
Goal-Driven Context-aware Service Composition

Lian Yu, Arne Glenstrup
1
, Yang Zhang, Shuang Su

School of Software and Electronics, Peking University, Beijing, 102600, PRC

lianyu@ss.pku.edu.cn, panic@itu.dk
1
IT University of Copenhagen, Denmark

Abstract
1

Two important aspects are associated with service

composition. One is to understand the needs and

constraints for a new added-value composite service, and

otherwise it would lead to an ad-hoc effort for service

composition. The second is to reflect the changes of

computing environment to the service composition to

catch up the on-demand of users. This paper introduces a

goal-driven approach to specify the user requirements and

demands that guides the service composition, and

proposes context awareness to adapt to a dynamically

changing environment. Computing contexts, including

physical context, user profile and computed results, are

gathered by various services, and imported into an

ontology based a context repository. A Goal Description

Language, Context Condition/Effect are designed to

describe the dynamic semantics of goal requirements and

service capability. A planner is designed and implemented

to dynamically compose services based on the current

contexts, and a service runner is designed and

implemented to invoke proper services based on the

contexts and interactions with users.

Keywords: Context Awareness, Goal Driven, Ontology,

Service Composition, Reasoning

1. Introduction

With the proliferation of computing environments and

the qualitative improvement in the characteristics of

networking systems, the number and variety of computing

services has grown significantly. Services are expected to

become more intelligent and complex: they are supposed

to perform almost any imaginable task on behalf of users,

accomplish sophisticated procedures and transactions

without human assistance, and sometimes even express

ambient awareness and proactivity. However, users’

expectations often surpass real features of current services

and bring higher demands for services’ usability. Ideally,

users want to get complex and value-added functionality

1 The research is supported by Danish Strategic Research

Council (No 2106-08-0046) and by the National Science

Foundation of China (No. 60973001).

978-1-4244-9142-1/10/$26.00©2010 IEEE

in a single click or even without any interference.

This leads us to the situation in which services tend to

become more and more complex. Services will suffer in

stability and reliability while getting more and more

complicated. At the same time, users demand added value

functionality that is specific functionality provided to a

certain user with respect to her specific needs. A good

value-added service should be customized to meet the

requirements of each particular user.

A goal-driven approach allows domain experts to

specify their needs in a systematic way, and users just

select their target goals as they want. Context-awareness

helps services to acquire additional knowledge about the

current situation and surrounding environment.

Adaptability allows services to adjust their behavior with

respect to certain conditions and effects.

Context awareness is a term from ubiquitous computing

or pervasive computing which expresses adaptation to

continuous changes in the environment [3] . For the

purpose of making composed services in context

automatically adapt to changing contexts, it is also

imperative to take context information into consideration

in service composition. Context information considered in

this paper includes physical context information (e.g.,

light, noise, weather, location and status), user context

information (e.g., name, age, sex and preference) and

computing context information (e.g., service availability

and service computing results). The context information

above can be obtained and adopted in the service

composition process.

Combination of goal-driven and context-aware

approaches is an integral solution for building

value-added services for a variety of users and

circumstances. This paper proposes a goal-driven

approach to plan a proper service sequence, and performs

service execution based on current contexts.

1.1. Motivation Example

To illustrate our approach, we consider a service-

oriented medical diagnosis system as a use case for

context aware service composition (CASC). We assume

that patients come with handheld mobile devices that can

connect to the Internet, such as PDAs or G3 mobile

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50526672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Surgical GuideSurgical Guide

Register
DiagnosisAND

AND

See a Doctor

Get RFIDGet User

Infomation
AND

Get Register

NO.

Confirm User

Profile
Build User

ProfileOR

Waiting

Player Return

Monitor

Apply

RFID

…

AND

Waiting Room

Guilder

OR

AND Waiting Time

Monitor
AND

Get User ID AND

Apply

Communicators

Apply Video

Communicators
Apply Audio

Communicators

OR

Path

Guilder

Path Calculator AND
Arrival

Monitor

AND

OR

Normal Room

Path

Guilder

Path Calculator AND Arrival Monitor

Reading Room

Path

Guilder

Path

Calculator
AND

Arrival

Monitor

Apply Player

TV Room

Path Guilder

AND

AND
Apply

Translator

Sign

Translator
Language

Translator
Audio

Translator

OR
ORPath

Calculator

Arrival

Monitor

Figure 1. Goal Tree of “Surgical Guide”

phones. The hospital provides the system and the wireless

network coverage creating a pervasive environment that

has a number of web services running in it performing

specialized medical tasks.

Further, we assume a patient wants to get a surgical

diagnosis guide service. Traditionally, medical guide

services are provided manually. But this wastes a lot of

human resources, and sometimes it is inconvenient to

patients due to the unavailability of human’s help. Here

the CASC system can enhance quality and efficiency of a

hospital diagnosis guide service. When the user confirms

her goal at each place with the hospital guidance, she is

then presented, on her handheld mobile device, with a

service composition result path that has to be performed to

achieve the goal and the services in the service path are

then automatically executed one by one.

For illustration, Figure 1 shows the goal tree of

“Surgical Guide”. One of the scenarios and its resolution

given by CASC system are listed as follows:

Scenario: The patient visits the hospital for the first

time. At that moment, many patients are waiting for

surgical treatment. The patient is in favor of waiting in a

quiet waiting room. CASC will recommend a service

composition approach as: "Get User ID" "Build User

Profile" "Apply RFID" "Get Register Number"

"Apply Video Communicators" "Path Calculator"

"Arrival Monitor" "Waiting Time Monitor" "Path

Calculator" "Arrival Monitor" "See a Doctor".

Figure 2 shows how the CASC system performs

planning according to certain contexts and obtains an

appropriate service path and executes the services.

(1) Context World is the container of the context facts,

which is constructed according to the context domain

description script. The domain concepts’ definition

and the facts in the context world are the foundation

of planning to achieve the goal. Context information

can be imported into a certain context world during

the planning and running by context acquisition

services and user inputs from UI.

Build

Context World

Init

State

Runtime

State

Load Goal

Description Script

Build Goal Repository

(Goal Tree, Goal Model)

User Inputs

Target Goal Name

Planner

Finds Goal Tree

For Target Goal

Runner Executes The

Recommended

Service Path

Planner and Runner

Interact With Users

Planner Plans

Appropriate

Service Path

2

4

57

8

Load Service

Description

Script

Build Service Repository

(Service Model)

3

Load Context

Domain Decription

Script

1

Reasoner Performs

Context Condition And

Context Effect

Executions According

To Context World

6

Figure 2. Work Flow of CASC System

(2) Domain requirement is abstracted as Goal. A Goal

Description includes the description of the conditions

and constraints of a certain task and how to achieve

the task by achieving a set of sub-goals. Figure 1

shows a goal tree of the final goal "Surgical Guide".

Goal Descriptions can be created by domain experts,

and imported into this system. The details about

Goals will be described in Section 2.

(3) The semantics of services in context and the

interaction rule between services and this system are

described by the Service Description, which can be

imported into this system. Semantics of services

mainly provides the formal semantic description

about input, output, precondition and effect. The

details about Service Description will be described in

Section 2.

(4) At run time state, the system serves end-users

beginning with the users input of target goal name,

and the planner will find the target goal.

(5) The planner starts the planning process from the

target goal, using a planning algorithm to plan an

appropriate service path for the end-users according

to context information.

(6) During the planning process, context conditions in the

goal model and the service model will be executed to

obtain the condition evaluation result according to the

facts in the context world. Context effects in the

service model will be executed to modify the facts in

the context world.

(7) The service path obtained by the planner will be

executed by a service runner.

(8) During the process of planning and running, the

system will interact with end-users to get user input

or affect users.

1.2. System Architecture

The system architecture is depicted in Figure 3, which

includes three layers: Planner and Runner Layer, Context

Reasoner Layer, and Service Layer.

Service

Repository

Service

Description

Service Profile Parser

Goal

Description

 User Instance

Goal

Planner and

Runner Layer

Context Awareness Participants (Service Provider and Service Consumer)

Service Unified

Interface

Planner

Goal Loader

GoalTree Builder

GoalTree Optimizer

ServicePath Builder

Service

Unified

Interface

Repository

Service Path

Repository

Service Runner

Runner Manager

Runner Adapters

Goal

Repository

3

Service Layer

Physical Environment

User Interaction

Services

Physical Context Acquisition

Services
Parse

Filter

Fusion

Fromat

Physical Data Buffer

Functional Services

1

Context Ontology

Model Builder

Description Logic

Reasoner

Context Ontology

Instances

Context

WorldContext World Manipulator

Context Reasoner Layer2

Context Domain

Description

Service

Discovery

Figure 3. Architecture of CASC System

Service Layer: This layer is responsible for gathering

context information and serving end-users. In this system,

the physical context information is obtained by Physical

Context Acquisition Services, which is the upper level of

Physical Sensor systems. Context information from the

physical environment can be gathered by sensors, e.g.,

infrared sensors, RFID systems, and microphones.

Physical Context Acquisition Services monitor the context

data in the physical data buffer, and filter, fuse and format

them into unified context information that can be imported

into the context world for planning. User Information

Gathering Services gather the profile information of users

directly by user interface. Functional Services refer to all

these services that work for end-users. The semantics

descriptions of all of the services are the foundation of

planning. The CASC system interacts with those services

with customizable interfaces.

Context Reasoner Layer: The Context Reasoner

Layer consists of reasoning related modules. The domain

concept model can be constructed according to the

Context Domain Description script, and the Context

World can be instantiated as a facts’ container. The

modules of the context condition/effect builders, and the

context condition/effect executors are responsible for

interpreting or executing a context condition and effect

script, which is written in a goal description or service

description. All of the formatted context information can

be imported into the context world by the context world

updater. During the planning and running process, the

instance set of each goal node is organized and

manipulated by the Process Handler module, and services

are selected by the Service Selector module.

Planner and Runner Layer: This layer is responsible

for planning a service path and running services. The

description of goals and services is interpreted and stored

in a repository. The planning process is triggered by a user

requirement from a user interface. During the planning

process, Context Reasoner modules and relevant services

will be invoked. The planner generates a service path

according to the relevant goal and service definition as

well as the current context for an end-user, and the runner

is responsible for executing each service in the path and

interacting with the end-user by communication devices.

2. Goal Modeling and Service Modeling

The Goal Model and Service Model are proposed to

describe formal presentation of services and user goals in

an easily-understandable and editable manner.

2.1. Goal Model

The Goal Model focuses on eliciting user requirements

in an accurate and unified way. It formalizes the user goal,

and defines the way of how to configure and save it. The

Goal Model is the most basic and important element in the

service composition planning process. According to the

goal decomposition and context information, a service

composition path is generated and shown to end-users.

Figure 4 shows the Goal Model. Properties of a Goal

Model are Goal ID, Goal Name, Goal Description, Goal

Type, Priority, Constraint, Effect and Goal Computation.

Composite Goal contains information about its sub goals

and their relation. There are three types of relation:

(1) Sequence: Realization of Composite Goal can be

achieved by realization of all sub goals according to a

strict order. If one of the sub goals fails, the

Composite Goal fails.

(2) Concurrent: Realization of Composite Goal can be

achieved by realization of all sub goals in a random

order. If one of the sub goals fails, the Composite

Goal fails.

(3) Alternative: Realization of Composite Goal can be

achieved by realization of any one of the sub-goals.

The sub-goal that comes first will be taken into

consideration first too.

The goal model is stored in an XML file called the

goal configuration file.

Figure 4. Goal Model

According to the relationship between a composite goal

and its sub goals, a composite goal can be decomposed.

This process is repeated until none of them can be

further decomposed. After the decomposition process, a

Goal Tree is generated.

2.2. Goal Model Configuration

Instances of a goal model are stored in an XML file

called goal configuration file. It is edited by domain

experts. During the service planning process, they are

imported first. They are used to interpret goals,

decompose composite goals and generate goal tree. The

structure of the configuration file is shown in Figure 5.

Figure 5. Goal Tree Generation Process

Each configuration file corresponds to instances of a

high level composite goal and all its sub goals. The goal

configuration file uses "Config Envelope" as its root

element which consists of an Initial Parameters Block, an

Auto Gathering Block and a Goals Block.

The Initial Parameters Block records the static context

information, which includes an arbitrary number of

Parameter Blocks. The Auto Gathering Block records the

name and the access method of context that can be used

during the service composition process, it also include an

arbitrary number of Parameter Blocks. Each "Parameter

Block" records the name of the context object and its

acquisition approach. The Goals Block records all

instances of the goal model, including the combination of

all atomic goals and composite goals. Each instance of a

goal model is described in a Goal Block.

A Goal Block contains a description of sub-goal block

(SubGoals), relationship of sub-goal (Relation Block)

and the computation information (Computation Block). A

sub-goal block records the names of all sub-goals and

access conditions, each sub-goal description is recorded as

SubGoal Block.

2.3. Goal Tree Generation

According to the relationship between a composite goal

and its sub goals, a composite goal can be decomposed.

The process is repeated until none of them can be

further decomposed. After the decomposition process, a

Goal Tree is generated.

 First of all, composite goal which is identified as

"001" can be further broken down into sub-goals

"002", "003" and "005". The relations between

sub-goals are Sequence. Based on the above

information, we can construct a sub-tree which using

"001" as root, as shown in Figure 6.

Figure 6. Goal Tree Generation Process

 Then, based on the goal configuration file, each goal

will be further decomposed using the above

approach in accordance with the sub-goal tree

structure one by one. The process is repeated until

none of them can be further decomposed.

 Finally, all the sub-trees are combined, creating a

goal tree using the high-level goal as the root, as

shown in Figure 7.

Figure 7. Generated Goal Tree

2.4. Service Model

The Service Model describes the service semantics

adopted in this system; it focuses on input, output,

precondition and effect.
Input: Input is declared with a variable name and its

context object class defined in the context world model.

These input variables can be bound with instances from

the context world during the planning and running

process.

Precondition: The precondition block describes the

constraints which should be satisfied before executing the

service. The Context Condition Description Language is

used in this block.

Product: The product block describes the data that the

service can produce and the effect that the service will

have. The Context Effect Description Language is used in

the effect block.

3. Context-aware Service Composition

System

The CASC System adopts context-awareness in service

composition to construct SOA based systems. The

architecture of the CASC is presented in Section 1. This

section will give the detailed design of the Planner and

Runner Layer. Meanwhile, a Unified Description of

Service Interface is proposed to associate parameters of

services with ontology objects or ontology attributes in the

context world.

3.1. Unified Description of Service Interface

The Planner and Runner need to prepare parameters for

calling the implementation of a service. So it needs a

mapping approach to link the parameters to ontology

objects or ontology attributes. The Unified Description of

Service Interface (UDSI) is used to solve this problem.

UDSI is coded as an XML file.
UDSI consists of one or more Service Blocks. Each

Service Block represents a service which includes one

optional Engine Block and one or more Operation Blocks.

Each Operation Block describes one operation in the

service; it can bind different Ontology Blocks in different

domains. Each Ontology Block contains mapping

methods between ontology objects and service parameters

(Input Block) plus returned results (Output Block).

3.2. Planner Module

Planning in the CASC is implemented as a Service

Composition Planner Module (Planner) in this paper. The

main function of the Planner Module is recommending a

most suitable service sequence for users according to

current contexts. The architectural design of the Planner

module consists of the following components:

Goal Loader: Loads a Goal Tree based on the user’s

input. If the target Goal Tree does not yet exist, then calls

GoalTree Builder to construct it.

GoalTree Builder: Builds Goal Tree based on service

composition objectives and the goal configuration files.

GoalTree Optimizer: Prunes the Goal Tree according

to whether the constraint of the goal meets the current

context environment, and removes any service path that

cannot be implemented in the current situation.

ServicePath Builder: Matches services for goals based

on the current context, and this process is continued until

the ServicePath Builder has access to an executable

service path.

3.3. Runner Module

Running in CASC is implemented as a Service

Composition Runner Module (Runner) in this paper. The

main function of Runner is responsible for running the

service path that is recommended by the Planner

dynamically. The Runner dispatches all kinds of services

in a unified manner according to the Unified Description

of Service Interface.

Runner Manager: It is the entry point of the Runner

Module, which receives requests for running a service

path and manages concurrent Service Path Unit threads.

Service Path Execution Unit (SPEU): Completes the

scheduling request from the Runner Manager. It executes

services in the service path using an appropriate Adapter

that implements a Runner Adapter Interface according to

the service engine. SPEU works until all services in the

service path have been executed successfully.

Web Service Handler: Prepares parameters for

services using the Unified Description of Service

Interface.

Runner Adapters: Generate an appropriate Web

Service client.

3.4. Demonstration

First, a patient triggers the system to execute the service

composition function. Then, during the CASC planning

phase, CASC plans for patients according to his special

needs and the current context information. CASC gets the

user’s profile from the patient and finally gives him a

resulting service composition path. During the running

phase, CASC executes each service in the service

composition path until all services have already been

finished. Context information is also used to guide service

running in the CASC running phase. Figure 8 shows some

of implementation screenshots, including a user specifies

its target goal; the system assists the user to create its

profile, and the system gives the planner results and

allows the user to interact with the system during the

planning execution.

4. Related Work

Axel van Lamsweerde [6] puts forwards a guide tour

for goals which compares the main approaches to goal

modeling, goal specification and goal-based reasoning in

the many activities of the requirements engineering

process. He gives a general picture of goal and goal driven

concepts and the necessity of using a goal driven manner

to elicit user requirements.

Axel van Lamsweerde [7] presents the issues of

handling obstacles in goal-oriented requirement

engineering. After that he proposes a way of managing

conflicts in goal-driven requirement engineering [8] ,

which is very important in goal modeling and goal

User Specifies the target goal1 Get User Identity2

Build User’s Profile3

Show user interaction

Show planning results 4

5

Figure 8. Planner and Runner at Run-Time

reasoning. Finally, he describes the whole roundtrip from

research to practice proceedings

[9] .

Rim et al

[10]

propose a goal driven approach to

understand the needs of different organizations for a new

added-value composite service and to model the

cooperative process supporting this service provisioning

in a declarative, goal driven manner. They propose a goal

model called Map which is used for service elicitation,

distribution and orchestration.

Kangkang et al.

[11] present a goal-driven approach of

service composition which builds a task-oriented semantic

representation model of web services. Juan Miguel Gómez

et. al.

[12] presents a best of breed ultimate engine which

names GODO, it can use natural language processing and

mapping techniques for orchestrating goals.

5. Conclusion and Future Work

This paper presents the design and implementation of a

Context aware Service Composition (CASC) system to

fulfill the increasing demands of environmental adaptation

of SOA systems. The CASC system provides a

methodology to model domain concepts, abstract domain

requirements and service capabilities, and can calculate

proper service orchestration according to changing

contexts for end-users. During the design and

implementation of this system, several techniques are

designed or extended. A Context Ontology Model is

proposed to model domain concepts in context. A Context

Condition and Context Effect are proposed to describe

dynamic semantics in an editable and easily-modifiable

script manner. The Service Model and Goal Model are

proposed to describe a formal presentation of services and

a user goal in easily-understandable and editable manner.

According to goal decomposition and context information,

a service composition path is generated and shown to

end-users.

References

[1] Manshan Lin, Heqing Guo, Jianfei Yin. Goal Description

Language for Semantic Web Service Automatic

Composition [C]. IEEE Computer Society Press, 2005:

190-196.

[2] Dmytro Zhovtobryukh. A Petri Net-Based Approach for

Automated Goal-Driven Web Service Composition [J].

[3] B. Schilit, N. Adams, and R. Want. Context-aware

computing applications. In proceedings of the IEEE

Workshop on Mobile Computing Systems and

Applications (WMCSA'94), pp. 89–101. IEEE Computer

Society 1994.

[4] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya

Kalyanpur, Yarden Katz. Pellet: A practical OWL-DL

reasoner [J]. Web Semantics: Science, Services and Agents

on the World Wide Web. 2007,5(2): 51-53.

[5] Takashi Hattori, Kaoru Hiramatsu, Takeshi Okadome,

Bijan Parsia, Evren Sirin. Ichigen-san: An ontology-based

information retrieval system [C]. WWW Research and

Development - 8th Asia-Pacific Web Conference (APWeb

2006), 2006.

[6] A. van Lamsweerde. Goal-Oriented Requirements

Engineering: A Guided Tour [C]. 5th IEEE International

Symposium on Requirements Engineering, 2001: 249-263.

[7] A. Van Lamsweerde, E. Letier. Handling Obstacles in

Goal-Oriented Requirements Engineering [C]. IEEE

Transactions on Software Engineering, Special Issue on

Exception Handling, 2000: 978-1005.

[8] A. van Lamsweerde, R. Darimont, E. Letier. Managing

Conflicts in Goal-Driven Requirements Engineering [C].

IEEE Transactions on Software Engineering, Special Issue

on Managing Inconsistency in Software Development,

1998.

[9] A. Van Lamsweerde. Goal-Oriented Requirements

Engineering: A Roundtrip from Research to Practice

Proceedings [C]. 12th IEEE Joint International

Requirements Engineering Conference, 2004: 4-8.

[10] Rim Samia Kaabi, Carine Souveyet, Colette Rolland.

Eliciting Service Composition in a Goal Driven Manner

[J].

[11] Kangkang Zhang, Qingzhong Li, Qi Sui. A Goal-driven

Approach of Service Composition for Pervasive

Computing [J].

[12] Juan Miguel Gómez, Mariano Rico, Francisco

García-Sánchez, Rodrigo Martínez Béjar, Christoph

Bussler. GODO: Goal driven orchestration for Semantic

Web Service.

http://en.wikipedia.org/wiki/Albrecht_Schmidt
http://sandbox.parc.com/want/papers/parctab-wmc-dec94.pdf
http://sandbox.parc.com/want/papers/parctab-wmc-dec94.pdf
http://sandbox.parc.com/want/papers/parctab-wmc-dec94.pdf

