvement in its design process, we found that WS-
CDL is based on the following two engineering principles.

Principle 1 (Service Channel Principle (SCP)). Service channels can be shared and
invoked repeatedly.

Principle 2 (Session Principle (SP)). A sequence of conversations belonging to a
protocol should not be confused with other concurrent runs of this or other protocols
by the participants, that is, each such sequence should form a logical unit of a conver-
sation, or a session.

(SCP) corresponds to the repeated availability of replicated input channels in the 7-
calculus (called uniformly receptive Sangiorgi [1999] and server channels in Berger
et al. [2001]), or, in practice, of public URLs. (SP) is a basic principle in many
communication-centered programs, and can be given simple type abstraction with de-
cidable type checking [Dezani-Ciancaglini et al. 2006; Honda et al. 1998; Vasconcelos
et al. 2004].2

In Figure 1(a), we can observe how the distinction between service channels and
session channels implements (SCP) and (SP): sessions offer logical grouping of threads
of interactions, where each thread starts with a procedure-call-like service invocation
at a service channel and carry out in-session communications at associated session
channels. This point can be seen more clearly in Figure 1(b), a refinement of (a). In
(b), if Buyer chooses reject, the protocol recurs to Line 3, after decrementing the quote.
In Line 4, a unary predicate reasonable(x) is evaluated at Buyer’s site (“@” indicates

2In implementations of Web services, sessions are implemented using so-called correlation identities (which
may be considered as nonces in cryptographic protocols).

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:6 M. Carbone et al.

a location, similarly in Line 10). The session notation makes it clear that all quote-
messages from Seller to Buyer in the recursion are done within a single session. If (SP)
is violated, messages could be confused, for instance, Shipper in Line 4 may receive a
message from Buyer that was sent to Seller in Line 3 since the three participants are
running in parallel.

Notice that according to this choreography, the shipper is only invoked once since
taking the branch between lines 5 and 8 implies termination of recursion (there is
no tail X). Section 5 will show that such session information plays a crucial role in a
tractable end-point projection.

3. THE GLOBAL CALCULUS
3.1. Syntax

In the sequel, I, I', ... denote terms of the calculus, also called interactions; ch,ch’ ...
range over service channels, intuitively denoting the shared channels of (Web) ser-
vices; s, t,r... range over session channels; § indicates a vector of session channels;
A, B, C,... range over participants; x, y, z, . .. over variables local to each participant;
X, X',... over term variables; and e, e’, ... over arithmetic and other first-order ex-
pressions excluding service and session channels. The syntax of the global calculus
[Carbone et al. 2006a] is given by BNF in the following definition.

Definition 3.1 (Global Calculus Syntax).

I:= A— B:ch(v3). I (init)
| A—B:s{op, e, y).1 (comm)
| L+ (sum)
| I |1 (par)
| x@A :=e.l (assign)
| if e@A then I else I (cond)
| XA T (rec)
| X4 (recvar)
| 0 (inaction)
| (ws)I (new)

(init) denotes a session initiation by A via B’s service channel ch, with fresh session
channels § and continuation I. (comm) denotes an in-session communication over a
session channel s, where op is an operator name, which is used as a label for selecting
communication (just like a label in records and tagged unions). Note that y does not
bind in I: in the operational semantics (given in Section 3.2) variables will be evaluated
in a local state as in imperative languages. “|” and “+” denote respectively parallel and
choice of interactions. (cond) and (assign) are standard conditional and assignment.
Assignment can also be seen as an internal communication A — A : s(assign, e, x). I.
Explicit x@A/e@A indicates the variable/boolean expression x/e is located at A. X4
and uX4. I (where the variable X4 is bound in I) implement recursion. Note that
the participant name appearing in the recursion and the recursion variable has no
importance in this section: we will therefore omit it now and reconsider it in Section 5.
0 denotes termination. We often omit 0 and empty vectors. (vs)I is the CCS-like name
restriction, binding sin I. For the sake of presentation, we will often write (vs;) ... (vsy)
as (v3). Since hiding is only generated by session initiation, that is, it is mainly used
at runtime, we stipulate the following assumption.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8.7

ok e@QA v o =o[z@QA— v

(C-INIT) S B 9. Do (o, i) AN — e — e~ o,)
(o) e e o S G T
(G-IFT) = aa ;;Cfilit;z) ~ o) (GEREO w(ffXI;)X«]Z ZT’FOI,;)F)
(G-IFF) & reaa e (Ilelsﬁ 2) ~n) (EREE (l(i);)) = ((Z'I: ([1//)-5)1’)
(G-StrUCT) L= F@hvlo, 1) T=17 (G-Par) —% W oL

(o, I'") ~ (o', I') (0,11 | I2) ~ (07, 11 | I2)

Fig. 2. Reduction relation for the global calculus.

Assumption 3.2. A hiding never occurs inside a prefix, sum or conditional.

The free session channels and term variables are defined as usual and are denoted
by fsc(I) and fv(I), respectively. The set channels(I) denotes the set of service channels
occurring in /. For the formal definition see Appendix A.1.

3.2. Dynamics
Global descriptions are considered modulo structural congruence defined as follows.

Definition 3.3 (Global Structural Congruence). The structural congruence = is the
least congruence on I such that

a) (1,0,]) and (, 0, +) are commutative monoids;
b) I =TI if I is a-equivalent to I’;
c) ws)I1 | Iy = (vs)(I1 | I2) for s & fsc(ls).

The semantics of the global calculus is defined as a reduction relation close to that
of imperative languages: it evaluates an interaction with a state resulting into a new
state and a new interaction. A state o assigns a value to the variables located at each
participant (we assume it is a total function over the set of all possible variables).
Formally, a state o can be seen as a total function that, given a participant, returns
a total function mapping variables to values. We will @A to denote the portion of
o local to A, and o[y@A — v] to denote a new state o', which is identical to o except
that c’@A (y) is equal to v. A reduction “(o, I) ~ (¢/, I')” says that I in the state o
performs one-step computation and becomes I’ with the new state o'.

Definition 3.4 (Global Reduction Semantics). The reduction relation ~» is defined
as the least relation satisfying the rules reported in Figure 2.

(G-INIT) is for session initiation: after A initiates a session with B on service chan-
nel ch, A and B share § locally (indicated by (v3)), and the next I is unfolded. The
initiation channel ch will play an important role in the typing system and the end-
point projection. (G-COM) is a key rule: the expression e is evaluated into v in the
A-portion of the state o and then assigned to the variable x located at B resulting in
the new state o [x@B — v]. The same variable (say x) located at different participants
denotes distinct variables (hence c@A(x) and c@B(x) may differ). We do not give a
formal definition of || as we are not giving a formal syntax for expressions. In general,

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:8 M. Carbone et al.

o e || v means that the expression obtained by substituting any variable x in e with
o(x) evaluates to v. We assume that such operation is always computable. Note that
op is not used by (G-COM): it will become meaningful in the end-point calculus where
participant A will be able to select one of many branches of execution. Rule (G-ASGN)
for assignment has a similar behavior to (G-COM): the expression e is evaluated into
v in c@A and then assigned to the variable x located at A resulting in the new state
o[x@A +— v]. (G-PAR) gives semantics to the parallel composition. Note that there
is no synchronization between I; and Iy as only parallel communications can happen.
The rule for choice, (G-SUM), expresses the nondeterministic choice of one of two in-
teractions discarding the other. Rules (G-IFT) and (G-IFF) give the semantics to the
conditional construct: the expression e is evaluated in the state c@A and then accord-
ing to its Boolean value a branch is chosen. (G-REC) and (G-RES) are the standard
rules for recursion and restriction. (G-STRUCT) makes use of the structural congru-
ence = defined previously.

Example 3.5. As an example of reduction, consider, for instance:
Buyer — Seller : quoteCh(v s). Seller — Buyer : s(quote, 300, x). I’

with state o. By (G-INIT), we get (o, (vs)Seller— Buyer : s(quote, 300, x). I'). Now, by
rule (G-CoM), that evolves into (o [x@Buyer — 300], (vs)I’).

The global calculus describes interactions between peers of a system. Because terms
in parallel can never synchronize, the semantics given in Figure 2 enjoys the following
property.

THEOREM 3.6 (PROGRESS). For all o and I # 0 there exist ¢’ and I' such that
(o,) — (o', I').

PROOF. By induction on the reduction rules in Figure 2 by noting that each rule
progresses. In the case of the conditional, we just need to observe that one of the two
rules is always applicable. O

3.3. Session Typing for Global Descriptions

As briefly mentioned in Section 1, we use a generalization of session types [Honda et al.
1998] as type structures for the global calculus. In advanced Web services and business
protocols, the structures of interaction in which a service/participant is engaged in may
not be restricted to one-way messages or RPC-like request-replies. This is why their
type abstraction needs to capture a complex interaction structure of services, leading
to the use of session types. The grammar of types follows.

Definition 3.7 (Session Types).

6 :=bool | int |
an=sw» Lop;6). oy | s4X;op6).; | arlag | end | put.a | t.

In the Definition 3.7, 6 ranges over value types which, in the present case, only include
atomic data types. «, o/, ... are session types. s » Z;0p;(0;). «; is a branching input
type at session channel s, indicating a process is ready to receive any of the (pairwise
distinct) operators {op;};, each with a value of type 6;; s € X;0p;(6)). o, a branching
output type at s, is its dual. The type a1 | ag is a parallel composition of a1 and as,
abstracting parallel composition of two session channels. We take | to be commutative
and associative, with end, the inaction type indicating session termination, being the
identity. As a syntactic restriction, we demand session channels in «; and as to be
disjoint: this guarantees a linear use of session channels. t is a type variable, while

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:9

ut.a is a recursive type, where pt binds free occurrences of t in «. In recursive types, we
assume each recursion is guarded, that is, in ut.o, o is an n-ary parallel composition
of input/output types. Recursive types are regarded as regular trees in the standard
way [Gay and Hole 2005].

Note that session channels occur free in session types: this is necessary to al-
low multiple session channels to be used in parallel in a single session; with this,
we can faithfully capture use cases of Web services that exchange different data
simultaneously.

We extend fsc to types, that is, fsc(a) denotes the set of free session channels in «.

Example 3.8. Let us show a simple example:
s 4 quote(int). end | s « extra(string). end.

Here a participant is sending a quote (integer) at s and extra information about the
product at s’ in a single session: without using distinct session channels, two commu-
nications can get confused and result in a type error. More examples of the types can
be found in Carbone et al. [2006a].

We now introduce a natural notion of duality for session types.

Definition 3.9 (Duality). The cotype, or dual, of o, written @, is defined as

s4; opi(e,-). o = ShP X opi(e,-). o; s» X opi(e,-). o = sS4 opi(e,-). o;
ay lag = o1 | ag wt. o = put. o
t=t end = end.

For example, the cotype of s » QuoteReq(string).end is s € QuoteReq(string).end,
exchanging input and output. The duality plays an essential role in the subsequent
technical development.

We now give the definition of typing judgment.

Definition 3.10 (Global Typing Judgment). A global typing judgmentis a triple "
I : A inductively defined by the typing rules given in Figure 3, where the mappings I'
and A are the service typing and the session typing respectively. For A # B in 5[A, Bl,
the grammar of typings is given as:

3| T,ch@A:B)a | T,x@A:0 | ' X:A
@] A-3A,Blia | A- 3L,

(Service Typing) T
(Session Typing) A

Each time a session is initiated, session channels need be freshly generated. Thus,
the type of a service channel indicates a vector of session channels to be initially ex-
changed, in addition to how they are used. This is formulated by service type (3)«
where § is a vector of pairwise distinct session channels covering all session channels
in «, and o does not contain free type variables. In a service typing, ch@A : (8)a says
that ch is located at A and offers a service interface (3)a; x@A : 0 says that a variable
x located at A may store values of type 0; finally, X : A says that when the interaction
recurs to X, it should have the typing A. Session typing uses a primary type assign-
ment $[A, B] : «, which says that a vector of session channels 8, all belonging to the
same session between A and B, has the session type & when seen from the viewpoint
of A. We assume that A and B are distinct in 3[A, B] :«. We use the other form of
assignment § : | whenever we know that the session type at § will never be abstracted
by session initiation (this is known for sure when one or more channels in § are hidden
by the restriction (vs), see typing rules later).

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:10 M. Carbone et al.

PFIbA-5[A Bl:aj THe@QA:0; THa@QB:0; se{s} jeJ
I' - A= B :s(opj, e,). I > A-5[A, B]:s 4 X;cjop;i(0;).

(G-TCoM)

I'-I>A-5[B,Al:a; TFe@QA:0; THzQB:0; se{s} jeJ

(G-TCoM) I' - A= B:s(opj, e,). I > A-5[B,A]:s » Xicjop;i(0;).

I'FzQA:0 T'Fe@A:0 THI>A

(G-TAsG) I'Fz:=e@A.I>A

r}’lle] FFIQDAQ I, Ch@B(g)O/}’IDA‘T[B.A}O(
G-TPAR -TINIT - -
() THIL | Iar A ey (G-TIN)F, ch@B:(§)a A= B :ch(v3). I>A

'L A THL>A (GTIF)FFe@A:bool LA THL>A
'L +1L>A '+ if eQA then I else Ir > A

(G-TSuM)

I'HI>A - 51859: L
F}_(VS)IDA . glgziL

PEIbA- 5185[A, B«

(G-TRES:) T (ws)I>A - 5155: L

(G-TRES3)

'EIdA - e:L ' X:AFI>A

(G-TRES3) TEIoA (G-TREC) F'kpX.I>A

(G-TVAR) = X xo A
Vi£j {81n{5}=0

(G-TZERO) = U, 8i[Ai, B] :end

Fig. 3. Typing rules for global calculus.

In the sequel, we write I'1, I's (resp. A1 - Ag) if there is no overlap between the free
variables/names in I'; and 'y (resp. A; and Ag). We will consider service and session
typings as functions: dom(I") and dom(A) denote the domains of I' and A respectively.
For the sake of notation, we often write ' -+ I for ' + I > . The notions of free
session channel, free term variable and service channels are extended to both service
and session typing.

We now comment the typing rules in Figure 3. Rule (G-TINIT) types session ini-
tiation. Given A — B : ch(v3). I, it checks that ch@B : (3)a is a service channel in
the service typing I'. Moreover, in the subterm I, session channels § must be used
according to session type « by A and B only.

Rule (G-TCoM) states that, for typing an in-session communication of an expression
e from A to B at s with choice op;, (1) the body I should assign «; to & containing s; (2)
the value e should be typed in the source A with 6 and (3) the variable (parameter)
x should be typed in the target B with the same type. In the conclusion, a branching
type is formed whose j-th branch consists of op;, 6; and «;. In (G-TCOM), the session
type in focus is considered from the viewpoint of A. We may also regard it from the
receiver’s viewpoint (B) in its symmetric variant (G-TCOMz). This is necessary since
the chosen viewpoint must be preserved when typing subterms. Moreover, such a
viewpoint denotes the participant providing the service that is set by rule (G-TINIT).
Note that, as we assumed that A and B are distinct in §[A, B] :«, practically irrelevant
self-calling interactions A — A ... are not typable (see Section 8 for further comments
on the need of self-calling interactions).

There are three rules for typing restriction. (G-TRES;) is for hiding a session
channel in a session type assignment. Note that, because of Assumption 3.2, hiding
never occurs inside a prefix, sum, or conditional and the semantics introduces hiding
only after the session initiation takes place. Once this is done, there is no possibility
that these session channels are abstracted by (G-TINIT). Hence the session type o
is no longer necessary and can be replaced with 1. After this, we can remove hidden

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:11

session channels one by one with (G-TRESy), until we get the empty vector, and then
completely take it away with (G-TRES3).

(G-TVAR) introduces a service typing on the left-hand side of a judgment. Following
X4 : A, we introduce A as the session typing of X4 in the conclusion. The recursion
rule is symmetric to (G-TVAR), typing uX?. I, with the session typing A. For this
purpose it suffices that I has session typing A under the assumption X4 has that same
session typing, following the standard treatment of recursion [Honda et al. 1998]. Note
that no typing rule treats session types with explicit recursion (ut. o and t) because we
regard recursive types as regular trees [Honda et al. 1998; Yoshida and Vasconcelos
2007]. (G-TZERO) is the typing rule for the inaction and assigns pairwise disjoint
vectors the empty action types.

Given an assignment x := e@A, (G-TASG) checks that variable x is located at A
in the service environment I' and its type is the same as the one of the expression e.
Finally, the parallel composition rule (G-TPAR) uses the linearity condition found in
Honda et al. [1998], that is, any session channel s can only appear at most in one of
the two interactions. Formally, the latter is done through the following.

Definition 3.11 (). Two session environments A; and Ay are compatible (written
A1 >~ Ag) if they satisfy the following conditions:

(1) if 3 € dom(A1), I € dom(Ag) and 3NZ+# P then s =17
(2) if3: 1L € A; then
§ & fsc(Aj) for j#i;
(3) if3[A, B]:a1 in A1 and 3[A, Bl :a2 in Ag then fsc(ag) N fsc(ag) = @.

In this definition, (1) requires that session names are equally grouped in both A;; (2)
makes sure that § : L can only occur exclusively in one of the environments; and, (3)
checks the standard notion of linearity. Compatible environments can then be merged
by e as follows:

Definition 3.12 (o). The partial operation A e Ag is well-defined whenever A; >~ Ag
and is the minimal set containing A; W Ag such that if 3[A, B] : @1 € A; and §[A, B] :
ag € Ag then S[A, Bl : a1 | ag € A1 e As.

Here, the operation A; W Ag excludes all those elements in dom(A1) N dom(Ay).

Example 3.13. We explain these two definitions with a small example. Consider
the following session environments:

A1 =ts[A, B] : s «(int) Ag =ts[A, B] : s «(bool).

If we compose them then there are two threads emitting an integer and a Boolean
respectively so that an input at s could receive either of them, causing a communication
error. However, we could compose A; with the environment A3 = #s[A, B] : ¢ « (bool)
obtaining the environment A; e Ag =#s[A, B] : s « (int) | ¢ « (bool).

Example 3.14. As a simple example, we type the Buyer-Seller interaction I in
Figure 1(a). Service channel quoteCh can be assigned the following service type:

(s) s 4 quote(integer). s » (accept(null). s « details(string). end +
reject(null). end).
Service channel deliveryCh has type (¢) ¢t « details(string). end. Denoting these
two types by (s)a; and (#)ae, we have: quoteCh : (s) a1, deliveryCh : H)ag + I > 0.
Similarly, we can type the interaction in Figure 1(b) where we have recursion. The

typing of the service channel quoteCh will differ in the “rejection” branch, given as:
(s) ut. s @ quote(integer). s » (... + reject(null). t).

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:12 M. Carbone et al.

forallie J. a; € a] JCJ
s Xicgop;(0;). a; € s Ticy op;(6;). o

(S-IN)

forallic J. o; € JcJ

S-OuTt
() s 4X;cgop;(0;). a; € s 4 Xicy op;(6;). o

B~ ooy ar € as €dh B ~ end dra o €f

(S-PAR) (S-END) end B (S-Is0) o C 3

aq ‘G/,Q € p

Fig. 4. Rules for the subtyping relation €.

rcr rer’ aed
el” T, ch@A: (5)a € IV,ch@QA : (5)o/

AcCA AeA" aed
AN A A-3[A,B]:a € A’-§[A,B] :

Fig. 5. Extension of € to well-formed session and service typings.

3.4. Properties of the Type Discipline

We discuss basic properties of the typing system. Note that I", I'" indicates the disjoint
union of I and I".

PROPOSITION 3.15.

(1) (weakening)
(@ T F I AimpliesT, T" - 1 > A;
b)) T I AimpliesT + I > A-3[A, B] : end for § fresh;
@T kI A-515%[A,Bl:aimpliesT' = 1 > A-8s5%[A, Bl : «afors ¢ fsc(l);
T EFI>A-33%:1LimpliesT = I 1> A-383 :1 fors¢fsc(l).

(2) (strengthening)
(@) T, TV = 11> AimpliesT = I > A whenever (M(I)U channels(I)) NT" = ¢;
b)) T = I A-3[A, Bl :endimpliesT + I 1> A for s fresh;
@ T I A-3s5[A,Bl:aimpliesT = I > A-5%[A, B]: «afors¢fsc(l);
T EFI> A-38%:LimpliesT = I 1> A-%38 :1 fors¢fsc(l).

(3) (cotype) ' = I > A-3[A,B]:aimpliesT + I > A-3[B,A]:@.

PrOOF. Standard by induction on the typing rules given in Figure 3. Note that for
(co-type) the form A - 3[A, B] : « is explicitly generated only in (G-TINIT), (G-TCoOM)
and (G-TCoMg), which show such inference is possible. O

The typing system also incorporates subtyping based on an inclusion ordering on
each type. In the remainder of this section, we show that it is always possible to
generate the minimum typing with respect to subtyping, which is the key property for
the EPP theory.

In the following definition, ~ is the standard tree isomorphism on recursive types.

Definition 3.16 (Subtyping Ordering). The subtyping ordering € is the smallest
relation over closed types satisfying the rules given in Figure 4. We extend & to well-
formed session typings and to well-formed service typings by the rules reported in
Figure 5.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:13

Note that the subtyping relation for the global calculus is covariant in both input and
output cases since we type interactions rather than input or output operations. Having
an input or an output in the type only describes in which direction the communication
is taking place, that is, from server to client or vice versa.

Example 3.17. The type from Example 3.14 is a subtype of the following type.

accept(null). s « details(string). end +
(6) 5 < quote(integer). s » reject(null). end + +
s)s
continue(null). end

update(integer). end

This is because the first output type has an extra branch (namely the update branch)
and the first input in the quote branch has the extra branch continue.

A relation R satisfying the conditions in Definition 3.16 is called a witness of €. It
is easy to see that € itself is a witness of itself, defining the largest such. Note that the
subtyping relation is a partial order on types modulo ~. Therefore, we stipulate the
following assumption.

Assumption 3.18. We consider € as a relation on types modulo ~.

Let « v B denote the least upper bound of & and g if it exists. The relation € enjoys
the following property.

PROPOSITION 3.19. If a1 and as have an upperbound, then o v B exists.
We then have:

PROPOSITION 3.20 (SUBSUMPTION). LetT' € I and A @ A'. ThenT" - I > A
impliesTV = I > A,

PROOF. The rules that use this information, (G-TCoM) and (G-TCOMz3), only de-
mand that the operation used by the term is included in the type. Thus, a type includ-
ing more operations is always safe. O

Finally, we establish the existence of minimal typing. In the sequel, we write I - I for
r=1o40.

PROPOSITION 3.21 (EXISTENCE OF MINIMAL TYPING). Let ' - I for someT'. Then
there exists I'g such that Ty - I and whenever T = I we have I'yg @ I''. Moreover such T'y
can be algorithmically calculable from 1. We call Ty the minimum service typing of 1.

PRrROOF. By constructing the minimum typing system. See Section A.3 in
Appendix A. O

The proof of Proposition 3.21 immediately gives us the following.
PROPOSITION 3.22.

(I) Given I with annotation on bound channels and variables, there is a decidable
algorithm that can check if it is typable and, if it is so, find a minimal typing Ty
such that 'y - 1.

(2) Given I and T, there is a decidable algorithm to check I - I or not.

PRrROOF. (1) is by the rules in Figure 12 in Appendix A used for deriving minimal
typing. (2) is by (1) and because the subtyping relation is decidable by adapting [Gay
and Hole 2005]. O

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:14 M. Carbone et al.

Since a global interaction is intended to be a specification a programmer will write,
and because s/he may as well wish to type check her/his specification at the design
time, Proposition 3.22 gives a useful basis for the application of the global description
of programs. The minimal typing also plays an important role in endpoint projection,
which follows the type structure.

Next we turn to subject reduction. Henceforth, we write I' - o when the typing of o
conforms to I'.

LEMMA 3.23 (SUBSTITUTION).

(1) IfTrFo, TFo(x@A):0and T v :0, then T + o[x@A — v].
@ IfT,XA:A+1Tp> ANandT - I' > AthenT + I[I'/X4] > A

PROOF. The proof follows from the typing rules. O

The subject reduction in the present typing does not fully preserve session typing, for
the obvious reason: if I reduces to I’, it may lose the initial part of interactions, which,
if it is at a session channel, will demand truncation of the corresponding session typing.

THEOREM 3.24.

(1) (Subject Congruence)IfT' +I>Aand I =1 thenT + I't>A (up to alpha-renaming).

(2) (Subject Reduction, 1) Assume ' =0o. Then T = I > A and (o,I) ~ (o', I') imply
F'kFo'andT = I' > A’ for some A

(3) (Subject Reduction, 2) Assume I' - o. Then T + I and (o,I) ~ (o', I') imply T + o’
and T+ T

PROOF. In Section A.4 in Appendix A. O

4. THE END-POINT CALCULUS
4.1. Syntax

The end-point calculus is the w-calculus [Milner et al. 1992] extended with sessions
[Honda et al. 1998] as well as locations [Hennessy and Riely 1998] and store [Carbone
et al. 2004]. In the following, P, @, ... denote processes, M, N, . .. networks.

Definition 4.1 (End-Point Calculus Syntax).
P:= 1ch(s). P (initin)

| ch(v3). P (initout) N := Al P11, (participant)
| Ni| N (parnet)
| s> Zop,(yi). P; (branch)
_ | (ws)N (newnet)
| s<ople). P (out) .
. | € (inactnet)
| x:=e.P (assign)
| ifethen P else Py (cond)
| P1® Py (plus)
| P1]| P (par)
| (vs)P (new)
| X (recvar)
| uX.P (rec)
| O (inact)

(initin) and (initout) are dual operations for describing session initiation: !ch(3). P de-
notes a process offering a replicated (available in many copies) service ch with session

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:15

channels § while ch(v3). P denotes a process requesting a service ch with session chan-
nels 3. In both cases, P is the continuation. The next two processes denote standard
in-session communications (where y; in the first construct, the branching input, is no¢
bound in P;, and {op;} should be pairwise distinct). Next, x := e. P assigns the value of
e to x in the store then continues as P.> The term (plus) denotes internal choice. The
rest is standard. Networks are parallel composition of participants, where a partici-
pant has the shape A[P],, with A being the name of the participant, P its behavior,
and o its local state, now interpreted as a local function from variables to values. We
often omit o when irrelevant. The free session channels, free term variables and ser-
vice channels are defined as usual over processes and networks and, similarly to the
global calculus, are denoted by fsc(P/N), fv(P/N) and channels(P/N), respectively. For
the formal definition see Section B.1 in Appendix B.

4.2. Dynamics
Here, we give the find structural congruence for the end-point calculus.
Definition 4.2 (End-Point Structural Congruence). The structural congruence = is

defined as the least congruence on processes such that (=, 0, ®), (=,0, +) and (=, 0, |)
are commutative monoids and such that it satisfies:

a) (vs)0=0 b) (vs1)(vs2) P = (vs2)(vs1) P
) (ws)P| Q@ =(ws)P| Q) (for s ¢ fsc(@)).
We extend = to networks such that (|, €) is a commutative monoid and
DA[PL, =AIR], (for P= Q)
e) Al (ws)P], = (vs)(AL P 1)) (vs1) (vs2) M = (vsp)(vs))M
g) (vs)e =€ h) ws)yM | N = (vs)(M | N) (for s & fsc(N)).

Similarly to the global calculus, we are now able to define the reduction semantics
for the end-point calculus that follows the one of the 7-calculus.

Definition 4.3 (End-Point Reduction Semantics). The reduction semantics for the
end-point calculus is defined by the rules in Figure 6.

(E-INIT) defines the session initiation: two participants A and B will synchronize to
start a session, !ch(3). P denoting a replicated service and ch(v3). @ a request. It will
result in sharing fresh session channels § local to A and B. These names are then
used in (E-COM) for communication. In (E-COM), communicated values are assigned
to local variables in the local state o, rather than substituted, for having the corre-
spondence with the global calculus. (E-ASSIGN) updates the local store. The other
rules are standard.

4.3. Session Typing for the End-Point Calculus

The syntax of types for the end-point calculus is the one given for the global calculus
in Definition 3.7. Unlike in the global case, we have two different typing judgments,
one used for typing processes and one for typing networks.

3For simplicity of the end-point projection, we add assignment to the calculus. It is well-known that we can
easily encode the primitive into the 7-calculus.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:16 M. Carbone et al.

(E-INIT)
si & fsc(P') Ufsc(Q')
A[Ych(3). P| P'], | Bl ch(v5). Q| Q'], ~ (v3)(A[lch(3). P| P| P'], | BIQ|Q'],)

(E-CoM)
ockelw jel
Al s> Sieropi(wi). P | P'], | B[s<opjle). QQ"], ~ A[P | P/], 0 | BIQTQ],

okeltt M ~ M’
(E'IFT)A[if e then Py else P, |P'], ~ A[P, | P'], (E-PAR) M|N ~ M'|N
(E-IFF) olelff (E-Sum) ie{l,2}

Alif ethen Py else P | P'] ~ A[P | P'], AP, @ P»|R], ~ A[Pi|R],

A[PpuX.P/X]|Q], | N ~ N’ okbelw
(E-REC) z “ (E-ASSIGN) ————
A[pX.P|Q], | N ~ N’ Alz:=e. P[P'], ~ A[P|P'],
M M’ M=M M’ ~ N’ N' =N
(E-RES) = (E-STRUCT)

(vs)M ~ (vs)M’ M~ N

Fig. 6. Reduction relation for the end-point calculus.

Definition 4.4 (End-Point Typing Judgments). Typing judgments for the end-point
calculus are triples on processes or networks inductively defined by the rules given in
Figure 7 and 8. Judgments have the form:

(Processes) TI' ka4 P > A (where P is typed as a behavior for A)
(Networks) ' = N > A.

where the mappings I' and A are the (end-point) service and session typing, respec-
tively, and are defined as:

[@= ¢ | I,ch@A:(3)a | I,ch@A:B) | T,x@A:6 | I, X:A
A =0 | A 3@A:a | A-5:L.

Note that service typings and session typings differ from the ones for the global calcu-
lus shown in Section 3.3. In the sequel, I'(ch) = (S)a if either ch@A : (3)a or ch@A : ()«
belongs to I'. As before, we stipulate that both service and session typings define ap-
propriate functions. In particular, whenever we write, for instance, I'1, 'y, there are
no free channels/session channels/variables shared between two typings (free session
channel, free term variable and service channels are similar to the global case). Also,
we oftenwriteI' - NforI' - N> and I'~4 P for I'-4 P> (. The notions of free session
channel, free term variable and service channel extend to typings accordingly.

We observe the following facts.

(1) One basic difference from the global case is that the session type assignment for
the local calculus is given to the vector of names at a single participant. This is
because a session type is now assigned to end-point behavior, so that one end of
a channel should have one end of a session type, rather than two sides coming
together.

(2) When two sides of a session are compatible, we compose them and leave the as-
signment of L to § in the typing. Since L is composable with no other types, this

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:17

7€J KCJ ses F"T](/)] F"APJDAg@AO{J

E-TB
() I'Fay SDEiGJOpi(Ii).Pi > A-5QA:s» ZieKopi(Gi). oy
(E-TS) jeEK T'kFe:0; T'ky P> A-5QA: o4
I' Fa 5<opj(e).P > A-5QA: s 4 Sickop;(6;). a;
(E-TREQ)
(E-TSERV) 3
I'kFa P> 5QA:« T, ch@B:(8)a F4 P> A-5QA:«
I', ch@A:(8)a Fa Ych(5). P > 0 I, ch@B:(8)a a4 ch(v3).P > A
'y P> A-51859: L I'Fpa P> A-e: L
E-TRES; E-TRES
(1)rm (V)P > A 5155 L (2) ks, P A
FqkAP1I>AL I =<Ty AIXAQ
E-TPAR E-TINACT) —
() F1®F2FAP1|PQI>A1®A2 ()FFAOD(Z)
I'Fpz:60 T'hHe:0 T'HAP>A I X:AkFp P A
E-TAsG E-TREC) —
() I'bpzi=e. P> A (REC) I'hFy pX P A
I'Fe:bool T'kHx P> A
E-TIF E-TVAR
()FFAifethenPleIsePQDA ()F,X:AFAXDA
THAP>A {5}Nfsc(A) = 'FaP>A TH A
(E-TBor) L4 PP A {s}nfsc(d) =0 (E-TSum) — 477 A Q>

TFiPoA -5: 1 TFAP®Qm A

'y P>A {s}Nfsc(A) =0
'y P>A-5QA: end

(E-TEND)

Fig. 7. Session types for processes in the end-point calculus.

effectively makes § unusable in further composition. This is the standard linear
typing in the 7-calculus.

(3) In the service typing, ch@A : (3)a is identical to the one in the global calculus and
it is called server type assignment. On the other hand, ch : (9)a@A is the client
type assignment. Note that A is the participant offering service ch rather than
the participant invoking such a service. As we will stipulate, the composition of
ch@A : (8)a and ch@A : (3)a becomes ch@A : (8)a, since a service may be used not
only one but many times (standard replicated linear type discipline [Berger et al.
2001; Yoshida et al. 2004]).

We now comment the typing rules defining - and k4 given in Figures 7 and 8.
(E-TB), used for typing the branching input s > X;c jop;(x;). P;, prefixes the type o; in
P; with op,(6;) only for those branches j € K C J so that the process is prepared to re-
ceive any operator specified in the type. (E-TS), used for typing s < op;{e).P, is its dual:
the typing can have more branches than the real process, so that the process invokes at
most those operators specified in the typing. Combining (E-TB) and (E-TS), an output
never invokes a nonexistent option in the input. (E-TSERV) is for the receiving side
of initialization. In the premise, the session typing should not have session channels
other than the target of initialization: this prevents free session channels from occur-
ring under the replicated input, thus guaranteeing their linear usage. Additionally,

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:18 M. Carbone et al.

I'ka P> A THoQA

(E-TPART) T AP, oA (E-TINACTN) Trend
PFM>A {5}Nfsc(A) =0 T'FMp A §séy: L
(E-TENDN) T'FM>A-35@A4: end (E-TRESN,) I'F (vs)M > A58y L
- M H - T+ M e
(E-TBOTN) Mo A {§}nfsc(A)=10 (E-TRESN,) foA-e:l

'FM>A-§5: L 'EM»>»A

Fl}_NlDAq ' <T'y AleQ

E-TPARN
() Fl@FQFNllNQDAIQAQ

Fig. 8. Session types for networks in the end-point calculus.

the rule guarantees uniqueness of services in the subterm P by restricting the ser-
vices environment as in Sangiorgi [1999]. This is essential for modeling Web services
with respect to the Service Channel Principle as we can view the service channel as,
for instance, an IP address or URI.

The output side of initialization (E-TREQ) is analogous, except it does not need the
linearity constraint. The remaining rules are standard [Honda et al. 1998]. Note that,
in (E-TPAR) and (E-TPARN), we ensure that an input of type « is composed with an
output of its dual and that a service channel can occur as (initin) only once but several
times as (initout). This is done by operators < and ©.

Definition 4.5 ().

(1) Two service typings I'; and I'y are compatible (written I'; < I's) if they satisfy the
following conditions:
(a) if ch@A e dom(T';) then ch@B ¢ dom(T')) for every B and for i # j;
(b) if ch@A € dom(I';) and ch@B € dom(T';) then A = B and I'i(ch@A) = T (ch@B)
for i # j (up to a-renaming of bound names);

(c) if ch@A e dom(T;) and ch@B € dom(T';) then A = B and I'i(ch@A) = T {(ch@B)
for i # j (up to a-renaming of bound names);
(d) I'i(x) = I'y(x) for each x in I'y and I'y;
(e) T'1(X) =T9(X) for each X in I'; and I's.
(2) Two session typings A; and Ag are compatible (written A; < Ay) if they satisfy the
following conditions:
(a) if 3§ € dom(Ay), ¥ € dom(Ag) and 3N 7 # ¥ then § =7
(b) if3: 1L € A; then § & dom(A)) fori # j;
(c) if 3@A : 1 in A1 and 3@A a5 in Ay then fsc(aq) Nfsclasg) = ¥;
(d) if 3@A :7 in A7 and 3@B: a9 in Ay then oy = a3 (for A # B).

Definition 4.6 (0®).

(1) T'1 © I'e, defined whenever I'; < I'g, is the minimum service typing such that:
(a) if ch@A :«a € T'; then ch@A : o € ' © I'y;
(b) if ch@A : ¢ eT; and ch@A : o ¢ T ;fori # jthen ch@A :a € T'1 O T'y;
(c) ifx@A : 0T (X :AeT)thenx@A :0cT10IN (X :AeTl1ON).

(2) A1 © Ag, defined whenever A; < Ag, is the minimum session typing such that:
(a) if 3@A e dom(A)\dom(A ;) for i # jthen 3@A : A;(3@A) € A1 O Ag;
(b) if 3 € dom(A)\dom(A) fori # jthen§:le A1 © Ag;

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:19

(c) if3@A : v € A;and 3@A : B e Ajfori+# jthen3@A : o | B € A1 O Ay;
(d) if 3@A € dom(A;) and 5@B € dom(A) fori # jthen5:le A1 © Aj.

Example 4.7. We provide an example explaining how =< and ® work in the case of
the session environment. Consider the following typing environments.

A1 =rt@B : r 4 (char) - s@A : s «(int)
Ao =1t@B : t 4 (bool) - s@C : s » (int)

Clearly, A; < Ag and
A1 O Ay =1i@B : (r €« (char)| ¢t €« (bool)) - s@A :L.
However, we have that A; % Aj for
A3 =rt@B : r 4 (bool) - s@C : s» (int).

since in session 7t we cannot merge the session type r « (bool) with r « (char): if we use
parallel we break linearity of channel r; alternatively, we cannot replace them with L
since the two types are not dual.

4.4. Properties of the Type Discipline

As well as in the global case, the type discipline for the end-point calculus enjoys stan-
dard syntactic properties.

PROPOSITION 4.8.

(1) (weakening)
(@ T FMrp> AimpliesT, TV = M > A;
B) T FMp> A-53%@A :aimpliesT" = M > A -3185@A : o for s & fsc(M);
) T F M A-315@A : 1 impliesT = M > A -555@A 1 fors ¢ fsc(M).
(2) (strengthening)
(@) T, TV = M > AimpliesT = M > A whenever (fv(M) U channels(M))NT' = §;
b)) T = M > A-3@A :endimpliesT = M 1> A for§fresh;
@T FMrp> A -3185@A :aimpliesT' = M > A-315@A : « for s & fsc(M);
AT FMp> A-3155%@A 1 impliesT = M > A-335@A :1 fors ¢ fsc(M).

PROOF. Standard, by induction on the typing rules. O

We consider a subtyping relation on session types following [Gay and Hole 2005].*
The subtyping is defined only over closed types, that is, those types in which no free
type variables occur. The subtyping is written @ < . Intuitively, o1 < ae indicates
that «; is more constrained, or dually «s is less constrained, in behavior.

Definition 4.9 (Subtyping Relation). The subtyping relation < is the largest binary
relation satisfying the rules in Figure 9.

Rule (ES-IN) says that if the initial input offers more options, and if subsequent be-
haviors are more constrained, then it is more constrained. (ES-OUT) says that if the
initial output has less emissions and if subsequent behaviors are more constrained
then it is more constrained. Note that, unlike the inclusion ordering € in Section 3.3,
the input type is covariant for this relation. It is easy to prove that the relation < taken
modulo ~ is also a partial order.

Definition 4.10. We write « v 8 for the lub of o and B if it exists.

4The direction of the subtyping is converse to (and consistent with) Gay and Hole [2005] The direction we
adopted coincides with the subtyping of the A-calculus as recently studied in Demangeon and Honda [2011].

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:20 M. Carbone et al.

forallie J. a; < f; JDoJ

ES-IN
() s Xicgopi(60i). a; = s> Eicopi(6:). Bi

foralli e J. a; X 3; JcCJ

ES-Our
() s 4 Xcgopi(6i). a; = s 4« Xcyopi(6;). Bi

BrBi|f an 2B ag X B

ES-PAR
() ap|ay 2 B
8 ~ end arad o =< f

Fig. 9. Inductive rules defining the subtyping relation.

PROPOSITION 4.11. If the upper bound of a1 5 exists (w.r.t. <) then their least upper
bound exists.

PROPOSITION 4.12 (SUBSUMPTION). Let a < B. Then,

(1) T,ch@A : (3)a - M > A impliesT,ch@A : (3)8 - M > A;
@) T+ Mp> A -3@A:aimpliesT - M > A-3@A : 8;
3) I',ch@A : S)a = M > AimpliesT,ch@A : (3B - M > A.

PROOF. In the first two cases the proof follows by induction on the typing rules. The
last case follows by case (2). O

Note that in Proposition 4.12, point (1) is covariant because of the direction we chose
for <.

Similarly to the global case, we now show that we can always find a representative
typing for a given process. Such a type is minimum among all assignable typings w.r.t.
the subtyping relation, so that we call it the minimal typing of a given term. In the
sequel, we say that a typing ' = M > A is strict, if all free identifiers in I' and A
occur in M. Moreover, we write 'y < I" and Ag < A by extending < point-wise at their
service/session channels (for variables typing should coincide).

Definition 4.13 (Minimal Typing). To = M > Ag is the minimal typing of M if,
whenever I' = M > A is strict, we have I'g < " and Ag < A.

PROPOSITION 4.14 (EXISTENCE OF MINIMAL TYPING). Let o = M > Aq be the
minimal typing of M. Then T'y and Ag are algorithmically calculable from M.

PROOF. See Section B.2 in Appendix B. O

PROPOSITION 4.15. In the following, we assume M is annotated on bound channels
and variables in the standard way.

(1) Given M, there is a decidable algorithm that can check if it is typable and find Ty
and Ay such that To = M > A is a minimal typing of M.
(2) Given M, T and A, there is a decidable algorithm to check I - I or not.

PRrROOF. (1) is by the rules in Figures 13 and 14 in Appendix B.2, where they are
proved to derive the minimal typing. (2) is from (1) and by adapting Gay and Hole
[2005]. O

We next show the central property of the typing rules, subject reduction.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:21

LEMMA 4.16 (SUBSTITUTION).

(D IfT HA[PLl, > AATHx@A :0andTHv:0,thenT + Al P loxsy > A.
@ IfT,X:AFpa P> ANandT k4 Q > A, thenT + PlQ/X] > A.

PROOF. By induction on the typing rules. O
THEOREM 4.17.

(1) (Subject Congruence) If T = M > Aand M = NthenT - N > A;
(2) (Subject Reduction) If T = N> Aand N — N thenT = N > A.

PROOF. The proofs of subject congruence and subject reduction for the end-point
calculus are standard [Honda et al. 1998; Yoshida and Vasconcelos 2007]. O

Note that the session environment A remains unchanged after reduction (unlike in
Theorem 3.24). In fact, in the end-point case, if a session can reduce will have type L
in the session environment before and after reduction. This is due to the absence of
communication error in well-typed terms as presented in the following.

Definition 4.18 (Communication Error). We say M has a communication error if
M = (v3)(N | Alsr> Z;0p;(x;). P;|Rl, | Bls <op{e). @1Sl,) s.t. op & {op;}.

That is, M has a communication error when it contains an input and an output at
a common channel, which, however, do not match in operator names (we can further
add mismatch in types of evaluation). A basic corollary of Theorem 4.17 follows.

COROLLARY 4.19 (LACK OF COMMUNICATION ERROR). IfT' - N> A and N ~* M,
then M never contains a communication error.

PROOF. By Theorem 4.17 noting an incompatible redex is not typable. O

Thus once a process/network is well-typed, it never go into a communication mismatch.

4.5. Examples of Typed Terms

We recall our running example, Figure 1(a). An end-point representation of this exam-
ple for Buyer may be written:

Buyer[quoteCh(vs). s > quote(x). (s < accept. s > details(y). 0 &5 < reject. 0)].

Here Buyer[. .] indicates a participant (a named agent) whose behavior is given by the
process quoteCh(vs). s > quote(x). ... The Seller’s code is given as:

Seller[! quoteCh(s). 5 <1 quote(300). s>
(accept. deliveryCh(vt). t > delivery(x). s < delivery(x). 0 + reject. 0)],

The end-point representation for Shipper is given similarly. These end-point de-
scriptions do not directly and explicitly describe how interaction proceeds globally,
which may often be the central concern of communication-centered applications de-
signers/users. However, they precisely represent local communication behaviors that
give rise to global interactions. The two service channels quoteCh and deliveryCh are
replicated and ready to be invoked, following (SCP).

We can type these processes using the service types (s)a; and (¢)ag from Section 3.3.
The type of the seller becomes (writing P for its process):

quoteCh:(s) a1, deliveryCh:(t)ag + Seller[P1, > #.

Note that the service channel deliveryCh is overlined, indicating the direction: this is
because the input channel is located at Shipper’s. In the global calculus, a channel is

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:22 M. Carbone et al.

always used for both input and output, so there is no such need. Similarly we may
type the end-point processes for Buyer and Seller with recursion as in Figure 1(b), as
follows.

Buyer[quoteCh(vs). uX. s > quote(x).
if reasonable(x) then s < accept. s > details(y). 0 else s < reject. X | |
Seller[! quoteCh(s). uX.s <1 quote(300). s>

(accept. deliveryCh(vt). t > delivery(x). s < delivery(x). 0 + reject. X)]

We may also note, both in its term and in its typing, that the end-point process for
Shipper in Figure 1(b) does not involve recursion, since its session is self-contained
inside a recursion.

5. THE END-POINT PROJECTION
5.1. Three Principles for End-Point Projections

In preceding sections, we have presented example specifications both as a global and a
local view in the global and the end-point calculus respectively. From an engineering
viewpoint, these two steps—start from a global description, then extract out of it a
local description for each end-point—offer an effective method for designing and coding
communication-centric programs. It is often too complicated to design, implement
and validate an application that involves complex interactions among processes and
which work together correctly, if we are to solely rely on descriptions of local behaviors.
This is why such tools as message sequence charts and sequence diagrams have been
used as a primary way to design communication behavior. Thus, in designing and
implementing communication-centric software, one may as well start from a global
description of expected behavior, then translate it into local descriptions. Translating a
global description to its end-point counterpart, the process called end-point projection,
can however be tricky, because we can easily produce a global description that does not
correspond to any reasonable local counterpart. How this can be done generally and
uniformly with a formal foundation is the theme of this section.

In the context of the core calculi introduced in the previous sections, we have iden-
tified three simple descriptive principles.

— Connectedness: A basic local causality principle obeyed in a global description.

— Well-threadedness: A stronger locality principle based on session types.

— Coherence: A principle specifying, on the basis of well-threadedness, consistency of
description for each “service.”

These three conditions offer not only natural disciplines for well-structured descrip-
tion, but also gradually deeper analysis of operational aspects of choreography.
Connectedness uncovers causal relationship among actions, on whose basis well-
threadedness dissects how we can extract atomic chunks of local activities (called
threads) from a global interaction, crucially using the underlying type structures. Co-
herence stipulates a condition under which these threads can be formed and combined
to produce a whole behavior of each participant. The resulting participants can real-
ize, when combined together, all and only interactions prescribed in the original global
description. Thus, by a precise analysis of local projectability of a global description,
these three principles let us arrive at the construction of a formally founded end-point
projection. Descriptive principles are by themselves structural analysis of the opera-
tional content of global descriptions, leading to the function that maps them to the
corresponding local descriptions.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:23

5.2. Connectedness
Let us consider the following code snippet for global description.

Buyer— Seller : chi(vs). Shipper— Depot : cha(v). 0.

Remembering that “.” indicates sequencing, Shipper is supposed to contact Depot only
after Buyer performed a request to Seller in this description. Implementing this behav-
ior as distributed processes demands that Shipper be notified once the first communi-
cation is performed by message passing, that is, there should be a notification from
Seller to Shipper for example as follows.

Buyer— Seller : ch1(v s). Seller— Shipper : ch(v s’). Shipper — Depot : cha(v 2). 0.

Observe the second description is directly realizable as end-point processes while the
first one is not. Even if one may informally write down the first description, it is the
second one that can have a precise correspondence with end-point behavior. Thus we
preclude descriptions like the first one, by demanding each participant acts only as a
result of its local event. We call this principle connectedness.

To formalize connectedness, we need to say which participant initiates an action in
I that is, the place where the preceding event happens.

Definition 5.1 (Initiating Participants). Given an interaction I in which hiding does
not occur, its initiating participants, denoted by top(1), is inductively given as:

def

{A) if] = A— B :ch(v3).TI
(A} if 1A B:siop, e, x). T’
(A} if 1 €if e@A then I else I
(A} if x@A =e. I'
top) = {4} it xa
7 if71%0
top(I) if 1% xA T
top(I1) Utop(lz) if I € I, | Iy
top(I1) Utop(l) if I €' 11 + L.

If A e top(I), we say A is an initiating participant of I.

Given I, the function top generates a set of participants. The generated set contains
the participants that initiate the first action of I. The annotation for a term variable,
A for X4, has now revealed its role, as a signifier of the initiating participant of the
behavior embodied by X. We discuss how this allows validation of connectedness in
the presence of recursion.

We now present the inductive definition of connectedness. Connectedness is simply
defined by tracking active/passive participants of each action. In brief, for each A,
A’s sending action or its self-contained action (e.g., assignment and evaluation of a
conditional guard) should always be immediately preceded by A’s receiving action or
its another self-contained action. Henceforth we only consider well-typed terms for
both global and local calculi, unless otherwise specified.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:24 M. Carbone et al.

Definition 5.2 (Connectedness). The collection of connected interactions Con is in-
ductively generated as follows:

(1) A— B :ch(vs).I' € Con if I' € Con and top(I’) = {B}
(2) A—B:s{op, e, x). I' € Con if I' € Con and top(I’) = {B}
(3) if e@A then I else I, € Con if I, Is € Con and top(1;) = top(l3) = {A}

(4) I + I € Con if I, Is € Con and top(1) = top(Zs)
(5) uX4.I' eCon iftop(I') = {A}
(6) x@A :=e. I € Con if I' € Con and top(I') = {A}
(7 I | I e Con ifIl, I e Con and
I | I not top-level implies top(l;) = top(1s)
(8) (vs)I' € Con if I' € Con
9 0, X4 e Con.

An interaction [is strongly connected if and only if I € Con.

Here, top-level is an interaction that is not prefixed. Connectedness says that, in
communication actions, only the message reception leads to activity (at the receiving
participant), and that such activity should immediately follow the reception of mes-
sages. Our theory can generalize to a more relaxed notion of connectedness only re-
quiring that the intersection of the sets of participants of subsequent actions is not
empty. Section C.2 in Appendix C analyses different variants of connectedness.

In uX4. I, each occurrence of the term variable X can be seen as a link back to
the beginning of recursion, that is, uX4. I’ itself. Hence for guaranteeing connect-
edness, we need to make sure that the action preceding X should be connected to the
beginning of the recursion, that is, the initiating participant of I. For this to happen,
we first annotate X with A (we assume that each occurrence of X in I’ is indeed
annotated with the same A that appears in uX4. I’), by which we can statically check
its preceding event happens to A; then we demand I’, the body of recursion, does
indeed start from A.

LEMMA 5.3 (SUBSTITUTION FOR CONNECTEDNESS). If I, I € Con and top(l3) =
(B} then I,[I3/Y B is strongly connected and top(I,) = top(I1[Is/ Y B]).

PROOF. By induction on the structure of I. O

LEMMA 5.4 (SUBJECT CONGRUENCE FOR CONNECTEDNESS). If I; = I, and I; €
Con then I € Con.

PROOF. By induction on the structural rules. O

THEOREM 5.5 (SUBJECT REDUCTION FOR CONNECTEDNESS). Let I € Con and o
be well-typed. Then (o, I) ~ (¢/, I') implies I' € Con.

PROOF. By induction on the reduction rules. See Section C.1 in Appendix C. O
One consequence of the connectedness is that, in each thread of interactions, there

is always one single participant ready to perform any operation that is not an input;
while the remaining participants are waiting for input.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:25

5.3. Well-Threadedness

Well-threadedness is a condition on global descriptions that also concerns causality.
As an example, consider the following connected global description:

Buyer— Seller : chi(v s). Seller— Shipper : cha(v £).
Shipper— Buyer : chs(v u). Buyer— Seller : s(op, v, x). L.

In this description, the first interaction tells us that there is a processes in Buyer, say
P, which invokes Seller. Concurrent processes such as P are called threads. During
the next two interaction, P, located at Buyer’s, becomes inactive. Then, in the last
interaction, P is resumed and communicates to Seller via session channel s, opened
in the initial action. We claim that the global code (regardless of I) is unrealizable at
end-points. In fact, let us consider the following end-point view:

Buyer[chi(vs).5<10p(v). Py | lchs®).Py 1o, |
Sellerl !chy(s). cha(vt). s> op(x). @ 1, |
Shipper[!chy(t). chs(vu). R | P

The first process of Buyer invokes ch; and sends v with operation op in the same ses-
sion, while the second is service chs. Note that s < op(v) cannot be located under chs,
as it belongs to session s. When the three processes interact, first, Buyer invokes ch,
then Seller invokes chy of Shipper: up to here the interaction follows the original global
scenario. However, at this point, the action s> op(x) is free to react with its dual action
s <1op(v), before Shipper invokes Buyer’s other component, the service at chs. Thus the
sequencing in the global description gets violated.

The fundamental issue in this example is that the given global code assumes a
false, or unrealizable, dependency among actions: the last action belongs to a thread
that started from the invocation of ch;, while the description says it should take place
as a direct result of the third action at a distinct thread that has been opened by the
invocation at chg. If a global description is free from false dependencies as such, we
say it is well-threaded.

In order to give the formal definition of well-threadedness, we first annotate a global
interaction with identifiers for threads.

Definition 5.6 (Annotated Interaction). Thread annotated interactions, or simply
annotated interactions, written A, A, ..., are given by the following grammar.
A= A" —>B%:ch(vs). A
A" — B® :s(op, e, y). A

|

| X@AT :=e. A

| if @AT then A; else Ay

| A1 " Ag

| .Al +° .AQ

| W'X4. A

P&

| O
where each 7 is a natural number. We call 7, 7/, ... occurring in an annotated inter-
aption, threads. Further, the grammar of extended annotated interactions, £,&/, .. ., is
given as:

E = A | &|& | (vs).

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:26 M. Carbone et al.

Hereafter, whenever irrelevant, with an abuse of notation, we let A, A, ... range over
extended annotations, and simply call them annotated interactions.

Our task is to find a notion of “consistent annotation” for A, so that causality specified
globally can be precisely realizable locally. We stipulate the following conditions.

(1) Freshness Condition (FC). When a service is invoked, the service’s receiving action
should be assigned a fresh thread.

(2) Session Consistency (SC). Two distinct interactions in the same session (which are,
by session typing, always between the same pair of participants) should be given
the same thread number for respective participants.

(3) Causal Consistency (CC). Any occurrence of a thread t that is not on an output is
immediately followed by an occurrence of the same thread .

Intuitively, (FC) substantiates SCP, (SC) does so for SP and (CC) both.

Before formally defining these conditions, we fix some terminology. Each A regarded
as an abstract syntax tree has a constructor at its root (say prefix or parallel composi-
tion), which is annotated by either one thread or, if it is initiation or communication,
an ordered pair of threads (the first for sender the second the receiver). Above the con-
structor, it has its direct subtree(s), each of which is another such abstract syntax tree.
Each (possibly indirect) subtree of .4 is dominated by each of its (direct and indirect)
proper subtrees.

Definition 5.7 (Threads).

(1) If the root of A is initialization/communication from B to C and is annotated by
(11, 72), then 11 (resp. 12) is the active thread of A by B (resp. the passive thread
of A by C). If the root of A is another constructor then its annotation t is both its
active thread and its passive thread.

(2) If A’ occurs as a proper subtree of A, then (the root of) A is a predecessor of (the root
of) A’. A direct predecessor is a predecessor that has no intermediate predecessor.
Symmetrically we define successor and direct successor.

Note if the root of A is a predecessor of that of A’, then the former’s execution should
indeed temporarily precede that of the latter.

Definition 5.8 (Consistent Thread Annotation). A well-typed annotated connected
interaction A is consistent if the following conditions hold for each of its subtrees,
say A'.

— Freshness Condition (FC). If t is by A at some node and by B at another node
then A and B always coincide. Further, if A’ starts with an initialization, then its
passive thread should be fresh w.r.t. all of its predecessors (if any).

— Session Consistency (SC). If A’ starts with a communication between B and C
via (say) s and another subtree A” of A starts with a communication via s or an
initialization that opens s, then the thread by B (resp. by C) of A’ should be equal
to the thread by B (resp. by C) of A”.

— Causal Consistency (CC). If A” is the direct successor of A, then the active thread
of A” should coincide with the passive thread of A'.

We also say [is well-threaded when there is a well-formed annotation A of I (i.e., the
result of erasing the annotations from .4 coincides with I).

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:27

Example 5.9. To see how these conditions work, for some t7; € N, let us annotate the
global description given in the beginning of Section 5.3 as follows:

Buyer™ — Seller™ : chi(v s). Seller — Shipper™ : cha(v £).
Shipper™ — Buyer® : chs(v u). Buyer” — Seller™ : s(op, v, x). I.

In order to satisfy (CC) and (SC), it should be 7 = 77 and 7; = 77, respectively, which
implies 76 = 71, violating (FC) of ts. Hence this description is not well-threaded. The
following annotated interaction satisfies the three conditions

Buyer! — Seller® : chi(vs). Seller? — Buyer? : cha(v t).
Buyer® — Seller® : #(op1, v1, x). Seller® — Buyer! : s(ops, vs, ¥). 0.
and generates the following correct end-points.

Buyer[chi(vs). st>0pa(y).0 | lcho@®).t<opi(vi).0 1 |
Seller[!chi(s). cho(vt). t > 0p1(x). 5 <1 Opz(va). O 1.

5.4. Static Checking for Well-Threadedness

This section introduces a type discipline for checking well-threadedness. Let S, S, ...
range over the finite sets of session channels. Then we define the following typing
environment:

Definition 5.10 (Typing Environment for Well-Threadedness).
® == 0-1:S | 6,X:06 | 4

We assume © defines a function (with its domain the threads and term variables).
®1, ©9 indicates their union s.t. dom(©1) N dom(®s) = ¥. We say O is well-formed iff
each session channel is assigned to at most two threads, that is, iff whenever r : Se ®
such that s € S, there is at most one t' # vt such that t : S e ® ands e S'.

The typing judgment has the form ® + A, where © records free session channels
used in each thread in A and is (inductively) well-formed.

Definition 5.11 (Type Discipline for Well-Threadedness). Given an annotated con-
nected and well-typed interaction A, ® - A is derived by the rules in Figure 10.

Here, for convenience, we annotate each inaction 0 with a thread, writing 0°. The no-
tation top°(A) returns the active thread of A for .4 with 0 annotated before (for which
we set top°(07) = 7).

In the typing, well-formedness is inductively guaranteed so that, for well-threaded
interactions, the required shape of the typing in the premise of (WT-INIT) and
(WT-CoMM) is always satisfied. In (WT-INIT), we place 72 : @ so that thread 15 is
no longer used. The two rules for parallel composition, (WT-PAR) and (WT-PARE),
are in precise correspondence with the grammar of annotated interactions defined in
Definition 5.6. Note that only in (WT-PAR) we demand the initial active threads of the
two components to be identical. This is necessary because (WT-PAR) is used for nested
(prefixed) parallel compositions that need to be activated by the same thread. The
hiding (WT-RESE) is also only for extended annotated interactions. We then have the
following basic property.

THEOREM 5.12 (TYPING SOUNDNESS FOR WELL-THREADEDNESS). A connected
annotated interaction £ is well-threaded if ® + £ for some ©.

PROOF. In Section D.1 in Appendix D. O

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:28 M. Carbone et al.

(WT-INIT)

0,71 : SW{s}, 2 : {5} F A top°(A) =7
O, 17:8 m:0F A" —=B™:ch(ri). A

O, :5,7m:5FA tOpO(.A) =75 SESI NS,

WT-ComM
() 0,71 :51,72:5 F A" = B™ :s{op, e, x). A

OF A top°(A) =1 OF A top®(A) =1

(WI-ASSIGN) —g e — e A WTIE) e e A then A, olse A

OF A tOpO(.Ai) =T OF A tOpO(.Ai) =T

(WT-SuM) —g = 4 (WT-PAR) —— i
WEPNE) G (TP B S T G
(WT-VAR) m (WT-ZERO) w
(WT-Rec) 22024t =7

OFu XA A
Fig. 10. Typing rules for checking well-threadedness.

Here, we define A = A, (0, A) ~ (o', A), etc. exactly following the correspond-
ing relations on unannotated interactions, except that we demand top-level parallel
compositions (i.e., those that are not under prefixes) are not annotated and, when a
reduction creates a new top level parallel composition, its label should be taken off.

THEOREM 5.13 (SUBJECT REDUCTION FOR WELL-THREADEDNESS). Let A, ...an
annotated interactions, then

(1) IforAand A=A then ®+ A
(2) If I =I' and I has a consistent annotation then I' also has a consistent annotation.

3) Ifo+ Aand (0, A) ~ (o', A) then © - A'.

PrOOF. (1) follows by induction on the generation rules for =. (2) is by (1), noting
that if I = I’ and A is a well-threaded annotation of I then the same derivation wit-
nessing I = I’ leads to A’ such that A = A'. (3) is by induction on .A. Note that in the
recursion case, we have ® + uX.A implies ©® + A[(uX.A)/X] (because if ® + uX.A,
then ©, X : ©® - A, hence by using induction on A and thinning we are done). O

We conclude this section by considering the existence of “representative (minimal)
annotation” for a well-threaded interaction. We say a consistent annotation A on I is
minimal if, up to renaming, any well-threaded annotation A of I arises by collapsing
the annotations in Ay. For example, consider the following well-threaded interaction.

B—C :ch(vt). C— B :top;, vi, x1). B—> A :s1(0pg, vg, x2) |
B—C :ch(vt).C— B :t(op;, vi, x7). B—>A :s2(0py, vy, x5),
which can be annotated (up to injective renaming) as:
B'—(C?:ch(vt).C3®— B': t(op1, vi, x1). B! > A% s1{0pg, ve, x2) |
B?> - C*:ch(vt). C*— B%: ¢ (op}, v}, x}). B2 — A% : sp(0p), vh, xb).

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:29

By collapsing labels, we can reach:
B2 C3 :ch(vt). C3— B? : t{op1, v1, x1). BZ—> Al :s1(0pa, v2, x2) |
B%— C*:ch(vt). C*— B : { (op}, v}, x}). B> — A : s5(0p), vh, xb).
Formally the notion of minimal annotations is defined as follows.

Definition 5.14 (Minimal Consistent Annotation). Let I be well-threaded. Its con-
sistent annotation Ag is minimal if for each consistent annotation A of I, there is a
possibly noninjective substitution o of thread labels such that A = Ago.

The next result shows the existence of a minimal consistent annotation whenever
an interaction I is well-threaded.

PROPOSITION 5.15 (EXISTENCE OF MINIMAL CONSISTENT ANNOTATION). Let I
be strongly connected. Then, I has a minimal consistent annotation if and only if I
is well-threaded.

PROOF. See Section D.2 in Appendix D. O

Note that this result is proved by giving a minimal typing system for well-
threadedness that can also be considered as an inference mechanism to annotate an
interaction consistently whenever it is possible.

5.5. Coherence

Well-threadedness not only eliminates false dependency but also allows consistent ex-
traction of threads (i.e., sequences of actions) from a given global code. These threads
become the constituents of end-point processes in EPP. The final principle concerns
consistency of descriptions of a behavior belonging to the same service, distributed in
multiple places in a given global description. First of all, we observe that it is often
necessary to merge threads to obtain the final end-point behavior of a single service.
Consider the following annotated parallel composition.

Buyer! — Seller” : ch(v s). Seller® — Buyer! : s(op1, e, x1). A1 |
Buyer® — Seller* : ch(vt). Seller* — Buyer® : ¢(ops, e, x2). As

where op; # op,. In this example, Buyer invokes Seller’s service at ch twice, in parallel.
Because of SCP and the end-point calculus typing (cf. rule (E-TSERV)), in order to
construct the code for service ch, we need to merge threads 2 and 4 into one end-point
behavior. But the global description is contradictory, since in one invocation the service
reacts with op;, while in the other one the service reacts with ops.

As the description of a single end-point behavior can be scattered in different por-
tions of the code, we need to guarantee, in EPP, that these descriptions are mergeable.
We will call this mergeablity condition coherence.

5.5.1. Merging Threads. We define mergeability and merging.

Definition 5.16 (Mergeability). Mergeability, denoted by X, is the smallest equiva-
lence over typed terms up to = closed under all typed contexts and:

Vie(JNK).(PiXQ;Axi=y;) Vje J\K.Vke K\dJ.op;#op,

(M-IN)
s> EjEJopj(xj). P; M s> Ypex op;(ve). Qr

fsc(P) =0

M-ZERO
() PXxO

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:30 M. Carbone et al.

When P X @, we say P and @ are mergeable.

Here, a context is any end-point calculus process with some holes. (M-IN) is for branch-
ing and says that we can allow differences in that do not overlap, but we do demand
each pair of behaviors with the same operation to be identical. If two end-point be-
haviors are mergeable in the defined technical sense, we can merge them and obtain a
single process that simulates both of the two behaviors, by combining missing branches
from the both. For instance, the processes st>go(x). P and si>stop(x). € are mergeable,
and the result of merging is simply s > (go(x). P + stop(x). @). Formally, we give the
following definition.

Definition 5.17 (Merge Operator). P LU @ is a partial commutative binary operator
on typed processes that is well-defined iff P X @ and satisfies the following rules:

Ich®. PUIch3). @ % 1eh(. (PU Q)
ch(vs). PUch(vs). @ ' Ch(vs). (PLQ)
ZieankOP; (). (PiLU Q) +
s> Tiegop; (). PiUsD> Zicxop,(y:). Qi I Zienk0pP;(y:). P; +
Sier\J0P;(yi). Q;
x:=e.PuUx:=e. @ def x:=e.(PU@)
if e then P; else P; Liif e then @, else @2 def if e then (P1 U Q1) else (P2 L Q2)
(P11 P)u(Ps | P ' (PyuPy) | (PouPy)
s<ople). Pus<iople). @ = s<ople). (PUQ)
(PLoP)UQi®Q) = (PLUQD®(PUQy)
pX.PupX.Q * ux.(Pu@)
xux © x
puo ® p
PuQ ¥ PuQ (P=P.Q=Q)

where, in the right-hand side of each rule, we assume that each application of the
operator to, say, P and @, is such that P X Q.

The main branching rule says if the operation op; appears in both terms, then the
terms after the prefix (P; and @;) are merged as well (which are ensured to be merge-
able by the assumption) otherwise a new branch is added.

5.5.2. Thread Projection and Coherence. Given a consistently annotated interaction, we
can project each of its threads onto an end-point process. This thread projection is a
partial operation again by its use of the merge operator. We now add a further anno-
tation to each recursion and each recursion variable. Given u*X4.A4 in an annotated
interaction, let {7;} be the set of threads occurring in, but not initiated in, A (recall that
a thread is initiated in .4 whenever it occurs passive in a session initiation). Then, we
further annotate this recursion as %X and each free X4 in A as X f}{n_}. The added
information is used for removing unnecessary recursion from endpoint processes in
the following definition.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:31

Definition 5.18 (Thread Projection). Given a consistently annotated interaction A,
the partial operation TP(A,) is defined as follows.

b(3). TP(A, ;) ifr =14

TPA" > B2 : b3 A D% 160, TPA, 1) if7 = 5
TP(A, 1) otherwise
s<gople). TP(A, 1) ift =11
TP(A" — B :s(op, e, x). A0S | st op@). TP(A, 1) if 7 = 1

TP(A, 1) otherwise

if e then TP(A;, t/) else TP(Ay, 7/) if T =1/
TP(A;, 1) U TP(Ag, 1) otherwise

TP(if €@A™ then A, else As, 1) {

, =e. TP(A,) ift =7
TPG@A™ me. A,)% | ¥=eTPA T Ir=1
TP(A,) otherwise

TP(.A1 +r’ AZ,T) dgf TP(ALT)@TP(AZ,T) 1f‘L’='L'.
TP(A1, 1) UTP(A2, 7) otherwise

def

TP(A; | A, 7) E TP(AL,) | TP(As, T')

TP XA, A 1) % X, TP(A, 1) if r € {7}, TP(A, 7) otherwise.

TPXA,.,.) € X if ¢ € {z}, 0 otherwise.

TP, 1) €0,
If TP(A, 7) is undefined then we set TP(A, t) =L (or simply called undefined) .
Here, for initialization and communication, we have three cases:

(1) When the concerned thread coincides with its active thread, in which case we ob-
tain the corresponding output prefix;

(2) When the concerned thread coincides with its passive thread, in which case we
obtain the corresponding input prefix; and

(3) When neither applies, in which case we get the projection of the body.

For conditional, assignment and sum, each of which is annotated with a single thread,
we have two cases:

(1) When the projecting thread coincides with the thread of the interaction, we simply
carry over these constructors to endpoint processes;
(2) If not, we simply merge these threads (or identity in the case of assignment).

Other cases are defined compositionally.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:32 M. Carbone et al.

- o ari a1 o def [{72} Uthreads(A’, ch) if ch = ch’
threads(A™ — B™ : c¢h'(v s). A',ch) = { threads(A’, ch) otherwise

. A™ — B™ : s(op, e, x). A’
e ; ;
threads(.A’, ch) if A e { CQAT = e, A, pXA N

threads(A, ch) def

QAT ’ /
threads(A}, ch) U threads(A}, ch) if Ae { if QA" then A, else Aj, }

1+ Ay AL A

threads(X 2, ch) def threads(0, ch) &y

Fig. 11. Inductive definition of the function threads(A, ch).

The notion of coherence assumes mergeability, extending it to interthread consis-
tency. The need for interthread consistency arises because the description of the be-
havior of a service may as well be scattered over more than one place in a global
description. Since each service channel ch uniquely defines a service, we can collect
all threads contributing to its behavior by taking the passive thread of each session
initialization at ch. For this, we define the mapping threads(A, ch) in Figure 11. If two
input threads are for the same service channel, then they are equivalent. That is, if
71, T2 € threads(A, ch), then these two threads are parts of the behavior of the same
service.

Definition 5.19 (threads). Given a well-threaded annotated interaction A, for all 7
A, we define the equivalence class [t]* € N as

14 = threads(A, ch) if 3ch € channels(A) such that 7 € threads(A, ch)

[e]” = {r} otherwise.

Given 115 in A, we write 11 =4 19 if there exists r € A such that 11, 1o € [t]A.

Definition 5.20 (Coherence). Given a well-threaded, consistently annotated interac-
tion A, we say that A is coherent if the following two conditions hold:

(1) For each thread t in A, TP(A, 7) #L.
(2) For each pair of threads 1, 72 in A with 71 =4 72, we have TP(A, 71) X TP(A, 12).

We say a well-threaded nonannotated interaction I is coherent if I has an annotation
that is coherent in the given sense.

Example 5.21. Consider the following annotated interaction:

A E AT B%.ch(vs). B2 Al s s(op1, “hello”, y1). 0 +!
Al B3 :ch(vs). B3 — Al : s(ops, “goodbye”, y2). 0 +!

Al CY el (vs). C*— Al : §(op1, “hi”, x). 0.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:33

In this case, the projections become:

def

TP(A,1) = ch(vs).s>opi(y1). 0 @&

ch(vs).s > opa(y2). 0 &

ch'(vs).s > op1(x). 0
TPA4,2) % (lch(s).5 < op1(“hello”). 0) L 0 L 0
TPA,3) € 0 U (Ich(s).5 < opa(“goodbye”). 0) L O
TP 4 ¥ 000U (eh().F <opi(“hi”). 0).

Immediately, each of TP(A,i) (1 < i < 4) is defined. Since threads(A, ch) = {2, 3} and
threads(A, ch’) = {4}, in order for A to be coherent, we should have TP(A, 2) X TP(A, 3),
which is not possible.

5.5.3. Subject Reduction for Coherence. Coherence enjoys the following properties.

LEMMA 5.22 (SUBSTITUTION LEMMA FOR COHERENCE). If uX.I is coherent then
sois I[(nX.1)/X].

PROOF. See Section E.1 in Appendix E. O
PROPOSITION 5.23 (SUBJECT CONGRUENCE FOR COHERENCE).

(1) uis partially symmetric and associative, and has the identity 0, all up to = that is,
P U Q is defined iff @ u P is defined and when they are so, we have PU @ = Q U P;
(Pu Q) u R is defined iff Pu (Q u R) is defined and, when they are so, we have
(Pu@®)uR=Pu(QuR); and for each P we have PL0 = P.

(2) Suppose I is coherent. Let A be its consistent annotation and t be its thread. Then
A = A implies TP(A, 1) = TP(A, 7).

(3) Suppose I is coherent. Then I = I' implies I' is coherent.

PROOF. See Section E.2 in Appendix E. O

In the following, we assume (as noted just before Theorem 5.13) that all and only
top-level parallel compositions are unannotated and that reduction takes off the anno-
tations of newly formed top-level parallel compositions if any.

THEOREM 5.24 (SUBJECT REDUCTION FOR COHERENCE). If A is coherent and
(0, A)~ (o', A'), then A’ is also coherent.

PROOF. See Section E.3 in Appendix E. O
Finally, since = is decidable, so is mergeability, by which we know the following.

PROPOSITION 5.25 (COHERENCE VALIDATION). Given a consistently annotated A,
there is an algorithm that returns true if A is coherent, false if not.

Since typability, connectedness and well-threadedness are also calculable, this shows
that we can algorithmically check if a given untyped interaction is coherent.

5.6. The End-Point Projection

In this section we introduce the formal definition of endpoint projection and establish
its properties. We will say [is restriction-free whenever it contains no terms of the

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:34 M. Carbone et al.

form (vs)I’ as its subterm. Additionally, part(I) denotes the set of participants names
occurring in I. Moreover, [t] € A is a thread (equivalence class) belonging to A in an
interaction. Note that each thread is uniquely assigned to participant as a consequence
of session typing and well-threadedness. Recall also being coherent entails being well-
typed, connected and well-threaded.

Definition 5.26 (End-Point Projection). Let I be a coherent interaction such that
I = (v3)I’ where I’ is restriction-free. Let A be a consistent annotation of I’. Then
the end point projection of A under o, denoted EPP((v3) A, o), is given as the following
network.

) Macpan) Al Miggea || TP(A, ©) Lea.

t'elr]

The mapping given here is defined after choosing a specific annotation of an
interaction. Intuitively, the end-point projection works as follows. A network with
all participants occurring in [is formed and each participant A is assigned the par-
allel composition of processes each corresponding to an equivalence class of a thread
belonging to A. In case such equivalence classes has more than one element a merge
operation is performed.

The following result shows the map in fact does not depend on a specific (consistent)
annotation chosen, as far as a global description has no incomplete threads, that is, it
has no free session channels (which is what programmers/designers usually produce).

PROPOSITION 5.27 (INVARIANCE UNDER ANNOTATIONS). Given a coherent inter-
action I and a state o such that T' = I and T + o, let A1 and Agy be consistent annota-
tions of I. Then, EPP(A1, 0) = EPP(Ay, o).

PROOF. See Section F.1 in Appendix F. O

5.6.1. Pruning. Before stating the correctness of the end-point projection, we define
a relation on processes, called pruning, for dealing with some information that could
be lost during reduction which is still kept in the corresponding reduction in its EPP,
due to persistent behavior at service channels. As an example, consider the following
interaction

Buyer— Seller : ch(v s). Seller— Buyer : s{ack). Buyer— Seller : s(go) +

Buyer— Seller : ch(v s). Seller — Buyer : s{(ack). Buyer— Seller : s(stop), o
whose EPP is
Buyer[ch(vs).s > ack.s < g0 @ ch(vs).s > ack.s < stop] | @
Seller[! ch(s).s < ack.s > (go + stop)].
Now, if apply reduction rules (G-SUM) and (G-INIT) to (1) we obtain
Seller — Buyer : s(ack). Buyer— Seller : s(go).
The EPP of this reductum is:
Buyerl[s > ack.s <1 go] | Seller[s < ack.s > go)]. (3)

If we compare the two EPPs (before and after reduction), we notice that Seller in (2) has
a redundant “stop,” which does not occur in (3). This example shows that reduction in a
global description can lose information that is still kept in the corresponding reduction
in its EPP, due to replication at service channels.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:35

In the following, we write ! R when R is a n-fold composition of replications, that is,
R =1!chi(31). R1|...|'ch,5,). R,. The asymmetric relation of pruning P < @, which
indicates P is the result of cutting off “unnecessary branches” of @, is formally defined
as follows.

Definition 5.28 (Pruning). LetT" =4 Pr>AforT and A minimaland I', TV =4 Q> A.
If further we have @ = Qo |!R whereI' + Q¢ > A, " 4 R and P X @, then we
write: T 4 P < @ > Aor P < @ for short, and say P prunes @ under I'; A. < is
extended to networks accordingly.

Writing simply P < @ does not in fact lose any precision since we can then always
reconstruct appropriate typings. P < @ indicates P is the result of cutting off “un-
necessary branches” of @, in the light of P’s own typing. < is in fact a typed strong
bisimulation in the sense that P < @ means they have precisely the same observable
behaviors except for the visible input actions at pruned inputs, either branches or
replicated channels. Thus in particular it satisfies the following condition.

LEMMA 5.29 (PRUNING LEMMA).

(1) < is a strong reduction bisimulation in the sense that:
(a) If M < N and M ~ M’ then N ~ N’ such that M’ < N'; and
(®b) If M < N and N ~ N then M ~» M’ such that M’ < N'.

(2) < istransitive, thatis, M < N and N < Rimply M < R.

PROOF SKETCH. (1) is because, if M < N, the branches pruned in M can only be
among those that are never used by NV, hence do not contribute to the reduction. (2) is
by noting: if we prune R to make N following the minimal typing of N, and prune N to
make M following the minimal typing of M, then we can surely take off all branches
and replicated inputs from R in the light of the minimal typing of M, and obtains M
itself. O

5.6.2. EPP Theorem and its Consequences. We are now ready to state the main results
of this article. In the following, we write I' - ¢ when the stored values in o follow the
typing in I" in the obvious sense. We use several notations as follow.

—1In (1), L(A) denotes the result of replacing each occurrence of type assignment in A,
say §[A, B] : a, with 5: L.

— In (2), =, denotes the equality induced by the unfolding/folding of process recursion
(note they do not change behavior up to strong bisimilarity).

—1In (4) and (5), we elaborate reduction with labels for interactions, both for a global

calculus and a local calculus, writing L where ¢ ranges over the set of labels of the
form:

¢t = (A— B,ch3) | (A - B,s>op(v) | t.

where (A — B, ch(3)) denotes a session initiation, (A — B, s> op(v)) denotes an
interaction inside a session s with operator op and value 9, and the third denotes the
remaining, noninteractional reductions (we can also add labels for them, to obtain
the same result, since each action in one calculus matches precisely that of the
other). The annotated reduction relations for both global and local calculi are given
in Appendix F.

— Further, in (4) and (5), we consider only strict reductions in which v-restricted chan-
nels that are active, that is, not under a prefix, are never renamed. For details, see

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:36 M. Carbone et al.

Appendix F. This allows us to identify the binding relationship between session
initialization (say ch(3)) and a subsequent associated session communication (say at
one of s; in §), while staying at the level of reduction. Note for each nonstrict reduc-
tion we have the corresponding strict reduction, so considering only the latter does
not lose generality.

—In(6),wesetI | (A, B,s) whenever I = (v3§)(A — B :s{op, e, x). I' | I") for s ¢ § and
I| (A, B,ch)whenever I = v3)(A— B :ch(v3).I' | I"). Also, for M = (w)(A[P 1, |
M) and s € 3, we have (i) M | (A,s) whenever P=5s<op{e). P | P";Gi) M | (A,s)
whenever P = s> op(x). P' | P”; (iii) M | (A,ch) whenever P = ch(v3). P’ | P’; and
(iv) M | (A, ch) whenever P = !ch(3). P’ | P’. These definitions extend to annotated
interactions accordingly.

THEOREM 5.30 (END-POINT PROJECTION). Assume A is well-typed, strongly con-
nected, well-threaded and coherent. Assume further ' = A > Aand T + o. Then the
following properties hold:

(1) (type preservation) IfT" - A > A is the minimal typing of A, then T' = EPP(A, o) >
L(A).

(2) (soundness) If EPP(A, o) ~» N then there exists A’ such that (o, A) ~ (o', A') such
that EPP(A’,0') < = N.

(3) (completeness) If (o, A) ~ (o', A') then there exists N such that EPP(A,0) ~ N
and EPP(A’,6’) < N.

(4) (soundness with action labels) If EPP(A, o) L Noin a strict reduction, then

there exists A’ such that (o, A) A (o', A) in a strict reduction such that
EPP(A’,6") < =pc N.

(5) (completeness with action labels) If (o, A) A (o', A') in a strict reduction then

there exists N such that EPP(A, o) 4 Nin a strict reduction and EPP(A’,6’) < N.
(6) (barbs) A | (A, B,u) if and only if EPP(A, o) | (A,u) and EPP(A, o) | (B,u) for u
either a service or a session channel.

PRrROOF. (Outline: for full proof see Appendix F: Section F.5 for (1), Section F.6 for
(2, 4) and Section F.7 for (3, 5)). (1) In order to show type preservation we define
an intermediate type system that focuses on single threads called per-thread typing.
Hence, the proof consists of showing (i) global typing implies per-thread typing (and
vice versa); (ii) per-thread typing is preserved by EPP (and this is easier as we only
look at single threads); and (iii) per-thread typing implies end-point typing (and vice
versa); (2, 4) and (3, 5) are proved by induction on the reduction rules; (6) follows
from (4, 5). O

COROLLARY 5.31. Assume A is coherent. Assume furtherT' - A > Aand T F o.
Then the following three properties hold. In (2), < . is given as the transitive closure
Of < U =

(1) (error-freedom) EPP(A, o) does not have a communication error (cf. Section 4.19);

(2) (soundness for multistep reduction) if EPP(A, o) ~" N then there exists A such
that (o, A)~" (o', A)and EPP(A’,6") < recN;

(3) (completeness for multistep reduction) if (o, A) ~" (o/, A') then we have
EPP(A, o) ~" N such that EPP(I', ¢') < N;

(4) (progress of projections) for all A # 0 there exists N such that EPP(A, o) ~ N.

PROOF. (1) is immediate from Theorem 5.30 (1) and Corollary 4.19. (2) and (3)
are by Lemma 5.29 (1,2) and Theorem 5.30 (2, 3), combined with the standard tiling

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:37

argument and induction on n. For example, for (2), the case when n = 1 is Theorem 5.30
(2). Suppose the statement holds up to n reductions and assume EPP(A, o) ~"1 N.
By definition this means EPP(A, o) ~™ Ny ~ N for some Ny. Hence by (IH) there
exists Aj such that (o, A) ~" (04, Aj) and EPP(Aj, 0)) < reeNo. By No ~ N and since
< rec immediately satisfies the same simulation property as <, EPP(A},o') ~ N”
such that N’ < ,..N”. By Theorem 5.30 (2) again we have (o], A;) ~ (o', A') such that
EPP(A’,¢') < N”. By transitivy of < .. we have EPP(A’,¢') < N’ as required. (4)
follows from Theorem 3.6 and (3). O

Remark 5.32.

(1) Corollary 5.31 (1) indicates once we can type check a global description and ensures
it is coherent, then its endpoint projections do not have type errors in their mutual
interactions. This gives a basic form of a guarantee of “good” properties at run-
time through the static validation of global descriptions. Potential properties for
validation would include deadlock-freedom, livelock-freedom, and various security
properties.

(2) Corollary 5.31 (2-3) says that all and only interactions in which endpoint processes
will be engaged, however many steps they would take, are precisely in correspon-
dence with those specified by the original global description.

6. A COMPLETE EXAMPLE OF END-POINT PROJECTION

In the following we illustrate the formal notion of end-point projection we have devel-
oped by using a fairly large toy example involving five participants. First, we explain
the example in English; then we introduce the description in the global calculus; finally
we project the description to end-point processes.

6.1. Global Description in English

The example is an extension of the buyer-seller example introduced in Section 2. The
participants involved in this protocol are:

Buyer (B), Seller (S), Vendor (V) CreditChecker (CC), Shipper (Sh) and RoyalMail (RM).
The protocol proceeds as follows.

(1) Buyer requests a service chcc for company check to the credit checker CreditChecker
by sending its name.
(2) At this point CreditChecker can either give a positive or negative answer.
(3) If the answer is positive:
(a) Buyer asks Seller for a quote about product prod;
(b) Seller then asks Vendor for service chy
(c) Seller starts recursion and asks Vendor for a quote about product prod;
(d) Vendor replies with a quote quote;
(e) Seller forwards quote to Buyer increasing it by 10 units (quote + 10);
(f) if the quote is reasonable (reasonable(quote + 10)) then:
i. Buyer sends Seller a confirmation (quoteOK) together with the credit (cred);
ii. Seller then contacts CreditChecker for checking the credit;
iii. If the credit is good then:
A. Seller contacts Shipper (service chgp);
B. Seller sends the delivery address;
C. Shipper sends a confirmation;
D. Seller forwards confirmation to Buyer;

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:38 M. Carbone et al.

iv. If the credit is bad:
A. CreditChecker tells Buyer;
B. Buyer tells Seller terminating the protocol,
(g) if the quote is not reasonable the protocol goes back to point 3c;
(4) If the answer is negative then the protocol terminates.

6.2. Global Description in the Calculus

We now give the formal description of this protocol using the global calculus. Since
the description is long, we divide it into several parts and we also give its annotation.
First, we present the basic skeleton of the protocol.

1. B' - CC? : chee(vs). CC%2— B! : s(ack).

2. Bl — CC? : s(companyCheck, sellerName, compName).
3. { CC’2 — Bl . S(gOOd). Igood

4. +

5. CC?— B! :s(bad). 0 }

In Line 3, Igooq represents the interactions that take place after CreditChecker tells
Buyer that the company is good, which is given as follows.

1. B' - 83 : chg(vt). S>— B! : t(ack).

2. Bl - 83 : t(quoteReq, prod, prod).

3.83 > V4 :chy(vr). V4— S2 : r(ack).

4. u3XS. {

5. 83— V*:r(quoteReq, prod, prod).

6. V*— S83:r(quoteRes, quote, quote).

7. S%— B! :t(quoteRes, quote + 10, quote).
8. if reasonable(quote)@Blthen

9. B! — 83 : t(quoteOK, cred, cred).

10. S8 — CC5 : cheo(v w).

11. CC5— 83 : u(ack).

12. 83 — CC5 : u(personalCreditCheck, cred:adr, cred:adr).

13. { CC°—S®:u(good). I,y

14. +

15. CC5— 83 : y(bad).

16. S3 — B! : t(yourCreditlsBad). 0 }
17. else

18. B! — S3 : t(quoteNotOK). X5}

Finally I, 4 in Line 13 is given as follows.

1.83— RS : chr(v p).

2. R® — S3 : p(ack).

3.8%— RS : p(deliv, adr, adr).
4. R® — S3 : p(conf).
5.8% — B! : ¢{conf). 0

We can check these descriptions are typable, strongly connected, well-threaded, and
coherent. For connectedness, the description given here uses a lot of acks. As we
discussed in Carbone et al. [2006b], many of these acks are in fact unnecessary by
using a relaxed notion of connectedness.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:39

6.3. End-Point Projection of the Global Interaction
Following the definition of EPP, we first project the global description onto each thread.
The first one is Buyer’s only thread.

TP(I,1) = chece(vs). s> ack. s << companyCheck(sellerName). s>

{ good. chs(vt). t > ack. < quoteReq(prod).
uX. tr> quoteRes(quote).
if reasonab le(quote)then t < quoteOK{cred).
t > {yourCreditlsBad + conf}
else £ < quoteNotOK. X
+
bad }.
Note this thread starts before the recursion and go through inside the (global) recur-
sion. Thus the projected end-point behavior also contains recursion.
The next projection is onto the first thread of CreditChecker (note this participant
has two threads, 2 and 5).
TP(I,2) = !chee(s). s <ack. s> companyCheck(compName).
{ s<good & s<ibad }.
Note no recursion is involved in this thread projection, simply because the thread 2
does not occur inside the recursion.
Next we jump to Thread 5, which is another component of CreditChecker.
TP(I,5) = !chee(w).w<a1ack(). u > personalCreditCheck(cred:adr).
{ u<good & u<bad }.
Note the process does not include the recursion either. This is because it is inside a
recursion and it initiates a new thread there. As a result the code is identical with the
projection onto Thread 2.
We now move to the projection onto the unique thread of Seller, which is Thread 3.
TP(I,3) = l!chs(t). < ack.t> quoteReq(prod). chy(vr). t > ack.
uX. r<quoteReq(prod). r > quoteRes(quote).
t < quoteRes(quote + 10). ¢>
{ quoteOK(cred). chcc(vu). ut> ack.
u <1 personalCreditCheck(cred:adr). ur>
{good. chg(vp). p > ack.
D < deliv{adr). p > conf. £ < conf
+
bad. <1 creditlsBad }
+
quoteNotOK. X.

As before, this thread starts outside of the recursion in the global description and is
also used inside, so that both the recursion and the recursion variable are used as
they are, leading to the recursive behavior of the process. Note how the use of session
functions as a way to handle recursion appropriately in EPP.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:40 M. Carbone et al.

The projection onto the unique thread of Vendor follows.
TP(I,4) = lchy(r).t<ack. uX.r> quoteReq(prod). 7 <t QuoteRes(quote). X.

Finally we end with the projection onto Thread 6, giving the simple behavior of
RoyalMail.

TP(I,6) = !chgr(p). p < ack. pr>deliv(adr). p < conf.

As before, Thread 6 does not contain recursion since it is fully inside the (global) re-
cursion, initiating a thread there.

As noted, there are two threads (2 and 5) that belong to the same class of equivalence
that is, they are part of the same service channel chcc. This means that we must merge
the two threads in the final EPP. By applying the merge operator, and noting they are
evidently mergeable, we get the following process:

teheo(w). uw <t ack().
personalCreditCheck(cred:adr). (w < good & u < bad)
u > +
companyCheck(compName). (u <1 good @ u <1 bad)

By which we have arrived at the end-point behaviors of all participants realising the
original global description.

The projection works because of the linear usage of channels inside each session
and service channel principle, as well as the three well-structuredness conditions. We
believe many business protocols conform to these conditions (modulo relaxation of con-
nectedness we discussed in the long version). How these conditions can be extended
in disciplined ways to allow more “untamed” protocols (such as those involving excep-
tions) to be treated in the theory, is an interesting subject of further studies.

7. RELATED WORK

Industrial Development. Since the early 1990s, among industries, there have been
many attempts to describing and modeling business processes and protocols. The first
attempt back in the early 1990s (such as the Fidelio project by IBM, which later be-
came IBM WebSphere MQ-Workflow [IBM 2010]) was based on individual, proprietary
description languages, which was not desirable from the viewpoint of interoperability,
leading to such issues as depriving a user of choices in products and vendors once it has
started to use a specific product. At the time, no de facto/de jure standards existed that
could integrate existing systems in a unified manner. These proprietary technologies
also suffered from high integration costs. In the latter part of the 1990s, a standardiza-
tion group, the Work Flow Management Coalition (WFMC) [WFMC 2010], was formed.
Its task was to standardize the description of workflows to enable its interoperability.
This had solved part of the issues, that is, the lack of standards in description lan-
guages, but could not present a wholesome solution because the underlying workflow
technologies were still bound to the proprietary solutions. In 2002, IBM proposed the
Web Service Flow Language (WSFL) [IBM 2001] and Microsoft released Xlang [Mi-
crosoft 2001] for Biztalk. These two originally proprietary offerings were merged in
the development of BPEL (later WS-BPEL, Web Services Business Process Execution
Language) in 2003. BPEL solved the problem of integration by utilising Web Service
standards, WSDL (Web Services Description Language) and SOAP to make legacy in-
tegration part of the standards solution, even though a fully fledged global description
is not present in these languages.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:41

Global Descriptions of Communication Behavior. Global methods for describing
communication behavior have been practiced in several different engineering scenes
in addition to WS-CDL (for which this work is intended to serve as its theoretical un-
derpinning). Representative examples include the standard notation for cryptographic
protocols [Needham and Schroeder 1978], message sequence charts (MSC) [Alur et al.
2005; Henriksen et al. 2005; ITU 1996], and UML sequence diagrams [OMG 2004].
These notations are intended to offer a useful aid at the design/specification stage,
but do not offer fully fledged programming language, lacking, for example, standard
control structures and/or value passing.

DiCons (which stands for “Distributed Consensus”), which is independently con-
ceived and predates WS-CDL, is a notation for global description and programming
of Internet applications introduced and studied by Baeten et al. [2001], and, to
the best of our knowledge, is the first fully expressive language for representing
interactions based on a global method. DiCons uses specific programming primitives
such as Web server invocation, email, and Web form filing, rather than general
communication primitives. Its semantics is given by either MSCs or direct operational
semantics. DiCons does not use session types or other channel-based typing. An
analogue of the theory of end-point projection has not been developed in the context of
DiCons.

Theoretical studies [Broy 2005, 2007; Broy et al. 2007] offer a formal framework cen-
tering on message sequence charts, based on stream-based formalization. End-point
projectability is discussed under the name of realizability. Many concerns in specifi-
cations including refinements are treated in their work on a uniform semantic basis.
Streams are one of the powerful semantic models for concurrent interactive behaviors,
starting from such early work as Kahn’s network. However, a wide range of interactive
behavior may naturally be captured by explicit representation of a sequence of input
and output communications as found in process algebras in general, and name pass-
ing process calculi in particular. For example, a connection between a request and a
reply is clearly and precisely captured semantically by channel passing (in the present
article in the context of session initiation). This leads to tractable projectability involv-
ing various control and other structures in the present work, which may not be found
in [Broy 2005, 2007; Broy et al. 2007].

Petri Nets may also be viewed as offering a global description, though again they
are more useful as a specification/analytical tool. As an example, a study by van der
Aalst [2002] presents an analysis of a business protocol showing how a description
of an interparticipant business protocol can be implemented inside each participant
without losing causal constraint, all represented in Petri Nets. While quite different in
the formal apparatus and motivations, it shares a technical interest with our analysis
in Section 5 as a causality analysis of interactions. The current lack of notions of types
in Petri Nets may make it hard to carry out the analogue of the full constructions as
done in our work.

As we noted, global notations are often used for representing security protocols.
Strand Spaces [Guttman et al. 2001] is a structure for analysing properties of cryp-
tographic protocols. It models protocols as causal chains of interactions, and is often
presented in a global notation similar to UML sequence diagrams. Strand Spaces does
not offer a fully expressive description language with general control constructs. Their
methods for security analysis may be applicable to our global calculus. Briais and
Nestmann [2005] present a global notation for representing protocol narrations and
relate it to the m-calculus. Since their sole focus is on cryptographic aspects, their
global formalism is not intended as a fully expressive language for describing interac-
tions, lacking, for example, channels, conditional and loops, as well as type disciplines
for interactions.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:42 M. Carbone et al.

Fu et al. [2004, 2005] model choreography and end-point behavior in terms of finite
state automata. Given the reduced complexity of their model they are able to provide
EPP as well as synthesising global descriptions from end-point processes. BIP [Basu
et al. 2006] and REO [Arbab 2004] are formally founded languages for real time sys-
tems, which, similarly to choreography, focus on interactions rather than input/output
primitives. In the field of service oriented programming, Qiu et al. [2007] have pro-
posed a calculus for modeling choreography that is then mapped into Hoare’s CSP
[Hoare 1985].

One of the significant contributions that distinguish our work from the other ap-
proaches we have listed is that we provided the formal projection algorithm and analy-
sis for a core global, structured programming/description language built on a rigorous
semantic foundation and underpinned by formal theorems, which are further illus-
trated by various nontrivial description examples.

In Honda et al. [2008], we use choreography as a type for multiparty session types
providing a simplified end-point projection into end-point types. Recently, Corin et al.
[2007] introduce Global Session Graphs, directed graphs for expressing types for mul-
tiparty conversations. Their formalism provides an algorithm for going from graphs
(global) to role types (end-point) and back. They extend this work to security protected
multiparty session executions in Bhargavan et al. [2009]. These works do not study
EPPs direct from the global language.

Theories of Types for the n-Calculus. Many theories of types for the 7-calculus are
studied. In this work, we used session types, a typing discipline that provides a flexible
programming style for structural interaction, and is used to statically check the safe
and consistent composition of protocols in communication-centric distributed software.
Session types also play a key role in EPP theory. In the context of session types,
the present work extends the session structure with multiple session names, which is
useful for having parallel communications inside a session. As far as we know this
formalism [Carbone et al. 2007] is the first extension of session types that supports
parallel interaction within the same session.

In addition to the study of session types, the types for processes studied in the lit-
erature includes input/output types [Milner 1993; Pierce and Sangiorgi 1996], linear
types [Honda 1996; Kobayashi et al. 1996], various kinds of behavioral types, many
of which incorporate causality [Igarashi and Kobayashi 2001; Yoshida et al. 2004,
Yoshida 1996] and combination of behavioral types and model checking for advanced
behavioral analysis [Chaki et al. 2002; Rajamani and Rehof 2002], to name a few. Be-
havioral types offer an advanced analyses for such phenomena as deadlock freedom.
We are currently studying how these advanced type-based validation techniques on
the basis of the present simple session type discipline will lead to effective validation
techniques.

Type Disciplines for Concurrent Programming Languages. Our work shares with
many recent works its direction towards well-structured communication-centered
programming using types. Pict [Pierce and Turner 2000] is the programming language
based on the m-calculus, with rich type disciplines including linear and polymorphic
types. Polyphonic Cti [Benton et al. 2004] uses a type discipline for safe and sophisti-
cated object synchronization. The interplay of session type disciplines with different
programming constructs and program properties has been studied [Bonelli et al.
2005; Dezani-Ciancaglini et al. 2006; Gay and Hole 2005; Honda et al. 1998; Takeuchi
et al. 1994; Vasconcelos et al. 2004]. More recently, a similar approach to the session
types has been studied in the Singularity OS [Fahndrich et al. 2006]; behaviors in
this system are defined in the form of a state machine that specifies desired message

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:43

exchange patterns. Messages encapsulate asynchronous method invocation, and
consist of information on which method should be invoked, along with the actual
arguments to use when the message received. Our end-point calculus is based on
synchronous communication following the previous works on the session types; we
believe all the technical results can be adapted to the asynchrony.

The EPP theory offers a passage through which these studies (all based on end-point
languages and calculi) can be reflected onto global descriptions, as we have demon-
strated for session types in the present work.

Process Calculus-Based Analysis of Web Service. Foster et al. [2010] studied a
transition-based approach for checking the correctness of the protocols written in CDL
including absence of deadlock and livelock. Their approach is limited in untyped (data
and message are abstracted and represented simply as base types) and communication
without name passing. Extending their model abstraction to support data variable ex-
pression and message correlation (state, types and channels) based on the syntax and
semantics of the w-calculus is an interesting future topic. In general, pre-type check-
ing would provide opportunity to reducing the size of static state machines in model
checking.

There has been a series of works studying security-related aspects of Web services in
their series of works (whose origin lies in the the spi-calculus [Abadi and Gordon 1999]
and the applied 7-calculus [Abadi and Fournet 2001]). Their initial work [Gordon and
Pucella 2002] may be the first to apply the w-calculus to Web Services, focusing on
security concern. In a more recent work, Bhargavan et al. [2006] have implemented
part of WS-Security libraries using a dialect of ML, and have shown how annotated
application-level usage of these security libraries in Web services can be analysed with
respect to their security properties by translation into the applied w-calculus. The
benefits of such a tool can be reflected onto the global descriptions through the theory
of EPP, by applying the tool to projections.

Laneve and Padovani [2006] give a model of orchestrations of Web services using an
extension of w-calculus to join patterns. They propose a typing system for guarantee-
ing a notion of smoothness that is a constraint on input join patterns such that their
subjects (channels) are colocated in order to avoid a classical global consensus problem
during communication. Reflecting the centralized nature of orchestration, neither a
global calculus nor end-point projection is considered.

A bisimulation-based correspondence between choreography and orchestration in
the context of Web services has been studied by Busi et al. [2006], where a notion
of state variables is used in the semantics of the orchestration model. They opera-
tionally relate choreography to orchestration. In Guidi et al. [2006], the same authors
introduce SOCK, a calculus for Web services based on end-point descriptions. This
formalism models networks of participants and their local behavior enhanced with a
mechanism for controlling communication at runtime based on logical conditions on
the participant’s store. In our work, communication structures are represented by ses-
sion types, hence interaction is statically controlled and its error freedom is guaran-
teed by a sound type system. Their dynamic control allows concrete reasoning on the
communicated values, but requires heavy runtime mechanisms. It is an interesting
topic to integrate static and dynamic methods for efficient and flexible control of inter-
actions. Neither strong type systems for communication nor descriptive principles for
EPP are studied in their work.

Castagna et al. [2008] and Bravetti and Zavattaro [2007] study theoretical aspects
of contracts for Web Services. While the subtyping relation for session types is quite
strong but, as seen, necessary at choreography level, a coarser relation on contracts
known as compliance is important from the client viewpoint when dealing with service

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:44 M. Carbone et al.

discovery and run-time compatibility. The conversation calculus [Caires and Vieira
2009; Vieira et al. 2008] is an extension of the m-calculus to context-sensitive interac-
tions with service and request primitives and local exceptions. In Caires and Vieira
[2009], they also proposed a typing system for guaranteeing error-freedom based on
global and local types, and its extension for ensuring a progress based on a well-
founded ordering on events. Like other works, the EPP is only studied at the type level.
For a further reference on session types, see Dezani-Ciancaglini and de’ Liguoro
[2009], which covers a wide range of related works on sessions and session types.

8. CONCLUSIONS, EXTENSIONS AND FUTURE WORK

This article introduced a pair of typed formalisms for interaction, one based on global
descriptions and another an applied r-calculus, both using a parallel extension of ses-
sion types. Both calculi are based on a new extension of session types, which can han-
dle parallel interaction in one session. We developed a theory of end-point projection,
which enunciates three conditions for global descriptions and presents a sound and
complete mapping from well-structured global descriptions to their end-point counter-
part. We have shown this mapping is sound and complete in the sense that all and
only behaviors in the original descriptions are realized as communications among the
projected end-point processes. Global descriptions have been practiced in various en-
gineering contexts for a long time. The present work is a trial to realize its potential
as a mathematically well-founded programming method, centring on type structures
for communication. For practical applications, the EPP theory demands further ex-
ploration, capturing all basic concurrent programming primitives, including mutual
exclusion, exceptions and timeout. In the following, we list some of the possible exten-
sions and future work.

Local Variable Declaration. We consider extensions and applications of the theory
of EPP. First, we augment the syntax of global/local calculi with one useful construct,
local variable declaration:

newvar xX@A :=e¢ in [newvar x :=e in P

This construct is indispensable especially for repeatedly invokable behaviors, that is,
those of services. Suppose a bookseller is invoked by two buyers simultaneously, each
asking a quote for a different book. If these two threads share a variable, these two
requests will get confused. The use of local variable declaration can avoid such con-
fusion. The dynamics and typing of this construct are standard [Pierce 2002]. For
end-point projection, it is treated just as assignment.

Intraparticipant Interaction. In Section 3.3, we demanded that, in the grammar of
service typing, A # B in §[A, B]. This means well-typed global terms never have an
intra-participant interaction. This is a natural assumption in a business protocol that
primarily specifies interorganizational interactions: however it can be restrictive in
other contexts. Under connectedness (whose definition does not change), we can easily
adapt the EPP theory to the inclusion of intraparticipant interactions. First, the typing
rules in Figure 3, takes off (G-TCOMINV) and refines (G-TCOM) so that the typing
3[A, B] : a always reflects the direction of the interaction just inferred. This allows us
to treat the case when A and B are equal. The key change is in well-threadedness.
When A = B, the condition of session consistency in well-threadedness is problematic
since we do not know which of the two threads should be given to which participant.
However stipulating the following condition solves this ambiguity.

Local Causal Consistency. If there is a downward sequence of actions that starts
from an active thread r and ends with an action in which 7 occurs for the first time

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:45

(i.e., T occurs in no intermediate actions in the sequence), then the latter r occurs
passively.

We also note this condition is a consequence of the definition of well-threadedness in
the theory without intraparticipant interaction so that we are not adding any extra
constraint to interparticipant interactions.

Shared Channel Passing. Shared channel passing is a practically useful extension
for business protocols, for example in the scenarios where participants need to send
links to other participants. A typical example is when Buyer wants to buy a book from
Seller, but Buyer does not know Seller’s address (service channel) on the net. The only
information Buyer has is a service channel book of DirectoryService, which will send
back the address of Seller to Buyer, which in turn interacts with Seller through the
obtained channel. In such a situation, Buyer has no prior knowledge of not only the
seller’s channel but also the participant name, Seller. Can we have a consistent EPP
theory with unknown participants and channels? In practice, this has been an open
problem left in WS-CDL's current specification (which allows channel passing only for
fixed participants). A possible extension of the present EPP theory to channel passing
is discussed in Carbone et al. [2006b, Section 17], using anonymous participant names
as placeholders. Channel passing may also be used for a consistent representation of
synchronization mechanisms. As a related point, while the three principles we have
presented do allow description of many known use cases, some of these conditions can
indeed be loosened with essentially the same technical results. Such an extension is
discussed by Carbone et al. [2006b, Section 13.2/3].

Session Channel Passing (Delegation). Similarly to shared channel passing, session
channel passing or simply delegation is another practically useful extension that this
work does not address. The main difference with shared channel passing is that in-
stead of passing a channel name representing a public (shared) service, delegation
transmits a private session channel from another session. Such a feature may prove to
be very useful in several situations. As an example, consider our buyer-seller protocol
from Section 2 and suppose that we wish to optimize the notification from Shipper to
Buyer. A possible solution is for Seller to pass her session channel s, used for commu-
nicating with Buyer, directly to Shipper who can use it for directly notifying Buyer with
the transaction details.

Practical Use of EPP. The EPP theory has been developed with practical use in
mind. There are several engineering scenes where we consider the theory and its
extensions may be useful.

— Code generation. We can create a (perhaps multilanguage) complete distributed
application by projecting a detailed global description to each of its end-points.

— Prototype generation. Projection can also be used for generating a skeleton code for
each end-point that only contains basic communication behavior, to be elaborated to
full code. This is already used in [PI4SOA 2008].

— Use of conformance. A team of programmers initially agree on a shared global spec-
ification for communications among end-points: during/after programming, each
programmer can check if her/his code conforms to the specification by conformance
checking against projection. This scheme also applies to conformance of existing
services/libraries to a given global scenario.

— Runtime monitoring, testing, and debugging. At runtime, each end-point can check
if ongoing communications at his/her site conform to the global description by
checking against its projection to that end-point. The monitoring can also be used
for debugging and testing existing code.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:46 M. Carbone et al.

Further, various static analyses/logical validation methods would become avail-
able for a global description from their well-developed end-point counterpart. The
present article is intended to be an initial trial towards a well-founded specifica-
tion/implementation/validation framework for communication-centered programming,
underpinned by a theory of EPP.

APPENDIXES

A. AUXILIARY DEFINITIONS AND PROOFS OF SECTION 3

A.1. Free Session Channels, Free Term Variables and Service Channels
The set of free session channels, denoted by fsc, is defined as follows.

Term ‘ fsc

A— B:ch(v3.I fsc(I)\3
A—B:s{op, e, y). I fsc(l) U {s}
x@A =e. I, uX. 1 fsc(l)

if @A then I else Iy, I, + I, I | I | fsc(I1) U fsc(lz)
(vs)I fsc(I)\{s}

X,0 {}

The set of free term variables, denoted by fv, is defined as follows.

Term ‘ fv
A—B:ch(vs).I,A— B:s{op, e, y). I, x@A :=e. I, (vs)I | fv(I)

if @A then Iy else Iy, Iy + I, I | I fv(Iy) U fv(ls)
uX.I fv(D\{X}

X (X}

0 {}

Finally, the set of service channels, denoted by channels, is defined as follows.

Term ‘ channels
A—B:ch(vs).I {ch} U channels(1)
A—B:s{op, e, y). Lx@A :=e. I, (vs)I, uX. I | channels(])

if @A then Iy else Iy, Iy + I, I | I channels(I;) U channels(ls)
X,0 {}

A.2. Grouping of Session Channels

We observe free session channels can be grouped in an arbitrary way in the typing
rules: the following proposition says that grouping of free session channels in the
session typing is in fact arbitrary, that is, they become relevant only when they are
abstracted by session initialization or session channel restriction.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:47

PROPOSITION A.1 (GROUPING OF SESSION CHANNELS).

(1) Suppose I' = I > A - 53%I[A, Bl:B. Then there exist ay and ag such that I' +
I > A - .§1[A,B]:Oll . §2[A,B]20£2.

(2) Suppose' = I > A - $1[A,Bl:a1 - 3I[A, Bl :as. Then there exists B such that
I A - 55&lA, Bl

PROOF. (1) follows by induction on the typing rules (for (G-TPAR) using the disjoint-
ness in the premise; for (G-TCoM) and (G-TCOMsz) we construct the assignment for
31 or S depending on to which s belongs to). (2) also follows by induction (from (G-
TRES1,2/3) we observe «; # L by the shape of typing, even though we can in fact treat
an assignment of the form §: 1). O

A.3. Proof of Proposition 3.21 (Existence of Minimal Typing)

Let I' + I for some I'. Then there exists I'g such that I'g - I and whenever I'" - I we
have I'y € I'". Moreover such I'y can be algorithmically calculable from I. We call 'y
the minimum service typing of 1.

PrOOF. We will prove a stronger result. Let

(a) ¥ be a the set of mutually disjoint vectors containing (only) the free session names
in I (cf. Proposition A.1) (each vector in i, say §, can be used as, for instance,
35[A, B] : a);

(b) I be typable with a session typing that conforms to ¥ (i.e., its type assignments are
done using the disjoint vectors in ¥);

(¢) € extends &€ by the rule « € t for each @ and t.

Then, for some I'y and Ag, we have I'y = I > A such that (1) Ag conforms to ¥; and
(2) whenever I' - I > A such that A conforms to ¢, we have ') € I and Ag € A. In
particular, if a term variable does not occur in I, then € can be replaced by €.

The proof proceeds by induction on the minimal typing rules reported in Figure 12.
The new rules inductively construct the minimal typing. In Figure 12, it is assumed
that the subject term (the term to be type checked) is already type safe. Note that the
rules are sound, that is, I' Fmin I > A implies ' = I > A (this directly follows by
induction on the minimal typing rules).

In the figure we write tvar(a) for the set of type variables in . We need some care
in calculating minimal typing in the presence of recursive types, for which we follow
Dezani-Ciancaglini et al. [2006]. This is treated by (G-MTVAR) and (G-MTREC), as
well as by (G-MTINITl/z).

In (G-MTVAR), when we introduce a term variable, we also introduce a type vari-
able. ¥/ in the premise refers to the disjoint vectors that extend ¢ so that, after ab-
stracting session channels by initialization, the result is precisely ¥ mentioned in (a).

In (G-MTREC), solve(t, A) essentially solves the equations t = §;[A;, B;] : «; for each
5[A;, B;] : ; € A. When t does appear in §;[A;, B;] : «;, the corresponding component is
5[A;, Bl : ut.a;. If not, then we get §;[A;, Bl : o;.

Finally in (G-MTINIT;), when type variables occur in 3, we simply replace them
with end, where B[end/t] is the result of substituting end for each (free, by bound name
convention) occurrence of type variables from t. This substitution is sound when we
already know the target term is well-typed (note that, in the original rule (G-TINIT),
a and B can never include a free type variable).

(G-MTCoMM) and (G-MTCOMINV) are chosen appropriately for its use in abstrac-
tion. For free session channels, we (arbitrarily) fix which direction (say from A to B)
to use. In the rules (G-MTINITg), (G-MTSUM) and (G-MTIF), the lub operator v is

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:48 M. Carbone et al.

Thmin I>A-3[B,Al: 8 chgdom() tvar(f) Ct

(G-MTINIT) T, ch@B : (5)(Blend/t]) Fmin A— B : ch(v3). I > A

T, ch@QB : (§)abmn I>A-5[B,A]: 5 tvar(B) ct

G-MTINIT =
(2) T, ch@B : (§)(a 7 Blend/t]) bmin A5 B :ch(v§). > A

FFmiHIDA'g[A,B]ZOLj FFE’@AQJ Fkl@Bej 56{5}

-MTCoMM
@ Comm) I'Fmin A= B :s{op;j, e, z). I>A-3[A, B]: s 4Xjcy0p;(05). aj

ThmnI>A-53[B,Al:a; THe@QA:0; TFazQB:6; se{s}

G-MTCoMINV
() I' Fmin A= B:slopj, e, z). I > A-3[B, Al:s » Zicgy0pi(6s).

I Fmin 2Q@A:0 T brip €QA:0 T b [> A
F'—minx::e@A.IDA

IiFmin i > Ay Do bin I > As
[Tl bmin Iy + 1o > A1 7 Ay

(G-MTASSIGN)

(G-MTSuM)

't Fmin €@A:bool T'g Fmin e€@A:bool T'y Fin I1 > A1 Ta brin Io > Ag

-MTIr
@) [y 7 Ta Fmin if €QA then I else Io > Aj 7 Ay
I'iFmin i> Ay Do bpin I > As [bmin I > A, 51552[A, Bl:a
-MTPa -MTRE)
@ YTV Ll Arel; (G-MIRES) T ol oA - 515ai L
(G-MTRES,) L min L2 & 1581 (G-MTREs,) L mn >4 - il

T }_min (VS)I >A - §189: L T }_min I>A

Vi.5; € ¢’ tfresh for appropriate ¢’ s.t. ¢ D ¢

(G-MTVAR) X4t Fmin XA U,L Si [Az, BJ it

XA tbmn I>A

(G-MTREC) T Fin XA, I 1> solve(t,A)

Vi.5; € /)’ for appropriate ¢’ s.t. ¢’ D
1] Fmin 0> Uz §1[Al, BT] : end

(G-MTZERO)

Note. Definition of v is given in the proof of Proposition 3.21.

Fig. 12. Minimal typing rules for global calculus.

used, for which we observe that a1 2 € B8 implies o1 v a2 € 8. This implies that the
cases for these three rules are immediate. The remaining rules are also direct from
the shape of each pair of the corresponding rules. O

A.4. Proof of Theorem 3.24 (Subject Reduction)

(1) (Subject Congruence) IfT" - I>A and I = I’ then T + I't> A (up to alpha-renaming).

(2) (Subject Reduction, 1) Assume ' - o. ThenT" - I > A and (o0, 1I) ~ (¢/,I') imply
F'to'andT + I > A’ for some A'.

(3) (Subject Reduction, 2) Assume I' - o. Then ' + I and (o, I) ~ (o', I') imply T - ¢’
and "+ T,

PRrROOF.

(1) We will prove this by induction on the structural congruence rules.
— The proof is trivial for all cases that define | and + to be commutative monoids
Honda et al. [1998].

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:49

—Case (vs)I | I' = (vs)(I | I') for s & fsc(I’). Suppose that I' - (vs)I | I' > A. By
(G-TPAR), we have that A = A; e Ag suchthat ' - (vs)I > Ay and T = I' > As.
The judgment I" - (vs)I > A can be derived either by (G-TRES;), (G-TRES3) or
(G-TRES3). We only analyse the case corresponding to (G-TRES;) as the other
two are very similar. If we apply rule (G-TRES;) then there exists A’ such that
A=A 58 :LandT' - I > A’ - §s5[A, B] : «. We now have three subcases:
(a) 81882 Nfsc(Ag) =@. By (G-TPAR), T’ =1 | I' > A’ - 185%[A, Bl : @ e Ay and,

by (G-TRES1), T F (ws)(I | I') > A;

(b) #ist; € fsc(Ag) for some 7, % different from 51, 5. Then, there exists A}
such that Ay = A} - {ish[C, D] : B (or Ay = A} -Tisly :1). As s & fsc(I'),
applying strengtheningto ' = I' > Ag, we get I' = I' > Al - $%[C, D] : B (I' +
I'> A, -Htp :1). Now, by (G-TPAR), we have that ' =1 | I'> A’ - 31s5;[A, B] :
oo Ay hh[C,D]: (T HI|TI'>A"-555[A, Bl : a @ A}-tilp : 1) noting that
e must be well-defined because %% cannot occur in A otherwise A = Aje Ay
would not be defined as it should also contain s (cf. Definition 3.11). Finally,
by (G-TRES1), weget ' = (ws)(I | I') > A’ - 5:15:[A, B] : o« @ A, -HE[C, D] : B
(FE@)T | I > A - 5:15[A, Bl :a o A} -t :1) and by Proposition 3.15,
weakening, I' = (vs)(I | I') > A;

(c) 31589 € fsc(Ag). This case is not possible because it would make A = A e Ay
undefined (cf. Definition 3.11).

Similarly, we can prove that T' = (vs)({ | I') > A implies ' - (vs)I | I' > A.

(2) In order to prove this, we will prove a stronger result, that is, ' -~ I > A and
(o,I) ~ (o', ') imply ' + I > A’ with fsc(A) C fsc(A’) and one of the following
statements is true:

— A=A

—A=A1-3[A,B]l:aand A’ = A -3[A, B] : o' for a \ '.

With o \ o’ we refer to the following reduction on types:

s> Z;0p;(0). a; N\ o s € X;0p;(6). o \(o
o1\ o o N\ o alut. a/t] N\ o
ar o N\ of |ag ar oz N\ o1 |ag pt. o N o

The proof proceeds by induction on the depth of the derivation of (o, I) ~ (¢’, I').

Basic cases.

— Case (CoOMM). By hypothesis, we have (6, A — B : s{op, e, x). I) ~ (¢/,I) and
' - A— B:s{op, e, x). I > A. Now, the only applicable rules are (G-TCOMM)
and (G-TCOMMINV). The cases are similar, so we will inspect only the first one.
We then have that A = A;-3[A, B] : Zjeys €4opj(6)). ajand T' - I>A1-3[A, B] : o
with I' o’.

— Case (INIT). We have (o, A — B : ch(v3). I) ~ (o, (v3)];). By applying (G-TINIT),
we have that I'’, ch@B : B)a W A — B : ch(v3).I> A forT =T, ch@B : 3«
and IV, ch@B : 8o+ I> A -5[B, A] : «. Now, by applying rule (G-TRES;) once
and (G-TRESg) repeatedly, we have I'/, ch@B : () - (v8)I > A - € : 1 and by rule
(G-TRES3), we can get IV, ch@B : 3)a - (v3)I > A.

— Case (REC). We have (o, uX.I) ~ (o, I[uX. I/X]) and ' - uX. I> A. The
only applicable rule is (G-TREC), which implies I' - X : A ~ I : A. But, by
Lemma 3.23, we have that I' - I'[uX. I/ X]1 > A.

—Case (IFTT). We have that (o,ife@A thenI;elsel;) ~ (0,1I1) and T' +
if e@A then I; else I, > A. Applying rule (G-TIF) we have I' - I; > A.

— Case (IFFF). Similar to the previous case.

— Case (SUM). Similar to the previous case.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:50

M. Carbone et al.

— Case (ASSIGN). We have that (o, x@A :=e. I) ~ (¢/,]) and ' - x@A :=e. I > A.
Now, applying the rule (G-TASSIGN)weget '~ 1> A and T o',

Inductive cases.

— Case (PAR). From (o, I | I3) ~ (o, I | I2), we get (o, I1) ~ (o', I}). Moreover,
there exist A; and As such that A = Aje Ay and I + I; | I > A, and such
that, applying rule (G-TPAR), ' + I; > Ay and " + Is > Ag. Now, by induction
hypothesis, it follows that there exists A} such that ' - I} > A} and T - o',

If Ay = A then the proof is trivial. Instead, if A; = A” - 3[A, B]

coand A} =

A”-3[A, B] : o' with @ \ o then, noting that \ preserves linearity (it introduces
no fresh names), A} e As is well-defined. Therefore, if 3[A, B] : B € A; (the other
case is trivial) then 3[A, B] : o | B € Ao Ay and3[A, B] : &' | B € A} eAy. Finally,
by definition of N\, we have that A \(A} e As.

— Case (STRUCT). It follows from point (1) of this theorem.

— Case (RES). In this case we have

(0,)~ (o', I')

(o, W3)I) ~ (o’, (W3)I).

There are three possible cases for typing restriction, but we only analyze rule

(G-TRES1) as the other cases are similar. We have I' - (vs)I > A = A4
. §1S§2 [A , B]

whenever I' - I > Aq

. 515'2 L
: a. Now, as (o, I) ~ (¢/, I'), by induction

hypothesis, we have that I - I’ > A” and three possible cases:

(a)

A" = A1-3185[A, B] : o with a \(«’. If we now apply again rule (G-TRES;),

we get that ' = (vs)I' > A1, 5182 : L.

(b)

A1 =Ag-F[C,D]:o' and A" = Ay -§[C, D] : " - 51552[A, B] : « with o’ \("

Now, applying again rule (G-TRES;), we get that I' = (vs)I' > Ag - §[C, D] :

o - .§1.§2 L.
(c)
(3) It follows as a corollary of point (2).

A" = A7 -318%[A, B] : « and we trivially get I' = (vs)I' > Aq - §182 : L.

O

B. AUXILIARY DEFINITIONS AND PROOFS OF SECTION 4
B.1. Free Session Channels, Free Term Variables and Service Channels
The set of free session channels, denoted by fsc, is defined as follows.

Term

fsc

1ch(3). P, ch(v3). P

s> Zop, (). P;

s<ople). P

x:=e.P,uX.P

if e then P, else Py, P1 ® Py, P1 | Py
(vs)P

X,0

A[P],
N1 | Ny
(vs)N

€

fsc(P)\s

{s} U (U;fsc(P))
{s} Ufsc(P)
fsc(P)

fsc(Py) U fsc(Ps)
fsc(P)\{s}

0

fsc(P)

fsc(V1) U fsc(Vy)
fsc(IVN)\({s}

7

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:51

The set of free term variables, denoted by fv, is defined as follows.

Term ‘ fv

1ch(3). P, ch(v3). P fv(P)
s<ople). P,x:=e. P fv(P)

(vs)P fv(P)

s> Zop,(y). P; U, fv(Py)

if e then Py else Py, Py ® Py, P1 | Ps | fv(P7) U fv(Ps)
0 {}

X (X}

uX.P fv(P)\{X}
AlP], fv(P)

Ni| N fv(N1) U fv(Ng)
(vs)N fv(N)

€ {}

Finally, we define the set of service channels channels.

Term ‘ channels

1ch(3). P, ch(v3). P {ch} U channels(P)

s<ople). P,x:=e. P, (ws)P, uX. P channels(P)

s> %;0p;(y;). P;, if e then Py else Py, P1 @ Py, P1 | P2 | |J;channels(P;)

0, X {}

Al P],, (vs)N channels(V)

N1 | Ny channels(N7) U channels(Ny)
€ {}

B.2. Proof of Proposition 4.14 (Existence of Minimal Typing)

Let 'y = M > Ap be the minimal typing of M. Then 'y and A are algorithmically
calculable from M.

PROOF. Similarly to the global case, we provide a minimum typing system for con-
structing the minimal type. The rules, defining -, (for processes) and F* (for net-
works), are reported in Figures 13 and 14. 3

We briefly comment the various rules. In (E-MTINITIN), the expression a[end/t]
denotes the result of substituting end for each (free, by bound name convention) occur-
rence of type variables from t. In (E-MTPAR), < extends =< to service environments
and is such that an output type o and an input type 8 can be coherent in the following
way:

o< p — a=<pB

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

M. Carbone et al.

8:52
Iy P o s64:a ‘iexhaust type v.ariables in o
ch ¢ dom(T") client(I")

E-MTINITIN =
() I',ch:(5)alend/t]QA % 'ch(3). P > ()

* @A -
(E-MTINITOUT1) —— F~ Fa P> A 37@4; B
T, ch:(3)(B)QB % ch(vs).P > A

“h-(3 * LA -
(E-MTINITOUT2) F;Ch;(s)a@B AP A “i@A 8
T, ch:(8)(aV B)QB F* ch(vs).P > A

se€§ TIhuax;:0; 'y P> A-5QA: o foreach j eI

E-MTBRANCH
() I F5 s Xicropi(xi). P> A-3QA s » Xicrop;(6;). o

The:0; TDF,PbA-35QA:0; je{j}
E-MTSEL A !
() I' % 5<opi(e). P> A-3QA: 5 4 S;cg;y0p;(6:)

I'tqz:0 T'He:0 T F5 P> A
E-MTASSIGN 4
() 'y zu=ePp> A

Fl}_ : bool Fl P Az ":1,2
(E-MTIF) € D00 Al A)
Fl vV FQ F’A if e then P else Q > Al V AQ

L; 4 Poo A (i=1,2)
E-MTSUM LI Sl : ’
()Fl\/rg }7:1 Pl@PQDAl\/AQ

Fl F;PDAl FQFZQDAQ F1$F2 A1$A2

E-MTPAR
() Fl@F2F2P|QI>A1@AQ

T Hy Po A §siy: L THyPoA-e:l
E-MTRES1 A E-MTRES2 A
()FFQ(VS)P>A~§1§2:J_ () I'H, Po A

¢ = {8} v = {8}
(E MTVAR) X:t FZ X > U,§7 it (E MTINACT) (/) F;‘ 0> U1§7
IX:tH, PoA
(E-MTREC) I' B4 puX.P > solve(t,A)

:end

Fig. 13. Minimal typing rules for end-point calculus: Processes.

(note this means « has more branches than g at each input point). Similarly for the
service typing. Composition @ at service typing always preserves the input side of the

typing, that is, assuming a < 8, we have

ch@A : 3)a ® ch@A : 3 & ch@A : ®a (o < B).

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:53

I'H, PoA TFHoQA

(E-MTPARTICIPANT) (E-MTINACTNW)

T A[P], > A T e

TH Mo A §si: L I Mo A-e:L
E-MTRESNW1 E-MTRESNW2
(R W)I‘H(us)]\JDA~§1§2:L (RESNW2) —F 1+ 7rv a

F,L > Nl‘ > Al‘ Fl <>F2 Al <>A2

E-MTPA
(RNW) Fl@FQ = N1|NQDA1@A2

Fig. 14. Minimal typing rules for end-point calculus: Networks.

In (E-MTREC), as we discussed for the global case, the expression solve(t, A) denotes
the result of calculating the proper recursive type (or appropriate substitution), which
follows Dezani-Ciancaglini et al. [2006]. The expression returns, for each component
5@A : «; of A, either §@A : ut.o; when t does exist in «; or, if not, 5;@A : «;. We can
prove by induction on the typing rules that the given system implies minimal typing.
In particular, we can compare each rule with the corresponding one in Figure 7 and
Figure 8. O

C. AUXILIARY DEFINITIONS AND PROOFS FOR CONNECTEDNESS
C.1. Proof of Theorem 5.5 (Subject Reduction for Connectednes s)

Let I be strongly connected and o be well-typed. Then (o, I) ~ (o', I') implies I’ is
strongly connected.

PROOF. By induction on the reduction rules.

— (INIT). In this case we have that (6, A — B : ch(v3). I') ~ (o, (v3)1") and by defi-
nition of strong connectedness we have that it is connected whenever I” is strongly
connected and top(I”) = B. Moreover, (v3)I” is strongly connected whenever I” is
strongly connected, which concludes this case.

— (CoMM). By applying the rule, we get (o, A — B : s(op, e, x). I) ~ (o', I) if and only
if o - e@A |} v. By definition of strong connectedness I is strongly connected.

— (ASSIGN). This rule states that (o, x@A :=e. I') ~ (¢, I'). By definition of strong
connectedness we have that I’ is strongly connected.

— (IFTRUE) and (IFFALSE). We have that (o, if e@A then I; else Iz) ~ (o, I) and by
definition of strong connectedness we have that I = I; is strongly connected.

— (PAR). We have (o, I1 | I3) ~ (¢’, I} | I3) inferred from (o, I1) ~ (¢’, I}). By definition
of strong connectedness I; and Iy are strongly connected. By induction hypothesis
I is strongly connected. Again by the definition of strong connectedness I' = I | I»
is strongly connected since it is top-level.

— (RES). Immediate from induction hypothesis and definition of strong connectedness,
as before.

—(REC). We have (o, uX.I) ~ I from (o, I[(uX.I)/X] ~ I'" By Lemma 5.3,
I[(uX.I)/ X] is strongly connected. By induction hypothesis so is I’, done.

— (STRUCT). By Lemma 5.4. O

C.2. Variants of Connectedness.

C.2.1. r-Strong Connectedness. The strong connectedness (or simply connectedness)
seen in Section 5.2 is robust with respect to asynchrony of messages, that is, even if
we assume all messages are sent asynchronously in end-point processes, the principle
still guarantees strict sequencing. Strong connectedness however is often too strict.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:54 M. Carbone et al.

For example, consider the following description:

Buyer— Seller : QuoteCh(v s).
Buyer— Seller : s{(RequestQuote, productName, x). 4)
Seller — Buyer : s(ReplyQuote, productPrice, y).0.

Here a Buyer requests a Seller to start a session through a service channel QuoteCh,
exchanging a fresh session channel s. Through s, the Buyer requests a quote with a
product name. The Seller then replies with the corresponding product price.’

Sending multiple consecutive messages from one party to another in a session is
often found in practice (in both business and security protocols). Further (4) may not
violate the essential idea of strong connectedness both logically and in implementa-
tion: first, it is still a reception of a message that acts as a trigger of an event in a
different participant. Second, we can always send such consecutive messages in one
go, so that it still works in the infrastructure that implements each message flow by
asynchronous messaging (note if we send these consecutive messages separately, we
need to guarantee the order of messages in some way, for which purpose we may use
a widely used transport level protocol such as TCP). We call a refinement of strong
connectedness that allows such consecutive interactions from the same sender to the
same receiver, strong connectedness relative to repetition, or r-strong connectedness. We
give its formal definition for reference.

Definition C.1. We say I starts from an action from A to B when [is prefixed with
a session initiation from A to B or a communication from A to B.

Definition C.2 (r-strong connectedness). The set of r-strong connected interactions
are inductively generated as follows.

(1) A— B :ch(v3). I is r-strongly connected when I’ is r-strongly connected and either
top(I’) = {B} or I’ starts from an action from A to B.

(2) A — B : s{op, e, x). I is r-strongly connected when I is r-strongly connected and
either top(l;) = {B} or I is prefixed by an action from A to B.

For other terms we use the same clauses as in Definition 5.2, replacing “strong con-
nectedness” with “r-strong connectedness.”

One may note all relative strong connected interactions can be encoded into strong
connected interactions. For example, (5) can be translated into:

Buyer— Seller : QuoteCh(v s).

Seller — Buyer : s(Ack).

Buyer— Seller : s(RequestQuote, productName, x).
Seller— Buyer : s(ReplyQuote, productPrice, y).0.

(5)

Thus we only have to add one ack between two consecutive actions in the same direc-
tions. For this reason, in all technical developments that depend on strong connect-
edness, we can equally use r-strong connectedness without any change in essential
arguments. In particular, the same soundness and completeness results for the end-
point projection hold.

5In practice, one may also describe the initial “session initiation” action and the first RequestQuote action
as one action, as in WS-CDL and consider (4) as a representation of this idiom in a formal setting.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:55

C.2.2. Weak Connectedness. We can further loosen relative strong connectedness. For
one thing, one may consider the following description is a natural one.

Broker — Seller : SellerCh(v s).

Broker — Buyer : BuyerCh(v (', s)).

Broker — Seller : s(RequestQuote, productName, x). (6)
Broker — Buyer : s'(RequestQuote, productName, y).

Seller — Broker : s{(ReplyQuote, productPrice, z)......

Here Broker does four consecutive actions that are targeted to two different partici-
pants. Further this global description specifies, in the fifth line, that the Seller replies
to the Broker even though the immediately preceding action goes to the Buyer. How-
ever, it is natural and easy to consider that Seller can send its message after the third
line, and this is received by Broker in the fifth line. The description still obeys a lo-
cality principle, which is directly realizable in synchronous communication. It is also
easy to realize this idea in asynchronous communication as far as message sending
order for each target is preserved (if message order is not preserved even for the same
participant, we may still be able to group messages and send them again in one go up
to a permutation, even though this becomes complicated if there is a branching, which
is somewhat similar to permutation of instructions in pipelining in modern CPUs).

This principle, which we call weak connectedness, can be formalized by accumu-
lating potential initiating participants one by one. For example, in the first line, it
may well be the case that Broker is the only potential initiating participant. After
the first line, Seller joins. After the second line, Buyer further joins. So in the fifth
line, Seller can indeed invoke an interaction. Weakly connected interactions again al-
low the parallel technical development, even though operational correspondence needs
adjustment.

This relaxed variant of connectedness has one issue in that sequencing in a global
action may show false dependency when projected onto local behavior. This means,
among others, weakly connected but not r-strong connected descriptions are in general
not well-threaded. In spite this observation, we strongly believe this relaxed version
of connectedness will have a basic role as a structuring principle of global descriptions,
on which we are intending to explore elsewhere.

D. AUXILIARY DEFINITIONS AND PROOFS FOR WELL-THREADEDNESS
D.1. Proof of Theorem 5.12 (Typing Soundness for Well-Threadedness)
A connected annotated interaction £ is well-threaded if ® - £ for some ®.

PROOF. Henceforth, (IH) stands for induction hypothesis.

We prove the stronger result, where we say a thread in A is complete if it occurs as
a passive thread in session initialization. It is incomplete if not.

Now, if ® + A then (1) ® is well-formed; (2) A is consistent and each incomplete
thread 7 in A uses siff 7 : sis in ©; and (3) for each complete thread, say 7, © contains
T:0.

For (WT-INIT), (1) and (2) are direct from (IH). (3) is by (IH) and the shape of
the rule, noting 7o got completed. For (WT-CoMM), (1) and (3) are direct from (IH).
(2) is ensured by (IH) and the condition in the premise. For each of (WT-ASSIGN),
(WT-IFTHENELSE), (WT-SuM), (WT-PAR), (WT-EXT-PAR) and (WT-EXT-RES), all of
(1-3) are direct from (IH) and, for (CC) (see Definition 5.8) of (2), by the correspond-
ing condition in the premise. Finally (WT-VAR) and (WT-ZERO) are obvious. For
(WT-REC), (1) is direct, (2) is by (IH) with (CC) being obvious, and (3) is again by (IH).OO

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:56 M. Carbone et al.
O,72:(B,S)F* A top°(A) =10 SC{s}
com(ry:(A,{5}), ©) = 11:(A,5),00 (11 fresh)
O0o,71:(4,5'\{8}), 72:(B,0) F* A"t — B™ : ch(v 5). (Ao)

0.7 (B,S)F* A top®(A) =
com(7y : (A {s}),0) = 11 :(A,5),0'c (7 fresh)

(T-MINIT)

(T'MCOMM) (A S) . (B S) O'g* AT — BT2 - S<Op7 e I’> (ACT)
OF A top (A) =
(T-MASSIGN) Yy Ca— A
(M) O A top°(A) =7 _com(©1, 8y) = (6, U6a)o

(01 UBOy)o b* if eQAT then Ao else Ayo
T (A, 57), @7 F* .A, tOpo(Ai) =T dom(@)l) n dom(@g) = @
com(7: (A, S1US), 0, UBy) =7:(A,5), (0, U)o

7:(A,8), (01 UB2)0 F* (A1 +7 Ag)o
T (A, SZ), @7 * AL tOpo(AZ‘) =T dom(@l) N dom(®2) = @
com(7: (A,S1USs),0,UBy) =7:(A,5),(01UBs)c

T: (A,S/), (@1 U @2)0’ * (.Al |T ./42)0'
@,j * 57 dom(@l) N dom(®2) = @
O, Uy F* & |52

(T-MSUM)

(T-MPAR)

(T-MPARE)

OF &

(T-MRESE) o7

(T-MZERO) W

OF* A top®(A) =17
O XA A

(T-MVAR) (T-MREC)

T:(A0) H XA

Fig. 15. Typing rules for inferring minimal consistent annotations.

D.2. Proof of Proposition 5.15 (Existence of Minimal Consistent Annotation)

Let I be strongly connected. Then, I has a minimal consistent annotation if and only
if I is well-threaded.

PROOF. We will define the typing system for inferring minimal consistent annota-
tions. We use annotated inaction for convenience, this time with a participant name
too, writing 04. The sequent has the shape ® - A where the typing © is a finite
sequence of assignments each of the form 7 : (A, S) where A is a participant and Sis a
set of session names. We demand ©® to be well-formed in the following sense.

(1) © induces a finite map from threads to such pairs, in the obvious sense. In this
case we write, for instance, ©(r) = (A, S) when the function induced by ® maps A
to S.

(2) For each 7, if ©(r) = (A, S) and s € S, then there is at most one 7/ # 7 such that
O(t')=(A’,S) and s € S. Moreover in this case A # A’.

The typing rules, given in Figure 15, automatically ensure the well-formedness prop-
erty. These rules refine the rules in Figure 10 and inductively solve simple equational
constraints. These constraints are distilled in the operator com(©®, ©3) used in these
rules. This operator is defined as follows.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:57

Definition D.1 (Collapsing Operator). Given well-formed ©®; and ®y, a partial
operator com(®1, ©2) (which, when defined, returns another well-formed typing) is
given inductively as follows.

—com(@, ®)is always defined with the value ©.
—com(t : (A, S), ©); we calculate a substitution (a finite map from thread labels to
its subset) o and a finite set of session channels T as follows.

Step 0. First we set o to be empty (acting as the identity) and T to be S.

Step 1. Find all 7} : (A, S)) in ®c such that TN S # ?.

Step 2. Given the set {7; : (A, S})} obtained in Step I, set new o as the union of the
original ¢ and the map [J; 7/ — 7; and new T as the union of T' and | J; Sj; If the
results are the same as the original values, we are done. If not, we go back to
Step 1 with the new o and T'.

We can check that this procedure always terminates. If ®¢ in the resulting o is
well-formed, then com(z : (A, S), ©) is defined and has the value v : (A, T), (®o)/t
(where (®0c)/t takes off the 7-component from ®). If not, it is undefined.

—com(®1, 1 : (A, S), Og) is defined with value O3 if and only if com(z : (A, S), ®9) is
defined with value ®; and com(©, ©)) is defined with value ©3.

If com(®1, ©3) is defined and has the value ®3, we write com(®1, ©3) = 3.

Equivalently, in Step 2, com(z : (A, S), ©) finds the minimum {7;} from dom(®) such
that each 7; is assigned (A, T;) where T; intersects nontrivially either with S or with
another T; in ©(t;) with 7; € {r;}; and those outside of {7;} do not intersect with S.

Thus com(®1, ©2) combines ®; and ©g so that if the same participant uses some
common session channel in two assignments then they are collapsed into one assign-
ment by taking the union. This notion of commonness is taken hereditarily so that
all threads of a certain participant that are assigned transitively common session
channels are eventually collapsed. We are using the following notation in the rules.

Let com(®1, ©2) = ©3. Since O3 is the result of collapsing assignments in ©1 2, we
write this result as (©; U®g)o by which we mean the result of collapsing thread labels
and assigning to the resulting thread labels the unions of the corresponding session
channel sets.

Given a strongly connected (hence well-typed) I, which we assume to conform to
the standard bound name convention, we can use the rules in Figure 15 to generate
A, which annotates I by (1) first labelling each inaction 0 and term variable X4
with distinct thread labels (all occurrences of the same term variable are given the
same thread label) and (2) inductively inferring the thread labels of a term from its
subterm(s) following the rules in Figure 15, assuming it is defined. Except for choosing
fresh thread labels in the base cases as well as in (T-MINIT) and (T-MCOMM), each
induction automatically generates a unique annotated term if ever, so that the
resulting term (if any) is also unique.

We can now prove the two directions of the proposition. For (=), we need to show
by induction on A that typability in Figure 15 means typability in Figure 10 with the
corresponding typings modulo vacuous lacking paired type assignments needed for
the well-formedness for the original typing system. And for (<) we can just check
that satisfaction of the conditions for the consistency means typability in Figure 15. O

E. PROOFS FOR COHERENCE
E.1. Proofs of Lemma 5.22 (Substitution Lemma for Coherence)
If uX .1 is coherent then so is I[(uX.I)/ X].

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:58 M. Carbone et al.

PROOF. We consider a consistent annotation of X .I, which we write
A pnXA A
We then consider
AT E AL XA,

where, to be exact, each substituting A’ should be given, for its passive initial thread, a
fresh thread number, though we leave this point implicit since this does not affect the
following argument. Consider a thread z; in 7. Then either (1) it starts from a positive
position in A or (2) from a passive position in communication. If TP(A’, 7;) = uX.P then
by induction we can check

TP(A”, ;) = PluX.P/X].

including its definedness. In both (1) and (2), this thread is not to be merged with any
other threads, hence done. On the other hand, for ¢’ that is not in 7 but occurs in I,
this should be a passive complete thread inside I. Note the annotation 7 : # in uX4..A
makes the thread projection of A” to t” turns this substituted term to 0, just as each
X2 is done so in the thread projection of A’ to ”. Thus, letting TP(A’, ') =!ch(3).P, we
obtain:

TP(A”,t") = Ich(®.P;

that is the t’-projection of A" and the t-projection of A” coincide. Note the same reason-
ing holds for any other thread in A’ that should be merged with t’, hence mergeability
does not change, as required. O

E.2. Proofs of Proposition 5.23 (Subject Congruence for Coherence)

(1) uis partially symmetric and associative, and has the identity 0, all up to =, that is,
P L @ is defined iff @ U P is defined and when they are so, we have PLU @ = Q U P;
(P U @)U R is defined iff P u (@ u R) is defined and, when they are so, we have
(PU®)uUR=Pu(QuR); and for each P we have P10 = P.

(2) Suppose I is coherent. Let A be its consistent annotation and 7 be its thread. Then
A = A implies TP(A, t) = TP(A/, 7).

(3) Suppose I is coherent. Then I = I’ implies I’ is coherent.

PRrROOF. (1) is immediate from the definition, noting, by the first rule in Definition
5.17 as well as Definition 5.16, if (P u @) U R is defined then they do not have any
conflicting branch among the three, which is the same thing as P u (@ u R) being
defined. For (2), we use rule induction on the generation of =. As one typical case,
suppose A = A’ from the associativity of |, that is,

(A1]A2)[A3 = A1l(Az|As3).
If 7 is the top thread, then we observe:
(TP(A1, T)|TP(Ag, ©)|TP(As, 1) = TP(A1, 1)|(TP(Ag, 7)|TP(As, 7))

hence done. If r is not a top thread, then | is interpreted as U, which is associative
by (the annotated analogue of) (1), hence done. For (3), by (2) we only have to con-
sider mergeability of threads. For this purpose we observe that, in the definition of
mergeability P X @ in Definition 5.16, we can first apply = to P and @ using the last
rule in Definition 5.16, and then validate their mergeability via the rules except that
last one. Thus if I = I’ and the thread projection of I for each thread is defined, then
that of I’ is defined: similarly, if we have, for instance, threads(Z, ch) = {r1, 12} then
TP, t1) X TP, 7o) iff TP(I', 71) X TP(I’, 12). O

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:59

E.3. Proofs of Theorem 5.24 (Subject Reduction for Coherence)
If Ais coherent and (o, A) ~ (o7, A'), then A’ is also coherent.

PROOF. We check how the collection of threads together with the associated thread
projections is transformed from A to A’. Let this collection be 7 and <7/, respectively.
By abuse of designation we say that these sets are coherent. We then show the
following claim by rule induction on reduction rules.

If o7 is coherent, then &/’ is also coherent. Moreover &/’ is either the result of
truncating some of threads from 7, as well as adding zero or more collections of the
fresh complete threads, each collection being multiple copies of a complete thread
existing in «7.

So far, the copies can be created due to recursion. Assume .« from A is coherent. For
(G-INIT), we first take off, from .7, the head of one complete thread at ch (so that it
is not a target of merging anymore) and truncates one active thread, otherwise using
the same threads as .«7. The originally passive thread, say 1o, is now an active thread,
whereas the originally active thread, say 7;, is now a passive thread, both of which
are put in &’. If 17 demands intrathread merging through its own thread projection,
then so does it originally in &/. Otherwise merging in &/’ remains the same as <7,
hence done. For (G-COM), we truncate two noncomplete threads, one active and the
other passive, from «/. Again the originally active thread, say 1, is now passive,
whereas the originally passive thread, say 12, is now active. There is no change in
interthread merging, so we again know .7’ is coherent. (G-ASSIGN) truncates a single
active thread in </, while both (G-IFT/G-IFF) and (G-SUM) simply cut off some of
the threads from .« to make «’. For (G-PAR), assume A = A;|As. Accordingly
we can set &/ = & U .o%h where &) and % respectively come from A4; and Aj.
Now assume A; reduces to A}, with the new threads «7/. By assumption, we know .7/
may truncate some threads and may add copies of existing threads with fresh thread
numbers. Since neither affect mergeability we are done (note intrathread mergeability
remains the same by the definition of the projection of a top-level parallel composition).
(G-RES) does not change threads (i.e., & = &’). (G-REC) is by (IH) and by Lemma 5.22,
possibly adding collections of fresh copies of complete threads. Finally (G-STRUCT) is
immediate from Proposition 5.23. O

F. AUXILIARY DEFINITIONS AND PROOFS FOR THE END-POINT PROJECTION
F.1. Proofs of Proposition 5.27 (Invariance under Annotations)

Given a coherent interaction I and a state o suchthatI' - I > Jand ' - o, let A
and Ay be consistent annotations of I. Then, EPP(A;, o) = EPP(A;, o).

PROOF. Let I be coherent and, without loss of generality, I be restriction free. Let
A be a minimal consistent annotation of I (whose existence is guaranteed by Proposi-
tion 5.15. Let A’ be a possibly different consistent annotation of I. By the definition of
minimality (cf. Definition 5.14) and by construction, there is a surjective map o from
the threads in A to A’. Let t be a thread in A’ and let 4, .., T, with n > 2 be threads
in A such that o(1;) = 7. Note that t cannot be a complete thread (from Appendix D.1,
a thread is complete if it occurs as a passive thread in session initialization while it is
incomplete if not): if that was the case, t in I should start from a unique service chan-
nel, hence cannot be given multiple thread labels. Hence 7 is incomplete. Because [
has no free session, each 7; is an active thread starting from a session initialization.
Now the initial action of such a thread cannot be under a different prefix since if so
that prefix (its passive part) should have the same thread label. Hence each 7; is the

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:60 M. Carbone et al.

ocke@QAlv o =o[zQA— v

(G-INIT) (G-ASSIGN)

(0, A= B :ch(vs).I) AEich() (o, (vS)I) (0, 2QA :=e. I) 5 (0!, 1)
(G-Com) ok e@QAlv o =0[zQB —] G-som) —
(0, A= B :s(op, e, z). I) A= Brop(v) (o7, I) (0, h+15) 5 (0, Ih)
(G-IFT) o b e@A | tt (G-REC) (& IpX.I/X]) 5 (o', I')
(o, if e@A then I else I5) > (0,) (0, uX.1) % (o7, T
(G-IFF) ob Ay ff (G-Res) (@D L@, 1)
(o, if QA then I, else I5) & (o, I2) DL (o (LA
1 2 s 12 (o, (w3)I) ~ (o', (v5)I')
— Lo — Los 1
(G-STRUCT) I=l" (0 1) g @,) I'=1I (G-PAR) (o, Ih) [(o',)
(o, I") ~> (o', I') (0,11 | L) ~ (o', I} | I)

Fig. 16. Annotated reduction relation for the global calculus.

initial active thread of a prime interaction (an interaction is prime if it cannot be de-
composed into a nontrivial top-level parallel composition). That is each ; is in A} such
that A" = (IT;4)| A”. Noting A has precisely the same syntactic structure, we infer:

TP, 1) € TP, 1) = My TP(A, 1)

that is, the projection of A’ onto 7 and the projections of A onto {z;} coincide. O

F.2. Annotated Reduction (1) Global Calculus

The annotated reduction relation for the global calculus L is given in Figure 16. Rules
are identical to the ones reported in Figure 2 apart from the label ¢ annotating the re-
lation ~ . Labels are used for observing actions performed in a global descriptions. In
particular, we observe session initialization and communication. All other operations,
for instance, if-then-else or assignment, are just observed as 7 (not to be confused with
thread names). Note that, unlike the standard w-calculus semantics, restriction is not
hiding session channels from labels in our strict reduction (cf. Section 5.6.2).

F.3. Annotated Reduction (2) Endpoint Calculus

The annotated reduction relation for the endpoint calculus is given in Figure 17. Sim-
ilarly to the global case, we provide a strict annotated reduction for the end-point
calculus. Labels are identical to the ones in Figure 16.

F.4. Strict Reduction

In a strict reduction, we only a-convert names when they are under a prefix. In partic-
ular, when a term has the form (v8)P, in reduction, § is never renamed. For example,
the following is not strict.

(ws)(AL s> Z;0pi(x). Pi 1o | Bls<opjle). @1 Q" 1,)

>

)AL Pjls /sl 1oxjsu | Bl QIs'/s] 160),

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:61

(E-INIT)
s; & fsc(P') U fsc(Q')
Alteh(s). PP/, | BLehws). Q| @, 72" wsyaltens). P1 PP, 1 BIQIQ,)

(E-ComMm)
okelwv

_ A— B:spop(v) , ,
A5 S0p,(2:). Pi| P'], | B[<opile). Q[Q' 1, " ALP | P, | BLQI Q)

(E-IFT) ghelu (E-Par) L M
A[if e then Py else P, | P'], > A[P, | P'], MI|N & M/|N
(E-IFF) okelff _ (E-Sum) i€ {1.2}
Alif ethen Py else Py | P'] ~ A[P> | P'], A[P, & P|R], ~ A[P;|R],
LN :
(E-REC)A[PluX.P/X]|Q], |]\[f N (E-ASSIGN) ok eTll v
AlpX.P|Ql, | N & N Alz:=e. P|P'], ~ A[P| P],
(E-Res) MM (E-strucnMEM M LN N'=N

()M 4 (vs)M’ M4 N

Fig. 17. Annotated reduction relation for the end-point calculus.

but the following is:

(vs)(A[s> Zjop;(x;). P; 1, | B[s <opje). @1 Q" 1-)

>

ws)(Al Pj]a[xj»—w] | B[Q]a’)-

As noted in the main section, we can assume all reductions to be strict without loss of
generality because the only case when we do need alpha conversion of v-bound names
is when we generate a new v-hidden channel under a recursion.

F.5. Proof of Theorem 5.30: (1) Type Preservation
IfT" = A > A is the minimal typing of A, then ' = EPP(A, o) > L(A).

PROOF. The type preservation is proved in the following three steps:

(a) We introduce an inference system for a single thread of an annotated interaction,
written I'; %A > A; and relate it to the original minimal global typing; that is, we
show that ' Fmin I > A (where A is the annotation of I) if and only if I'; F5A > A;
for I' = Ul'; and A = UA; where {7;} exhausts the threads in A.

(b) We then relate this per-thread global typing with the minimal typing of thread
projections, establishing that I'; F%1 > A; if and only if T'; H*TP(I, 7;) > A for each
7;, where A’ (composition of A)) is the result of replacing each 3[A, B] : @ in A with
§: 1.

(¢) Finally we relate the minimal typing of mergeable processes with the minimal
typing of the result of merging them, by showing a general statement: L;I'; H*
Ui P; > L;A; with P; X P for each i, je I.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:62 M. Carbone et al.

We start our inquiry from the following observation, which relates the lub in the in-
clusion ordering (of the global typing) and the lub in the session subtyping (of the
endpoint typing).

Definition F.1 (Equi-Input Subtyping). We define the relation « T B over closed
types by setting « C B iff « R for a witnessing relation R satisfying the same rules as
in Definition 3.16 for € (see Figure 4, page 12) except for replacing (INC-IN) with the
following rule:

B = Tiegspop8).a; Vied o €a

EQ-IN
(EQ) ZiEJSFOPi(Qi)- a; € B

We call C equi-input subtyping.
PROPOSITION F.2 (EQUI-INPUT SUBTYPING).

(1) Cis a partial order on types modulo ~.

(2) « C B implies both a € B and o < B.

(3) If a1 and ag have an upper bound w.r.t. C, then their lub w.rt C, € and < exists and
all these three lubs coincide.

PRrROOF. (1) is standard and is essentially identical to the proof of Proposition 4.11.
(2) is by noting, for both € and <, that the only difference is in the input rule. For (3)
the existence of a lub given an upper bound is as in Propositions 3.19 and 4.11. For the
latter part, by (2) we know that an upper bound of ¢ 2 w.r.t. C is, their upper bound
w.r.t. € and <. Now take the lub w.r.t. C, say 8, which has the same input branches as
both a1 and ag and the join of their output branches. Take an upper bound of @; and
ag w.r.t. €, say . Then it also adds input branches, hence surely g8 € g’. Next take an
upper bound of @1 3 w.r.t. €, say 8”. Then it may take off some input branches of o; 2.
Hence g € B”, as required. O

As noted, to carry out Step (a), we use an additional typing System, which, given
an annotated global description and one of its threads, gives a minimal typing that is
specific to that thread. The sequent of this system is written as:

A A,

where A is an (extended) annotated interaction, 7 is one of its threads, I" is as given
for global session types and A is defined as

A = 0| A, S§Bl:a | A, §: L.

Here, 3[B] : a associates participant information to session types so that we can di-
rectly reconstruct global types from a set of these types.

The rules for the typing system are given in Figure 18, where we omit the obvi-
ous inverse communication rules. In (GT-MTZERO) and (GT-MTVAR), v is the set
of mutually disjoint vectors of session channels (as noted in Proposition 3.21, when
terms treated are subterms of a term without free session channels, then these group-
ings are uniquely determined). The typing is done by fixing (distinct) ¥ at each type
variable/inaction in A from which the typing starts.

In the rule names (GT-MTINIT-S1/2-A/P) and (GT-MTINIT-O), S stands for “self”
while O for “others”, a for active and p for passive, similarly for communication rules
(here “self” denotes the typing of the target thread when it is involved in interaction,
the latter otherwise). The treatment of recursion and recursive variables follow the
minimal typing system given in Figure 12.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:63

PF"A>A-3[A]:3 7=1 ch¢gdom(l') tvar(B) C {t}
I, ch@B : (5)(Blend/t]) F™ AT — B™ : ch(v5). A A

(GT-MTINIT-S1A)

I'F"A>A-3B]:8 7=m chgdom(l') tvar(B)C {t}
I, ch@B : (5)(Blend/t]) F™ A" — B™ : ch(v3). A> A

(GT-MTINIT-S1P)

[, ch@B: (3)aF"A>A-3[A]: 8 7=7 chgdom() tvar(B)C {t}
I, ch@B : (3)(a vy flend/t]) F™ A7 — B™ : ch(v3). A> A

(GT-MTINIT-S2A)

T, ch@B: (3)aF"A>A-3[B]:8 7=m chgdom(T) tvar(8)C {t}
I, ch@B : (3)(a vy Blend/t]) ™ AT — B™ : ch(v3). A> A

(GT-MTINIT-S2P)

" A A {s}nfsc(A) =0 7¢& {r,72}
'F" A —B™ :ch(v§). A> A

(GT-MTINIT-O)

F'F"A>A-5[A]:a; THe@QA:0; THzQB:0; sc{s} 7=mn
LEm A7 — B™ : s{(op), e, x). A>A-5[A]: s «op;(0;).

(GT-MTCOMM-SA)

F'F" A>A-3[Bl:a; T'Fe@QA:0; THzQB:0; se{s} 7=mn

(GT-MTComM-Sp) I'Fm A7 — B™ : s{(opj, e, z). A>A-3[B]:s®»op;(0;). a;

F'FTA>A ThHeQA:0; ThHa2QB:0; s¢&fsc(A) 7&{m,m}

(GT-MTComMM-0) 'k A — B™ : s(op;, €,). A>A

I'F2@QA:0 ThHeQA:0 TH A>A
TH 27 = c@QA. A> A

T A >A TobF Ay > Ay

FlvFQFTAl—&-T'AQDAlvAQ

(GT-MTASSIGN)

(GT-MTSUM)

T' e@A:bool Fl =7 ./41 > Al FQ [l AQ > AQ

T-MTIF
(G) INRvARY = if e™” @A then Aj else Ay > A4 \V4 Ao

INE ./41 > Al Iy F7 ./42 > AQ fSC(Al) n fSC(AQ) =0
Tyl Fm A |T/ Ay > Aq e Ay

(GT-MTPAR)

TFA> A - .§1S§2[A,B}ZO(" A A - §1889: L
T-MT 2
I (VS).AD A - §1,§QZJ_ (G RES) I'+7 (VS)AD A - §1§21J_

(GT-MTRES1)

FETA>A - e: L U = {5} tfresh
T A A (GT-MTVAR) i xas U, Sil4i, Bi] - t

(GT-MTRES3)
X4t A A
7 uXA. A solve(t, A)

W = {5}
D" 0> Uz 51[14“ Bi}end

(GT-MTREC)

(GT-MTZERO)

Fig. 18. Threaded minimal typing rules for global calculus.

In the following, when we write for instance, ' Fyn A > A, we assume that the
thread annotation in .4 conforms to the grouping of session names in A (cf. Proposition
A.1). The calculation L;A; is done in the obvious way, for instance, if we merge 5[B] : o
and 5[A] : 8 then we get 5[A, B] : @ U B.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:64 M. Carbone et al.

PROPOSITION F.3 (THREADED TYPING FOR INTERACTION). Let {t;} exhaust the
threads in A. Then, T Fmin A > A implies that there exist {I';} and {A;} such that
'=ully, A=uA;and T; FiA > A; for all i.

PROOF. Let I' bnyin A > A. First, by structural induction on A, we show that there
exist {I';} and {A;} such that I'; %A > A; for all i and, additionally, I'; € T" and A; € A.
This can be done by following the typing of A inductively in both Figures 12 and 18.
We discuss some of the cases.

— For initialization, there are two cases in the original minimal typing, while there
are four cases in the threaded typing. (GT-MTINIT-S1/2, A/P) correspond to
(G-MTINIT-1/2).

— (GT-MTINIT-1). Note that in this case, there are no subterms of A using service
channel ch. From the rule, we know:
(1) A=A"— B% :ch(v3). A"
(2) T =T, ch@B : (3)(B[end/t])
3) I''tmin A>A-3[B,A]: B
(4) ch & dom(T")
(5) tvar(p)ct
We wish to prove I'; FA > A, for any . We need to proceed by cases, on .
— 1 = 71. In this case, we can apply rule (GT-MTINIT-S1A) by using induction
hypothesis and these five points.
— 7 = 17. Similar to previous case, but applying (GT-MTINIT-S1P) instead.
— 11 # T # 79. It follows by induction hypothesis and by applying (GT-MTINIT-O)
noting that &€ includes the subset relation.
— (GT-MTINIT-2). Similar to the previous case.

— The case for communication is the same as the case of initialization. The cases for
assignment, restrictions and inaction are trivial since typings do not change in each
case. Finally the conditional, sum and parallel composition are immediate from
induction hypothesis and & being closed under L.

Next, we show that the types inferred simultaneously for each 7; in I'; F% A > A;
fully cover those inferred in ' Fnyn A > A, again by induction. This only mat-
ters in (GT-MTINIT-S1/2) and (GT-MTINIT-O), as well as (GT-MTCoM-S) and
(GT-MTCoM-0O), where the shape of typing differs. In each case, the nonthreaded in-
ference I' Fnin A > A is covered in one of the (GT-MTINIT-S1/2) and (GT-MTCoOM-S),
hence done.

These two results together show I' and A in I" b A > A coincide with the merging
of I'; and A; for each threaded inference I'; F5A4 > A;. O

Next we proceed to the step (b) for proving type preservation of EPP. Our purpose is
to relate each threaded typing of a global description and the minimal typing of the
corresponding thread projection, bridging the global typing and the endpoint typing.
For this purpose we use the following observation. As always, we consider typings
under a specific grouping of session channels (which is uniquely determined if a term
is a subterm of a complete term).

LEMMA F.4. Assume Py and Pj are not replicated processes and Py X Ps. Let T; H*
P> A; (i=1,2) and P1 U Py is typable, all under the same grouping of session names.
Then 'y ulg F*Py U Py > Aq U As.

PROOF. By induction on the generation rules of U in Definition 5.17 and its cor-
responding rule in Definition 5.16. The only nontrivial case is the merging of input
branch. Let P X @ such that P = s> X;cjop;(y;). P; and @ = Us > Z;cgop;(y;). ;. Then

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:65

their merge is defined as:

Sicank0p; (). (P;L Q) +
> | Ziearxop;(y). P; + ,
Yier\Jop;(yi). Q1

def
§1> Ticsop;(yi). PiUst> Tiexop,(y). @ = s

which corresponds to (M-IN) in Definition 5.16. Safely neglecting the invariant part
(which has no effect on the argument), we set:

(1) A1 =3:Z;s » opi(6)). a.
(2) Ao =5: st » Opj(Qj). ,BJ'.

By assumption P; X @; and, by induction hypothesis, P; u @; for i € I N J has the
type o; U ;. Hence we know P L @ has the type A; U As. In I'; and 'y, we may be
assuming interactions with services, which are treated similarly (using the rule for
session invocation in Definition 5.17). O

PROPOSITION F.5 (THREAD PROJECTION AND THREAD TYPING). Assume I is co-
herent and A is its consistent annotation. Then I'; F7A > A; implies T, H*TP(A, ;) > A
where T'; changes the polarity of service channel typings as needed and A’ is the result of
taking off information on participants from type assignmentsin A (e.g., §[B] : a becomes
§:).

PROOF. By induction on coherent A, we relate the result of typing I'; F% A > A; in
Figure 18, on the one hand, and the result of taking TP(A, 7;) and typing it by the
minimum typing using Lemma F.4.

— (GT-MTINIT-S1A). Consider the case when t = 7;. By assumption we have
A A-3[A]: B,
which, by induction hypothesis, implies:
I =*TP(A, 1) > A" -3 : B.
Hence, using (E-MTINITOUT1), we have:
I, ch@B : (3)(Blend/t]) F*ch> A™ — B™ : ch(vs). A> A,

as required. Similarly (GT-MTINIT-S1P) is reasoned using (E-MTINITIN).
— (GT-MTINIT-S2A). By assumption we have

I, ch@B: (o A> A-3[A]: B,
which entails, by induction hypothesis,
I, ch@B : (3o H* TP(A, 1) > A'-5: 8.
We now consider the typing for the thread projection of
A =A"— B” :ch(v3). A.
We first observe:

a and B has an upper bound w.r.t. C in Definition F.1.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:66 M. Carbone et al.

This is because, if not, when we put the session initialization A™ — B™ : ch(v3),
the thread 72 at ch and another passive thread at ch that contributed to ch@B :
(8)a in the preceding derivation (there is at least one by the existence of ch in the
base) cannot be merged, since for them to merge they should have exactly the same
outputs after each common sequence of actions that come out as inputs for its dual
interactions.

By this claim and by Proposition F.2 (3) we know « LI 8 = o V B, hence we have

I, ch@B : (3)(« U Blend/t]) - TP(A, 1) > A,

as required. (GT-MTINIT-S2P) is reasoned by the essentially identical argument.
— Cases (GT-MTINIT-O), (GT-MTCoMM-SA), (GT-MTCoMM-SP) as well as GT-
MTCoM-O follow directly by (IH). For example, in (GT-MTCoM-0), the thread
projection ignores the prefix, which is what Definition 5.18 does.
— (GT-MTSUM), by assumption we have

ME A >AT Tobt Ao > Ao,

where the summand, hence the top threads of A; 2, have the thread r’. We should
consider two cases, one when t’ = t (in which case the thread projection does & to
the thread projection of the summands) and ' # 7 (in which case the thread pro-
jection does). In the former case, the minimal endpoint typing has the service
typing I'; vV 'y and the session typing A; Vv Ag. First, for the former, since I'" has only
output service typings (and assignments to term variables that are trivially identi-
cal) the same reasoning as the Claim shows I'y v I'e = I'; LI T'e. For session typings,
consider the interacting (dual) behavior, which, since they are using the common
session channels, should have the same thread. Since they should be mergeable,
they should offer the same set of output branches at each common reachable point
in the course of interactions, hence, dually, the corresponding types in A; and Ag
have the same inputs at each such point. Hence again we have A v Ag = Aj L Ag,
hence by (IH) we are done. The case when 7’ # 7 is immediate from Lemma F.4 and
(IH).

— (GT-MTIF) is reasoned as (GT-MTSUM), rules (GT-MTPAR), (GT-MTRES1/2/3),
and (GT-MTREC) are immediate from (IH), and both (GT-MTVAR) and
(GT-MTZERO) are vacuous by identical shape of the corresponding typing rules. O

Finally we note the following.

PROPOSITION F.6 (TYPING FOR MERGED THREADS). Let A be coherent and as-
sume that, for some ch, we have {t;} = threads(A,ch). Then I'; =* TP(A, ;) > A; for
each 7; € {t;} implies | |;T; F*|_|; TP(A,) > |, As.

PROOF. Immediate from Lemma F.4 (note the order of merging does not matter by
Proposition 5.23 (commutativity and associativity of). O

We now prove Theorem 5.30 (1). Take the consistent annotation .4 and assume {z;} are
the threads of A (which we assume does not include free term variables for simplicity).
Since I' Fmin A > A, we have:

I; A A;

for each t; € {z;} for which, by Proposition F.3, we have (1) ;I’; = " and (2) L;A; = A. By
Proposition F.5, we also have, for each t; € {1;}:

Fi * TP(A, ‘L'i) > Ai.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:67

Now, suppose A contains {rj’.} as the threads for a server at ch and consider
T FY A A,
as well as
FJ' = TP(A, ‘CJ/) > AJ'.
By Proposition F.6, we have that

| o = L]TPA.) > | |a;
j j j

gives the replicated input at ch. Now, |_| ;Tjis the service typing at ch and zero or more
client typings, in addition to assignment to variables, as required.

F.6. Proof of Theorem 5.30: (2, 4) Soundness

We will show the proof for (2), to avoid the cluttering of the notation. The proof also
literally serves as that of (4).

THEOREM 5.30 (2). IfEPP(A, o) ~+ N then there exists A’ such that (o, A) ~ (¢/, A')
such that EPP(A’, 6’) < = N.

PRrROOF. For soundness, we have the following lemma.

LEMMA F.7. Assume Py X Py and let P% Py L Py. Then P; < P(i=1,2).
PROOF. Immediate by the construction, noting < is compatible. O

Let A be coherent and assume A has the threads 7 = {1;}. Let their thread projections

be P; def TP(A, 1;) for each 1; € T, which as a whole gives the indexed family of pro-

cesses, {P;}. If a P; (which is to be strict an index i together with the associated process
P;) is a replicated input then it needs to be merged with other replicated inputs at the
same service channel. If a P; is not a replicated input then it is never merged with
other threads. We can now form a partition (a quotient set) of thread projections W:

(1) W partitions the family {P;}: that is, if S;, Se € ¥ and S; # Sz then S; NSz = ¥; and
that | ¥ = {P,}.

(2) If Se ¥ and P;, P; € ¥ such thati # j, then P; and P; are (replicated processes with
the same service channel and hence are) to be merged in the endpoint projection.

Given ¥, the endpoint projection of A is given as the result of merging processes in
each S € U (let the result be Ps) and placing them in each participant, that is, with
P being the set of participants, and W(A) (for each A € P) being the subsets of ¥ to
belong to A:

EPP(A, 0) € (vB(MacpAllscwa)Pslo,). (7)

Note reduction is never affected by participants information as far as projected pro-
cesses go (since redexes are always interparticipants or involves only a single partici-
pant). Thus for legibility we neglect participant information from (7) and consider the
initial configuration:

EPP(A,0) €' (D) | Msew | | Pi o |. (8)
PiES

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:68 M. Carbone et al.

where o aggregates all local stores, assuming all local variables are distinct, without
loss of generality. Since we can easily regroup processes and state into participants,
and this grouping never affects dynamics, this does not lose generality.

We show soundness using the reduction rules adapted to the shape of (8). These
rules are based on (INIT), (COM), (ASSIGN), (IFTRUE), (IFFALSE), (SUM) and (REC),
directly closing them on = and reduction contexts. Calling these adapted rules with the
same names as the corresponding ones in pag. 16, we list these rules in the following
(note that, as noted before, we are assuming variables are globally distinct, so that
there is no need to local assignments). In the following, C[], denotes a reduction
context, that is, a context whose hole is not under any prefix (thus we can always set
C[P], = (v3)(P|R) for some R and 3).

P=C.['ch(3).Q | ch(v3).R] P =C,['ch(3).Q | v3)(Q|R)]
(P,o) ~ (P,o0)

(INIT)

= C.[s> Ziop,(x;). Q; |s<opjle). Rl P =C/Q;|R] orelV

p
(Com) (P.o) < (P.olx s V]

P=Cix:=eQ] P=ClQ] otelV
(P,o) ~ (P,olx— V)]

(ASSIGN)

= C,lifethen Py else P;] P =C,[P1] oteltt

P
(IFTRUE) P.o) - (P.o)

P=C.[Pi1®P] P =C,[Pi]
(P,o) ~ (P,0)

(Sum)

P=C/puX.Ql (CIQIuX.Q)/X]Il, o) ~ (P, o)
(REC) P.o) - (P.o) .

We omit (IFFALSE) (which follows (IFTRUE)) and the symmetric case of (SUM). We can
easily check these rules give the reduction relation when we incorporate participants.
In the following, we reason by induction on the height of derivation of these reduction
rules, neglecting those used for inferring = (the induction on reduction rules are only
nontrivial for recursion, since all other cases are the base cases). Also, we set:

A= (VZ)HOSiSHAls

where each A4; is prime, that is, is not itself a nontrivial parallel composition. For
simplicity we safely neglect (vZ) from now on (since the hiding does not affect reduction)
and consider only ITo<j<,.A;.

We start from (INIT). Then the redex is a pair, which is given by an input:

1ch®.Q € | | 1ch®.Q; =1ch®. | | @ ({1ch®.Q:) € W)
O<i<n O<i<n
and an output:
ch(v®R € {chWd)R} ({ch(v)R} € V).
Thus we can write down the reduction up to =:

(1ch(3).Q | ch(WHR | S, o) ~ (Ich(3).Q | WI(Q|R) | S, o). (9)

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:69

Note we are neglecting participants for legibility, as stipulated before.

Now ch(v3)R come from the thread t. Then t should be the active top-level thread
(since if not R cannot be an output, by well-threaded-ness: cf. (CC) of Definition 5.8).
Hence there is a complete interaction in 4, say Ay, which starts from t and its dual
passive thread, say t’. Since 7’ is a passive thread starting from initialization via ch,
its thread projection is in {!ch(3).@Q;}, which we let (w.l.o.g.) !ch(3).Qo. Hence we can
write

Ao=A"— B" : ch(v3). Ay,

which induces the following reduction:
(A, o). ~ (WA T1<i<nAi, 0). (10)

Let the term on the right-hand side, without including (v3), be A’. Note A’ has the
same set 7 of threads as that of A (it is possible t no longer occurs in A’, in which case
we safely stipulate it exists as 07). Consider all the thread projections from .A’. By (10)
we have:

vV, € (T\{t,7'}). TP(A, ;) = TP(A', 7).

For t and t’ we have:
TPA,7)=@Q and TP(A',7) = R.

Note @ is no longer a replicated process at ch or any service channel, since it cannot
be a passive input anymore. R is not a replicated process at a service channel either
since if it should have given a fresh thread in A’, not 7 (by (FC), freshness, Definition
5.8). Thus we can construct W’ for A" as we constructed ¥ for A as the same collection
of sets of processes except for the following.

(1) We replace {ch(v3). R} € ¥ with {R} € W'.

(2) We lose !ch(3).Q¢ from {Ich(3).Q;} € ¥, obtaining {!ch(3).Q;}1<i<n € V', and instead
add {Qo} € V.

(3) Otherwise ¥’ remains identical as W.

We thus obtain the following endpoint projection of ((v3).A’, o) as (neglecting partici-
pants as we stipulated):

|| 1eh®.Q: | (v3)(QolR) | S (11)
1<i<n

together with 0. We now compare (11) with the right-hand side of (9), the result of
reducing the EPP of A. By Lemma F.7 we have | |;_,_,!ch(3).Q; < []y-;i-,!ch(3).Q; as
well as Qo < | |y-;-, @i, hence we are done. o o

For (CoM), the reduction of the endpoint projection of A can be written as:

(s> Z0p,(yi). Qi |s<opjle). R|S, o) ~ (Q;| RIS, o). (12)

Again the thread, say 7, for s<opj(e). R | Sfor which we have {s<op(e). R} € ¥, cannot
start from an intermediate node, so it is a top-level active thread. Then the thread
corresponding to s> ¥;0p;(y;). @; should be its dual. Let the prime interaction starting
from these two threads be Ay. Then we can write:

Ao =A— B :sop, e, y). A

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:70 M. Carbone et al.

by which we in fact know the sum we assumed in (12) is a singleton,® that is, we can
restrict our attention to:

(s>op(y). Q |[s<opjle). R|S, o) ~ (Q| RIS, o) (13)
Now A has the following reduction:
(A, U) ~r (A6 | HlsisnAi, O'), (14)

where, by construction, we have TP(A}, t') = @ and TP(A},) = R, which are not to
be merged with other threads (since again they cannot start from a passive service
initialization), otherwise remaining the same as A. Thus in this case we have the
precise correspondence, that is, the result of reducing EPP(A, o) is precisely EPP(A’, o)
up to =.

For (ASSIGN), we have the reduction of the shape:

(x=eQ|R, 0) ~ (Q|R, o), (15)

which means x := e.@ comes from the initiating active (and passive) thread, say t, of
an interaction of the form:

Ay = xfi=e A
Hence, (15) is precisely matched by the global reduction:
(.A, o) ~ (A6|n1§i§n-/4i, O'/). (16)

By observing TP(A'y,) = @ and for each 7; € 7 such that 7; # T we have TP(A, 1;) =
TP(A, 1;), we are done.
For (IFTRUE), we can write the reduction as:

(if e then Py else P3|R, o) ~ (P1|R, o) a7
when e evaluates to true in o. Since {if e then P; else Ps} € ¥ (i.e, this is a singleton
thread) we know there is a prime Ay of the following shape:

Ay E ife@A then Aj, else Ap,.

Thus we have the global reduction:
(A, 0) ~ (AyM1<i<n A, 0). (18)
Note we have lost Aj .. If we write 7 for the corresponding initial active (and passive)
thread of Ay, then we have, by TP(Ay,) = if e then P; else Py and by the definition of
thread projection for conditional:
TP(Ay. 1) = P (19)

Now suppose 11, .., T, 0ccur in Agr. For simplicity let us just consider r; and consider
its thread projection at Ay (it can occur in other A; with i # 0 but they remain invariant
hence simply later added in parallel). In 4y we had:

TP(Ap, 1) = TP(Ag, 1) UTP(Aoy, T1),

hence the thread projection of 7; in Aj, is < -smaller than that of 7; in Ay, that is, for
such 71:

TP(.A/, ‘L'1) < TP(.A, ‘El).

60nly in a top-level immediate in-session communication, the direct endpoint projection of its passive thread
becomes a singleton sum (note there can be no other ways). By sums and conditionals, nontrivial sums arise,
as is usually the case in endpoint projections of meaningful protocols.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:71

Since the projection of other threads remain identical, we know:
vVt € T\{t}. TP(A, ;) < TP(A, 1;).

By (19) we are done. (IFFALSE) is the same as (IFTRUE).
For (SUuM), the original reduction is

(P1® Ps, 0) ~ (P1, 0), (20)
which means we can set
Ao €Ay Ay
Corresponding to e (19) in the case of (IFTRUE), we have
TP(Ay. 1) = Pi.

The rest is identical with the reasoning for (IFTRUE).
Finally, for (REC), we have the reduction:

(/LX.PO | HlsismHX-Pi | R, O') i (S, O‘/) (21)
from
(PoluX.Po/ X1 | Mi<i<mpuX.P; | R, o) ~ (S, o), (22)

where we specify all recursion terms coming from the same recursion in the global
process, say:

Ay = uX.Aj.

By (22) we know, writing P, &' P,[uX.P;/X]:
(Mo<i<mP; | R, o) ~ (S, o), (23)

since if there is a reduction of a folded version, it is mechanical to check that its un-
folded version also has the corresponding reduction. Further we can easily check that
the latter is inferred by no more inference steps than the folded version.

Now we observe, assuming each P; comes from the projection at 7;, we observe, for
such 1;:

£ Y TPUHRX . Ay X, 7).

The unfolding can increase fresh passive threads if A’y contains initialization, which
will be translated into replicated processes but these do not change the resulting pro-
cesses (because an exact copy of such a passive thread already exists in Aj, and noting
Pu(PuR)= PuR). By induction we know

€&, 0) ~ (&, d) (24)
such that

S < = EPP(E’, o).
By (24) we also have:

(o0, A) ~ (o, &)

hence we are done. This concludes all cases. O

F.7. Proof of Theorem 5.30: (3, 5) Completeness

As before we focus on the proof of (3), to avoid the cluttered notation. The proof also
serves as that of (5).

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:72 M. Carbone et al.

THEOREM 5.30 (3). If EPP(A4,0) ~ N then there exists A’ such that (o, A) ~
(o', A) such that EPP(A’, 6') < = N.

PrOOF. Completeness is by induction on the derivation of reduction in the global cal-
culus. As before, we consider adapted reduction rules that are taken modulo structural
equality and reduction contexts, which are equivalent to the reduction rules given ini-
tially. We list these adapted rules in the following, using the same names as the origi-
nal ones. As before, we assume all variables are distinct, including across participants,
so that we can write, for instance, o e || v instead of 0 - e@A |} v. We again write
C,[] for a reduction context in the grammar of interactions.

I=C,[A— B :ch(v3).)] I =C,[(v3)p]

(INIT) DT
(ASSIGN) I= Cr[xf;l; 11(2(]7 [xg; ir[vl]o,] 1/()7 Fel v
(IFTRUE) I = C,[if e then Iy, ((Zl’s?)l(i,j (UI’/I/E) Cillp] otbe|tt
(SUM) I= C’Eﬁl;)li] (aI,/IE/)a[IOZ]

(REC) I=C/[pX. 1) (o, ClIl(uX.Ip)/X]1]) ~ (o, 1/)'

(o,1) ~ (0, 1)

We omit (IFFALSE) and the symmetric case. Note the rules (PAR) and (RES) are no
longer necessary since they are absorbed in these rules. Up to the application of the
rules of =, all the rules except (REC) are the base cases. In the following reasoning,
we use the obvious annotated version of these rules (which preserve thread labels
across reduction, except when a new top-level parallel composition arises as a result
of reduction, we take off its label).
In the following, by induction on the height of derivations, we show if
(0, A)~ (o, A)),
then
EPP(I, o) ~ (P, o),

where

EPP(A', 0') = (Py, 0') such that P’ < =, P. (25)
Here, as in the proof of soundness, we neglect participants information in the end-

point processes, and aggregate the local states into o, assuming all local variables are
distinct. For simplicity we also abbreviate (25) to:

(P, 6/) < = EPPUA,0d). (26)
We set
A = (VZ)HOSiSIZAlv

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:73

where each 4; is a prime interaction (i.e., an interaction that does not contain a non-
trivial top-level parallel composition). Henceforth we safely neglect (vi). As before,
we let 7 to be the set of threads and W to be the partition of the family of thread
projections w.r.t these threads. We write S, S, ... for the elements of W.
For (INIT), we can set:
Ao €A™ BT ch(vd). Ay

and consider the reduction:

(0,) ~ (0,(w3)Ay | MiicnA). (27)

The endpoint projection of (A, o) contains a pair of an input and an output correspond-
ing to the redex of this reduction:
1eh(®).Q £ Uo<izn!ch(®).Q; = 1ch(3). Uo=izn @i ({!ch(®).Qi}o<izn € ¥)
and an output:
ch(vR € {ch(Wv§)R} ({ch(vR} € V).
Then we can write down A as !ch(3.Q | ch(v3).R | S. Thus we have a reduction:
(1ch(3).Q | ch(WAR | S, o) ~ (Ich(3.Q | W3(QIR) | S, o). (28)

By the exactly identical reasoning as in the corresponding case in the proof of sound-
ness, the residual in (27) and that in e (28) are related in the way:

EPP((v3) A M1<i<nAi, o) < (Ich(3).Q | W3(Q|R) | S, o).
hence as required.
For (CoOMM), assume without loss of generality we have

Ay €A™ B s s(op, e, x). A

and consider the reduction:
(0, A) ~ (0'/1 A6|n1§i§nv4i),

where ¢’ = o [x@B — v] with o e || v. The thread projection of Aj to 7o has the form
s<op(e). R such that {s<op(e). R} € ¥, while the one onto t; has the form s> op(x). @
(when the branching is a singleton we omit the symbol ¥, similarly henceforth). With-
out loss of generality (cf. Proposition 5.15) we regard 7y and 7; are used only in Aj.
Thus, we can set:

EPP(A,0) = (s> opx). @ |s<opjle). R|S, o0);
hence, we have:
EPP(A,0) ~ (Q| R[S, o). (29)

(in (29), the update of the store is safely done due to our stipulation that all local
variables are distinct.) By the same reasoning as in the corresponding case in the
proof of soundness, we know

EPP(A, | Mi<i<nAiso) < (RQIR | S, o)

as required.
For (ASSIGN), we can set

Ay € @A = e. Aj.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:74 M. Carbone et al.

We consider the reduction:
(0, A) ~ (0'/, A6|H1§i§nv4i) (30)

with appropriate o’. The thread projection onto 7 has the shape x := e.TP(Aj, 7), hence
we have the reduction:

(x@A :=e.TP(Ay, 1) | R, 0) ~ (TP(A4;. ©) | R, o). (31

As in the corresponding case in the proof of soundness, (31) shows that all thread

projections of A’ except at T remain invariant from that of .4, whose aggregate is R; and

the projection onto r precisely matches that of the residual of (30), hence as required.
For (IFTRUE), we can set

Ay ifer@A then A, else Ay,

with which we have the reduction:
(A, o). ~ (AylTi<i<pAi, 0). (32)
Observing
TP(Ao, 7) £ if e then TP(Ay,) else TP(Ap ;. 1),
we have the reduction for the endpoint projection:
(if e then TP(Ay,, 7) else TP(Ayp, ©) | R, o)~ (TP(Ap, ©) | R, o), (33)

where e evaluates to true in o. By the reasoning for the corresponding case in the
soundness proof, R in (33) may contain replicated inputs that are the result of merging
complete threads from Aj .. Thus we obtain:

EPP(AL TT1<i<nAi, 0) < (TP(AL.) | R, o),

as required.
(IFFALSE) and (SUM) are similarly reasoned.
For (REC), let:

A € oux Ay
Further assume we have:
(A, 0) ~ (AfM1<i<nAi, o). (34)
The reduction (34) comes from, by the recursion rule:
(Apl(uX . A/ X1, 0) ~ (Ag, o). (35)
Now the endpoint projections of Ay has the form:
EPP(Ao,0) = ((TIP)|R, o). (36)

where R is a collection of replicated processes and each P; is not replicated and has
the shape:

P ux.p,

13
We then consider the endpoint projection of the unfolding of Ay:

def

EPP(A[(nX . Ap)/X], 0) (MPIP;/X]) | R, o). (37)

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:75

Note the right-hand side of (37) is the n-times unfoldings of (36). Thus by induc-
tion hypothesis and applying the recursion rule in the endpoint processes n-times we
obtain:

EPP(A, o) ~ EPP(AG|Mi<i<nAi o) (38)
as required. This exhausts all cases, establishing completeness.
This concludes the proof of Theorem 5.30 (3). O

ACKNOWLEDGMENTS

We deeply thank Robin Milner for setting up directions of ongoing collaboration with W3C WS-CDL WG
as a scientific advisor. We thank WS-CDL WG members, in particular Gary Brown, Steve Ross-Talbot and
Nickolas Kavantzas for collaborations; and Joshua Guttman for his comments on an early version of the
article. Thanks to Sgren Debois for several technical suggestions.

REFERENCES

ABADI, M. AND FOURNET, C. 2001. Mobile values, new names, and secure communication. In Proceedings
of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL01).
ACM Press, New York, NY, 104-115.

ABADI, M. AND GORDON, A. D. 1999. A calculus for cryptographic protocols: The SPI calculus. Inf Comput.
148, 1, 1-70.

ALUR, R., ETESSAMI, K., AND YANNAKAKIS, M. 2005. Realizability and verification of MSC graphs. Theor.
Comput. Sci. 331, 1,97-114.

ARBAB, F. 2004. Reo: A channel-based coordination model for component composition. Math. Struct. Com-
put. Sci. 14, 3, 329-366.

BAETEN, J., VAN BEEK, H., AND MAUW, S. 2001. Specifying internet applications with DiCons. In Proceed-
ings of the ACM Symposium on Applied Computing (SAC’01). ACM Press, New York, NY, 576-584.
BASU, A., BozGA, M., AND SIFAKIS, J. 2006. Modeling heterogeneous real-time components in bip. In
Proceedings of the International Conference on Software Engineering and Formal Methods (SEFM’06).

IEEE Computer Society Press, 3-12.

BENTON, N., CARDELLI, L., AND FOURNET, C. 2004. Modern concurrency abstractions for C#. ACM Trans.
Program. Lang. Syst. 26, 5, 769—804.

BERGER, M., HONDA, K., AND YOSHIDA, N. 2001. Sequentiality and the w-calculus. In Proceedings of the
5th International Conference on Typed Lambda Calculi and Applications (TLCA’01). Lecture Notes in
Computer Science, vol. 2044, Springer, 29-45.

BHARGAVAN, K., FOURNET, C., AND GORDON, A. D. 2006. Verified reference implementations of WS-
security protocols. In Proceedings of the 3rd International Workshop on Web Services and Formal Meth-
ods (WS-FM’06). Lecture Notes in Computer Science, vol. 4184, Springer, 88—106.

BHARGAVAN, K., CORIN, R., MALO DENILOU, P., FOURNET, C., AND LEIFER, J. J. 2009. Cryptographic
protocol synthesis and verification for multiparty sessions. In Proceedings of the 22nd IEEE Computer
Security Foundations Symposium (CSF’09). IEEE Computer Society, 124-140.

BONELLI, E., COMPAGNONI, A. B., AND GUNTER, E. L. 2005. Correspondence assertions for process syn-
chronization in concurrent communications. J. Funct. Program. 15,2, 219-247.

BRAVETTI, M. AND ZAVATTARO, G. 2007. A theory for strong service compliance. In Proceedings of the 8th
International Conference on Coordination Models and Languages (COORDINATION’07). Lecture Notes
in Computer Science, vol. 4467, Springer, 96-112.

BRIAIS, S. AND NESTMANN, U. 2005. A formal semantics for protocol narrations. In Proceedings of the 1st
Symposium on Trustworthy Global Computing (TGC’05). Lecture Notes in Computer Science, vol. 3705,
Springer, 163-181.

BROY, M. 2005. A semantic and methodological essence of message sequence charts. Sci. Comput. Program.
54, 2-3, 213-256.

BROY, M. 2007. Interaction and realizability. In Proceedings of the 33rd Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM’07). Springer, 29-50.

BroY, M., KRUGER, I. H., AND MEISINGER, M. 2007. A formal model of services. ACM Trans. Softw. Engin.
Method. 16,1, 5.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:76 M. Carbone et al.

Busi, N., GORRIERI, R., GUIDI, C., LUCCHI, R., AND ZAVATTARO, G. 2006. Choreography and orchestra-
tion conformance for system design. In Proceedings of the 7th International Conference on Coordination
Models and Languages (COORDINATION’06). Lecture Notes in Computer Science, vol. 4038, Springer,
63-81.

CAIRES, L. AND VIEIRA, H. T. 2009. Conversation types. In Proceedings of the 18th European Symposium
on Programming (ESOP’09). Lecture Notes in Computer Science, vol. 56502, Springer, 285-300.

CARBONE, M., NIELSEN, M., AND SASSONE, V. 2004. A calculus for trust management. In Proceedings
of the 24th International Conference on Foundations of Software Technology and Theoretical Computer
Science (FST-TCS’04). Lecture Notes in Computer Science, vol. 3328, Springer, 161-173.

CARBONE, M., HONDA, K., AND YOSHIDA, N. 2006a. A calculus of global interaction based on session types.
In Proceedings of the 2nd Workshop on Developments in Computational Models (DCM’06). Elsevier Sci-
ence Publishers, Amsterdam, The Netherlands.

CARBONE, M., HoNDA, K., YOSHIDA, N., MILNER, R., BROWN, G., AND R0OSS-TALBOT, S. 2006b.
A theoretical basis of communication-centred concurrent programming. W3C working note.
http://www.dcs.qmul.ac.uk/~carbonem/cdlpaper/workingnote.pdf.

CARBONE, M., HONDA, K., AND YOSHIDA, N. 2007. Structured communication-centred programming for
web services. In Proceedings of the 16th European Symposium on Programming (ESOP’07). Lecture
Notes in Computer Science, vol. 4421, Springer, 2—-17.

CASTAGNA, G., GESBERT, N., AND PADOVANTI, L. 2008. A theory of contracts for web services. In Proceedings
of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL08).
ACM Press, New York, NY, 261-272.

CHAKI, S., RAJAMANI, S. K., AND REHOF, J. 2002. Types as models: model checking message-passing
programs. In Proceedings of the 29th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL02). ACM Press, New York, NY, 45-57.

CORIN, R., DENIELOU, P.-M., FOURNET, C., BHARGAVAN, K., AND LEIFER, J. 2007. Secure implementa-
tions for typed session abstractions. In Proceedings of the 20th IEEE Computer Security Foundations
Symposium (CSF’07). IEEE Computer Society Press, 170-186.

DEMANGEON, R. AND HONDA, K. 2011. Full abstraction in a subtyped pi-calculus with linear types. In
Proceedings of the International Conference on Concurrency Theory (CONCUR’11). J.-P. Katoen and B.
Konig Eds., Lecture Notes in Computer Science Series, vol. 6901, Springer, 280—296.

DEZANI-CIANCAGLINI, M. AND DE’ LIGUORO, U. 2009. Sessions and session types: An overview. In Pro-
ceedings of the 6th International Workshop on Web Services and Formal Methods (WS-FM’09).

DEZANI-CIANCAGLINI, M., MOSTROUS, D., YOSHIDA, N., AND DROSSOPOULOU, S. 2006. Session types for
object-oriented languages. In Proceedings of the 20th European Conference on Object-Oriented Program-
ming (ECOOP’06). Lecture Notes in Computer Science, vol. 4067, Springer, 328-352.

FAHNDRICH, M., AIKEN, M., HAWBLITZEL, C., HODSON, O., HUNT, G. C., LARUS, J. R., AND LEVI, S.
2006. Language support for fast and reliable message-based communication in singularity OS. In Pro-
ceedings of EuroSys’06. W. Zwaenepoel Ed., ACM SIGOPS. ACM Press, 177-190.

FoOSTER, H., MAGEE, J., KRAMER, J., AND UCHITEL, S. 2010. LTSA WS-engineer home page.
http://www.doc.ic.ac.uk/ltsa/bpeldws.

Fu, X., BULTAN, T., AND SU, J. 2004. Conversation protocols: A formalism for specification and verification
of reactive electronic services. Theor. Comput. Sci. 328, 1-2, 19-37.

Fu, X., BULTAN, T., AND SU, J. 2005. Realizability of conversation protocols with message contents. Int. <J.
Web Service Resear. 2, 4, 68-93.

GAY, S. AND HOLE, M. 2005. Subtyping for session types in the pi calculus. Acta Informatica 42, 2-3,
191-225.

GORDON, A. D. AND PUCELLA, R. 2002. Validating a web service security abstraction by typing. In Proceed-
ings of the ACM Workshop on XML Security (XMLSEC’02). ACM Press, New York, NY, 18-29.

GUIDI, C., LUCCHI, R., ZAVATTARO, G., BUSI, N., AND GORRIERI, R. 2006. SOCK: A calculus for service
oriented computing. In Proceedings of the 4th International Conference on Service Oriented Computing
(ICSOC’06). Lecture Notes in Computer Science, vol. 4294, Springer, 327-338.

GUTTMAN, J. D., THAYER, F. J., AND ZUCK, L. D. 2001. The faithfulness of abstract protocol analysis:
message authentication. In Proceedings of the 8th ACM Conference on Computer and Communications
Security (CCS’01). ACM Press, New York, NY, 186-195.

HENNESSY, M. AND RIELY, J. 1998. Resource access control in systems of mobile agents. In Proceedings of
the International Workshop on High-Level Concurrent Languages (HLCL'98). ENTCS Series, vol. 16.3.
Elsevier Science Publishers, Amsterdam, The Netherlands. 3—17.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

Structured Communication-Centered Programming for Web Services 8:77

HENRIKSEN, J. G., MUKUND, M., KUMAR, K. N., SOHONI, M. A., AND THIAGARAJAN, P. S. 2005. A theory
of regular MSC languages. Inf. Comput. 202, 1, 1-38.

HOARE, T. 1985. Communicating Sequential Processes. Prentice Hall, UK.

HoNDA, K. 1996. Composing processes. In Proceedings of the 23th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL'96). ACM Press, New York, NY, 344-357.

HONDA, K., VASCONCELOS, V., AND KUBO, M. 1998. Language primitives and type disciplines for struc-
tured communication-based programming. In Proceedings of the 7th European Symposium on Program-
ming (ESOP’98). Lecture Notes in Computer Science, vol. 1381, Springer, 22—-138.

HoNDA, K., YOSHIDA, N., AND CARBONE, M. 2007. Web Services, mobile processes and types. Bull. Eur.
Assoc. Theor. Comput. Sci. 91, 165-185.

HoNDA, K., YOSHIDA, N., AND CARBONE, M. 2008. Multiparty asynchronous session types. In Proceed-
ings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL08). ACM Press, New York, NY, 273-284.

IBM. 2001. Web services flow language (WSFL 1.0).
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.
IBM. 2010. WebSphere MQ workflow. www-306.ibm.com/software/integration/wmaqwf/.

IGARASHI, A. AND KOBAYASHI, N. 2001. A generic type system for the pi-calculus. In Proceedings of the
28th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL01).
ACM Press, New York, NY, 128-141.

INTERNATIONAL TELECOMMUNICATION UNION. 1996. Recommendation Z.120: Message sequence chart.

KoOBAYASHI, N., PIERCE, B., AND TURNER, D. 1996. Linear types and m-calculus. In Proceedings of the
23th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL96).
ACM Press, New York, NY, 358-371.

LANEVE, C. AND PADOVANTI, L. 2006. Smooth orchestrators. In Proceedings of the 9th International Confer-
ence on Foundations of Software Science and Computation Structures (FoSSaCS’06). Lecture Notes in
Computer Science, vol. 3921, Springer, 32—46.

MICROSOFT. 2001. XLANG: Web services for business process design.
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm.

MILNER, R. 1993. The polyadic 7-calculus: A tutorial. In Logic and Algebra of Specification, Springer.

MILNER, R., PARROW, J., AND WALKER, D. 1992. A calculus of mobile processes, I and II. Inf. Comput. 100,
1, 1-40, 41-77.

NEEDHAM, R. M. AND SCHROEDER, M. D. 1978. Using encryption for authentication in large networks of
computers. Com. ACM 21, 12, 993-999.

O’HANLON, C. 2006. Conversation with Steve Ross-Talbot.

OMG. 2004. Unified modelling language, version 2.0.

PI4SOA. 2008. http://www.pi4soa.org.

PIERCE, B. C. 2002. Types and Programming Languages. MIT Press, Cambridge, MA.

PIERCE, B. C. AND SANGIORGI, D. 1996. Typing and subtyping for mobile processes. Math. Struct. Comput.
Sci. 6, 5, 409-453.

PIERCE, B. C. AND TURNER, D. N. 2000. Pict: A programming language based on the pi-calculus. In Proof,
Language and Interaction: Essays in Honour of Robin Milner, MIT Press, Cambridge, MA.

QIU, Z., ZHAO, X., CAI, C., AND YANG, H. 2007. Towards the theoretical foundation of choreography. In
Proceedings of the International World Wide Web Conference. IEEE Computer Society Press, 973-982.

RAJAMANTI, S. K. AND REHOF, J. 2002. Conformance checking for models of asynchronous message passing
software. In Proceedings of the 14th Conference on Computer-Aided Verification (CAV’02). Lecture Notes
in Computer Science, vol. 2404, Springer, 166—179.

R0SS-TALBOT, S. AND FLETCHER, T. 2006. WS-CDL Primer. Published by W3C.

SANGIORGI, D. 1999. The name discipline of uniform receptiveness. Theor. Comput. Sci. 221, 1-2, 457-493.

TAKEUCHI, K., HONDA, K., AND KUBO, M. 1994. An interaction-based language and its typing system. In
Proceedings of the 6th International Conference on Parallel Architectures and Languages (PARLE’94).
Lecture Notes in Computer Science Series, vol. 817, Springer, 398—413.

VAN DER AALST, W. 2002. Inheritance of interorganizational workflows: How to agree to disagree without
loosing control? Info. Tech. Manage. J. 2, 3, 195-231.

VASCONCELOS, V., RAVARA, A., AND GAY, S. J. 2004. Session types for functional multithreading. In Pro-
ceedings of the 15th International Conference on Concurrency Theory (CONCUR’04). Lecture Notes in
Computer Science, vol. 3170, Springer, 497-511.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

8:78 M. Carbone et al.

VIEIRA, H. T., CAIRES, L., AND SECO, J. C. 2008. The conversation calculus: A model of service-oriented
computation. In Proceedings of the 17th European Symposium on Programming (ESOP’08). Vol. 4960,
Springer, 269-283.

W3C WS-CDL WORKING GROUP. 2004. Web services choreography description language version 1.0.
http://www.w3.0org/TR/2004/WD-ws-cdl-10-20040427/.

WFMC. 2010. Workflow management coalition. http:/www.wfmec.org/.

YOSHIDA, N. 1996. Graph types for monadic mobile processes. In Proceedings of the 16th Conference on
Foundations of Software Technology and Theoretical Computer Science. Springer, 371-386.

YOSHIDA, N. AND VASCONCELOS, V. 2007. Language primitives and type discipline for structured
communication-based programming revisited: Two systems for higher-order session communication.
Electr. Notes Theor. Comput. Sci. 171, 4, 73-93.

YOSHIDA, N., BERGER, M., AND HONDA, K. 2004. Strong normalisation in the 7 -calculus. Inf. Comput. 191,
145-202.

Received April 2010; revised October 2011; accepted March 2012

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 8, Publication date: June 2012.

