
IT University
of Copenhagen

Bigraphical Languages and their Simulation
Espen Højsgaard

A PhD Dissertation
Succesfully defended on March 15, 2012

in Front of an External Evaluation Committee and
the Faculty of the IT University of Copenhagen

in Partial Fulfillment of the Requirements
of the PhD Degree

IT University of Copenhagen June 2012

Abstract

We study bigraphs as a foundation for practical formal languages and the problem of simulating
such bigraphical languages. The theory of bigraphs is a foundational, graphical model of concurrent
systems focusing on mobility and connectivity. It is a meta-model in the sense that it is parametrized
over a signature and a set of reaction rules which determine the syntax and dynamic semantics,
respectively. This allows for rather direct models and, together with a natural yet formal graphical
notation and an elegant theory of behavioral equivalence, this makes bigraphs an enticing foundation
for practical formal languages. However, the theory of bigraphs is still young. While direct models of
many process calculi have been constructed, it is unclear how suitable bigraphs are for more practical
formal languages. Also, the generality of bigraphs comes at a price of complexity in the theory and
simulation of bigraphical models is non-trivial. A key problem is that of matching : deciding if and
how a reaction rule applies to a bigraph. In this dissertation, we study bigraphs and their simulation
for two types of practical formal languages: programming languages and languages for cell biology.

First, we study programming languages and binding bigraphs, a variant of bigraphs with a facility
for modeling the binders found in most programming languages. Building on an existing term language
and inductive characterization of matching we construct a provably correct matching algorithm. We
implement the term language and matching algorithm resulting in the BPL Tool, a first tool for
binding bigraphs, which provides facilities for modeling, simulation, and visualization. We then employ
binding bigraphs and the BPL Tool to formalize a subset of WS-BPEL, a commercial programming
language for implementing business processes. We also propose and formalize an extension to WS-
BPEL which supports mobile processes and process management. While demonstrating the feasibility
of using bigraphs as a foundation for programming languages, our work reveals an inconvenience
in the formulation of binding bigraphs, exposes the need for higher-order reaction rules, data types
and (practical) sortings, and demonstrates that the BPL Tool is too inefficient for simulating such a
language. Finally, as an aside, we identify a core subset of WS-BPEL and construct an idempotent
transformation from WS-BPEL into the core subset, thereby showing that a formalization need only
cover the core subset to be complete.

Next, we study languages for cell biology and stochastic bigraphs, an extension to bigraphs that
enables modeling and analysis of stochastic behavior which is useful in cell biology. We generalize an ef-
ficient and scalable stochastic simulation algorithm for the κ-calculus to bigraphs. For this purpose, we
develop a number of theories for (stochastic) bigraphs: (i) a formulation of the theory that is amenable
to implementation, (ii) embeddings, an alternative formulation of matches suitable for implementation,
(iii) edit scripts, an alternative to reaction rules with a natural and fine-grained notion of modification,
(iv) anchored matching, a localized matching algorithm, and (v) a notion and analysis of causality at
the level of rules. Parts (i)-(iii) have been developed in full while parts (iv)-(v) are outlined in detail.
Parts (i)-(iv) have been implemented in a prototype. Finally, we develop a bigraphical language for
protein-protein interaction with dynamic compartments. Our approach differs from similar previous
works in a number of respects. First, we elide the bigraphical underpinnings to obtain a simpler and
more accessible presentation in the style of process calculi. In particular, the development is incre-
mental, adding only the complexity necessary for each feature. Second, we give a graphical notation
which corresponds to a subset of bigraphs but is more suitable for the domain. Third, our approach
includes a novel mechanism for handling connected components, which is necessary to model diffusion
of e.g., protein-complexes. Our work suggests that two refinements of stochastic bigraphs would be
convenient: connected components should be easily identifiable, and matching should be restricted to
certain local contexts.

i

ii

Acknowledgements

It would not have been possible to write this dissertation if not for all the kind and generous people
who, in each their own way, have helped me.

I wish to thank my supervisor Thomas Hildebrandt and my co-supervisors Arne John Glenstrup and
Henning Niss for introducing me to the wonderful world of research and for their guidance through my
quest. Indeed, all the members of the Programming, Logics, and Semantics group at ITU have made
the last 4 years a pleasure and adventure – the following PLS’ers deserve special mention (in order
of acquaintance): Troels Damgaard, Søren Debois, Mikkel Bundgaard, Jacob Thamsborg, Rasmus
Møgelberg, Hugo Lopez, Tim Hallwyl, Alexandre Buisse, and Gian Perrone.

As part of my PhD I visited the School of Informatics at the University of Edinburgh for about 4
months at the end of 2009. I wish to thank Stephen Gilmore for being the perfect host. I also wish to
thank Michael D. Pedersen who, through his friendship and surfing lessons, contributed immensely to
the great experience I had in Edinburgh. I also visited Laboratoire PPS at Université Paris Diderot
for 4 months in the beginning of 2010. Jean Krivine, who hosted me, went far above and beyond his
duties, offering friendship, guidance, inspiration, entertainment and help throughout my stay. For this
I am eternally grateful.

My deep-felt thanks also go to my parents, my brother, and the rest of my family who have always
supported me through life. My son Alfred in particular has been my tethering to the real world and
have pulled me down to earth when the world of bigraphs was luring me away, threatening to engulf
me.

Last but not least – quite the contrary actually – I wish to thank my wife Lykke, who always
supports me and suffers my absentmindedness and other flaws of character without complaint. You
are my ray of sunshine!

Espen Højsgaard
Copenhagen, December 2011

iii

iv

Contents

Abstract page i

Acknowledgements iii

Contents v

Part I: Overview 1

1 Introduction 3
1.1 Papers . 4
1.2 Background . 5

2 Summary 21
2.1 A Tool for Bigraphical Programming Languages (Part II) 22
2.2 Bigraphical Semantics for Business Processes (Part III) 27
2.3 Scalable Simulation of Stochastic Bigraphs (Part IV) . 34
2.4 A Bigraphical Language for Cell Biology (Part V) . 42
2.5 Conclusion . 45
2.6 Future Work . 46

Bibliography 49

Part II: A Tool for Bigraphical Programming Languages 57

3 An Implementation of Bigraph Matching 59
Arne J. Glenstrup, Troels C. Damgaard, Lars Birkedal, and Espen Højsgaard
3.1 Introduction . 59
3.2 Bigraphs and Reactive Systems . 60
3.3 Inferring Matches Using a Graph Representation . 66
3.4 From Graph Matching to Term Matching . 68
3.5 Normal Inferences . 70
3.6 Bigraph Matching Algorithm . 74
3.7 Nondeterminism . 76
3.8 Tool Implementation and Example Modelling . 77

v

vi CONTENTS

3.9 Conclusion and Future Work . 81
3.10 Bibliography . 83
3.A Auxiliary Technologies Details . 85

4 The BPL Tool: A Tool for Experimenting with Bigraphical Reactive Systems 91
Espen Højsgaard and Arne J. Glenstrup
4.1 Introduction . 91
4.2 Installation . 93
4.3 Example: Polyadic π and Mobile Phones . 94
4.4 Reference . 95
4.5 Conclusions and Future Work . 110
4.6 Bibliography . 111

Part III: Bigraphical Semantics for Business Processes 113

5 Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 115
Mikkel Bundgaard, Arne J. Glenstrup, Thomas Hildebrandt, Espen Højsgaard, and Henning Niss
5.1 Introduction . 116
5.2 Binding Bigraphs and BPL Tool . 119
5.3 Formalizing WS-BPEL in the BPL Tool . 122
5.4 Motivating HomeBPEL . 135
5.5 Formalizing HomeBPEL . 138
5.6 Conclusion and Future Work . 148
5.7 Bibliography . 149

6 Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplifica-
tion using XSL Transformations 153
Tim Hallwyl and Espen Højsgaard
6.1 Introduction . 154
6.2 Transformation Considerations . 156
6.3 Default Values and Elements . 158
6.4 Standard Attributes and Elements . 164
6.5 Desugaring Constructs . 166
6.6 Extensions . 186
6.7 Combining the Transformations . 189
6.8 Conclusions . 189
6.9 Bibliography . 191
6.A WS-BPEL vs. Core BPEL Syntax Summaries . 194
6.B XML Schema for Core BPEL . 204
6.C Transformation Example . 211
6.D XSLT Transformations . 214

CONTENTS vii

Part IV: Scalable Simulation of Stochastic Bigraphs 241

7 Towards Scalable Simulation of Stochastic Bigraphs 243
Espen Højsgaard and Jean Krivine
7.1 Introduction . 244
7.2 Background . 247
7.3 The Simulation Algorithm . 261
7.4 Stochastic Parametric Reactive Systems . 264
7.5 Bigraph Embeddings . 278
7.6 Bigraph Edit Scripts . 290
7.7 Rule Activation and Inhibition . 302
7.8 Anchored Matching . 312
7.9 Conclusions and Future Work . 315
7.10 Bibliography . 316
7.A Proofs . 318

Part V: A Bigraphical Language for Cell Biology 377

8 Formal Cellular Machinery 379
Troels C. Damgaard, Espen Højsgaard, and Jean Krivine
8.1 Introduction . 379
8.2 C0: forming molecules . 380
8.3 C1: naming molecules . 383
8.4 C2: placing molecules . 384
8.5 C3: moving molecules . 389
8.6 Conclusion . 392
8.7 Bibliography . 393
8.A Retrieving the κ-calculus. 394
8.B Proof of the soundness Theorem . 398
8.C Proof of the completeness Theorem . 401

viii CONTENTS

Part I

Overview

1

Chapter 1

Introduction

This dissertation comprises six papers with the common theme of testing the thesis that bigraphs may
be used as an executable foundation for realistic formal languages.

The theory of bigraphs and bigraphical reactive systems is a foundational, graphical model of
concurrent systems focusing on mobility and connectivity, developed by Milner and collaborators
[Mil09]. It arose as a generalization of process calculi and provides a unifying framework for modeling
systems of mobile and communicating agents. In particular, the π-calculus [MPW92] and mobile
ambients [CG00] have been represented as instances of bigraphical reactive systems [JM04].

It was quickly realized that bigraphs had the potential to serve as more than a unifying framework
for such abstract models of concurrency. The theory of bigraphs is a meta-model in the sense that it
is parametrized over a signature and a set of reaction rules which determine the syntax and dynamic
semantics, respectively. This provides a flexibility which promises rather direct models of many types of
formal languages. Furthermore, bigraphs have a natural yet formal graphical notation and an elegant
theory of behavioral equivalence. Altogether, this makes bigraphs an enticing foundation for formal
languages.

This lead to the bigraphical programming languages (BPL) project in the PLS group at the IT
University of Copenhagen (ITU) which researched the design and implementation of programming
languages based on the theory of bigraphs, and the effort was continued in the computer supported
mobile adaptive business processes (CosmoBiz) project. Along the way, interest also turned towards
formal languages for cell biology for which bigraphs also seem (surprisingly) suitable.

In this dissertation, which is a product of the BPL and CosmoBiz projects, we research bigraphs as
an executable foundation for realistic formal languages. For two different kinds of languages, program-
ming languages and languages for cell biology, we investigate how appropriate variants of bigraphs may
be implemented and we develop representative, realistic bigraphical languages. Through this approach,
we both advance and evaluate the theory of bigraphs: advance because we have to expand the theory
in order to implement bigraphs, and evaluate because we apply the theory to realistic languages.

Contributions in this Dissertation

We first address the challenge of implementing binding bigraphs, a variant of bigraphs with a facility
for modeling the binders found in most programming languages. The key challenge is the matching
problem, the problem of deciding if (and where) a reaction rule applies. Based on the sound and
complete inductive characterization of matching by Birkedal et al. [BDGM07] and the term language
and normal form theorem by Damgaard and Birkedal [DB06], both for binding bigraphs, we have

3

4 1.1. Papers

developed, and proven correct, a term-based matching algorithm. We have implemented the matching
algorithm in a first tool for binding bigraphs, the BPL Tool, which provides facilities for modeling,
simulation, and visualization.

We have employed binding bigraphs and the BPL Tool to give a very direct formalization of a subset
of WS-BPEL, a commercial programming language for implementing business processes. Furthermore,
we have proposed and formalized an extension to the WS-BPEL language, where we added mobile,
embedded processes and manipulation of these. As a step towards formalizing the full WS-BPEL
language, we have identified a core subset the language and constructed an idempotent transformation
from WS-BPEL into the core subset.

Next, we address the challenge of implementing stochastic bigraphs, a variant of bigraphs where
reaction rules are equipped with a stochastic behavior which is essential in the modeling of cellular
biology. As such models are often large, scalability is of the essence. Therefore, we have taken an
efficient and scalable stochastic simulation algorithm for the κ-calculus as our starting point and
generalized it to bigraphs. This required the development of a number of theories for (stochastic)
bigraphs:

(i) stochastic parametric reactive systems, a formulation of the dynamic theory that is amenable to
implementation,

(ii) bigraph embeddings, an alternative formulation of matches more suitable for implementation,

(iii) bigraph edit scripts, a fine-grained alternative to reaction rules with a natural notion of modifi-
cation,

(iv) anchored matching, a localized matching algorithm, and

(v) a notion and analysis of causality at the level of rules.

Parts (i)–(iii) have been developed in full while parts (iv)–(v) are outlined in detail but some results
have yet to be proven. Parts (i)–(iv) have been implemented in a prototype.

Finally, we have developed a bigraphical language for cell biology: a language for protein-protein
interaction with dynamic compartments. This has been done before, but our approach differs in a
number of respects. First, we have elided the bigraphical underpinnings to obtain a simpler and
more accessible presentation in the style of process calculi. This allowed us to develop the language
incrementally, only adding the complexity necessary for each feature. Second, we have given a graphical
notation that corresponds to a subset of bigraphs but is more suitable for the domain. Third, our
approach includes a novel mechanism for handling connected components, which is necessary to model
diffusion of e.g., protein-complexes.

Structure of the Dissertation

This dissertation is organized as follows. Parts II–V contain six papers which are the written products
of four lines of research we have pursued during my PhD. Chapter 2 summarizes and discusses each of
these works individually and then concludes with a discussion of the works as a whole. The remainder
of this chapter lists the papers and technical reports I have co-authored as part of my PhD, and
provides the background necessary to appreciate Chapter 2.

1.1 Papers
In order of appearance, the following papers are included in this dissertation:

1. Introduction 5

[GDBH10] Arne J. Glenstrup, Troels C. Damgaard, Lars Birkedal, and Espen Højsgaard. An Imple-
mentation of Bigraph Matching. Technical Report TR-2010-135, IT University of Copen-
hagen. December 2010.

[HG11] Espen Højsgaard and Arne J. Glenstrup. The BPL Tool: A Tool for Experimenting with
Bigraphical Reactive Systems. Technical Report TR-2011-145, IT University of Copen-
hagen. October 2011.

[BGH+08b] Mikkel Bundgaard, Arne J. Glenstrup, Thomas Hildebrandt, Espen Højsgaard, and Hen-
ning Niss. Formalizing WS-BPEL and Higher-Order Mobile Embedded Business Processes
in the Bigraphical Programming Languages (BPL) Tool. Technical Report TR-2008-103,
IT University of Copenhagen. May 2008.

[HH11] Tim Hallwyl and Espen Højsgaard. Core BPEL: Semantic Clarification of WS-BPEL
2.0 through Syntactic Simplification using XSL Transformations. Technical Report TR-
2011-138, IT University of Copenhagen. March 2011.

[HK11] Espen Højsgaard and Jean Krivine. Towards Scalable Simulation of Stochastic Bigraphs.
Technical Report TR-2011-148, IT University of Copenhagen. December 2011.

[DHK11] Troels C. Damgaard, Espen Højsgaard, and Jean Krivine. Formal Cellular Machinery.
Proceedings of SASB 2011, the Second International Workshop on Static Analysis and
Systems Biology. September 2011. Keynote talk. (to appear)

The papers appear in their original form, except for minor typographical changes and adaptation of
their layout to fit into this dissertation.

The following papers have been omitted from this dissertation:

[BGH+08a] Mikkel Bundgaard, Arne J. Glenstrup, Thomas Hildebrandt, Espen Højsgaard, and Hen-
ning Niss. Formalizing Higher-Order Mobile Embedded Business Processes with Binding
Bigraphs. Proceedings of the 10th International Conference on Coordination Models and
Languages (COORDINATION’08). June 2008.

[BHH08] Mikkel Bundgaard, Thomas Hildebrandt, and Espen Højsgaard. Seamlessly Distributed
& Mobile Workflow - or: The right processes at the right places Proceedings of the 1st
Workshop on Programming Language Approaches to Concurrency and Communication-
cEntric Software (PLACES’08). June 2008.

[HH12] Espen Højsgaard and Tim Hallwyl. Core BPEL: Syntactic Simplification of WS-BPEL
2.0. Proceedings of the 27th ACM Symposium on Applied Computing (SAC’12). March
2012. (to appear)

The paper [BGH+08a] is the conference version of the second half of the technical report [BGH+08b]
and similarly the paper [HH12] is the conference version of the technical report [HH11]. [BHH08] is a
position paper.

1.2 Background
In this section, we introduce the theory of bigraphs in sufficient detail to allow a reader who is familiar
with process calculi to appreciate the summary and discussion of our works in Chapter 2. For a

6 1.2. Background

more thorough and formal treatment, please consult Milner’s recent book: The Space and Motion of
Communicating Agents [Mil09]. The bigraph-savvy reader should skim this section to get acquainted
with the presentation style used in this dissertation and, more importantly, because we place our works
in the context of some concurrent developments on the theory of bigraphs.

The theory of bigraphs and bigraphical reactive systems (BRSs) is a recent theory developed by
Milner and collaborators as a graphical model of mobile and ubiquitous computing [JM04]. It focuses on
two key aspects of such systems, connectivity and locality, and it admits encodings of the archetypal
process calculi for each of these two aspects, the π-calculus [MPW92] and mobile ambients [CG00]
[JM04]. However, whereas process calculi usually have fixed syntax and semantics, bigraphs and BRSs
are a meta-model that can be instantiated with a particular syntax, specified by a signature, and
semantics, specified by a set of reaction rules; we shall elaborate on this below. For the sake of brevity,
we call it the theory of bigraphs or simply bigraphs.

Our presentation of the theory of bigraphs is organized as follows. First, we define bigraphs, that
are static structures in themselves. Next, we define BRSs, which provide the dynamic aspect of the
theory. Finally, we discuss some developments of the theory which are particularly relevant to the
presented works.

1.2.1 Bigraphs: the Static Structure

A bigraph consists of two orthogonal structures over the same set of nodes: the place graph which
models locality, and the link graph which models connectivity. The place graph is an unordered forest
and the link graph is a hypergraph, and both are finite. Figure 1.1a depicts an example bigraph G and
Figures 1.1b and 1.1c depict the corresponding place and link graphs, respectively. In the following,
we exemplify concepts by listing the corresponding elements of this example in parentheses. Ovals
represent nodes (v0, v1, v2), and nodes are assigned controls (K,M) which are taken from a signature:
a set of controls K and a map ar : K → N that assigns an arity to each control (ar(K) = 2, ar(M) = 4).
The arity of a control specifies the number of ports (connection points in the link graph) a node with
that signature has. We often omit the arity map, writing simply K for the signature, and when defining
a signature, we give the arities inline; e.g., in the example the signature is K = {K : 2,M : 4}.

The dashed rectangles are called regions or roots (0, 1): they are the roots of the place graph forest
and they are identified by consecutive numbers starting from 0. We shall usually let the position of the
root determine its identity, increasing from left to right. Roots model unspecified, possibly distinct,
locations. The number of roots in a bigraph is called its width.

The gray rectangles are the dual of roots: called sites or holes (0, 1), they model places where other
bigraphs may be inserted, as we shall see when we define composition of bigraphs. As with roots, sites
are identified by consecutive numbers starting from 0, but we always include the site identifiers if there
is more than one. Collectively we call nodes, roots, and sites places.

The outer names (y0, y1, y2), written at the top of the bigraph, model connection points that a
context must provide. Conversely, the inner names (x0, x1), written at the bottom of the bigraph,
are connection points that the bigraph provides when used as a context. Together with outer names,
edges (e0, e1) are links and they model connectivity. Links may connect multiple ports and/or inner
names, collectively called points.

Collectively, we call places, links, and inner names entities. Note that ports are not individual
entities, as they are a part of a node.

Bigraphs are assigned interfaces: an outer interface, or outer face, which summarizes the number
of roots n and the set of outer names Y , written 〈n, Y 〉, and an inner interface, or inner face, which
summarizes the number of sites m and inner names X. We use I, J, . . . to range over interfaces and

1. Introduction 7

0

ROOT (REGION) y0

v0:K
CONTROL

NODE

v1:K

0

SITE (HOLE) x0

e0

EDGE

e1

1

y1 y2 OUTER NAME

v2:M PORT

1

x1 INNER NAME

PLACE = ROOT or NODE or SITE

LINK = EDGE or OUTER NAME

POINT = PORT or INNER NAME

ENTITY = PLACE or LINK or INNER NAME

(a) Example bigraph G : 〈2, {x0, x1}〉 → 〈2, {y0, y1, y2}〉 and terminology (after [Mil09,
Fig. 1.2.]).

0

v0:K

v1:K 0

1

v2:M

1

(b) Example place graph
GP : 2→ 2.

y0 y1 y2

v0:K

e0

v1:K e1

v2:M

x0 x1

(c) Example link graph
GL : {x0, x1} → {y0, y1, y2}.

Figure 1.1: Example bigraph and it constituent place and link graphs.

8 1.2. Background

we write G : I → J when a bigraph G has inner face I and outer face J . The interfaces of the bigraph
in Figure 1.1a are shown in the caption.

Notation and terminology

For the sake of conciseness, we shall often make use of the following terminology and notation:

discrete:
A bigraph is discrete iff the link graph is a
bijection between outer names and points,
i.e., it is open, no link is idle, and no two
points are siblings.

idle:
A link is idle iff no points are connected to
it. A place is idle iff it has no children.

interfaces:
Interfaces are abbreviated as follows:

n
def
= 〈n, ∅〉

Y
def
= 〈0, Y 〉

ε
def
= 〈0, ∅〉

〈Y 〉 def
= 〈1, Y 〉 .

ground, agent:
A bigraph G : ε→ J is an agent or ground.
We often omit the inner face of ground bi-
graphs, writing simply G : J .

lean:
A bigraph is lean iff no edges are idle.

open, closed:
A link is open iff it is an outer name. Con-
versely, a link is closed iff it is an edge. A
bigraph is open iff all its links are open.

prime:
A bigraph G : m→ 〈Y 〉 is prime.

wide:
A bigraph G : I → 〈n, Y 〉 is wide iff n > 1.

Concrete vs Abstract Bigraphs

What we have discussed so far, where nodes and edges have identities, are usually called concrete
bigraphs. We call the set of identifiers in a concrete bigraph its support. For many purposes support
provides crucial structure, e.g., to derive labeled transition systems or for stochastic semantics, as we
shall see later.

However, for other purposes identities are uninteresting, e.g., when modeling process calculi, so we
often abstract away from them, thereby obtaining abstract bigraphs. More formally, abstract bigraphs
are usually defined as equivalence classes of concrete bigraphs: Let l denote support equivalence of
bigraphs, i.e., F l G iff F and G differ only by a bijection on their support, and let m denote lean
support equivalence, the extension of l that disregards idle edges. Abstract bigraphs are then defined
as the equivalence classes of m.

Bigraph Operations

Concrete bigraphs admit a composition operation, G ◦ F , whenever the supports are disjoint and the
interfaces are compatible, i.e., F : I → J and G : J → K. Figure 1.2 illustrates the composition of
two example bigraphs. Intuitively, composition plugs the roots of F into the holes of G and splices
the outer names of F with the links of G that have matching inner names. Composition lifts to
abstract bigraphs by simply composing two concrete representatives with disjoint support and then
abstracting the result. It should be clear that we can construct an identity bigraph for any interface
I, idI , satisfying idI ◦ F = F and G ◦ idI for all bigraphs F : J → I and G : I → K. Concrete
bigraphs also admit a tensor operation, F ⊗ G, which places the roots of G next to the roots of F .

1. Introduction 9

(a) G : 〈3, {x, y, z0, z1, u}〉 → 〈2, {x, y, z, u}〉.

0

x y

v0:M

v1:L
1

y

0

x

1

z u

2

z0 z1 u

x y z0 z1 u

0

v3:K

e0

1

v2:K

2

v4:K

v5:M

(b) F : 〈0, ∅〉 → 〈3, {x, y, z0, z1, u}〉.

0

x y

v0:M

v1:L
v2:K

v3:K

e0

1

z u

v4:K

v5:M

(c) G ◦ F : 〈0, ∅〉 → 〈2, {x, y, z, u}〉
(after [Mil09, p 36]).

Figure 1.2: Example composition of bigraphs.

(a) G : 〈3, ∅〉 → 〈2, {x}〉.

0

x

v0:M

v1:L
1

0

1

2

x y z u

0

v3:K

e0

1

v2:K

2

v4:K

v5:M

(b) F : 〈0, ∅〉 → 〈3, {x, y, z, u}〉.

0

x y

v0:M

v1:L
v2:K

v3:K

e0

1

z u

v4:K

v5:M

(c) G.F : 〈0, ∅〉 → 〈2, {x, y, z, u}〉
(after [Mil09, p 36]).

Figure 1.3: Example nesting of bigraphs.

10 1.2. Background

0

x y

v0:M

v1:L
v2:K

v3:K

e0

(a) F : 〈0, ∅〉 → 〈1, {x, y}〉.

0

z u

v4:K

v5:M

(b) G : 〈0, ∅〉 → 〈1, {z, u}〉.

0

x y

v0:M

v1:L
v2:K

v3:K

e0

1

z u

v4:K

v5:M

(c) F ⊗G : 〈0, ∅〉 → 〈2, {x, y, z, u}〉.

Figure 1.4: Example tensor product of bigraphs (after [Mil09, p 36]).

Figure 1.4 illustrates the tensor product of two example bigraphs. Tensor operation is sometimes called
horizontal composition, and, in contrast, ◦ is referred to as vertical composition. The tensor product
is defined if the supports are disjoint and the outer, respectively inner, names are disjoint. Tensor also
lifts to abstract bigraphs by simply tensoring two concrete representatives with disjoint support and
then abstracting the result.

Vertical and horizontal composition are usually taken as primitive operations and other operations
are then derived from these. Three oft-used such derived operations are

F.G: Called nesting or dotting, this operation is identical to composition, except F is not allowed to
have inner names and the outer names of G become outer names of F.G, joining the links of any
shared outer names of F and G. Figure 1.3 illustrates the nesting of two example bigraphs.

F ||G: Called parallel product, this operation is identical to the tensor product, except that it dispenses
with the requirement that outer names must be disjoint, and instead takes shared names to
mean that the links should be shared. Figure 1.5 illustrates the parallel product of two example
bigraphs.

F | G: Called prime parallel product, this operation is as the parallel product but in addition it merges
the roots of F and G. Figure 1.6 illustrates the prime parallel product of two example bigraphs.

We shall use the convention that . and ◦ bind tightest while ⊗ and || bind weakest.

Algebra of Bigraphs

There is a number of basic abstract bigraphs which, together with composition and tensor product,
allow us build any bigraph, i.e., they provide a complete term language for abstract bigraphs. The
basic abstract bigraphs are listed in Table 1.1, where we also give examples and define the names and

1. Introduction 11

0

x y

v0:M

v1:L
v2:K

v3:K

e0

(a) F : 〈0, ∅〉 → 〈1, {x, y}〉.

0

y u

v4:K

v5:M

(b) G : 〈0, ∅〉 → 〈1, {y, u}〉.

0

x y

v0:M

v1:L
v2:K

v3:K

e0

1

u

v4:K

v5:M

(c) F ||G : 〈0, ∅〉 → 〈2, {x, y, u}〉.

Figure 1.5: Example parallel product of bigraphs (after [Mil09, p 36]).

0

x y

v0:M

v1:L
v2:K

v3:K

e0

(a) F : 〈0, ∅〉 → 〈1, {x, y}〉.

0

y u

v4:K

v5:M

(b) G : 〈0, ∅〉 → 〈1, {y, u}〉.

0

x y

v0:M

v1:L
v2:K

v3:K

e0

u

v4:K

v5:M

(c) F | G : 〈0, ∅〉 → 〈1, {x, y, u}〉.

Figure 1.6: Example prime parallel product of bigraphs (after [Mil09, p 36]).

12 1.2. Background

Notation Example

Merge mergen : n→ 1 merge3 = 0 1 2

Substitution
σ

~y/ ~X : X → Y [y1, y2, y3]/[{x1, x2}, {}, {x3}] =
x1

y1

x2

y2

x3

y3

Renaming
α, β

~y/~x : X → Y [y1, y2, y3]/[x1, x2, x3] =

x1

y1

x2

y2

x3

y3

Closure /X : X → {} /{x1, x2, x3} = x1 x2 x3

Wiring
ω

(id⊗ /Z)σ : X → Y
(id{y1,y2} ⊗ /{z1, z2})
[y1, z1, y2, z2] /
[{}, {x1, x2}, {x3, x4}, {x5}]

=

y1

x1 x2 x3

y2

x4 x5

Ion K~y : 1→ 〈1, {~y}〉 K[y1,y2] =
K

0

y1 y2

Permutation
π

{i 7→ j, . . .} : m→ m {0 7→ 2, 1 7→ 0, 2 7→ 1} = 1 2 0

Table 1.1: Basic abstract bigraphs and variables ranging over abstract bigraphs (after [BDGM07, Table
1]).

variables we shall use to refer to each kind of basic abstract bigraph. We shall often write 1 for the
barren root merge0 and � for the single site merge1. As an example, the following term represents the
abstraction of the bigraph of Figure 1.1a:

(/{e0, e1} ⊗ id〈2,{y0,y1,y2}〉) ◦ (K[y0,e0].(� | K[y0,e1].1) ||M[e0,e1,y1,y2] || [e0, y2]/[x0, x1]).

Jensen and Milner have axiomatized equivalence of abstract bigraphs in terms of basic bigraphs
and shown that there are two normal forms, the so-called discrete normal form (DNF) and connected
normal form (CNF) [JM04]. We shall not discuss these further here, as the details are irrelevant to
our later discussions; what matters is that the term language for abstract bigraphs is sound, complete,
and equipped with a structural congruence that coincides with graph isomorphism.

1.2.2 Bigraphical Reactive Systems: the Dynamic Structure

Bigraphs are equipped with dynamic semantics through reaction rules, similar to the rewrite rules of
graph rewriting [Roz97, EEKR99, EKMR99], which generate reactions by replacing a redex with a
reactum in a bigraph. However, bigraphical reaction rules differ from the usual rewrite rules in that
they are parametric, i.e., part of the context becomes a parameter which the rule may discard or

1. Introduction 13

duplicate. Also, reactions are generated in an algebraic fashion, in contrast to the single- or double-
pushout approaches of graph rewriting. Thus, while there are many similarities between bigraphical
reactive systems and graph rewriting, the approaches are quite different; see [Mil05, Ehr02] for more
thorough discussion of the connections.

There are several approaches for defining BRSs, but here we shall essentially follow Milner’s book
[Mil09]. BRSs are an instance of the more general reactive systems, but here we shall give the definitions
in terms of bigraphs. A concrete ground reaction rule (r : J, r′ : J) consists of a redex r and a reactum
r′, both concrete and ground. If we can find an occurrence of r in a concrete ground bigraph a : I, i.e.,
a l C ◦ r, then the rule generates the reaction a _ a′ where a′ l C ◦ r′. We call C the context and
_ the reaction relation. Reactions are limited to active contexts: every control is assigned a status,
active or passive, and a context is active iff all its sites only have active ancestors in the place graph.

A concrete BRS consists of a signature and a set of ground reaction rules, closed under support
equivalence, over a signature and the reaction relation generated by the rules. An abstract BRS is
obtained by quotienting the agents, rules, and reaction relation of a concrete BRS by lean support
equivalence.

Parametric rules, i.e., rules where the redex and reactum may have sites, are added to this frame-
work by viewing them as generators of ground reaction rules as follows: A concrete parametric reaction
rule (R : m → J,R′ : m′ → J, η : m′ → m) consists of concrete redex R, concrete reactum R′, and
instantiation map η that maps sites of the reactum to sites of the redex. For a given site of the reac-
tum, the instantiation map describes which parameter from the redex should be plugged into the site.
For any concrete discrete bigraph d = d0 ⊗ · · · ⊗ dm−1 : 〈m,Y 〉, with each di prime, the parametric
rule generates all the ground rules (r, r′) where r l R.d, r′ l R′.(d′0 || · · · || d′m′−1), and d′j l dη(j). We
usually write η̄(d) for the instantiated parameters d′0 || · · · || d′m′−1.

Note that we require d to be discrete, i.e., it has no edges and its link map is a bijection between
the ports and outer names. This means that all copies of a parameter will share their links, hence
the use of the parallel product in the generated reactum. If we view edges as name restriction, this
intuitively means that reaction cannot generate fresh names for copied parameters, as edges are never
copied. Later, we shall discuss extensions to the theory that allow generation of fresh names.

Labeled Transition Systems

Though it plays no direct role in the work presented in this thesis, it is important to note that bigraphs
have a theory of behavioral equivalence: labeled transition systems (LTSs) can be derived in a uniform
manner from the reaction rules, and these LTSs enjoy the property that bisimulation is a congruence.
We mention this here as it plays a prominent role in the bigraph literature: it has been a goal in the
design of bigraphs that labels should be derivable rather than constructed ad-hoc for each calculus, and
much work has gone into ensuring that extensions to the theory of bigraphs preserve this property. We
refer the reader to Milner’s book for an exhaustive treatment of this subject [Mil09]; for our purposes
it suffices to note that the derivation of labels relies on the presence of support, i.e., concrete bigraphs.

1.2.3 Bigraph Developments

In the previous sections, we defined the foundations of the theory of bigraphs. In the following sections,
we give an overview of some developments on the theory that are particularly relevant to the presented
works.

14 1.2. Background

Binding Bigraphs: Fresh and Binding Names

As discussed above, the usual theory of bigraphs does not allow edges to be copied nor inner names
in redexes, which prevents us from creating new names and from modeling name-binders such as the
input-prefix of the π-calculus. In this section we shall discuss extensions to the theory which addresses
these issues by introducing binders, which can be thought of as edges that have locations. We shall use
the term pure bigraphs to refer to the theory of bigraphs without binders, as defined in the previous
sections.

The notion of binders in bigraphs have been evolving since Jensen and Milner’s original formulation
in [JM04] upon which our works in Parts II and III are based. In order to appreciate the discussions
of binding in the next chapter, we shall discuss here the various stages of this evolution.

Version 1: binding ports and singly located names Originally, in what we shall simply call
binding bigraphs, binders were added to bigraphs by designating some ports of a control as binding
[JM04]. The binding ports of a node are treated as a localized link, a bound link, that must satisfy
the scope condition: all the points of a binding port must be located inside the node. In order to
ensure that composition preserves this property, interfaces are extended to allow names to be located
at a single root or site: a binding interface 〈m, ~X,X〉 corresponds to the pure interface 〈m,X〉 but in
addition the vector of name sets ~X = [X0, . . . , Xm−1] specifies that the names of Xi ⊆ X are located
at i, subject to the condition that the Xi are pairwise disjoint. We say that names in ~X are local,
while the remaining names of X are global. The scope condition is then extended to require that the
points of an outer name located at root i are all located inside that root.

Composition F ◦G is still only defined if the interfaces match, and thus if an outer name is located
at a root of G it must also be located at the corresponding site of F . This ensures that composition
preserves the scope condition. The parallel product F ||G and prime parallel product F |G are restricted
to only allow sharing of global names, while nesting is F.G is extended to allow local names in the
interface between F and G.

Binding requires some adjustments to the handling of parametric reaction rules:

• Recall from the definition of parametric reaction rules above that they generate ground reaction
rules from discrete parameters, i.e., bigraphs where the link graph is a bijection between ports and
outer names. In order to cater for parameters with bound links, we must refine the discreteness
condition to allow bound links.

• We allow parametric reaction rules to have local inner names, in order to model binding prefixes.
Again, this requires the discreteness condition to allow bound links, such that the redex may
capture the bound linking. Furthermore, we must extend the instantiation map to record how
to map the local names of each site of the reactum to the names of the corresponding site of the
redex.

With these adjustments, the generation of ground reaction rules and reactions proceed as before, except
that the instantiation map also renames the local outer names of the parameters.

Binding bigraphs is a conservative extension: any pure bigraph is also a binding bigraph, and pure
bigraphs and pure parametric reaction rules generate the same ground reaction rules and reactions in
both theories.

Damgaard and Birkedal have extended Jensen and Milner’s axiomatization of pure bigraphs to
binding bigraphs and shown, exploiting the adapted notion of discreteness, that binding bigraphs
also have a discrete normal form, called the binding discrete normal form (BDNF) [DB06]. The
corresponding extension of the basic abstract bigraphs of Table 1.1 to basic abstract binding bigraphs

1. Introduction 15

are shown in Table 1.2. Ions and permutations are extended with local names, we add a concretion
which, when composed with a prime, makes local names global, and we introduce an abstraction
operation which is inverse to concretion. The abstraction operation is only defined for prime bigraphs
to ensure that the result obeys the scope condition (recall that prime bigraphs have no global inner
names). Note that we write { ~X} for the union of the Xi and similarly we write {~y} for the set of
names of a vector ~y of names. Also, we use a shorthand for prime interfaces where all names are local:
(X)

def
= 〈1, [X], X〉.

Version 2: binding ports and multiply located names Milner realized that the restriction of
names to at most one location in an interface was unnecessarily strict. For an interface 〈m, ~X,X〉,
we may safely discard the condition that the Xi must be pairwise disjoint and instead generalize the
scope condition to state that any point of a local outer name must be located inside one of the roots
where the outer name is located.

This generalization turns out to provide important expressivity: without it, we cannot express
wide reaction rules where more than one root refers to the same bound link. The consequences of this
limitation will become clear in Section 2.2.2, where we discuss our work on formalizing a commercial
programming language using binding bigraphs without this generalization.

Milner also realized that with this generalization we can dispense with global names altogether:
since rules are not allowed global inner names, we can safely encode a global outer name as an outer
name that is located at all roots. Milner terms this variant local bigraphs.

Version 3: located edges and multiply located names Recently, Milner generalized binding
further [Mil09], by dispensing with the notion of binding ports and instead turning binders into edges
with a location1. Milner argues that this is a conservative extension, since we may use a sorting
discipline (discussed in Section 1.2.3) to assign a number of binders to any control [Mil09, pp 134].

To our knowledge, this generalized treatment of binding has yet to be applied in a bigraphical
model, and it is therefore hard to assess the importance of the added expressivity.

Matching: the Algorithmic Challenge

The key challenge when implementing bigraphs is determining whether a redex occurs in an agent; we
call this matching. More formally, given an agent a and a parametric redex R we want to determine
whether there is a context C and parameter d such that a l C ◦ (R ⊗ idZ) ◦ d; we call this a match.
From the generation of ground reaction rules and reactions it is clear that such a match induces the
reaction a _ a′ where a′ l C ◦ (R′ ⊗ idZ) ◦ η̄(d).

Birkedal et al. have analyzed matching in binding bigraphs and given a sound and complete induc-
tive characterization of matches [BDGM07]. This characterization provides valuable insight into the
matching problem and may be used to derive a provably correct and complete matching algorithm, as
we shall demonstrate in Part II.

Due to the similarity with the NP-complete subgraph isomorphism problem [GJ90], it was long
expected that matching would be NP-hard [BDGM07]. Recently, Bacci et al. has shown that matching
in the place graph is indeed NP-complete [BMR10], and since place graph matching is a proper sub-
problem of bigraph matching, this means that bigraph matching is NP-hard. Bacci et al. actually proves
a stronger result: place graph matching is fixed-parameter tractable [DF95], since the intractability

1As a technicality, Milner’s presentation introduces binders as nodes with a particular kind of control, without ports,
to which points may be connected.

16 1.2. Background

Notation Example

Concretion pXq : (X)→ 〈X〉 p{x1, x2}q = 0

x1

x1

x2

x2

Abstraction (Y)P : I→〈1, [Y], Z] Y 〉 ({y1, y2})({y3})p{y1, y2, y3, z}q = 0

y1

y1

y2

y2

y3

y3

z

z

Merge mergen : n→ 1 merge3 = 0 1 2

Substitution
σ

~y/ ~X : X → Y [y1, y2, y3]/[{x1, x2}, {}, {x3}] =
x1

y1

x2

y2

x3

y3

Renaming
α, β

~y/~x : X → Y [y1, y2, y3]/[x1, x2, x3] =

x1

y1

x2

y2

x3

y3

Closure /X : X → {} /{x1, x2, x3} = x1 x2 x3

Wiring
ω

(id⊗ /Z)σ : X → Y
(id{y1,y2} ⊗ /{z1, z2})
[y1, z1, y2, z2] /
[{}, {x1, x2}, {x3, x4}, {x5}]

=

y1

x1 x2 x3

y2

x4 x5

Ion K~y(~X) : ({ ~X})→ 〈{~y}〉 K[y1,y2]([{x1},{x2,x3},{}]) =
K

0

y1 y2

x1x2x3

Permutation
π ~X

{i 7→ j, . . .}
: 〈m, ~X,X〉 → 〈m,π(~X), X〉 {0 7→ 2, 1 7→ 0, 2 7→ 1}[{x},∅,{y}] = 1 2 0

y

y

x

x

Table 1.2: Basic abstract binding bigraphs, the abstraction operation, and variables ranging over
abstract bigraphs (after [BDGM07, Table 1]).

1. Introduction 17

(unless P = NP) of place graph matching is due to the width of the redex. This is perhaps not
surprising, since there are polynomial time algorithms for the subtree isomorphism problem [ST99].

Sortings

The basic notion of a signature presented above only allows us to specify the available set of controls
and their arity, but not any other structural constraints. This is insufficient for many models, e.g.,
models of calculi or programming languages where terms have a certain structure which must be
respected in the bigraphical model. Therefore signatures are often extended with a sorting which
specifies such structural constraints.

As was the case for binding, sortings have evolved over time and may be presented in various ways,
see for example [Mil09] and [Deb08]. The basic idea, however, is to enrich interfaces with a sort that
ensures that composition is only defined when the result will be well-formed.

Most work on sortings has gone into identifying sortings that are safe, i.e., sortings that do not ruin
the derivation of labels and thus the behavioral equivalence theory. Milner gave a number of specific
kinds of sortings that are safe [Mil09], while Debois [Deb08] has developed a general framework for
constructing safe sortings from certain predicates on bigraphs.

Altogether, even though sortings are ubiquitous in bigraphical models, it is not quite an off-the-shelf
theory for BRSs modelers, but still a somewhat ad-hoc approach to imposing structural constraints
on bigraphs.

Bigraphical Refinement

Given that the theory of bigraphs is a meta-model, a natural question to ask is whether we can formally
relate different bigraphical models in a generic manner? For example, the derivation of an LTS gives
us an equivalence of agents within a BRS, but what about agents of different BRSs?

Recently, Perrone et al. have proposed a notion of (vertical) refinement for BRSs, i.e., a way to
relate BRSs at different levels of abstraction [PDH11]. Given that we want to show that one BRS,
called the concrete BRS, is a refinement of another BRS, called the abstract BRS, the approach is to
define an abstraction functor from the concrete BRS to the abstract BRS, which relates agents in such
a way that their reactions in the concrete BRS correspond to the reactions of their abstractions.

More technically, an abstraction is safe if a concrete reaction either corresponds to an abstract
reaction or to a no-operation, i.e., the abstraction of the agent is the same before and after reaction.
An abstraction is live if concrete agents always exhibit some of the behavior of their abstractions. The
authors give some sufficient conditions for abstraction functors to be safe, that seem manageable in
practice: the functor must preserve and respect tensor, preserve active contexts, and weakly preserve
reaction rules, i.e., either the abstraction of a concrete rule must yield either an abstract rule or a
trivial rule where redex and reactum are equal.

This theory of bigraphical refinement has yet to be employed, but we expect that it will prove very
useful. For example, as we shall discuss in Section 2.2.2, one could imagine using it to formally relate
well-studied calculi, such as the π-calculus, to full-blown programming languages, thereby enabling
transfer of techniques and results.

Bigraphs as XML

Hildebrandt and Winther noticed that there is a rather immediate relation between pure bigraphs and
XML [HW05]: there is an approximate correspondence between (i) bigraph nodes and XML elements,
(ii) ports and attributes, and (iii) outer names and attribute values. However, the correspondence is not

18 1.2. Background

exact: XML models ordered trees whereas bigraphs are unordered, and there are no obvious constructs
in XML that correspond to bigraph edges. They use this relation to give an XML representation of
pure open bigraphs and an XML based implementation of pure open BRSs, called Reactive XML
[HW05]. Independently, Conforti et al. noticed and exploited the correspondence to model XML as
bigraphs [CMS05].

As we see in Section 2.2.2, this relation between bigraphs and XML can be exploited to give rather
direct bigraphical semantics to XML-based programming languages.

Higher-Order Bigraphs

During work on formalizing a subset of the WS-BPEL language [WS-07] in Reactive XML, Hildebrandt
et al. discovered that there are some bigraphical models where it is convenient to use rules with
non-ground parameters, what they call higher-order reaction rules [HNO06b]. In particular, they
developed, employed, and implemented what could be called second-order reaction rules to require
that the parameters of a reaction rule must contain specific ground bigraphs. The idea was developed
further by Birkedal et al. to a notion of higher-order bigraphs [BBD+09], which allow one to express
rules where parameters are higher-order contexts.

As stated above, and as we shall discuss in Section 2.2.2, there are models where second-order
reaction rules are very convenient. It is less clear, however, whether higher-order bigraphs in general
add useful expressivity, as they, to our knowledge, have not yet been employed in any bigraphical
models.

Calculational BRSs

When modeling some formal languages, such as programming languages, we need to model data and
computation on data, i.e., classical computation. Recently, Debois has shown how classical computa-
tion can be captured as a class of BRSs called free calculi, and shown that these are Turing complete
[Deb11]. Furthermore, Debois gives sufficient conditions to ensure that a free calculus is safely em-
bedded in a larger BRS, which he calls a calculational BRS. By “safe”, we mean that computational
reaction cannot prevent other reactions, only enable them.

Though expressed non-constructively in loc. cit., the definition of calculational BRSs imply a rather
modular approach to embedding classical computation in bigraphical models: we may construct a free
calculus which models calculation on a particular type of data and then embed it in a larger BRS where
that data type is needed. This holds great promise from the perspective of bigraphical languages as
we shall see in the next chapter.

Stochastic Bigraphs

For some models it is relevant to assign quantitative information to reactions. For example, we might
wish to model how long a reaction takes, such that we may analyze the behavior of a system over
time. In stochastic process algebra, e.g., [GHR92, Pri95, Hil96], this is achieved by enriching actions
(prefixes) with probability distributions which stochastically characterize the quantitative behavior of
actions. As reactions are generated by the synchronization of actions, these enriched actions allow us
to derive stochastic characterizations of reactions. Usually, exponential distributions are used because
they are memoryless: the probability of a reaction firing is independent of the time since the last
reaction fired, which eases analysis. Exponential distributions are characterized by a single constant,
their rate.

1. Introduction 19

Recently, Krivine et al. have defined stochastic bigraphs, a stochastic semantics for bigraphs similar
to those for stochastic process algebra [KMT08]. Rules are assigned a rate constant which is the
parameter of an exponential distribution characterizing the stochastic behavior of reactions generated
by the rule. To calculate the rate of a given reaction, again determining an exponential distribution,
one counts all the distinct instances of each rule that generates that reaction and add the product of
this count and the rate constant to the rate, which starts at zero. In order to properly count instances
of rules one needs support, i.e., concrete bigraphs. There a many potential application of stochastic
bigraphs and, as we shall discuss in Section 2.3, one such is the modeling of biological systems.

20 1.2. Background

Chapter 2

Summary

Parts II–V of this dissertation contain six chapters each consisting of a single paper. They are the
written products of the following four lines of research:

Part II: A Tool for Bigraphical Programming Languages

To assist development of, and experiments with, bigraphical programming languages, we devel-
oped an implementation of binding BRSs called the BPL Tool. The crux was the development
of a provably correct matching algorithm for binding bigraph terms, described in the technical
report in Chapter 3. The tool itself is presented in the technical report in Chapter 4.

Part III: Bigraphical Semantics for Business Processes

As part of a cross-disciplinary project aiming to develop formalized business process languages
and implementations to support the needs of mobile workers, we used binding bigraphs and the
BPL Tool to develop a formalization of a subset of the commercial business process language
WS-BPEL and extended both language and formalization with higher-order, mobile, embedded
processes. The extension and formalizations are presented in the technical report in Chapter 5.
As a step towards formalizing all of WS-BPEL, we identified a core subset of the language and
constructed an idempotent transformation from WS-BPEL into the core subset. This work is
presented in the technical report in Chapter 6·

Part IV: Scalable Simulation of Stochastic Bigraphs

To assist development of, and experiments with, bigraphical languages for cell biology, we de-
veloped an implementation of stochastic bigraphs called SBAM. We recast a scalable stochastic
simulation algorithm for the κ-algorithm to bigraphs, which required a number of developments
for the theory of (stochastic) bigraphs. This work is presented in the technical report in Chap-
ter 7.

Part V: A Bigraphical Language for Cell Biology

As part of an effort to extend the κ-calculus, a language for modeling protein-protein interaction,
with dynamic compartments, we developed a bigraphical language for cell biology with a simple
presentation in the style of process calculi. The language is presented in Chapter 8.

The following sections introduce each of these lines of work in more detail, and summarize and
discuss each of the papers. At the end of the chapter, we conclude on the insights these works have

21

22 2.1. A Tool for Bigraphical Programming Languages (Part II)

provided with respect to the thesis that bigraphs may be used as an executable foundation for realistic
formal languages, and outline some directions for future work.

2.1 A Tool for Bigraphical Programming Languages (Part II)

The BPL project researched the design of programming languages based on the theory of bigraphs and
this work was continued in the CosmoBiz project. As part of this research, we undertook to implement
the BPL Tool, a tool for abstract binding BRSs which could be used to model and experiment with
such languages.

The goals for the BPL Tool were (i) to implement the complete theory, as it was unclear at the
time which restrictions to the theory would be reasonable, and (ii) to have a close correspondence
between the theory and its implementation to achieve trust in the correctness of the implementation.
To achieve these goals, we needed a detailed formulation of the theory that could be implemented
directly, and an interface language. Damgaard and Birkedal developed a term language and normal
forms for abstract binding bigraphs [DB06] which both provided a convenient interface language and
a formal representation of abstract bigraphs that could be directly and faithfully implemented. What
remained was a matching algorithm for binding bigraph terms. As a first step towards a such, Birkedal
et al. gave an inductive characterization of matching in binding bigraphs [BDGM07]. Based on this,
we developed, proved correct, and implemented a matching algorithm as described in the technical
report in Chapter 3: An Implementation of Bigraph Matching. This work is the core of the BPL Tool,
which is presented in Chapter 4: The BPL Tool: A Tool for Experimenting with Bigraphical Reactive
Systems. The following sections summarize and discuss these two papers.

2.1.1 An Implementation of Bigraph Matching

Our Approach

We derived a matching algorithm for terms from the inference rules of Birkedal et al.’s inductive
characterization of matching [BDGM07] using the following approach:

• The inductive characterization of matching was recast in bigraph terms, the crux being the
addition of an inference rule allowing structural congruence to be applied to terms.

• By exploiting the binding discrete normal form (BDNF), we showed that it is only necessary
to consider a subset of the possible derivations, the so-called normal inferences. These generate
all matches for terms on BDNF. Moreover, normal inferences limit where and how structural
congruence must be considered. We were therefore able to incorporate structural congruence
into other rules, thus eliminating the need for a separate rule.

• Finally, we showed how to interpret the inference rules as a backtracking algorithm.

This approach required the development of some auxiliary theory for dealing with terms:

normalization:
We developed a normalization algorithm, as the developed matching algorithm requires terms to
be on normal form.

renaming:
Structural congruence for bigraph terms includes a kind of α-equivalence, which the normalization

2. Summary 23

algorithm in principle must take into account in order to avoid name clashes. However, by
preceding normalization with a phase where internal names are suitably renamed, α-equivalence
may be safely ignored. This is, however, non-trivial due to use of identity link graphs idZ in the
normal form, which prevents us from simply requiring every internal name to be unique. Instead,
we developed a more refined notion of uniqueness, horizontal uniqueness, and a corresponding
renaming algorithm.

regularization:
Reaction rules can always be expressed using a regular redex, i.e., a redex which can be expressed
as a term without permutations. Such redexes are simpler to match, and the developed matching
algorithm therefore requires redexes to be regular. As regular bigraphs may be represented using
permutations, we developed a regularization algorithm that removes permutations.

These three algorithms were all expressed as inference systems with an obvious algorithmic reading.
Our approach allowed a relatively straightforward implementation in Standard ML, using an alge-

braic datatype to represent terms and a single function for each inference rule. The gap between code
and theory is therefore very small, increasing trust in the correctness of the code.

The technical report briefly introduces the BPL Tool through an example: a model of the polyadic
π-calculus. This introduction has been improved, expanded, and updated in the technical report about
the BPL Tool which is discussed in the following section.

Discussion and Future Work

The theory developed in the report formed the core of the first implementation of binding BRSs,
an important step towards the practical development of bigraphical programming languages. The
approach results in a high level of trust in the correctness and completeness of the matching algorithm
and its implementation. As we shall discuss in more detail in the next section, the implementation has
been successfully used to model and experiment with a number of binding BRSs.

However, the matching algorithm has turned out to be somewhat inefficient: it works well for
smaller examples, such as the polyadic π-calculus, but it is unusable for more realistic models, such as
the WS-BPEL model to be discussed in Section 2.2.2. Since matching is NP-hard in the general case
and the algorithm is complete, it is to be expected that matching will be inefficient in some bigraphical
models. But in addition we believe that, to a large extend, the inefficiency comes from the following
aspects of the algorithm, which may be improved:

structural congruence: Though the search space is reduced by looking only for the so-called normal
inferences, the algorithm will often find the same match more than once. Not because of identical
siblings leading to isomorphic matches, but because the algorithm does not handle structural
congruence optimally: essentially, the rules that handle structural congruence sometimes negate
each other, meaning that the same terms are matched several times.
Close inspection of the algorithmic interpretation of normal inferences reveal that they almost
correspond to depth-first traversals of the place graph of the agent. However, this is not reflected
in the way the structural congruence for terms is incorporated into the inference rules: struc-
tural congruence is handled in four separate inference rules which together generates all possible
structurally congruent terms for both agent and redex, even though this often leads to repeated
matching of identical sub terms.
We therefore suggest that, instead of directly using the inference rules of the inductive charac-
terization, one constructs inference rules which correspond exactly to the steps of a depth-first
traversal, thereby ensuring that structural congruence is only applied when necessary.

24 2.1. A Tool for Bigraphical Programming Languages (Part II)

By showing that these inference rules are derivable in the inference system of the inductive char-
acterization, we preserve soundness of the algorithm. Completeness will have to be shown anew,
but it will follow the old proof closely and thus should not be too difficult. The main challenge
will be to prove that each match is found at most once, which combined with completeness means
that they are found exactly once.

link graph matching: The term language, and in particular the BDNF, follows the structure of the
place graph closely. This is reflected in the matching algorithm, where matching is only guided
by the place graph structure, which has some unfortunate effects on the matching of the link
graph:

• it is mainly deferred to the axioms (leaves) of the matching inferences, i.e., information
about the link graph is not used to prune the search space as early as it could,

• it is specified declaratively in the form of equations, without making clear how these equa-
tions should be solved, and

• it does not exploit the (partial) orthogonality of the link and place graphs: it ties the
matching of the two graphs together in such a way that, if the matching algorithm needs
to backtrack for one of the graphs, matching of both would must be redone.

If one could interleave matching of the link graph with the matching of the place graph, we
believe that the search space could be pruned significantly. Perhaps one could use a constraint
formulation along the following lines:

• while traversing the terms, i.e., place graph, gather information about the link graph in the
form of constraints,

• if the set of constraints ever become inconsistent, we can prune the search space, and
• when a place graph match is found, generate the corresponding bigraph matches by solving

the link graph constraints, without having to repeat the place graph matching.

The hope would be that one could express the constraints in a form that is supported by off-the-
shelf constraint solvers.

These issues reflect that the algorithm works on a term representation of abstract bigraphs. Other
representations might allow more efficient implementations. Indeed, Sevegnani et al. are working on an
implementation of matching based on a SAT formulation of concrete bigraphs, which allows them to
use one of the many highly optimized SAT solvers to solve the matching problem [SUC10]. As we shall
discuss in Section 2.3, we have also proposed a matching algorithm based on a direct representation
of concrete bigraphs and a notion of bigraph embeddings, which we believe to be more efficient than
the one presented above. Overall, we are skeptical about the efficiency of term-based matching for
bigraphs.

2.1.2 The BPL Tool: A Tool for Experimenting with Bigraphical Reactive
Systems

The BPL Tool is the first implementation of binding BRSs, and it provides facilities for manipulation,
simulation, and visualization of binding BRSs. It can be used either through the included web and
command line user interfaces or as a programming library. The BPL Tool is available for download
from [BPL07] where documentation and an online demo of the tool may also be found.

The technical report in Chapter 4 presents the command line interface (CLI) of the BPL Tool. It
provides instructions for installation, a hands-on example, and a functionality reference.

2. Summary 25

Our Approach

The central component of the BPL Tool CLI is an ASCII version of the term language for binding
bigraphs, extended with syntactic sugar for oft-used constructions such as prime parallel product.
Together with syntax for specifying bigraph signatures, reaction rules, and a set of functions, providing
facilities such as matching, this forms the BPL Tool language called BPL Language (BPLL).

BPLL is embedded into Standard ML (SML) whereby any SML interpreter may be used as a CLI
for the BPL Tool. The Standard ML of New Jersey interpreter [AM91] is recommended as it allows
the BPL Tool to provide a more refined interface. The embedding of BPLL into SML also means that
it is easy for users to extend the BPL Tool by writing additional SML functions, and to integrate the
BPL Tool as a programming library into SML programs.

In overview, the BPL Tool provides the following facilities:

Signatures
Signatures are defined one control at a time, by specifying a name, status, and arity. For modeling
convenience, the tool supports naming ports.

Bigraphs
Bigraphs are constructed using an ASCII syntax for the binding bigraph term language extended
with various forms of syntactic sugar such as the parallel product ||.

Reaction rules
A reaction rules is constructed from a pair of bigraph terms, an optional instantiation map, and
an optional rule name for convenience. For modeling convenience, the tool will attempt to infer
missing or partially specified instantiation maps in a well-specified manner.

Matching
All matches of a redex in an agent can be found. Matches are computed lazily (the set of matches
are represented as a lazy list) such that one only incurs the cost of matching for the matches
that are actually needed.

Simulation
Reactions may be generated from an initial agent and a set of reaction rules. The tool allows the
specification of reaction tactics which are strategies for simulation, e.g., the application of rules
in a certain order.

Equality testing
There is a bigraph equality operator, i.e., an operator for deciding structural congruence of
bigraph terms.

Term normalization, regularization, and simplification
Terms may be normalized, regularized, and simplified. Simplification is a heuristic application
of various structural congruence rules that often yield simpler bigraph terms. In particular, it
often yields terms on a form that will allow the pretty printer to use more syntactic sugar.

Pretty printing
Values, such as matches or agents, may be pretty printed in the BPL Language. Through a
number of options, the user may control various aspects of pretty printing, e.g., what kinds of
syntactic sugar should be used.

26 2.1. A Tool for Bigraphical Programming Languages (Part II)

Visualization
Scalable Vector Graphics and TikZ diagrams can be generated for bigraph terms. An external
viewer is required to view the results.

Most of these features are demonstrated through an example: a BRS model of Milner’s polyadic
π-calculus model of a mobile phone system from [Mil99].

Discussion and Future Work

The BPL Tool is a quite mature tool and it has successfully been used by a number of people in the
modeling of various BRSs (all listed in the report) including a subset of the WS-BPEL language as
we shall discuss in the next section. It provides many of the features one would want of a tool for
specification and simulation of bigraphical languages.

New features and improvements that should eventually be incorporated into the tool include:

more efficient matching
As discussed in the Section 2.1, the matching algorithm is not efficient enough for realistic
examples. In that section, we suggested a number of improvements to the algorithm that we hope
will improve the algorithm significantly. Alternatively, one could imagine integrating another
matching engine such as the SAT based one being developed by Sevegnani et al. [SUC10] or our
own so-called anchored matching algorithm which will be discussed in Section 2.3.

GUI
Bigraphs being a graphical formalism, it seems natural to provide a graphical user interface for the
BPL Tool. As a first step towards a such, we have implemented support for exporting bigraphs
as BPLL models in the promising Big Red graphical bigraph editor, developed by Alexander
Faithfull [Fai10] under the guidance of Stephen Gilmore and myself.

We should also like to see the BPL Tool integrated into BigWB, a workbench for bigraphs cur-
rently being developed by Miculan and coworkers, which aims to provide a unifying interface for
the various tools for bigraphs. Recently, we have started coordinating our efforts; in particu-
lar, we are working on integrating Big Red and BigWB by designing a common infrastructure
including a data model and file formats.

dedicated UI
While the embedding of BPLL into SML means easy extensibility and integration with SML
programs, it also puts some restrictions on the choice of syntax resulting in a slightly inconvenient
notation. By developing a dedicated CLI or GUI we would be free to choose a more convenient
syntax.

sortings
Support for sortings would enable the tool to assist users in ensuring that bigraphs are well-
formed and checking that reaction rules preserve well-formedness.

datatypes
Built-in support for datatypes and manipulation of data would make it easier to express models
containing computations. We suggest that such that an extension should be founded on a solid
formal foundation, such as the calculational BRSs of Debois [Deb11].

generalized binding
As discussed in Section 1.2.3, the notion of binding has been generalized, and as we shall see

2. Summary 27

in Section 2.2.2, these generalizations increase the expressivity of reaction rules. We conjecture
that extending the theory and implementation to allow for multiply located names will pose no
significant challenges.

2.2 Bigraphical Semantics for Business Processes (Part III)
The CosmoBiz project was a cross-disciplinary research project, joining researchers in computer sup-
ported cooperative work, researchers in formal semantics and types for programming languages, and
an industrial partner (Microsoft) in an effort to

“provide formalizations and implementations of business process languages supporting mo-
bile and adaptive business processes which support the needs of mobile workers and impact
the future commercial business process management systems.” [Hp07]

The studies presented in Part III are a strand of this effort. In the technical report in Chapter 5 we first
develop an extensible formalization of a non-trivial subset of the commercial Web Services Business
Process Execution Language (WS-BPEL) [WS-07] in binding bigraphs and the BPL Tool. We then
extend the language and formalization with locality and mobility features, resulting in the HomeBPEL
language. The technical report in Chapter 6 is a first step towards expanding our formalization to all
of WS-BPEL: we show that it is sufficient to formalize a subset of WS-BPEL, called Core BPEL, by
giving an idempotent transformation from the full WS-BPEL language into the Core BPEL subset.

This work forms the foundation of future studies of business process languages in a mobile and
adaptive setting. By expanding our formalizations to include all of WS-BPEL, a language which is used
extensively in business process management systems, one would have a language with demonstrated
ability to support business processes in practice, and, in addition, facilities for supporting business
process mobility and adaptability. Furthermore, if the BPL Tool was made more efficient, it could
serve as the computational core of a business process engine for this language which would provide a
high level of trust in the correctness of the execution.

In order to present our work, we must first briefly introduce WS-BPEL.

2.2.1 A brief introduction to WS-BPEL
WS-BPEL is an imperative XML language for describing and implementing business processes based on
web services: WS-BPEL processes communicate by invoking web services and are themselves exposed
as web services, the interfaces of which are described using the Web Services Description Language
(WSDL) [CCMW01]. In order to be executed, a WS-BPEL process description is deployed to an
execution engine. When the corresponding web service is invoked, a new instance of the process is
created and executed. It is interesting to note that while the WS-BPEL standard specifies the syntax
for process descriptions, it makes no requirements as to how process instances should be represented
– which is slightly surprising as business processes are often persisted for backup or migration as they
are often long-running.

A WS-BPEL process description is composed of so-called activities, which are usually categorized
as either basic or structured. The basic activities are the primitive operations, for example sending and
receiving messages in a π-calculus-like manner, or assigning a value to a variable. Structured activities
contain other activities and their semantics define the control flow of a process, such as branching or
parallel execution.

WS-BPEL has many such activities, and we shall not discuss them all here, only point out two
that are significant to our presentation:

28 2.2. Bigraphical Semantics for Business Processes (Part III)

<exit>: The <exit> activity is used to immediately end the execution of the process instance in which
it is contained.

<scope>: The <scope> activity is used to define a new scope with local state such as variables. Scopes
may be nested inside iterative and parallel constructs1, with the consequence that several in-
stances of the same scope may be executing at the same time.

2.2.2 Formalizing WS-BPEL and Higher Order Mobile Embedded Business
Processes in the Bigraphical Programing Languages (BPL) Tool

As we saw above, WS-BPEL is an imperative XML language with π-calculus-like messaging constructs.
And as discussed in Section 1.2.3 bigraphs and XML are closely related, so together with the fact
that the π-calculus may be encoded straightforwardly in bigraphs, this suggests that a rather direct
formalization of WS-BPEL as a BRS should be possible. Indeed, this was demonstrated in previous
work by Hildebrandt et al. [HNO06b] where a subset of WS-BPEL was formalized in Reactive XML,
an XML-centric model of computation based on a variant of pure, open bigraphs with second-order
reaction rules [HW05, HNO06a] (cf. Section 1.2.3).

Furthermore, the ease with which a BRS can be extended, by adding controls and reaction rules,
suggests that a bigraphical formalization of WS-BPEL could be extended to accommodate new lan-
guage features; in particular, one would expect business process mobility to be easily formalizable as
the modeling of mobility is a key idea behind BRSs.

To understand the contributions of our work, we must first summarize the Reactive XML formal-
ization. Afterwards, we shall first discuss our WS-BPEL formalization, and then our proposal for
extending WS-BPEL with higher-order processes.

The Reactive XML Approach to Formalizing WS-BPEL

Reactive XML is an XML representation of pure, open BRSs extended with second-order reaction rules,
where reactions are obtained by rewriting the XML representation as specified by XML reaction rules
[HW05, HNO06a]. The framework is flexible enough to admit a subset of WS-BPEL as a Reactive XML
instance, allowing for an almost one-to-one correspondence between the language and its formalization.
Also, as Reactive XML reactions rewrite XML, the approach has the advantage of also providing a
runtime representation of process instances that is almost identical to process descriptions, the main
difference being that instances have an active, instead of passive, control, whereby reaction is allowed
to occur inside process instances but not process descriptions.

The Reactive XML formalization demonstrated the feasibility of giving rather direct bigraphical
semantics to WS-BPEL. However, as Reactive XML is based on pure bigraphs and therefore cannot
generate fresh names (cf. Sections 1.2.2 and 1.2.3), the formalism cannot model dynamic scopes as
needed to model the <scope>-construct of WS-BPEL, which was therefore omitted from the formali-
zation. It was also necessary to add second-order reaction rules (cf. Section 1.2.3) in order to correctly
model variable scope resolution: a second-order rule can at the same time capture a <scope>-construct
– including its variable declarations – and an activity that is nested at an arbitrary depth inside that
<scope>, e.g., nested inside other scopes.

1In particular the <forEach parallel="yes"> construct [WS-07, Sec. 11.7].

2. Summary 29

Our Approach to Formalizing WS-BPEL

Our formalization is similar to the Reactive XML formalization, except that we use binding bigraphs
instead of Reactive XML, whereby we are able to model dynamic scopes and variable scope resolution
without extensions to the usual theory of binding bigraphs. In turn, this allows us to employ standard
theory and tools, such as the BPL Tool.

The formalization consists of two parts: a mapping from a subset of the WS-BPEL language to
bigraphs, and a set of reaction rules modeling the dynamic semantics of WS-BPEL.

Mapping WS-BPEL to bigraphs The mapping is very direct: it preserves nesting, maps WS-
BPEL elements to nodes with controls of the same name, e.g., <process> maps to Process, and
maps attributes to links of the same name. The mapping only introduces one control that has no
corresponding construct in WS-BPEL, namely the Next control which is used to model sequences; this
is necessary since bigraphs, in contrast to XML, are unordered. The key technical point of the mapping
is that it resolves scopes statically and encodes them as bound links: a scope has a binding port to
which all variables and partner links of that scope, as well as references to these, are connected. This
explicit encoding of scope resolution through bound links is what allows us to model dynamic scopes,
as copies of a scope will have separate scope links. Similarly, the activities of a process are linked to
a bound port of the process, which enables us to express reaction rules for activities, such as <exit>,
that manipulate the state of the process without having to resort to higher-order extensions.

WS-BPEL reaction rules The reaction rules are mostly what one would expect of a rewriting
semantics: there are one or two rules for each activity, which concisely capture the semantics of that
activity.

The dynamic semantics introduces a number of auxiliary controls that capture runtime state.
These auxiliary controls can be divided into two groups: (i) controls that capture dynamic WS-BPEL
concepts such as process instances and links between process instances signifying dynamic connectivity,
and (ii) bookkeeping controls necessary to capture the semantics of some activities whose semantics
require multiple reactions, namely the <scope> and <exit> activities. The latter group is non-trivial
and gives insight into the expressive convenience of binding bigraphs, so we shall discuss them in some
detail:

<exit>: When executed, the <exit> activity must immediately end the execution of the process
instance in which it is contained. An <exit> activity may be nested arbitrarily deep inside a
process instance, e.g., nested inside <scope> activities, and such arbitrary nesting cannot be
expressed using ordinary reaction rules. Instead, we introduce a level of indirection: process
instances are assigned a status, Running or Stopped, in the form of a node located just inside
the instance node. Using a wide reaction rule, we can then express that the <exit> activity
changes the status of the instance to Stopped, and another rule may then discard the stopped
process instance. All other rules will have to specify that the process instance status must be
Running, to ensure that execution of an instance stops immediately after an <exit> activity has
been executed.

If we had second-order reaction rules at our disposal, the indirection, and thus the instance
status, could have been avoided.

<scope>: As discussed above, variable scopes are resolved when mapping from WS-BPEL to bigraphs
and encoded in the form of bound links, which ensures that each instance of a scope is distinct
from its counterparts. An activity that references a variable may be nested arbitrarily deep inside

30 2.2. Bigraphical Semantics for Business Processes (Part III)

the scope of that variable, and we thus need wide reaction rules to model such activities, where
each root refers to the bound scope link. Alas, only one root may refer to such a bound link
in binding bigraphs. We must therefore unbind the scope link of a scope before the contained
activities can execute: there is a rule that activates a scope by changing its control, from Scope
to ActiveScope, and changes the bound scope link to an edge.

If we had a more general notion of binding where names may be located at more than one root
(cf. Section 1.2.3), we could avoid the scope activation step.

Our Approach to Higher Order Mobile Embedded Business Processes

HomeBPEL is a proposal for an extension to WS-BPEL where processes are first-class values that
can be stored in variables, passed as messages, and activated as embedded sub-instances. A sub-
instance is similar to a WS-BPEL scope, except that it can be dynamically frozen (using the new
<freeze> activity) and stored as a process in a variable, and then subsequently be thawed (using the
new <thaw> activity) when reactivated as a sub-instance. This extension allows one to model mobile
business processes and business process management: a frozen sub-instance stored in a variable can
be passed to a partner or inspected and manipulated as data and then be reactivated. In addition, we
add activities for communication between sub-instances and their hosts, such that sub-instances may
interact with their current environment.

As a motivating example, we model a pervasive health care scenario where treatment of patients
follows predefined guidelines that are implemented as HomeBPEL processes. Every new treatment of
a patient causes an instance of a guideline to be created, which is then passed to the assigned doctor’s
workflow process. While executing there, it will assist the doctor in following protocol and record the
necessary data. A guideline may contain self-treatment guidelines in the form of a process which can
be delegated to the patient’s workflow process.

The challenge in extending our WS-BPEL formalization to HomeBPEL lies in the <freeze> ac-
tivity. As discussed above, it is necessary to unbind the links of scopes before we can execute their
contained activities, due to the somewhat limited variant of binding used in the BPL Tool. Freezing
requires the reverse operation, i.e., we must deactivate all the scopes contained in the instance being
frozen and rebind the corresponding scope links. As there can be any number of active scopes, freezing
becomes an operation that requires a number of reactions, which we handle as we did for the <exit>
activity: we add an additional status for instances, Freezing, which ensures that only the rules re-
lating to freezing can be applied. However, since <freeze> and <exit> may now affect a number
of processes, is is insufficient to change the status of just the instance that is directly affected. We
therefore encapsulate the outermost instances in a container, TopInstance, and give it its own status,
either TopRunning or SubTransition, which affects all nested instances.

The technicalities clutter up the formalization somewhat. In particular, the reaction rules of the
WS-BPEL formalization all need to be extended to take the top-level status into account, and the
arity of controls relating to the runtime representation, e.g., scopes and instances, are extended with
ports that allow us to keep track of activated scopes. As suggested above, generalized binding and
second-order reaction rules would probably allow us to avoid the clutter altogether. Alternatively, if
reaction rules could be given priorities, we could avoid the TopInstance container and its status, as
we could assign higher priority to the rules of activities that require multiple reactions. In the BPL
Tool, this could be captured in the form of reaction tactics.

2. Summary 31

Discussion and Future Work

Our formalizations of a subset of WS-BPEL and HomeBPEL demonstrate that binding bigraphs allow
rather direct formalizations of XML-based programming languages with mobility features. However,
they also expose the need for a less restrictive notion of binding than the one implemented in the BPL
Tool. Also, they make it very clear that second-order reaction rules provide essential expressivity in
order to give concise models of such languages. The formalizations also indicate that reaction tactics
may allow simpler semantics since one may then avoid encoding reaction rule priorities, but studies
are needed in order to determine the impact of reaction tactics on the behavioral theory of bigraphs.

We conjecture that our formalization can be extended to cover all of WS-BPEL, though the more
complex features of WS-BPEL, such as link semantics, will probably require some bookkeeping in
the runtime representation. However, this is not surprising, as the WS-BPEL standard describes the
semantics of these features in terms of runtime concepts, such as link state [WS-07]. We expect that
WS-BPEL’s data model, a collection of XML models, and operations on data, XPath [XPa99] and
XSLT [XSL99], could be formalized in terms of Debois’ free calculi [Deb11]. We envision that bigraph
tools will include libraries of such free calculi, modeling for instance XML data and XPath expressions
over such data, and provide convenient syntax for integrating these seamlessly into other BRSs. In
order to achieve efficient simulation, the provided free calculi could be implemented in code instead of
being simulated.

In the current formalization, frozen processes are stored in variables as any other data, where
they may be manipulated freely, with no guarantees that the result is a valid process description.
Perhaps one could provide a set of safe primitive operations on process descriptions, such as sub-
process reflection and general manipulation, e.g., editing or joining of frozen sub-processes. This
relates to the work on Higher-Order (Petri) Nets and applications to workflow studied in [HM03].

Future work should also include studies of type systems, e.g., relations to the work on formaliza-
tions of WSDL types, contracts and session types [LPT06, BZ07, CHY07]. The addition of mobile
embedded sub-instances also opens for a study of type systems that can guarantee safe process mobil-
ity and manipulation. In particular, it would be interesting to study the approaches used for Boxed
Ambients [GCDC06] and for the higher-order π-calculus [MY07] on the safe integration of higher-order
mobility and sessions.

Another relevant direction of future work is a detailed and complete study of the expressiveness of
HomeBPEL in relation to workflow patterns (e.g., [RtHvdAM06]). One could also study the language
primitives and expressiveness in relation to process calculi for mobility such as Ambients, Seal and
Homer. In particular, we expect to examine a notion of subjective mobility as in Safe Ambients [LS03]
by introducing a co-freeze activity to be carried out by the sub-instance, allowing it to decide whether
(and when) it can be frozen.

Along the same lines, it would also be interesting to investigate if and how WS-BPEL can be seen
as a refinement of the π-calculus (or other calculi) in terms of Perrone et al.’s recent notion of BRS
refinement [PDH11]. Such a refinement relation would allow transfer of analyses and techniques from
these calculi. Similarly, it would be interesting to investigate whether HomeBPEL is a refinement of
higher-order calculi such as higher-order π [San93] or Homer [Bun07].

2.2.3 Core BPEL

WS-BPEL is a full-fledged programming language with plenty of syntactic sugar to make the language
more convenient [WS-07]. Unfortunately this results in a rather bloated language specification with
much redundancy, which in turn leads to complex formalizations. Therefore, we propose to identify
and formalize a simpler language core, and then define the semantics for the full language by giving

32 2.2. Bigraphical Semantics for Business Processes (Part III)

a transformation into the core subset. This idea was pioneered by Landin, who coined the term
syntactic sugar [Lan64] and demonstrated that the semantics of a programming language can be
defined by giving a mapping to another language, by mapping parts of ALGOL 60 to the λ-calculus
[Lan65a, Lan65b]. Later, it was demonstrated that the two languages need not be different and that to
define the semantics for a language, one need only define it for a core subset and then give a mapping
into this subset, cf. e.g., the definition of Standard ML [MTH90].

Our Approach

The WS-BPEL standard recognizes that the language is not minimal and hints at relations between
different syntactic constructs but leaves those relations informal [WS-07]. Furthermore, it allows the
omission of certain values and constructs, by specifying a number of defaults for these. Finally, the
WS-BPEL standard specifies that some parts of the language may be ignored by an implementation,
and defines how to safely do so. Our approach to identifying a core subset of WS-BPEL was to carefully
analyze the WS-BPEL standard and the accompanying XML Schema, looking for any of these three
kinds of opportunity for reducing the complexity of the language.

The indicators we looked for in our analysis of the XML Schema and standard were the following:

XML Schema:

• Attributes and elements marked as optional. These may have default values.

• Types that are referred to more than once. These may indicate redundancy.

Standard:

• Definitions of attributes or elements, where the semantics are explained by reference to
other constructs. This may indicate redundancy.

• Attributes and elements which may be ignored by an engine. This may indicate that they
are superfluous.

For each identified simplification candidate, we then examined whether the standard admits one of the
following kinds of transformations:

• Does the standard specify a default value/element, or can we construct such a default, which can
be made explicit?

• Can we decompose the element into a composition of smaller constructs?

• Can we remove the attribute/element without affecting the semantics?

The analysis resulted in a large number of transformations, so for the sake of brevity we only
summarize a few interesting cases:

<scope>: Scopes in WS-BPEL allow variable declarations which may be initialized as part of the
declaration. The WS-BPEL standard states that such inline initializations correspond to im-
plicit assignment activities, but also states that variable initialization is all-or-nothing: if the
initialization of a variable fails, a specific exception must be raised.

These variable initialization semantics can be made explicit by using three scopes:

1. An outer scope in which the variables are declared.

2. Summary 33

2. A scope that initializes the variables. It contains an exception handler that catches any
exception and instead throws the variable initialization exception.

3. A scope that contains the activity of the original scope.

<receive>: WS-BPEL has two activities for receiving messages: <receive> which receives a message
over a particular channel, and <pick> which will receive a single message from any of a number
of channels, i.e., similar to input-guarded choice of the π-calculus.

Unsurprisingly, <receive> can be seen as syntactic sugar for <pick> that will only receive a
message from a single channel.

As these examples indicate, the transformations are conceptually simple, but the devil is in the details.
For example, WS-BPEL is extensible and, in particular, the language allows programmers to employ
arbitrary languages to express conditions, and it only recommends that the evaluation of conditions
result in a boolean value! This prevents us from transforming such conditions in a generic manner.
For example, in order to transform a repeat-until loop into a while loop, the textbook transformation
involves negating the condition. Since this cannot be done at the expression level, we are forced to
use a more complicated transformation: the original condition is evaluated as part of an if-statement
which assigns the appropriate boolean value to a variable.

Also, there are some constructs that one would perhaps expect to be syntactic sugar but which in
fact are not. For example, WS-BPEL has two activities for sending messages, <invoke> and <reply>,
and it seems that one of them should be redundant. However, WS-BPEL assigns incompatible WSDL
types to these activities: <invoke> may only be used to initiate communication whereas <reply> may
only be used to respond to a request. So while the two operations are operationally similar, the type
system distinguishes them.

Overall, our analysis resulted in a set of independent transformations, which together form a
transformation from WS-BPEL to a core subset which we call Core BPEL. The transformations are
given in the form of a set of XSLT 1.0 transformations [XSL99], making them easily adoptable by other
researchers and WS-BPEL implementers. As each template performs an independent transformation,
users are free to use just a subset of the transformations. The syntax of Core BPEL is defined by an
XML Schema.

Discussion and Future Work

Core BPEL is significantly simpler than WS-BPEL as witnessed by the sizes of their XML Schemas:
the Core BPEL XML Schema has 73% the number of lines of its WS-BPEL counterpart. More
importantly, since it disregards XML Schema overhead, the Core BPEL versions of the WS-BPEL
standard’s so-called syntax summaries for activities on average have 65% the number of lines, cf.
Table 2.1.

We have supported the validity of our transformations with quotes from the standard. Since the
standard lacks official formal semantics, this is the best argument we can give that the transformations
preserve semantics. Of course, one may examine our transformations in the context of one of the
many WS-BPEL implementations or formalizations [Loh07, LVO+07, Sta05, WDW07, FGV06, FR05,
Fah05, FGV04], but these are also just interpretations of the WS-BPEL standard. For similar reasons,
it is unclear how one can show minimality of Core BPEL; all we can say is that we are not aware of any
further or alternative transformations which yield a smaller language. However, there is one formal
aspect that it is straightforward to verify for our transformations: transformed processes adhere to the
same WSDL types.

34 2.3. Scalable Simulation of Stochastic Bigraphs (Part IV)

<process> 45% <forEach> 90% <rethrow> 33%
<assign> 87% <if> 53% <scope> 84%
<compensate> 33% <invoke> 30% <sequence> 0%
<compensateScope> 25% <pick> 77% <throw> 40%
<empty> 33% <receive> 0% <validate> 25%
<exit> 33% <repeatUntil> 0% <wait> 92%
<extensionActivity> 50% <reply> 58% <while> 86%
<flow> 300% weighted avg. 65%

Table 2.1: Number of lines in the Core BPEL syntax summaries for <process> and activities compared
to their WS-BPEL counterparts. The Core BPEL XML Schema has 73% the number of lines of its
WS-BPEL counterpart.

The natural next step is of course to extend our own partial formalization of WS-BPEL to the Core
BPEL subset.

2.3 Scalable Simulation of Stochastic Bigraphs (Part IV)
Some biologists argue that, in order to understand and make use of the vast amounts of data produced
by experiments, it is necessary to take a leaf out of the engineer’s book: formal languages should be
used to build biological models with a precise meaning to facilitate communication and formal analysis
[Laz02]. One would hope that the knowledge and techniques developed for formal languages in the
field of computer science could be applied to answer the call from the field of biology. Indeed, the
computer science community has embraced this challenge. In particular, the inherent concurrency and
compositionality of biological systems has fostered an interest in the process calculus community. For
example, stochastic process calculi, such as the stochastic π-calculus [Pri95], the κ-calculus [DL04],
BioAmbients [RPS+04], and Bio-PEPA [CH09], have already been successfully employed to model,
analyze, and simulate protein-protein interaction and, to a lesser extent, molecular localization and
compartmentalization.

Recently it has been proposed that bigraphs could be used to model cellular biology, in particular
protein-protein interaction combined with dynamic compartmentalization [DDK08, BGM09a]. As
bigraphs can represent the π-calculus, the κ-calculus, and Ambients, it is unsurprising that bigraphs
can be used to model such systems. However, there are three aspects of bigraphs that seem to make
them especially well suited for the task:

1. As in the κ-calculus, the modeler is free to choose the signature and reaction rules that are
suitable for a particular model. This is in contrast to for example π-calculus models, where one
is restricted to a certain syntax and a single fixed reaction rule.

2. Molecular localization and dynamic compartmentalization is modeled straightforwardly in bi-
graphs using nesting and parametric reaction rules. BioAmbients have a rather flexible notion of
locations, while the other mentioned calculi are more limited in this respect. In particular, the
κ-calculus does not have locations at all.

3. As in the κ-calculus, bigraphs provide a formal graphical notation for both the static and dynamic
aspects of a model. This is not the case for the other mentioned calculi. In particular, Regev
et al. acknowledge that this a significant shortcoming of their BioAmbients and point to bigraphs
as a possible solution [RPS+04].

2. Summary 35

Indeed, the bigraphical models of cellular biology in [DDK08, BGM09a] demonstrate that the bi-
graphical notation provides a natural way to visually and formally model protein interactions and
cellular compartments. Combined with the stochastic semantics by Krivine et al. [KMT08], bigraphs
provide a formal foundation for natural models of cellular biology that can enable analysis and simu-
lation. However, analysis and simulation of stochastic bigraphs have yet to be developed.

The study presented in Part IV is part of an effort to develop a simulator for stochastic bigraphs
suitable for cellular models. Such models are usually large both in the number of reaction rules and in
the size of the bigraphical agent. Thus scalability in those two aspects is essential. The BPL Tool is ill-
suited for this purpose for two reasons: it was not designed with the counting of matches in mind, and
it is too inefficient as discussed in Section 2.1. We therefore set out to build a simulator from scratch,
taking inspiration from an efficient and scalable simulation algorithm for the κ-calculus [DFFK07].
The κ-calculus is a stochastic process calculus with a graphical notation that is designed to model
protein-protein interaction and which can be represented in bigraphs. Therefore it seems plausible
that the κ-calculus simulation algorithm can be generalized to stochastic bigraphs. We report on our
progress on this endeavor in the technical report in Chapter 7.

In order to present our work, we must first introduce the simulation algorithm for the κ-calculus
by Danos et al. which we call KaSim [DFFK07].

2.3.1 The κ Simulation Algorithm

For the sake of simplicity, we shall refrain from introducing the κ-calculus and instead present the
KaSim algorithm using bigraph terminology. Also, we shall not concern ourselves with the physical
underpinnings of the stochastic semantics of either the κ-calculus nor stochastic bigraphs, but simply
assume they are well-founded. As we shall see, our studies can be adequately explained regardless of
the interpretation of the stochastic semantics for bigraphs, and, in fact, most of our developments are
independent of these.

KaSim is a generalization of what is known as Gillespie’s algorithm, an algorithm for stochastic
simulation of coupled chemical reactions [Gil76, Gil77]. It is based on the idea of assigning probabilities
to reaction rules which are proportional to the number of instances of each rule in the current state of
the system, and letting the frequency of reaction be proportional to the total number of rule instances.

From the perspective of this summary, the relevant parts of KaSim are its representation of the
system state and its simulation loop.

The System State

The KaSim algorithm takes as input (1) a simulation duration, (2) an agent (the starting state), and
(3) a set of reaction rules, where each rule is assigned a positive rate constant, which is essentially the
speed with which that reaction takes place. In addition, it initially computes the following structures:

matches:
For each reaction rule, it finds all matches of the redex in the agent and stores them in the form
of graph embeddings. The so-called activity of a rule is its rate constant times the number of
matches of its redex.

system activity:
The system activity is the sum of the activities of all the reaction rules. Thus, if the system
activity is 0 no reaction is possible.

36 2.3. Scalable Simulation of Stochastic Bigraphs (Part IV)

rule activation map:
Through static analysis, it is determined whether applying one rule R0 can ever cause a new
instance, i.e., match, of another rule R1. This is written R0 ≺ R1 and ≺ is called the rule
activation map.

rule inhibition map:
Dually, it is statically determined whether applying one rule R0 can ever prevent an instance
of another rule R1, i.e., invalidate a match. This is written R0 #R1 and # is called the rule
inhibition map.

Instead of redex-reactum pairs, KaSim employs an alternative representation of reaction rules to
make the static analyses for the rule activation and inhibition maps more fine-grained: rules consist of
a redex and a set of actions describing how reaction modifies the redex. This allows the analyses to
determine whether a rule actually modifies something in an agent that another rule may depend on.

Simulation Loop

The simulation loop consists of two steps: the Monte Carlo step and the update step. In the Monte
Carlo step, two random choices are made, governed by the activity of the system and the rules respec-
tively2: a time advance is generated and a reaction is chosen, i.e., a reaction rule R and an instance
(i.e., match) of that rule. The update step is divided into three phases:

1. negative update:
The matches that will be invalidated by the chosen reaction are removed from the set of matches.
The set of matches that may be invalidated can be narrowed down by exploiting two facts: (i)
only a rule R′ with R#R′ may have matches that can be invalidated, and (ii) only matches that
rely on a part of the agent that will be modified can be invalidated.

2. rewrite:
Rewrite the agent according to the chosen rule and match.

3. positive update:
Find new matches of redexes. Again, two facts enable us to reduce the search space: (i) only a
rule R′ with R ≺ R′ may have new matches, and (ii) new matches must depend on a part of the
agent that was just modified.

The key to the efficiency and scalability of the KaSim algorithm is the incremental and localized nature
of these steps: the notion of modification allows us to only consider the modified part of the agent, the
size of which depends only on the size of the redex and is thus independent of the size of the agent.
The rule activation and inhibition maps reduce the dependency of the per-cycle simulation cost on the
size of the set of rules compared to the naive approach where all rules must be considered in both the
negative and positive update phases (though in the worst case all rules are related by # and ≺).

2.3.2 Towards Scalable Simulation of Stochastic Bigraphs
Our Approach

While the KaSim algorithm is conceptually simple, it relies on a number of concepts that have not
previously been developed for bigraphs: embeddings that are equivalent to matches, localized matching,

2The details of these random choices are irrelevant for this presentation; the full details are available in Section 7.3.

2. Summary 37

actions, and causality analysis at the level of rules. Furthermore, the dynamic theory of stochastic
bigraphs is not easily implementable for two reasons:

• it requires support, i.e., concrete bigraphs, for counting matches but is otherwise indifferent to
support in the sense that all other definitions close under support equivalence, and

• parametric reaction rules are treated as generators of infinite families of ground (non-parametric)
reaction rules, which clearly cannot be represented directly in an implementation.

In the technical report in Chapter 7 we address these topics in order to generalize KaSim to bigraphs.
Our work on the causality analyses for rules is not quite complete, but we give a detailed outline of
the approach and pinpoint the required results. The completed parts have been implemented in a
prototype called the stochastic bigraphical abstract machine (SBAM) which currently allows stochastic
simulation of certain BRSs: all controls must be active, reaction rules must be linear, and redexes
must be solid (more on this below) and consist of a single connected component.

The following paragraphs summarize our work on the various parts of KaSim for bigraphs:

Stochastic Parametric Reactive Systems It shines through in Milner’s presentation of the dy-
namic theory for bigraphs [Mil09] that the true aim was abstract bigraphs and that support was only
added to the theory to enable the derivation of labels (cf. Section 1.2.2). All the definitions of the
reaction semantics do their best to disregard support: either closure under support translation is ex-
plicitly assumed (the set of reaction rules), implicitly assumed (instantiation of parameters is only
defined up to support equivalence), or explicitly ensured (the reaction relation and the generation of
ground reaction rules from parametric rules). While this is fine in a setting where support is truly just
a mathematical tool, it becomes problematic when implementing stochastic bigraphs where support
must be handled explicitly in order to count matches. For that purpose, it must be clear where and
how support translation should be applied. In their definition of stochastic bigraphs, Krivine et al.
sidestep this problem by defining the stochastic semantics independently of the reaction semantics.
However, this leads to a conceptual gap: there is no explicit connection between a redex occurrence
leading to reaction (which is defined in terms of abstract bigraphs) and a redex occurrence in the
stochastic semantics (defined in terms of concrete bigraphs).

Similarly, the treatment of parametric reaction rules is handled in a mathematically elegant and
sound manner which is intractable in practice. As mentioned in Section 1.2.2, the dynamic theory of
bigraphs is defined as an instance of the more general reactive systems which do not include a notion
of parametric reaction rules. Instead, parametric bigraphical reaction rules are added to the theory by
treating them as generators of infinite sets of ground reaction rules, cf. Section 1.2.2.

To obtain a solid formal foundation for our implementation, we therefore develop an alternative
but equivalent presentation of the dynamic theory of bigraphs that is more amenable to direct imple-
mentation and unifies the reaction and stochastic semantics. More precisely, we develop what we call
stochastic parametric reactive systems (SPRSs), a generalization of reactive systems where support is
handled explicitly, there are no unnecessary support translations, parametric reaction rules are first-
class citizens, and the stochastic semantics are definitionally tied to the reaction semantics. We prove
that when support is abstracted away, SPRSs have the same reactions as reactive systems. Thus,
an abstract reactive system with a finite set of reaction rules can be directly, finitely, and faithfully
represented and simulated as a concrete SPRS.

The stochastic semantics of SPRSs generalizes Krivine et al.’s stochastic semantics for bigraphs
in three respects: (1) it is defined for parametric reaction rules, not just ground rules, (2) it allows
non-linear reaction rules, and (3) it is defined at the more general level of reactive systems and is thus
not bigraph specific.

38 2.3. Scalable Simulation of Stochastic Bigraphs (Part IV)

Bigraph Embeddings Previous works have defined matches as decompositions of the agent into
context, redex, and parameter (cf. e.g., Section 2.1.1) which is impractical to represent directly in a
stochastic simulator. Instead, the KaSim algorithm relies on a representation of matches as graph
embeddings: a structure preserving map from the entities of the redex to entities of the agent. These
are more tractable as we need not construct the context and parameter explicitly.

We have defined embeddings for general link graphs, place graphs, and bigraphs and proven, for
place graphs and bigraphs, that they are isomorphic to certain decompositions. In particular, an
embedding φ : R ↪→ a of a redex R into an agent a is isomorphic to a match. Furthermore, for an
interesting class of bigraphs, those that are solid, we have shown that embeddings are determined by
support translations of nodes. Solid bigraphs are interesting because many bigraphical models in the
literature have solid redexes. For example, all BRSs in [Mil09, JM04, KMT08] have solid redexes.

Besides rather straightforward injectivity and structure preservation conditions, the key to ensuring
correspondence between embeddings and decompositions is (a) to require that the embedding of an
edge covers all its points and, similarly, that the embedding of a node covers all of its children, and (b)
to require that a root is not mapped to a descendant of the embedding of a site. The latter requirement
reflects the fact that there are no bigraph operations that can make one root of a bigraph a descendant
of one of its other roots and thus such an embedding would have no corresponding decomposition. In
other words, the condition expresses the fact that roots do not just model possibly disjoint locations,
but subtrees that are disjoint.

Bigraph Edit Scripts The KaSim algorithm presumes a refined and precise causality analysis at
the level of rules based on a notion of modification. In both κ and bigraphs, the usual approach is to
define reaction rules as redex-reactum pairs and to define reaction as the replacement of a redex by the
corresponding reactum. In KaSim, however, it is assumed that a rule consists of a redex and a set of
actions which describe how reaction modifies the redex. Reaction is achieved by letting an embedding
of a redex mediate the corresponding actions to an agent.

We have taken a slightly different approach than the one employed for κ: instead of a set of actions,
where each entity of the redex can be modified at most once, we use a sequence of actions. This is
more in keeping with the tradition of graph theory from which we borrow the term edit scripts for
sequences of actions which are also known as edits [Bil05]. We write ∆ for edit scripts, R′ = ∆(R) for
the application of ∆ to a redex R resulting in reactum R′, and (H ′, φ′) = ∆(H,φ) for the application
of ∆ to the bigraph H mediated by the embedding φ : R ↪→H resulting in a bigraph H ′ and an
embedding φ′ : R′ ↪→H ′. We often abuse notation and write ∆(H,φ) for H ′.

We have defined a set of minimal edits for bigraphs and shown that edit scripts are sound and
complete with respect to the reaction rules and reactions of the redex-reactum approach. In more
detail, we have defined an alternative to SPRSs called reconfiguration systems (RCSs). An RCS is
equipped with so-called reconfiguration rules (R,∆) consisting of a redex R and an edit script ∆.
Reaction a _ a′ is defined as the application of an edit script mediated by an embedding φ : R ↪→ a
of the corresponding redex, i.e., a′ = ∆(a, φ). We have given constructions of reconfiguration rules
from reaction rules and vice versa, and these induce constructions of RCSs from SPRSs and vice
versa. Finally, we have proven that, when support is abstracted away, RCS and SPRSs have the same
reactions.

Thus, reconfiguration systems provide an alternative but equivalent dynamic theory for abstract
bigraphs with a notion of modification.

Rule Activation and Inhibition As discussed above, KaSim presumes the existence of static
analyses of rules to decide whether one rule R0 may prevent or cause another rule R1 to be applied,

2. Summary 39

resulting in the co-called inhibition map (R0 #R1) and activation map (R0 ≺ R1), repectively.
The KaSim paper does not actually define the inhibition and activation maps in terms of reactions,

but in terms of embeddings and modifications. Assuming two linear reconfiguration rules Ri = (Ri,∆i)
(i = 0, 1) the two maps are defined as follows:

inhibition map: R0 #R1 iff there is some agent a and embeddings φi : Ri ↪→ a such that cod(φ0) ∩
cod(φ1) contains at least one entity modified by R0.

activation map: R0 ≺ R1 iff there is some agent a and embeddings φ0 : ∆0(R0) ↪→ a, φ1 : R1 ↪→ a
such that cod(φ0) ∩ cod(φ1) contains at least one entity modified by R0.

It is implicitly assumed that these definitions imply that reactions generated by the related rules may
be in conflict or causally related, respectively. While this is perhaps reasonable for κ, it requires a
leap of faith and that leap only becomes larger when transferred to bigraphs which are more complex
than κ. In fact, we are quite sure that these definitions are not quite right for bigraphs and bigraph
embeddings. For example, given a bigraph embedding φ1 : R1 ↪→ a it is possible to modify an entity
in cod(φ1), resulting in agent a′, and still have the embedding φ1 : R1 ↪→ a′. Furthermore, the KaSim
paper does not specify how to construct the inhibition and activation maps for κ.

In our work, we therefore take a different approach: we define the inhibition and activation maps
in terms of reactions to ensure that they indeed characterize conflict and causality between reactions
at the level of rules. Only then do we relate these definitions to embeddings and edit scripts, which
we then use as a basis for a practical construction of the inhibition and activation maps based on
pullback-pushout (PP) diagrams in the category of bigraph embeddings.

PP diagrams can be understood as characterizations of overlaps between redexes:

pullbacks are overlaps: Intuitively, the pullback of two embeddings φi : Ri ↪→ a (i = 0, 1) of redexes
R0, R1 into the same bigraph a is the sub-bigraph identified by the overlap of the two embeddings.
Concretely, this sub-bigraph is given in the form of two embeddings pi : I ↪→Ri of a bigraph I
into each of the two redexes R0, R1 such that φ0 ◦ p0 = φ1 ◦ p1. When the embeddings do not
overlap I is the empty bigraph.

pushouts are minimal examples: Intuitively, the pushout of such a pullback is a minimal bigraph
where the two redexes overlap as described by the pullback. Concretely, the pushout is a pair of
embeddings oi : Ri ↪→H of the redexes into a minimal bigraph H such that o0 ◦ p0 = o1 ◦ p1.

Together, we call a pullback and its pushout a PP diagram. We conjecture that for any two redexes
there are a finite number of PP diagrams (up to iso on I and H) and that these can be constructed.
The foundation for this conjecture is that bigraphs are finite and it therefore seems very likely that
two bigraphs can only overlap in a finite number of ways that may be enumerated.

The approach requires that there are pullbacks and pushouts of pullbacks in the category of bigraph
embeddings, i.e., the category where bigraphs are objects and embeddings are arrows. We argue in
the paper that this is probably not the case if the category only contains embeddings that correspond
to decompositions. However, by relaxing the conditions on embeddings slightly the category should
have PP diagrams. In fact, we have a construction of PP diagrams in the category of link graph
embeddings, but have yet to prove it correct and, due to time constraints, the construction is omitted
from the paper.

Assuming we can construct them, PP diagrams should allow us to construct the inhibition and
activation maps as follows. In the case of inhibition, assume two rules R0,R1 and a PP diagram for
their redexes as defined above. Though it is not ground, the pushout H can be thought of as a minimal
agent with a given overlap of two embeddings. Thus, if the reactions of H, created by the two rules and

40 2.3. Scalable Simulation of Stochastic Bigraphs (Part IV)

embeddings are conflicting, then we have proof that R0 #R1. A similar argument applies to activation
analysis.

Anchored Matching A pillar in the scalability of the KaSim algorithm is that, after reaction, new
matches are only searched for in the parts of the agent that have been modified. In other words, KaSim
requires a localized matching algorithm that only searches a subset of the agent. Such an algorithm has
not yet been presented in the bigraph literature. Previously published matching algorithms, including
our own in Chapter 3, find matches anywhere in the agent. These algorithms are useful for the
initialization phase of KaSim, where all matches must be found, but it is unclear how to specialize
them to local matching.

The approach to localized matching for κ in [DFFK07] is to construct all partial embeddings of a
redex into modified parts of the agent and then see if they can be extended to total embeddings; we call
this anchored matching. A similar approach is feasible for bigraphs, but we propose a refinement which
exploits the construction of the activation map as discussed in the previous paragraph, by exploiting
the following observations:

• Edit scripts are defined such that whenever a rule R0 = (R0,∆0) is applied to an agent, we obtain
both a new agent a′ and an embedding φ0 : R′0 ↪→ a′ of its reactum R′0 = ∆0(R0) into that agent.

• For each rule R1 that is activated by R0, i.e., R0 ≺ R1, we have a set of PP diagrams on the form

I ⊂
p0

→ R′0

R1

p1

↓

∩

⊂

o1

→ H

o0

↓

∩

.

• Given such a PP diagram, if the map φ0 ◦ o−1
0 is a partial embedding of H into a′, we can

apply anchoring matching to find all total embeddings of H, φH : H ↪→ a′, satisfying φH �rng(o0)=

φ0 ◦ o−1
0 .

• By composing with o1, any embedding φ′ : H ↪→ a′ of H becomes an embedding of R1, φ′ ◦ o1 :
R1 ↪→ a, and thus we have found a match of R1.

We believe that this approach will improve matching efficiency considerably in many cases, since
it does not simply generate partial embeddings ad-hoc but precomputes the relevant ones.

Discussion and Future Work

Overall, our work indicates that it is indeed possible to generalize the KaSim algorithm to stochastic
bigraphs, at least for linear reaction rules. In fact, if we disregard the inhibition and activation maps,
which are not strictly necessary, our results give a solid formal simulation algorithm for stochastic bi-
graphs with localized and incremental updates at each simulation step. The efficiency of the algorithm,
however, has yet to be determined, both formally and empirically.

The individual developments in our work seem general enough that they should find applications
outside our stochastic simulator. For example, we expect that our work on bigraph embeddings can
help bridge the gap between bigraphs and graph rewriting, which Milner and Ehrig have already

2. Summary 41

explored to some extent [Ehr02, Mil05]. They in particular focused on the fact that in the traditional
graph rewriting approach, graphs are objects in a category whereas they are morphisms in the usual
bigraphical approach. Following ideas by Cattani [CLM00] and Sobocinsky [Sob02] they use the cospan
construction to turn objects into morphisms, and the coslice construction to turn morphisms into
objects, thereby enabling transfer of results. Our category of bigraph embeddings, which substantially
generalizes and corrects Milner’s category of ground link graph embeddings [Mil05], is a more direct
solution to creating a bigraphical category where bigraphs are objects.

Our SPRSs are related to, and their formulation inspired by, the parametric reactive systems of
Debois, where parametric reaction rules are also first-class citizens [Deb11]. However, contrary to our
formulation, Debois does not make explicit that context and parameter may be connected without the
involvement of the redex. This has the consequence that bigraphical reaction rules become generators
of infinite families of rules. Furthermore, we go further than Debois, by formally showing that our
formulation is equivalent to the usual (non-parametric) reactive systems.

Our set of edits are, while sound and complete, not necessarily optimal for all (or any) purposes.
They were chosen because they have simple definitions, but it would be interesting to explore other
options and their implications. For instance, we only allow nodes to be deleted if they have no children
whereas in the context of the tree edit distance problem one usually allows this; the children are then
simply moved to the parent [Bil05].

Our construction of edit scripts from reaction rules is rather naive: it essentially removes everything
in the redex and then builds up the reactum, which clearly eliminates the benefits of edit scripts. It
could be interesting to explore whether one can automatically derive better edit scripts. For example,
the κ-calculus implementation uses a convention where the common prefix of redex and reactum are
assumed to be unchanged by reaction. Alternatively, one could perhaps assign costs to the edits and
apply optimization techniques to derive optimal edit scripts as in the tree edit distance problem [Bil05].

In his book [Mil09], Milner outlined an alternative way of specifying the relation between entities
of redex and reactum that we achieve through edit scripts: he proposed to add a tracking map to
each reactum rule, which specifies the relation between identities in the redex and reactum. While
our approach is more complicated, it yields an elegant way to construct the inhibition and activation
maps and is more suitable for an efficient implementation in the sense that an edit script constitutes
a small-step recipe for reconfiguring the agent, whereby one avoids replacing the entire redex with the
reactum as in Milner’s approach.

Our work leaves some questions open:

• Does the category of bigraph embeddings have PP diagrams?

• Is there a finite set of PP diagrams for any pair of bigraphs?

• Is it sufficient to consider PP diagrams to construct the inhibition and activation maps?

• Is the anchored matching algorithm sound and complete?

We argue in the report that the answer to all of these questions is probably yes, but this will have to
be shown formally.

If our PP diagram approach to characterizing causality and conflict at the level of rules is correct,
it seems that it is a rather general and powerful tool. Besides enabling more efficient simulation, it will
for example also provide modelers with valuable insight into the potential interaction of their rules. We
also expect that the approach can be used for the dual purpose: characterizing parallel and sequential
independence [Roz97, EKMR99].

42 2.4. A Bigraphical Language for Cell Biology (Part V)

In parallel with our work, Perrone et al. [PDH12] have given an algorithm for approximating the
activation map (they call it causation) for reaction rules where redex and reactum are prime and
contain at least one node. This allows them to significantly reduce the search space in their model
checker for bigraphs [PDH12]. Our approach should give more precise results and thus enable more
efficient model checking.

2.4 A Bigraphical Language for Cell Biology (Part V)
As discussed in the previous section, our motivation for building an efficient and scalable simulator for
stochastic bigraphs is to enable simulation of models of cellular biology. Works by Damgaard et al.
[DDK08] and Bacci et al. [BGM09a] have already demonstrated that languages for such models can be
based on bigraphs. Their languages essentially extend the κ-calculus [DL04] with (dynamic) compart-
ments as in BioAmbients [RPS+04] by exploiting the notions of locality and parametric reaction rules
found in bigraphs. However, their languages do not require the full generality of bigraphs, though it is
unclear from their developments how much of the complexity of the bigraphical framework is actually
necessary to extend the κ-calculus with (dynamic) compartments. Furthermore, using bigraphs as the
framework for developing these languages cause their definitions and presentations to become quite
complex, especially when compared to their κ-calculus [DL04] and BioAmbients [RPS+04] counter-
parts which are defined in the usual style of process calculi. In our experience, this has the consequence
that researchers, who are unfamiliar with bigraphs, are alienated from the otherwise good ideas these
bigraphical languages contain. The study in Part V is an attempt at bridging this gap.

2.4.1 Formal Cellular Machinery
In the paper in Chapter 8, we present a process calculus approach to defining a bigraphical language for
cell biology. The developed language allows a natural representation of the κ-calculus and in addition
allows modeling of dynamic compartments and diffusion of molecules.

Our language unifies ideas from a number of calculi:

1. The cellular medium can be described as a graph, where nodes represent molecules and edges
represent physical connections between the molecules [DL03, FBH05, AK07, JLNV11].

2. Languages with a natural notion of location of reaction can be used to represent cellular com-
partments [RPS+04, PRC08, BMSMT06, KMT08, BGM09b].

3. Interactions between compartments and proteins or vesicle transformations can be described
using local patches of membranes, without committing to any particular global curvature [DP04,
Car08].

4. Laws governing interactions of molecular components can be engendered by a small set of gen-
erators [Car04].

Our Approach

We elide the bigraphical underpinnings and instead define a series of process calculi C0,C1,C2,C3 each of
which adds a feature to its predecessor. This approach pinpoints the complexity that comes from each
feature, such as dynamic compartments. The calculi have formal graphical notations which, through
a number of conventions, refine and specialize that of bigraphs to make the notation more lightweight
and convenient for the domain of cell biology.

2. Summary 43

The following list summarizes the characteristics of the four calculi. As a help to the reader of
this dissertation and to ease the following discussion, we relate the various aspects of the calculi to
bigraphs; the paper mostly leaves this connection implicit.

C0: an “untyped” calculus aimed at modeling protein-protein interactions. Proteins are modeled as
a collection of domains, each representing a substring of the amino acids of the protein, tied
together by a backbone. Each domain has a number of (interaction) sites which represent parts
of the domain that may physically interact with other proteins.

The dynamics of protein interactions is presented as a small set of generator rules which express
biologically sensible reactions. Modelers can refine and compose the generators but not change
them. The generators allow sites to connect or disconnect, proteins to detach or attach a domain,
and domains to degrade or be synthesized.

In terms of bigraphs, a protein is an edge (the backbone) connecting a collection of nodes (its
domains) with ports (their sites3).

C1: a “typed” version of the calculus that allows modelers to attach information to domains. In C0,
one cannot distinguish domains (except for the number of sites) which is insufficient from a
biological perspective since domains have very different properties depending on the amino acid
strings they represent. Instead of capturing this information in a signature or type system for the
calculus, we opted to embed this information in the terms themselves in the form of info-nodes
(for lack of a better word). This provides flexibility for modelers and makes it easy to specify
partial knowledge. A domain can have any number of info-nodes attached, which can record
information such as its name and its current 3D folding in space. This enables us to write rules
that only apply to certain types of domains/proteins which are in a particular state.

The extension only adds two simple rule generators: the ability to add or remove an info-node
from a domain.

Bigraphically, an info-node is a node where the control represents the information. Each domain
and its info-nodes are connected to a shared edge.

C1 allows a straightforward representation of the κ-calculus which we illustrate through an ex-
ample in the paper.

C2: an extension of the calculus with (dynamic) compartments. The extension has two aspects: (i)
the addition of compartments to the cellular structure we can describe, and (ii) an extension to
rules and transition semantics to handle the interaction of compartments.

(i) A compartment is simply a unary constructor that wraps a term, and has its own set of
info-nodes.

(ii) In order to allow rules to describe compartment interaction, we extend redexes and reactums
with two features:

• Named parameters that allow a rule to capture unspecified contents of compartments.
• A projective view of membranes: a redex consists of a wide term which is a sequence

of terms, where adjacent terms must be separated by exactly one membrane in any
context where the redex matches. In fact, the distance between two terms in the
sequence (assuming distance 1 between adjacent terms) is the number of membranes
that must separate the terms in a match of the redex.

3Interaction sites should not be confused with the sites of bigraphs.

44 2.4. A Bigraphical Language for Cell Biology (Part V)

We capture this projective distance constraint by giving an inference system for con-
structing contexts that satisfies it, and show this to be system sound and complete. This
inference system can be thought of as a matching algorithm, similarly to the matching
algorithm discussed in Section 2.1.1.

We add rule generators that allow handling of trans-membrane proteins, membrane budding,
compartment interaction, and diffusion between compartments. In the style of [DDK08], we
represent connected compartments using so-called channels: two info-nodes, one in each of the
compartments, connected by an edge. Diffusion is linear, i.e., we cannot discard or duplicate
parameters.

Bigraphically, compartments are nodes, parameters are sites, and wide terms are wide bigraphs.
The projective distance constraint for matches corresponds to a restriction to bigraphical contexts
where the parents of sites in the place graph are disjoint and form a subtree where the top-most
parent has at most two children, the others at most one (intuitively an inverted ’V’).

C3: an extension with diffusion of molecules. In C2, it is possible for molecules to only partially diffuse,
which makes little biological sense. We therefore extend rules with the means to essentially
specify that a parameter consists of a single connected component, i.e., a molecule, which can
then be moved as a whole. This is achieved by extending structural congruence such that it allows
a connected component to be ad-hoc encapsulated by a species constructor. A rule may then
capture connected components by wrapping parameters in a species constructor, whereby legal
parameters are restricted to connected components. The same mechanism also allows modeling
of reactions that occur between domains that are part of the same connected component such as
the formation of intramolecular connections.

This extension replaces the unsafe diffusion rule generator of C2 with a safe alternative, adds
a generator to handle diffusion for trans-membrane proteins, and a generator for creating in-
tramolecular connections.

Bigraphically, this corresponds to a non-standard constraint on parameters: only parameters
consisting of exactly one connected component are allowed.

We illustrate the expressivity of C3 by showing how it allows a simple and natural model of
receptor internalization: a patch of a cell membrane with a trans-membrane protein (a receptor)
buds inwards, capturing both receptor and any attached protein complex in a vesicle inside the
cell.

Discussion and Future Work

Our C-calculi are closely related to the C language of Damgaard et al. [DDK08], and somewhat related to
the biobigraphs of Bacci et al. [BGM09a]. To a large extent, Damgaard et al. limited the complexity
of their presentation by basing it on a family of bigraphical calculi for biological systems they had
developed for the occasion [DK08]. Though a vast improvement over a presentation based directly on
bigraphs, even these calculi come with a cost of complexity due to their generality, as well as limitations
as to how ideas can be expressed. In particular, these calculi relied on a very general extension to the
bigraphical theory, namely arbitrary predicates on parameters, in order to address the safe diffusion
issue we mentioned above.

By allowing ourselves the freedom of constructing our C-calculi from scratch, instead of bringing
the bigraphical framework into play from the beginning, we obtain a simpler and more modular theory,
where it is clear which aspects of the language are responsible for which aspects of the complexity of

2. Summary 45

its definition. On the other hand, we will later have to formally relate our calculi to the bigraphical
framework in order to be able to apply its results and, in particular, the SBAM simulator to C3.
However, we think of the bigraphical foundations of the C-calculi as a technicality that modelers
should not need to deal with; the generality and complexity of bigraphs seem to alienate many.

From the summary above, it should be clear that the standard formulation of bigraphs is insufficient
to give a direct model of C2 and C3: we need a formulation that will allow us (a) to restrict reaction
to certain contexts, and (b) allow some parameters to be required to be connected components. Let
us discuss these aspects in some detail:

(a) The usual theory of bigraphs already contains a mechanism for restricting reaction to certain
contexts, namely those that are active. This is a non-local condition, since it requires that all
ancestral nodes of every site have active controls. The restriction we require is strictly local:
only the parents of sites must satisfy a condition, as we discussed for C2 above.

In fact, this restriction eases the matching problem considerably. As Bacci et al. observed
[BMR10], the intractability of place graph matching stems from the width of reaction rules.
Since the rules of the C-calculi are not truly wide, we expect that the corresponding place graph
matching will be tractable. Of course, this restriction has no (direct) effect on link graph match-
ing. However, the link graph structure of C-calculi is quite restricted, so we are hopeful that
matching for C-calculi is easier than in the general case and perhaps even tractable.

(b) Recall from our discussion of binding in the background section (cf. Section 1.2.3) that, by
default, parameters are discrete, i.e., contain no edges, and if edges should be captured they
must be designated as binding.

While this approach seems reasonable for the models of calculi that motivated the development of
bigraphs, it is not very well suited for the C-calculi where links represent physical connections. In
this setting, it is more reasonable to require that parameters can only capture complete molecules.
We believe that this aspect can be solved by simply preventing parameters from being connected
to the context.

In addition, C3 has rules that require a parameter to consist of exactly one molecule. A direct
approach to supporting this in the bigraphical framework would be to add an annotation to
sites, indicating the requirements on the number of connected components allowed/required in
parameters.

These aspects require further investigation. In particular, the formulations of matches/embeddings
and stochastics will have to be adjusted.

On a related note, we believe that our approach to handling connected components in C3 by using
structural congruence is novel and elegant. It has allowed us to separate the connected component
requirement from the matching formulation, keeping both relatively simple.

Besides these rather technical aspects, our language should of course also be evaluated. We plan
to model and simulate a number of well-understood cellular mechanisms, to asses the modeling con-
venience of the language as well as its accuracy.

2.5 Conclusion
In the previous sections, we have summarized and discussed six individual works, each testing some as-
pect of the thesis that bigraphs may be used as an executable foundation for realistic formal languages.
In this section we draw some overall conclusions from these works with respect to that thesis.

46 2.6. Future Work

Bigraphs for Formal Languages

Our works have demonstrated that it is possible to use bigraphs as a foundation for rather direct
formalizations of some kinds of realistic formal languages. In particular, languages with natural notions
of locality and connectivity as well as dynamic semantics based on interaction. The flexibility and
modularity of bigraphs, which the freedom in choice of signature and reaction rules offers, allows
natural, domain specific models, a trait which is also aided by the formal graphical notation.

At the same time, our works also point out some areas where the theory of bigraphs needs to be
expanded in order to fully realize the potential as a foundation for realistic formal languages. Some of
these have already been addressed in the literature, but still lack constructive treatments that will make
them practical, in particular with respect to implementation. These areas include generalized binding,
higher-order reaction rules, data and calculation, sortings, and restrictions on parameters/contexts.

Furthermore, our bigraphical models (as well as many of those in the literature) suffer from a high
degree of complexity for the reader that is not an expert in bigraphs. We see a need for simpler and
more modular means to describe bigraphical models which, supplemented by good computer tools, can
lessen the steep learning curve.

Simulation of Bigraphs

The problem of simulating bigraphs has turned out to be rather challenging. While we started imple-
menting simulators for bigraphs five years ago, and others later followed suit, none of these simulators
are yet sufficiently efficient to satisfactorily simulate realistic models. Partly, this is due to a lack of
development resources, but mainly it is due to the NP-hardness of matching in bigraphs. Our term-
based matching algorithm, though provable correct and implementable, was too naive to be efficient
in practice.

It is therefore necessary to investigate how matching can be implemented such that it is efficient in
practice. Other fields have algorithms that are efficient for many large instances of NP-hard problems,
so perhaps it would be worthwhile to explore connections to such fields. An example is Sevegnani
et al.’s work on using a SAT-solver for the matching problem [SUC10].

At the same time, our work indicates that some bigraphical models do not need the full generality
of bigraphs, but adhere to certain restrictions on redexes and matches that could potentially make
matching easier. Of course, this means a trade-off between efficiency and generality of a tool, but we
deem that such a trade-off is necessary.

Finally, our work shows that it is possible to incrementally and locally update the set of matches
during simulation, which we expect will significantly improve the efficiency of bigraph simulators. Our
work on rule inhibition/activation analysis also indicate that one can reduce the simulation cost for
models with many rules.

2.6 Future Work

In the summary above, and in the works themselves, we discuss numerous lines of future work. Many
of those are natural continuations of the works themselves, while some address the overall development
of bigraphs as an executable foundation for realistic formal languages. In this section, we summarize
and organize the latter kind.

2. Summary 47

Modeling Convenience

As a practical framework for modeling formal languages, bigraphs are still young. Much theory has
been developed, which in principle provides many of the methods we called for in the previous section.
Generalized binding [Mil09], higher-order reaction rules [HNO06b, BBD+09], and rule tactics are
already at a stage where they can be applied in practical modeling. However, other aspects need to
be developed further before they become practical tools in bigraphical modeling.

For example, while Debois [Deb08] has treated sortings in great detail, his work does not provide
guidance on how to specify sortings for realistic languages. We should like to investigate a language for
describing sortings on bigraphs, which for instance should be able to capture the structural constraints
of WS-BPEL in our bigraphical formalization.

Also, we would like to see the free calculi and calculational BRSs of Debois [Deb11] turned into a
practical modeling tool, such that modelers will not have to reinvent the wheel for each model. We
envision a library of free calculi for various kinds of data structures and a notation for conveniently
embedding them into other BRSs. For example, one could imagine associating a data type with each
control and then let nodes with that control carry data of the specified type, as in Greenhalgh’s
bigraphspace tool [Gre09]. Calculation on data could be specified as part of reaction rules, e.g., in the
form of expressions over the values of the redex nested inside the reactum.

In a similar vein, we should also like to investigate how more general BRSs may be composed. For
example, our HomeBPEL model is a non-trivial extension of our WS-BPEL model that extends and
expands the signature and the set of rules. Perhaps this could be expressed as the composition of two
BRSs? Or one could imagine other operations on BRSs that succinctly could express the extension of
WS-BPEL to HomeBPEL.

Overall, it seems to us that a high-level language for specifying BRSs, incorporating the above
ideas, would be useful.

Analysis

An important motivation for defining formal semantics for a language in the first place is to enable
formal analysis of the models the language can express, and this of course also applies to bigraphical
languages.

Bundgaard and Sassone [BS06] and Elsborg et al. [EHS09] have explored type systems for bigraph-
ical models of the π-calculus. It would be interesting to explore if their approaches generalize to more
complex models such as the bigraphical languages of this dissertation. In particular, WS-BPEL invites
the development of a variety of type systems such as types for variables and session types.

We expect that Perrone et al.’s recent developments on refinement for BRSs [PDH11] will be
useful for bigraphical languages. It should allow us to relate concrete and abstract models of such
languages and could make it easier to define and reason about certain aspects of models. For example,
it would be interesting to investigate whether our WS-BPEL model is a refinement of a more abstract
π-calculus-like language where session types are easier to define and to reason about.

Finally, our own work on rule inhibition/activation should provide valuable insight to modelers
about how their rules may interact.

Tool Support

In order for bigraphs to become a truly practical foundation for formal languages, computer tools are
needed. Modeling assistance, simulation, and automatic analysis should all be implemented, preferably

48 2.6. Future Work

with a graphical user interface since the formal and intuitive graphical notation is a key trait of
bigraphs.

Currently, there is a coordinated effort between the research groups of Marino Miculan and Thomas
Hildebrandt on building a bigraph workbench. It aims to provide a unifying platform for the existing
tools for bigraphs and to provide a graphical user interface for modeling and experimenting with
bigraphs. We should like to integrate the BPL Tool and SBAM into this platform.

Regarding simulation, SBAM is still an early prototype and must be developed further before it is
ready for general use. Besides the outstanding issue of rule inhibition/activation analysis, we think it
could be worthwhile to explore whether the SAT-based approach of Sevegnani et al. [SUC10] could be
applied to efficiently find the initial set of matches.

Bibliography

[AK07] Oana Andrei and Hélène Kirchner. Graph rewriting and strategies for modeling bio-
chemical networks. In Proceedings of the 9th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC’07), pages 407–414, 2007.

[AM91] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In Third
International Symposium on Programming Language Implementation and Logic Pro-
gramming (PLILP’91), pages 1–13, 1991.

[BBD+09] Lars Birkedal, Mikkel Bundgaard, Søren Debois, Davide Grohmann, and Thomas Hilde-
brandt. Higher-order contexts via games and the int-construction. Technical Report
TR-2009-117, IT University of Copenhagen, January 2009.

[BDGM07] Lars Birkedal, Troels C. Damgaard, Arne John Glenstrup, and Robin Milner. Matching
of bigraphs. Electronic Notes in Theoretical Computer Science, 175(4):3–19, 2007.

[BGH+08a] Mikkel Bundgaard, Arne John Glenstrup, Thomas Hildebrandt, Espen Højsgaard, and
Henning Niss. Formalizing higher-order mobile embedded business processes with bind-
ing bigraphs. In Proceedings of the 10th international conference on Coordination Mod-
els and Languages (COORDINATION’08), Lecture Notes in Computer Science, pages
83–99. Springer Verlag, 2008.

[BGH+08b] Mikkel Bundgaard, Arne John Glenstrup, Thomas Hildebrandt, Espen Højsgaard, and
Henning Niss. Formalizing WS-BPEL and Higher Order Mobile Embedded Business
Processes in the Bigraphical Programming Languages (BPL) Tool. Technical Report
TR-2008-103, IT University of Copenhagen, 2008.

[BGM09a] Giorgio Bacci, Davide Grohmann, and Marino Miculan. Bigraphical models for protein
and membrane interactions. In Proceedings of the Third International Workshop on
Membrane Computing and Biologically Inspired Process Calculi (MeCBIC 2009), pages
3–18. EPTCS 11, 2009.

[BGM09b] Giorgio Bacci, Davide Grohmann, and Marino Miculan. A framework for protein and
membrane interactions. In Proceedings of the 3rd Workshop on Membrane Computing
and Biologically Inspired Process Calculi (MeCBIC’09), pages 19–33, 2009.

[BHH08] Mikkel Bundgaard, Thomas Hildebrandt, and Espen Højsgaard. Seamlessly distributed
& mobile workflow - or: The right processes at the right places. In Proceedings of the 1st
Workshop on Programming Language Approaches to Concurrency and Communication-
cEntric Software (PLACES), pages 64–69, June 2008.

49

50 Bibliography

[Bil05] Philip Bille. A survey on tree edit distance and related problems. Theoretical Computer
Science, 337:217–239, June 2005.

[BMR10] Giorgio Bacci, Marino Miculan, and Romeo Rizzi. Finding a forest in a tree. 2010.

[BMSMT06] Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo, and Angelo Troina. A
calculus of looping sequences for modelling microbiological systems. Fundamenta In-
formaticæ, 72(1–3):21–35, 2006.

[BPL07] The Bigraphical Programming Languages Group. The BPL Tool. http://www.itu.
dk/research/pls/wiki/index.php/BPL_Tool, 2007.

[BS06] Mikkel Bundgaard and Vladimiro Sassone. Typed polyadic pi-calculus in bigraphs.
In Proceedings of the 8th ACM SIGPLAN international conference on Principles and
Practice of Declarative Programming 2006, pages 1–12, 2006.

[Bun07] Mikkel Bundgaard. Semantics of Higher-Order Mobile Embedded Resources and Local
Names. PhD thesis, IT University of Copenhagen, 2007.

[BZ07] Mario Bravetti and Gianluigi Zavattaro. Contract based multi-party service composi-
tion. In Farhad Arbab and Marjan Sirjani, editors, Proceedings of the IPM Interna-
tional Symposium on Fundamentals of Software Engineering (FSEN’07), volume 4767
of Lecture Notes in Computer Science, pages 207–222. Springer Verlag, 2007.

[Car04] Luca Cardelli. Brane calculi - interactions of biological membranes. In Computational
Methods in Systems Biology, pages 257–278. Springer, 2004.

[Car08] Luca Cardelli. Bitonal membrane systems - interactions of biological membranes. The-
oretical Computer Science, 404(1-2), 2008.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web
services description language (WSDL) 1.1. W3C Note, W3C, March 2001.

[CG00] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

[CH09] Federica Ciocchetta and Jane Hillston. Bio-pepa: A framework for the modelling and
analysis of biological systems. Theoretical Computer Science, 410(33-34):3065–3084,
2009.

[CHY07] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-
centred programming for web services. In Rocco De Nicola, editor, Proceedings of
the 16th European Symposium on Programming (ESOP’07), volume 4421 of Lecture
Notes in Computer Science, pages 2–17. Springer Verlag, 2007.

[CLM00] Gian Luca Cattani, James J. Leifer, and Robin Milner. Contexts and embeddings
for closed shallow action graphs. Technical Report UCAM-CL-TR-496, University of
Cambridge, Computer Laboratory, July 2000.

[CMS05] Giovanni Conforti, Damiano Macedonio, and Vladimiro Sassone. Bigraphical logics
for XML. In Proceedings of the Thirteenth Italian Symposium on Advanced Database
Systems (SEBD’05), pages 392–399, 2005.

http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool
http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool

Bibliography 51

[DB06] Troels C. Damgaard and Lars Birkedal. Axiomatizing binding bigraphs. Nordic Journal
of Computing, 13(1–2):58–77, 2006.

[DDK08] Troels C. Damgaard, Vincent Danos, and Jean Krivine. A language for the cell. Tech-
nical Report TR-2008-116, IT University of Copenhagen, December 2008.

[Deb08] Søren Debois. Sortings & Bigraphs. PhD thesis, IT University of Copenhagen, January
2008.

[Deb11] Søren Debois. Computation in the informatic jungle. Technical Report TR-2011-147,
IT University of Copenhagen, 2011. (forthcoming).

[DF95] Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
I: Basic results. SIAM Journal on Computing, 24:873–921, August 1995.

[DFFK07] Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine. Scalable simulation of
cellular signaling networks. In Proceedings of the 5th Asian conference on Programming
languages and systems, APLAS’07, pages 139–157. Springer-Verlag, 2007.

[DHK11] Troels C. Damgaard, Espen Højsgaard, and Jean Krivine. Formal cellular machinery.
In Proceedings of SASB 2011, the Second International Workshop on Static Analysis
and Systems Biology, September 2011. Keynote talk. (to appear).

[DK08] Troels C. Damgaard and Jean Krivine. A generic language for biological systems based
on bigraphs. Technical Report TR-2008-115, IT University of Copenhagen, December
2008.

[DL03] Vincent Danos and Cosimo Laneve. Graphs for formal molecular biology. In Proceed-
ings of the 1st International Workshop on Computational Methods in Systems Biology
(CMSB’03), volume 2602 of LNCS, pages 34–46, 2003.

[DL04] Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoretical Computer
Science, 325, 2004.

[DP04] Vincent Danos and Sylvain Pradalier. Projective brane calculus. In Proceedings
of the 2nd International Workshop on Computational Methods in Systems Biology
(CMSB’04), pages 134–148, 2004.

[EEKR99] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, edi-
tors. Handbook of graph grammars and computing by graph transformation: Volume 2:
Applications, Languages, and Tools. World Scientific Publishing Co., Inc., 1999.

[Ehr02] Hartmut Ehrig. Bigraphs meet double pushouts. Bulletin of the EATCS, 78:72–85,
2002.

[EHS09] Ebbe Elsborg, Thomas T. Hildebrandt, and Davide Sangiorgi. Type systems for bi-
graphs. In Proceedings of the 4th International Symposium on Trustworthy Global
Computing (TGC’08), pages 126–140, April 2009.

[EKMR99] Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari, and Grzegorz Rozenberg, edi-
tors. Handbook of graph grammars and computing by graph transformation, Volume
3: Concurrency, Parallelism, and Distribution. World Scientific Publishing Co., Inc.,
1999.

52 Bibliography

[Fah05] Dirk Fahland. Complete Abstract Operational Semantics for the Web Service Business
Process Execution Language. Technical Report 190, Humboldt-Universität zu Berlin,
2005.

[Fai10] Alec Faithfull. Big Red. http://www.itu.dk/research/pls/wiki/index.php/Big_
Red, 2010.

[FBH05] James R. Faeder, Mickael L. Blinov, and William S. Hlavacek. Rule based modeling of
biochemical networks. Complexity, pages 22–41, 2005.

[FGV04] Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi. Specification and validation
of the business process execution language for web services. In Abstract State Machines
2004. Advances in Theory and Practice, volume 3052 of Lecture Notes in Computer
Science, pages 78–94. Springer Verlag, 2004.

[FGV06] Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi. An abstract machine ar-
chitecture for web service based business process management. In Christoph Bussler
and Armin Haller, editors, Business Process Management Workshops, volume 3812 of
Lecture Notes in Computer Science, pages 144–157. Springer Verlag, 2006.

[FR05] Dirk Fahland and Wolfgang Reisig. ASM-based semantics for BPEL: The negative
Control Flow. In Danièle Beauquier, Egon Börger, and Anatol Slissenko, editors, Pro-
ceedings of the 12th International Workshop on Abstract State Machines (ASM’05),
pages 131–151. Paris XII, March 2005.

[GCDC06] Pablo Garralda, Adriana B. Compagnoni, and Mariangiola Dezani-Ciancaglini. BASS:
Boxed ambients with safe sessions. In Proceedings of the 8th International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming (PPDP’06),
pages 61–72. ACM Press, 2006.

[GDBH10] Arne John Glenstrup, Troels Christoffer Damgaard, Lars Birkedal, and Espen Højs-
gaard. An implementation of bigraph matching. Technical Report TR-2010-135, IT
University of Copenhagen, December 2010.

[GHR92] Norbert Götz, Ulrich Herzog, and Michael Rettelbach. TIPP – a language for timed
processes and performance evaluation. report Technical Report 4/92, IMMD VII, Uni-
versity of Erlangen-Nurnberg, 1992.

[Gil76] Daniel T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics, 22(4):403–
434, 1976.

[Gil77] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[Gre09] Chris Greenhalgh. bigraphspace. http://bigraphspace.svn.sourceforge.net/,
2009.

http://www.itu.dk/research/pls/wiki/index.php/Big_Red
http://www.itu.dk/research/pls/wiki/index.php/Big_Red
http://bigraphspace.svn.sourceforge.net/

Bibliography 53

[HG11] Espen Højsgaard and Arne John Glenstrup. The BPL Tool: A tool for experimenting
with bigraphical reactive systems. Technical Report TR-2011-145, IT University of
Copenhagen, October 2011.

[HH11] Tim Hallwyl and Espen Højsgaard. Core BPEL: Semantic clarification of WS-BPEL
2.0 through syntactic simplification using XSL transformations. Technical Report TR-
2011-138, IT University of Copenhagen, March 2011.

[HH12] Tim Hallwyl and Espen Højsgaard. Core BPEL: Syntactic simplification of WS-BPEL
2.0. In Proceedings of SAC 2012, 27th ACM Symposium on Applied Computing, March
2012. (to appear).

[Hil96] Jane Hillston. A Compositional Approach to Performance Modelling. Cambridge Uni-
versity Press, 1996.

[HK11] Espen Højsgaard and Jean Krivine. Towards scalable simulation of stochastic bigraphs.
Technical Report TR-2011-148, IT University of Copenhagen, 2011.

[HM03] Kathrin Hoffmann and Till Mossakowski. Algebraic higher-order nets: Graphs and
Petri nets as tokens. In Martin Wirsing, Dirk Pattinson, and Rolf Hennicker, editors,
Proceedings of the 16th International Workshop on Recent Trends in Algebraic Devel-
opment Techniques (WADT’02), volume 2755 of Lecture Notes in Computer Science,
pages 253–267. Springer Verlag, 2003.

[HNO06a] Thomas Hildebrandt, Henning Niss, and Martin Olsen. Business process execution
languages as bigraphs and reactive XML. Technical Report TR-2006-85, IT University
of Copenhagen, 2006.

[HNO06b] Thomas Troels Hildebrandt, Henning Niss, and Martin Olsen. Formalising business
process execution with bigraphs and Reactive XML. In Paolo Ciancarini and Her-
bert Wiklicky, editors, Proceedings of the 8th International Conference on Coordination
Models and Languages (COORDINATION), volume 4038 of Lecture Notes in Computer
Science, pages 113–129. Springer-Verlag, January 2006.

[Hp07] Thomas Hildebrandt (principal investigator). Computer supported mobile adap-
tive business processes (CosmoBiz) research project. Webpage, 2007. http://www.
cosmobiz.org.

[HW05] Thomas Troels Hildebrandt and Jacob Wahl Winther. Bigraphs and (reactive) XML.
Technical Report TR-2005-56, IT University of Copenhagen, January 2005.

[JLNV11] Mathias John, Cédric Lhoussaine, Joachim Niehren, and Cristian Versari. Biochemical
reaction rules with constraints. In Proceedings of the 20th European Symposium on
Programming (ESOP’11), volume 6602 of LNCS, pages 338–357, 2011.

[JM04] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes (revised). Technical
Report UCAM-CL-TR-580, University of Cambridge – Computer Laboratory, February
2004.

[KMT08] Jean Krivine, Robin Milner, and Angelo Troina. Stochastic bigraphs. Electronic Notes
in Theoretical Computer Science, 218:73 – 96, 2008. Proceedings of the 24th Conference
on the Mathematical Foundations of Programming Semantics (MFPS XXIV).

http://www.cosmobiz.org
http://www.cosmobiz.org

54 Bibliography

[Lan64] Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal,
pages 308–320, January 1964.

[Lan65a] Peter J. Landin. A correspondence between ALGOL 60 and church’s lambda-notation:
Part I. Communications of the ACM, 8:89–101, February 1965.

[Lan65b] Peter J. Landin. A correspondence between ALGOL 60 and church’s lambda-notation:
Part II. Communications of the ACM, 8:158–167, March 1965.

[Laz02] Yuri Lazebnik. Can a biologist fix a radio? – or, what i learned while studying apoptosis.
Cancer Cell, 2(3):179–182, September 2002.

[Loh07] Niels Lohmann. A feature-complete Petri net semantics for WS-BPEL 2.0. In Mar-
lon Dumas and Reiko Heckel, editors, Proceedings of the 4th International Workshop
on Web Services and Formal Methods (WS-FM’07), volume 4937 of Lecture Notes in
Computer Science, pages 77–91. Springer Verlag, 2007.

[LPT06] Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A WSDL-based type
system for WS-BPEL. In Paolo Ciancarini and Herbert Wiklicky, editors, Proceedings
of the 8th international conference on Coordination Models and Languages (COOR-
DINATION’06), volume 4038 of Lecture Notes in Computer Science, pages 145–163.
Springer Verlag, 2006.

[LS03] Francesca Levi and Davide Sangiorgi. Mobile safe ambients. ACM Transactions on
Programming Languages and Systems (TOPLAS), 25(1):1–69, 2003.

[LVO+07] Niels Lohmann, Eric Verbeek, Chun Ouyang, Christian Stahl, and Wil M. P. van der
Aalst. Comparing and evaluating Petri net semantics for BPEL. Computer Science
Report 07/23, Eindhoven University of Technology, 2007.

[Mil99] Robin Milner. Communicating and mobile systems: the π-calculus. Cambridge Univer-
sity Press, 1999.

[Mil05] Robin Milner. Embeddings and contexts for link graphs. In Hans-Jörg Kreowski,
Ugo Montanari, Fernando Orejas, Grzegorz Rozenberg, and Gabriele Taentzer, editors,
Formal Methods in Software and Systems Modeling, volume 3393 of Lecture Notes in
Computer Science, pages 343–351. Springer Berlin / Heidelberg, 2005.

[Mil09] Robin Milner. The Space and Motion of Communicating Agents. Cambridge University
Press, 2009.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
parts I and II. Journal of Information and Computation, 100:1–40 and 41–77, 1992.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard ML. MIT
Press, Cambridge, MA, USA, 1990.

[MY07] Dimitris Mostrous and Nobuko Yoshida. Two session typing systems for higher-order
mobile processes. In Simona Ronchi and Della Rocca, editors, Proceedings of the 8th In-
ternational Conference on Typed Lambda Calculi and Applications (TLCA’07), volume
4583 of Lecture Notes in Computer Science, pages 321–335. Springer Verlag, 2007.

Bibliography 55

[PDH11] Gian Perrone, Søren Debois, and Thomas Hildebrandt. Bigraphical refinement. In
Proceedings of the 15th International Refinement Workshop (Refine’11), pages 20–36,
June 2011.

[PDH12] Gian Perrone, Søren Debois, and Thomas Hildebrandt. A model checker for bigraphs.
In Proceedings of the ACM Symposium on Applied Computing - Software Verification
and Tools Track 2012 (ACM SAC-SVT 2012), 2012. (to appear).

[PRC08] Gheorghe Păun and Francisco J. Romero-Campero. Membrane computing as a mod-
eling framework. Cellular systems case studies. In Formal Methods for Computational
Systems Biology, volume 5016 of LNCS, pages 168–214, 2008.

[Pri95] Corrado Priami. Stochastic π-calculus. The Computer Journal, 38(6):578–589, 1995.

[Roz97] Grzegorz Rozenberg, editor. Handbook of graph grammars and computing by graph
transformation, Volume 1: Foundations. World Scientific Publishing Co., Inc., 1997.

[RPS+04] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli, and Ehud Shapiro.
Bioambients: An abstraction for biological compartments. Theoretical Computer Sci-
ence, 325:141–167, 2004.

[RtHvdAM06] Nick Russell, Arthur H.M. ter Hofstede, Will M.P. van der Aalst, and Nataliya Mulyar.
Workflow control-flow patterns: A revised view. BPM Center Report BPM-06-22,
BPMcenter.org, 2006.

[San93] Davide Sangiorgi. From π-calculus to higher-order π-calculus - and back. In Fourth
International Conference on the Theory and Practice of Software Development (TAP-
SOFT’93), pages 151–166, 1993.

[Sob02] Pawel Sobocinsky. Relative pushouts in graphical reactive systems. February 2002.

[ST99] Ron Shamir and Dekel Tsur. Faster subtree isomorphism. Journal of Algorithms,
33(2):267–280, 1999.

[Sta05] Christian Stahl. A Petri net semantics for BPEL. Informatik-Berichte 188, Humboldt-
Universität zu Berlin, 2005.

[SUC10] Michele Sevegnani, Chris Unsworth, and Muffy Calder. A SAT based algorithm for the
matching problem in bigraphs with sharing. Technical Report TR-2010-311, University
of Glasgow, Department of Computing Science, 2010.

[WDW07] Matthias Weidlich, Gero Decker, and Mathias Weske. Efficient analysis of BPEL 2.0
processes using π-calculus. In Asia-Pacific Service Computing Conference, The 2nd
IEEE, pages 266–274, December 2007.

[WS-07] Web services business process execution language version 2.0, April 2007. http://
docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[XPa99] XML path language (XPath) version 1.0, 1999. http://www.w3.org/TR/xpath/.

[XSL99] XSL transformations (XSLT) version 1.0, 1999. http://www.w3.org/TR/xslt.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xslt

56 Bibliography

Part II

A Tool for Bigraphical Programming
Languages

57

Chapter 3

An Implementation of Bigraph
Matching
Arne J. Glenstrup, Troels C. Damgaard, Lars Birkedal, and
Espen Højsgaard

Abstract

We describe a provably sound and complete matching algorithm for bigraphical reactive sys-
tems. The algorithm has been implemented in our BPL Tool, a first implementation of bigraphical
reactive systems. We describe the tool and present a concrete example of how it can be used to
simulate a model of a mobile phone system in a bigraphical representation of the polyadic π
calculus.

Preface This chapter consists of the technical report

A. J. Glenstrup, T. C. Damgaard, L. Birkedal, and E. Højsgaard. An Implementation of Bigraph
Matching. Technical Report TR-2010-135, IT University of Copenhagen, December 2010.

3.1 Introduction

The theory of bigraphical reactive systems [13] provides a general meta-model for describing and
analyzing mobile and distributed ubiquituous systems. Bigraphical reactive systems form a graphical
model of computation in which graphs embodying both locality and connectivity can be reconfigured
using reaction rules. So far it has been shown how to use the theory for recovering behavioural theories
for various process calculi [12, 13, 15] and how to use the theory for modelling context-aware systems [2].

In this paper we describe the core part of our BPL Tool, a first prototype implementation of
bigraphical reactive systems, which can be used for experimenting with bigraphical models.

The main challenge of implementing the dynamics of bigraphical reactive systems is the matching
problem, that is, to determine for a given bigraph and reaction rule whether and how the reaction
rule can be applied to rewrite the bigraph. When studying the matching problem in detail, one finds
that it is a surprisingly tricky problem (it is related to the NP-complete graph embedding problem).

59

60 3.2. Bigraphs and Reactive Systems

Therefore we decided early on to study the matching problem quite formally and base our prototype
implementation on a provably correct specification. In previous work [1, 9], we gave a sound and com-
plete inductive characterization of the matching problem for bigraphs. Our inductive characterization
was based on normal form theorems for binding bigraphs [8].

In the present paper we extend the inductive characterization from graphs to a term representation
of bigraphs. A single bigraph can be represented by several structurally congruent bigraph terms.
Using an equational theory for bigraph terms [8], we essentially get a non-deterministic matching
algorithm operating on bigraph terms. However, such an algorithm will be wildly non-deterministic
and we thus provide an alternative, but still provably sound and complete, characterization of matching
on terms, which is more suited for mechanically finding matching. In particular, it spells out how and
where to make use of structural congruences.

We have implemented the resulting algorithm in our BPL Tool, which we briefly describe in Sec-
tion 3.8. We also present an example of a bigraphical reactive system, an encoding of the polyadic π
calculus, and show how it can be used to simulate a simple model of a mobile phone system.

Bigraphical reactive systems are related to general graph transformation systems; Ehrig et al.
[10] provide a recent comprehensive overview of graph transformation systems. In particular, bigraph
matching is related to the general graph pattern matching (GPM) problem, so general GPM algorithms
might also be applicable to bigraphs [11, 14, 20, 21]. As an alternative to implementing matching for
bigraphs, one could try to formalize bigraphical reactive systems as graph transformation systems and
then use an existing implementation of graph transformation systems. Some promising steps in this
direction have been taken [19], but they have so far fallen short of capturing precisely all the aspects
of binding bigraphs. For a more detailed account of related work, in particular on relations between
BRSs, graph transformations, term rewriting and term graph rewriting, see the Thesis of Damgaard
[7, Section 6].

The remainder of this paper is organized as follows. In Section 3.2 we give an informal presen-
tation of bigraphical reactive systems and normalisation techniques needed for the implementation.
In Section 3.3 we recall the graph-based inductive characterization, then in Section 3.4 we develop
a term-based inductive characterization, forming the basis for our implementation of matching. Sec-
tion 3.5 explains how we can restrict the kind of inferece trees the algorithm needs to consider, without
sacrificing completeness; this is then used in Section 3.6, where we describe how to translate the infer-
ence system into a working algorithm. We discuss how to handle nondeterminism in Section 3.7, and
in Section 3.8 we describe the BPL Tool and present an example use of it. Finally, we conclude and
discuss future work in Section 3.9.

3.2 Bigraphs and Reactive Systems
In the following, we present bigraphs informally; for a formal definition, see the work by Jensen and
Milner [13] and Damgaard and Birkedal [8].

3.2.1 Concrete Bigraphs
A concrete binding bigraph G consists of a place graph GP and a link graph GL. The place graph
is an ordered list of trees indicating location, with roots r0, . . . , rn, nodes v0, . . . , vk, and a number of
special leaves s0, . . . , sm called sites, while the link graph is a general graph over the node set v0, . . . , vk
extended with inner names x0, . . . , xl, and equipped with hyper edges, indicating connectivity.

We usually illustrate the place graph by nesting nodes, as shown in the upper part of Figure 3.1
(ignore for now the interfaces denoted by “ : · → ·”). A link is a hyper edge of the link graph, either

3. An Implementation of Bigraph Matching 61

Bigraph G : 〈3, [{}, {}, {x0, x2}], X〉 → 〈2, [{y0}, {}], Y 〉

0

1

2

y0 y1 y2

x0 x2

x1

e2

v0

v1
v2 v3

e1

X = {x0, x1, x2}
Y = {y0, y1, y2}

Place graph GP : 3→ 2

roots:

sites:

r0

v0

v1

s0

v2

r1

v3

s2 s1

Link graph GL : X → Y

names:

inner names:

y0 y1 y2

v0

v1

v2

v3

x0 x2 x1

e1

e2

Figure 3.1: Example bigraph illustrated by nesting and as place and link graph.

an internal edge e or a name y. Links that are names are called open, those that are edges are called
closed. Names and inner names can be global or local, the latter being located at a specific root or site,
respectively. In Figure 3.1, y0 is located at r0, indicated by a small ring, and x0 and x2 are located at
s2, indicated by writing them within the site. Global names like y1 and y2 are drawn anywhere at the
top, while global inner names like x1 are drawn anywhere at the bottom. A link, including internal
edges like e2 in the figure, can be located with one binder (the ring), in which case it is a bound link,
otherwise it is free. However, a bound link must satisfy the scope rule, a simple structural requirement
that all points (cf. next paragraph) of the link lie within its location (in the place graph), except for
the binder itself. This prevents y2 and e1 in the example from being bound.

3.2.2 Controls and Signatures

Every node v has a control K, indicated by v : K, which determines a binding and free arity. In the
example of Figure 3.1, we could have vi : Ki, i = 0, 1, 2, 3, where arities are given by K0 : 1, K1 : 2,
K2 : 3, K3 : 1 → 2, using K : f as a shorthand for K : 0 → f . The arities determine the number of
bound and free ports of the node, to which bound and free links, respectively, are connected. Ports
and inner names are collectively referred to as points.

In addition to arity, each control is assigned a kind, either atomic, active or passive, and describe
nodes according to their control kinds. We require that atomic nodes contain no nodes except sites;
any site being a descendant of a passive node is passive, otherwise it is active. If all sites of a bigraph
G are active, G is active.

A collection of controls with their associated kinds and arities is referred to as a signature.

3.2.3 Abstract Bigraphs

While concrete bigraphs with named nodes and internal edges are the basis of bigraph theory [13], our
prime interest is in abstract bigraphs, equivalence classes of concrete bigraphs that differ only in the

62 3.2. Bigraphs and Reactive Systems

names of nodes and internal edges1. Abstract bigraphs are illustrated with their node controls (see
Figure 3.14 in Section 3.8). In what follows, “bigraph” will thus mean “abstract bigraph.”

3.2.4 Interfaces

Every bigraph G has two interfaces I and J , written G : I → J , where I is the inner face and J the
outer face. An interface is a triple 〈m, ~X,X〉, where m is the width (the number of sites or roots), X
the entire set of local and global names, and ~X indicates the locations of each local name, cf. Figure 3.1.
We let ε = 〈0, [], {}〉; whenm = 1 the interface is prime, and if all x ∈ X are located by ~X, the interface
is local. As in the work by Milner [18] we write G : → J or G : I → for G : I → J when we are not
concerned about about I or J , respectively.

A bigraph G : I → J is called ground, or an agent, if I = ε, prime if I is local and J prime, and
a wiring if m = n = 0, where m and n are the widths of I and J , respectively. For I = 〈m, ~X,X〉,
bigraph idI : I → I consists of m roots, each root ri containing just one site si, and a link graph
linking each inner name x ∈ X to name x.

3.2.5 Discrete and Regular Bigraphs

We say that a bigraph is discrete iff every free link is a name and has exactly one point. The virtue
of discrete bigraphs is that any connectivity by internal edges must be bound, and node ports can
be accessed individually by the names of the outer face. Further, a bigraph is name-discrete iff it is
discrete and every bound link is either an edge, or (if it is a name) has exactly one point. Note that
name-discrete implies discrete.

A bigraph is regular if, for all nodes v and sites i, j, k with i ≤ j ≤ k, if i and k are descendants
of v, then j is also a descendant of v. Further, for roots ri′ and rj′ , and all sites i and j where i is
a descendant of ri′ and j of rj′ , if i ≤ j then i′ ≤ j′. The bigraphs in the figures are all regular, the
permutation in Table 3.1 is not. The virtue of regular bigraphs is that permutations can be avoided
when composing them from basic bigraphs.

3.2.6 Product and Composition

For bigraphsG1 andG2 that share no names or inner names, we can make the tensor product G1⊗G2 by
juxtaposing their place graphs, constructing the union of their link graphs, and increasing the indexes
of sites in G2 by the number of sites of G1. We write

⊗n
i Gi for the iterated tensor G0 ⊗ · · · ⊗Gn−1,

which, in case n = 0, is idε.
The parallel product G1 ||G2 is like the tensor product, except global names can be shared: if y is

shared, all points of y in G1 and G2 become the points of y in G1 ||G2.
The prime product G1 | G2 is like the parallel product, except the result has just one root (also

when G1 and G2 are wirings), produced by merging any roots of G1 and G2 into one.
We can compose bigraphs G2 : I → I ′ and G1 : I ′ → J , yielding bigraph G1 ◦ G2 : I → J , by

plugging the sites of G1 with the roots of G2, eliminating both, and connecting names of G2 with inner
names of G1. In the following, we will omit the ‘◦’, and simply write G1G2 for composition, letting it
bind tighter than tensor product.

1Formally, we also disregard idle edges: edges not connected to anything.

3. An Implementation of Bigraph Matching 63

3.2.7 Notation, Basic Bigraphs, and Abstraction

In the sequel, we will use the following notation:] denotes union of sets required to be disjoint;
we write {~Y } for Y0] · · ·] Yn−1 when ~Y = Y0, . . . Yn−1, and similarly {~y} for {y0, . . . , yn−1}. For
interfaces, we write n to mean 〈n, [∅, . . . , ∅], ∅〉, X to mean 〈0, [], X〉, 〈X〉 to mean 〈1, [{}], X〉 and (X)
to mean 〈1, [X], X〉.

Any bigraph can be constructed by applying composition, tensor product and abstraction to iden-
tities (on all interfaces) and a set of basic bigraphs, shown in Table 3.1 [8]. For permutations, when

Notation Example

Merge mergen : n→ 1 merge3 =
0 1 2

Concretion pXq : (X)→ 〈X〉 p{x1, x2}q =
0
x1

x1

x2

x2

Abstraction (Y)P : I→〈1, [Y], Z] Y 〉 ({y1, y2})({y3})p{y1, y2, y3, z}q =
0

y1

y1

y2

y2

y3

y3

z

z

Substitution
σ

~y/ ~X : X → Y [y1, y2, y3]/[{x1, x2}, {}, {x3}] =
x1

y1

x2

y2

x3

y3

Renaming
α, β

~y/~x : X → Y [y1, y2, y3]/[x1, x2, x3] =

x1

y1

x2

y2

x3

y3

Closure /X : X → {} /{x1, x2, x3} = x1 x2 x3

Wiring
ω

(id⊗ /Z)σ : X → Y
(id{y1,y2} ⊗ /{z1, z2})
[y1, z1, y2, z2] /
[{}, {x1, x2}, {x3, x4}, {x5}]

=

y1

x1 x2 x3

y2

x4 x5

Ion K~y(~X) : ({ ~X})→ 〈{~y}〉 K[y1,y2]([{x1},{x2,x3},{}]) =
K

y1 y2

x1x2x3

Permutation
π ~X

{i 7→ j, . . .} : 〈m, ~X,X〉 → 〈m,π(~X), X〉 {0 7→ 2, 1 7→ 0, 2 7→ 1}[{x},∅,{y}] =
1 2 0

y

y

x

x

Table 3.1: Basic bigraphs, the abstraction operation, and variables ranging over bigraphs.

used in any context, π ~XG or Gπ ~X , ~X is given entirely by the interface of G; in these cases we simply
write π ~X as π.

Given a prime P , the abstraction operation localises a subset of its outer names. Note that the
scope rule is necessarily respected since the inner face of a prime P is required to be local, so all points
of P are located within its root. The abstraction operator is denoted by (·)· and reaches as far right
as possible.

For a renaming α : X → Y , we write pαq to mean (α ⊗ id1)pXq, and when σ : U → Y , we let
σ̂ = (Y)(σ ⊗ id1)pUq. We write substitutions ~y/[∅, . . . , ∅] : ε→ Y as Y .

64 3.2. Bigraphs and Reactive Systems

Note that []/[] = /∅ = π0 = idε and merge1 = p∅q = π1 = id1, where πi is the nameless permutation
of width i.

3.2.8 Bigraphical Reactive Systems
Bigraphs in themselves model two essential parts of context: locality and connectivity. To model also
dynamics, we introduce bigraphical reactive systems (BRS) as a collection of rules. Each rule R %−→R′

consists of a regular redex R : I → J , a reactum R′ : I ′ → J , and an instantiation %, mapping each site
of R′ to a site of R, and mapping local names in I ′ to those of I, as illustrated in Figure 3.2. Interfaces

R

0 1
x1 x2

R′

0 1
x0

1 x
0
2 x1

1 x
1
2

% % = [1&[x0
1 7→ x1, x

0
2 7→ x2],

1&[x1
1 7→ x1, x

1
2 7→ x2]]

Figure 3.2: A reaction rule

I = 〈m, ~X,X〉 and I ′ = 〈m′, ~X ′, X ′〉 must be local, and are related by X ′i = X%(i), where % must be a
bijection between X ′i and X%(i). We illustrate % by ‘i := j’, whenever %(i) = j 6= i, or, alternatively,
by listing [%(0), . . . , %(m′ − 1)]. Given an instantiation % and a discrete bigraph d = d0 ⊗ · · · ⊗ dk with
prime di’s, we let %(d) = d%(0) ⊗ · · · ⊗ d%(k), allowing copying, discarding and reordering parts of d.

Given an agent a, a match of redex R is a decomposition a = C(idZ ⊗ R)d, with active context
C and discrete parameter d with its global names Z. Dynamics is achieved by transforming a into a
new agent a′ = C(idZ ⊗ R′)d′, where d′ = %(d), cf. Figure 3.3. This definition of a match is as given

matching

instantiating

composing

d

d′

a′C%

R′

R a

Figure 3.3: The reaction cycle

by Jensen and Milner [13], except that we here also require R to be regular. This restriction to regular
redexes R simplifies the inductive characterization of matching without limiting the set of possible
reactions, as sites in R and R′ can be renumbered to render R regular.

3.2.9 Bigraph Terms and Normal Forms
Expressing bigraphs as terms composed by product, composition and abstraction over basic bigraph
terms, Damgaard and Birkedal [8] showed that bigraphs can be expressed on normal forms uniquely
up to certain permutations and renamings. Further, they showed equivalence of term and bigraph
equality, which will allow us in Section 3.4 to base our implementation on terms rather than graphs.

3. An Implementation of Bigraph Matching 65

In this work, we use the normal forms shown in Figure 3.4, enabling us to express regular bigraphs
simply by removing the permutations. These normal forms are unique up to permutation of Si’s and
renaming of names not visible on the interfaces.

M ::= (idZ ⊗K~y(~X))N molecule
S ::= pαq | M singular top-level node
G ::= (idY ⊗mergen)(

⊗n
i Si)π global discrete prime

N ::= (X)G name-discrete prime
P,Q ::= (idZ ⊗ σ̂)N discrete prime
D ::= α⊗ (

⊗n
i Pi)π discrete bigraph

B ::= (ω ⊗ id(~X))D binding bigraph

Figure 3.4: Normal forms for binding bigraphs

3.2.10 Normalising
For normalising an arbitrary bigraph t, we define a normalisation relation t ↓B t′ for bigraph terms
(details are given in Figure 3.22 of Appendix 3.A.1), with the following property:

Proposition 1. For any bigraph terms t, t′, if t represents a bigraph b and t ↓B t′, then t′ represents
b as well, and is on B-normal form given in Figure 3.4.

The relation is straightforward, recursively normalising subterms and recombining the results; for
tensor product, the rule stated is

Bten

ti ↓B (ωi ⊗ id(~Yi)
)Di Di ≡ αi ⊗ (

⊗
j∈ni P

j
i)πi : Ii → 〈ni, ~Yi, Yi〉

ω =
⊗

i∈n ωi α =
⊗

i∈n αi id(~Y) =
⊗

i∈n id(~Yi)
π =

⊗
i∈n πi

P =
⊗

j∈n
⊗

i∈nj P
j
i D ≡ α⊗ Pπ

⊗
i∈n ti ↓B (ω ⊗ id(~Y))D

.

We find that the expression
⊗

j∈n
⊗

i∈nj P
j
i in general will lead to name clashes, because we can only

assume that outer, not inner names, of the ωi’s are disjoint.
One solution could be to rename names on P ji ’s outer face in the Bten rule. However, as Bten is

applied recursively at each level of tensor product, this would lead to multiple renamings of the same
names, causing inefficiency. Instead, we precede normalisation by a renaming phase described in the
following; it will prevent name clashes in normalisation.

3.2.11 Renaming
While renaming names used in a term might look trivial at first sight, it is in fact not entirely straight-
forward. First, inner and outer names of a term must not be renamed, or we would be representing
a different bigraph. Second, we cannot even require of a renamed term that all internal names are
unique, as a normalised subterm can contain several instances of the same name, due to the use of idY
in the normal form.

Thus, we need to identify a more refined notion of internal horizontal uniqueness, where a name
can be reused vertically in link compositions, but not horizontally in tensor products. To this end,

66 3.3. Inferring Matches Using a Graph Representation

given a term t, we conceptually replace all occurrences of /X by e1/x1 ⊗ · · · ⊗ en/xn, and K~y(~X) by
K~y(~e/ ~X), in effect naming uniquely each closed link. We then define a function linknames, mapping
terms to link namers (details are given in Figure 3.23 of Appendix 3.A.2). Using this function we
define a predicate normalisable, which identifies terms whose tensor products and compositions do not
produce subterms with name clashes, and is preserved by normalisation (details are given in Figure 3.24
of Appendix 3.A.2):

Proposition 2. For any bigraph term t, if normalisable(t), there exists a t′ such that t ↓B t′ and
normalisable(t′).

For the actual renaming, we define inductively a renaming judgment U ` α, t ↓β t′, β a V , where U
is a set of used names and α renames t’s inner names to those of t′, while β renames t’s outer names to
those of t′ and V extends U with names used in t′ (details are given in Figure 3.25 of Appendix 3.A.2).

We can show that renaming preserves the bigraph, and enables normalisation:

Proposition 3. Given a term t representing a bigraph b : 〈m, ~X,X〉 → 〈n, ~Y , Y 〉, we can derive
X ∪ Y ` idX , t ↓β t′′, β a V for some t′′, β, V , and set t′ = ((βglob)−1 ⊗ ̂(βloc)−1)t′′; then t′ represents
b, and normalisable(t′).

3.2.12 Regularising

As a regular bigraph can be expressed as a term containing permutations, we must define regularising
to represent it as a permutation-free term. This is done by splitting the permutations in the D- and
G-normal forms, recursively pushing them into the subterms where they reorder the tensor product of
Si’s.

While D’s permutation π must be a tensor product of πi’s—otherwise the bigraph would not be
regular—G’s permutation, on the other hand, need not be so. However, as the bigraph is regular, it
must be possible to split it into a major permutation π ~X and n minor permutations π ~Xi , based on the
local inner faces, ~X, of the Si’s. Then π ~X is elided by permuting the Si’s, and each π ~Xi permutation
is handled recursively in its Si (details are given in Figure 3.26 of Appendix 3.A.3).

We can show that regularisation is correct:

Proposition 4. Given a term t representing a regular bigraph b, we can infer t ↪→ t′, for some t′ where
t′ contains no nontrivial permutations, and t′ represents b.

3.2.13 Summary

A detailed illustration of the entire reaction cycle including the preceding transformation technologies
can be seen in Figure 3.5.

3.3 Inferring Matches Using a Graph Representation

In this section we recap matching inference using a graph representation as developed in [9]; this
representation is the basis for correctness proofs.

For simplicity, we will first consider just place graphs to explain the basic idea behind matching
inference.

3. An Implementation of Bigraph Matching 67

renaming

normalising

regularisingmatching

instantiating

composing

a

a

a

d

d′

a′

C%

R′

R

a

Figure 3.5: Details of the reaction cycle

3.3.1 Matching place graphs
A place graph match is captured by a matching sentence:

Definition 5 (Matching Sentence for Place Graphs). A matching sentence for place graphs is a 4-tuple
of bigraphs a,R ↪→C, d, all are regular except C, with a and d ground. A sentence is valid iff a = CRd.

We infer place graph matching sentences using the inference system given in Figure 3.6. Traversing

PRIME-AXIOM
p, id ↪→ id, p

ION
p,R ↪→ P, d

Kp,R ↪→ KP, d
SWITCH

p, id ↪→ P, d

p, P ↪→ id1, d

PAR
a,R ↪→ C, d b, S ↪→ D, e

a⊗ b, R⊗ S ↪→ C ⊗D, d⊗ e PERM
a,
⊗n

i Pπ−1(i) ↪→ C, πd

a,
⊗n

i Pi ↪→ Cπ, d

MERGE
a,R ↪→ C, d

merge a,R ↪→ merge C, d

Figure 3.6: Inference rules for deriving place graph matches

an inference tree bottom-up, the agent is decomposed, while constructing the context, using the ion,
merge and par rules. The perm rule permutes redex parts to align tensor factors with corresponding
agent factors.

At the point in the agent where a redex root should match, leaving a site in the context, the switch
rule is applied, switching the roles of the context and redex. This allows the remaining rules to be
reused (above the switch rule) for checking that the redex matches the agent. When a site in the redex
is reached, whatever is left of the agent should become (a part of) the parameter—this is captured by
the prime-axiom rule.

For a match with a redex R : m → n consisting of n nontrivial (i.e., non-identity) primes, the
inference tree will contain m applications of prime-axiom and n applications of switch. Further,
between any leaf and the root of the inference tree, switch will be applied at most once. The
structure of a matching inference tree will thus generally be as illustrated in Figure 3.7; rules applied
above switch match agent and redex structure, while rules applied below match agent and context
structure.

3.3.2 Matching binding bigraphs
Turning now to consider binding bigraphs, we extend the matching sentences to cater for links:

68 3.4. From Graph Matching to Term Matching

prime-axiom prime-axiom

prime-axiom

prime-axiom

prime-axiom

prime-axiom

switch

switch

switch

Figure 3.7: A sketch of the general structure of an inference tree for matching

Definition 6 (Matching Sentence for Binding Bigraphs). A (binding bigraph) matching sentence is a
7-tuple of bigraphs: ωa, ωR, ωC ` a,R ↪→C, d, where a,R,C and d are discrete with local inner faces, all
regular except C, with a and d ground. It is valid iff (id⊗ωa)a = (id⊗ωC)(idZ]V ⊗C)(idZ⊗(id⊗ωR)R)d.

This definition separates the wirings, leaving local wiring in a, R, C and d, while keeping global
wiring of agent, redex and context in ωa, ωR and ωC , respectively; this is possible for any agent, redex
and context [9]. The validity property shows how a valid matching sentence relates to a match, as
illustrated in Figure 3.8.

a

id⊗ ωa

agent → =

d

idZ
R

ωR id

idZ]V C

id⊗ ωC ← context

← redex

agent︷ ︸︸ ︷
(id⊗ ωa)a =

context︷ ︸︸ ︷
(id⊗ ωC)(idZ]V ⊗ C)(idZ ⊗

redex︷ ︸︸ ︷
(id⊗ ωR)R)d.

Figure 3.8: Decomposition of the bigraphs of a valid matching sentence

To reach a system for inferring valid matching sentences for binding bigraphs, we simply aug-
ment the place graph rules with wirings as shown in Figure 3.9, and add three rules for dealing with
purely wiring constructs, shown in Figure 3.10. A detailed explanation of the rules is available in the
literature [9], along with proofs of soundness and completeness of the inference system.

3.4 From Graph Matching to Term Matching

In this section we transform the graph based inductive characterisation of matching to be based on a
term representation in such a way that correctness and completeness is preserved.

While the graph representation of matching sentences is useful for constructing a relatively simple
inference system amenable to correctness proofs, it is not sufficient for an implementation based on
syntax, that is, bigraph terms. One bigraph can be represented by several different bigraph terms that
are structurally congruent by the axiom rules: a = a⊗ id0 = merge1 a, a⊗ (b⊗ c) = (a⊗ b)⊗ c and
merge(a ⊗ b) = merge(b ⊗ a). If, for instance, we were to match agent a = merge((K ⊗ L) ⊗M) with

3. An Implementation of Bigraph Matching 69

PRIME-AXIOM
σ : W] U → β : Z → U α : V →W τ : X → V p : 〈X] Z〉

σ(β ⊗ ατ), idε, σ ` p, id(V) ↪→ pαq,(β ⊗ τ̂)(X)p

ION
ωa, ωR, ωC ` ((~v)/(~X)⊗ idU)p,R ↪→((~v)/(~Z)⊗ idW)P, d α = ~y/~u σ : {~y} →

σ || ωa, ωR, σα || ωC ` (K~y(~X) ⊗ idU)p,R ↪→(K~u(~Z) ⊗ idW)P, d

SWITCH
ωa, idε, ωC(σ ⊗ ωR ⊗ idZ) ` p, id ↪→ P, d σ : W → U P : → 〈W] Y 〉 d : 〈m, ~X,X] Z〉

ωa, ωR, ωC ` p,(σ̂ ⊗ idY)(W)P ↪→ pU q, d

PAR
ωa, ωR, ωC || ω ` a,R ↪→ C, d ωb, ωS, ωD || ω ` b, S ↪→ D, e

ωa || ωb, ωR || ωS, ωC || ωD || ω ` a⊗ b, R⊗ S ↪→ C ⊗D, d⊗ e

PERM
ωa, ωR, ωC ` a,

⊗m
i Pπ−1(i) ↪→ C,(π ⊗ id)d

ωa, ωR, ωC ` a,
⊗m

i Pi ↪→ Cπ, d

MERGE
ωa, ωR, ωC ` a,R ↪→ C, d

ωa, ωR, ωC ` (merge ⊗ idY)a,R ↪→(merge ⊗ idX)C, d

Figure 3.9: Place graph rules (shaded) augmented for deriving binding bigraph matches

WIRING-AXIOM
y,X, y/X ` idε, idε ↪→ idε, idε

ABSTR
σa ⊗ ωa, ωR, σC ⊗ ωC ` p,R ↪→ P, d σa : Z →W p : 〈Z] Y 〉 σC : U →W P : → 〈U]X〉

ωa, ωR, ωC ` (σ̂a ⊗ idY)(Z)p,R ↪→ (σ̂C ⊗ idX)(U)P, d

CLOSE
σa, σR, idYR

⊗ σC ` a,R ↪→ C, d σa : → U] YR σR : → V] YR σC : →W] YC
(idU ⊗ /(YR] YC))σa, (idV ⊗ /YR)σR, (idW ⊗ /YC)σC ` a,R ↪→ C, d

Figure 3.10: Added inference rules for deriving binding bigraph matches

70 3.5. Normal Inferences

redex R = K, we would first need to apply the axioms to achieve R = merge((K ⊗ id0) ⊗ id0) before
being able to apply the merge and par rules.

In the following, we recast the matching sentences to be tuples of 3 wirings and 4 bigraph terms
ωa, ωR, ωC ` a,R C, d, with the same restrictions and validity as before, interpreting the terms
as the bigraphs they represent. Given this, adding just this one rule would be sufficient to achieve
completeness of the inference system:

STRUCT
a ≡ a′ R ≡ R′ C ≡ C ′ h ≡ h′ ωa, ωR, ωC ` a′, R′ C ′, h′

ωa, ωR, ωC ` a,R C, h

The struct rule says that we can apply structural congruence to rewrite any term a,R,C or h to
a term denoting the same bigraph. With the help of the equational theory for determining bigraph
isomorphism on the term level [8], we have essentially a nondeterministic algorithm for matching
bigraph terms—implementable in say, Prolog. A brief glance at the equational theory, shows us,
though, that the associative and commutative properties of the basic operators of the language would
yield a wildly nondeterminstic inference system, since we would need to apply structural congruence
between every step to infer a match. This is reminiscent of the problems in implementing rewriting
logic, that is, term rewriting modulo a set of static equivalences [5, 6, 16]. Consequentially, we abandon
the fully general struct rule. For the purposes of stating the completeness theorem below, we shall
need to refer to sentences derived from the ruleset for bigraphs (i.e., from section 3.3.2) recast to terms
with the help of the struct rule above. We shall write such sentences ωa, ωR, ωC ` a,R s C, h for
wirings ωa, ωR, ωC and terms a,R,C and h.

Definition 7. For wirings ωa, ωR, ωC and terms a,R,C and h, sentences ωa, ωR, ωC ` a,R s C, h
range over sentences derived from the rules of Figure 3.10—reading a,R,C and h as terms—extended
with the struct rule.

3.5 Normal Inferences
Next, we look at how to restrict the term based inductive characterisation of matching as an enabling
step for designing an algorithm. We define normal inferences, limiting the set of inferences we need to
consider.

Normal inferences is a class of inferences that are complete in the sense that all valid matching
sentences can be inferred, but suitably restricted, such that inferences can be built mechanically. In
particular, normal inference definitions for term matching spell out how and where to apply structural
congruence. As a main trick, we utilize a variant of the normal forms proven complete for binding
bigraphs (cf. Section 3.2.9), lending us a set of uniform representations of classes of bigraphs based
directly on terms for bigraphs; we define normal inferences that require each inference to start by
rewriting the term to be on normal form.

Before giving the format for normal inferences, we incorporate structural congruence axioms into
product and merge rules. We derive rules for iterated tensor product and permutations under
merge, arriving at the inference system shown in Figure 3.11. In this inference system, the terms
in the conclusion of every rule except dnf is in some normal form as given by Figure 3.4, where e
is a discrete prime (p) or global discrete prime (g). An expression JtKG means term t expressed on
G-normal form—for instance, JpαqKG means (idY ⊗merge1)(

⊗1
i pαq)—and similarly for the remaining

normal forms. The expression %̄(n,m) denotes the set of n-m-partitions. An n-m-partition % is a
partition of {0, . . . , n− 1} into m (possibly empty) subsets, and for i ∈ m, %i is the ith subset. Given
a metavariable X , X ranges over iterated tensor products of X ’es. As indicated by the superscript,

3. An Implementation of Bigraph Matching 71

PAX
σ : W] Z → α : V →W τ : X → V g : 〈X] Z〉

σ(idZ ⊗ ατ), idε, σ ` g, Jid(V)KP JpαqKG, J(idZ ⊗ τ̂)(X)gKP

ION
σa, σR, σC ` (id⊗ (~v)/(~X))n, P (id⊗ (~v)/(~Z))N, q α = ~y/~u σ : {~y} →

(σ || σa), σR, (σα || σC) ` J(idU ⊗K~y(~X))nKG, P J(idW ⊗K~u(~Z))NKG, q

SWX

σ : W → U G : → 〈W] Y 〉 q : 〈n, ~X,X] Z〉 X = { ~X}
σa, idε, σ

C(idZ ⊗ σ ⊗ σR) ` g, J⊗n
i id(Xi)K

P G, q

σa, σR, σC ` g, J(idY ⊗ σ̂)(W)GKP JpUqKG, q

PAREn
σ′ : IR → Ia (∀i ∈ n) σa

i , σ
R
i , σ || σC

i ` ei, P i Ei, qi(
Ia || n

i
σa
i

)
,
(
IR || n

i
σR
i

)
,
(
σ′ || σ || n

i
σC
i

)
`⊗n

i ei,
⊗n

i P i
⊗n

i Ei,
⊗n

i qi

PARE≡

P ′ij = Pj+
∑
r∈i lr

q′ij = qj+
∑
r∈i kr

P ′ij : 〈kij , ~Xij〉 → ki =
∑
j∈li kij

σa, σR, σC `⊗n
i ei,

⊗n
i

⊗li
j P
′
ij

⊗n
i Ei,

⊗n
i

⊗ki
j q′ij

σa, σR, σC `⊗n
i ei,

⊗m
i Pi

⊗n
i Ei,

⊗m′

i qi

PERE
σa, σR, σC ` e,⊗n

i Qπ−1(i) E,
⊗m

i qπ̄−1(i)

σa, σR, σC ` e,⊗n
i Qi Eπ,

⊗m
i qi

MER
σa, σR, σC `⊗m

i (id⊗merge)
⊗

j∈%i,%∈%̄(n,m)mj , P (
⊗m

i JSπ−1(i)KG)π̄, q

σa, σR, σC ` (id⊗merge)
⊗n

i mi, P (id⊗merge)
⊗m

i Si, q

ABS
σa
L ⊗ σa, σR, σC

L ⊗ σC ` g, P G, q σa
L : Z →W σC

L : U →W G : → 〈U]X〉
σa, σR, σC ` (id⊗ σ̂a

L)(Z)g, P (id⊗ σ̂C
L)(U)G, q

CLO
σa, σR, idYR

⊗ σC ` p, P Qπ, q

(id⊗ /(YR] YC))σa, (id⊗ /YR)σR, (id⊗ /YC)σC ` p, P Qπ, q

DNF

a ≡ p R ≡ P C ≡ Qπ h ≡ q p, P ,Q, q are on normal form R is regular
ωa, ωR, ωC ` p, P Qπ, q

ωa, ωR, ωC ` a,R C, h

Figure 3.11: Inference rules for binding bigraph terms

72 3.5. Normal Inferences

rules perE , parEn and parE≡ can be used either on discrete primes p and P or global discrete primes g
and G.

The main differences from the preceding inference system is that we have replaced the binary par
rule by two iterative par rules, parEn and parE≡, and specialised the merge rule into a rule, mer, that
makes the partitioning of children in an agent node explicit. The parE≡ rule splits up an iterated tensor
product into a number of products matching agent factors, while parEn performs the actual inductive
inference on each of the factors. (Note, by the way, that parE≡ and merE≡ correspond just to particular
instances of the struct-rule, that we abandoned above.)

Furthermore, note that the usage of the previous wiring-axiom-rule for introducing idle linkage
has been inlined to a side-condition on a slightly generalized par-rule (i.e., the parEn-rule). The σ′ in
that rule allows us to introduce idle linkage in redex and agent, and link them in context; as previously
allowed by the wiring-axiom-rule. Hence, parEn also serves as an axiom, introducing 0-ary products
of idε’s on G- and P -normal forms.

While this inference system is more explicit about partitioning tensor products (in the mer and
parE≡ rules), there is still a lot of nondeterministic choice left in the order in which the rules can be
applied. To limit this, we define normal inferences based, essentially, on the order rules were used in
the proof of completeness [9]. We derive a sufficient order that still preserves completeness:

Definition 8 (Normal Inference). A normal inference is a derivation using the term matching rules
of Figure 3.11 in the order specified by the context free grammar given in Figure 3.12.

DG ::= PAX · · ·
∣∣∣ ION

ABS
DP

· · ·
· · ·

∣∣∣ SWX
D′P
· · · D′G ::= PAX · · ·

∣∣∣ ION
ABS

D′P
· · ·
· · ·

DP ::= DG

∣∣∣ MER
PERG

PARG
≡

PARG
n

DG · · · DG

· · ·
· · ·
· · ·
· · · D′P ::= D′G

∣∣∣ MER
PERG

PARG
≡

PARG
n

D′G · · · D′G
· · ·
· · ·
· · ·
· · ·

DB ::= DNF
CLO

PERP

PARP
≡

PARP
n

ABS
DP

· · · · · · ABS
DP

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

Figure 3.12: Grammar (BNF) for normal inferences for binding bigraphs with start symbol DB

Now we can give the main theorem stating that normal inferences are sufficient for finding all
valid matches. The following theorem states formally for every sentence derivable with the ruleset for
bigraphs recast to bigraph terms by extending with struct, that such a sentence is also derivable as
a normal inference.

Theorem 9 (Normal inferences are sound and complete). For wirings ωa, ωR, ωC and terms a,R,C, d,
we can infer ωa, ωR, ωC ` a,R s C, d iff we can infer ωa, ωR, ωC ` a,R C, d using a normal
inference.

3. An Implementation of Bigraph Matching 73

Proof. (Sketch) By induction over the structure of the derivation of the sentence ωa, ωR, ωC `
a,R s C, d. We case on the last rule used to conclude this sentence. By the induction hypothesis (IH),
we can conclude a normal derivation of the sentence used for concluding ωa, ωR, ωC ` a,R s C, d.

struct: By IH, we can construct a normal derivation of ωa, ωR, ωC ` a′, R′ C ′, d′, with
a = a′, R′ = R, C ′ = C and d′ = d. This normal derivation can be used directly to conclude also
ωa, ωR, ωC ` a′, R′ C ′, d′.

prime-axiom: We produce the needed normal inference by starting with an application of pax,
which introduces the needed prime bigraphs and wiring—that is, each term being equal up to structural
congruence to the sentence concluded with prime-axiom. Now we proceed to build the needed normal
inference by a building first a DP and then a DB-inference. All steps add only term structure to match
a particular normal form, while not changing the denotation of the terms.

ion: By IH, we can construct a normal derivation of ωa, ωR, ωC ` ((~v)/(~X)⊗idU)p,R ((~v)/(~Z)⊗
idW)P, d. For this case, we have to unroll that normal derivation up across the DB production except
for the last abs-step, concluding with a parP

1 step (since we know p and P are prime). We now have a
DP normal inference with an added abs-step, which we can use for concluding an ion-step introducing
our needed ion. Referring to the grammar in Figure 3.12, we see that this produces a DG-inference,
which we have to lead through two series of par-per-mer steps (and one abs-step), to produce a full
normal inference.

switch: This case needs a little extra care. First, we point out two properties of normal derivations:
(i) any DG and DP inference without swx is also a D′G or D′P inference, respectively; and, (ii) any
sentence, ωa, idε, ωC ` a, id C, h has a normal derivation with no swx-steps. Both are easily verified.

Now, by the IH we can construct a normal derivation of a sentence ωa, idε, ωC(σ ⊗ ωR ⊗ idZ) `
p, id P, d for global P . By property (ii), we can assume that this normal derivation does not contain
any applications of swx. We unroll this normal derivation up across the whole DB production, . This
leaves us with a DP-type normal derivation, which by property (i), we can use also as D′P derivation.
Hence, we can apply swx to obtain a DG derivation. We proceed to build first a DP type inference,
and then a DB type inference, in particular applying again abs to introduce local linkage in p.

par: By IH, we can construct normal derivations of ωa, ωR, ωC||ω ` a,R C, d and ωb, ωS, ωD||ω `
b, S D, e. Each of these normal derivations we can unroll up to the last application of parP

n Di and
Ej , applied for concluding these parP

n steps. To construct the required normal inference we simply let
instead a single parP

n step utilize all of the normal inferences Di and Ej .
perm: By IH, we can construct a normal derivation of ωa, ωR, ωC ` a,⊗m

i Pπ(i) C, (π ⊗ idZ)d.
Unrolling this normal derivation up through the applications of dnf, clo, and perP, we can edit the
perP-step to also move the permutation π to the context.

merge: By IH, we can construct a normal derivation of ωa, ωR, ωC ` a,R C, d for global a and
C. We unroll this derivation up across the DB production to obtain n DP-derivations (for a and C of
width n). We may consider these as DG-derivations, also. We combine these in a single application of
parG

n , and, after a parP
≡ and a per-step, we apply mer to merge the roots as required by the case.

We conclude by adding term structure to the terms of this DP-inference as required by the normal
form and lead it through the steps to produce a DB-derivation.

wiring-axiom: As sketched in the text above, introduction of idle names is now handled by parP
n .

For this case, we simply start with a parP
0 -step and proceed through the grammar for DB to produce

a normal inference as needed.
abstr: By IH, we can construct a normal derivation of σa ⊗ ωa, ωR, σC ⊗ ωC ` p,R P, d.

We unroll this normal derivation up across the entire DB-inference to obtain a DP type inference.
(We know there is only one DP-inference, as p and P are prime.) We construct the required DB

inference by starting with a modified abs-step, where we introduce the required abstractions and local

74 3.6. Bigraph Matching Algorithm

substitutions.
close: By IH, we can construct a normal inference for a sentence with only substitutions (i.e.,

with no closed links). We simply unroll this normal inference up across the clo-step, and instead, to
produce the needed normal inference, close the needed names in a new clo-step.

Normal inferences are sufficiently restricted such that we can base our prototype implementation
on mechanically constructing them.

3.6 Bigraph Matching Algorithm

In this section, we show how to interpret the inference rules as functions—achieving an implementation
proven correct in great detail.

In general, an inference tree can be divided into two parts: the twigs of the tree, consisting of all the
rule applications above a swx rule application, and the base of the tree, consisting of the remaining
rule applications, cf. Figure 3.13. The base and the swx rule applications determine the locations

pax′ pax′

pax′
pax′

pax′

par′n

swx swx swx
paxparn

clo
dnf

twigs

base

Figure 3.13: A sketch of the general structure of a normal inference tree for matching; dashed lines
represent rules omitted for brevity

in the agent at which the roots of the redex are matched, and each twig determines how the place
graph subtree below a redex root is matched to the corresponding subtree in the agent. Each pax leaf
determines a component of the parameter, and each parn leaf corresponds to a leaf node in the agent.

We turn the declarative matching specification of the preceding section into a matching algorithm
by considering each rule operationally. By implementing the inference system faitfully rule by rule, we
ensure that the proof of completeness is valid also for the implemented algorithm.

All rules of Figure 3.11 except swx, clo and dnf can be applied in two flavours: below and above
a swx rule. We distinguish these applications using primes (′) for rules applied above a swx rule.

The dnf rule is concerned with normalising a and R, which is done using the algorithm described
in Section 3.2.10, so for the remaining rules of the base of the tree we have as input to the algorithm
wirings ωa, ωR and discrete bigraphs p̄ (agent) and P̄ (redex). The goal is to find context wiring ωC,
context term Q̄π and parameter term q̄.

In general, there are zero or more matches, so in the implementation the application of each rule
returns a lazy list of matches, each containing a context wiring, along with context and parameter
bigraphs.

As the matching inference starts at the root of the inference tree, we will do the same, considering
each rule of Figure 3.11 in turn, and giving an operational interpretation of it:

3. An Implementation of Bigraph Matching 75

3.6.1 Rule Applications in the Base of the Tree

clo: Operationally, clo opens ωa and ωR, producing σa and σR and assigning fresh names YR to
edges in ωR.

[Aside: We cannot generally conclude there are no matches if the number of edges in ωa is smaller
than the number of edges in ωR! But the number of port-connected edges in ωR must be greater
than or equal to the number of edges in ωa. Unfortunately, port-connectedness is expensive to
determine in the term representation.]

In the implementation, we represent σR as σR
e ⊗ σR

n , where σR
n contains all the outer names of ωR,

and σR
e : Xe → YR contains the edges of ωR for some Xe.

As we do not yet know which edges in ωa : → W match which names in YR, we represent σa as
ασa

e ⊗ σa
n, where σa

n contains all the open links of ωa, and α is to be constructed during (i.e., returned
by) the rest of the inference.

Inference must be done under the following condition:

• links in σR
e must only be matched with links in ασa

e

because redex edges can only match agent edges, not open links.
When the premise has been inferred, yielding idYR

⊗ σC, we determine σC : → W] YC (as YR is
known), and then YC = (W] YC) \W . Finally, ωC = (id⊗ /YC)σC.

abs: During the inference, abs adds the links σa
L to σa

n; the inner names of σa
L are collected in a

set L.
As σa

L contains links bound in the agent, inference must be done under the following condition:

• links in σa
n whose inner names are in L must not be matched via σR, but must be matched via

σ (the local outer names of the redex) in the swx rule.

This enforces the scoping rule for the resulting context bigraph.
When the premise of abs has been inferred, σC

L is computed by restricting the outer face of the
context wiring to W , the outer names of σa

L.
mer: Taking r be the outer width of redex P̄ , we let m = r+1, and compute all partitions of width

m. Setting m > r allows parts of the agent to not be matched by the redex (li = 0 in parEn), that
is, to become part of the context. For each partition, the premise is inferred, and if the permutation
π̄ in the returned context really is a pushthrough of some permutation π, the factors Si of the tensor
product are permuted before they are returned.

per: For each n-permutation π, π̄ is computed by pushing π through
⊗i

nQi. After the premise
has been inferred on the permuted redex primes, π̄ is used to permute the resulting parameter primes
accordingly before they are returned.

parE≡: For each split of m into n parts,
⊗n

i

⊗li
j P
′
ij is computed, and after the premise has been

inferred, the factors of the resulting parameter tensor product are concatenated into one tensor product
before returning context and parameter.

parEn: For each i, the global outer names of ei is used to compute σa
e,i, σ

a
n,i by restriction, and

similarly for P̄i and σR
e,i, σ

R
n,i. The context wirings resulting from inferring the premise are combined

using parallel product, but allowing inner name clashes as long as each operand maps the inner names
to the same outer name.

ion: Letting Y = {~y}, we split σa
e = σYe || σa′

e according to whether the inner names are in Y or
not; and similarly for σa

n = σYn || σa′
n . Fresh names ~v are created

76 3.7. Nondeterminism

3.6.2 Application of the swx Rule
As the swx rule preserves σa, its representation is not changed above the swx rule. As clo requires
the resulting σC to be of the form idYR

⊗ σC, where σR
e : → YR, the third wiring above swx is

(idYR
⊗ σC)(idZ ⊗ σ ⊗ σR

e ⊗ σR
n) = σR

e ⊗ σC(idZ ⊗ σ ⊗ σR
n). Letting σC

n = σ ⊗ σR
n , we thus represent

the context wiring above the rule by σC
e ⊗ σC(idZ ⊗ σC

n).
In the twigs we are thus given wirings σa

e , σ
a
n, σ

R
e , σ

R
n , σ

C
e , σ

C
n and terms p̄ (agent) and P̄ (redex).

The goal is to check that p̄ matches P̄ , and find σC, Z, α and q̄, as we want ωa = ασa
e ⊗ σa

n, ωR =
σR

e ⊗ σR
n , and ωR = σC

e ⊗ σC(idZ ⊗ σC
n) in the judgment ωa, ωR, ωC ` p̄, id P̄,̄ q above the swx

rule.

3.6.3 Rule Applications in the Twigs
abs′: During the inference, the abs′ rule adds links to σC. By adding them to σC

e , not σC
n , they are

treated like internal edges in R, and thus not linked to the parameter via idZ .
mer′: For each m-permutation π, π̄ is computed; for each partition ρ ∈ ρ̄(n,m) of n into m

(possibly empty) subsets, the tensor product of mj ’s are computed, and then the premise is inferred,
returning σC, α and q̄.

per′: The premise is inferred, and the resulting q̄ are permuted using π̄ before they are returned.
par′≡: The premise is inferred, and the resulting list of n tensor products are concatenated and

returned as one product ⊗mi qi.
par′n: Taking par′ literally, σa and σC must be split when performing the subinferences. However,

as the inner face of σa must always match the global outer face of a, explicit splitting of σa
e , σ

a
n, σ

C
e , σ

C
n

can be avoided. This also implies that (3.1) need only be solved for links mapping outer names of g
(i.e., X] Z).

ion′: Deconstructing agent and context ions, their controls are checked for equality; for each
ui ∈ dom(σC

e) we update α′ so that α′σa
e(yi) = σC

e (ui). Using a fresh ~v, the premise is inferred, and
α′ and σC′ are updated for each ui /∈ dom(σC

e) so that σC′(σC
n (ui)) is equal to α′σa

e(yi) or σa
n(yi),

depending on whether yi ∈ dom(σa
e) or not.

pax′: At the pax′ rule, we are given V, (X] Z) and α, and σa as α′σa
e ⊗ σa

n, and σC as σC
e ⊗

σC′(idZ ⊗ σC
n). We must now solve the equation σa = σC(idz ⊗ ατ), i.e.

α′σa
e ⊗ σa

n = (σC
e ⊗ σC′(idZ ⊗ σC

n))(idZ ⊗ ατ) (3.1)

for α′, σC′, Z and τ , where Xe ∩ Z = ∅ (recall σC
e : Xe →).

3.7 Nondeterminism
Given these term-based rules and the normal inference grammar, proven correct matching has been
expressed in an operational, that is, implementable, form. However, there is still a fair amount of
nondeterminism left, but fortunately we can clearly identify where it occurs:

Grammar selection: Which branches to select for DG, DP, D′G and D′P.

Tensor grouping: How to group the tensor product in par≡.

Children partitioning: How to partition molecules in mer.

Prime permutation: How to permute redex primes in per.

3. An Implementation of Bigraph Matching 77

Context-redex-parameter wiring: How to choose Z,α and τ in pax.

Mapping closed links: How to find an appropriate decomposition of agent wiring in clo such that
closed agent links are matched correctly with closed redex links (i.e., determining σa and YR).

When implementing matching, the challenge is to develop a heuristic that will handle typical cases
well. In general, an agent-redex pair can lead to many different matches, so in our implementation we
return for every inference rule a lazy list of possible matches.

To handle nondeterminism, we return possible matches as follows, bearing in mind that opera-
tionally speaking, rules applied below swx are given agent and redex, while rules above swx are given
agent (, redex) and context:

Grammar selection: For DG and DP, we concatenate the returned lazy lists returned from matching
each branch in turn. However, if pax succeeds, there is no reason to attempt a swx match, as
no new matches will result.

For DG
′ and DP

′, we try each branch in turn, returning the first branch that succeeds, as later
branches will not find any new matches.

Tensor grouping: For given m and n in parE≡, we compute all the ways of splitting [0, . . . ,m − 1]
into n (possibly empty) subsequences, trying out matching for each split. Note that this need
only be done for applications of parE≡ below the swx rule.

Children partitioning: For givenm and n in mer, we compute all the ways of partitioning {0, . . . ,m−
1} into n (possibly empty) sets, trying out matching for each partitioning.

Prime permutation: For given n in perE , we compute all n-permutations, trying out matching for
each permutation. This is done for applications of perE below the swx rule; above, similar
permutations are computed in the mer rule.

Context-redex-parameter wiring: Given global agent wiring, we compute the ways of decompos-
ing it into σ(idZ ⊗ ατ), returning a match for each decomposition.

Mapping closed links: We split agent wiring into named and closed links, and postpone the actual
mapping of each closed link to redex or context links until some constraint, given by ion or pax
produces it.

Note that even after limiting nondeterminism in this way, we can still in general find several instances
of the same match, reached by different inference trees, as we are computing abstract bigraph matches
using concrete representations. For instance, matching redex R = K1 in agent a = merge(K1 ⊗ K1)
produces matches with context C1 = merge(id1 ⊗ K1) and context C2 = merge(K1⊗ id1).

3.8 Tool Implementation and Example Modelling
We have implemented a BPL Tool as a reference implementation of binding bigraph matching, and as
a toolbox for experimenting with bigraphs. It is written in SML, consists of parser, normalisation and
matching kernel, and includes web and command line user interfaces [4].

To ensure correctness, we have implemented normalisation, renaming, regularisation and matching
faithfully by implementing one SML function for every inference rule—in the case of matching, two:
one for applications above and one for below the swx rule.

78 3.8. Tool Implementation and Example Modelling

The BPL Tool handles normalisation, regularisation, matching and reaction for the full set of
binding bigraphs, and allows construction of simple tactics for prescribing the order in which reaction
rules should be applied. The following example output is taken verbatim from the command line
interface, which is based on the SMLNJ interactive system; omitted details are indicated by “[...]”.

As an example, we model the polyadic π calculus, running the mobile phone system introduced in
Milner’s π book [17]. The calculus can be modeled by a family of reaction rules {reacti | i = 0, 1, . . .},
one for each number of names that are to be communicated in a reaction [13]; react2 is shown in
Figure 3.14.

react2: (x̄〈y1, y2〉.P0 + P1) | (x(z1, z2).P2 + P3)→ {zi/yi}P0 | P2

0

1

2

3

Send2 Get2
Sum Sum

x

z1

z2

y1y2

0

1
z1z2

y1y2x

0:=0,1:=2

react2

val REACT2 = "REACT2" :::
Sum o (Send2[x,y1,y2] ‘|‘ idp(1)) ‘|‘ Sum o (Get2[x][[z1],[z2]] ‘|‘ idp(1))
--[0 |-> 0, 1 |-> 2]--|>
(y1/z1 * y2/z2 * x//[] * idp(1)) o (idp(1) ‘|‘ ‘[z1, z2]‘);

Figure 3.14: π calculus reaction rule shown as bigraphs and BPL value.

The signature for the nodes modelling the calculus and the mobile phone system is constructed
using passive and atomic functions as shown in Figure 3.15. For this system, we only need Send and

(* Pi calculus nodes *) (* Mobile phone system nodes *)
val Sum = passive0 ("Sum") val Car = atomic ("Car" -: 2)
val Send0 = passive ("Send0" -: 0 + 1) val Trans = atomic ("Trans" -: 4)
val Get0 = passive ("Get0" =: 0 --> 1) val Idtrans = atomic ("Idtrans" -: 2)
val Send2 = passive ("Send2" -: 2 + 1) val Control = atomic ("Control" -: 8)
val Get2 = passive ("Get2" =: 2 --> 1)

Figure 3.15: Signature for π calculus and mobile phone system nodes.

Get nodes for react0 and react2. Note that all reaction rule nodes are passive, preventing reaction
within a guarded expression.

The system consists of a car, one active and one idle transmitter, and a control centre, as shown in
Figure 3.16. Internally, a prime product constructed using the ‘|‘ operator is represented by a wiring

3. An Implementation of Bigraph Matching 79

Car

Trans Idtrans

Control

talk1

switch1

lose1

gain1

lose2

gain2

- val System1 = simplify (
Car[talk1,switch1]

‘|‘ Trans[talk1,switch1,gain1,lose1]
‘|‘ Idtrans[gain2,lose2]
‘|‘ Control[lose1,talk2,switch2,gain2,

lose2,talk1,switch1,gain1]);
val System1 =

(lose1//[lose1_83, lose1_98] * talk2/talk2_82 * switch2/switch2_81
* gain2//[gain2_80, gain2_95] * lose2//[lose2_7f, lose2_94]
* talk1//[talk1_7e, talk1_9b, talk1_a5]
* switch1//[switch1_7d, switch1_9a, switch1_a4]
* gain1//[gain1_7c, gain1_99]) o merge(4) o

(Car[talk1_a5, switch1_a4] *
Trans[talk1_9b, switch1_9a, gain1_99, lose1_98] *
Idtrans[gain2_95, lose2_94] *
Control[lose1_83, talk2_82, switch2_81, gain2_80, lose2_7f, talk1_7e,

switch1_7d, gain1_7c])
: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}> : bgval

-

Figure 3.16: Definition of the mobile phone system, System1

and merge2 composed with a binary tensor product. The function simplify applies various heuristics
for producing human-readable bigraph terms, in this case for a prime product of four factors.

The definition of these nodes and connections, shown in Figure 3.17, allows the control centre to
switch Car communication between the two transmitters (supposedly when the car gets closer to the
ilde than the active transmitter), and allows the car to talk with the active transmitter. Note that in
the BPL tool, we define a node by a rule that unfolds an atomic node into a bigraph corresponding to
the defining π calculus expression.

Our BPL definition of the initial system in Figure 3.16, System1, is the folded version; as BPL
matching is complete, querying the tool reveals the four possible unfolding matches, illustrated in Fig-
ure 3.18. Here mkrules constructs the internal representation of a rule set, and print_mv prettyprints
a lazy list of matches, produced by the matches function.

Using react_rule that simply applies a named reaction rule, and ++ that runs its arguments
sequentially, we construct a tactic, TAC_unfold, for unfolding all four nodes once, shown in Figure 3.19.
Applying this tactic using function run, we get an unfolded version of the system.

Querying the BPL Tool for all possible matches in the unfolded system reveals exactly the switch
and talk actions, initiated by react2 and react0 rules, respectively, cf. Figure 3.20. Applying the
π calculus reaction rules for switching, we arrive at System2, where Car communication has been
switched to the other transmitter, as witnessed by the outer names to which Car ports link, as well
as the order of names to which Control ports link.

This concludes our description of the example highlighting how we can use the BPL Tool to exper-
iment with bigraphical reactive systems.

80 3.8. Tool Implementation and Example Modelling

Defining equation BPL definition

Car(talk , switch)
def
=

talk .Car〈talk , switch〉
+ switch(t, s).Car〈t, s〉

val DEF_Car = "DEF_Car" :::
Car[talk,switch]
----|>
Sum o (Send0[talk] o Car[talk,switch]

‘|‘ Get2[switch][[t],[s]]
o (<[t,s]> Car[t,s]))

Trans(talk , switch, gain, lose)
def
=

talk .Trans〈talk , switch, gain, lose〉
+ lose(t, s).switch〈t, s〉

. Idtrans〈gain, lose〉

val DEF_Trans = "DEF_Trans" :::
Trans[talk,switch,gain,lose]
----|>
Sum o (Get0[talk][] o Trans[talk,switch,gain,lose]

‘|‘ Get2[lose][[t],[s]]
o (<[t,s]> Sum o Send2[switch,t,s]

o Idtrans[gain,lose]))

Idtrans(gain, lose)
def
=

gain(t, s).Trans〈t, s, gain, lose〉

val DEF_Idtrans = "DEF_Idtrans" :::
Idtrans[gain, lose]
----|>
Sum o Get2[gain][[t],[s]]
o (<[t,s]> Trans[t,s,gain,lose])

Control(lose1, talk2, switch2, gain2,

lose2, talk1, switch1, gain1)
def
=

lose1〈talk2, switch2〉.gain2〈talk2, switch2〉
.Control〈lose2, talk1, switch1, gain1,

lose1, talk2, switch2, gain2〉

val DEF_Control = "DEF_Control" :::
Control[lose1,talk2,switch2,gain2,

lose2,talk1,switch1,gain1]
----|>
Sum o Send2[lose1,talk2,switch2]
o Sum o Send2[gain2,talk2,switch2]
o Control[lose2,talk1,switch1,gain1,

lose1,talk2,switch2,gain2]

Figure 3.17: Definitions of Car, Trans, Idtrans and Control nodes.

3. An Implementation of Bigraph Matching 81

- val rules = mkrules [REACT0, REACT2, DEF_Car, DEF_Trans, DEF_Idtrans, DEF_Control];
[...]
- print_mv (matches rules System1);
[{rule = "DEF_Car",
context
= (lose1//[lose1_d3, lose1_d6] * talk2/talk2_d2 * switch2/switch2_d1

* gain2//[gain2_d0, gain2_d5] * lose2//[lose2_cf, lose2_d4]
* talk1//[talk, talk1_ce, talk1_d9]
* switch1//[switch, switch1_cd, switch1_d8]
* gain1//[gain1_cc, gain1_d7]) o

(merge(4) o
(Trans[talk1_d9, switch1_d8, gain1_d7, lose1_d6] *
Idtrans[gain2_d5, lose2_d4] *
Control[lose1_d3, talk2_d2, switch2_d1, gain2_d0, lose2_cf,

talk1_ce, switch1_cd, gain1_cc])),
parameter = idx0},

{rule = "DEF_Control", [...] },
{rule = "DEF_Idtrans", [...] },
{rule = "DEF_Trans", [...] }]

Figure 3.18: Determining which rules match System1.

3.9 Conclusion and Future Work

We have developed a provably sound and complete inference system over bigraph terms for inferring
legal matches of bigraphical reactive systems. Moreover, we have implemented our BPL Tool, the
first implementation of bigraphical reactive systems. We have demonstrated a simple, but concrete,
example of how the tool can be used to simulate bigraphical models. We have found it very useful to
base this first implementation of bigraphical reactive systems so closely on the developed theory—this
has naturally given us greater confidence in the implementation, but the implementation work has also
helped to debug the developed theory.

There are lots of interesting avenues for future work. While the current implementation of BPL
Tool is efficient enough to experiment with small examples, we will try to make it more efficient by
using a number of different techniques: we plan to investigate how to prune off invalid matches quickly,
for instance by making use of sorting information [3]. Moreover, we will investigate to what extent we
can capture the link graph matching via a constraint-based algorithm.

We also plan to investigate smarter ways of combining matching and rewriting. As a starting
point, we have made it possible for users to combine tactics to inform the tool in which order it should
attempt to apply reaction rules.

Jean Krivine and Robin Milner are currently investigating stochastic bigraphs, which will be par-
ticularly important for simulation of real systems. We hope that our detailed analysis of matching for
binding bigraphs will make it reaonably straightforward to extend it to stochastic bigraphs.

Acknowledgements

The authors would like to thank Mikkel Bundgaard and anonymous referees for detailed comments to
earlier versions of the paper.

82 3.9. Conclusion and Future Work

- val TAC_unfold =
react_rule "DEF_Car" ++ react_rule "DEF_Trans" ++
react_rule "DEF_Idtrans" ++ react_rule "DEF_Control";

[...]
- val System1_unfolded = run rules TAC_unfold System1;
val System1_unfolded =

(lose1//[lose1_3f9, lose1_419, lose_441, lose_459, lose_45d]
* talk2//[talk2_3f8, talk2_40f, talk2_418]
* switch2//[switch2_3f7, switch2_40e, switch2_417]
* gain2//[gain2_3f6, gain2_410, gain_431, gain_438]
* lose2//[lose2_3fd, lose_430]
* talk1//[talk1_3fc, talk_460, talk_465, talk_482, talk_485]
* switch1//[switch1_3fb, switch_447, switch_45f, switch_480, switch_481]
* gain1//[gain1_3fa, gain_442, gain_45e]) o merge(4) o

(Sum o merge(2) o
(Send0[talk_485] o Car[talk_482, switch_481] *
Get2[switch_480][[t_47d], [s_47c]] o
(<[s_47c, t_47d]> Car[t_47d, s_47c])) *

Sum o merge(2) o
(Get0[talk_465] o Trans[talk_460, switch_45f, gain_45e, lose_45d] *
Get2[lose_459][[t_446], [s_445]] o
(<[s_445, t_446]>

Sum o (Send2[switch_447, t_446, s_445] o Idtrans[gain_442, lose_441]))) *
Sum o Get2[gain_438][[t_433], [s_432]] o
(<[s_432, t_433]> Trans[t_433, s_432, gain_431, lose_430]) *
Sum o
(Send2[lose1_419, talk2_418, switch2_417] o
(Sum o
(Send2[gain2_410, talk2_40f, switch2_40e] o
Control[lose2_3fd, talk1_3fc, switch1_3fb, gain1_3fa, lose1_3f9,

talk2_3f8, switch2_3f7, gain2_3f6]))))
: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}> : agent

Figure 3.19: Unfolding System1, using the TAC_unfold tactic.

3. An Implementation of Bigraph Matching 83

Car

Idtrans Trans

Control

talk2

switch2

lose2

gain2

lose1

gain1

- print_mv (matches rules System1_unfolded);
[{rule = "REACT0", [...] }, {rule = "REACT2", [...] }]
[...]
- val TAC_switch =

react_rule "REACT2" ++ (* Control tells Trans to lose. *)
react_rule "REACT2" ++ (* Control tells Idtrans to gain. *)
react_rule "REACT2"; (* Trans tells Car to switch. *)

[...]
- val System2 = run rules TAC_switch System1_unfolded;
val System2 =

(lose1//[lose1_86a, lose_8c0] * talk2//[t_858, talk2_869, t_8bf]
* switch2//[s_857, switch2_868, s_8be] * gain2//[gain_856, gain2_867]
* lose2//[lose_855, lose2_86e] * talk1/talk1_86d * switch1/switch1_86c
* gain1//[gain1_86b, gain_8c1]) o merge(4) o

(Idtrans[gain_8c1, lose_8c0] * Car[t_8bf, s_8be] *
Control[lose2_86e, talk1_86d, switch1_86c, gain1_86b, lose1_86a, talk2_869,

switch2_868, gain2_867] * Trans[t_858, s_857, gain_856, lose_855])
: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}> : agent

-

Figure 3.20: Checking possible matches, then switching to System2, using the TAC_switch tactic.

3.10 Bibliography

[1] Lars Birkedal, Troels Christoffer Damgaard, Arne John Glenstrup, and Robin Milner. Matching
of bigraphs. In Proceedings of Graph Transformation for Verification and Concurrency Workshop
2006, Electronic Notes in Theoretical Computer Science. Elsevier, August 2006.

[2] Lars Birkedal, Søren Debois, Ebbe Elsborg, Thomas Troels Hildebrandt, and Henning Niss. Bi-
graphical models of context-aware systems. In Luca Aceto and Anna Ingólfsdóttir, editors, Pro-
ceedings of the 9th International Conference on Foundations of Software Science and Computation
Structure, volume 3921 of Lecture Notes in Computer Science, pages 187–201. Springer-Verlag,
March 2006. ISBN 3-540-33045-3.

[3] Lars Birkedal, Søren Debois, and Thomas Troels Hildebrandt. Sortings for reactive systems. In
Christel Baier and Holger Hermanns, editors, Proceedings of the 17th International Conference
on Concurrency Theory, volume 4137 of Lecture Notes in Computer Science, pages 248–262.
Springer-Verlag, August 2006.

[4] The BPL Group. BPLweb—the BPL tool web demo, 2007. URL http://tiger.itu.dk:8080/
bplweb/. IT University of Copenhagen, Denmark. Prototype.

[5] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and José Francisco Quesada. Maude: Specification and programming in rewriting
logic. Theoretical Computer Science, 2001.

[6] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Carolyn Talcott. The Maude 2.0 System. In Robert Nieuwenhuis, editor, Rewrit-

http://tiger.itu.dk:8080/bplweb/
http://tiger.itu.dk:8080/bplweb/

84 3.10. Bibliography

ing Techniques and Applications (RTA 2003), volume 2706 of Lecture Notes in Computer Science,
pages 76–87. Springer-Verlag, June 2003.

[7] Troels Christoffer Damgaard. Syntactic theory for bigraphs. Master’s thesis, IT University of
Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen V, December 2006.

[8] Troels Christoffer Damgaard and Lars Birkedal. Axiomatizing binding bigraphs. Nordic Journal
of Computing, 13(1–2):58–77, 2006.

[9] Troels Christoffer Damgaard, Arne John Glenstrup, Lars Birkedal, and Robin Milner. An induc-
tive characterization of matching in binding bigraphs. to appear, 2011.

[10] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals of Alge-
braic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 2006.

[11] James Jianghai Fu. Directed graph pattern matching and topological embedding. Journal of
Algorithms, 22(2):372–391, 1997.

[12] Ole Høgh Jensen. Mobile Processes in Bigraphs. PhD thesis, Univ. of Cambridge, 2008. Forth-
coming.

[13] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes (revised). Technical Report
UCAM-CL-TR-580, University of Cambridge, February 2004.

[14] Javier Larrosa and Gabriel Valiente. Constraint satisfaction algorithms for graph pattern match-
ing. Journal of Mathematical Structures in Computer Science, 12:403–422, 2002.

[15] James Judi Leifer and Robin Milner. Transition systems, link graphs and Petri nets. Technical
Report UCAM-CL-TR-598, University of Cambridge, August 2004.

[16] The Maude Team. The Maude system, 2007. http://maude.cs.uiuc.edu/.

[17] Robin Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University Press,
1999.

[18] Robin Milner. Bigraphs whose names have multiple locality. Technical Report UCAM-CL-TR-603,
University of Cambridge, September 2004.

[19] Vladimiro Sassone and Paveł Sobociński. Reactive systems over cospans. In Proceedings of Logic
in Computer Science (LICS’05), pages 311–320. IEEE Press, 2005.

[20] Jeffrey D. Ullman. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1):31–42,
1976.

[21] Albert Zündorf. Graph pattern matching in PROGRES. In Janice E. Cuny, Hartmut Ehrig, Gregor
Engels, and Grzegorz Rozenberg, editors, TAGT, volume 1073 of Lecture Notes in Computer
Science, pages 454–468. Springer-Verlag, 1994. ISBN 3-540-61228-9.

http://maude.cs.uiuc.edu/

3. An Implementation of Bigraph Matching 85

3.A Auxiliary Technologies Details

3.A.1 Normalising

We define a normalisation relation t ↓B t′ for elementary bigraphs: mergen, pXq, ~y/ ~X,K~y(~X) and
π as shown in Figure 3.21, and inductively for operations: abstraction (X)P , product

⊗n
i Bi and

composition B1B2 as shown in Figure 3.22, where the notation σ�Y means {X 7→ y ∈ σ | y ∈ Y }.

Bmer
N ≡ (∅)(id∅ ⊗mergen)

⊗
i∈npid∅q P ≡ (id∅ ⊗ ([])/([]))N D ≡ id∅ ⊗ (

⊗
i∈1 P)idn

mergen ↓B (id∅ ⊗ id[∅])D

Bcon

N ≡ (∅)(idX ⊗merge1)
⊗

i∈1(idX ⊗ id1)pXq
P ≡ (idX ⊗ ([])/([]))N D ≡ id∅ ⊗ (

⊗
i∈1 P)id(X)

pXq ↓B (idX ⊗ id[∅])D

Bwir
~y/ ~X ↓B (~y/ ~X ⊗ id[])(idX ⊗ id0id0)

Bion

X = { ~X} Y = {~y} M ≡ (id∅ ⊗K~y(~X))(X)(idX ⊗merge1)
⊗

i∈1(idX ⊗ id1)pXq

N ≡ (∅)(idY ⊗merge1)
⊗

i∈1M P ≡ (idY ⊗ ([])/([]))N D ≡ id∅ ⊗ (
⊗

i∈1 P)id(X)

K~y(~X) ↓B (idY ⊗ id[∅])D

Bper

Yi = {~yi} Ni ≡ (Yi)(idYi ⊗merge1)
⊗

j∈1(idYi ⊗ id1)pYiq

Pi ≡ (id∅ ⊗ ~̂yi/~yi)Ni D ≡ id∅ ⊗ (
⊗

i∈m Pi)π

π : 〈m, ~X,X〉 → 〈m, ~Y ,X〉 ↓B (id∅ ⊗ id~Y)D

Figure 3.21: Inference rules for normalising elementary bigraph expressions

3.A.2 Renaming
Let a link namer be a map µ mapping every link l (outer name or edge) in its domain to a pair (E,X),
where E is a set of names used internally to compose the link, and X are the inner names linking to
l. We let Vi(Y, µ) =

⋃
y∈Y,y 7→(X1,X2)∈µXi and define link namer composition by

µ1 ◦ µ2 = {y1 7→ (E1 ∪X1 ∪ V1, V2) | y1 7→ (E1, X1) ∈ µ1 ∧ Vi = Vi(X1, µ2)}
∪ {y2 7→ (E2, X2) ∈ µ2 | ∀y1 7→ (E1, X1) ∈ µ1 : y2 /∈ X1},

essentially composing links of µ1 with those of µ2, and adding closed links from µ2.
We then define a function linknames, mapping terms to link namers, by the equations given in

Figure 3.23. By using the link namers of immediate subterms, we can determine whether a term can
be normalised without name clashes. To this end, we define a predicate normalisable by the equations
given in Figure 3.24. We basically just require, that at no level in the term does two different links
share any internal names.

Renaming is achieved by the judgment U ` α, t ↓β t′, β a V , where U is a set of used names and α
renames t’s inner names to those of t′, while β renames t’s outer names to those of t′ and V extends
U with names used in t′. The system of rules for inferring this judgment is given in Figure 3.25.

86 3.A. Auxiliary Technologies Details

Babs

b ↓B (z/W ⊗ id([Y]))(id∅ ⊗ (
⊗

i∈1(idZ ⊗ ~̂y/ ~X)(W)G)idI)

~zX = [zj ← ~z | zj ∈ X] ~zX̄ = [zj ← ~z | zj /∈ X]
~WX = [Wj ← ~W | zj ∈ X] ~W X̄ = [Wj ← ~W | zj /∈ X]

WX = { ~WX} W X̄ = { ~W X̄} U = {~y~zX} N ≡ (WX ∪W)G P ≡ (idW X̄ ⊗ ̂
~y~zX/ ~X ~WX)N

(X)b ↓B (zX̄/W X̄ ⊗ id([U]))(id∅ ⊗ (
⊗

i∈1 P)idI)

Bten

bi ↓B (ωi ⊗ id(~Yi)
)Di Di ≡ αi ⊗ (

⊗
j∈ni P

j
i)πi : Ii → 〈ni, ~Yi, Yi〉

ω =
⊗

i∈n ωi α =
⊗

i∈n αi id(~Y) =
⊗

i∈n id(~Yi)
π =

⊗
i∈n πi

P =
⊗

j∈n
⊗

i∈nj P
j
i D ≡ α⊗ Pπ

⊗
i∈n bi ↓B (ω ⊗ id(~Y))D

Ccom
σ = (idZ ⊗ α)(idZ ⊗ y/X)

(idZ ⊗ (α⊗ id1)pY q)
⊗

i∈1(idZ ⊗ ~̂y/ ~X)(X)(idU ⊗mergen)S̄ ↓S̄ σ, S̄

Mcom
(idZ ⊗N)P̄ ↓N σ,N ′ ~X ′ = σ−1(~X) Z ′ = σ−1(Z) Y ′ = σ−1(Y) σ′ = id{~y} ⊗ σ�Z]Y

(idZ ⊗ (idY ⊗K~y(~X))N)P̄ ↓S̄ σ′,
⊗

i∈1(idZ′]Y ′ ⊗K~y(~X′))N
′

Ncom

Pi : 〈mi, ~Xi, Xi〉 → 〈1, (Yi), Yi]Wi〉⊗
i∈n P̄i =

⊗
i∈k Pi P̄i : Ii → 〈ni, ~Yi, {~Yi}] Zi〉 (idZi ⊗ Si)P̄i ↓S̄ σi, S̄i

S̄ =
⊗

i∈n S̄i : I → 〈n′, Z ′] Y ′〉 σ =
⊗

i∈n σi X ′ = σ−1(X) Z ′ = σ−1(Z) Y ′ = σ−1(Y)
(
idZ ⊗ (X)(idY ⊗mergen)

⊗
i∈n Si

)⊗
i∈k Pi ↓N σ, (X ′)(idZ′]Y ′ ⊗mergen′)S̄

Pcom
(idZ ⊗N)P̄ ↓N σ,N ′ W = σ−1(Z] Z ′) ~X ′ = σ−1(~X) σ′ = σ�Z]Z

′

(idZ ⊗ (idZ′ ⊗ ~̂y/ ~X)N)P̄ ↓P σ′, (idW ⊗ ~̂y/ ~X ′)N ′

Bcom

b1 ↓B
(
ω1 ⊗ id(~U1)

)
D1 : 〈m′, ~X ′, X ′] Z〉 → 〈n, ~U1, U1]W 〉

b2 ↓B
(
ω2 ⊗ id(~U2)

)
D2 : 〈m, ~X,X] U〉 → 〈m′, ~U2, U2] Z〉

D1 ≡ α1 ⊗
(⊗

i∈n P
1
i

)
π1 : 〈m′, ~X ′, X ′] Z〉 → 〈n, ~U1, U1] V 1]W 1〉

D2 ≡ α2 ⊗
(⊗

i∈m′ P
2
i

)
π2 : 〈m, ~X,X] U〉 → 〈m′, ~U2, U2] V 2]W 2〉

P 1
i : 〈m′i, ~X ′i, X ′i〉 → 〈(U1

i), U1
i] V 1

i 〉 P 2
i : 〈m′′i , ~X ′′i , X ′′i 〉 → 〈(U2

i), U2
i] V 2

i 〉
ω1 : V 1]W 1 →W ω2 : V 2]W 2 → Z α1 : Z →W 1 α2 : U →W 2

V 2 =
⊎
i∈m′ V

2
i

⊗
i∈m′ P

2
π−1

1 (i)
=
⊗

i∈n P̄i P̄i : I ′i → 〈m′i, ~X ′i, X ′i] Z ′i〉
(idZ′i ⊗ P 1

i)P̄i ↓P σi, Pi σ = idU ⊗
⊗

i∈n σi ω = ω1(α1ω2(α2 ⊗ idV 2)⊗ idV 1)σ

π = π1 ~X′′π2 D ≡ idU ⊗
(⊗

i∈n Pi
)
π

b1b2 ↓B
(
ω ⊗ id(~U1)

)
D

Figure 3.22: Inference rules for normalising bigraph abstraction, product and composition expressions

3. An Implementation of Bigraph Matching 87

linknames(mergen) = {}
linknames(pXq) = {x 7→ ({}, {x}) | x ∈ X}
linknames(~y/ ~X) = {yi 7→ ({}, Xi) | i ∈ |~y|}
linknames(K~y(~e/ ~X)) = {yi 7→ ({}, {}) | i ∈ |~y|} ∪ {ei 7→ ({}, Xi) | i ∈ | ~X|}
linknames(π : → 〈m, ~X,X〉) = {x 7→ ({}, {x}) | x ∈ X}
linknames((Y)P) = linknames(P)
linknames(

⊗
i ti) =

⋃
i linknames(ti)

linknames(t1t2) = linknames(t1) ◦ linknames(t2)

Figure 3.23: Function for determining which names are used internally to compose a link

normalisable(mergen) = true
normalisable(pXq) = true

normalisable(~y/ ~X) = true
normalisable(K~y(~e/ ~X)) = true

normalisable(π : → 〈m, ~X,X〉) = true
normalisable((Y)P) = normalisable(P)
normalisable(

⊗
i ti) =

∧
i normalisable(ti)
∧(∀i 6= j : Ei ∩ Ej = ∅)
where µi = linknames(ti)

Ei =
⋃
y 7→(E,X)∈µi E

normalisable(t1t2) = normalisable(t1) ∧ normalisable(t2)
∧(∀l1 6= l2 : µE(l1) ∩ µE(l2) = ∅)
where µi = linknames(ti)

µ = µ1 ◦ µ2

µE(l) = E, if µ(l) = (E,X)

Figure 3.24: Function for determining whether a (well-formed) term is normalisable

88 3.A. Auxiliary Technologies Details

Rmer
U ` id∅,mergen ↓β mergen, id∅ a U

Rcon
X ′ = α(X)

U ` α, pXq ↓β pX ′q, α a U

Rwir

Z = {~z} Z ∩ U = ∅ |Z| = |~z| = |~y|
~X ′ = α(~X) β = {yi 7→ zi}
U ` α, ~y/ ~X ↓β ~z/ ~X ′, β a U ∪ Z

Rion

Z = {~z} Z ∩ U = ∅ |Z| = |~z| = |~y|
~X ′ = α(~X) β = {yi 7→ zi}
U ` α,K~y(~X) ↓β K~z(~X′), β a U ∪ Z

Rper
X ′ = α(X) ~X ′ = α(~X) ~Y ′ = α(~Y)

U ` α, π : 〈m, ~X,X〉 → 〈m, ~Y ,X〉 ↓β π : 〈m, ~X ′, X ′〉 → 〈m, ~Y ′, X ′〉, α a U

Rabs
U ` α, t ↓β t′, β a V X ′ = β(X)

U ` α, (X)t ↓β (X ′)t′, β a V

Rten
ti : 〈mi, ~Xi, Xi〉 → Ji αi = α �Xi Ui ` αi, ti ↓β t′i, βi a Ui+1 β =

⊗
i∈n βi

U0 ` α,
⊗

i∈n ti ↓β
⊗

i∈n t
′
i, β a Un

Rcom
U1 ` α1, t2 ↓β t′2, β1 a U2 U2 ` β1, t1 ↓β t′1, β2 a V2

U1 ` α1, t1t2 ↓β t′1t′2, β2 a V2

Figure 3.25: Renaming rules

3.A.3 Regularising
The system of rules for inferring a permutation-free term representing a regular bigraph is given in
Figure 3.26.

3. An Implementation of Bigraph Matching 89

α
pαqid(X) ↪→pαq

M Nπ ↪→N ′

(idZ ⊗K~y(~X))Nπ ↪→(idZ ⊗K~y(~X))N
′

N
Si : 〈mi, ~Xi〉 → Ji π = π′

~X
Siπ
′ ~X
i ↪→S′i

((X)(idY ⊗mergen)
⊗

i∈n Si)π
′ ↪→(X)(idY ⊗mergen)

⊗
i∈n S

′
π(i)

D
π =

⊗
i∈n πi πi : I ′i → Ii Ni : Ii → Ji Niπi ↪→N ′i

α⊗ (
⊗

i∈n(idZi ⊗ ~̂yi/ ~Xi)Ni)π ↪→α⊗⊗i∈n(idZi ⊗ ~̂yi/ ~Xi)N
′
i

B D ↪→D′

(ω ⊗ id(~X))D ↪→(ω ⊗ id(~X))D
′

Figure 3.26: Removing nontrivial permutations from regular bigraphs.

90 3.A. Auxiliary Technologies Details

Chapter 4

The BPL Tool: A Tool for
Experimenting with Bigraphical
Reactive Systems
Espen Højsgaard and Arne J. Glenstrup

We present the BPL Tool, a first implementation of bigraphical reactive systems with binding. The
BPL Tool provides manipulation, simulation and visualisation of bigraphs and bigraphical reactive
systems, and can be used either through the included web and command line user interfaces or as a
programming library.

Preface This chapter consists of the technical report

E. Højsgaard and A. J. Glenstrup. The BPL Tool: A Tool for Experimenting with Bigraphical
Reactive Systems. Technical Report TR-2011-145, IT University of Copenhagen, October 2011.

4.1 Introduction
The theory of bigraphical reactive systems [19] provides a general meta-model for describing and
analyzing mobile and distributed ubiquituous systems. Bigraphical reactive systems form a graphical
model of computation in which graphs that embody both locality and connectivity can be reconfigured
using reaction rules. So far it has been shown how to use the theory to recover behavioural theories
for various process calculi [15–17] and how to use the theory to model context-aware systems [6].

In this report, we describe the BPL Tool, a first prototype implementation of bigraphical reactive
systems, which can be used for experimenting with bigraphical models with binding. The theoretical
foundations for the implementation have been developed in detail in [13], but in summary the BPL
Tool is based on Damgaard et al.’s axiomatization of binding bigraphs [9] (i.e. it is term based)
and the inductive characterization of matching [5] by the same authors. In [13] we have extended
the inductive characterization from graphs to a term representation of bigraphs and have given an
algorithmic interpretation of this characterization of matching. This required the development of some
additional algorithms for bigraph terms: normalisation, renaming, and regularisation.

91

92 4.1. Introduction

The BPL Tool is written in SML, consists of parser, normalisation and matching kernel, and includes
web and command line user interfaces. To ensure correctness, we have implemented normalisation,
renaming, regularisation and matching faithfully by implementing one SML function for every inference
rule – in the case of matching, two: one for applications above and one for below the swx rule.

The BPL Tool has been used to model the following:

the ARAN protocol (Bentzen, [2])
the GeoCast protocol (Niss, unpublished)
IEEE 802.11 MAC 4-way handshake (Bentzen, [2])
the Insider Problem (Bentzen, [2])
a mobile phone system (Glenstrup, included in this report)
platographical models (Elsborg, [12])
WS-BPEL and HomeBPEL (Bundgaard et al., [8])

The BPL Tool is available at http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool where
also some additional material can be found, such as API documentation and slides from presentations.

4.1.1 Related work
A number of implementations of bigraphs are being developed at various institutions. Unfortunately,
it is hard to find the implementations themselves or papers describing them – until now, this has also
been the case for the BPL Tool – but here is a complete list of the implementations of which we are
aware:

BigMC: A model checker for bigraphs which includes a command line interface and visualisation [4].

bigraphspace: A Java library which provides a tuple-space-like API based on bigraphs [14].

Big Red: A graphical editor for bigraphs with easily extensible support for various file formats [3].

BigWB: A graphical workbench for bigraphs, aiming at providing a unifying GUI for the various
bigraph tools (no website or papers at the time of writing).

DBtk: A tool for directed bigraphs, which provides calculation of IPOs, matching, and visualisation
[1].

SAT based algorithm: Sevegnani et al. has presented a SAT based algorithm for matching in place
graphs with sharing [21] and an implementation is in progress based on MiniSAT [11].

SBAM: A stochastic simulator for bigraphs, aimed at simulation of biological models [20].

4.1.2 Outline
In the remainder of this report, we assume a basic knowledge of bigraphs; we refer the uninitiated
reader to Milner’s book [19]. We shall use the bigraph notation from [13].

This report encourages a hands-on approach, and our focus is therefore on getting the tool installed
and trying an example. The tool has built-in documentation, which we include (and slightly expand)
for easy reference.

http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool

4. The BPL Tool: A Tool for Experimenting with Bigraphical Reactive Systems 93

Section 4.2, Installation

Instructions for how to obtain, install and run the BPL Tool.

Section 4.3, Example: Polyadic π and Mobile Phones

We demonstrate the features of the BPL Tool using Milner’s polyadic π calculus model of mobile
phones [18].

Section 4.4, Reference

We present the BPL language (BPLL) for bigraphical reactive systems and the various functions
that the BPL Tool provides.

Section 4.5, Conclusions and Future Work

We present our experiences with the BPL Tool and conclude on its strengths and weaknesses,
and present our plans for future improvements.

4.2 Installation
The BPL Tool is distributed as source code as it relies on an SML compiler with an interactive mode
to provide a command line interface. The source code can be obtained from the BPL Tool website [7].

We shall here distinguish between two types of installation: user and developer installations.

4.2.1 User installation
The BPL Tool requires the following software to be installed on your system:

SML compiler preferably SML of New Jersey but Moscow ML and MLton should work as well.

GNU make

GNU sed

The BPL Tool has been known to run on the following platforms: Linux (Ubuntu), OS X (ver. 10.4-
10.6), and Windows XP (using Cygwin).

When you have installed the above and obtained a copy of the BPL Tool sources, you need to
configure the tool to your setup. This is done by executing the following command in the $BPL/src
directory:

./configure

To use the BPL Tool CLI, you need to use an SML compiler with an interactive mode (i.e. not
MLton) – it works particularly well with SML of New Jersey, since SML/NJ allows the use of custom
pretty-printers for values.

To start the CLI, execute the following command in the $BPL/src directory:

./bpltoolcli.sh

Once the BPL Tool has loaded you should be met with the prompt:

BPL (revision 3294) interactive prompt. Type ’help[];’ for help.
-

94 4.3. Example: Polyadic π and Mobile Phones

4.2.2 Developer installation

BPL Tool developers will – in addition to the basic installation – need the following software:

GNU autoconf: needed if you change configure.in.

SML#: BPL Tool uses some of the tools, SMLUnit and SMLDoc, from the SML# distribution, but
not SML# itself.

To run the unit tests, execute the following command in the $BPL/src directory (or one of its sub-
directories):

make test

If you have multiple SML compilers installed, you can switch between them by running the configure
script with the MLC option set to one of the values mlton, mosml, or smlnj. E.g. to use the Moscow
ML compiler, run

./configure MLC=mosml

4.3 Example: Polyadic π and Mobile Phones
We model the polyadic π calculus, running the mobile phone system introduced in Milner’s π book [18].

4.3.1 A mobile phone system

The mobile phone system we shall model is the following: there is a static network of transmitters
which are all connected to a central control. Each mobile phone is located in a car and is connected
to a single transmitter using a unique frequency. On some events, e.g. signal fading, the mobile phone
may switch to another transmitter.

A simple example of such a system, call it System1, is shown in Figure 4.1, where we also show how
to define the system in the BPL Tool: the system consists of a car, one active and one idle transmitter,
and a control centre. Note that the controls are atomic, since nodes with these controls should not
contain other nodes.

The illustration of System1 in Figure 4.1 is “hand-drawn” in TikZ, but we can also use the BPL
Tool to render the system using either SVG or TikZ. For example, Figure 4.2 shows how to generate
TikZ for System1 and the resulting diagram. This uses the default configuration, but it is possible to
obtain more fine grained control over the appearance of roots, nodes and sites. As is evident from the
diagram in this example, it cannot replace hand-drawn figures. Nevertheless, it is our experience that
such automatic visualisation is very helpful when working with bigraphs in the BPL Tool.

4.3.2 Polyadic π

Let us now examine how we can model a dynamic aspect of the mobile phone system, namely the
hand-over protocol for when a mobile phone switches from one transmitter to another. We shall model
this in the polyadic π calculus which again can be modelled directly in the BPL Tool.

The polyadic π calculus can be modeled by a family of reaction rules {reacti | i = 0, 1, . . .}, one for
each number of names that are to be communicated in a reaction [16]; react2 is shown in Figure 4.3.
The signature for the nodes modelling the polyadic π calculus is constructed using passive controls

4. The BPL Tool: A Tool for Experimenting with Bigraphical Reactive Systems 95

val (switch1, talk1, lose1, gain1) =
("switch1","talk1","lose1","gain1")

val (switch2, talk2, lose2, gain2) =
("switch2","talk2","lose2","gain2")

val Car = atomic ("Car" -: 2)
val Trans = atomic ("Trans" -: 4)
val Idtrans = atomic ("Idtrans" -: 2)
val Control = atomic ("Control" -: 8)

val System1 =
Car[talk1,switch1]

‘|‘ Trans[talk1,switch1,gain1,lose1]
‘|‘ Idtrans[gain2,lose2]
‘|‘ Control[lose1,talk2,switch2,gain2,

lose2,talk1,switch1,gain1]

Car

Trans Idtrans

Control

talk1

switch1

lose1

gain1

lose2

gain2

Figure 4.1: Definition of the mobile phone system, System1

as shown in Figure 4.4. For this system, we only need Send and Get nodes for react0 and react2.
Note that all reaction rule nodes are passive, preventing reaction within a guarded expression.

In the π calculus the nodes in System1 are defined as recursive equations. In the BPL tool, they are
defined by a rule that unfolds an atomic node into a bigraph corresponding to the defining π calculus
expression. The definitional equations and BPL definitions are shown in Figure 4.5.

The definitions allows the control centre to switch Car communication between the two transmitters
(supposedly when the car gets closer to the idle than the active transmitter), and allows the car to
communicate with the active transmitter.

Our BPL definition of the initial system in Figure 4.1, System1, is the folded version; querying the
tool reveals the four possible unfolding matches, illustrated in Figure 4.6. Here mkrules constructs
the internal representation of a rule set, and print_mv prettyprints a lazy list of matches, produced
by the matches function, cf. Sections 4.4.6 and 4.4.9.

We can unfold the four nodes into their defining π calculus expressions by using the reaction tactic
TAC_unfold, shown in Figure 4.7. The tactic is constructed using the react_rule tactic which simply
applies a named reaction rule and the ++ tactic which runs its arguments sequentially, cf. Section 4.4.9.
Applying this tactic using the function run, we get an unfolded version of the system.

Querying the BPL Tool for matches in the unfolded system reveals exactly the switch and talk
actions, initiated by react2 and react0 rules, respectively, cf. Figure 4.8. Applying the π calculus
reaction rules for switching, using the TAC_switch tactic, we arrive at System2, where Car commu-
nication has been switched to the other transmitter, as witnessed by the outer names to which Car
ports link, as well as the order of names to which Control ports link.

4.4 Reference
The language used in the BPL Tool is called BPLL, and it consists of a number of SML constructs which
allows you to write BPLL directly in SML programs. This also means that your favorite interactive
SML environment doubles as BPLL environment.

In this section we present the BPLL syntax for bigraphs and bigraphical reactive systems. Much
of this information is also accessible through the help function in the BPL Tool CLI.

96 4.4. Reference

- print (tikz System1);
\tikzstyle nametext=[font=\footnotesize\itshape,inner sep=0pt]%
\tikzstyle root=[dashed,rounded corners]%
\tikzstyle binder=[draw,fill=white]%
\tikzstyle node=[draw]%
\tikzstyle nodetext=[font=\sffamily\bfseries,text=blue,inner sep=0pt]%
\tikzstyle site=[fill=gray!25,rounded corners]%
\tikzstyle sitetext=[font=\sffamily,inner sep=0pt]%
\tikzstyle link=[draw]%
\begin{tikzpicture}[x={(0.02cm,0cm)},y=-0.02cm,baseline=-1cm]

\draw[style=root] (0,16) rectangle +(260,88);
\draw[style=node] (29,64) ellipse (0.5cm and 0.4cm);
\draw (4,100) node [style=nodetext,anchor=south west] {Car};
\draw[style=node] (83,64) ellipse (0.5cm and 0.4cm);
\draw (58,100) node [style=nodetext,anchor=south west] {Trans};
\draw[style=node] (147,64) ellipse (0.7cm and 0.4cm);
\draw (112,100) node [style=nodetext,anchor=south west] {Idtrans};
\draw[style=node] (221,64) ellipse (0.7cm and 0.4cm);
\draw (186,100) node [style=nodetext,anchor=south west] {Control};
\draw (231,45) .. controls +(0,-24) and +(0,20) .. (109,13);
\draw (72,46) .. controls +(0,-24) and +(0,20) .. (109,13);
\draw (25,44) .. controls +(0,-24) and +(0,20) .. (109,13);
\draw (109,10) node [style=nametext,anchor=south] {talk1};
\draw (238,47) .. controls +(0,-24) and +(0,20) .. (158,13);
\draw (79,44) .. controls +(0,-24) and +(0,20) .. (158,13);
\draw (32,44) .. controls +(0,-24) and +(0,20) .. (158,13);
\draw (158,10) node [style=nametext,anchor=south] {switch1};
\draw (196,50) .. controls +(0,-24) and +(0,20) .. (207,13);
\draw (93,46) .. controls +(0,-24) and +(0,20) .. (207,13);
\draw (207,10) node [style=nametext,anchor=south] {lose1};
\draw (245,49) .. controls +(0,-24) and +(0,20) .. (249,13);
\draw (86,44) .. controls +(0,-24) and +(0,20) .. (249,13);
\draw (249,10) node [style=nametext,anchor=south] {gain1};
\draw (217,44) .. controls +(0,-24) and +(0,20) .. (291,13);
\draw (143,44) .. controls +(0,-24) and +(0,20) .. (291,13);
\draw (291,10) node [style=nametext,anchor=south] {gain2};
\draw (224,44) .. controls +(0,-24) and +(0,20) .. (333,13);
\draw (150,44) .. controls +(0,-24) and +(0,20) .. (333,13);
\draw (333,10) node [style=nametext,anchor=south] {lose2};
\draw (203,47) .. controls +(0,-24) and +(0,20) .. (375,13);
\draw (375,10) node [style=nametext,anchor=south] {talk2};
\draw (210,45) .. controls +(0,-24) and +(0,20) .. (424,13);
\draw (424,10) node [style=nametext,anchor=south] {switch2};

\end{tikzpicture}

Car Trans Idtrans Control

talk1 switch1 lose1 gain1 gain2 lose2 talk2 switch2

Figure 4.2: Generating TikZ

4. The BPL Tool: A Tool for Experimenting with Bigraphical Reactive Systems 97

react2: (x̄〈y1, y2〉.P0 + P1) | (x(z1, z2).P2 + P3)→ {zi/yi}P0 | P2

0

1

2

3

Send2 Get2
Sum Sum

x

z1

z2

y1y2

0

1
z1z2

y1y2x

0:=0,1:=2

react2

val REACT2 = "REACT2" :::

Sum o (Send2[x,y1,y2] ‘|‘ ‘[]‘)
‘|‘ Sum o (Get2[x][[z1],[z2]] ‘|‘ ‘[]‘)

--[0 |-> 0, 1 |-> 2]--|>

(y1/z1 * y2/z2 * x//[]) o (‘[]‘ ‘|‘ ‘[z1, z2]‘)

Figure 4.3: π calculus reaction rule shown as bigraphs and BPL values.

val Sum = passive0 ("Sum")
val Send0 = passive ("Send0" -: 0 + 1)
val Get0 = passive ("Get0" -: 0 + 1)
val Send2 = passive ("Send2" -: 2 + 1)
val Get2 = passive ("Get2" =: 2 --> 1)

Figure 4.4: Signature for polyadic π calculus.

98 4.4. Reference

Defining equation BPL definition

Car(talk , switch)
def
=

talk .Car〈talk , switch〉
+ switch(t, s).Car〈t, s〉

val DEF_Car = "DEF_Car" :::
Car[talk,switch]
----|>
Sum o (Send0[talk] o Car[talk,switch]

‘|‘ Get2[switch][[t],[s]] o Car[t,s])

Trans(talk , switch, gain, lose)
def
=

talk .Trans〈talk , switch, gain, lose〉
+ lose(t, s).switch〈t, s〉

. Idtrans〈gain, lose〉

val DEF_Trans = "DEF_Trans" :::
Trans[talk,switch,gain,lose]
----|>
Sum o (Get0[talk][]

o Trans[talk,switch,gain,lose]
‘|‘ Get2[lose][[t],[s]]

o Sum o Send2[switch,t,s]
o Idtrans[gain,lose])

Idtrans(gain, lose)
def
=

gain(t, s).Trans〈t, s, gain, lose〉

val DEF_Idtrans = "DEF_Idtrans" :::
Idtrans[gain, lose]
----|>
Sum o Get2[gain][[t],[s]] o Trans[t,s,gain,lose]

Control(lose1, talk2, switch2, gain2,

lose2, talk1, switch1, gain1)
def
=

lose1〈talk2, switch2〉.gain2〈talk2, switch2〉
.Control〈lose2, talk1, switch1, gain1,

lose1, talk2, switch2, gain2〉

val DEF_Control = "DEF_Control" :::
Control[lose1,talk2,switch2,gain2,

lose2,talk1,switch1,gain1]
----|>
Sum o Send2[lose1,talk2,switch2]
o Sum o Send2[gain2,talk2,switch2]
o Control[lose2,talk1,switch1,gain1,

lose1,talk2,switch2,gain2]

Figure 4.5: Definitions of Car, Trans, Idtrans and Control nodes.

- val rules = mkrules [REACT0, REACT2, DEF_Car, DEF_Trans, DEF_Idtrans, DEF_Control];
[...]
- print_mv (matches rules System1);
[{rule = "DEF_Car",
context
= (talk1/talk * switch1/switch) ||

‘[]‘ ‘|‘ Trans[talk1, switch1, gain1, lose1] ‘|‘
Idtrans[gain2, lose2] ‘|‘
Control[lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1],

parameter = idx0},
{rule = "DEF_Control", [...] },
{rule = "DEF_Idtrans", [...] },
{rule = "DEF_Trans", [...] }]

Figure 4.6: Determining which rules match System1.

4. The BPL Tool: A Tool for Experimenting with Bigraphical Reactive Systems 99

- val TAC_unfold =
react_rule "DEF_Car" ++ react_rule "DEF_Trans" ++
react_rule "DEF_Idtrans" ++ react_rule "DEF_Control";

[...]
- val System1_unfolded = run rules TAC_unfold System1;
val System1_unfolded =

Sum o
(Send0[talk1] o Car[talk1, switch1] ‘|‘ Get2[switch1][[t], [s]] o Car[t, s]) ‘|‘
Sum o
(Get0[talk1] o Trans[talk1, switch1, gain1, lose1] ‘|‘
Get2[lose1][[t], [s]] o Sum o Send2[switch1, t, s] o Idtrans[gain1, lose1]) ‘|‘

Sum o Get2[gain2][[t], [s]] o Trans[t, s, gain2, lose2] ‘|‘
Sum o
Send2[lose1, talk2, switch2] o
Sum o
Send2[gain2, talk2, switch2] o
Control[lose2, talk1, switch1, gain1, lose1, talk2, switch2, gain2]
: 0 -> <{talk1, switch1, gain1, lose1, gain2, lose2, talk2, switch2}>
: agent

Figure 4.7: Unfolding System1, using the TAC_unfold tactic.

Car

Idtrans Trans

Control

talk2

switch2

lose2

gain2

lose1

gain1

- print_mv (matches rules System1_unfolded);
[{rule = "REACT0", [...] }, {rule = "REACT2", [...] }]
[...]
- val TAC_switch =

react_rule "REACT2" ++ (* Control tells Trans to lose. *)
react_rule "REACT2" ++ (* Control tells Idtrans to gain. *)
react_rule "REACT2"; (* Trans tells Car to switch. *)

[...]
- val System2 = run rules TAC_switch System1_unfolded;
val System2 =

Idtrans[gain1, lose1] ‘|‘ Car[talk2, switch2] ‘|‘
Control[lose2, talk1, switch1, gain1, lose1, talk2, switch2, gain2] ‘|‘
Trans[talk2, switch2, gain2, lose2]
: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}>
: agent

-

Figure 4.8: Checking possible matches, then switching to System2, using the TAC_switch tactic.

100 4.4. Reference

4.4.1 Preliminaries
BPLL is a DSL embedded in Standard ML. This has the benefit of allowing easy extensions to the
language and easy integration into SML programs. But it also imposes some restrictions on the
syntax; for example, we cannot use | to denote the prime parallel product operator, so instead we
use ‘|‘, i.e. we wrap the operator in backquotes. In general, we have attempted to choose a syntax
which visually closely resembles Milner’s bigraph notation. While we believe we have been reasonably
successful at this, we also appreciate that the notation is a bit heavy and we welcome any suggestions
for improvements.

In order to keep bigraph terms as readable as possible, the BPL Tool assumes that bigraph names
are bound to string variables of the same name. For example, the identity wiring id{x} will be printed
as idw[x], thus assuming the preceding declaration of x: val x = "x". The same goes for named
ports (see below). This saves a lot of quotes when the BPL Tool prints bigraph terms.

4.4.2 Signatures
The definition of signatures in the BPL Tool is centered around controls: to define a control called K
which has status s ∈ {active,passive,atomic}, global arity m and local arity n one writes:

val K = s ("K" =: m –> n)

For instance, in the example in Section 4.3 we needed a passive control with global arity 1 and local
arity 2 called Get2, which was defined as follows:

val Get2 = passive ("Get2" =: 2 –> 1)

There is syntactic sugar for the common cases where the local arity is zero or both arities are zero,
and for named ports:

general case:

val K = s ("K" =: m –> n)

local arity = 0:

val K = s ("K" -: n)

global and local arity = 0:

val K = s0 ("K")

named ports, general case:

val K = s ("K" ==: [p′1,...,p
′
m] –-> [p1,...,pn])

named ports, local arity = 0:

val K = s ("K" –: [p1,...,pn])

where K is the control name, s ∈ {active,passive,atomic} is the status, m is the global arity, n is
the local arity, and the pi and p′i are the names of global and local ports respectively.

It is not quite precise to say that the latter four cases are just syntactic sugar, as the way the
control is used depends on how it was declared (i.e. their SML types are different) (cf. Ions below).

4. The BPL Tool: A Tool for Experimenting with Bigraphical Reactive Systems 101

4.4.3 Types for bigraph terms
The BPL Tool uses the following types to distinguish bigraph terms on certain forms:

bgterm: a bigraph term that might not be well-formed, i.e. interfaces in compositions might not
match;

bgval: a well-formed bigraph term with interfaces;

’a bgbdnf: a bigraph term which is on a binding discrete normal form indicated by the phantom type
used for ’a:

M: molecule

S: singular top-level node

G: global discrete prime

N: name-discrete prime

P: discrete prime

D: discrete bigraph

B: bigraph

DR: discrete, regular bigraph

BR: regular bigraph

The normal forms are shown in Figure 4.9.

M ::= (idZ ⊗K~y(~X))N molecule
S ::= pαq | M singular top-level node
G ::= (idY ⊗mergen)(

⊗n
i Si)π global discrete prime

N ::= (X)G name-discrete prime
P,Q ::= (idZ ⊗ σ̂)N discrete prime
D ::= α⊗ (

⊗n
i Pi)π discrete bigraph

B ::= (ω ⊗ id(~X))D bigraph
DR ::= α⊗ (

⊗n
i Pi) discrete, regular bigraph

BR ::= (ω ⊗ id(~X))DR regular bigraph

Figure 4.9: Normal forms for binding bigraphs.

4.4.4 Bigraphs
Bigraphs are built from elementary bigraphs and operators:

Ions: (K,L,M : control ; x,y,p,p’ : string)
K[y,...] Ion with control of global arity
L[y,...][[x,...],...] Ion with control of global/local arity
K[p==y,...] Ion with control of global arity with named ports

102 4.4. Reference

L[p==y,...][p’==x,...] Ion with control of global/local arity with named ports

Wirings: (x,y : string)
y/x Renaming link
y//[x,...] Substitution link
y//[] Name introduction
-/x Closure edge
-//[x,...] Multiple closure edges
idw[x,...] Identity wiring

Concretions: (n >= 0 ; x : string)
‘[x,...]‘ Concretion of names x,...

Merges: (n >= 0)
merge(n) Merge of inner width n
<-> Barren root (= merge 0)

Permutations: (0 <= ik < m ; x : string)
@[..., ik, ...] Permutation mapping site k to root ik
@@[..., ik&[x,...], ...] Permutation with local names
idp(m) Identity permutation of width m

Operators: (x : string ; A,B : bgval ; P : prime bgval)
<[x,...]> P Abstract names x,... of a prime P
A * B Tensor product
A || B Parallel product
A ‘|‘ B Prime product
**[A,...] Tensor procuct of n factors
|||[A,...] Parallel product of n factors
‘|“[A,...] Prime product of n factors
A o B Composition

Precedence: (x : string ; P : prime bgval)
o Composition (strongest)
*, ||, ‘|‘ Product, left associative
<[x,...]> P Abstraction (weakest)

Bigraphs built using these combinators have the SML type bgval. Note that since the BPL Tool binds
bigraph composition to ’o’, we rebind function composition to ’oo’.

Syntactic Sugar

The BPL Tool allows some of the syntactic shorthands used in the bigraph literature – the shorthands
for each relevant combinator are as follows:

abstraction: In an abstraction (X)P , one may abstract names that are not in the outer face of P
and we allow abstractions on name introductions. For example, <[x]> y//[] is allowed. The

4. The BPL Tool: A Tool for Experimenting with Bigraphical Reactive Systems 103

desugared form of such an abstraction is

(X)P
def
= (X)(P ⊗ Y ⊗ id)

where Y are the names ofX which are not in the outer face of P and id is either id1 if width(P) = 0

and id0 otherwise. Thus, <[x]> y//[] def
= <[x]>(y//[] * x//[] * idp(1)).

composition: The BPLL composition operator is a generalization of Milner’s nesting operator: in a
composition A ◦ B the outer names of A and B may be shared. For example, K[x] o K[x] is
allowed. The desugared form of such a composition is

A ◦B def
= (A || idX) ◦B

where X are the outer names of B. Thus, K[x] o K[x] def
= (K[x] || idw[x]) o K[x].

Also, it allows implicit abstraction of names in primes: in a composition A◦P where P is prime,
the local inner names of A that are not local in the outer face of P will be abstracted. The
desugared form of such a composition is

A ◦ P def
= A ◦ ((X)P)

ion: The global ports of an ion K~y are allowed to use the same name, i.e. the names of ~y need not be
distinct. For example, K[x,x] is allowed. The desugared form of such an ion is

K~y(~X)

def
= (ω ⊗ id1) ◦K~z(~X)

where ~z is a vector of n distinct names, ar(K) = m → n, and ω : {~z} → {~y} is a substitution
satisfying ~yi = ω(~zi) (i ∈ n). Thus, K[x,x] def

= (x//[x,y] * idp(1)) o K[x,y].

Note that the BPL Tool will do its best (subject to the configuration options discussed in Sec-
tion 4.4.12) to use the syntactically sugared forms whenever possible.

Also, the BPL Tool internally works on bigraph terms in the normal forms shown in Figure 4.9.
Such terms are not easily readable, in particular because ‘|‘ and || are treated as derived operators.
The BPL Tool will try (again subject to configuration options) to simplify the terms and use ‘|‘ and
|| whenever possible.

4.4.5 Bigraph Operations

=== : bgval * bgval -> bool Equality (infix)
==== : ’a bgbdnf * ’a bgbdnf -> bool Equality (infix)
norm_v : bgval -> B bgbdnf Normalise
denorm_b : ’a bgbdnf -> bgval Denormalise
regl_v : bgval -> BR bgbdnf Regularise
regl_b : B bgbdnf -> BR bgbdnf Regularise
simpl_v : bgval -> bgval Attempt to simplify
simpl_b : ’a bgbdnf -> bgval Attempt to simplify

104 4.4. Reference

4.4.6 Matching

Matching is computationally intensive, so the BPL Tool uses lazy lists to represent sets of matches.

match_v : {agent:bgval, redex:bgval} -> match lazylist

Match redex in agent, returning a lazy list of matches.

match_b : {agent:B bgbdnf, redex:B bgbdnf} -> match lazylist

Match redex in agent, returning lazy list of matches.

print_mv : match lazylist -> unit

Print lazy list of matches.

print_mb : match lazylist -> unit

Print lazy list of matches.

print_mtv : match lazylist -> unit

Print lazy list of matches with trees.

print_mtb : match lazylist -> unit

Print lazy list of matches with trees.

4.4.7 Lazy lists

The main functions for working with lazy lists are the following; see the online API for a complete list
[7].

4. The BPL Tool: A Tool for Experimenting with Bigraphical Reactive Systems 105

lznull : ’a lazylist -> bool

Test whether the lazy list is empty.

lzhd : ’a lazylist -> ’a

Return the first element of a lazy list.

lztl : ’a lazylist -> ’a lazylist

Return the tail of a lazy list.

lzunmk : ’a lazylist -> ’a lazycell

Return the head and tail of a lazy list, or Nil if it is empty.

lzmap : (’a -> ’b) -> ’a lazylist -> ’b lazylist

Map a function on all elements of a lazy list.

4.4.8 Reaction rules
Reaction rules are constructed using the following combinators:

Instantiations: (ik,jk : int ; xk,yk : string)
[..., ik |-> jk, ...]

Instantiation mapping reactum site ik to redex site jk
[..., ik&[x0, ..., xm−1] |–> jk&[y0, ..., ym−1], ...]

Instantiation mapping local reactum name xk to redex name yk

Rules: (R,R’ : rule ; rho : instantiation ; N : string)
R ––|> R’ Rule with redex R, reactum R’ and default instantiation
R –rho–|> R’ Rule with redex R, reactum R’ and instantiation rho
N ::: R ––|> R’ Named rule

Operators on rules: (R : rule)
redex R Extract the redex of a rule
reactum R Extract the reactum of a rule
inst R Extract the instantiation of a rule

For convenience, instantiations in rules need not be fully specified; if an instantiation ρ : J → I,
where J and I are the reactum and redex innerfaces respectively, is partially specified, the BPL Tool
will automatically add missing mappings as follows:

1. if a site of J is not mentioned, it is assumed to map to the same site at I, inferring the name
map as in (2);

2. if the name lists of a map are empty, the local renaming will be inferred as follows:

(a) if the relevant sites of I and J have the same local names, an identity renaming will be
used;

106 4.4. Reference

(b) otherwise, if there is only one local name at both sites, say x at Ii and y at Jj , the local
renaming (y)/(x) will be used.

An exception will be raised if this procedure not yield an instantiation.

4.4.9 Simulation
Tactics: (i : int ; N : string ; ti : tactic)

react_rule N Apply rule N
react_rule_any Apply any rule
roundrobin Apply rules roundrobin until none match
t1 ++ t2 Use t1, then t2

TRY t1 ORTHEN t2 If t1 fails, use t2 on its result
IF t1 THEN t2 ELSE t3 If t1 finishes, use t2, else t3 on its result
REPEAT t Repeat t until it fails
i TIMES_DO t Use t i times
finish Finish tactic
fail Fail tactic

Reaction operations: (v : bgval; m : match; ri : rule ; Ni : string ; rs : rules)
react m Perform a single reaction step
mkrules [r0, ..., rn] Construct a rule map
mknamedrules [..., (Ni, ri), ...] Construct a rule map with explicit names
matches rs v Return lazy list of all matches of all rules
run rs t v Perform agent reactions using a tactic
steps rs t v Return agent for each step using a tactic
stepz rs t v Return lazily agent for each step using a tactic

4.4.10 Pretty printing
Bigraphs:

str_v : bgval -> string Return as a string
str_b : ’a bgbdnf -> string Return as a string
print_v : bgval -> unit Print to stdOut
print_b : ’a bgbdnf -> unit Print to stdOut

Matches:
print_mv : match lazylist -> unit Print lazy list of matches
print_mb : match lazylist -> unit Print lazy list of matches
print_mtv : match lazylist -> unit Print lazy list of matches with trees
print_mtb : match lazylist -> unit Print lazy list of matches with trees

Rules:
str_r : rule -> string Return rule as a string
print_r : rule -> unit Print rule

4.4.11 Visualization

4. The BPL Tool: A Tool for Experimenting with Bigraphical Reactive Systems 107

Configuration:
makecfg (string * BG.PPSVG.path -> configinfo) -> config

Construct a config

unmkcfg config -> string * BG.PPSVG.path -> configinfo
Deconstruct a config

defaultcfg config
Default config

Scalable Vector Graphics (SVG):
svg_v config option -> bgval -> string

Return as SVG fragment string

svg_b config option -> B bgbdnf -> string
Return as SVG fragment string

svg bgval -> string
Return as SVG fragment string

svgdoc_v config option -> bgval -> string
Return as SVG document string

svgdoc_b config option -> B bgbdnf -> string
Return as SVG document string

svgdoc bgval -> string
Return as SVG document string

outputsvgdoc_v string -> config option -> bgval -> unit
Output as SVG document to file

outputsvgdoc_b string -> config option -> B bgbdnf -> unit
Output as SVG document to file

outputsvgdoc string -> bgval -> unit
Output as SVG document to file

TikZ:
tikz_v real option -> config option-> bgval -> string

Return as TikZ string

tikz_b real option -> config option -> B bgbdnf -> string
Return as TikZ string

tikz bgval -> string

108 4.4. Reference

Return as TikZ string

outputtikz_v string -> real option-> config option -> bgval -> unit
Output as TikZ to file

outputtikz_b string -> real option-> config option -> B bgbdnf -> unit
Output as TikZ to file

outputtikz string -> bgval -> unit
Output as TikZ to file

4.4.12 Controlling tool behaviour

The behaviour of the BPL Tool can be modified by changing a number of configuration flags. Flags
are accessed by two families of functions:

Flags.getTypeFlag "name" Get the value of the named flag of the given type
Flags.setTypeFlag "name" value Set the value of the named flag of the given type

The help function for flags displays and explains all the available flags as well as their current and
default values:

help["flags"];

Matching:

name type description
/kernel/match/match/nodups bool Remove duplicate matches.

Miscellaneous:

name type description
/debug/level int Level of debugging information (0 = no info, >0 = info).
/dump/prefix string Filename prefix for pretty print dumps to a file.
/misc/timings bool Enable timings.

Pretty printing:

4. The BPL Tool: A Tool for Experimenting with Bigraphical Reactive Systems 109

name type description
/misc/indent int Set extra indentation at each level when

prettyprinting to N.
/misc/linewidth int Set line width to W characters.
/kernel/ast/bgterm/pp0abs bool Explicitly display empty-set abstrac-

tions (ignored if ppabs is false).
/kernel/ast/bgterm/ppabs bool Explicitly display abstractions (ab-

stractions on roots are always dis-
played).

/kernel/ast/bgterm/ppids bool Explicitly display identities in tensor
and parallel products.

/kernel/ast/bgterm/ppmeraspri bool Replace merge with prime product
(best effort).

/kernel/ast/bgterm/pptenaspar bool Replace tensor product with parallel
product.

/kernel/ast/bgval/pp-merge2prime bool Substitute | for || by removal of merges
before prettyprinting.

/kernel/ast/bgval/pp-simplify bool Simplify BgVal terms before pret-
typrinting.

/kernel/ast/bgval/pp-tensor2parallel bool Substitute || for * by removal of y//X’s
before prettyprinting.

/kernel/bg/name/strip bool Strip trailing _xx off input names (xx
are hex digits).

/kernel/match/rule/ppsimplereactum bool Simplify reactum when displaying rules.
/kernel/match/rule/ppsimpleredex bool Simplify redex when displaying rules.

For convenience, one can switch the use of syntactic shorthands on and off with a single command:

use_shorthands on/off

This will modify the following flags appropriately:

/kernel/ast/bgterm/ppids
/kernel/ast/bgterm/ppabs
/kernel/ast/bgterm/pp0abs
/kernel/ast/bgterm/pptenaspar
/kernel/ast/bgterm/ppmeraspri

4.4.13 Exceptions
Exceptions can be explained by the BPL Tool using the following command:

explain exn -> ’a Explain exception in detail and raise it again

If the debug level is greater than 0, and the SML interpreter supports it, the exception history will
also be printed.

110 4.5. Conclusions and Future Work

4.5 Conclusions and Future Work

We have introduced the BPL Tool, a first implementation of bigraphical reactive systems with binding,
and have demonstrated its use by modeling a simple mobile phone system.

Our research group has used the BPL Tool to successfully model a number of sytems (cf. Sec-
tion 4.1). Our experience is, that the BPL Tool is that it is quite useful for modeling as it validates
well-formedness of terms and rules, and its visualization capabilities, in particular through the web
interface, provides a good overview of reaction rules.

However, there is also room for improvement:

• The tool would benefit from a more complete graphical user interface than what the web interface
provides. One approach would be to extend Big Red [3] as follows:

– add support for binding,

– add facilities for modeling reaction rules, and

– add simulation facilities, by using the BPL Tool as a simulation backend.

• The BPLL syntax is a bit heavy due to the fact that it is embedded in Standard ML. By building
a dedicated command line interface one would be free to choose a simpler syntax. The BPL Tool
code base already contains a parser for an older version of BPLL, so the main task is to implement
an interactive prompt. The compromise would of course be that end-users will have a harder
time extending the tool.

• The implementation of matching is not very fast, due to the fact that it is derived directly from
the inductive characterization of matching which is based on the binding discrete normal form.
The main issues are the following:

– Structural congruence is currently handled naïvely: when matching children of a node, one
need to find partitions and permutations and the BPL Tool simply generates them all.

– Matching currently follows the place graph structure, and the link graph is only matched
at the root and leaves of the matching inference tree. By interleaving the matching of
the two graphs in a more fine-grained manner, one could probably prune the search space
significantly; this would perhaps be easier if one based matching on a connected normal
form where edges are as close to their constituent points as possible instead of being at the
outermost level.

– Only one redex is matched at a time, as this is the algorithm that naturally falls out of the
inductive characterization of matching. By matching all redexes simultaneusly, only one
traversal of the agent term would be necessary.

However, while we believe the suggested improvements are significant, we believe that more
efficient matching will be achieved by using SAT-solvers, which is currently being investigated
by Sevegnani et al. [21], or by the graph embedding based approach of Højsgaard et al. [20].
Note that matching is NP-complete [20] and thus no efficient algorithm exists unless P = NP.

• From a modeling perspective, is would be convenient if the BPL Tool was extended with support
for sortings of some kind, such that modellers could specify the structure of well-formed bigraphs
and then have the BPL Tool verify well-formedness of agents and rules and that the latter
preserves well-formedness.

4. The BPL Tool: A Tool for Experimenting with Bigraphical Reactive Systems 111

• Similarly, built-in support for datatypes and manipulation of data would make it easier to express
models containing computations. We suggest that such that an extension should be founded on
a solid formal foundation, such as the calculational bigraphical reactive systems of Debois [10].

4.6 Bibliography
[1] Giorgio Bacci, Davide Grohmann, and Marino Miculan. DBtk: A toolkit for directed bigraphs.

In CALCO, pages 413–422, 2009.

[2] Jørgen Eske Runge Bentzen. Master’s thesis, IT University of Copenhagen, 2007.

[3] Big Red. http://www.itu.dk/research/pls/wiki/index.php/Big_Red, 2010.

[4] BigMC – Bigraphical Model Checker. http://bigraph.org/bigmc/.

[5] Lars Birkedal, Troels Christoffer Damgaard, Arne John Glenstrup, and Robin Milner. Matching
of bigraphs. Electronic Notes in Theoretical Computer Science, 175(4):3–19, 2007.

[6] Lars Birkedal, Søren Debois, Ebbe Elsborg, Thomas Troels Hildebrandt, and Henning Niss. Bi-
graphical models of context-aware systems. In Luca Aceto and Anna Ingólfsdóttir, editors, Pro-
ceedings of the 9th International Conference on Foundations of Software Science and Computation
Structure, volume 3921 of LNCS, pages 187–201. Springer-Verlag, March 2006.

[7] BPL Tool. http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool.

[8] Mikkel Bundgaard, Arne John Glenstrup, Thomas Hildebrandt, Espen Højsgaard, and Henning
Niss. Formalizing WS-BPEL and higher order mobile embedded business processes in the bi-
graphical programming languages (BPL) tool. Technical Report TR-2008-103, IT University of
Copenhagen, 2008.

[9] Troels Christoffer Damgaard and Lars Birkedal. Axiomatizing binding bigraphs. Nordic Journal
of Computing, 13(1–2):58–77, 2006.

[10] Søren Debois. Computation in the informatic jungle. Draft, 2011.

[11] Niklas Eén and Niklas Sörensson. MiniSAT. http://minisat.se.

[12] Ebbe Elsborg. Bigraphs: Modelling, Simulation, and Type Systems. PhD thesis, IT University of
Copenhagen, 2009.

[13] Arne John Glenstrup, Troels Christoffer Damgaard, Lars Birkedal, and Espen Højsgaard. An im-
plementation of bigraph matching. Technical Report TR-2010-135, IT University of Copenhagen,
December 2010.

[14] Chris Greenhalgh. bigraphspace. http://bigraphspace.svn.sourceforge.net/, 2009.

[15] Ole Høgh Jensen. Mobile processes in bigraphs. Available at http://www.cl.cam.ac.uk/~rm135/
Jensen-monograph.html, 2006.

[16] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes (revised). Technical Report
UCAM-CL-TR-580, University of Cambridge, February 2004.

http://www.itu.dk/research/pls/wiki/index.php/Big_Red
http://bigraph.org/bigmc/
http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool
http://minisat.se
http://bigraphspace.svn.sourceforge.net/
http://www.cl.cam.ac.uk/~rm135/Jensen-monograph.html
http://www.cl.cam.ac.uk/~rm135/Jensen-monograph.html

112 4.6. Bibliography

[17] James Judi Leifer and Robin Milner. Transition systems, link graphs and Petri nets. Technical
Report UCAM-CL-TR-598, University of Cambridge, August 2004.

[18] Robin Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University Press,
1999.

[19] Robin Milner. The Space and Motion of Communicating Agents. Cambridge University Press,
2009.

[20] Stochastic Bigraphical Abstract Machine (SBAM). http://www.itu.dk/research/pls/wiki/
index.php/Stochastic_Bigraphical_Abstract_Machine_%28SBAM%29.

[21] M. Sevegnani, C. Unsworth, and M. Calder. A SAT based algorithm for the matching problem
in bigraphs with sharing. Technical Report TR-2010-311, University of Glasgow, Department of
Computing Science, 2010.

http://www.itu.dk/research/pls/wiki/index.php/Stochastic_Bigraphical_Abstract_Machine_%28SBAM%29
http://www.itu.dk/research/pls/wiki/index.php/Stochastic_Bigraphical_Abstract_Machine_%28SBAM%29

Part III

Bigraphical Semantics for Business
Processes

113

Chapter 5

Formalizing WS-BPEL and Higher
Order Mobile Embedded Business
Processes in the Bigraphical
Programming Languages (BPL) Tool
Mikkel Bundgaard, Arne J. Glenstrup, Thomas Hildebrandt,
Espen Højsgaard, and Henning Niss

Abstract

Bigraphical Reactive Systems (BRSs) have been proposed as a formal meta-model for global
ubiquitous computing that encompasses process calculi for mobility, notably the π-calculus and
the Mobile Ambients calculus, as well as graphical models for concurrency such as Petri Nets. In
this paper we demonstrate that BRSs also allow natural formalizations of programming languages
used in practice. We do so by providing a direct and extensible formalization of a subset of WS-
BPEL as a binding bigraphical reactive system using the BPL Tool developed in the Bigraphical
Programming Languages (BPL) project. The tool allows for compositional definition, visualization
and simulation of the execution of bigraphical reactive systems. The formalization exploits the
close correspondence between bigraphs and XML to provide a formalized run-time format very
close to standard WS-BPEL syntax.

The formalization is the starting point of an endeavor to provide a completely formalized
and extensible business process engine within the Computer Supported Mobile Adaptive Business
Processes (CosmoBiz) research project at the IT University of Copenhagen. Building upon the
formalization of WS-BPEL we propose and formalize HomeBPEL, a higher-order WS-BPEL-like
business process execution language where processes are first-class values that can be stored in
variables, passed as messages, and activated as embedded sub-instances. A sub-instance is similar
to a WS-BPEL scope, except that it can be dynamically frozen and stored as a process in a variable,
and then subsequently be thawed when reactivated as a sub-instance. We motivate HomeBPEL
by an example of pervasive health care where treatment guidelines are dynamically deployed as
sub processes that may be delegated dynamically to other workflow engines and in particular stay
available for disconnected operation on mobile devices.

115

116 5.1. Introduction

Preface This chapter consists of the technical report

M. Bundgaard, A. J. Glenstrup, T. Hildebrandt, E. Højsgaard, and H. Niss. Formalizing WS-
BPEL and Higher-Order Mobile Embedded Business Processes in the Bigraphical Programming
Languages (BPL) Tool. Technical Report TR-2008-103, IT University of Copenhagen, May 2008.

5.1 Introduction

Services implemented and orchestrated by processes written in languages such as WS-BPEL are being
put forward as a means to achieve loosely coupled and highly flexible computer supported business
and work processes. In the current architectures, services are deployed and managed on web servers by
meta-level tools and cannot be replaced or moved during the life-time of a session with an instance of the
service. In the present paper we propose and formalize a higher-order WS-BPEL-like language, called
HomeBPEL, where processes are values that can be stored in variables and dynamically instantiated
as embedded sub-instances. A sub-instance is similar to a WS-BPEL scope, except that it can be
dynamically frozen during a session and stored as a process in a variable. When frozen in a variable,
the process instance can be sent to remote services as any other content of variables and dynamically
re-instantiated as a local sub-instance continuing its execution.

We envisage a use of HomeBPEL where the necessary services or even active instances can be
dynamically moved to a local process engine running on a mobile device and thereby allow for dis-
connected operation. We exemplify this use by an example of pervasive health care, where treatment
workflows are moved between and executed locally on mobile devices belonging to either the doctor or
the patient, depending on whether the guideline requires actions by the doctor or it prescribes actions
carried out as self-treatment by the patient.

As a first step towards the formalization of HomeBPEL we provide a formalization of a non-
trivial subset of the Web Service Business Process Execution Language, WS-BPEL [35], which is being
promoted by major industrial players including IBM, SAP, BEA, Oracle, and Microsoft as the future
standard for orchestrating web-services as business processes. The formalization exploits the close
correspondence between bigraphs and XML to provide a small step rewrite semantics of the behavior
of WS-BPEL, and the formalization uses a representation of the state of active process instances which
is very close to the XML syntax of WS-BPEL processes. Building upon this formalization we provide
a bigraphical formalization of a WS-BPEL-like business process language supporting higher-order
primitives.

The investigation is part of the Computer Supported Mobile Adaptive Business Processes (Cos-
moBiz) project [24], which aims to provide a fully formalized runtime engine for a business process
language extended to allow for mobile and adaptive processes. Our primary goals of the formalization
is 1) to be able to guarantee that the implemented engine actually conforms to the semantics and 2)
to form a basis for the development of type systems that can be used to statically guarantee safe and
reliable behavior. To achieve the first goal a main concern is to limit the gap between the source lan-
guage, its formalization, and the implementation. A key element to achieve the second goal is to strive
for a compositional formalization supporting subsequent formalization of type rules for the individual
parts. We want to stress that it is not a main concern at this point to provide techniques or principles
for verification of processes, which has been the main concern of most WS-BPEL formalizations so far.
However, we do hope that future reasoning techniques developed for bigraphs can be employed also to
support formal verification.

The work on HomeBPEL is inspired and guided by our previous work on the Homer process calculus
of Higher-order mobile embedded resources [8, 19, 21], and in particular its formalization as a bigraph-

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 117

ical reactive system [7]. Not surprisingly, the new features add to the complexity of the language and
its formalization. Yet, the formal approach ensures that they are completely unambiguously specified.
Also, the close relationship to semantics of process calculi such as Homer and the Mobile Ambients
gives a very succinct formalization of sub-process mobility. Indeed, the serialized representation of a
mobile process is just a process description. In particular, this means that a future implementation
could use the standard XML format for serialized process instances.

The theory of Bigraphical reactive systems [26] provides a framework in which process models for
concurrent and ubiquitous computing can be uniformly defined and formally analyzed. In particular,
the π-calculus [33], Mobile Ambients calculus [10] and (1-safe) Petri Nets [29] have been represented as
instances of bigraphical reactive systems [26]. Bigraphical reactive systems can be seen as a specialized
kind of graph rewriting systems, in which processes are represented as two graphs (hence the name
bigraphs): The place graph and the link graph respectively. The place graph is a collection of node
labeled trees generalizing the nesting of process constructors in process calculi. The link graph is
a hyper graph specifying links between ports associated to the nodes of the place graph and a set
of external names, generalizing the link structure characteristic of the π-calculus. The dynamics is
specified by a set of parametric reaction rules, generalizing the rule formats used in e.g. the π-calculus
and the calculus of Mobile Ambients. The general theory of bigraphical reactive systems provides a
general notion of contexts and composition. This allows for compositional description of processes
as characteristic to process calculi. Together with a notion of "minimal" contexts, it forms the basis
for an automatic derivation of a labeled transition bisimulation congruence from the reaction rules
supporting compositional reasoning about the behavior of systems.

There are several reasons for why it is interesting to apply bigraphs to formalize an evolving
standard such as WS-BPEL. Firstly, we thereby demonstrate that bigraphical reactive systems can not
only be used as a meta-format for process calculi, but also be used to formalize programming languages
used in practice. Secondly, the model of bigraphical reactive systems is extensible: An instance of a
bigraphical reactive system is defined by its signature (the possible labels and ports of nodes) and
its reaction rules, which can be chosen to fit a particular language and its semantics. By extending
the signature and the set of reaction rules, a bigraphical reactive system can be adapted according to
e.g. changes in the language specification or incremental extensions of the language. We exploit the
extensibility of bigraphical reactive systems to extend the language and formalization of WS-BPEL
with primitives for mobile, embedded sub-processes. Furthermore, the place and link graph of bigraphs
correspond closely to respectively the nested element structure and sharing of attribute values in the
XML data model. Since WS-BPEL is equipped with an XML syntax, we are able to provide a small step
rewrite semantics in the model of bigraphical reactive systems using a representation of the current state
of processes which is very close to the WS-BPEL syntax. Indeed, the close correspondence between
bigraphs and XML was explored in our previous work on formalizing WS-BPEL as bigraphs [22, 23],
on which the present work builds. However, the formalization in [22, 23] was obtained at the cost
of introducing so-called higher-order reaction rules, for which the relationship to the existing notions
of bigraphs and theory of behavioral congruences remain to been developed. In addition to covering
a larger subset of WS-BPEL, the present formalization stays within the standard format for binding
bigraphs described in [26]. Thus, the general theory, techniques and tools developed for binding
bigraphs remain applicable to our formalization. In particular, we describe how the formalization can
be explored within the BPL Tool [3] developed in the Bigraphical Programming Languages (BPL)
project at the IT University of Copenhagen. The tool allows compositional definition of bigraphical
reactive systems within Standard ML. It is also equipped with a web interface supporting visualization
and interactive simulation of the execution of binding bigraphical reactive systems based on the formal
inference of rule matching described in [1, 2].

118 5.1. Introduction

The present paper combines the work presented in the two papers: [5] and [6].

Related work. WS-BPEL has been the target for several formalizations [40] accompanying the
official informal specification [35]. Generally, any formalization requires a compilation of a BPEL
process to a representation in the formal model. Clearly, the usefulness of a formalization depends on
the availability of tools and reasoning techniques for the formal model, but also on how easy it is to
relate the formal representation to the original BPEL process description.

Many of the prior formalizations have been based on versions of Petri Nets [32, 38], following the
tradition of formal workflow models. Other authors have been promoting the use of process calculi,
notably the π-calculus [36, 39]. This diversion can be partly explained by the fact that WS-BPEL
is a convergence and development of two radically different approaches to web service orchestration
proposed back in 2001: The IBM Web Services Flow Language (WSFL) and the Microsoft XLANG
specification. While WSFL was based on flow graphs which are characteristic to the Petri Net model
and most workflow languages, XLANG was based on the notion of message exchange behavior which
is characteristic to the π-calculus. A third line of formalizations are based on abstract state machines
(ASMs) [13–16]. These seek to represent the informal specification as is, i.e. they aim at using the
same terminology and level of abstraction in their formalizations, thereby hoping to minimize the gap
to the informal specification. This goal is shared by our approach, though our method focuses on
keeping the formalization close to the BPEL language itself and not its informal description.

In this paper we focus on the XLANG subset of WS-BPEL, in particular the control flow, scope
structure, message passing and dynamic manipulation of Partner Links (akin to name passing in the
π-calculus). However, since bigraphical reactive systems have been shown to faithfully represent both
the π-calculus and Petri Nets, we believe the model is a good candidate for providing at the same time
a faithful representation of both the WSFL and the XLANG features of WS-BPEL. Already for the
present subset, we crucially exploit the nesting structure of bigraphs to give a very succinct semantics
of "abnormal" termination caused by the WS-BPEL exit activity, which is not as easy to formalize
in the π-calculus.

Our formalization of the core WS-BPEL subset relates to the WS-BPEL process calculus given
in [28]. An advantage to our approach is that we can reuse the general theory developed for bigraphical
reactive systems, instead of redeveloping an entire theory of a new process calculus. As in [28], we
hope to be able to equip our formalization with WSDL-like (or even richer) type systems.

Sub-processes have been proposed by IBM and SAP in [27] as an extension to WS-BPEL (called
BPEL-SPE) to allow for modularization and reuse of process fragments to ease the burden of designing
large business processes. As argued in [27] one could simulate some of the behavior of sub-processes
by invoking another process instead of invoking a sub-process. However, this makes it impossible to
establish any coupling between the life-cycles of the two process instance, e.g. enforcing that a sub-
process exits if the super process exits prematurely. The sub-processes we propose in this paper extend
the proposal in [27] in several aspects. First and foremost, BPEL-SPE requires that the sole interaction
of a sub-process is an initial receive activity, and a last reply activity, basically making the sub-process
act as a method or function call. We allow that the sub-process can communicate unrestrictedly with
the parent process (and vice versa) using invoke-receive. Furthermore, we add facilities for “freezing”
and “thawing” sub-processes as well as (sub-)process mobility.

Higher order workflow models applied to health care processes have been considered in the context
of Higher-Order (Petri) Nets [25], allowing sub-processes (nets) as values (tokens), which may be
dynamically composed. The approach in [25] differs from ours in several ways: Firstly, the approach
in [25] is based on Petri Nets as opposed to process calculi, and has no direct relationship to WS-BPEL
nor service orchestration. Another central difference is that we execute sub-processes as sub-threads,

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 119

whereas in [25] a sub-process is executed step-by-step by the super process — and sub-processes can
not contain sub-processes themselves. Finally, the model in [25] allows for dynamic modification and
composition of sub-processes, which is not yet supported in our setting.

As described above, our proposal of higher order mobile sub-processes relates to our work on the
higher-order process calculus Homer. The Homer calculus is related to the process calculus of Mobile
Ambients [10] and the Seal calculus [11]. Indeed, HomeBPEL shares with Seal the combination of name
(link) and process passing. We leave for future work to explore the relationship between HomeBPEL
and these process calculi. Again, we hope that the many type systems proposed for process calculi for
mobility can guide us to equip our formalization with useful type systems for controlling the mobility.

In [20] a notion of mobile business process is defined by processes in which a) the place of execution
of an activity can change, or can be different for different instances, b) the change is caused by external
factors, and c) cooperation with external resources is needed. The mobile sub-instances we propose
meet all these criteria.

Structure of the paper. In Sec. 5.2 we introduce the meta-model of binding bigraphs, and in
Sec. 5.3 we utilize binding bigraphs to give a formal semantics of a subset of WS-BPEL and visualize
it using the BPL Tool. In Sec. 5.4 we motivate the need for higher-order constructs with an example
of computer supported pervasive health care, and we present the resulting language HomeBPEL — a
WS-BPEL-like language where processes are values that can be stored in variables and dynamically
instantiated as embedded sub-instances. In Sec. 5.5 we formalize HomeBPEL using the BPL Tool. We
conclude and propose directions for future work in Sec. 5.6.

5.2 Binding Bigraphs and BPL Tool
In this section we briefly review the binding bigraphs of Milner and Jensen [26] and introduce the
syntactical representation of binding bigraphs as implemented in the BPL Tool. For a complete
introduction to bigraphs we refer to [26].

5.2.1 Binding Bigraphs
A binding bigraph is a pair of graphs: a place graph and a link graph. The place graph is an n-tuple of
finite, unordered trees. Except for roots, every node is labelled by a control and has two finite ordered
sets of respectively free and binding ports. The link graph is essentially a hypergraph connecting every
free port of the nodes in the place graph to either a closed link, a binding port, or a name in a finite
set X of names. Jointly with a collection of pairwise disjoint sets Xi ⊆ X of local names, one for
each root in the bigraph, the set X defines the (outer) interface of the link graph. The so-called scope
condition enforces that any binding port and any name in a set Xi is only connected to ports nested
strictly inside the node of the binding port and root i respectively.

What we just described above is known as ground binding bigraphs. Intuitively, one may think of a
ground binding bigraph as an ordered tuple of terms of a process calculus up to structural congruence:
Sibling nodes in the place graph represent processes combined by an associative and commutative
parallel operator. Each node is a prefix, and each control denotes a distinct prefix operation (e.g. send
or receive in the π-calculus) with free and binding ports representing names and name binders of the
particular operation (e.g. for the π-calculus, any node labelled by a send control would have 2 free
ports, while nodes labelled by a receive control would have one free and one binding port). The link
graph then maps each name in a prefix to either a local name (closed link), a binder (i.e. a binding
port) or a name in the interface.

120 5.2. Binding Bigraphs and BPL Tool

A ground bigraph with a single root is also similar to the data model for XML, with controls
playing the role of the names of XML elements, ports playing the role of attributes and the linking
of ports playing the role of attribute values. As we will see below, we exploit this similarity to give a
bigraphical semantics to HomeBPEL resembling closely the XML syntax.

A central ingredient of the theory of bigraphs is that bigraphs in general are (multi-hole) contexts
that can be composed: The place graph has a finite ordered set of holes (referred to as sites in the
usual bigraph terminology), each associated as a child of a node. The link graph has a set of local
names Yi for each hole. As for the outer interface, the sets Yi are pairwise disjoint and contained in a
finite set of names Y which jointly with the sets Yi forms the inner interface. As the free ports, the
names in Y are connected to either a closed link, a binding port or a name in the outer interface.

Outer (resp. inner) interfaces of binding bigraphs are thus triples 〈n, ~X,X〉, where the width n is
a finite ordinal representing the number of roots (resp. sites), X is a finite set of names, and ~X is an
n-tuple of pairwise disjoint subsets of X which declares some of the names in X as local to specific
roots (resp. sites). If x 6∈ ~X then x is said to be global, else it is local ; if an interface I has no global
names x, it is a local interface. We write G : I → J for the bigraph G with inner interface I and outer
interface J . The composition H ◦G : I → J of bigraphs G : I → I ′ and H : I ′ → J with compatible
interfaces is obtained by making the children of the ith root of G children of the (parent) node of the
ith site of H, discarding the roots of G and sites of H, and by coalescing links as prescribed by the
correspondence of H’s inner and G’s outer names.

A binding bigraphical reactive system is defined with respect to a signature, which declare the
set of possible controls labelling nodes of the bigraph and for each control K the number of binding
and free ports of nodes in the bigraph labelled with K. The signature also declares each control as
either atomic, active or passive. Only nodes with non-atomic controls can have children, and reactions
(as defined below) can only occur in sub-bigraphs nested solely within active controls, i.e. the active
controls determine evaluation contexts.

5.2.2 BPL Tool Term Language
Binding bigraphs are often visualized graphically. However, binding bigraphs also admit a representa-
tion via a term language based on the axiomatization of binding bigraphs [12]. This representation is
exploited in the BPL Tool to allow compact and compositional textual descriptions of binding bigraphs
and their reaction rules1.

In the present paper we will use the syntax of the term language as used in the BPL Tool. The
language consists of Standard ML constructs which allows the user to write the terms directly in SML,
at the cost of introducing a few additional back quotes. (Future versions of the BPL Tool will also
support a clean input language stripped of SML artifacts.) The employed subset of the language can
be defined by the following grammar.

P ::= P o P | P || P | P ‘|‘ P | C
C ::= c | c[N?] | c[N?][NS ?] | -//[N ?] | n//[N ?] | ‘[N?]‘ | <->

N ? ::= ε | N N ::= n | n,N NS ? ::= ε | NS NS ::= [N?] | [N?],NS

where n ranges over strings representing names and c over strings representing controls. C describes
so-called ions which are bigraphs consisting of a single root with a single node as child, having a control
as defined in the signature. If the control is non-atomic the ion has a single hole inside. For instance,

1The representation is also exploited in the underlying formalization and implementation of matching used for the
execution of reaction rules as described in [18].

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 121

Running

If Condition

False
Then

0

Else

1

inst_id

Running

0

inst_id

R R’

Figure 5.1: Example bigraphs R : I → J and R’ : I ′ → J , where I = 〈2, [{}, {}], {}〉, I ′ =
〈1, [{}], {}〉, J = 〈2, [{}, {}], {inst_id}〉

an ion with name c and i free ports and j binding ports is written c[n1, . . . , ni][NS 1, . . . ,NS j] where
the NSk is the set of names bound to the kth binding port.

We use the double bars || to separate roots in the place graph and the single bar ‘|‘ as a separator
between sibling nodes. The symbol o denotes composition as defined above (the tool checks that the
interfaces of the bigraphs match). The terms -//[N ?] and n//[N ?] denote a bigraph with an empty
place graph (i.e. no roots) and a link graph mapping the names in the list N ? to respectively each their
closed link and to the name n. The term ‘[]’ denotes a hole and the term ‘[n1, . . . , nk]‘ denotes a
hole with local names n1, . . . , nk. Finally, the term <-> denotes a bigraph just consisting of a single
empty root. As an example, we may define two binding bigraphs as follows (and depict the graphical
representation of them in Fig. 5.1).

val R = If[inst_id] o (Condition o False ‘|‘ Then o ‘[]‘ ‘|‘ Else o ‘[]‘)
|| Running[inst_id]

val R’ = ‘[]‘ || Running[inst_id]

The bigraphs R and R’ both have two roots. The first root of R has a single node as child with the
control If and a single free port linked to the name inst_id. The node has three nodes as children,
labelled respectively with the controls Condition, Then and Else. The first node has a single node as
child labelled with the atomic control False. The two latter nodes both have a hole as a child. The
holes in a bigraph term are ordered from left to right, i.e. the hole below the Then is indexed 0 and
the hole below the Else is indexed 1. The second root of R has a single node as child labelled with the
atomic control Running and a single free port linked to the name inst_id. The bigraph R’ has simply
a hole below its first root and the atomic Running control below its second root. The two bigraphs in
fact form respectively the redex and reactum of a reaction rule, as defined below, defining the meaning
of an if-then-else construct in the case where the condition has been evaluated to false.

5.2.3 Parametric Reaction Rules
The dynamics of bigraphical reactive systems is defined in terms of a reaction relation generated from
a set of reaction rules R. Such rules are generally parametric, and may discard and also duplicate
their parameters.

A rule, written "rule name" ::: R –%̄–|> R’, consists of two bigraphs: the redex R : I → J and
the reactum R’ : I ′ → J , where both I and I ′ are local interfaces, and a parameter mapping %̄. The
mapping %̄ indicates for each site in the reactum from which site in the redex the parameter is copied.

The expression "if false" ::: R –[0 |-> 1]–|> R’ is a reaction rule for executing an If ac-
tivity with a false condition. During a reaction, the first tree of R (the if-then-else construct) is replaced

122 5.3. Formalizing WS-BPEL in the BPL Tool

by the first tree the reactum R’. Since the second tree of R and R’ are identical it simply means that a
node with the Running control (and the correct id link) must be present in the context—this is used
to ensure that rewrites are only performed on running instances which are ready to execute a step.
The mapping [0 |-> 1] specifies that the hole in the reactum (site 0) should contain the contents of
the hole in the Else-branch (site 1), while the contents of the hole in the Then-branch is discarded as
it is not mentioned in the mapping.

In general parameters may have local names, thus the mapping %̄ must also define how the local
names of a parameter is mapped to local names in the hole of the reactum. For instance, [0&[x1] |–>
0&[x], 1&[x2] |–> 0&[x]] is a mapping which (a) maps site 0 of the reactum and its local name x1
to site 0 of the redex and its local name x, and (b) also maps site 1 of the reactum and its local name
x2 to site 0 of the redex and its local name x.

A rule matches an agent a if a = C o (idZ || R) o d for some identity linking idZ and active
context C (i.e., no site of C is nested within a passive node); the linking idZ connects all non-local
names in the outerface of d to C. In this case reaction produces a new agent a’ = C o (idZ || R’)
o d’, where d’ is computed from d as prescribed by %̄. When duplicating parts of the agent (by letting
%̄ map several reactum sites to a single redex site), local links in d are copied to each copy in d’, while
free links are shared between the copies. Binding ports thus enforce a notion of scope and locality on
a bigraph’s links, resembling the usual notion of binders in the λ- and the π-calculus. This feature of
binding bigraphs is crucial in our formalization of WS-BPEL to create fresh id and scope links when
new instances or scopes are created.

5.3 Formalizing WS-BPEL in the BPL Tool
In this section we present the subset of WS-BPEL considered in this report and its formalization in
the BPL Tool. First we present the WS-BPEL subset in Sec. 5.3.1. Second we present the static
representation in Sec. 5.3.2, i.e. the representation of processes and instances. Third we present the
reaction rules capturing the dynamic behavior of WS-BPEL in Sec. 5.3.3.

5.3.1 WS-BPEL

We consider a subset of the WS-BPEL syntax given by the grammar in Tab. 5.1. For brevity we do not
use XML notation or an XML schema and omit attributes in the grammar. We use ? and ∗ to indicate
that an element can appear at most once and any number of times respectively. We also assume that
sequence elements always contain exactly two actions. For technical reasons, which will be explained
in Sec. 5.3.3, we also assume that receive elements with the createInstance="yes" attribute refer to
a partner link defined in the outermost scope. We write attributes as sets following the element name
(e.g. Process {name=echo}) and let A range over such sets. If an element has no attributes, we leave
out the set of attributes. Note that in regard to data flow we only consider the constant values given
by the XPath expressions true() and false() and references to variables, assuming that x ranges over
strings. We let BPEL refer to the set of terms defined by the grammar.

5.3.2 The Static Representation

We define our bigraphical representation of WS-BPEL in the BPL Tool with respect to the signature
given in Tab. 5.2. As explained in the previous section, the signature determines the allowed controls
for labeling nodes, and for each control the number of binding and free ports of nodes labeled with
this control. For instance, we write Reply =: 0 –> 6 for a control called Reply with binding arity

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 123

proc ::= Process(scopecontent)
scopecontent ::= partnerlinks vars act
partnerlinks ::= PartnerLinks(PartnerLink∗)
vars ::= Variables(Variable∗(value?))
act ::= scope | seq | flow | while | if | assign

| Invoke | Receive | Reply | Exit
scope ::= Scope(scopecontent)
seq ::= Sequence(act act)
flow ::= Flow(act∗)
while ::= While(Condition(expr) act?)
if ::= If(Condition(expr) Then(act?) Else(act?))
assign ::= Assign(Copy(From To))
value ::= true() | false()
expr ::= value | $x

Table 5.1: Grammar for WS-BPEL processes.

0 and free arity 6, which can be abbreviated to Reply -: 6. A control having zero binding and free
arity is declared by just writing the control name, e.g. Next.

Active controls
PartnerLinks
Variables
If -: 1
Condition
Sequence -: 1
Flow -: 1

Instance -: 2
ActiveScope -: 2

Passive controls
Process =: 1 –> 1
Scope =: 1 –> 1
Variable -: 2
While -: 1
Then
Else
Assign -: 1
Copy
PartnerLink -: 2

Next
Message -: 1

Atomic controls
To -: 2
From -: 2
ToPLink -: 2
FromPLink -: 2
Invoke -: 8
Receive -: 6
Reply -: 6
Exit -: 1
True
False
VariableRef -: 3

CreateInstance -: 1
GetReply -: 6
ReplyTo -: 2
Link -: 1
Running -: 1
Invoked -: 1
Stopped -: 1

Table 5.2: Signature for WS-BPEL

The controls listed in the upper part of the signature correspond directly to the subset of WS-
BPEL elements we are considering2 (cf. Tab. 5.1) and allow us to give a very direct representation
of WS-BPEL processes, while the controls listed in the lower part are introduced to facilitate the
formalization of the execution semantics. We will call the bigraphical reactive system for BRSBPEL.

As an example, consider the process in Fig. 5.2(a). The process is represented in the BPL Tool as
shown in Fig. 5.2(b). The graphical representation, generated by the BPL Tool, is shown in Fig. 5.2(c)
(the link to the binding port of the Process node has been colored green to improve readability).
The place graph (nesting of controls) and the link graph correspond almost directly to the nesting
of elements and the sharing of attributes of the XML representation respectively. But we need to
introduce some additional structure. The main differences are:

1. Since the children of a node in a bigraph are unordered, and children of an XML element are
2WS-BPEL allows several forms of the from and to elements. We have chosen to formalize two of these, namely those

for variables (From, To) and partner links (FromPLink, ToPLink).

124 5.3. Formalizing WS-BPEL in the BPL Tool

<process name="echo_process">
<partnerLinks><partnerLink name="echo_client" /></partnerLinks>
<variables><variable name="x" /></variables>
<sequence>

<receive partnerLink="echo_client" operation="echo"
createInstance="yes" variable="x" />

<reply partnerLink="echo_client" operation="echo" variable="x" />
</sequence>

</process>

(a) Example WS-BPEL process.

val echo_process =
Process[echo_process][[echo_id]]
o (PartnerLinks o PartnerLink[echo_client, echo_id] o CreateInstance[echo]

‘|‘ Variables o Variable[x, echo_id] o <->
‘|‘ Sequence[echo_id] o (

Receive[echo_client, echo_id, echo, x, echo_id, echo_id]
‘|‘ Next o (

Reply[echo_client, echo_id, echo, x, echo_id, echo_id])))

(b) BPL Tool representation of example process.

Process PartnerLinks

PartnerLink

CreateInstance

Variables

Variable

Sequence

Receive
Next

Reply

echo_process echo_client echo x

(c) BPL Tool visualization of example process.

Figure 5.2: Example process.

ordered, we represent the sequence construct as a nesting of binary sequence constructs, in which
the second activity is enclosed in a node labeled by the Next control.

2. To be able to identify the scope of partner links and variables we have added an explicit link from
the PartnerLink and Variable nodes to a binding port of the Process and Scope nodes. This
will be explained below when we describe the semantics of assignment and scopes. For similar
reasons, we also link expressions and activities to the binding port of the enclosing Process node.

3. To be able to identify the initial receive actions we insert CreateInstance nodes in each
PartnerLink which identify an operation for which there is a receive activity with the createInstance="yes"
attribute using that partner link.

4. We require PartnerLinks and Variables nodes in each scope (including process). This allows
for fewer and simpler reaction rules. This is a technicality as the absence of e.g. a variables
declaration in a WS-BPEL process is equivalent to an empty variables declaration, so we just

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 125

make them explicit in the representation.

We represent the XPath expressions true() and false() by nodes with the controls True and
False, respectively. Variable references (e.g. $x) are represented by VariableRef nodes.

We give the formal definition of the map C[[−]] : BPEL→ BRSBPEL in Tab. 5.3. The map is defined
using a map [[−]]

x_id,s_id
x̃,σ,φ : BPEL → BRSBPEL on sub-terms indexed by names x_id and s_id, indi-

cating the name connected to the bound link identifying the process and the scope respectively, a set x̃
of names constituting the current names of bound links, a scope map σ mapping every defined partner-
link name or variable name to its scope link, and a map φ : Name → BRSBPEL mapping partnerlink
names to bigraph terms of the form CreateInstance[op1]‘|‘. . .‘|‘CreateInstance[opn] indicating
for a given partnerlink name n that the process contains terms Receive A i where {partnerLink=n,
operation=opi, createInstance=yes} ⊆ Ai, 1 ≤ i ≤ n. We use the map I[[−]] : BPEL→ Name→
BRSBPEL defined in Tab. 5.4 to find φ from the body of the process. For a set of partnerlink and vari-
able declarations pls and vars we will write σ[pls ∪ vars 7→ x_id] for the update of the scope map σ
mapping every partnerlink and variable name in pls and vars to the name x_id and every other name
n in the domain of σ to σ(n). We write x̃y for the disjoint union of x̃ and {y} (i.e. implying y 6∈ x̃),
which is used in generating fresh bound names of scopes. Note that we assume a partition of the set
of names into two disjoint sets, one ranged over by strings with the suffix _id (e.g. x_id), which
is used for scope identifiers, and one ranged over by strings without the suffix, which corresponds to
XML attribute values. This prevents clashes between scope identifiers introduced in the translation
and attribute values. We let p range over any sub term of BPEL, including the empty term ε.

A key feature of the formalization is that active process instances are represented almost as the
processes, the main difference is that they are nested within an (active) Instance control instead of a
(passive) Process control. Fig. 5.3(b) is an example of an instance, which is visualized in Fig. 5.3(c)
(again some of the links have been colored to improve readability). It exemplifies the case, where the
echo process has been invoked resulting in a new instance of that process, which has performed the
initial receive activity. We have left out the calling instance from the figure to keep the example simple
— the edges “client id edge” and “echo id edge”, is connected to respectively the id port and a port of
a link node in the PartnerLink (used for getting the reply) in the calling instance.

One might use the close correspondence between bigraphs and XML to translate the representation
of instances into XML as shown in Fig. 5.3(a). This illustrates that the run-time execution format is
very close to the process specification format.

However, notice that we have also added a Running node in the instance; we call this the status
node of the instance. The purpose of the status node is twofold and somewhat intricate, and will be
explained below when we describe the reaction rules.

5.3.3 Reaction Rules

In this section we present the reaction rules used in the formalization of WS-BPEL. The reaction rules
(in BPL Tool syntax) is also available via the on-line tool3.

Structural Activities

The rules for structural activities covers completion of flows and sequences, conditionals (if-then-else)
and iteration (while-loop).

3See http://tiger.itu.dk:8080/bplweb/index/18

http://tiger.itu.dk:8080/bplweb/index/18

126 5.3. Formalizing WS-BPEL in the BPL Tool

C[[Process {name=n}(pls vars act)]] = Process[n][[n_id]]◦

([[pls]]
n_id,n_id
{n_id},[],I[[act]] ‘|‘ [[vars]]

n_id,n_id
{n_id},[],φ0

‘|‘ [[act]]n_id,n_id
{n_id},[pls∪vars 7→n_id],φ0

)

[[PartnerLink {name=n}]]x_id,s_idx̃,σ,φ = PartnerLink[n,s_id] ◦ φ(n)

[[Variable {name=n}(p)]]x_id,s_idx̃,σ,φ = Variable[n,s_id] ◦ [[p]]x_id,s_idx̃,σ,φ

[[Scope(pls vars act)]]
x_id,s_id
x̃,σ,φ = Scope[x_id][[y_id]]◦

([[pls]]
x_id,y_id
x̃,σ,φ ‘|‘ [[vars]]x_id,y_idx̃y_id,σ,φ ‘|‘ [[act]]x_id,y_idx̃y_id,σ[pls∪vars 7→y_id],φ)

[[Sequence(act act ′)]]x_id,s_idx̃,σ,φ = Sequence[x_id] ◦ ([[act]]x_id,s_idx̃,σ,φ ‘|‘ Next ◦ [[act ′]]x_id,s_idx̃,σ,φ)

[[From {var=n}]]x_id,s_idx̃,σ,φ = From[n,σ(n)]

[[To {var=n}]]x_id,s_idx̃,σ,φ = To[n,σ(n)]

[[From {partnerLink=n}]]x_id,s_idx̃,σ,φ = FromPLink[n,σ(n)]

[[To {partnerLink=n}]]x_id,s_idx̃,σ,φ = ToPLink[n,σ(n)]

[[Receive A]]x_id,s_idx̃,σ,φ = Receive[n,σ(n),op,x,σ(x),x_id],

if A ⊇ {partnerLink=n,operation=op,variable=x}

[[Invoke A]]x_id,s_idx̃,σ,φ = Invoke[n,σ(n),op,ix,σ(ix),ox,σ(ox),x_id],

if A = {partnerLink=n,operation=op,

inputVariable=ix,outputVariable=ox}

[[Reply A]]x_id,s_idx̃,σ,φ = Reply[n,σ(n),op,x,σ(x),x_id],

if A = {partnerLink=n,operation=op,variable=x}

[[E(p)]]
x_id,s_id
x̃,σ,φ = E ◦ [[p]]x_id,s_idx̃,σ,φ

where E ∈ {PartnerLinks, Variables, Then, Else, Condition, Copy}

[[Eid(p)]]
x_id,s_id
x̃,σ,φ = Eid[x_id] ◦ [[p]]x_id,s_idx̃,σ,φ

where Eid ∈ {Flow, If, While, Assign, Exit}

[[true()]]
x_id,s_id
x̃,σ,φ = True

[[false()]]
x_id,s_id
x̃,σ,φ = False

[[$x]]
x_id,s_id
x̃,σ,φ = VariableRef[x,σ(x),x_id]

[[p p′]]
x_id,s_id
x̃,σ,φ = [[p]]

x_id,s_id
x̃,σ,φ ‘|‘ [[p′]]x_id,s_idx̃,σ,φ

[[ε]]
x_id,s_id
x̃,σ,φ = <->

Table 5.3: Translating BPEL into BRSBPEL.

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 127

I[[Receive A]] =
{

φ0[n 7→ CreateInstance[op]] if ci = yes
φ0 otherwise

where A ⊇ {partnerLink=n,operation=op,createInstance=ci}

I[[E A(p)]] = φ0

where E ∈ {Condition, Assign, Invoke, Reply, Exit, Variables, PartnerLinks}
I[[E A(p)]] = I[[p]]

where E ∈ {Scope, Flow, Sequence, While, If, Then, Else}
I[[p p′]] = I[[p]] | I[[p′]]
I[[ε]] = φ0

φ0(n) = <->

(φ | φ′)(n) = φ(n) ‘|‘ φ′(n)

Table 5.4: Finding Receive terms with createInstance=yes.

Completion of Activities: When a Flow is completed (i.e. there are no more instructions in the
flow to be executed) we garbage collect the flow, by replacing the Flow node with an empty bigraph
(denoted by <->).

"flow completed" :::

Flow[inst_id] o <->
|| Running[inst_id]

----|>
<->

|| Running[inst_id];

In the same manner, we garbage collect a Sequence if the current instruction is completed (i.e. if
there is no current instruction). We then make the following instruction the next to be executed by
replacing the Sequence node with the content of the Next node.

"sequence completed" :::

Sequence[inst_id] o Next o ‘[]‘
|| Running[inst_id]

--[0 |-> 0]--|>
‘[]‘

|| Running[inst_id];

Conditionals: The rules for evaluating an if-then-else statement is as expected. If the condition
is True we execute the then-branch, otherwise we execute the else-branch. One of the two rules for
evaluating an if-then-else statement was already given in Sec. 5.2 (rule if false), so we only present
the rule for when the condition is true in this section. The rule is similar to the rule given in Sec. 5.2
except for the value of the condition and the instantiation.

"if true" :::

If[inst_id] o (Condition o True
‘|‘ Then o ‘[]‘
‘|‘ Else o ‘[]‘)

128 5.3. Formalizing WS-BPEL in the BPL Tool

<instance name="echo_process" id="echo_id">
<running id="echo_id" />
<partnerLinks>

<partnerLink name="echo_client" />
<link id="client_id" /><replyTo id="client_id" />

</partnerLink>
</partnerLinks>
<variables><variable name="x">True</variable></variables>
<sequence>

<reply partnerLink="echo_client" operation="echo" variable="x" />
</sequence>

</instance>
(a) Example WS-BPEL instance.

val echo_instance =
Instance[echo_process, echo_id]
o (Running[echo_id]

‘|‘ PartnerLinks
o PartnerLink[echo_client, echo_id]
o (Link[client_id] ‘|‘ ReplyTo[echo, client_id])

‘|‘ Variables o Variable[x, echo_id] o True
‘|‘ Sequence[echo_id] o (

Next o (
Reply[echo_client, echo_id, echo, x, echo_id, echo_id])))

(b) BPL Tool representation of example instance.

Instance

Running

PartnerLinks

PartnerLink

Link ReplyTo

Variables

Variable

True

Sequence

Next

Reply

client id edge echo id edge

echo_process echo_client echo x

(c) BPL Tool visualization of example instance.
Figure 5.3: Example instance.

|| Running[inst_id]
--[0 |-> 0]--|>
‘[]‘

|| Running[inst_id];

Iteration: We give semantics to a while-loop in the traditional manner, by unfolding the loop once
and using an if-then-else statement with the loop condition. In the syntax of the BPL Tool (emphasizing
the order of the holes using Standard ML comments), the rule while unfold for unfolding looks as
follows.

"while unfold" :::

While[inst_id] o (Condition o ‘[]‘ ‘|‘ ‘[]‘)
|| Running[inst_id]

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 129

--[0 |-> 0, 1 |-> 1, 2 |-> 0, 3 |-> 1]--|>

If[inst_id] o (Condition o ‘[]‘
‘|‘ Then o Sequence[inst_id] o (

‘[]‘
‘|‘ Next o

While[inst_id]
o (Condition o ‘[]‘ ‘|‘ ‘[]‘))

‘|‘ Else o <->)
|| Running[inst_id];

Note how the instantiation [0 |-> 0, 1 |-> 1, 2 |-> 0, 3 |-> 1] on the arrow of the rule
describes that the parameter in hole 0 (the condition expression) is copied and placed in both hole 0
and hole 2 of the reactum. Also, the parameter in hole 1 (the body of the while loop) is copied and
placed in both hole 1 and hole 3 of the reactum. One may also note that the empty process, to be
executed in the Else branch, is represented by the bigraph with a single barren root. As explained
above, the Running node linked to the While node via the name inst_id is used to guarantee that
the instance which the while-loop is part of is indeed running.

Expression Evaluation

Our current formalization only supports one type of expressions, namely variable references. But one
can easily extend the semantics to more expression types, simply by adding rules describing how to
evaluate them — without having to alter the current rules.

A variable reference is evaluated by locating the referenced variable, using its name and “scope”-link,
and then replacing the VariableRef node by the current content of the variable.

"variable reference" :::

VariableRef[var, var_scope, inst_id]
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id]

--[0 |-> 0, 1 |-> 0]--|>

‘[]‘
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id];

Assignment and Dynamic Manipulation of Partner Links:

Of the many variants of the "Assign" activity in WS-BPEL, we cover in our formalization only the
four allowing for copying the content of a Variable or PartnerLink to a Variable or PartnerLink.
Each are covered by a single rule in the formalization. Below we show the case of the rule assign
copy plink2var which copies the content of the PartnerLink node referenced to by the FromPLink
node to the Variable node referenced to by the To node. The remaining 3 rules are quite similar.

"assign copy plink2var" :::

Assign[inst_id] o Copy o (FromPLink[f, scope1]
‘|‘ To[t, scope2])

|| PartnerLink[f, scope1] o ‘[]‘
|| Variable[t, scope2] o ‘[]‘
|| Running[inst_id]

--[0 |-> 0, 1 |-> 0]--|>

130 5.3. Formalizing WS-BPEL in the BPL Tool

<->
|| PartnerLink[f, scope1] o ‘[]‘
|| Variable[t, scope2] o ‘[]‘
|| Running[inst_id];

The instantiation describes that the parameter of hole 0 is copied to both hole 0 and 1 in the
reactum, and that the content of hole 1 is discarded. The f and t links determine the name of the
partner link and the variable respectively. However, the name alone may not uniquely determine a
variable (or partner link). Since variables (or partner links) may be defined within nested scopes,
several variables (or partner links) may have the same name. In this case the WS-BPEL specification
states that the closest variable (partner link) should be fetched. We represent this in the formalization
by letting the scope1 and scope2 links connect respectively the FromPLink and To nodes to the closest
partner link and variable with the correct name.

Scopes

The formalization of nested scopes makes crucial use of bound links. In WS-BPEL, local scopes may
be defined within a while loop. As an example consider the while loop shown below.

<while>
<condition>true()</condition>
<scope>

<variables><variable name="x" /></variables>
<assign>

<copy><from partnerlink="echo_client" /><to variable="x" /></copy>
</assign>

</scope>
</while>

Every iteration of the while loop, i.e. every unfolding of the loop, must create a new scope, con-
taining a new copy of the variable. If we (naively) used a normal, i.e. free, link within the scope to
connect the reference to x in the assignment, then the two copies created by the rule while unfold
would share the same scope link. The consequence would be that the assignment rules would not tell
the two scopes apart, and thus the variable from the wrong scope could be used in the assignment.
For this reason we let the scope links be connected to a binding port of the Scope control. This en-
sures that each copy of the scope gets its own bound link. However, this introduces another problem:
In the rule assign copy plink2var above we must place the assignment, partner link and variable
controls below different roots, since they could all potentially be located in different scopes. However,
interfaces of binding bigraphs do not allow a bound link to be shared between two nodes located below
two different roots in the place graph.

To cope with this problem, we make the Scope control passive, and introduce a rule scope
activation as defined below. The rule replaces the passive Scope node with an active ActiveScope
node, where the binding port is replaced by a normal (free) port, and the bound link by an edge
connected to that port. The rule is defined as follows in the BPL Tool syntax.4

"scope activation" :::

Scope[inst_id][[scope]] o ‘[scope]‘
|| Running[inst_id]

--[0 |-> 0]--|>
-//[scope] o (ActiveScope[inst_id, scope] o ‘[scope]‘)

|| Running[inst_id];

4An alternative solution to this problem would be to use so-called local bigraphs, which exactly allow the more general
interfaces where names can be bound to several roots. Alas, local bigraphs are not supported by the BPL Tool.

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 131

Note how the use of single and double square brackets of the control Scope specify that inst_id is
a normal port and scope is a binding port, whereas ActiveScope[inst_id, scope] has two normal
ports. Note also that the link map -//[scope] closes the link connected to the scope port in the
reactum, and that the name scope is local to the hole 0 in both redex and reactum. In a similar
manner we need to be able to activate scopes in newly created instances, while their status is still
Invoked.

"scope activation 2" :::

Scope[inst_id][[scope]] o ‘[scope]‘
|| Invoked[inst_id]

--[0 |-> 0]--|>
-//[scope] o (ActiveScope[inst_id, scope] o ‘[scope]‘)

|| Invoked[inst_id];

When we are finished executing the body of the scope we remove the scope, including its variables,
partner links, and its associated “scope”-edge.

"scope completed" :::

ActiveScope[inst_id, scope]
o (Variables o ‘[]‘ ‘|‘ PartnerLinks o ‘[]‘)

|| Running[inst_id]
----|>
<-> || scope//[]

|| Running[inst_id];

Process Termination

Processes can terminate in two different ways: 1) normally, i.e. when no more activities remain, or 2)
abnormally by executing an Exit activity.

Normal Termination: In the first case, we simply remove the instance in the same way as for
scopes. The precondition for the reaction rule is that there are no activities remaining in the instance,
and we then replace the instance with an empty bigraph. As redex and the reactum are required to
have the same outer face we add the “idle” link proc_name and inst_id using a wiring proc_name//[]
|| inst_id//[].

"inst completed" :::

Instance[proc_name, inst_id]
o (Variables o ‘[]‘ ‘|‘ PartnerLinks o ‘[]‘ ‘|‘ Running[inst_id])

----|>
<-> || proc_name//[] || inst_id//[];

Abnormal Termination: The Exit activity in WS-BPEL allows processes to be abnormally ter-
minated. Its semantics is given by two rules: The first rule exit stop instance changes the status
of the instance from running to stopped by replacing the Running node inside the instance with a
Stopped node.

"exit stop instance" :::

Exit[inst_id]
|| Running[inst_id]

----|>
<->

|| Stopped[inst_id];

132 5.3. Formalizing WS-BPEL in the BPL Tool

The second rule exit remove inst removes the instance together with all its remaining content.
This is simply done by replacing the Instance node with the empty root bigraph <-> and discarding
the parameter in hole 0.

"exit remove inst" :::

Instance[proc_name, inst_id]
o (Stopped[inst_id] ‘|‘ ‘[]‘)

----|>
<-> || proc_name//[] || inst_id//[];

(Again the “idle” links proc_name//[] || inst_id//[] in the reactum is simply there to ensure
that the redex and reactum have the same outer face.)

One may think that the above semantics could be defined as a single rewrite rule, with a redex
matching an instance containing an active Exit activity, and a reactum that simply replaces this
instance with the empty bigraph <->. However, the Exit node may be nested arbitrarily deep (e.g.
inside Flow nodes) within the Instance node. This cannot be captured in the format of parametric
rules of binding bigraphs.5 Therefore we first match on the status node Running and the Exit node
and change the status to Stopped. As the status node is a child of the Instance node, we can write a
rule which matches instances which are stopped and discard them. All other rules, except for the rule
exit remove inst, checks for the presence of the Running node, so the two reaction rules will always
be applied consecutively.

For similar reasons, we also change the status temporarily to Invoked when creating a new instance,
that is, when we execute a receive activity with the createInstance="yes" attribute.

Communication

The formalization includes synchronous request-response communication which is achieved in WS-
BPEL using, in order, the invoke, receive, and reply activities. There are two cases: the receive can
either 1) be an activity of a running instance, or 2) it can create a new instance of a process.

The first case is implemented by the invoke instance rule which handles both the invoke and
receive in one step, while the second is modeled by two rules: invoke and receive. The content of
partner links is used in the rules for invoke and reply activities to determine the target instance for
communication. Thus, the ability of copying between partner links and variables makes it possible to
send partner links as messages and dynamically assign instances as target for communication.

The rule invoke instance below allows two active instances to communicate. It synchronizes
an active Invoke activity in one instance with a corresponding Receive activity in another instance,
replacing the Invoke with a GetReply activity and removing the Receive. The instantiation map
ensures that the content of the input variable invar (hole 1) is copied to the appropriate variable of
the receiving instance (hole 3 in the reactum).

"invoke_instance" :::

Invoke[partner_link_invoker, partner_link_scope_invoker, oper,
invar, invar_scope, outvar, outvar_scope, inst_id_invoker]

|| PartnerLink[partner_link_invoker, partner_link_scope_invoker]
o (Link[inst_id_invoked] ‘|‘ ‘[]‘)

|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_invoker]
|| Receive[partner_link_invoked, partner_link_scope_invoked, oper,

var, var_scope, inst_id_invoked]
|| PartnerLink[partner_link_invoked, partner_link_scope_invoked] o ‘[]‘

5This however is possible using the higher-order reaction rules introduced in [22, 23].

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 133

|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_invoked]

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 1]--|>

GetReply[partner_link_invoker, partner_link_scope_invoker, oper,
outvar, outvar_scope, inst_id_invoker]

|| PartnerLink[partner_link_invoker, partner_link_scope_invoker]
o (Link[inst_id_invoked] ‘|‘ ‘[]‘)

|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_invoker]
|| <->
|| PartnerLink[partner_link_invoked, partner_link_scope_invoked]

o (‘[]‘ ‘|‘ ReplyTo[oper, inst_id_invoker])
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_invoked];

A similar rule allows the GetReply activity to synchronize with the corresponding Reply activity
in the invoked instance, thereby copying the content from variable var to variable outvar.
"reply" :::

Reply[partner_link_invoked, partner_link_scope_invoked, oper,
var, var_scope, inst_id_invoked]

|| PartnerLink[partner_link_invoked, partner_link_scope_invoked]
o (ReplyTo[oper, inst_id_invoker] ‘|‘ ‘[]‘)

|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_invoked]
|| GetReply[partner_link_invoker, partner_link_scope_invoker, oper,

outvar, outvar_scope, inst_id_invoker]
|| PartnerLink[partner_link_invoker, partner_link_scope_invoker]

o (Link[inst_id_invoked] ‘|‘ ‘[]‘)
|| Variable[outvar, outvar_scope] o ‘[]‘
|| Running[inst_id_invoker]

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 1]--|>

<-> || oper//[]
|| PartnerLink[partner_link_invoked, partner_link_scope_invoked] o ‘[]‘
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_invoked]
|| <->
|| PartnerLink[partner_link_invoker, partner_link_scope_invoker]

o (Link[inst_id_invoked] ‘|‘ ‘[]‘)
|| Variable[outvar, outvar_scope] o ‘[]‘
|| Running[inst_id_invoker];

The invoke rule represents the case where an Invoke activity is executed inside a running instance
and we have a process with the appropriate operation available and marked as being able to create
new instances. The reactum 1) replaces the Invoke activity in the calling instance with a GetReply
activity, which is used to represent that the instance is waiting for the reply, and 2) creates a new
instance with the body of the process definition and the value of the input variable in a Message
node within the relevant PartnerLink node. The partner links are updated to reflect the connection
between the two instances: A Link node is inserted into the PartnerLink nodes of the instances, with
a connection to the scope link of the other instance.

Note that the PartnerLink in the invoked process must be defined in the outermost scope. This is
essentially the same issue as with Exit (cf. Sec. 5.3.3), namely that binding bigraph contexts cannot
express arbitrary nesting depth: it is impossible to capture the whole process in the rule while also
matching an arbitrarily nested partner link withing the process. With hindsight, we could probably
have sidestepped this limitation by placing the CreateInstance nodes at a fixed location under the
Process node, thus decoupling them from the partner links.

134 5.3. Formalizing WS-BPEL in the BPL Tool

"invoke" :::

Invoke[partner_link_invoker, partner_link_scope_invoker, oper,
invar, invar_scope, outvar, outvar_scope, inst_id_invoker]

|| PartnerLink[partner_link_invoker, partner_link_scope_invoker] o <->
|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_invoker]
|| Process[proc_name][[scope]]

o (PartnerLinks
o (PartnerLink[partner_link, scope]

o (CreateInstance[oper] ‘|‘ ‘[]‘)
‘|‘ scope//[scope1] o ‘[scope1]‘)

‘|‘ scope//[scope2] o ‘[scope2]‘)

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 3,
4 |-> 0, 5&[inst_id_invoked1] |--> 2&[scope1],
6&[inst_id_invoked2] |--> 3&[scope2]]--|>

-//[inst_id_invoked]
o (GetReply[partner_link_invoker, partner_link_scope_invoker, oper,

outvar, outvar_scope, inst_id_invoker]
|| PartnerLink[partner_link_invoker, partner_link_scope_invoker]

o Link[inst_id_invoked]
|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_invoker]
|| Process[proc_name][[scope]]

o (PartnerLinks
o (PartnerLink[partner_link, scope]

o (CreateInstance[oper] ‘|‘ ‘[]‘)
‘|‘ scope//[scope1] o ‘[scope1]‘)

‘|‘ scope//[scope2] o ‘[scope2]‘)
‘|‘ Instance[proc_name, inst_id_invoked]

o (PartnerLinks
o (PartnerLink[partner_link, inst_id_invoked]

o (Link[inst_id_invoker]
‘|‘ Message[oper] o ‘[]‘
‘|‘ ReplyTo[oper, inst_id_invoker])

‘|‘ inst_id_invoked//[inst_id_invoked1]
o ‘[inst_id_invoked1]‘)

‘|‘ Invoked[inst_id_invoked]
‘|‘ inst_id_invoked//[inst_id_invoked2]

o ‘[inst_id_invoked2]‘));

The receive rule takes care of activating the instance, by removing a receive node associated to
the partner link and the operation (indicated by the link of the Message), copying the content of the
Message in the PartnerLink to the proper input variable, and changing the status from a Invoked
node to a Running node.

"receive" :::

Receive[partner_link, partner_link_scope, oper, var, var_scope, inst_id]
|| PartnerLink[partner_link, partner_link_scope]

o (‘[]‘ ‘|‘ Message[oper] o ‘[]‘)
|| Variable[var, var_scope] o ‘[]‘
|| Invoked[inst_id]

--[0 |-> 0, 1 |-> 1]--|>

<-> || oper//[]
|| PartnerLink[partner_link, partner_link_scope]

o ‘[]‘
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id];

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 135

Figure 5.4: Sequence diagram for the pervasive health care scenario.

5.4 Motivating HomeBPEL

In this section we motivate the use of HomeBPEL with a simplified example of workflow management
for pervasive health care. Each doctor is assumed to run a workflow process, which is initiated when
he/she is hired. Every new treatment of a patient causes a new workflow process to be initiated,
describing the clinical guideline to be followed for the particular treatment of the patient. In a central-
ized solution, this process would be running as a separate workflow on the workflow server and only
be available when connected to the network. In HomeBPEL business processes can be manipulated
as first class values, so we can let the doctor’s workflow process execute the treatment process as a
sub-process. By assuming that the doctor carries a mobile device running its own HomeBPEL engine
the treatment process can be executed independently of the network. Moreover, if each patient is
equipped with a mobile device running a self-treatment workflow process, the doctor may delegate the
treatment process (or parts of it) by sending a sub-process to the patient’s workflow process.

A sequence diagram illustrating a simple example of this scenario is shown in Fig. 5.4. The two
large boxes represent the patient’s and the doctor’s PDA respectively. The dotted continuation of the
"life-line" of the sub-process guideline indicates that it is the same process continuing its execution at
the patient’s PDA. The BPMN diagram in Fig. 5.5 gives a more detailed view of the patient process,
with a group of guideline sub-processes indicated in the dashed box in the middle. Fig. 5.6 shows
the corresponding HomeBPEL process for the patient. We have left out details related to the data-
flow which are not relevant for this example. The initial receive on the hospitalized operation
is used to invoke the patient process, as indicated by the createInstance attribute. We have only
formalized synchronous communication, so most receive operations are immediately followed by a
"dummy" reply. As also shown in the sequence and BPMN diagrams, the following invoke instantiates
a local user interface process running on the patient’s PDA which we assume takes care of handling the
task list of the patient. It is followed by a WS-BPEL flow, which contains two while-loops executing
in parallel. The first while-loop (corresponding to the right-hand loop in the BPMN diagram) allows
for arbitrarily many self-treatment sub-processes to be received and instantiated: The receive on the
run operation waits for a message containing a process and stores it in the input variable guideline.

136 5.4. Motivating HomeBPEL

Figure 5.5: BPMN diagram of the patient workflow process.

The following activity thaw is part of the new features introduced in HomeBPEL and it is used to
create an instance of a process stored in a variable (in the example named guideline) and execute it
as a sub-instance within the scope of the corresponding subLink (in the example named subinsts)
of the current running instance. The second while-loop (corresponding to the left-hand loop in the
BPMN diagram) forwards messages received from the guideline sub-processes by the HomeBPEL
receiveSub activity to the user interface, and in turn forwards the answer back to the sub-process by
the HomeBPEL replySub activity.

The doctor’s workflow process shown in Fig. 5.7 also invokes a user interface process, and contains
an identical loop for forwarding messages from treatment workflows to the user interface process (which
we have omitted from the example code to save space). However, different from the patient workflow,
the first step of the main loop of the doctor workflow is to receive a link (on the patient operation)
which is then dynamically assigned to the patient partner link by the copy operation. Thereby
the doctor workflow process can be dynamically linked to different patient workflow processes during
its lifetime. The following thaw activity instantiates a treatment guideline as a sub-process from the
variable named guideline. Fig. 5.8 shows an outline of the treatment process consisting of two phases:
A consultation phase invoked explicitly by the doctor and carried out within the doctor’s workflow,
and a self-treatment phase carried out within the patient’s workflow. To initiate the first part of the
treatment, the operation consultation is invoked from the doctor workflow by the action invokeSub.
The reply of this operation signals that the consultation is finished, and the treatment process is ready
to be frozen (by the freeze action) and sent to the patient’s workflow process.

Note that we have not specified the specific tasks for each phase in the treatment, which in general
could be part of an arbitrarily complex workflow. However, we have illustrated how tasks in each phase
can be scheduled at the user interface of the current super workflow by invoking the task operation
by the invokeSup action. This shows how context-dependent communication is elegantly facilitated in
HomeBPEL. One could easily imagine that the treatment processes could also access local information,
e.g. special expertise of the doctor or relevant characteristics of the patient.

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 137

<process name="patient">
<partnerLinks>
<partnerLink name="patient_client" />
<partnerLink name="task_list_UI" />

</partnerLinks>
<subLinks>

<subLink name="subinsts" />
</subLinks>
<variables>

<variable name="guideline" />
<variable name="task" />
<variable name="reply" />
...

</variables>
<sequence>

<receive partnerLink="patient_client" operation="hospitalized"
createInstance="yes" ... /><reply operation="hospitalized" ... />

<invoke partnerLink="task_list_UI" operation="init_UI" ... />
<flow>
<!-- Thaw-loop: Continually receives and executes sub-instances -->
<while>

<condition>...</condition>
<sequence>

<receive partnerLink="patient_client" operation="run"
variable="guideline" /><reply operation="run" ... />

<thaw subLink="subinsts" variable="guideline" />
<invokeSub subLink="subinsts" operation="resume" ... />

</sequence>
</while>
<!-- UI-loop: Continually receives tasks from sub-instances and

pass them on to the UI service -->
<while>
<condition>...</condition>
<sequence>

<receiveSub subLink="subinsts" operation="task" variable="task" />
<invoke partnerLink="task_list_UI" operation="add_task"

inputVariable="task" outputVariable="reply" />
<replySub subLink="subinsts" operation="task" variable="reply" />

</sequence>
</while>

</flow>
</sequence>

</process>
Figure 5.6: Patient workflow process.

We claim that the use of higher-order processes in this example is much more flexible than a
workflow simply based on a fixed configuration of a self-treatment process at the patient engine:
Configuration is limited to a pre-defined set of parameters — in contrast to the treatment template
that can be an arbitrary process which could be received by the doctor process from a central server
of clinical guidelines.

The above example is of course still highly simplified. One would most likely want more control over
the behavior of sub-processes, i.e. to disallow malicious processes from entering ones mobile device, to
only allow processes from known, trusted sources, etc. It would also be relevant to allow reflection,
combination and adaption of sub-processes on the fly. In the health care scenario, this could be used
to avoid repeating a blood pressure measurement in two concurrent treatments, or more important,
that the same pill is not commanded to be taken twice. We expect to address these questions in
future work. A necessary first step is a formal semantics of the execution which will be provided in
the following sections.

138 5.5. Formalizing HomeBPEL

<process name="doctor">
<partnerLinks>
<partnerLink name="hospital" />
<partnerLink name="patient" />
<partnerLink name="task_list_UI" />

</partnerLinks>
<subLinks><subLink name="treatment" /></subLinks>
<variables>

<variable name="guideline"><process name="guideline">...</process></variable>
<variable name="link" /><variable name="self_treatment" /> ...

</variables>
<sequence>

<receive partnerLink="hospital" operation="doctor_hired"
createInstance="yes" ... /><reply operation="doctor_hired" ... />

<invoke partnerLink="task_list_UI" operation="init_UI" ... />
<flow>
<while>

<condition>...</condition>
<sequence>

<receive partnerLink="hospital" operation="patient"
variable="link" /><reply operation="patient" ... />

<assign><copy>
<from variable="link" /><to partnerLink="patient" />

</copy></assign>
<thaw subLink="treatment" variable="guideline" />
<invokeSub subLink="treatment" operation="consultation" ... />
<freeze subLink="treatment" variable="self_treatment" />
<invoke partnerLink="patient" operation="run"

inputVariable="self_treatment" ... />
</sequence>

</while>
<!-- while-loop forwarding tasks to the local user interface -->

</flow>
</sequence>

</process>
Figure 5.7: Doctor workflow process.

5.5 Formalizing HomeBPEL
In this section we present the formalization of HomeBPEL in the BPL Tool. Using basically the same
approach as in Sec. 5.3 we first present the static representation in Sec. 5.5.1 and then the reaction
rules in Sec. 5.5.3, with a brief discourse on the semantics of sub-links in Sec. 5.5.2.

5.5.1 The Static Representation
The formalization of HomeBPEL as a binding bigraphical reactive system in the BPL Tool is given
by a signature, determining the allowed controls and the ports for each type of control, and a set of
reaction rules, determining the run-time semantics. As described previously, we utilize the extensibility
of bigraphs to extend and adapt the previous formalization of WS-BPEL given in Sec. 5.3.

Table 5.5 shows the signature of HomeBPEL. The controls listed in the upper part of the signature
correspond directly to elements in WS-BPEL, while the controls listed in the lower part are introduced
to facilitate the formalization of the execution semantics. The underlined controls are the controls
introduced (or adapted) in order to support higher order mobile embedded sub-processes.

Not all bigraphs of the given signature will correspond to valid processes and instances. The
grammar in Table 5.6 shows the valid nesting of elements.6 (For brevity we have abstracted away from
the ports of nodes in the grammar. The arity of each control is provided in the signature, where e.g.

6This restriction can be represented in the theory of bigraphs using the notion of sorting.

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 139

<process name="guideline">
...
<sequence>
<!-- Doctor initializes treatment -->
<receiveSup operation="consultation" ... />
<!-- Instruct doctor on how to perform consultation -->
<invokeSup operation="task" ... />
<replySup operation="consultation" ... />
<!-- Ready to be moved to patient -->
<receiveSup operation="resume" ... /><replySup operation="resume" ... />
<!-- Instruct patient how to perform self-treatment -->
<invokeSup operation="task" ... />

</sequence>
</process>

Figure 5.8: Treatment guideline process.

Active controls
PartnerLinks
Variables
If -: 1
Condition
Sequence -: 1
Flow -: 1

Instance -: 3
ActiveScope -: 2
TopInstance
Instances
SubLinks

Passive controls
Process =: 1 –> 1
Scope =: 1 –> 1
Variable -: 2
While -: 1
Then
Else
Assign -: 1
Copy
PartnerLink -: 2

Next
Message -: 1
SubLink -: 2

Atomic controls
To -: 2
From -: 2
ToPLink -: 2
FromPLink -: 2
Invoke -: 8
Receive -: 6
Reply -: 6
Exit -: 1

True
False
GetReply -: 6
Running -: 3
Invoked -: 3
Stopped -: 3
Freezing -: 3
TopRunning -: 1

VariableRef -: 3
ReplyTo -: 2
Link -: 1
CreateInstance -: 1
SubTransition -: 1
InvokeSub -: 8
InvokeSup -: 6
ReceiveSub -: 6
ReceiveSup -: 4
ReplySub -: 6
ReplySup -: 4
GetReplySub -: 7
GetReplySup -: 4
Freeze -: 5
FreezingSub -: 5
Thaw -: 5
FrozenSupLink -: 2

Table 5.5: Signature for HomeBPEL

Process =: 1 –> 1 means that the Process control has one normal port and one binding port). We
let i range over the set {0, 1} which we use to index some of the productions to keep the presentation
succinct. We write prod? for indicating that the terminal or non-terminal is optional and we write
Link∗ to denote that there can be 0 or more Link terminals. Currently the formalization only supports
one type of expressions, namely variable references. But one can easily extend the semantics to more
expression types (e.g. XPath expressions), simply by adding rules describing how to evaluate them —
without having to alter the current rules. Similarly, values (i.e. value) are currently restricted to be
either the constants True and False, processes (higher-order values), or the content of a PartnerLink

(akin to name passing in the π-calculus). One could exploit the correspondence between XML and
bigraphs to represent any kind of XML-data.

As mentioned in the introduction, the key idea of the formalization is that a process is represented
by a bigraph very similar to the XML syntax for WS-BPEL processes. Also, an active instance is
represented almost exactly as the process, except it has an outermost node labeled by an Instance
control. Instances keep the current content of variables inside the variable node, and are executed as
in process calculi by rewriting the bigraph according to the set of reaction rules to be described in the
following section.

As an example, the process patient from Sec. 5.4 is represented as a binding bigraph in the

140 5.5. Formalizing HomeBPEL

system ::= procs ‘|‘ state
procs ::= proc ‘|‘ . . . ‘|‘ proc
state ::= topinst ‘|‘ . . . ‘|‘ topinst
proc ::= Process(scopecontent0)
partnerlinks ::= PartnerLinks(partnerlink ‘|‘ . . . ‘|‘ partnerlink)
partnerlink ::= PartnerLink(partnerlinkcontent)
partnerlinkcontent ::= CreateInstance? ‘|‘ link?
link ::= Link ‘|‘ message?
message ::= Message(value)
sublinks ::= SubLinks(SubLink(Link∗) ‘|‘ . . . ‘|‘ SubLink(Link∗))
vars ::= Variables(Variable(value) ‘|‘ . . . ‘|‘ Variable(value))
topinst ::= TopInstance(inst ‘|‘ topinststatus)
topinststatus ::= TopRunning | SubTransition
insts ::= Instances(inst ‘|‘ . . . ‘|‘ inst)
inst ::= Instance(status ‘|‘ scopecontent1)
status ::= Invoked | Running | Freezing | Stopped
acti ::= scopei | seqi | flow i | whilei | if i | assign | Invoke

| Receive | Reply | GetReply | Exit | InvokeSub | InvokeSup
| ReceiveSub | ReceiveSup | ReplySub | ReplySup | Thaw
| GetReplySub | GetReplySup | Freeze | FreezingSub

scope0 ::= Scope(scopecontent0)
scope1 ::= ActiveScope(scopecontent1) | Scope(scopecontent0)
scopecontenti ::= partnerlinks ‘|‘ sublinks ‘|‘ insts ‘|‘ vars ‘|‘ acti?
seqi ::= Sequence(acti? ‘|‘ Next(acti?))
flow i ::= Flow(acti? ‘|‘ . . . ‘|‘ acti?)
whilei ::= While(Condition(expr) ‘|‘ acti?)
if i ::= If(Condition(expr) ‘|‘ Then(acti?) ‘|‘ Else(acti?))
assign ::= Assign(Copy(from ‘|‘ to))
from ::= From | FromPLink
to ::= To | ToPLink
value ::= True | False | proc | partnerlinkcontent
expr ::= True | False | VariableRef

Table 5.6: Grammar for HomeBPEL

BPL Tool as shown in Fig. 5.9(a) – (b). (To shorten the example we have not fully specified the task
loop. The full representation is available at the BPL Tool web page). Note that the compositionality of
bigraphs allow us to separate the process into several parts. Fig. 5.10 shows the graphical representation
provided by the BPL Tool of the thaw_loop bigraph in Fig. 5.9(a). To keep the figure clear we have
abstracted away from the identity of the patient.

Looking at the graphical representation, it should be clear that the place graph corresponds closely
to the nesting of elements in the XML syntax, the ports of controls correspond to attributes, and the
link graph corresponds to shared values of attributes. However, already for the formalization of the
subset of WS-BPEL given in Sec. 5.3 we needed to introduce some additional structure. For instance,
a Next control is embedded in Sequence controls to cope with the fact that children nodes in bigraph
place graphs are unordered while children nodes in XML are ordered (which is exploited in the sequence
construct of WS-BPEL). To facilitate the definition of reaction rules in the semantics we needed to add
links representing instance and scope identities. More intricately, we also needed to introduce a node
within each instance with a status control being either Invoked, Running, or Stopped. Partly, this is
needed because the semantics of Invoke and Exit activities requires two consecutive reactions. The
extension with mobile sub-instances made it necessary to add an additional status control, Freezing,
since freezing an instance into a process in a variable cannot be done atomically either. Also, we
needed at top level to introduce a status control indicating if the top instance or any of its (arbitrarily
nested) sub-instances are allowed to perform normal activities (by the control TopRunning) or if one of
them are performing a sub-transition (control SubTransition) as part of a non-atomic activity. These

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 141

val thaw_loop_body =
Sequence[patient_id] o (
Receive[patient_client, patient_id, run, x, patient_id, patient_id]

‘|‘ Next o Sequence[patient_id] o (
Thaw[subinsts, patient_id, x, patient_id, patient_id]

‘|‘ Next o
Reply[patient_client, patient_id, run, y, patient_id, patient_id]));

val thaw_loop =
While[patient_id] o (Condition o VariableRef[y, patient_id, patient_id]

‘|‘ thaw_loop_body);

val task_loop =
While[patient_id] o (......);

val patient_body = Flow[patient_id] o (thaw_loop ‘|‘ task_loop);

(a) patient_body

val patient_process =
Process[patient][[patient_id]] o (

PartnerLinks o (
PartnerLink[patient_client, patient_id] o CreateInstance[start]

‘|‘ PartnerLink[task_list_UI, patient_id] o <->)
‘|‘ SubLinks o SubLink[subinsts, patient_id] o <->
‘|‘ Variables o (

Variable[x, patient_id] o <->
‘|‘ Variable[y, patient_id] o True)

‘|‘ Instances o <->
‘|‘ Sequence[patient_id] o (

Receive[patient_client, patient_id, start, x, patient_id, patient_id]
‘|‘ Next o Sequence[patient_id] o (

Reply[patient_client, patient_id, start, y, patient_id, patient_id]
‘|‘ Next o patient_body)));

(b) patient_process

Figure 5.9: BPL Tool representation of the patient process.

aspects could most likely have been dealt with more elegantly if bigraphical reactive systems had a
notion of priority on the reaction rules. We leave it for future work to study this.

5.5.2 Sub-links

In this section we take a closer look at the semantics of sub-links and the associated operations, using
the patient process in Fig. 5.6 as example. Note how each iteration of the thaw loop thaws a new sub-
instance which is bound to the sub-link subinsts and then invokes the operation resume on subinsts.
What happens when a sub-instance is already bound to the subinsts sub-link? Is this an error or
should it be allowed, and in that case which sub-instance(s) should be bound to the sub-link after the
execution of thaw?

As one of the goals of the CosmoBiz project is to integrate process management into the process
language itself, it seems reasonable to provide easy management of collections of processes at the
language level. One simple way to achieve this feature, and the one we have chosen, is to allow multiple
sub-instances to be bound to the same sub-link simultaneusly. This choice abstracts the implementation
of collections of processes away from the programmer, building the concept of a process collection into
the semantics of the activies which use sub-links: thaw, freeze, invokeSub, and receiveSub. The

142 5.5. Formalizing HomeBPEL

While

Condition

VariableRef

Sequence

Receive

Next

Sequence

Thaw
Next

Reply

out invar subinsts patient_client run

Figure 5.10: BPL Tool visualization of thaw_loop.

latter three activities are only intended to affect one sub-instance, but several of the sub-instances
connected to the sub-link might be a suitable target for the activity. In this case, we choose an
arbitrary process, based on the assumption that if the programmer wanted to distinguish two processes,
she would place them in different collections. This might not hold true, and will be the subject of
future work. One could imagine, for instance, that in the case of freeze, that the programmer wants
to freeze a particular sub-instance or a sub-instance which is ready to be frozen.

5.5.3 Reaction Rules
In this section we present the reaction rules used in the formalization of HomeBPEL, focusing on the
new rules for freezing and thawing and for communication between parent and child processes. The
full set of reaction rules (in BPL Tool syntax) is available via the on-line tool7.

Changes to the Representation

We have extended the representation in a smaller degree in order to facilitate the representation of
higher-order primitives in the formalization. An Instance node now have an additional port which
should be connected state node of the parent instance if a parent instance exists. We have introduced a
node Instances to group together sub-instances of an instance, similar to the effect of the Variables
node. As mentioned above we also introduce a status node in the top-level instance to track whether the
top instance or any of its (arbitrarily nested) sub-instances are allowed to perform normal activities (by
the control TopRunning) or if one of them are performing a sub-transition (control SubTransition) as
part of a non-atomic activity. Also as mentioned above we add the status Freezing. As a technicality
we also introduce nodes of control TopInstance to encapsulate top-level instances together with their
associated top-level status node.

Augmenting the Existing Rules

Most of the reaction rules of the formalization remains unchanged from Sec. 5.3, except that the rules
also need to make sure that the status of the top-level instance is TopRunning. However for the rule
scope completed, the rule responsible for removing scopes that have been executed, we now also need

7See http://tiger.itu.dk:8080/bplweb/index/20

http://tiger.itu.dk:8080/bplweb/index/20

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 143

to make sure that there are no running sub-instance inside the scope before removing the scope. The
case is similar for the rule inst completed just for instances instead of scopes. We also need one
additional rule to remove the new TopInstance nodes when removing a top-level instance. The added
TopInstance node also add a bit to the complexity of the invoke rule.

"top instance completed" :::

TopInstance o (-//[inst_id_top] o TopRunning[inst_id_top])
----|>

<->;

We have added some new reaction rules to the formalization to implement the added primitives for
higher-order processes. Below we present the new reaction rules.

Communication Between Parent and Child

The rule invoke sub takes care of an instance invoking a method in a subinstance. The parent instance
performs the InvokeSub activity in parallel with the ReceiveSup of the subinstance. Both instances
are required to be running as well as the top-level instance. The result is that the content from the
variable invar is copied to variable var. Besides these changes the rule resembles the rule invoke
instance (described below) which is responsible for communication between two top-level instances.

"invoke sub" :::

InvokeSub[sub_link, sub_link_scope, oper, invar, invar_scope,
outvar, outvar_scope, inst_id_sup]

|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| ReceiveSup[oper, var, var_scope, inst_id_sub]
|| Variable[var, var_scope]
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 1]--|>

GetReplySub[sub_link, sub_link_scope, inst_id_sub, oper,
outvar, outvar_scope, inst_id_sup]

|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| <->
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| TopRunning[inst_id_top];

In the rule reply sup the ReplySup activity inside an instance can synchronize together with a
GetReplySub activity inside the parent instance, thereby copying the content from variable var to
variable outvar.

"reply sup" :::

ReplySup[oper, var, var_scope, inst_id_sub]
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| GetReplySub[sub_link, sub_link_scope, inst_id_sub, oper,

outvar, outvar_scope, inst_id_sup]
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[outvar, outvar_scope] o ‘[]‘

144 5.5. Formalizing HomeBPEL

|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 0]--|>

<-> || oper//[]
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| <->
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[outvar, outvar_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top];

Rule invoke sup is similar to the rule invoke sub, except that it is the subinstance which invokes
a method in the parent.

"invoke sup" :::

InvokeSup[oper, invar, invar_scope, outvar, outvar_scope, inst_id_sub]
|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| ReceiveSub[sub_link, sub_link_scope, oper, var, var_scope, inst_id_sup]
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[var, var_scope]
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 0]--|>

GetReplySup[oper, outvar, outvar_scope, inst_id_sub]
|| Variable[invar, invar_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| <->
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top];

The rule reply sub is similar to the rule reply sup, except for the direction of the communication.

"reply sub" :::

ReplySub[sub_link, sub_link_scope, oper, var, var_scope, inst_id_sup]
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| GetReplySup[oper, outvar, outvar_scope, inst_id_sub]
|| Variable[outvar, outvar_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 1]--|>

<-> || oper//[]
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Variable[var, var_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| <->
|| Variable[outvar, outvar_scope] o ‘[]‘
|| Running[inst_id_sub, active_scopes_sub, inst_id_top]
|| TopRunning[inst_id_top];

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 145

Freezing Processes

Freezing a sub-instance requires several transitions, initiated by a Freeze activity. The Freeze activity
references a running subinstance through its SubLinks and changes the status of the instance from
Running to Freezing (thus ensuring that the subinstance will not execute anymore), at the same time
the Freeze activity is replaced by a FreezingSub activity, and the top-level status is changed from
TopRunning to SubTransition to indicate that we have started a multistep reaction.

"freeze sub" :::

Freeze[sub_link, sub_link_scope, var, var_scope, inst_id_sup]
|| (SubLinks o (SubLink[sub_link, sub_link_scope]

o (Link[inst_id_sub] ‘|‘ ‘[]‘)
‘|‘ ‘[]‘)

‘|‘ Instances
o (Instance[sub_name, inst_id_sub, active_scopes_sup]

o (Running[inst_id_sub, active_scopes_sub, inst_id_top] ‘|‘ ‘[]‘)
‘|‘ ‘[]‘))

|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 3]--|>

FreezingSub[sub_link, sub_link_scope, var, var_scope, inst_id_sup]
|| (SubLinks o (SubLink[sub_link, sub_link_scope]

o (Link[inst_id_sub] ‘|‘ ‘[]‘)
‘|‘ ‘[]‘)

‘|‘ Instances
o (Instance[sub_name, inst_id_sub, active_scopes_sup]

o (Freezing[inst_id_sub, active_scopes_sub, inst_id_top] ‘|‘ ‘[]‘)
‘|‘ ‘[]‘))

|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| SubTransition[inst_id_top];

Inside a freezing subinstance an active scope can be frozen when all nested scopes and sub-instances
have been frozen. This is ensured by requiring that the content of the scope does not refer to the active-
scopes link of the enclosing sub-instance. We then change the ActiveScope to a Scope and bind the
free edge denoted by “scope”.

"freeze scope" :::

-//[active_scopes]
o (Freezing[inst_id, active_scopes, inst_id_top]

|| -//[scope] o (ActiveScope[active_scopes, scope] o ‘[scope]‘)
|| ‘[active_scopes]‘)

--[0 |-> 0, 1 |-> 1]--|>

-//[active_scopes]
o (Freezing[inst_id, active_scopes, inst_id_top]

|| Scope[inst_id][[scope]] o ‘[scope]‘
|| ‘[active_scopes]‘);

Sub-instances of a sub-instance which is being frozen, are frozen by propagating the freezing state,
which again allows its scopes and subinstances to be frozen. This is done by changing the status of
the nested sub-instance from Running to Freezing.

"freeze sub instance" :::

Freezing[inst_id, active_scopes, inst_id_top]
|| Instance[sub_name, inst_id_sub, active_scopes]

146 5.5. Formalizing HomeBPEL

o (Running[inst_id_sub, active_scopes_sub, inst_id_top]
‘|‘ ‘[]‘)

--[0 |-> 0]--|>

Freezing[inst_id, active_scopes, inst_id_top]
|| Instance[sub_name, inst_id_sub, active_scopes]

o (Freezing[inst_id_sub, active_scopes_sub, inst_id_top]
‘|‘ ‘[]‘);

When all those are frozen, ie. the “active_scopes” link of the sub-sub-instance is only connected to
the state node, the sub-sub-instance is frozen (remaining at the same location) and a FrozenSupLink
is inserted in the frozen instance to remember which SubLink it was connected to.
"freeze sub instance2" :::

-//[inst_id_sub]
o (Freezing[inst_id_sup, active_scopes, inst_id_top]

|| (SubLinks o (SubLink[sub_link, sub_link_scope]
o (Link[inst_id_sub] ‘|‘ ‘[]‘)

‘|‘ ‘[]‘)
‘|‘ Instances

o (Instance[sub_name, inst_id_sub, active_scopes]
o (-//[active_scopes_sub]

o Freezing[inst_id_sub, active_scopes_sub, inst_id_top]
‘|‘ ‘[inst_id_sub]‘)

‘|‘ ‘[]‘)))

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 3]--|>

Freezing[inst_id_sup, active_scopes, inst_id_top]
|| (SubLinks o (SubLink[sub_link, sub_link_scope] o ‘[]‘ ‘|‘ ‘[]‘)

‘|‘ Instances
o (Process[sub_name][[inst_id_sub]]

o (FrozenSupLink[sub_link, sub_link_scope]
‘|‘ ‘[inst_id_sub]‘)

‘|‘ ‘[]‘));

When no more sub-instances and scopes are connected to the “active_scopes” link of the sub-
instance being frozen, it can itself be frozen and placed into the proper variable denoted by var. To
indicate that the multistep reaction is completed we change the top-level status from SubTransition
and back to TopRunning.
"freeze complete" :::

-//[inst_id_sub]
o (FreezingSub[sub_link, sub_link_scope, var, var_scope, inst_id_sup]

|| Variable[var, var_scope] o ‘[]‘
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[]‘)
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| SubTransition[inst_id_top]
|| Instance[sub_name, inst_id_sub, active_scopes_sup]

o (-//[active_scopes_sub]
o Freezing[inst_id_sub, active_scopes_sub, inst_id_top]

‘|‘ ‘[inst_id_sub]‘))

--[0 |-> 2, 1 |-> 1]--|>

<->
|| Variable[var, var_scope]

o Process[sub_name][[inst_id_sub]] o ‘[inst_id_sub]‘
|| SubLink[sub_link, sub_link_scope] o ‘[]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]
|| <->;

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 147

Thawing Processes

Using the of new Thaw activity one can thaw a sub-process stored in a variable and instantiating it as a
sub-instance. The Thaw activity in the redex refers via its third port to the process inside the variable
var. In the reactum the Thaw activity has been removed (indicating it has been executed) and a new
running sub-instance has been inserted within the Instances control. The last part (4&[inst_id_sub]
|–> 0&[sub_scope]]) of the instantiation map on the arrow from the redex to the reactum ensures
that the process body (contained in hole 0 in the redex) is copied and used as body of the new sub-
instance (hole 4 in the reactum). It also ensures that the local bound link sub_scope of the process
body is renamed to inst_id_sub in the new copy. Note also that we insert the status node Running
in the new sub-instance. Finally, the rule also insert a Link control within the SubLinks control. The
Link control points to the new sub-instance via its link inst_id_sub.

"thaw sub" :::

Thaw[sub_link, sub_link_scope, var, var_scope, inst_id_sup]
|| Variable[var, var_scope]

o Process[sub_name][[sub_scope]] o ‘[sub_scope]‘
|| (SubLinks o (SubLink[sub_link, sub_link_scope] o ‘[]‘ ‘|‘ ‘[]‘)

‘|‘ Instances o ‘[]‘)
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 3,
4&[inst_id_sub] |--> 0&[sub_scope]]--|>

<->
|| Variable[var, var_scope]

o Process[sub_name][[sub_scope]] o ‘[sub_scope]‘
|| -//[inst_id_sub]

o (SubLinks o (SubLink[sub_link, sub_link_scope]
o (Link[inst_id_sub] ‘|‘ ‘[]‘)

‘|‘ ‘[]‘)
‘|‘ Instances

o (‘[]‘
‘|‘ Instance[sub_name, inst_id_sub, active_scopes_sup]

o (-//[active_scopes_sub]
o Running[inst_id_sub, active_scopes_sub, inst_id_top]

‘|‘ ‘[inst_id_sub]‘)))
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top];

In general, when we thaw a process it may itself contain frozen sub-instances frozen “in place”, i.e.
within the Instances control. An additional reaction rule (thaw sub instance) is thus included for
thawing frozen sub-instances. The rule replaces the Process node with a Instance node and restores
the SubLinks using the information represented by the FrozenSupLink node. Finally the rule sets the
status of the instance to Running. Note that this rule is the inverse of rule freeze sub instance2.

"thaw sub instance" :::

(SubLinks o (SubLink[sub_link, sub_link_scope] o ‘[]‘ ‘|‘ ‘[]‘)
‘|‘ Instances

o (Process[sub_name][[inst_id_sub]]
o (FrozenSupLink[sub_link, sub_link_scope]

‘|‘ ‘[inst_id_sub]‘)
‘|‘ ‘[]‘))

|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 3]--|>

148 5.6. Conclusion and Future Work

-//[inst_id_sub]
o ((SubLinks o (SubLink[sub_link, sub_link_scope]

o (Link[inst_id_sub] ‘|‘ ‘[]‘)
‘|‘ ‘[]‘)

‘|‘ Instances
o (Instance[sub_name, inst_id_sub, active_scopes_sup]

o (-//[active_scopes_sub]
o Running[inst_id_sub, active_scopes_sub, inst_id_top]

‘|‘ ‘[inst_id_sub]‘)
‘|‘ ‘[]‘))

|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]);

5.6 Conclusion and Future Work

We have formalized a subset of WS-BPEL as a binding bigraphical reactive system. As in our previous
work described in [22] we have utilized the close correspondence between bigraphs and XML to provide
a formalization close to the original WS-BPEL syntax and yet stays within the existing format for
binding bigraphs [26].

Several new non-trivial aspects of WS-BPEL have been formalized compared to [22], including
support for nested scopes, termination (exit), and dynamic assignment and communication of partner
links. As a technical, but important point, we avoided higher-order reaction rules as used in [22].
This means that the general theory, techniques and tools developed for standard, binding bigraphs
remain applicable to our formalization. In particular, we have described how the formalization can
be implemented and explored within the BPL Tool [3] developed in the Bigraphical Programming
Languages project at the IT University of Copenhagen. The tool allows compositional definition of
binding bigraphs and reaction rules, as well as graphical visualization and interactive simulation of
the execution of binding bigraphical reactive systems based on the formal inference of rule matching
described in [1, 2].

We have utilised the extensibility of bigraphical reactive systems to extend the formalization of
WS-BPEL to a formalization of a higher-order WS-BPEL-like language called HomeBPEL. The ex-
tensibility of bigraphical reactive systems enables us to directly reuse most of the existing formalization.
In HomeBPEL processes are first-class values that can be stored in variables, passed as messages, and
activated as embedded sub-instances. We have formalized HomeBPEL in the BPL Tool. We have mo-
tivated HomeBPEL by an example of pervasive health care where treatment guidelines are dynamically
deployed as sub processes that may be delegated dynamically to other workflow engines and in partic-
ular stay available for disconnected operation on mobile devices. The added features of HomeBPEL
allow us — among other — to define business processes for business process management within
HomeBPEL as opposed to relying on meta-level tools for deployment and process administration.

Future Work. It is important to stress that we do not in this paper claim to give a feature complete
formalization of WS-BPEL, as e.g. provided in [31]. We leave as future work to compare our formal-
ization to the work in [31] and to provide more complete semantics and simulation of WS-BPEL. To
do this, it is likely to be helpful if the BPL Tool was extended with a notion of high-level bigraphs
allowing e.g. built-in XML and/or ML datatypes and transformations in the reaction rules, analogous
to the built-in ML datatypes and functions found in Coloured Petri Nets and the CPN Tool. This
was already partly explored in the ReactiveXML implementation of pure bigraphical reactive systems
described in [22].

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 149

A notion of prioritized reactions could be interesting to explore as an alternative to the explicit
encoding of transitions and sub-transitions used in the present paper. It will also be interesting to
investigate the use of the general theory of bisimulation congruences available for bigraphical reactive
systems in the setting of WS-BPEL.

An interesting path for future research into HomeBPEL will be to examine different primitives
for management and manipulation of processes. Currently, we can copy and discard processes (by
copying and overwriting the content of variables) and we can — to some extend — combine processes,
but we are currently examining more expressive primitives, such as sub-process reflection and general
manipulation, e.g. editing or joining of frozen sub-processes. This relates to the work on Higher-Order
(Petri) Nets and applications to workflow studied in [25].

Future work will also include the study of type systems, e.g. relations to the work on formalizations
of WSDL types, contracts and session types [4, 9, 28]. The addition of mobile embedded sub-instances
also opens for a study of type systems that can guarantee safe process mobility and manipulation.
We plan to explore this in the CosmoBiz research project. In particular, we plan to examine the
approaches done in Boxed Ambients [17] and in the higher-order π-calculus [34] on the safe integration
of higher-order mobility and sessions.

Another relevant direction of work is a detailed and complete study of the expressiveness of
HomeBPEL in relation to workflow patterns (e.g. [37]). We will also study the language primitives
and expressiveness in relation to process calculi for mobility such as Ambients, Seal and Homer. In
particular, we expect to examine a notion of subjective mobility as in Safe Ambients [30] by introducing
a co-freeze activity to be carried out by the sub-instance, allowing it to decide whether (and when) it
can be frozen.

Acknowledgements. Many thanks to the anonymous referees for their suggestions and comments
from which this paper has benefited greatly.

5.7 Bibliography

[1] Lars Birkedal, Troels Christoffer Damgaard, Arne John Glenstrup, and Robin Milner. Matching
of bigraphs. In Arend Rensink, Reiko Heckel, and Barbara König, editors, Proceedings of the
Graph Transformation for Verification and Concurrency workshop (GT-VC’06), volume 175 of
Electronic Notes in Theoretical Computer Science, pages 3–19. Elsevier, 2006.

[2] Lars Birkedal, Troels Christoffer Damgaard, Arne John Glenstrup, and Robin Milner. An induc-
tive characterisation of matching in binding bigraphs. to appear, 2008.

[3] The Bigraphical Programming Languages Group. The BPL Tool. http://www.itu.dk/research/
pls/wiki/index.php/BPL_Tool, 2007.

[4] Mario Bravetti and Gianluigi Zavattaro. Contract based multi-party service composition. In
Farhad Arbab and Marjan Sirjani, editors, Proceedings of the IPM International Symposium on
Fundamentals of Software Engineering (FSEN’07), volume 4767 of Lecture Notes in Computer
Science, pages 207–222. Springer Verlag, 2007.

[5] Mikkel Bundgaard, Arne John Glenstrup, Thomas Hildebrandt, and Espen Højsgaard. An exten-
sible formalization of WS-BPEL in binding bigraphs. Draft, 2008.

http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool
http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool

150 5.7. Bibliography

[6] Mikkel Bundgaard, Arne John Glenstrup, Thomas Hildebrandt, Espen Højsgaard, and Henning
Niss. Formalizing higher-order mobile embedded business processes with binding bigraphs. In
Proceedings of the 10th international conference on Coordination Models and Languages (COOR-
DINATION’08), Lecture Notes in Computer Science, pages 83–99. Springer Verlag, 2008.

[7] Mikkel Bundgaard and Thomas Hildebrandt. Bigraphical semantics of higher-order mobile em-
bedded resources with local names. In Arend Rensink, Reiko Heckel, and Barbara König, editors,
Proceedings of the Graph Transformation for Verification and Concurrency workshop (GT-VC’05),
volume 154 of Electronic Notes in Theoretical Computer Science, pages 7–29. Elsevier, 2006.

[8] Mikkel Bundgaard, Thomas Hildebrandt, and Jens Chr. Godskesen. Modelling the security of
smart cards by hard and soft types for higher-order mobile embedded resources. In Daniele Gorla
and Catuscia Palamidessi, editors, Proceedings of the 5th International Workshop on Security Is-
sues in Concurrency (SecCo’07), volume 194 of Electronic Notes in Theoretical Computer Science,
pages 23–38. Elsevier, 2007.

[9] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centred program-
ming for web services. In Rocco De Nicola, editor, Proceedings of the 16th European Symposium
on Programming (ESOP’07), volume 4421 of Lecture Notes in Computer Science, pages 2–17.
Springer Verlag, 2007.

[10] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

[11] Giuseppe Castagna, Jan Vitek, and Fracesco Zappa Nardelli. The Seal calculus. Journal of
Information and Computation, 201(1):1–54, 2005.

[12] Troels Christoffer Damgaard and Lars Birkedal. Axiomatizing binding bigraphs. Nordic Journal
of Computing, 13(1–2):58–77, 2006.

[13] Dirk Fahland. Complete Abstract Operational Semantics for the Web Service Business Process
Execution Language. Technical Report 190, Humboldt-Universität zu Berlin, 2005.

[14] Dirk Fahland and Wolfgang Reisig. ASM-based semantics for BPEL: The negative Control Flow.
In Danièle Beauquier, Egon Börger, and Anatol Slissenko, editors, Proceedings of the 12th In-
ternational Workshop on Abstract State Machines (ASM’05), pages 131–151. Paris XII, March
2005.

[15] Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi. Specification and validation of the
business process execution language for web services. In Abstract State Machines 2004. Advances
in Theory and Practice, volume 3052 of Lecture Notes in Computer Science, pages 78–94. Springer
Verlag, 2004.

[16] Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi. An abstract machine architecture for
web service based business process management. In Christoph Bussler and Armin Haller, editors,
Business Process Management Workshops, volume 3812 of Lecture Notes in Computer Science,
pages 144–157. Springer Verlag, 2006.

[17] Pablo Garralda, Adriana B. Compagnoni, and Mariangiola Dezani-Ciancaglini. BASS: Boxed
ambients with safe sessions. In Proceedings of the 8th International ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming (PPDP’06), pages 61–72. ACM Press,
2006.

5. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in
the Bigraphical Programming Languages (BPL) Tool 151

[18] Arne John Glenstrup, Troels Christoffer Damgaard, Lars Birkedal, and Espen Højsgaard. An
implementation of bigraph matching. submitted, 2008.

[19] Jens Chr. Godskesen and Thomas Hildebrandt. Extending Howe’s method to early bisimulations
for typed mobile embedded resources with local names. In Proceedings of the 25th Conference on
the Foundations of Software Technology and Theoretical Computer Science (FSTTCS’05), volume
3821 of Lecture Notes in Computer Science, pages 140–151. Springer Verlag, 2005.

[20] Volker Gruhn and André Köhler. Effects of mobile business processes on the software process.
In Proceedings of the 5th International Workshop on Software Process Simulation and Modeling
(ProSim’04), pages 228–231. IEEE Computer Society Press, 2004.

[21] Thomas Hildebrandt, Jens Chr. Godskesen, and Mikkel Bundgaard. Bisimulation congruences for
Homer — a calculus of higher order mobile embedded resources. Technical Report TR-2004-52,
IT University of Copenhagen, 2004.

[22] Thomas Hildebrandt, Henning Niss, and Martin Olsen. Formalising business process execution
with bigraphs and Reactive XML. In Paolo Ciancarini and Herbert Wiklicky, editors, Proceed-
ings of the 8th international conference on Coordination Models and Languages (COORDINA-
TION’06), volume 4038 of Lecture Notes in Computer Science, pages 113–129. Springer Verlag,
2006.

[23] Thomas Hildebrandt, Henning Niss, Martin Olsen, and Jacob W. Winther. Distributed Reac-
tive XML. In Lubos Brim and Isabelle Linden, editors, Proceedings of the 1st International
Workshop on Methods and Tools for Coordinating Concurrent, Distributed and Mobile Systems
(MTCoord’05), volume 150 of Electronic Notes in Theoretical Computer Science, pages 61–80,
2006.

[24] Thomas Hildebrandt (principal investigator). Computer supported mobile adaptive business pro-
cesses (CosmoBiz) research project. Webpage, 2007. http://www.cosmobiz.org/.

[25] Kathrin Hoffmann and Till Mossakowski. Algebraic higher-order nets: Graphs and petri nets
as tokens. In Martin Wirsing, Dirk Pattinson, and Rolf Hennicker, editors, Proceedings of the
16th International Workshop on Recent Trends in Algebraic Development Techniques (WADT’02),
volume 2755 of Lecture Notes in Computer Science, pages 253–267. Springer Verlag, 2003.

[26] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes (revised). Technical Report
UCAM-CL-TR-580, University of Cambridge – Computer Laboratory, 2004.

[27] Matthias Kloppmann, Dieter Koenig, Frank Leymann, Gerhard Pfau, Alan Rickayzen, Claus von
Reigen, Patrick Schmidt, and Ivana Trickovic. WS-BPEL extension for sub-processes: BPEL-SPE.
Technical report, IBM and SAP, 2005.

[28] Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A WSDL-based type system for
WS-BPEL. In Paolo Ciancarini and Herbert Wiklicky, editors, Proceedings of the 8th interna-
tional conference on Coordination Models and Languages (COORDINATION’06), volume 4038 of
Lecture Notes in Computer Science, pages 145–163. Springer Verlag, 2006.

[29] James J. Leifer and Robin Milner. Transition systems, link graphs and Petri nets. Journal of
Mathematical Structures in Computer Science, 16(6):989–1047, 2006.

http://www.cosmobiz.org/

152 5.7. Bibliography

[30] Francesca Levi and Davide Sangiorgi. Mobile safe ambients. ACM Transactions on Programming
Languages and Systems (TOPLAS), 25(1):1–69, 2003.

[31] Niels Lohmann. A feature-complete Petri net semantics for WS-BPEL 2.0. In Marlon Dumas and
Reiko Heckel, editors, Proceedings of the 4th International Workshop on Web Services and Formal
Methods (WS-FM’07), volume 4937 of Lecture Notes in Computer Science, pages 77–91. Springer
Verlag, 2007.

[32] Niels Lohmann, H.M.W. Verbeek, Chun Ouyang, Christian Stahl, and Wil M. P. van der Aalst.
Comparing and evaluating Petri net semantics for BPEL. Computer Science Report 07/23, Eind-
hoven University of Technology, 2007.

[33] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, parts I and II.
Journal of Information and Computation, 100:1–40 and 41–77, 1992.

[34] Dimitris Mostrous and Nobuko Yoshida. Two session typing systems for higher-order mobile
processes. In Simona Ronchi and Della Rocca, editors, Proceedings of the 8th International Con-
ference on Typed Lambda Calculi and Applications (TLCA’07), volume 4583 of Lecture Notes in
Computer Science, pages 321–335. Springer Verlag, 2007.

[35] OASIS WSBPEL Technical Committee. Web Services Business Process Execution Language,
version 2.0, 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf.

[36] Frank Puhlmann and Mathias Weske. Using the pi-calculus for formalizing workflow patterns.
In Wil M. P. van der Aalst, Boualem Benatallah, Fabio Casati, and Francisco Curbera, editors,
Proceedings of the 3rd International Conference on Business Process Management (BPM’05),
volume 3649 of Lecture Notes in Computer Science, pages 153–168. Springer Verlag, 2005.

[37] Nick Russell, Arthur H.M. ter Hofstede, Will M.P. van der Aalst, and Nataliya Mulyar. Workflow
control-flow patterns: A revised view. BPM Center Report BPM-06-22, BPMcenter.org, 2006.

[38] Christian Stahl. A Petri net semantics for BPEL. Informatik-Berichte 188, Humboldt-Universität
zu Berlin, 2005.

[39] Christian Stefansen. A declarative framework for enterprise information systems. Master’s thesis,
Dept. of Computer Science, University of Copenhagen, 2005.

[40] Franck van Breugel and Maria Koshkina. Models and verification of BPEL. Draft., 2006.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

Chapter 6

Core BPEL: Semantic Clarification of
WS-BPEL 2.0 through Syntactic
Simplification using XSL
Transformations
Tim Hallwyl and Espen Højsgaard

Abstract

The Web Services Business Process Execution Language (WS-BPEL) is a language for express-
ing business process behaviour based on web services. The language is intentionally not minimal
but provides a rich set of constructs, allows omission of constructs by relying on defaults, and
supports language extensions. Combined with the fact that the language definition does not pro-
vide a formal semantics, it is an arduous task to work formally with the language (e.g. to give an
implementation).

In this paper we identify a core subset of the language, called Core BPEL, which has fewer
and simpler constructs, does not allow omissions, and does not contain ignorable elements. We do
so by identifying syntactic sugar, including default values, and ignorable elements in WS-BPEL.
The analysis results in a translation from the full language to the core subset. Thus, we reduce the
effort needed for working formally with WS-BPEL, as one, without loss of generality, need only
consider the much simpler Core BPEL. This report may also be viewed as an addendum to the
WS-BPEL standard specification, which clarifies the WS-BPEL syntax and presents the essential
elements of the language in a more concise way.

To make the results of this work directly usable for practical purposes, we provide an XML
Schema for Core BPEL and a set of XSLT 1.0 transformations that will transform any standard
compliant WS-BPEL process into a Core BPEL process. We also provide an online service where
one can apply the transformation.

This work is part of the initial considerations on the implementation of a WS-BPEL engine
within the Computer Supported Mobile Adaptive Business Processes (CosmoBiz) research project
at the IT University of Copenhagen.

153

154 6.1. Introduction

Preface This chapter consists of the technical report

T. Hallwyl and E. Højsgaard. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syn-
tactic Simplification using XSL Transformations. Technical Report TR-2011-138, IT University
of Copenhagen, March 2011.

6.1 Introduction
The Web Services Business Process Execution Language (WS-BPEL) is a language for expressing
business process behaviour based on web services. Based on the Extensible Markup Language (XML),
the definition of WS-BPEL consists of two parts: A set of XML Schema documents1, formally defining
the syntax of the language, and a document [17], which we shall call the standard specification, defining
the semantics and some further constraints on the syntax. The standard specification is written in
prose and does not give any formal semantics for the language, which makes it harder than necessary
to execute and reason about WS-BPEL processes as it is unclear what a WS-BPEL process means.

To remedy this, the academic community has proposed a number of formal semantics for WS-BPEL
using a variety of formalisms (see related work below). These works have given a better understanding
of WS-BPEL and have enabled formal analysis of WS-BPEL processes such as model checking. But
the proposed formalizations are quite complex and comprehensive, which we believe stems from two
sources: (a) WS-BPEL has some non-trivial features such as compensation and dead path elimination
which are difficult to formalize concisely, and (b) WS-BPEL is (intentionally) not minimal, as for
example the <sequence>-activity can be encoded as a <flow>-activity, and this redundancy carries
over to the formalizations.

In this technical report, we investigate how we can remove some of the redundancy of WS-BPEL by
showing how some constructs can be seen as syntactic sugar on a language core, which we term Core
BPEL. By identifying a core language and a way to desugar the full language into the core subset,
we can ease the tasks of implementing, analyzing, and formalizing the language, as one, without loss
of generality, only needs to consider the core language. It should be noted that from a WS-BPEL
programmer’s perspective, features such as syntactic sugar are convenient and we do not suggest
that WS-BPEL should be limited to a language core — we only aim to ease formal treatment of
the language, and it is from this perspective that we in this report claim to simplify the WS-BPEL
language. But we believe that the WS-BPEL user may also gain from this report, as it clarifies the
WS-BPEL syntax and provides a more concise presentation of the essential elements of the language.
From a more general perspective, this work also demonstrates that it is feasible to present a business
process language as a set of primitive constructs from which a larger set of constructs may be built,
and that this in fact promotes readability as well as clarifies and simplifies semantics. In particular,
we expect a similar approach to be feasible and beneficial for the recent BPMN 2.0 standard [2].

The standard specification mentions many similarities between constructs and even defines some
constructs by referring to the definition of other constructs. By analyzing these relations, we come
up with desugaring transformations which preserve our understanding of the semantics, substantiated
with quotes from the standard specification. Note that, in our analysis, we only consider executable
processes, not the so-called abstract processes as these are not intended to be executed and may lack
required operational details [17, Abstract]. Also, we disregard memory usage and execution speed, as
these are implementation dependent and not treated by the standard.

Due to the lack of formal semantics in the standard specification we cannot prove our desugaring
transformation to be semantics preserving in a formal sense; it might very well be the case, that

1The XML Schema documents are published in appendix E of the WS-BPEL standard specification [17].

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 155

our desugaring transformations do not preserve semantics with respect to formalizations given by
the academic community or implementations of WS-BPEL. For instance, the memory usage of a
syntactic sugar construct might be different from that of its desugared counterpart, which might lead
to differences in exception behaviour. The only formal guarantee we give is that the WSDL types
remain the same.

Core BPEL is thus a subset of WS-BPEL which has fewer and simpler constructs, and any valid
executable WS-BPEL process can be transformed into an equivalent Core BPEL process by using the
transformations presented in this report. We do not claim that the Core BPEL is minimal: there might
be further or alternative transformations which yield a smaller language; nevertheless, our experience
is that Core BPEL makes implementing and formalizing WS-BPEL significantly simpler.

In addition to syntactic sugar, WS-BPEL supports extensions that are implementation dependent
and can be either optional or mandatory. Processes with mandatory extensions must be rejected if
the implementation does not support them [17, SA00009], whereas unsupported optional extensions
must be ignored by an implementation. Ignoring an extension can be done by removing it from the
process before execution, and by providing a generic set of transformations for this, we again ease the
implementation task. We therefore examine how optional extensions can be removed from a process
by transforming it.

We have implemented the presented transformations as XSLT 1.0 templates. Some of the XSLT
templates require access to the Web Service Definition Language (WSDL) files imported by the process.

In the appendix, we list syntax summaries (in the style of the WS-BPEL standard specification)
for the WS-BPEL and Core BPEL elements side-by-side for easy comparison (App. 6.A). We also
provide an XML Schema which defines the Core BPEL syntax (App. 6.B) and a set of XSLT 1.0
templates which implement the translation from WS-BPEL to Core BPEL (App. 6.D). The schema
and transformations are also available at the CosmoBiz project website http://www.cosmobiz.org
where we also provide a simple web-interface for experimenting with the transformations.

Motivation This investigation is part of the Computer Supported Mobile Adaptive Business Pro-
cesses (CosmoBiz) project [11], which aims to provide a fully formalized runtime engine for a WS-
BPEL-like business process language extended to allow for mobile and adaptive processes. As an
initial step towards this goal, we are formalizing and implementing a WS-BPEL engine. By identifying
a simpler core language of WS-BPEL, we ease the formalization and implementation. As a by-product,
this investigation exposes some of the more subtle aspects of WS-BPEL, thereby making the semantics
of the many constructs in WS-BPEL clearer and giving an overview of the many default behaviours
specified in the standard specification.

Core BPEL allows WS-BPEL researchers and implementers to work with a simpler and more
structured language that is both easier to understand and to reason about — without loss of generality.
By providing the necessary transformations and a convenient web-interface, we hope to make our results
easily accessible and usable for anyone working with WS-BPEL.

Related work The work presented in this paper is the continuation of Simplified BPEL as proposed
by Hallwyl in his master’s thesis [10]. The transformation into Simplified BPEL focused on adding
implicit activities and default values, to support a so-called “standard-driven” implementation, a con-
ceptual implementation closely mapping the prose descriptions found in the standard specification to
code constructs. That aim did not allow us to remove or replace activities from the language. Core
BPEL takes this further, by removing, transforming, and replacing constructs, aiming for a core subset
of the language.

http://www.cosmobiz.org

156 6.2. Transformation Considerations

We are unaware of any other work on identifying a language core for WS-BPEL, but WS-BPEL has
received considerable attention from the academic community, resulting in a number of formalizations
using different formalisms the most notable being Petri Nets [12–14], process calculi such as the π-
calculus [15] and bigraphs [3], and Abstract State Machines [6–9].

Structure of the paper We begin with some considerations in Section 6.2 about how to design and
express the transformations from WS-BPEL to Core BPEL. In Section 6.3, we discuss how to make
default attribute values and elements explicit. In Section 6.4 we discuss the standard attributes and
elements of WS-BPEL which are allowed on all activities, and describe how these are only necessary
on a few select activities. In Section 6.5 we identify syntactic sugar in WS-BPEL’s activities and the
<process> construct, and investigate how to desugar them one by one. In Section 6.6 we discuss the
extensibility of WS-BPEL and investigate how to remove optional extensions. Finally, in Section 6.7,
we discuss how to combine the individual transformations into an overall transformation of WS-BPEL
processes into Core BPEL and Section 6.8 concludes the paper with future perspectives.

The appendix contains the syntax summaries for the Core BPEL elements side-by-side with the
corresponding WS-BPEL syntax summaries for easy comparison (App. 6.A), the XML Schema for
Core BPEL (App. 6.B), an example WS-BPEL process and its Core BPEL equivalent, and the XSLT
transformations we have constructed (App. 6.D).

We assume that the reader is familiar with WS-BPEL and XSLT.

6.2 Transformation Considerations

Before we start discussing how WS-BPEL can be simplified by transformations, we will discuss how
we express such transformations and the design goals for our transformations. Also, we will discuss
how concurrency must be taken into account when transforming activities, and how to handle the
fact that WS-BPEL allows for very general and unconstrained language extensions, since it poses a
challenge when we want to perform syntactic manipulations of WS-BPEL processes in general, without
knowledge of specific extensions.

6.2.1 Language

XSLT has been chosen due to its widespread adoption and availability in many programming languages,
making it easy to adopt our transformations in implementations. For historical reasons, we use XSLT
version 1.0: when Hallwyl commenced his precursory work, XSLT 2.0 had not yet been widely adopted;
also, WS-BPEL requires implementations to support XSLT 1.0 transformations [17, Sec. 8.3], and thus
by using that version, the effort required by implementers to adopt our transformations is minimal. We
are certain, though, that updating the transformations to XSLT 2.0 would make them more readable,
but we leave this as an exercise for the reader.

XSLT has the drawback of being somewhat informally specified and untyped leading to inconsis-
tencies between implementations as well as poor help for catching type errors in our transformations.
For those reasons, we considered languages like XDuce [18] and CDuce [4], but ended up deciding that
the advantages of XSLT outweighs its disadvantages.

6.2.2 Design Goals

When designing our transformations, we have had three goals in mind:

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 157

idempotency: each transformation should only affect elements that are not already valid Core BPEL.
In other words, applying the same transformation a second time should not alter the result.
This ensures that the transformations are as specific as possible.

independence: each transformation should be valid for any WS-BPEL process, and should not rely
on any of the other transformations being applied before or after itself.
This will allow users to employ a subset of the transformations instead of the whole suite, if they
find them useful on their own, though this will of course not yield a Core BPEL process.

simplicity: the transformations should be as readable as possible. Most importantly, this means that
we do not require that transformations use Core BPEL elements in their results; for example,
several transformations produce <sequence>s, which in Core BPEL are encoded as <flow>s.
One could worry, that the price for this would be that each transformation might have to be
applied several times, and in the worst case that the transformation suite would not terminate.
Fortunately, it turns out that there is a simple way to avoid this, which we shall discuss in
Section 6.7.
Also, we have put no effort into optimizing the execution of the transformations in order to keep
them as simple as possible.

We believe that we have achieved these goals, except in one case: we have chosen to let the transfor-
mations that make default attribute values explicit (cf. Section 6.3.1) be more general than necessary:
they make all WS-BPEL default attribute values explicit, though some of these are unnecessary and
indeed not a part of Core BPEL, and therefore has to be removed in a separate step. We have made
this choice, as we believe those transformations are of general interest and value in their general form,
independently of Core BPEL.

6.2.3 Concurrency Considerations
Since WS-BPEL allows concurrency, e.g. using <flow>, we must ensure that our transformations do
not alter the concurrency semantics as specified by the standard specification. In particular, since
we are concerned with the elimination of syntactic sugar by transforming sugared activities into a
composition of more primitive activities, one could fear that we might break atomicity.

The standard specification only puts a few requirements on the concurrent execution of activities:
<assign> and initialization of correlation sets are required to be atomic:

“If there is any fault during the execution of an assignment activity the destination variables
MUST be left unchanged, as they were at the start of the activity (as if the assign activity
were atomic). This applies regardless of the number of assignment elements within the
overall assignment activity.
The assign activity MUST be executed as if, for the duration of its execution, it was the
only activity in the process being executed.” [17, Sec. 8.4]

“However, the initiation of a correlation set is performed in an atomic fashion – in the
same sense as that of an <assign> operation – ensuring that the correlation set will not
be partially initiated.” [17, Sec. 12.8]

The execution of other activities is not required to be atomic. Thus, as long as our transformations
do not split assignments or correlation set initializations into several activities, we do not break any
atomicity requirements.

158 6.3. Default Values and Elements

6.2.4 WS-BPEL Extensibility
WS-BPEL allows extensions in the form of namespace qualified attributes and elements, respectively
on and in WS-BPEL elements. When transforming a WS-BPEL element, we cannot in general antic-
ipate which of the resulting WS-BPEL elements each of the extensions relate to, nor whether a given
extension still makes sense on the transformed element. For example, when we transform a <receive>
into a <pick> with a single <onMessage> (cf. Section 6.5.3), some extensions might relate to the
activity (<pick>) whereas others might relate to the messaging element (<onMessage>).

Thus, we cannot ensure that the transformations we construct will preserve semantics for extensions
nor that the extension instances will be properly placed. And such considerations are out of scope
for this report, as our interests are the WS-BPEL language constructs defined by the standard. Note
though, that no matter where we place the extension instances, the result will still be valid WS-BPEL.
In keeping with our design goal of simplicity, we therefore place the extension instances wherever it is
simplest in the XSLT code to put them. If this has unfortunate consequences for specific extensions,
the transformations will have to be modified to handle those extensions explicitly.

6.3 Default Values and Elements
Having optional declarations and defaults means that something is stated when saying nothing. This
is a special case of syntactic sugar, where the absence of some syntactic element should be interpreted
the same as the presence of a particular instance of that syntactic element. As in the general case
of syntactic sugar, making these implicit values explicit makes the language simpler without loosing
expressivity.

In this section we briefly discuss the default values in WS-BPEL. For easy reference, they are listed
in Table 6.1 and Table 6.2.

6.3.1 Default Attribute Values
We have divided the default attribute values into three groups as follows:

simple defaults: the default value is independent of the context of the construct

global defaults: there is a default value at the <process> level, and other constructs default to the
value at that level

inherited defaults: there is a default value at the <process> level, and other constructs default to
the value from the nearest enclosing element with the same attribute

Note that [17, Appendix C] contains a table of default values for attributes. But that table
is missing the ignoreMissingFromData attribute on the <copy> element; it includes the attributes
keepSrcElementName on <copy> and initializePartnerRole on <partnerLink> which, as argued
in Sec. 6.3.1, cannot always be made explicit; and it for some reason also lists some attributes that do
not have default values: location and namespace on <import> and reference-scheme on
<sfref:service-ref>.

Simple Defaults XSLT template: Appendix 6.D.5

There are six optional attributes with default value "no" that are specific to the construct that they
are part of. These are:

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 159

Attributes Default Value Where
createInstance no <pick> <receive>
exitOnStandardFault no <process>

inherited from immediately enclos-
ing scope or process

<scope>

expressionLanguage xpath <process>
inherited from <process> <branches>

<condition>
<finalCounterValue>
<for>
<from>
<joinCondition>
<repeatEvery>
<startCounterValue>
<to>
<transitionCondition>
<until>

ignoreMissingFromData no <copy>
initiate no <correlation>
isolated no <scope>
messageExchange the default <messageExchange>

of the closest relevant paral-
lel <forEach>, <onEvent>, or
<process>

<onEvent>
<onMessage>
<receive>
<reply>

name a fresh name <assign>,
<compensate>,
<compensateScope>,
<empty>,
<exit>,
<flow>,
<forEach>,
<if>,
<invoke>,
<pick>,
<receive>,
<repeatUntil>,
<reply>,
<rethrow>,
<scope>,
<sequence>,
<throw>,
<validate>,
<wait>,
<while>

queryLanguage xpath <process>
inherited from <process> <query>

successfulBranchesOnly no <branches>
suppressJoinFailure no <process>

inherited from immediately enclos-
ing activity or process

all activities

validate no <assign>

Table 6.1: Default attribute values. Note that xpath is an abbreviation for
urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0.

160 6.3. Default Values and Elements

Elements Default Value Where
<compensationHandler> <compensationHandler>

<compensate />
</compensationHandler>

<scope>

<completionCondition> <completionCondition /> <forEach>
<faultHandlers> <faultHandlers>

<catchAll>
<sequence>

<compensate />
<rethrow />

</sequence>
</catchAll>

</faultHandlers>

<scope>

<joinCondition> <joinCondition
expressionLanguage="xpath">

disjunction of links
</joinCondition>

<target>

<messageExchange> <messageExchange name="fresh name"/> <process>,
child <scope> of <onEvent>,
parallel <forEach>

<terminationHandler> <terminationHandler>
<compensate />

</terminationHandler>

<scope>

<transitionCondition> <transitionCondition
expressionLanguage="xpath">

true()
</transitionCondition>

<source>

Table 6.2: Default elements. Note that xpath is an abbreviation for
urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 161

• createInstance on <pick> and <receive> [17, Sec. 11.5, 10.4].

• ignoreMissingFromData on <copy> [17, Sec. 8.4].

• initiate on <correlation> [17, Sec. 9.2].

• isolated on <scope> [17, Sec. 12.8].

• succesfulBranchesOnly on <branches> [17, Sec. 11.7].

• validate on <assign> [17, Sec. 8.4].

The keepSrcElementName and initializePartnerRole attributes The keepSrcElementName
attribute on <copy> and initializePartnerRole on <partnerLink> both have default value "no"
in [17, Appendix C] and in the case of keepSrcElementName the default value is even specified in the
XML Schema for WS-BPEL. The default values do not always apply though:

“An optional keepSrcElementName attribute is provided to further refine the behavior.
[SA00042] It is only applicable when the results of both from-spec and to-spec are EIIs,
and MUST NOT be explicitly set in other cases.” [17, Sec. 8.4.2]

“[SA00017] The initializePartnerRole attribute MUST NOT be used on a partner
link that does not have a partner role; this restriction MUST be statically enforced.”

[17, Sec. 6.2]

Thus, the two are attributes are explicitly forbidden from being made explicit in certain cases. We
guess that the authors of the WS-BPEL standard specification only intend the default values to apply
if the attributes may be legally specified; but in that case, specifying a default value for the attribute
in the XML Schema is not in keeping with the XML Schema standard specification:

“default specifies that the attribute is to appear unconditionally in the post-schema-validation
infoset, with the supplied value used whenever the attribute is not actually present” [19, Sec. 3.2.1]

We therefore choose not to have the default values in the Core BPEL schema, as they are not true
defaults in the XML Schema sense.

One could make the default values explicit in the cases where they apply, but this would require
more complex analyses than we wish to provide with our transformations, and we believe the value of
doing so would be limited, as the constructs would not in general become simpler.

Global Defaults XSLT template: Appendix 6.D.3

The languages for expressions and queries can be specified using the optional expressionLanguage
and queryLanguage attributes on relevant elements. The default for both attributes on <process> is
urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0, while on other activities, the attributes by
default inherit their values from <process> [17, Sec. 5.2, 8.2].

“The value of the queryLanguage and expressionLanguage attributes on the <process> el-
ement are global defaults and can be overridden on specific constructs, such as <condition>
of a <while> activity, as defined later in this specification.” [17, Sec. 5.2]

162 6.3. Default Values and Elements

Inherited Defaults XSLT template: Appendix 6.D.4

The optional attribute suppressJoinFailure is allowed on <process> and all activities. Its default
value on <process> is "no", while if it is unspecified on activities, it inherits its value from the nearest
enclosing activity/<process> [17, Sec. 5.2]. Similarly, the optional attribute exitOnStandardFault is
allowed on <process> and <scope>, with a default value of "no" on <process> while on <scope> it
by default inherits the value from its nearest enclosing <scope>/
<process> [17, Sec. 5.2].

6.3.2 Message Exchanges XSLT template: Appendix 6.D.8

When there is no ambiguity, WS-BPEL allows messageExchange’s to be omitted from IMAs2 and
<reply>s:

“If the messageExchange attribute is not specified on an IMA or <reply> then the activ-
ity’s messageExchange is automatically associated with a default messageExchange with
no name. Default messageExchange’s are implicitly declared by the <process> and the im-
mediate child scopes of <onEvent> and the parallel form of <forEach>. Other occurrences
of <scope> activities do not provide a default messageExchange.” [17, Sec. 10.4.1]

But the standard specification does not specify in which scope the default messageExchange associated
with a given IMA or <reply> should be found! We see two possibilities for the choice of scope, but
there may be more:

1. the nearest enclosing scope, with a default messageExchange, of the IMA or <reply>.

2. the nearest common enclosing scope, with a default messageExchange, of all the IMA’s and
<reply>s that may be part of the same message exchange at runtime.

The second possibility requires advanced analysis, and is probably undecidable in general. The
first possibility seems more plausible to us, as it is in line with the common lexical scoping rules as
well as the reasoning for having default messageExchange’s declared in the immediate child scopes of
<onEvent> and the parallel form of <forEach>

“For example each time an <onEvent> is executed (i.e. when a new message arrives for pro-
cessing) it creates a new default messageExchange instance associated with each <onEvent>
instance. This allows a request-response <onEvent> event handler to receive messages in
parallel without faulting or explicitly specifying a messageExchange. Similarly it allows the
use of <receive>-<reply> or <onMessage>-<reply> pairs in the parallel form of <forEach>
without the need to explicitly specify a messageExchange.” [17, Sec. 10.4.1]

Thus it seems that it should be the nearest enclosing scope which has a default messageExchange.
Note that it is not truly the nearest enclosing scope in the case of <onEvent> (which is an IMA), since
it is allowed to refer to its associated scope:

“When the messageExchange attribute is explicitly specified, the resolution order of the
message exchange referenced by messageExchange attribute MUST be first the associated
scope and then the ancestor scopes.” [17, Sec. 10.7.1]

2inbound message activities

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 163

Assuming this interpretation of default messageExchange resolution, we can make the default
message exchanges explicit in the following way:

1. Add a new <messageExchange> to the <process> and to each of the immediate child scopes of
<onEvent> and the parallel forms of <forEach>, each with a unique fresh name (see Sec. 6.4.1
for a discussion of fresh names).

2. For all IMA’s or <reply>s where the messageExchange attribute is unspecified, set the attribute’s
value to the name of the default <messageExchange> of the nearest enclosing scope of the kind
listed in 1.

This is the interpretation that we implement, but we acknowledge that other interpretations are
possible, as the standard specification is severely lacking on the subject. Note though, that the Core
BPEL syntax remains the same regardless of which interpretation one chooses, as long as it can be
decided statically.

6.3.3 Default Handlers XSLT template: Appendix 6.D.7

When either no fault, compensation, or termination handlers are specified in a <scope> activity, default
handlers apply [17, Sec. 12.5.1]. These default handlers are shown in Table 6.2.

6.3.4 Default Join, Transition, and Completion Conditions XSLT template:
Appendix 6.D.6

The constructs <targets>, <source>, and <forEach> all have optional condition elements:

<joinCondition>

“If no <joinCondition> is specified, the <joinCondition> is the disjunction (i.e.
a logical OR operation) of the link status of all incoming links of this activity.”

[17, Sec. 11.6.1]

As links are statically declared — their source and target activities do not change during execution
— we can explicitly declare the default join condition as the disjunction of the link statuses using
an XPath expression.

<transitionCondition>

“If the <transitionCondition> is omitted, it is assumed to evaluate to true.” [17, Sec. 11.6.1]

This allows us to declare the default <transitionCondition> as the XPath expression "true()".

<completionCondition>

“When a <completionCondition> does not have any sub-elements or attributes under-
stood by theWS-BPEL processor, it MUST be treated as if the <completionCondition>
does not exist.” [17, Sec. 11.7]

Thus the absence of a <completionCondition> is equivalent to <completionCondition />.

164 6.4. Standard Attributes and Elements

6.4 Standard Attributes and Elements XSLT template: Appendix 6.D.23

All WS-BPEL activities have two optional attributes and two optional elements, which in the standard
specification are referred to as standard-attributes and standard-elements respectively, cf. the
syntax summaries in Listing 6.4 and Listing 6.5 respectively. Making the default values explicit, as
discussed in the previous section, simplifies the standard attributes and elements somewhat, but there
is no reason to have these attributes and elements on all activities: we might as well move them to a
wrapping <flow>, thereby restricting the syntax of Core BPEL further. In the following two sections,
we discuss how this may be achieved.

6.4.1 Activity Names
First, we will discuss the standard attribute name. It is only in the case of <scope> that the value
of name has any operational semantics specified by the standard (named scopes can be referenced by
<compensateScope>), but it is also possible that in some cases, the name of an <extensionActivity>
might be significant; this is not discussed in the standard. For all other activities, we can safely either
remove the name or move it to a wrapping <flow>; the wrapper cannot be a <scope>, since that could
break the following requirement in some cases:

“[SA00092]Within a scope, the name of all named immediately enclosed scopes MUST be
unique. This requirement MUST be statically enforced.” [17, Sec. 12.4.3]

For example, the WS-BPEL fragment in Listing 6.1 can be transformed into the equivalent fragment
in Listing 6.2 where the names are moved to a wrapping <flow>, but using <scope>s as wrappers,
as in Listing 6.3, violates [SA00092], whereas a wrapping <flow> does not alter the semantics of any
activity.

For Core BPEL, we remove the redundant cases of the name attribute, i.e. we remove it from all
activities but <scope> and <extensionActivity>.

Now, there is no default value for the name attribute, but there is nothing preventing us from
assigning an unused (fresh) name to unnamed <scope>s (but not <extensionActivity>). Doing so
makes the name attribute on <scope> mandatory in Core BPEL.

A Note on Fresh Names

Several of our transformations create named entities, e.g. variables or links, and it is important that
we choose names that do not conflict with other named entities (e.g. variable shadowing). Though
one could for each transformation analyse exactly how the created named entities might conflict with
other entities, we do not believe that such an analysis will bring any significant insight. Instead, we
simply generate globally fresh names in the following way:

• before we apply the transformations, we generate a string that is not the prefix of any attribute
value in the WS-BPEL process to be transformed; we call this the fresh prefix.

• when a fresh name is needed in a transformation, we construct it as the concatenation of the
following three parts

Fresh prefix: the fresh prefix generated above.
Element id: using the XSLT XPath function generate-id() on an element that is being trans-

formed, we obtain an id for that instance of the transformation. If a transformation needs
more than one fresh name, it uses a separate element for each fresh name.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 165

Listing 6.1: Two activities
with the same name.

1 <sequence >
2 <empty name="foo" />
3 <empty name="foo" />
4 </sequence >
5

6

7

8

Listing 6.2: Named wrapper.
1 <sequence >
2 <flow name="foo">
3 <empty />
4 </flow >
5 <flow name="foo">
6 <empty />
7 </flow >
8 </sequence >

Listing 6.3: Scope name clash.
1 <sequence >
2 <scope name="foo">
3 <empty />
4 </scope >
5 <scope name="foo">
6 <empty />
7 </scope >
8 </sequence >

Listing 6.4: WS-BPEL standard-attributes.
1 name="NCName"?
2 suppressJoinFailure="yes|no"?

Transformation postfix: a postfix that is unique for that transformation.

6.4.2 Link endpoints

The remaining standard attributes and elements (suppressJoinFailure, <targets>, and <sources>)
all relate to link endpoints. As with the name attribute, these may simply be moved to a wrapping
<flow> activity, even in the case of <scope> and <extensionActivity>.

There is one detail to be aware of though: some <scope>s occur in contexts (<onEvent> and
<onAlarm> in <eventHandlers>, and <forEach>) where other activities are not allowed, and it would
therefore seem that we cannot in general move <targets> and <sources> to a wrapping <flow>. But
a consequence of the following statement in the standard specification is that those <scope>s may not
be target nor source of any links:

A link used within a repeatable construct (<while>, <repeatUntil>, <forEach>, <eventHandlers>)
or a <compensationHandler> MUST be declared in a <flow> that is itself nested inside
the repeatable construct or <compensationHandler>. [17, Sec. 11.6.1]

Thus, we can move <targets> and <sources> to a wrapping <flow> everywhere they occur, and we
do this for Core BPEL.

The <scope>s just discussed may still have the suppressJoinFailure attribute, though. But since
the <scope> is not the target of any links, this attribute only serves to set the default value for the
child activities of the <scope>: cf. Sec. 6.3.1, suppressJoinFailure by default inherits its value from
the closest enclosing activity. We can therefore remove this attribute from the <scope>s in question
by propagating the value of the suppressJoinFailure attribute to the immediate child activities.

Now, since our transformation will have to propagate the value of suppressJoinFailure for the
<scope>s just discussed, we might as well do the same for activities that have no <targets> as they
do not need the suppressJoinFailure attribute; the transformation does not become more complex
due to this and it will lead to fewer wrapping <flow>s. This is purely an optimization, which does not
affect the syntax of Core BPEL.

166 6.5. Desugaring Constructs

Listing 6.5: WS-BPEL standard-elements.
1 <targets >?
2 <joinCondition expressionLanguage="anyURI"?>?
3 bool -expr
4 </joinCondition >
5 <target linkName="NCName" />+
6 </targets >
7 <sources >?
8 <source linkName="NCName">+
9 <transitionCondition

10 expressionLanguage="anyURI"?>?
11 bool -expr
12 </transitionCondition >
13 </source >
14 </sources >

6.5 Desugaring Constructs
WS-BPEL provides programmers with a set of shorthands for frequent code patterns, i.e. syntac-
tic sugar. For instance, when receiving a message, one often wants to separate the message into its
constituent parts to ease further processing; WS-BPEL allows the programmer to specify this data
processing concisely as part of the <receive> activity, thereby avoiding a sequence of explicit assign-
ments.

The WS-BPEL standard specification does only in a few cases clearly describe shorthands as derived
constructs, but it hints at many such relations. We have gone through the standard specification looking
for such hints, as well as classical cases of syntactic sugar, and in this section we discuss the cases of
syntactic sugar we have identified and we analyse how to desugar them.

The analysis is organized around the elements that we have constructed desugaring transforma-
tions for: <process>, <invoke>, <pick>, <receive>, <reply>, <scope>, <if>, <repeatUntil>, and
<sequence>. There is a section for each of these constructs, and each section is accompanied by (a)
an XSLT template in the appendix which formalizes and implements the described desugaring trans-
formation, and (b) the syntax summary for the element, in the style of the standard specification,
as well as the corresponding Core BPEL syntax summary. These are placed in Appendix 6.A and
Appendix 6.D, and the header for each section contains references to the appropriate parts of the
appendices. Table 6.3 gives an overview of the desugaring transformations we have constructed.

The elements for which we have not constructed separate desugaring transformations, are listed
in Section 6.5.10; these are also accompanied by their WS-BPEL and Core BPEL syntax summaries,
which are not identical, since many optional attributes and elements are made mandatory.

6.5.1 <process> WS-BPEL syntax summary: Listing 6.34
Core BPEL syntax summary: Listing 6.35
XSLT template: Appendix 6.D.14

The <process> element serves as the root <scope> in the scoped environment hierarchy, and is allowed
to contain almost all of the attributes and elements that are also allowed in a <scope> element as
evident from their syntax summaries (cf. Listing 6.34 and Listing 6.64), and according to the standard
specification the semantics of those attributes and elements are the same:

“The <process> and <scope> elements share syntax constructs, which have the same se-

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 167

Element Syntactic sugar description Desugaring transformation

<if> Allows omitting the <else> element
and allows <elseif> elements.

If the <else> element is omit-
ted, insert <else><empty/></else>.
Transform the list of <elseif> el-
ements into a nested sequence of
<else><if> elements.

<invoke> Allows local fault and compensa-
tion handlers and manipulation of in-
put/output using implicit local vari-
ables and implicit assignments.

Make an immediately enclosing
<scope> and move handlers to
that. Declare the implicit variables
explicitly in that <scope> and make
the implicit assignments explicit.

<onEvent> Allows manipulation of input using
implicit local variables and implicit
assignments.

The standard forbids declaring the
variables explicitly, but we make
the implicit assignments of each
<onEvent> explicit.

<pick> Allows manipulation of input using
implicit local variables and implicit
assignments.

Make an immediately enclosing
<scope> and declare the implicit
variables explicitly in that <scope>
and make the implicit assignments
of each <onMessage> explicit.

<process> Is an implicit scope. Make the <scope> explicit.

<receive> Corresponds to a <pick> ac-
tivity which contains only one
<onMessage> element.

Replace by a <pick> activity.

<repeatUntil> Provides conditional iteration, just
as <while>, though <repeatUntil>
always performs at least one itera-
tion.

Replace by a <while> where the
condition is the negation of a tem-
porary variable initialized to false
and the body is a sequence of the
<repeatUntil>’s body followed by
an assignment of the value of its con-
dition to the temporary variable.

<reply> Allows manipulation of output using
implicit local variables and implicit
assignments.

Make an immediately enclosing
<scope> and declare the implicit
variables explicitly in that <scope>
and make the implicit assignments
explicit.

<scope> Allows in-line variable initialization
corresponding to implicit <assign>
activities.

Convert the in-line variable initial-
izations to explicit <assign> activ-
ities. To preserve the all-or-nothing
behaviour of scope-initialization, this
requires some additional <scope>s
(see Section 6.5.6 for details).

<sequence> Provides sequential processing,
which can also be achieved with the
<flow> activity.

Replace by a <flow> activity with
properly defined links between the
child activities.

Table 6.3: Overview of syntactic sugar and transformations.

168 6.5. Desugaring Constructs

mantics. However, they do have the following differences:

• The <process> construct is not an activity; hence, standard attributes and elements
are not applicable to the <process> construct

• A compensation handler and a termination handler can not be attached to the <process>
construct

• The isolated attribute is not applicable to the <process> construct (see section 12.8.
Isolated Scopes)”

[17, Sec. 12]

Thus there is nothing preventing us from moving all <scope> related content from a <process>
element into an explicitly defined <scope>. This includes the attributes suppressJoinFailure and
exitOnStandardFault, which are made redundant for the <process> element by this transformation,
since

suppressJoinFailure just serves to set an inherited default value, which is immediately overridden
by the new <scope>, and

exitOnStandardFault the situation is the same, as any standard fault that may be trown, will be
thrown inside of the new <scope>.

Listing 6.6 shows an example of <scope> related content in a <process> and Listing 6.7 shows how
the scope is made explicit.

Also, note that two attributes expressionLanguage and queryLanguage serve only to specify
default values for the activities of the process, so these can be safely removed after the defaults have
been made explicit (i.e. after the transformation discussed in Section 6.3.1). As we shall discuss in
Section 6.7, this is done as a separate transformation, in order to avoid problems when combining this
transformation with the transformations of Section 6.3.1.

6.5.2 <invoke> WS-BPEL syntax summary: Listing 6.54
Core BPEL syntax summary: Listing 6.55
XSLT template: Appendix 6.D.11

The principal purpose of the <invoke> activity is to invoke an operation offered by a partner. But
the standard specification allows the programmer to do more using this activity, e.g. to specify fault
handling which is specific for this invocation.

We have identified three main cases of syntactic sugar for the <invoke> activity:

1. The local declaration of fault or compensation handlers implicitly declares an enclosing <scope>
with these handlers.

2. The usage of <toParts> or <fromParts> to map variables to and from message parts implicitly
declares an enclosing <scope> with temporary variables and assignments.

3. Referring to an element variable in either <inputVariable> or <outputVariable> also implicitly
declares an enclosing <scope> with temporary variables and assignments.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 169

Listing 6.6: Process with scope related content.
1 <process >
2 <variables >
3 <variable name="size" type="xsd:int">
4 <from >
5 <literal >42</literal >
6 </from >
7 </variable >
8 </variables >
9 <catch ...>

10 activity
11 </catch >
12 <catchAll >
13 activity
14 </catchAll >
15

16 activity
17

18 </process >
19

20

Listing 6.7: Process with a scope as main activ-
ity.

1 <process >
2 <scope >
3 <variables >
4 <variable name="size" type="xsd:int">
5 <from >
6 <literal >42</literal >
7 </from >
8 </variable >
9 </variables >

10 <catch ...>
11 activity
12 </catch >
13 <catchAll >
14 activity
15 </catchAll >
16

17 activity
18

19 </scope >
20 </process >

A single <invoke> activity can match all three of these cases, but we examine each of them separately
and then, at the end of the section, we examine how they interact.

But before we get to this, we will briefly digress to discuss a redundant attribute, portType,
which can be used on the messaging activities (<invoke>, <receive>, <reply>, <onEvent>, and
<onMessage>):

“The portType attribute on the <receive> activity is optional. . . If the portType attribute
is included for readability, the value of the portType attribute MUST match the portType
value implied by the combination of the specified partnerLink and the role implicitly
specified by the activity” [17, Sec. 5.1]

As both partnerLink and the role are required for those activities, the portType attribute can only
carry redundant information. Thus, there is no reason to keep the portType attribute and consequently
it has been removed from the messaging activities.

Case 1: Fault and Compensation Handlers

Fault and compensation handlers are elements of the <scope> activity and when used in an <invoke>
they implicitly declare a surrounding <scope> activity as follows:

“Semantically, the specification of local fault handlers and/or a local compensation handler
is equivalent to the presence of an implicit <scope> activity immediately enclosing the
<invoke> providing these handlers. The implicit <scope> activity assumes the name of the
<invoke> activity it encloses, its suppressJoinFailure attribute, as well as its <sources>
and <targets>.” [17, Sec. 10.3]

This means that whenever either fault or compensation handlers, or both, are declared within an
<invoke> activity, it is to be executed as if there was an enclosing <scope> activity. Thus, writing an

170 6.5. Desugaring Constructs

Listing 6.8: An <invoke> with an implicit
<scope>.

1 <invoke ...
2 name="bookFlight"
3 suppressJoinFailure="yes">
4 <targets >
5 ...
6 </targets >
7 <sources >
8 ...
9 </sources >

10 ...
11 <catch ...>
12 activity
13 </catch >
14 <catchAll >
15 activity
16 </catchAll >
17 <compensationHandler >
18 activity
19 </compensationHandler >
20 ...
21 </invoke >
22

23

24

Listing 6.9: Making the <scope> explicit.
1 <scope
2 name="bookFlight"
3 suppressJoinFailure="yes">
4 <targets >
5 ...
6 </targets >
7 <sources >
8 ...
9 </sources >

10 <faultHandlers >
11 <catch ...>
12 activity
13 </catch >
14 <catchAll >
15 activity
16 </catchAll >
17 </faultHandlers >
18 <compensationHandler >
19 activity
20 </compensationHandler >
21 <invoke name="bookFlight">
22 ...
23 </invoke >
24 </scope >

<invoke> activity along the lines of Listing 6.8 would be the same as writing out the scope explicitly,
as in Listing 6.9.

Case 2: Mapping Message Parts

The <invoke> activity also allows implicit assignment operations using <toParts> and <fromParts>.
<toParts> is used to copy the contents of variables into specified parts of the message to be sent.
Symmetrically, <fromParts> is used to copy parts of a received message into specified variables.

The standard specification says the following about the use of <toParts>:

“By using the <toParts> element, an anonymous temporary WSDL variable is declared
based on the type specified by the relevant WSDL operation’s input message. The <toPart>
elements, as a group, act as the single virtual <assign>, with each <toPart> acting as a
<copy>.” [17, Sec. 10.3.1]

Declaring a temporary variable — one that is only visible during the execution of the <invoke> activity
— is equivalent to having an immediately enclosing <scope> declaring the variable explicitly. Note
that we have to use a fresh name for the variable so that it does not clash with any other variables
referenced by the <invoke> activity (cf. Sec. 6.4.1 for a discussion of fresh names).

The virtual <assign> activity can then be declared explicitly in a <sequence> prior to the <invoke>
activity. The following quote supports this idea:

“The virtual <assign> MUST follow the same semantics and use the same faults as a real
<assign>.” [17, Sec. 10.3.1]

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 171

Listing 6.10: <invoke> with implicit assign-
ments.

1 <invoke
2 name="orderItems"
3 partnerLink="Seller"
4 operation="Purchase"
5 outputVariable="confirmation">
6 <toParts >
7 <toPart
8 part="address"
9 fromVariable="customerAddress"/>

10 <toPart
11 part="items"
12 fromVariable="selectedItems"/>
13 </toParts >
14 </invoke >
15

16

17

18

19

20

21

22

23

24

25

26

Listing 6.11: Making the assignments explicit.
1 <scope
2 name="orderItems"
3 <variables >
4 <variable
5 name="in"
6 messageType="msg:PurchaseMessage"/>
7 </variables >
8 <sequence >
9 <assign >

10 <copy keepSrcElementName="yes">
11 <from variable="customerAddress"/>
12 <to variable="in" part="address"/>
13 </copy >
14 <copy keepSrcElementName="yes">
15 <from variable="selectedItems"/>
16 <to variable="in" part="items"/>
17 </copy >
18 </assign >
19 <invoke
20 name="orderItems"
21 partnerLink="Seller"
22 operation="Purchase"
23 inputVariable="in"
24 outputVariable="confirmation"/>
25 </sequence >
26 </scope >

Listing 6.11 illustrates how the implicit <scope> and <assign> activities of Listing 6.10 are made
explicit.

Case 3: Element Variables

The inputVariable and outputVariable attributes, when used, must refer to a WSDL message type
variable matching the message to be sent or received respectively [17, SA00048], with one exception:

“if the WSDL operation used in an <invoke> activity uses a message containing exactly
one part which itself is defined using an element, then a variable of the same element type
as used to define the part MAY be referenced by the inputVariable and outputVariable
attributes respectively.” [17, Sec. 10.3]

The standard specification prescribes that referring to an element variable is equivalent to declaring a
temporary message variable and a virtual <assign> activity:

“The result of using a variable in the previously defined circumstance MUST be the equiva-
lent of declaring an anonymous temporary WSDL message variable based on the associated
WSDL message type. The copying of the element data between the anonymous temporary
WSDL message variable and the element variable acts as a single virtual <assign> with one
<copy> operation whose keepSrcElementName attribute is set to "yes".” [17, Sec. 10.3]

This is similar to the usage of <toParts> and <fromParts>. However, in this case we are copying
element variables, so the keepSrcElementName attribute on the <copy> operation is set to ‘yes’:

172 6.5. Desugaring Constructs

“The optional keepSrcElementName attribute of the <copy> construct is used to specify
whether the element name of the destination (as selected by the to-spec) will be replaced by
the element name of the source (as selected by the from-spec) during the copy operation”

[17, Sec. 8.4]

Interplay between the cases

We have explored three cases of syntactic sugar for the <invoke> activity. In all three cases, desugaring
makes an implicit <scope> explicit and in the last two cases, both implicit variables and virtual
<assign> activities are made explicit. As mentioned previously, a single <invoke> could match all
three cases, and thus we need to consider how they interact and how to desugar <invoke> as a whole.
This is the topic of this section.

Scope Any fault caused by the virtual assignments of message parts (case 2) must be handled by the
same local <scope> as the one which is implicitly declared by specifying local fault and compensation
handlers (case 1):

“The virtual <assign> created as a consequence of the <fromPart> or <toPart> elements
occurs as part of the scope of the <invoke> activity and therefore any fault that is thrown
are caught by an <invoke>’s inline fault handler when defined.” [17, Sec. 10.3.1]

The standard specification does not describe how to handle errors from virtual assignments caused by
a reference to an element variable (case 3). We suspect that this is because errors are not expected, as
both the source and target variables are certain to exist and to be of the exact same type. However,
implementation specific faults, e.g. ‘out of memory’, may still occur. As the standard specification does
not describe how to handle such faults, it would be consistent to follow the pattern from assignments
of parts, i.e. to let the <invoke>’s own <scope> handle any unexpected fault that might occur.

Implicit activities As <toParts> and inputVariable are mutually exclusive, there can be no
conflict between their implicit activities; the same goes for <fromParts> and outputVariable. Thus,
there will be at most one virtual <assign> activity prior to and following the <invoke> activity
respectively, so virtual assignments do not conflict and may be part of the same <sequence> within the
same <scope>. The body of the <scope> thus becomes a <sequence> of zero or one prior assignment
followed by the core <invoke> activity and zero or one assignments at the end.

Transforming Invoke

The shared <scope> and <sequence> makes it difficult to consider the three cases separately when
constructing the XSLT template and as a result, the template becomes somewhat large and complex.
To give an overview, we outline the structure of the main template in pseudo code in Listing 6.12.
In the pseudo code, inputElement and outputElement are booleans, indicating whether the input or
output variable attributes are referring to element (true) or message variables (false). Element names,
as in XSLT, evaluate to true when present, and false otherwise.

A note on synchronous <invoke>

It is well known that one can often encode a synchronous communation operation as a pair of asyn-
chronous communication operations. In the case of WS-BPEL, one could for example imagine trans-

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 173

Listing 6.12: Transforming <invoke>.
1 i f (toParts ∨ fromParts ∨ inputElement ∨ outputElement ∨ catch ∨ catchAl l ∨

compensationHandler){
2
3 < scope ... >
4
5 i f (toParts ∨ fromParts ∨ inputElement ∨ outputElement)
6 Imp l i c i t temporary v a r i a b l e s in invoke made e x p l i c i t :
7 < variables > . . . </ variables >
8
9 i f (catch ∨ catchAl l)

10 Move invokes l o c a l f a u l t hand le r s to en c l o s i n g scopes
11 < catch ... > . . . </ catch >∗
12 < catchAll ... > . . . </ catchAll >
13
14 i f (compensationHandler)
15 Move invokes l o c a l compensation handler to en c l o s i n g scope
16 < compensationHandler > . . . </ compensationHandler >
17
18 i f (toParts ∨ fromParts ∨ inputElement ∨ outputElement) {
19
20 < sequence >
21
22 i f (toParts)
23 < assign >
24 < copy > . . . </ copy >∗
25 </ assign >
26
27 i f (inputElement)
28 < assign >
29 < copy > . . . </ copy >∗
30 </ assign >
31
32 < invoke ... >
33
34 i f (fromParts)
35 < assign >
36 < copy > . . . </ copy >∗
37 </ assign >
38
39 i f (outputElement)
40 < assign >
41 < copy > . . . </ copy >∗
42 </ assign >
43
44 </ sequence >
45
46 } else {
47
48 Invoke without imp l i c t assignment , but with imp l i c t scope .
49 < invoke ... >
50
51 }
52
53 </ scope >
54
55 } else {
56
57 A core invoke
58 < invoke ... >
59
60 }

174 6.5. Desugaring Constructs

Listing 6.13: A synchronous <invoke>.
1 <invoke
2 partnerLink="pl"
3 operation="op"
4 inputVariable="in"
5 outputVariable="out" />
6

7

8

9

10

Listing 6.14: Encoding synchronous <invoke>.
1 <sequence >
2 <invoke
3 partnerLink="pl"
4 operation="op"
5 inputVariable="in" />
6 <receive
7 partnerLink="pl"
8 operation="op"
9 variable="out" />

10 </sequence >

forming the synchronous <invoke> in Listing 6.13 to the asynchronous <invoke>/<receive>-pair in
Listing 6.14.

While these code fragments abstractly accomplish the same request/response operation, they are
not interchangeable because WSDL models request/response (and solicit/response) as primitive oper-
ation types:

“WSDL has four transmission primitives that an endpoint can support:

• One-way. The endpoint receives a message.
• Request-response. The endpoint receives a message, and sends a correlated mes-

sage.
• Solicit-response. The endpoint sends a message, and receives a correlated message.
• Notification. The endpoint sends a message.

WSDL refers to these primitives as operations. Although request/response or solicit/re-
sponse can be modeled abstractly using two one-way messages, it is useful to model these
as primitive operation types because:

• They are very common.
• The sequence can be correlated without having to introduce more complex flow infor-

mation.
• Some endpoints can only receive messages if they are the result of a synchronous

request response.
• A simple flow can algorithmically be derived from these primitives at the point when

flow definition is desired.”

[5, Sec. 2.4]

Concretely, this means that the two fragments cannot both use the same WSDL definitions for the
partner link pl, as the definition of op in the case of Listing 6.13 would have to be on the following
form:

1 <wsdl:operation name="op" ...>
2 <wsdl:input .../>
3 <wsdl:output .../>
4 </wsdl:operation >

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 175

Listing 6.15: <receive> example.
1 <receive partnerLink="purchasing"
2 portType="lns:purchaseOrderPT"
3 operation="sendPurchaseOrder"
4 variable="PO"
5 createInstance="yes">
6

Listing 6.16: <receive> example desugared.
1 <pick createInstance="yes">
2 <onMessage partnerLink="purchasing"
3 portType="lns:purchaseOrderPT"
4 operation="sendPurchaseOrder"
5 variable="PO">
6 </pick >

whereas Listing 6.14 would require a separate callback operation, and such a transformation would
thus change the WSDL interface of the process. For the same reasons, one cannot change a <reply>
into an asynchronous <invoke>, though they both send a message without expecting a reply.

6.5.3 <receive> WS-BPEL syntax summary: Listing 6.58
XSLT template: Appendix 6.D.15

The <receive> activity is similar to the <onMessage> event of the <pick> activity, as evident from
their syntax summaries (cf. Listing 6.58 and Listing 6.56) and the following quotes from the standard
specification:

“The <onMessage> is similar to a <receive> activity, in that it waits for the receipt of an
inbound message.” [17, Sec. 11.5]

“[SA00063] The semantics of the <onMessage> event are identical to a <receive> activity
regarding the optional nature of the variable attribute or <fromPart> elements (see also
[SA00047]), the handling of race conditions, the handling of correlation sets, the single
element- based part message short cut and the constraint regarding simultaneous enable-
ment of conflicting receive actions. For the last case, if two or more receive actions for the
same partnerLink, portType, operation and correlationSet(s) are simultaneously enabled
during execution, then the standard fault bpel:conflictingReceive MUST be thrown (see
section 10.4. Providing Web Service Operations - Receive and Reply). Enablement of an
<onMessage> event is equivalent to enablement of the corresponding <receive> activity
for the purposes of this constraint.” [17, Sec. 11.5]

In fact, we have found nothing in the standard specification which indicates any differences between
a <receive> activity and a <pick> activity with a single <onMessage> event. Thus, given the above
quotes, it seems reasonable to assume that they should be equivalent, and thus we can replace the
former with the latter. Listing 6.16 shows how the <receive> activity example in Listing 6.15 is
desugared into a <pick>.

6.5.4 <pick> WS-BPEL syntax summary: Listing 6.56
Core BPEL syntax summary: Listing 6.57
XSLT template: Appendix 6.D.13

An <onMessage> element of a <pick> activity makes use of implicit assignments when <fromParts>
is used or when its variable attribute refers to an element variable, just as it was the case with
<invoke> (though for <invoke> the attribute name is outputVariable). The standard specification
defines the syntax and semantics of <fromParts> in <receive> to be the same as in the context of
<invoke>:

176 6.5. Desugaring Constructs

“The syntax and semantics of the <fromPart> elements as used on the <receive> activity
are the same as specified for the <invoke> activity in section 10.3.1.” [17, Sec. 10.4]

And as argued in the previous section, <receive> is a special case of <pick>, so the same semantics
should apply to <fromParts> in <onMessage>. With respect to the semantics of the variable attribute
when it refers to an element variable, the relation to <invoke> is a little less clear. But the requirements
on static analysis [17, SA00058] for <receive> are phrased similarly to that of the <invoke> activity
[17, SA00048], and thus the discussion from case 3 in Section 6.5.2 applies to <receive>, and thereby
<onMessage>, as well.

Thus, we can reuse the transformation we constructed to handle <fromParts> and element variables
in the <invoke> activity, with two minor differences:

• we will have to place the temporary variables for all of the <onMessage>s in a shared <scope>
enclosing the <pick>

• the explicit assignments must be placed inside the <onMessage>s

Listing 6.17 shows an example <pick> with two <onMessage>s using <fromParts> and an element
variable, and the example is desugared in Listing 6.18.

6.5.5 <reply> WS-BPEL syntax summary: Listing 6.60
Core BPEL syntax summary: Listing 6.61
XSLT template: Appendix 6.D.20

The <reply> activity makes use of implicit assignments when <toParts> is used or when its variable
attribute refers to an element variable, just as it was the case with <invoke> (though for <invoke> the
attribute name is inputVariable). Indeed, the standard specification defines the syntax and semantics
of <toParts> to be the same as in the context of <invoke>:

“The syntax and semantics of the <toPart> elements as used on the <reply> activity are
the same as specified in section 10.3.1. Mapping WSDL Message Parts for the <invoke>
activity” [17, Sec. 10.4]

With respect to the semantics of the variable attribute when it refers to an element variable, the
relation to <invoke> is a little less clear. But the requirements on static analysis [17, SA00058] are
phrased similarly to that of the <invoke> activity [17, SA00048], and thus the discussion from case 3
in Section 6.5.2 applies to <reply> as well.

Thus, we can reuse the transformation we constructed to handle <toParts> and element variables
in the <invoke> activity.

6.5.6 <scope> WS-BPEL syntax summary: Listing 6.64
Core BPEL syntax summary: Listing 6.65
XSLT template: Appendix 6.D.21

The concept of virtual <assign> activities arises again in the descriptions of in-line variable initial-
izations. Variables are declared as part of a <scope> activity. Within the <variable> declaration, a
from-spec, as known from assignments [17, Sec. 8.4], may be used to initialize the variable. Listing 6.19
shows a simple example, initializing an integer variable to the value 42.

The standard specification makes this feature sound entirely trivial:

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 177

Listing 6.17: <pick> with implicit assignments.
1 <pick >
2 <onMessage
3 partnerLink="partnerLink"
4 operation="op1">
5 <fromParts >
6 <fromPart
7 part="id"
8 toVariable="idVar" />
9 <fromPart

10 part="description"
11 toVariable="descVar" />
12 </fromParts >
13 <empty />
14 </onMessage >
15 <onMessage
16 partnerLink="partnerLink"
17 operation="op2"
18 variable="addressVariable">
19 <empty />
20 </onMessage >
21 </pick >
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Listing 6.18: Making the assignments explicit.
1 <scope >
2 <variables >
3 <variable
4 name="fresh1"
5 messageType="..." />
6 <variable
7 name="fresh2"
8 messageType="..." />
9 </variables >

10 <pick >
11 <onMessage
12 partnerLink="partnerLink"
13 operation="op1"
14 variable="fresh1">
15 <sequence >
16 <assign >
17 <copy >
18 <from part="id"
19 variable="fresh1"/>
20 <to variable="idVar"/>
21 </copy >
22 <copy >
23 <from part="description"
24 variable="fresh1"/>
25 <to variable="descVar"/>
26 </copy >
27 </assign >
28 <empty/>
29 </sequence >
30 </onMessage >
31 <onMessage
32 operation="op2"
33 partnerLink="partnerLink"
34 variable="fresh2">
35 <sequence >
36 <assign >
37 <copy keepSrcElementName="yes">
38 <from part="addressIn"
39 variable="fresh2"/>
40 <to variable="addressVariable"/>
41 </copy >
42 </assign >
43 <empty/>
44 </sequence >
45 </onMessage >
46 </pick >
47 </scope >

178 6.5. Desugaring Constructs

Listing 6.19: Example of a variable initialization.
1 <scope ...>
2 <variables >
3 <variable name="size" type="xsd:int">
4 <from ><literal >42</literal ></from >
5 </variable >
6 </variables >
7 <flow >
8 <invoke .../>
9 <invoke .../>

10 </flow >
11 </scope >
12

13

14

15

16

17

Listing 6.20: Naive proposal for transformation
of the variable initialization example.

1 <scope ...>
2 <variables >
3 <variable name="size" type="xsd:int"/>
4 </variables >
5 <sequence >
6 <assign >
7 <copy >
8 <from ><literal >42</literal ></from >
9 <to variable="size"/>

10 </copy >
11 </assign >
12 <flow >
13 <invoke .../>
14 <invoke .../>
15 </flow >
16 </sequence >
17 </scope >

“Conceptually the in-line variable initializations are modeled as a virtual <sequence> ac-
tivity that contains a series of virtual <assign> activities, one for each variable being
initialized, in the order they are listed in the variable declarations.” [17, Sec. 8.1]

I.e. when one or more variables are initialized within the variables declaration, we can make the virtual
assignments explicit in a <sequence>, putting the scope main activity at the end of the sequence and
letting the sequence become the scope main activity instead. Listing 6.20 illustrates this approach.
While this will initialize the variables before they are used, it does not provide semantic equivalence
wrt. fault handling, cf. the requirements for scope initialization:

“Scope initialization is an all-or-nothing behavior: either it all occurs successfully or a
bpel:scopeInitializationFailure fault MUST be thrown to the parent scope of the
failed <scope>.” [17, Sec. 12.1]

This means that we cannot declare the virtual assignments as part of the scope main activity: Any
faults from these assignments would be caught by the scope’s own fault handler, instead of resulting
in
bpel:scopeInitializationFailure fault being thrown to the parent scope as required.

Our solution involves three <scope>s:

Variable scope: Declares the variables, so they are reachable from both of the other two <scope>s,
which are put in a <sequence> within this scope. It will rethrow any faults, thus making it
transparent regarding fault handling, and the default compensation handling will ensure that it
is transparent in this regard as well.

Initialization scope: Assigns the initial values to the variables. It has a fault handler that catches
all faults and rethrows them as scopeInitializationFaults. This ensures that faults from
variable initializations will cause a scopeInitializationFault, as required.

Main scope: Executes the original main activity. It will also have the fault handlers from the original
<scope> activity.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 179

Listing 6.21: Unfolding variable initialization.
1 <scope >
2 <variables >
3 <variable name="size" type="xsd:int">
4 </variables >
5 <faultHandlers >
6 <catchAll >
7 <rethrow/>
8 </catchAll >
9 </faultHandlers >

10 <sequence >
11 <scope >
12 <faultHandlers >
13 <catchAll >
14 <throw faultName="scopeInitializationFault"/>
15 </catchAll >
16 </faultHandlers >
17 <assign >
18 <copy >
19 <from >
20 <literal >42</literal >
21 </from >
22 <to variable="size"/>
23 </copy >
24 </assign >
25 </scope >
26 <scope >
27 <flow >
28 <invoke ... />
29 <invoke ... />
30 </flow >
31 </scope >
32 </sequence >
33 </scope >

Listing 6.21 shows how the <scope> from Listing 6.19 is desugared.

<onEvent>

A <scope> may have a set of event handlers associated with it, which are invoked in parallel when
their corresponding event occurs. One type of event handler is <onEvent> which receives messages
much in the same way as <receive>:

“The <onEvent> element indicates that the specified event waits for a message to arrive.
The interpretation of this element and its attributes is very similar to a <receive> activity.”

[17, Sec. 12.7.1]

The differences between <onEvent> and <receive> stem from the fact that the former is to be
executed every time the specified message is received, thus starting several instances of its enclosed
<scope> and it may therefore use partner links, message exchanges, and correlation sets from within
the enclosed <scope> activity:

“The partnerLink reference MUST resolve to a partner link declared in the process in the
following order: the associated scope first and then the ancestor scopes.” [17, Sec. 12.7.1]

180 6.5. Desugaring Constructs

“When the messageExchange attribute is explicitly specified, the resolution order of the
message exchange referenced by messageExchange attribute MUST be first the associated
scope and then the ancestor scopes.” [17, Sec. 12.7.1]

“The usage of <correlation> is exactly the same as for <receive> activities, with the
following addition: it is possible, from an event handler’s inbound message operation, to
use correlation sets that are declared within the associated scope.” [17, Sec. 12.7.1]

For the same reason, the variable(s) used for the incoming message is/are placed in the associated
<scope>, but they are implicitly declared and the standard specification specifically forbids making
them explicit3:

“Variables referenced by the variable attribute of <fromPart> elements or the variable
attribute of an <onEvent> element are implicitly declared in the associated scope of the
event handler. [SA00086] Variables of the same names MUST NOT be explicitly de-
clared in the associated scope. This requirement MUST be enforced by static analysis.”

[17, Sec. 12.7.1]

But even so, it is still possible to make the implicit assignments, due to the use of the element
attribute or <fromParts>, explicit, in a similar fashion to the transformations of <invoke> and
<pick>/<receive> (cf. Sec. 6.5.2):

“The syntax and semantics of the <fromPart> elements as used on the <onEvent> element
are the same as specified in section 10.4. Providing Web Service Operations – Receive and
Reply for the receive activity.” [17, Sec. 12.7.1]

“If an element attribute is used then the binding of the incoming message to the variable
declared in the <onEvent> event handler occurs as specified for the receive activity (...).”

[17, Sec. 12.7.1]

The difference is simply that the temporary message variable will be implicitly declared by the
<onEvent> and the element variable or message part variables will be placed in its associated <scope>;
other than that, the transformation is the same. Listing 6.22 shows an <onEvent> which uses an
element variable, and Listing 6.23 shows how the implicit variable and assignment is made explicit.

6.5.7 <if> WS-BPEL syntax summary: Listing 6.52
Core BPEL syntax summary: Listing 6.53
XSLT template: Appendix 6.D.10

The <if> activity allows two classic variants of syntactic sugar: leaving out the <else>-branch, and
contracting a nested sequence of <else><if>s to a list of <elseif>s. Listing 6.24 gives an example
and Listing 6.25 shows the desugared version.

6.5.8 <repeatUntil> WS-BPEL syntax summary: Listing 6.59
XSLT template: Appendix 6.D.19

WS-BPEL includes another classic example of redundancy: it includes two repetition constructs,
<while> and <repeatUntil>, with only minor differences in their semantics:

3<fromPart> does not have a variable attribute but a toVariable attribute; we assume that what was intended.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 181

Listing 6.22: An <onEvent> declaration.
1 <onEvent
2 partnerLink="consumer"
3 operation="getStatus"
4 element="xsd:string"
5 variable="statusRequest">
6 <scope name="event">
7 <partnerLinks >
8 <partnerLink name="consumer"
9 partnerLinkType="..."

10 myRole="provider" />
11 </partnerLinks >
12 <empty name="activity" />
13 </scope >
14 </onEvent >
15

16

17

18

19

20

21

22

23

24

25

26

27

Listing 6.23: <onEvent> desugared.
1 <onEvent
2 partnerLink="consumer"
3 operation="getStatus"
4 messageType="msg:StatusMessage"
5 variable="fresh">
6 <scope name="event">
7 <partnerLinks >
8 <partnerLink name="consumer"
9 partnerLinkType="..."

10 myRole="provider" />
11 </partnerLinks >
12 <variables >
13 <variable name="statusRequest"
14 element="xsd:string" />
15 </variables >
16 <sequence >
17 <assign >
18 <copy keepSrcElementName="yes">
19 <from variable="fresh"
20 part="foo" />
21 <to variable="statusRequest" />
22 </copy >
23 </assign >
24 <empty name="activity" />
25 </sequence >
26 </scope >
27 </onEvent >

Listing 6.24: An <if> activity using <elseif>.
1 <if>
2 <condition >$foo </condition >
3 activity1
4

5 <elseif >
6 <condition >$bar </condition >
7 activity2
8 </elseif >
9 </if >

10

11

12

13

14

15

Listing 6.25: <if> desugared.
1 <if>
2 <condition >$foo </condition >
3 activity1
4

5 <else >
6 <if>
7 <condition >$bar </condition >
8 activity2
9

10 <else >
11 <empty/>
12 </else >
13 </if >
14 </else >
15 </if>

182 6.5. Desugaring Constructs

“The <while> activity provides for repeated execution of a contained activity. The con-
tained activity is executed as long as the Boolean <condition> evaluates to true at the
beginning of each iteration.” [17, Sec. 11.3]

“The <repeatUntil> activity provides for repeated execution of a contained activity. The
contained activity is executed until the given Boolean <condition> becomes true. The
condition is tested after each execution of the body of the loop. In contrast to the
<while> activity, the <repeatUntil> loop executes the contained activity at least once.”

[17, Sec. 11.4]

As stated in the quote above, the main difference between <while> and <repeatUntil> is that the
latter always executes its body at least once before checking the condition, whereas <while> checks
the condition first. The second difference is that <repeatUntil> stops looping when its condition
becomes true, whereas <while> loops as long as its condition is true.

Either can be seen as a sugared version of the other:

<repeatUntil> → <while>:

The text-book transformation of repeat-until to while is (using pseudo-code for brevity):

repeat body until condition →
sequence

body
while (not condition) do

body

This will not immediately work for WS-BPEL, as copying the body might involve making copies
of named <scope>s which is problematic: scope names within the same immediately enclosing
scope must be unique:

“[SA00092]Within a scope, the name of all named immediately enclosed scopes MUST
be unique. This requirement MUST be statically enforced.” [17, Sec. 12.4.3]

so one would have to rename all scopes in the body and somehow make sure that compensation
works as intended.

Instead, one could imagine doing a less standard transformation which avoids copying the body:

repeat body until condition →

scope
variable first := true
while first or (not condition) do
sequence

body
first := false

Note though, that this transformation negates the condition, but WS-BPEL allows any expres-
sion language to be used, and there is no requirement that expression languages must have a
negation operator! Also, using this approach, one would have to extend our transformations with
expression language specific behaviour.

To avoid these issues, we can use the following slightly more complicated transformation:

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 183

repeat body until condition →

scope
variable cond_var := false
while (not cond_var) do
sequence

body
cond_var := condition

In this transformation, we evaluate the condition expression unchanged, storing the result in the
fresh variable cond_var, and then use XPath to negate the stored result. The transformation
is thus independent of the expression language. Note that, since it is only recommended that
boolean expressions return a value of xsd:boolean, we must, in the general case, evaluate the
condition in the following way to ensure that we store a value of type xsd:boolean:

if condition then
cond_var := true

else
cond_var := false

In this case we can optimize the negation of the condition variable and the else-case away, finally
arriving at the following transformation:

repeat body until condition →

scope
variable cond_var := true
while cond_var do
sequence

body
if condition then
cond_var := false

<while> → <repeatUntil>:

The reverse transformation can be achieved as follows:

while condition do body → if condition then
repeat body until (not condition)

The body is not copied, whereas the condition is but we have found no indications in the WS-
BPEL standard that this could raise any problems – but this could depend on the expression
language used.

As was the case in the second transformation above, this transformation negates the expression
directly, which might not be desirable, and we can use a similar trick to avoid this:

while condition do body →

if condition then
scope
variable cond_var
repeat
sequence

body
cond_var := condition

until (not $cond_var)

184 6.5. Desugaring Constructs

Listing 6.26: Example of a <repeatUntil>.
1 <repeatUntil >
2 <targets >
3 <target linkName="l1" />
4 </targets >
5

6 <empty name="body" />
7

8 <condition
9 expressionLanguage="expr -lang">

10 cond -expression
11 </condition >
12 </repeatUntil >
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Listing 6.27: A <repeatUntil> rewritten.
1 <scope >
2 <targets >
3 <target linkName="l1" />
4 </targets >
5 <variables >
6 <variable
7 name="cond_var"
8 type="xsd:boolean">
9 <from expressionLanguage="xpath">

10 false ()
11 </from >
12 </variable >
13 </variables >
14

15 <while >
16 <condition expressionLanguage="xpath">
17 not($cond_var)
18 </condition >
19 <sequence >
20 <empty name="body" />
21 <if>
22 <condition
23 expressionLanguage="expr -lang">
24 cond -expression
25 </condition >
26 <assign >
27 <copy >
28 <from
29 expressionLanguage="xpath">
30 true()
31 </from >
32 <to variable="cond_var" />
33 </copy >
34 </assign >
35 </if >
36 </sequence >
37 </while >
38 </scope >

Thus, we can transform either construct into the other. We choose to use the transformation of
<repeatUntil> as this transformation results in slightly shorter code and it also avoids making more
than one copy of the condition.

Listing 6.26 shows an example of a <repeatUntil> activity which is desugared into the code in
Listing 6.27.

6.5.9 <sequence> WS-BPEL syntax summary: Listing 6.66
XSLT template: Appendix 6.D.22

The authors of the standard specification are aware that the language is not ’minimal’ and even suggest
that the <sequence> activity could be modeled using a <flow> activity:

“The set of structured activities in WS-BPEL is not intended to be minimal. There are
cases where the semantics of one activity can be represented using another activity. For

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 185

Listing 6.28: Example of a <sequence>.
1 <sequence >
2 <empty name="A" />
3 <empty name="B" />
4 <empty name="C" />
5 </sequence >
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Listing 6.29: A <sequence> rewritten.
1 <flow >
2 <links >
3 <link name="fresh1" />
4 <link name="fresh2" />
5 </links >
6 <flow >
7 <sources >
8 <source linkName="fresh1" />
9 </sources >

10 <empty name="A" />
11 </flow >
12 <flow >
13 <targets >
14 <target linkName="fresh1" />
15 </targets >
16 <sources >
17 <source linkName="fresh2" />
18 </sources >
19 <empty name="B" />
20 </flow >
21 <flow >
22 <targets >
23 <target linkName="fresh2" />
24 </targets >
25 <empty name="C" />
26 </flow >
27 </flow >

example, sequential processing may be modeled using either the <sequence> activity, or
by a <flow> with properly defined links.” [17, Sec. 11]

Essentially, the <sequence> activity is syntactic sugar for a <flow> construction with sequentially
linked child activities. We could manipulate the <targets> and <sources> elements of the child
elements directly to include additional sequencing links. But this would involve adding the sequencing
links to the <joinCondition>s, i.e. manipulating expressions in arbitrary languages.

A more straightforward alternative is to wrap each of the child activities in a <flow> activity
and place the sequencing links there; the default <joinCondition>s will suffice in this case. For
example, we can rewrite the <sequence> in Listing 6.28 into the <flow> of Listing 6.29. Note that
we need fresh names for the links we add, cf. Sec. 6.4.1, that the default <transitionCondition> is
sufficient, and that the value of the suppressJoinFailure attribute is irrelevant for sequence flows,
since the join condition will always be true, if the preceding activity finishes without propagating a
fault; if the preceding activity propagates a fault, the transition condition will not be evaluated and
no joinFailure will occur.

6.5.10 Non-sugared activities

Besides default values, we have not identified any cases of syntactic sugar in the activities listed in
Table 6.4. We will therefore not discuss them further, only summarize the effect of the default value
transformations in Section 6.3, by listing their WS-BPEL and Core BPEL syntax summaries.

186 6.6. Extensions

Activity WS-BPEL syntax summary Core BPEL syntax summary
<assign> Listing 6.36 Listing 6.37
<compensate> Listing 6.38 Listing 6.39
<compensateScope> Listing 6.40 Listing 6.41
<empty> Listing 6.42 Listing 6.43
<exit> Listing 6.44 Listing 6.45
<extensionActivity> Listing 6.46 Listing 6.47
<flow> Listing 6.48 Listing 6.49
<forEach> Listing 6.50 Listing 6.51
<rethrow> Listing 6.62 Listing 6.63
<throw> Listing 6.67 Listing 6.68
<validate> Listing 6.69 Listing 6.70
<wait> Listing 6.71 Listing 6.72
<while> Listing 6.73 Listing 6.74

Table 6.4: Non-sugared activities.

A note about <rethrow>

As noted in a draft of the standard specification, <rethrow> is essentially a <throw> with implicit
faultName and faultVariable attributes:

“A fault caught by a <catchAll> handler or by a custom fault handler that does not specify
a faultName, may need to be rethrown. However the <throw> activity that requires a
faultName can not be used here as the faultName is not available. Hence all fault handlers
are allowed to rethrow the original fault with a <rethrow> activity that is defined to be
an empty element. In essence <rethrow> can be considered a macro for a <throw> that
throws the fault caught by the corresponding fault handler.” [16, Sec. 13.4]

One might therefore wonder, if not <rethrow> could somehow be transformed into <throw>? As
pointed out in loc. cit., the faultName is (statically) unavailable inside the <catchAll> handler,
since this handler may handle different faults at runtime, and therefore we cannot simply replace a
<retrow> with a <throw> in this situation. One might however attempt to transform a <catchAll>
into a number of <catch> handlers, by statically determining which faults could be caught by the
<catchAll> in question, thereby making the faultName explicit. But alas, we cannot know all the
possible faults a <catchAll> might handle, since the standard specification allows arbitrary platform
specific faults:

“There are various sources of faults in WS-BPEL. A fault response to an <invoke> activity
is one source of faults, where the fault name and data are based on the definition of the
fault in the WSDL operation. A <throw> activity is another source, with explicitly given
name and/or data. WS-BPEL defines several standard faults with their names, and there
may be other platform-specific faults such as communication failures.” [17, Sec. 12.5]

Thus we cannot in general eliminate the <catchAll> construct nor the <rethrow> activity.

6.6 Extensions XSLT template: Appendix 6.D.17

WS-BPEL supports extensions that are implementation dependent and they can be either optional

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 187

or mandatory. In this section we look at how one may syntactically remove the use of unsupported
optional extensions.

6.6.1 Extension Declarations

Extensions are declared in an <extensions> element as part of the <process> element. Each <extension>
declaration must specify whether the extension is mandatory by using the
mustUnderstand attribute. If an <extension> has mustUnderstand="yes" we cannot remove the ex-
tension declaration or the uses of the extension. But if the <extension> has mustUnderstand="no",
we may safely remove all uses of the extension, as discussed in the following sections, and thereafter
remove the extension declaration itself.

Note that WS-BPEL identifies extensions by their namespace URI, and that the same extension
URI may be declared more than once; if just one such declaration is has mustUnderstand="yes", the
extension is mandatory:

“The same extension URI MAY be declared multiple times in the <extensions> ele-
ment. If an extension URI is identified as mandatory in one <extension> element and
optional in another, then the mandatory semantics have precedence and MUST be en-
forced.” [17, Sec. 14]

6.6.2 Unsupported Extension Activities

Extension activities, such as vendor-specific activities, can be used by wrapping them in
<extensionActivity> elements. The standard specification says the following on how to ignore an
optional extension activity:

“If the element contained within the <extensionActivity> element is not recognized by
the WS-BPEL processor and is not subject to a mustUnderstand="yes" requirement from
an extension declaration then the unknown activity MUST be treated as if it were an
<empty> activity that has the standard-attributes and standard-elements of the unrecog-
nized element; all its other attributes and child elements are ignored.” [17, Sec. 10.9]

In short, the way to ignore an extension activity is to replace it with an <empty> activity, with
the same standard attributes and elements as the element enclosed in the extension activity. The
<extensionActivity> element itself cannot have any attributes or elements besides the single enclosed
one.

6.6.3 Unsupported Extension Assign Operations

The <assign> activity is used to copy values between variables. Besides the ordinary <copy> element,
the standard specification allows the usage of implementation specific assignment operations, wrapped
in an <extensionAssignOperation> element [17, Sec. 8.4].

“If the element contained within the <extensionAssignOperation> element is not rec-
ognized by the WS-BPEL processor and is not subject to a mustUnderstand="yes" re-
quirement from an extension declaration then the <extensionAssignOperation> opera-
tion MUST be ignored.” [17, Sec. 8.4]

188 6.6. Extensions

Listing 6.30: An <assign> activity with both an
ordinary <copy> and an
<extensionAssignOperation>.

1 <assign >
2 <copy >
3 ...
4 </copy >
5 <extensionAssignOperation >
6 ...
7 </extensionAssignOperation >
8 </assign >

Listing 6.31: An <assign> activity consisting
only of an <extensionAssignOperation>.

1 <assign >
2 <extensionAssignOperation >
3 ...
4 </extensionAssignOperation >
5 </assign >
6

7

8

Listing 6.32: Activity with ignorable extensions.
1 <wait ext:position=’2,5’>
2 <until > ’2006-11 -19T19:50 -07:00 ’</until >
3 <ext:icon >clock.png </ext:icon >
4 </wait >

Listing 6.33: After removing extensions.
1 <wait >
2 <until > ’2006 -11 -19T19:50 -07:00 ’</until >
3 </wait >
4

This mean we can safely remove optional <extensionAssignOperation>s from a process description.
If an <assign> consists only of optional <extensionAssignOperation>s, as in Listing 6.31, simply
removing them will leave an empty, and thus invalid, <assign> activity. In that case, we replace the
<assign> with an <empty> activity in the same way as for extension activities.

Besides the standard attributes, an <assign> element may have a validate attribute, as follows:

“The optional validate attribute can be used with the <assign> activity. Its default value
is "no". When validate is set to "yes", the <assign> activity validates all the variables
being modified by the activity.” [17, Sec. 8.4]

In the case where we replace the <assign> activity with an <empty> activity, the content of the original
<assign> activity solely consists of ignorable assignment operations — thus, no variable would be
modified. Therefore it is safe to disregard the validate attribute.

6.6.4 Attribute and Element Extensions

Besides the two explicitly extendable elements discussed in the previous sections, WS-BPEL supports
extension attributes and elements almost everywhere in a WS-BPEL process:

“WS-BPEL supports extensibility by allowing namespace-qualified attributes to appear on
any WS-BPEL element and by allowing elements from other namespaces to appear within
WS-BPEL defined elements.” [17, Sec. 5.3]

As all extensions must be declared in a namespace other than the WS-BPEL namespace it is easy
to identify and remove optional extension attributes and elements: simply leave out all attributes and
elements declared in the extension namespace.

Listings 6.32 and 6.33 illustrate this, showing a <wait> activity with and without its ignorable
extensions, respectively.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 189

6.6.5 Documentation XSLT template: Appendix 6.D.16

In a sense, documentation is an ignorable extension: <documentation> elements are used to place
human readable notes in the process description [17, Sec. 5.3] and they are not assigned any semantics
by the standard specification and can thus be left out of the description.

6.7 Combining the Transformations
We now have a collection of stand-alone transformations, each of which transforms WS-BPEL processes
into equivalent WS-BPEL processes with some class of syntactic sugar eliminated. The question is
then, how do we combine these transformations, such that we eliminate all syntactic sugar, i.e. we
obtain a Core BPEL process? Can we apply the individual transformations sequentially (in some
order) or will we have to integrate them into one big transformation?

The challenge comes from the fact that the transformations interfere with each other in the following
ways:

use of syntactic sugar: some transformations produce constructs that use syntactic sugar, in or-
der to keep them simple and easily readable; for example, several transformations produce
<sequence>s or rely on default attributes/elements.

too general: the transformations that make default attribute values explicit are too general: once the
defaults have been made explicit, the attributes are only necessary on the specific elements they
relate to. For example, suppressJoinFailure only affects activities which have a <targets>
element (which in Core BPEL, can only be <flow>), but the transformation in Section 6.3.1 will
make the attribute explicit on all activities and <process>.

In the case of the first type of interference, we are in the fortunate situation that there are no cyclic
dependencies between the transformations: Figure 6.1 shows that the dependencies between transfor-
mations form a DAG. Thus, applying the transformations sequentially according to any topological
ordering of that DAG, will result in a WS-BPEL process with no syntactic sugar.

Due to the second type of interference though, we will not obtain a Core BPEL process this way:
there will be a number of redundant attributes on various constructs. We see two solutions to this
problem:

• we revise the transformations that make defaults explicit, such that they only make defaults
explicit on the elements where the attribute value is actually necessary, or

• we simply make a transformation which removes the redundant attributes, which is to be applied
after the others. This is sound since the default values for these attributes have been made explicit
on the elements where they matter.

We choose the latter option, as it is simple and keeps the other transformations simple and gen-
eral. The attributes that should be removed are suppressJoinFailure, exitOnStandardFault,
expressionLanguage, and queryLanguage on <process>, and suppressJoinFailure on all activ-
ities but <flow>. The XSLT implementation of this transformation is listed in Appendix 6.D.18.

6.8 Conclusions
We have identified a core subset of the WS-BPEL language, named Core BPEL, and have presented
a transformation from WS-BPEL to this core language which preserves semantics according to the

190 6.8. Conclusions

Figure 6.1: Graph showing which transformations must be applied after other transformations: the
graph has an edge a → b if transformation a creates syntactically sugared elements of a type that is
eliminated by transformation b.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 191

informal description in the standard specification, and the WSDL interfaces of processes. Core BPEL
has fewer constructs and most constructs have fewer syntactical variations, making it more tractable
for formal purposes, such as implementation of execution engines or static analysis, but also easier to
understand the features of the language. We have not proved that Core BPEL is minimal, but we are
not aware of any further possibilities of reducing or restricting the language syntax.

As part of our analysis, we clarify certain aspects of the syntax of WS-BPEL and provide a more
concise presentation of the essential constructs of the language. We therefore hope that this technical
report will also prove useful as a cheat sheet for those who are studying the WS-BPEL standard
specification.

The transformation fromWS-BPEL to Core BPEL consists of a set of independent sub-transformations,
each responsible for simplifying a specific part of the language. The subtransformations are given in the
form of a set of XSLT 1.0 templates, making them easily adoptable by other researchers and WS-BPEL
implementers. The XSLT templates are available at the CosmoBiz website http://www.cosmobiz.com
where we also provide an online tool for transforming WS-BPEL processes into Core BPEL. As each
template performs an independent transformation, users are free to use just a subset of the transfor-
mations.

6.8.1 Future work
There are numerous possible lines of future work. Most importantly, we believe that Core BPEL
could serve as a simpler basis for the work the academic community is doing with WS-BPEL; e.g. the
numerous WS-BPEL formalizations could probably be simplified, though still remain complete, if they
only covered Core BPEL. In the context of the CosmoBiz project, it would be interesting to extend
our bigraph formalization of a subset of WS-BPEL [3] to the entire Core BPEL fragment.

Similarly, one might probably simplify implementations of WS-BPEL by only considering Core
BPEL; for instance, we expect that Hallwyl’s WS-BPEL engine (beepell) [1] can be simplified using
this approach. As part of such work, it would also be interesting to investigate if and how this approach
would affect performance of implementations.

It would also be interesting to investigate, whether the transformations presented here are semantic
preserving with respect to the existing formalizations of WS-BPEL. Similarly, it would be interesting
to perform a case study of existing WS-BPEL implementations: do they execute WS-BPEL processes
in the same way as their Core BPEL equivalents? In both cases, discrepancies could help pin-point
differences in interpretations of the standard as well as errors in our transformations or the formaliza-
tions and implementations. This is the natural continuation of Hallwyl’s work in his master’s thesis
[10], where he investigated existing implementations to see if they are consistent in their interpretation
of the WS-BPEL standard specification.

We also believe that our approach could be applied to the recent BPMN 2.0 standard [2], with the
same benfits as discussed above.

6.9 Bibliography
[1] beepell. Webpage. http://beepell.com/.

[2] Business process model and notation (BPMN) version 2.0. Technical report, Object Management
Group, January 2011.

[3] Mikkel Bundgaard, Arne John Glenstrup, Thomas Hildebrandt, Espen Højsgaard, and Henning
Niss. Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in the

http://www.cosmobiz.com
http://beepell.com/

192 6.9. Bibliography

Bigraphical Programming Languages (BPL) Tool. Technical Report TR-2008-103, IT University
of Copenhagen, 2008.

[4] CDuce. Webpage. http://www.cduce.org/.

[5] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web services
description language (WSDL) 1.1. W3C Note, W3C, March 2001.

[6] Dirk Fahland. Complete Abstract Operational Semantics for the Web Service Business Process
Execution Language. Technical Report 190, Humboldt-Universität zu Berlin, 2005.

[7] Dirk Fahland and Wolfgang Reisig. ASM-based semantics for BPEL: The negative Control Flow.
In Danièle Beauquier, Egon Börger, and Anatol Slissenko, editors, Proceedings of the 12th In-
ternational Workshop on Abstract State Machines (ASM’05), pages 131–151. Paris XII, March
2005.

[8] Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi. Specification and validation of the
business process execution language for web services. In Abstract State Machines 2004. Advances
in Theory and Practice, volume 3052 of Lecture Notes in Computer Science, pages 78–94. Springer
Verlag, 2004.

[9] Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi. An abstract machine architecture for
web service based business process management. In Christoph Bussler and Armin Haller, editors,
Business Process Management Workshops, volume 3812 of Lecture Notes in Computer Science,
pages 144–157. Springer Verlag, 2006.

[10] Tim Hallwyl. Evaluating the BPEL standard specification. Master’s thesis, Department of Com-
puter Science, University of Copenhagen, May 2008.

[11] Thomas Hildebrandt (principal investigator). Computer supported mobile adaptive business pro-
cesses (CosmoBiz) research project. Webpage, 2007. http://www.cosmobiz.org/.

[12] Niels Lohmann. A feature-complete Petri net semantics for WS-BPEL 2.0. In Marlon Dumas and
Reiko Heckel, editors, Proceedings of the 4th International Workshop on Web Services and Formal
Methods (WS-FM’07), volume 4937 of Lecture Notes in Computer Science, pages 77–91. Springer
Verlag, 2007.

[13] Niels Lohmann, H.M.W. Verbeek, Chun Ouyang, Christian Stahl, and Wil M. P. van der Aalst.
Comparing and evaluating Petri net semantics for BPEL. Computer Science Report 07/23, Eind-
hoven University of Technology, 2007.

[14] Christian Stahl. A Petri net semantics for BPEL. Informatik-Berichte 188, Humboldt-Universität
zu Berlin, 2005.

[15] M. Weidlich, G. Decker, and M. Weske. Efficient analysis of bpel 2.0 processes using π-calculus.
In Asia-Pacific Service Computing Conference, The 2nd IEEE, pages 266–274, December 2007.

[16] Web services business process execution language version 2.0, working draft. Technical report,
OASIS Web Services Business Process Execution Language (WSBPEL) TC, May 2005.

[17] Web services business process execution language version 2.0. Technical report, OASIS Web
Services Business Process Execution Language (WSBPEL) TC, April 2007.

http://www.cduce.org/
http://www.cosmobiz.org/

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 193

[18] XDuce - A Typed XML Processing Language. Webpage. http://xduce.sourceforge.net/.

[19] XML Schema part 1: Structures second edition. W3C Recommendation, W3C, 2004.

http://xduce.sourceforge.net/

194 6.A. WS-BPEL vs. Core BPEL Syntax Summaries

6.A WS-BPEL vs. Core BPEL Syntax Summaries
This section contains syntax summaries for the WS-BPEL process and activity elements side-by-side
with the corresponding Core BPEL syntax summaries for easy comparison.

Listing 6.34: WS-BPEL <process>.
1 <process name="NCName"
2 targetNamespace="anyURI"
3 queryLanguage="anyURI"?
4 expressionLanguage="anyURI"?
5 suppressJoinFailure="yes|no"?
6 exitOnStandardFault="yes|no"?
7 xmlns="http :// docs.oasis -open.org/

wsbpel /2.0/ process/executable">
8 <extensions >?
9 ...

10 </extensions >
11 <import namespace="anyURI"?
12 location="anyURI"?
13 importType="anyURI" />*
14 <partnerLinks >?
15 ...
16 </partnerLinks >
17 <messageExchanges >?
18 ...
19 </messageExchanges >
20 <variables >?
21 ...
22 </variables >
23 <correlationSets >?
24 ...
25 </correlationSets >
26 <faultHandlers >?
27 ...
28 </faultHandlers >
29 <eventHandlers >?
30 ...
31 </eventHandlers >
32 activity
33 </process >

Listing 6.35: Core BPEL <process>.
1 <process name="NCName"
2 targetNamespace="anyURI"
3 xmlns="http :// docs.oasis -open.org/

wsbpel /2.0/ process/executable">
4 <extensions >?
5 ...
6 </extensions >
7 <import namespace="anyURI"?
8 location="anyURI"?
9 importType="anyURI" />*

10 activity
11 </process >
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Scope-related content of a <process> is moved into a new <scope> inside the <process> and the
default attribute values defined on the <process> are made explicit on the relevant elements inside
the <process> after which the attributes are removed from the <process> element.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 195

Listing 6.36: WS-BPEL <assign>.
1 <assign validate="yes|no"?
2 standard -attributes >
3 standard -elements
4 (
5 <copy keepSrcElementName="yes|no"?
6 ignoreMissingFromData="yes|no"?>
7 from -spec
8 to -spec
9 </copy >

10 |
11 <extensionAssignOperation >
12 assign -element -of -other -namespace
13 </extensionAssignOperation >
14)+
15 </assign >

Listing 6.37: Core BPEL <assign>.
1 <assign validate="yes|no">
2 (
3 <copy keepSrcElementName="yes|no"?
4 ignoreMissingFromData="yes|no">
5 from -spec
6 to-spec
7 </copy >
8 |
9 <extensionAssignOperation >

10 assign -element -of -other -namespace
11 </extensionAssignOperation >
12)+
13 </assign >
14

15

Standard attributes and elements are moved to a wrapping <flow> and default attribute values are
made explicit.

Listing 6.38: WS-BPEL <compensate>.
1 <compensate standard -attributes >
2 standard -elements
3 </compensate >

Listing 6.39: Core BPEL <compensate>.
1 <compensate />
2

3

Standard attributes and elements are moved to a wrapping <flow>.

Listing 6.40: WS-BPEL <compensateScope>.
1 <compensateScope target="NCName"
2 standard -attributes >
3 standard -elements
4 </compensateScope >

Listing 6.41: Core BPEL <compensateScope>.
1 <compensateScope target="NCName" />
2

3

4

Standard attributes and elements are moved to a wrapping <flow>.

Listing 6.42: WS-BPEL <empty>.
1 <empty standard -attributes >
2 standard -elements
3 </empty >

Listing 6.43: Core BPEL <empty>.
1 <empty />
2

3

Standard attributes and elements are moved to a wrapping <flow>.

Listing 6.44: WS-BPEL <exit>.
1 <exit standard -attributes >
2 standard -elements
3 </exit >

Listing 6.45: Core BPEL <exit>.
1 <exit />
2

3

Standard attributes and elements are moved to a wrapping <flow>.

196 6.A. WS-BPEL vs. Core BPEL Syntax Summaries

Listing 6.46: WS-BPEL <extensionActivity>.
1 <extensionActivity >
2 <anyElementQName
3 standard -attributes >
4 standard -elements
5 </anyElementQName >
6 </extensionActivity >

Listing 6.47: Core BPEL
<extensionActivity>.

1 <extensionActivity >
2 <anyElementQName name="NCName" />
3 </extensionActivity >
4

5

6

Standard attributes and elements are moved to a wrapping <flow>, except for the name attribute.

Listing 6.48: WS-BPEL <flow>.
1 <flow standard -attributes >
2 standard -elements
3 <links >?
4 <link name="NCName" />+
5 </links >
6 activity+
7 </flow >
8

9

10

11

12

13

14

15

16

17

18

19

20

21

Listing 6.49: Core BPEL <flow>.
1 <flow suppressJoinFailure="yes|no">
2 <targets >?
3 <joinCondition
4 expressionLanguage="anyURI">
5 bool -expr
6 </joinCondition >
7 <target linkName="NCName" />+
8 </targets >
9 <sources >?

10 <source linkName="NCName">+
11 <transitionCondition
12 expressionLanguage="anyURI">
13 bool -expr
14 </transitionCondition >
15 </source >
16 </sources >
17 <links >?
18 <link name="NCName" />+
19 </links >
20 activity+
21 </flow >

Core BPEL only allows the WS-BPEL standard attributes and elements on <flow> and they are
therefore inlined in the Core BPEL syntax summary for <flow>. Default attribute values and elements
are made explicit.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 197

Listing 6.50: WS-BPEL <forEach>.
1 <forEach counterName="BPELVariableName"
2 parallel="yes|no"
3 standard -attributes >
4 standard -elements
5 <startCounterValue
6 expressionLanguage="anyURI"?>
7 unsigned -integer -expression
8 </startCounterValue >
9 <finalCounterValue

10 expressionLanguage="anyURI"?>
11 unsigned -integer -expression
12 </finalCounterValue >
13 <completionCondition >?
14 <branches
15 expressionLanguage="anyURI"?
16 successfulBranchesOnly="yes|no"? >?
17 unsigned -integer -expression
18 </branches >
19 </completionCondition >
20 <scope ...>...</scope >
21 </forEach >

Listing 6.51: Core BPEL <forEach>.
1 <forEach counterName="BPELVariableName"
2 parallel="yes|no">
3 <startCounterValue
4 expressionLanguage="anyURI">
5 unsigned -integer -expression
6 </startCounterValue >
7 <finalCounterValue
8 expressionLanguage="anyURI">
9 unsigned -integer -expression

10 </finalCounterValue >
11 <completionCondition >
12 <branches
13 expressionLanguage="anyURI"
14 successfulBranchesOnly="yes|no" >?
15 unsigned -integer -expression
16 </branches >
17 </completionCondition >
18 <scope ...>... </scope >
19 </forEach >
20

21

Standard attributes and elements are moved to a wrapping <flow> and default attribute values are
made explicit.

Listing 6.52: WS-BPEL <if>.
1 <if standard -attributes >
2 standard -elements
3 <condition expressionLanguage="anyURI"

?>
4 bool -expr
5 </condition >
6 activity
7 <elseif >*
8 <condition
9 expressionLanguage="anyURI"?>

10 bool -expr
11 </condition >
12 activity
13 </elseif >
14 <else >?
15 activity
16 </else >
17 </if >

Listing 6.53: Core BPEL <if>.
1 <if>
2 <condition expressionLanguage="anyURI">
3 bool -expr
4 </condition >
5 activity
6 <else >
7 activity
8 </else >
9 </if>

10

11

12

13

14

15

16

17

<elseif>s are unfolded to <else><if>s, an explicit empty <else> branch is added if lacking, standard
attributes and elements are moved to a wrapping <flow>, and default attribute values are made explicit.

198 6.A. WS-BPEL vs. Core BPEL Syntax Summaries

Listing 6.54: WS-BPEL <invoke>.
1 <invoke partnerLink="NCName"
2 portType="QName"?
3 operation="NCName"
4 inputVariable="BPELVariableName"?
5 outputVariable="BPELVariableName"?
6 standard -attributes >
7 standard -elements
8 <correlations >?
9 <correlation set="NCName"

10 initiate="yes|join|no"?
11 pattern="request|response|request -

response"? />+
12 </correlations >
13 <catch faultName="QName"?
14 faultVariable="BPELVariableName"?
15 faultMessageType="QName"?
16 faultElement="QName"?>*
17 activity
18 </catch >
19 <catchAll >?
20 activity
21 </catchAll >
22 <compensationHandler >?
23 activity
24 </compensationHandler >
25 <toParts >?
26 <toPart part="NCName"
27 fromVariable="BPELVariableName"/>+
28 </toParts >
29 <fromParts >?
30 <fromPart part="NCName"
31 toVariable="BPELVariableName"/>+
32 </fromParts >
33 </invoke >

Listing 6.55: Core BPEL <invoke>.
1 <invoke partnerLink="NCName"
2 operation="NCName"
3 inputVariable="BPELVariableName"?
4 outputVariable="BPELVariableName"?>
5 <correlations >?
6 <correlation set="NCName"
7 initiate="yes|join|no"
8 pattern="request|response|request -

response"? />+
9 </correlations >

10 </invoke >
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

The superfluous portType attribute is removed, scope-related content as well as implicit temporary
variables are moved to a wrapping <scope>, implicit assignments are made explicit, standard attributes
and elements are moved to a wrapping <flow>, and default attribute values are made explicit.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 199

Listing 6.56: WS-BPEL <pick>.
1 <pick createInstance="yes|no"?
2 standard -attributes >
3 standard -elements
4 <onMessage partnerLink="NCName"
5 portType="QName"?
6 operation="NCName"
7 variable="BPELVariableName"?
8 messageExchange="NCName"?>+
9 <correlations >?

10 <correlation set="NCName"
11 initiate="yes|join|no"? />+
12 </correlations >
13 <fromParts >?
14 <fromPart part="NCName"
15 toVariable="BPELVariableName"/>+
16 </fromParts >
17 activity
18 </onMessage >
19 <onAlarm >*
20 (
21 <for expressionLanguage="anyURI"?>
22 duration -expr
23 </for >
24 |
25 <until expressionLanguage="anyURI"?>
26 deadline -expr
27 </until >
28)
29 activity
30 </onAlarm >
31 </pick >

Listing 6.57: Core BPEL <pick>.
1 <pick createInstance="yes|no">
2 <onMessage partnerLink="NCName"
3 operation="NCName"
4 variable="BPELVariableName"?
5 messageExchange="NCName"?>+
6 <correlations >?
7 <correlation set="NCName"
8 initiate="yes|join|no" />+
9 </correlations >

10 activity
11 </onMessage >
12 <onAlarm >*
13 (
14 <for expressionLanguage="anyURI">
15 duration -expr
16 </for >
17 |
18 <until expressionLanguage="anyURI">
19 deadline -expr
20 </until >
21)
22 activity
23 </onAlarm >
24 </pick >
25

26

27

28

29

30

31

The superfluous portType attribute is removed, implicit temporary variables are made explicit in a
wrapping <scope>, implicit assignments are made explicit, standard attributes and elements are moved
to a wrapping <flow>, and default attribute values are made explicit.

Listing 6.58: WS-BPEL <receive>.
1 <receive partnerLink="NCName"
2 portType="QName"? operation="NCName"
3 variable="BPELVariableName"?
4 createInstance="yes|no"?
5 messageExchange="NCName"?
6 standard -attributes >
7 standard -elements
8 <correlations >?
9 <correlation set="NCName"

10 initiate="yes|join|no"? />+
11 </correlations >
12 <fromParts >?
13 <fromPart part="NCName"
14 toVariable="BPELVariableName" />+
15 </fromParts >
16 </receive >

200 6.A. WS-BPEL vs. Core BPEL Syntax Summaries

<receive> is transformed into a <pick> with a single <onMessage>.

Listing 6.59: WS-BPEL <repeatUntil>.
1 <repeatUntil standard -attributes >
2 standard -elements
3 activity
4 <condition
5 expressionLanguage="anyURI"?>
6 bool -expr
7 </condition >
8 </repeatUntil >

<repeatUntil> is transformed into a <while>.

Listing 6.60: WS-BPEL <reply>.
1 <reply partnerLink="NCName"
2 portType="QName"?
3 operation="NCName"
4 variable="BPELVariableName"?
5 faultName="QName"?
6 messageExchange="NCName"?
7 standard -attributes >
8 standard -elements
9 <correlations >?

10 <correlation
11 set="NCName"
12 initiate="yes|join|no"? />+
13 </correlations >
14 <toParts >?
15 <toPart
16 part="NCName"
17 fromVariable="BPELVariableName"/>+
18 </toParts >
19 </reply >

Listing 6.61: Core BPEL <reply>.
1 <reply partnerLink="NCName"
2 operation="NCName"
3 variable="BPELVariableName"?
4 faultName="QName"?
5 messageExchange="NCName">
6 <correlations >?
7 <correlation
8 set="NCName"
9 initiate="yes|join|no" />+

10 </correlations >
11 </reply >
12

13

14

15

16

17

18

19

The superfluous portType attribute is removed, implicit temporary variables are made explicit in a
wrapping <scope>, implicit assignments are made explicit, standard attributes and elements are moved
to a wrapping <flow>, and default attribute values are made explicit.

Listing 6.62: WS-BPEL <rethrow>.
1 <rethrow standard -attributes >
2 standard -elements
3 </rethrow >

Listing 6.63: Core BPEL <rethrow>.
1 <rethrow />
2

3

Standard attributes and elements are moved to a wrapping <flow>.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 201

Listing 6.64: WS-BPEL <scope>.
1 <scope isolated="yes|no"?
2 exitOnStandardFault="yes|no"?
3 standard -attributes >
4 standard -elements
5 <partnerLinks >?
6 ...
7 </partnerLinks >
8 <messageExchanges >?
9 ...

10 </messageExchanges >
11 <variables >?
12 <variable name="BPELVariableName"
13 messageType="QName"?
14 type="QName"?
15 element="QName"?>+
16 from -spec?
17 </variable >
18 </variables >
19 <correlationSets >?
20 ...
21 </correlationSets >
22 <faultHandlers >?
23 ...
24 </faultHandlers >
25 <compensationHandler >?
26 ...
27 </compensationHandler >
28 <terminationHandler >?
29 ...
30 </terminationHandler >
31 <eventHandlers >?
32 <onEvent partnerLink="NCName"
33 portType="QName"?
34 operation="NCName"
35 (messageType="QName"
36 | element="QName")?
37 variable="BPELVariableName"?
38 messageExchange="NCName"?>*
39 <correlations >?
40 <correlation set="NCName"
41 initiate="yes|join|no"? />+
42 </correlations >
43 <fromParts >?
44 <fromPart part="NCName"
45 toVariable="BPELVariableName"/>+
46 </fromParts >
47 <scope ...>...</scope >
48 </onEvent >
49 ...
50 </eventHandlers >
51 activity
52 </scope >

Listing 6.65: Core BPEL <scope>.
1 <scope isolated="yes|no"
2 exitOnStandardFault="yes|no"
3 name="NCName">
4 <partnerLinks >?
5 ...
6 </partnerLinks >
7 <messageExchanges >?
8 ...
9 </messageExchanges >

10 <variables >?
11 <variable name="BPELVariableName"
12 messageType="QName"?
13 type="QName"?
14 element="QName"? />+
15 </variables >
16 <correlationSets >?
17 ...
18 </correlationSets >
19 <faultHandlers >
20 ...
21 </faultHandlers >
22 <compensationHandler >
23 ...
24 </compensationHandler >
25 <terminationHandler >
26 ...
27 </terminationHandler >
28 <eventHandlers >?
29 <onEvent partnerLink="NCName"
30 operation="NCName"
31 messageType="QName"?
32 variable="BPELVariableName"?
33 messageExchange="NCName">*
34 <correlations >?
35 <correlation set="NCName"
36 initiate="yes|join|no"? />+
37 </correlations >
38 <scope ...>... </scope >
39 </onEvent >
40 ...
41 </eventHandlers >
42 activity
43 </scope >
44

45

46

47

48

49

50

51

52

Variable initializations are made explicit, standard attributes and elements are moved to a wrapping
<flow> (except name), and default attribute values and elements are made explicit.

202 6.A. WS-BPEL vs. Core BPEL Syntax Summaries

Additionally, for <onEvent>, the superfluous portType attribute is removed and implicit temporary
variables and assignments are made explicit.

Listing 6.66: WS-BPEL <sequence>.
1 <sequence standard -attributes >
2 standard -elements
3 activity+
4 </sequence >

<sequence> is transformed into a <flow>.

Listing 6.67: WS-BPEL <throw>.
1 <throw faultName="QName"
2 faultVariable="BPELVariableName"?
3 standard -attributes >
4 standard -elements
5 </throw >

Listing 6.68: Core BPEL <throw>.
1 <throw faultName="QName"
2 faultVariable="BPELVariableName"? />
3

4

5

Standard attributes and elements are moved to a wrapping <flow>.

Listing 6.69: WS-BPEL <validate>.
1 <validate
2 variables="BPELVariableNames"
3 standard -attributes >
4 standard -elements
5 </validate >

Listing 6.70: Core BPEL <validate>.
1 <validate
2 variables="BPELVariableNames" />
3

4

5

Standard attributes and elements are moved to a wrapping <flow>.

Listing 6.71: WS-BPEL <wait>.
1 <wait standard -attributes >
2 standard -elements
3 (
4 <for expressionLanguage="anyURI"?>
5 duration -expr
6 </for >
7 |
8 <until expressionLanguage="anyURI"?>
9 deadline -expr

10 </until >
11)
12 </wait >

Listing 6.72: Core BPEL <wait>.
1 <wait >
2 (
3 <for expressionLanguage="anyURI">
4 duration -expr
5 </for >
6 |
7 <until expressionLanguage="anyURI">
8 deadline -expr
9 </until >

10)
11 </wait >
12

Standard attributes and elements are moved to a wrapping <flow> and default attribute values are
made explicit.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 203

Listing 6.73: WS-BPEL <while>.
1 <while standard -attributes >
2 standard -elements
3 <condition expressionLanguage="anyURI"

?>
4 bool -expr
5 </condition >
6 activity
7 </while >

Listing 6.74: Core BPEL <while>.
1 <while >
2 <condition expressionLanguage="anyURI">
3 bool -expr
4 </condition >
5 activity
6 </while >
7

Standard attributes and elements are moved to a wrapping <flow> and default attribute values are
made explicit.

204 6.B. XML Schema for Core BPEL
6.

B
X

M
L

Sc
he

m
a

fo
r

C
or

e
B

P
E
L

6.
B
.1

co
re
-b
p
el
.x
sd

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
U
T
F

8
"
?>

2
<

x
s
d
:s

c
h
e
m

a
3

x
m

ln
s=

"
h
t
t
p
:
/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/
e
x
e
c
u
t
a
b
le

"
4

x
m

ln
s
:x

s
d
=
"
h
t
t
p
:
/
/
w
w
w

.w
3
.
o
r
g
/
2
0
0
1
/
X
M

L
S
ch

em
a
"

5
t
a
r
g
e
t
N

a
m

e
s
p
a
c
e=

"
h
t
t
p
:
/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

"
6

e
le

m
e
n
t
F

o
r
m

D
e
fa

u
lt

=
"
q
u
a
li

f
i
e
d
"

b
lo

c
k
D

e
fa

u
lt

=
"#

a
ll

">
7

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

8
<

x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

9
T

h
is

is
t
h
e

sc
h
e
m

a
fo

r
C

o
re

B
P
E
L
,

a
s
u
b
s
e
t

o
f

W
S

B
P
E
L

.
T

h
is

1
0

S
c
h
e
m

a
is

a
m

o
d
if

ie
d

v
e
r
s
io

n
o
f

t
h
e

o
r
ig

in
a
l

W
S

B
P
E
L

X
M

L
S
c
h
e
m

a
,

1
1

e
x
c
lu

d
in

g
im

p
li

c
it

a
c
t
iv

it
ie

s
,

o
p
t
io

n
a
l

e
x
t
e
n
s
io

n
s

a
n
d

m
a
k
in

g
1
2

d
e
fa

u
lt

v
a
lu

e
s

m
a
n
d
a
to

ry
.

1
3

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

1
4

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

1
5

<
x
s
d
:i

m
p
o
r
t

n
a
m

e
s
p
a
c
e=

"
h
t
t
p
:
/
/
w
w
w

.w
3
.
o
r
g
/X

M
L
/
1
9
9
8
/
n
a
m

e
s
p
a
c
e
"

1
6

s
c
h
e
m

a
L

o
c
a
t
io

n
=
"
h
t
t
p
:
/
/
w
w
w

.w
3
.
o
r
g
/
2
0
0
1
/
x
m

l
.
x
s
d
"

/>
1
7

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
p
r
o
c
e
s
s
"

t
y
p
e=

"
tP

r
o
c
e
s
s
">

1
8

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

1
9

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

2
0

T
h
is

is
t
h
e

r
o
o
t

e
le

m
e
n
t

fo
r

a
C

o
re

B
P
E
L

p
r
o
c
e
s
s
.

2
1

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

2
2

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

2
3

<
/
x
s
d
:e

le
m

e
n
t>

2
4

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tP

r
o
c
e
s
s
">

2
5

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

2
6

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

2
7

<
x
s
d
:s

e
q
u
e
n
c
e>

2
8

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
e
x
t
e
n
s
io

n
s
"

m
in

O
c
c
u
r
s=

"
0
"

/>
2
9

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
im

p
o
r
t
"

m
in

O
c
c
u
r
s=

"
0
"

3
0

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
3
1

<
x
s
d
:g

r
o
u
p

r
e
f=

"
a
c
t
i
v
i
t
y
"

/>
3
2

<
/
x
s
d
:s

e
q
u
e
n
c
e>

3
3

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
n
a
m

e
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
3
4

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
ta

r
g
e
tN

a
m

e
s
p
a
c
e
"

t
y
p
e=

"
x
s
d
:a

n
y
U

R
I
"

3
5

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
3
6

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

3
7

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
8

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

3
9

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

4
0

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

4
1

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

4
2

T
h
is

t
y
p
e

is
e
x
t
e
n
d
e
d

b
y

o
t
h
e
r

c
o
m

p
o
n
e
n
t

t
y
p
e
s

t
o

a
ll

o
w

4
3

e
le

m
e
n
t
s

a
n
d

a
t
t
r
ib

u
t
e
s

fr
o
m

o
t
h
e
r

n
a
m

e
s
p
a
c
e
s

t
o

b
e

a
d
d
e
d

a
t

4
4

t
h
e

m
o
d
e
le

d
p
la

c
e
s
.

4
5

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

4
6

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

4
7

<
x
s
d
:s

e
q
u
e
n
c
e>

4
8

<
x
s
d
:a

n
y

n
a
m

e
s
p
a
c
e=

"#
#

o
t
h
e
r
"

p
r
o
c
e
s
s
C

o
n
t
e
n
t
s=

"
la

x
"

m
in

O
c
c
u
r
s=

"
0
"

4
9

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
5
0

<
/
x
s
d
:s

e
q
u
e
n
c
e>

5
1

<
x
s
d
:a

n
y
A

t
t
r
ib

u
t
e

n
a
m

e
s
p
a
c
e=

"#
#

o
t
h
e
r
"

p
r
o
c
e
s
s
C

o
n
t
e
n
t
s=

"
la

x
"

/>
5
2

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

5
3

<
x
s
d
:g

r
o
u
p

n
a
m

e=
"
a
c
t
i
v
i
t
y
">

5
4

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

5
5

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

5
6

A
ll

C
o
re

B
P
E
L

a
c
t
i
v

i
t
i
e
s

in
a
lp

h
a
b

e
t
ic

a
l

o
r
d
e
r
.

5
7

B
a
s
ic

a
c
t
i
v

i
t
i
e
s

a
n
d

s
t
r
u
c
t
u
r
e
d

a
c
t
i
v

i
t
i
e
s

.
A

d
d
t
io

n
a
l

5
8

c
o
n

s
t
r
a
in

t
s
:

r
e
t
h
r
o
w

a
c
t
iv

it
y

c
a
n

b
e

u
s
e
d

O
N
L
Y

w
it

h
in

a
5
9

f
a
u

lt
h
a
n
d
le

r
(
i
.
e
.

"
c
a
tc

h
"

a
n
d

"
c
a
t
c
h
A

ll
"

e
le

m
e
n
t
)

6
0

c
o
m

p
e
n
s
a
t
e

o
r

c
o
m

p
e
n
s
a
t
e
S
c
o
p
e

a
c
t
iv

it
y

c
a
n

b
e

u
s
e
d

O
N
L
Y

w
it

h
in

6
1

a
f
a
u

lt
h
a
n
d
le

r
,

a
c
o
m

p
e
n
s
a
t
io

n
h
a
n
d
le

r
o
r

a
t
e
r
m

in
a
t
io

n
6
2

h
a
n
d
le

r
6
3

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

6
4

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

6
5

<
x
s
d
:c

h
o
ic

e
>

6
6

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
a
s
s
ig

n
"
/>

6
7

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
c
o
m

p
e
n
s
a
te

"
/>

6
8

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
c
o
m

p
e
n
s
a
te

S
c
o
p
e
"
/>

6
9

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
e
m

p
ty

"
/>

7
0

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
e
x
i
t
"
/>

7
1

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
e
x
t
e
n
s
io

n
A

c
t
iv

it
y
"

/>
7
2

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
fl

o
w

"
/>

7
3

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
fo

r
E

a
c
h
"
/>

7
4

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
i
f
"
/>

7
5

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
in

v
o
k
e
"
/>

7
6

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
p
ic

k
"
/>

7
7

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
r
e
p
ly

"
/>

7
8

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
r
e
th

r
o
w

"
/>

7
9

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
s
c
o
p
e
"
/>

8
0

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
th

r
o
w

"
/>

8
1

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
v
a
li

d
a
t
e
"
/>

8
2

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
w

a
it

"
/>

8
3

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
w

h
il

e
"

/>
8
4

<
/
x
s
d
:c

h
o
ic

e
>

8
5

<
/
x
s
d
:g

r
o
u
p
>

8
6

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
e
x
t
e
n
s
io

n
s
"

t
y
p
e=

"
t
E

x
t
e
n
s
io

n
s
"

/>
8
7

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
E

x
t
e
n
s
io

n
s
">

8
8

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

8
9

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

9
0

<
x
s
d
:s

e
q
u
e
n
c
e>

9
1

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
e
x
t
e
n
s
io

n
"

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
9
2

<
/
x
s
d
:s

e
q
u
e
n
c
e>

9
3

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

9
4

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

9
5

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

9
6

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
e
x
t
e
n
s
io

n
"

t
y
p
e=

"
tE

x
te

n
s
io

n
"

/>
9
7

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tE

x
te

n
s
io

n
">

9
8

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

9
9

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

1
0
0

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
n
a
m

e
s
p
a
c
e
"

t
y
p
e=

"
x
s
d
:a

n
y
U

R
I
"

1
0
1

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
1
0
2

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
m

u
s
tU

n
d
e
r
s
ta

n
d
"

t
y
p
e=

"
tB

o
o
le

a
n
"

1
0
3

fi
x
e
d
=
"
y
e
s
"

/>
1
0
4

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

1
0
5

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
0
6

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

1
0
7

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
im

p
o
r
t
"

t
y
p
e=

"
tI

m
p
o
r
t
"

/>
1
0
8

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tI

m
p
o
r
t
">

1
0
9

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
1
0

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

1
1
1

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
n
a
m

e
s
p
a
c
e
"

t
y
p
e=

"
x
s
d
:a

n
y
U

R
I
"

1
1
2

u
s
e=

"
o
p
t
io

n
a
l"

/>
1
1
3

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
lo

c
a
t
io

n
"

t
y
p
e=

"
x
s
d
:a

n
y
U

R
I
"

1
1
4

u
s
e=

"
o
p
t
io

n
a
l"

/>
1
1
5

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
im

p
o
r
tT

y
p
e
"

t
y
p
e=

"
x
s
d
:a

n
y
U

R
I
"

1
1
6

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
1
1
7

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

1
1
8

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
1
9

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

1
2
0

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
p
a
r
tn

e
r
L

in
k
s
"

t
y
p
e=

"
tP

a
r
tn

e
r
L

in
k
s
"

/>
1
2
1

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tP

a
r
tn

e
r
L

in
k
s
">

1
2
2

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
2
3

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

1
2
4

<
x
s
d
:s

e
q
u
e
n
c
e>

1
2
5

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
p
a
r
tn

e
r
L

in
k
"

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
1
2
6

<
/
x
s
d
:s

e
q
u
e
n
c
e>

1
2
7

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

1
2
8

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
2
9

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

1
3
0

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
p
a
r
tn

e
r
L

in
k
"

t
y
p
e=

"
tP

a
r
tn

e
r
L

in
k
"

/>
1
3
1

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tP

a
r
tn

e
r
L

in
k
">

1
3
2

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
3
3

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 205

1
3
4

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
n
a
m

e
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
1
3
5

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
tn

e
r
L
in

k
T

y
p
e
"

t
y
p
e=

"
x
sd

:Q
N

a
m

e
"

1
3
6

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
1
3
7

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
m

y
R

o
le

"
t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

/>
1
3
8

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
tn

e
r
R

o
le

"
t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

/>
1
3
9

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
i
n
i
t
i
a
li

z
e
P

a
r
t
n
e
r
R

o
le

"
t
y
p
e=

"
tB

o
o
le

a
n
"

/>
1
4
0

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

1
4
1

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
4
2

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

1
4
3

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
"

t
y
p
e=

"
tM

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
"

/>
1
4
4

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tM

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
">

1
4
5

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
4
6

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

1
4
7

<
x
s
d
:s

e
q
u
e
n
c
e>

1
4
8

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
"

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
1
4
9

<
/
x
s
d
:s

e
q
u
e
n
c
e>

1
5
0

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

1
5
1

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
5
2

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

1
5
3

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
"

t
y
p
e=

"
tM

e
s
s
a
g
e
E

x
c
h
a
n
g
e
"

/>
1
5
4

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tM

e
s
s
a
g
e
E

x
c
h
a
n
g
e
">

1
5
5

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
5
6

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

1
5
7

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
n
a
m

e
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
1
5
8

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

1
5
9

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
6
0

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

1
6
1

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
v
a
r
i
a
b
le

s
"

t
y
p
e=

"
t
V

a
r
ia

b
le

s
"

/>
1
6
2

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
V

a
r
ia

b
le

s
">

1
6
3

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
6
4

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

1
6
5

<
x
s
d
:s

e
q
u
e
n
c
e>

1
6
6

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
v
a
r
i
a
b
le

"
m

a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
1
6
7

<
/
x
s
d
:s

e
q
u
e
n
c
e>

1
6
8

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

1
6
9

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
7
0

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

1
7
1

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
v
a
r
i
a
b
le

"
t
y
p
e=

"
t
V

a
r
ia

b
le

"
/>

1
7
2

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
V

a
r
ia

b
le

">
1
7
3

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
7
4

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

1
7
5

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
n
a
m

e
"

t
y
p
e=

"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
"

1
7
6

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
1
7
7

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
m

e
s
s
a
g
e
T

y
p
e
"

t
y
p
e=

"
x
sd

:Q
N

a
m

e
"

1
7
8

u
s
e=

"
o
p
t
io

n
a
l"

/>
1
7
9

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
ty

p
e
"

t
y
p
e=

"
x
sd

:Q
N

a
m

e
"

u
s
e=

"
o
p
t
io

n
a
l"

/>
1
8
0

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
e
le

m
e
n
t
"

t
y
p
e=

"
x
sd

:Q
N

a
m

e
"

u
s
e=

"
o
p
t
io

n
a
l"

/>
1
8
1

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

1
8
2

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
8
3

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

1
8
4

<
x
s
d
:s

im
p
le

T
y
p
e

n
a
m

e=
"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
">

1
8
5

<
x
s
d

:r
e
s
t
r
ic

t
io

n
b
a
s
e=

"
x
sd

:N
C

N
a
m

e
">

1
8
6

<
x
s
d
:p

a
t
t
e
r
n

v
a
lu

e
=
"
[^

\
.]

+
"

/>
1
8
7

<
/

x
s
d

:r
e
s
t
r
ic

t
io

n
>

1
8
8

<
/
x
s
d
:s

im
p
le

T
y
p
e>

1
8
9

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
o
r
r
e
la

t
i
o
n
S
e
t
s
"

t
y
p
e=

"
t
C

o
r
r
e
la

t
io

n
S
e
t
s
"

/>
1
9
0

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
C

o
r
r
e
la

t
io

n
S
e
t
s
">

1
9
1

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
9
2

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

1
9
3

<
x
s
d
:s

e
q
u
e
n
c
e>

1
9
4

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
c
o
r
r
e
la

t
io

n
S
e
t
"

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/
>

1
9
5

<
/
x
s
d
:s

e
q
u
e
n
c
e>

1
9
6

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

1
9
7

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

1
9
8

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

1
9
9

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
o
r
r
e
la

t
io

n
S
e
t
"

t
y
p
e=

"
t
C

o
r
r
e
la

t
io

n
S
e
t
"

/>

2
0
0

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
C

o
r
r
e
la

t
io

n
S
e
t
">

2
0
1

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

2
0
2

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

2
0
3

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
r
o
p
e
r
t
ie

s
"

t
y
p
e=

"
Q

N
a
m

es
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
2
0
4

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
n
a
m

e
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
2
0
5

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

2
0
6

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

2
0
7

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

2
0
8

<
x
s
d
:s

im
p
le

T
y
p
e

n
a
m

e=
"
Q

N
a
m

es
">

2
0
9

<
x

s
d

:r
e
s
t
r
ic

t
io

n
>

2
1
0

<
x
s
d
:s

im
p
le

T
y
p
e>

2
1
1

<
x

s
d

:
l
i
s
t

it
e
m

T
y
p
e=

"
x
sd

:Q
N

a
m

e
"

/>
2
1
2

<
/
x
s
d
:s

im
p
le

T
y
p
e>

2
1
3

<
x
s
d
:m

in
L

e
n
g
t
h

v
a
lu

e
=
"
1
"

/>
2
1
4

<
/

x
s
d

:r
e
s
t
r
ic

t
io

n
>

2
1
5

<
/
x
s
d
:s

im
p
le

T
y
p
e>

2
1
6

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
fa

u
lt

H
a
n
d
le

r
s
"

t
y
p
e=

"
t
F

a
u
lt

H
a
n
d
le

r
s
"

/>
2
1
7

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
F

a
u
lt

H
a
n
d
le

r
s
">

2
1
8

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

2
1
9

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

2
2
0

<
x
s
d
:s

e
q
u
e
n
c
e>

2
2
1

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
c
a
tc

h
"

m
in

O
c
c
u
r
s=

"
0
"

2
2
2

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
2
2
3

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
c
a
t
c
h
A

ll
"

m
in

O
c
c
u
r
s=

"
0
"

/>
2
2
4

<
/
x
s
d
:s

e
q
u
e
n
c
e>

2
2
5

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

2
2
6

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

2
2
7

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

2
2
8

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
a
tc

h
"

t
y
p
e=

"
tC

a
tc

h
">

2
2
9

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

2
3
0

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

2
3
1

T
h
is

e
le

m
e
n
t

c
a
n

c
o
n
t
a
in

a
l
l

a
c
t
i
v

i
t
i
e
s

in
c
lu

d
in

g
t
h
e

2
3
2

a
c
t
i
v

i
t
i
e
s

c
o
m

p
e
n
s
a
t
e

,
c
o
m

p
e
n
s
a
t
e
S
c
o
p
e

a
n
d

r
e
t
h
r
o
w

.
2
3
3

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

2
3
4

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

2
3
5

<
/
x
s
d
:e

le
m

e
n
t>

2
3
6

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tC

a
tc

h
">

2
3
7

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

2
3
8

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
iv

it
y
C

o
n
t
a
in

e
r
">

2
3
9

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
fa

u
lt

N
a
m

e
"

t
y
p
e=

"
x
sd

:Q
N

a
m

e
"

/>
2
4
0

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
f
a
u
lt

V
a
r
i
a
b
le

"
t
y
p
e=

"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
"

/>
2
4
1

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
fa

u
lt

M
e
s
s
a
g
e
T

y
p
e
"

t
y
p
e=

"
x
sd

:Q
N

a
m

e
"

/>
2
4
2

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
fa

u
lt

E
le

m
e
n
t
"

t
y
p
e=

"
x
sd

:Q
N

a
m

e
"

/>
2
4
3

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

2
4
4

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

2
4
5

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

2
4
6

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
a
t
c
h
A

ll
"

t
y
p
e=

"
t
A

c
t
iv

it
y
C

o
n
t
a
in

e
r
">

2
4
7

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

2
4
8

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

2
4
9

T
h
is

e
le

m
e
n
t

c
a
n

c
o
n
t
a
in

a
l
l

a
c
t
i
v

i
t
i
e
s

in
c
lu

d
in

g
t
h
e

2
5
0

a
c
t
i
v

i
t
i
e
s

c
o
m

p
e
n
s
a
t
e

,
c
o
m

p
e
n
s
a
t
e
S
c
o
p
e

a
n
d

r
e
t
h
r
o
w

.
2
5
1

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

2
5
2

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

2
5
3

<
/
x
s
d
:e

le
m

e
n
t>

2
5
4

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
A

c
t
iv

it
y
C

o
n
t
a
in

e
r
">

2
5
5

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

2
5
6

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

2
5
7

<
x
s
d
:s

e
q
u
e
n
c
e>

2
5
8

<
x
s
d
:g

r
o
u
p

r
e
f=

"
a
c
t
i
v
i
t
y
"

/>
2
5
9

<
/
x
s
d
:s

e
q
u
e
n
c
e>

2
6
0

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

2
6
1

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

2
6
2

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

2
6
3

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
e
v
e
n
tH

a
n
d
le

r
s
"

t
y
p
e=

"
tE

v
e
n
tH

a
n
d
le

r
s
"

/>
2
6
4

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tE

v
e
n
tH

a
n
d
le

r
s
">

2
6
5

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

2
6
6

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

2
6
7

X
S
D

A
u
t
h
o
r
s
:

T
h
e

c
h

il
d

e
le

m
e
n
t

o
n
A

la
rm

n
e
e
d
s

t
o

b
e

a
L

o
c
a
l

2
6
8

E
le

m
e
n
t

D
e
c
la

r
a
t
io

n
,

b
e
c
a
u
s
e

t
h
e
r
e

is
a
n
o
t
h
e
r

o
n
A

la
rm

e
le

m
e
n
t

206 6.B. XML Schema for Core BPEL
2
6
9

d
e
fi

n
e
d

fo
r

t
h
e

p
ic

k
a
c
t
iv

it
y

.
2
7
0

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

2
7
1

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

2
7
2

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

2
7
3

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

2
7
4

<
x
s
d
:s

e
q
u
e
n
c
e>

2
7
5

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
o
n
E

v
e
n
t"

m
in

O
c
c
u
r
s=

"
0
"

2
7
6

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
2
7
7

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
o
n
A

la
r
m

"
t
y
p
e=

"
tO

n
A

la
r
m

E
v
e
n
t"

2
7
8

m
in

O
c
c
u
r
s=

"
0
"

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
2
7
9

<
/
x
s
d
:s

e
q
u
e
n
c
e>

2
8
0

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

2
8
1

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

2
8
2

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

2
8
3

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
o
n
E

v
e
n
t"

t
y
p
e=

"
tO

n
E

v
e
n
t"

/>
2
8
4

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tO

n
E

v
e
n
t"

>
2
8
5

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

2
8
6

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
tO

n
M

sg
C
o
m

m
o
n
">

2
8
7

<
x
s
d
:s

e
q
u
e
n
c
e>

2
8
8

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
s
c
o
p
e
"

/>
2
8
9

<
/
x
s
d
:s

e
q
u
e
n
c
e>

2
9
0

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
m

e
s
s
a
g
e
T

y
p
e
"

t
y
p
e=

"
x
sd

:Q
N

a
m

e
"

2
9
1

u
s
e=

"
o
p
t
io

n
a
l"

/>
2
9
2

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

2
9
3

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

2
9
4

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

2
9
5

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tO

n
M

sg
C
o
m

m
o
n
">

2
9
6

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

2
9
7

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

2
9
8

X
S
D

A
u
t
h
o
r
s
:

T
h
e

c
h

il
d

e
le

m
e
n
t

c
o
r
r
e
la

t
io

n
s

n
e
e
d
s

t
o

b
e

a
2
9
9

L
o
c
a
l

E
le

m
e
n
t

D
e
c
la

r
a
t
io

n
,

b
e
c
a
u
s
e

t
h
e
r
e

is
a
n
o
t
h
e
r

3
0
0

c
o
r
r
e
la

t
io

n
s

e
le

m
e
n
t

d
e
fi

n
e
d

fo
r

t
h
e

in
v
o
k
e

a
c
t
iv

it
y

.
3
0
1

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

3
0
2

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

3
0
3

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
0
4

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

3
0
5

<
x
s
d
:s

e
q
u
e
n
c
e>

3
0
6

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
o
r
r
e
la

t
i
o
n
s
"

t
y
p
e=

"
t
C

o
r
r
e
la

t
io

n
s
"

3
0
7

m
in

O
c
c
u
r
s=

"
0
"

/>
3
0
8

<
/
x
s
d
:s

e
q
u
e
n
c
e>

3
0
9

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
tn

e
r
L

in
k
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

3
1
0

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
3
1
1

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
o
p
e
r
a
ti

o
n
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

3
1
2

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
3
1
3

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

3
1
4

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
3
1
5

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

"
t
y
p
e=

"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
"

3
1
6

u
s
e=

"
o
p
t
io

n
a
l"

/>
3
1
7

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

3
1
8

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
1
9

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

3
2
0

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
C

o
r
r
e
la

t
io

n
s
">

3
2
1

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

3
2
2

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

3
2
3

X
S
D

A
u
t
h
o
r
s
:

T
h
e

c
h

il
d

e
le

m
e
n
t

c
o
r
r
e
la

t
io

n
n
e
e
d
s

t
o

b
e

a
L

o
c
a
l

3
2
4

E
le

m
e
n
t

D
e
c
la

r
a
t
io

n
,

b
e
c
a
u
s
e

t
h
e
r
e

is
a
n
o
t
h
e
r

c
o
r
r
e
la

t
io

n
3
2
5

e
le

m
e
n
t

d
e
fi

n
e
d

fo
r

t
h
e

in
v
o
k
e

a
c
t
iv

it
y

.
3
2
6

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

3
2
7

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

3
2
8

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
2
9

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

3
3
0

<
x
s
d
:s

e
q
u
e
n
c
e>

3
3
1

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
o
r
r
e
la

t
i
o
n

"
t
y
p
e=

"
t
C

o
r
r
e
la

t
io

n
"

3
3
2

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
3
3
3

<
/
x
s
d
:s

e
q
u
e
n
c
e>

3
3
4

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

3
3
5

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
3
6

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

3
3
7

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
C

o
r
r
e
la

t
io

n
">

3
3
8

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
3
9

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

3
4
0

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
s
e
t
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
3
4
1

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
i
n

i
t
i
a
t
e
"

t
y
p
e=

"
t
I
n

i
t
i
a
t
e
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
3
4
2

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

3
4
3

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
4
4

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

3
4
5

<
x
s
d
:s

im
p
le

T
y
p
e

n
a
m

e=
"
t
I
n

i
t
i
a
t
e
">

3
4
6

<
x
s
d

:r
e
s
t
r
ic

t
io

n
b
a
s
e=

"
x
s
d
:
s
t
r
i
n
g
">

3
4
7

<
x
s
d
:e

n
u
m

e
r
a
t
io

n
v
a
lu

e
=
"
y
e
s
"

/>
3
4
8

<
x
s
d
:e

n
u
m

e
r
a
t
io

n
v
a
lu

e
=
"
jo

in
"

/>
3
4
9

<
x
s
d
:e

n
u
m

e
r
a
t
io

n
v
a
lu

e
=
"
n
o
"

/>
3
5
0

<
/

x
s
d

:r
e
s
t
r
ic

t
io

n
>

3
5
1

<
/
x
s
d
:s

im
p
le

T
y
p
e>

3
5
2

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tO

n
A

la
r
m

E
v
e
n
t"

>
3
5
3

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
5
4

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

3
5
5

<
x
s
d
:s

e
q
u
e
n
c
e>

3
5
6

<
x
s
d
:c

h
o
ic

e
>

3
5
7

<
x
s
d
:s

e
q
u
e
n
c
e>

3
5
8

<
x
s
d
:g

r
o
u
p

r
e
f=

"
fo

r
O

r
U

n
ti

lG
r
o
u
p
"

/>
3
5
9

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
r
e
p
e
a
tE

v
e
r
y
"

m
in

O
c
c
u
r
s=

"
0
"

/>
3
6
0

<
/
x
s
d
:s

e
q
u
e
n
c
e>

3
6
1

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
r
e
p
e
a
tE

v
e
r
y
"

/>
3
6
2

<
/
x
s
d
:c

h
o
ic

e
>

3
6
3

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
s
c
o
p
e
"

/>
3
6
4

<
/
x
s
d
:s

e
q
u
e
n
c
e>

3
6
5

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

3
6
6

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
6
7

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

3
6
8

<
x
s
d
:g

r
o
u
p

n
a
m

e=
"
fo

r
O

r
U

n
ti

lG
r
o
u
p
">

3
6
9

<
x
s
d
:c

h
o
ic

e
>

3
7
0

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
fo

r
"

/>
3
7
1

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
u
n
t
i
l
"

/>
3
7
2

<
/
x
s
d
:c

h
o
ic

e
>

3
7
3

<
/
x
s
d
:g

r
o
u
p
>

3
7
4

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
fo

r
"

t
y
p
e=

"
tD

u
r
a
ti

o
n

e
x
p
r
"

/>
3
7
5

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
u
n
t
i
l
"

t
y
p
e=

"
tD

e
a
d
li

n
e

e
x
p
r
"

/>
3
7
6

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
r
e
p
e
a
tE

v
e
r
y
"

t
y
p
e=

"
tD

u
r
a
ti

o
n

e
x
p
r
"

/>
3
7
7

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
A

c
t
i
v
i
t
y
">

3
7
8

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
7
9

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

3
8
0

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

3
8
1

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
8
2

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

3
8
3

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
t
a
r
g
e
t
s
"

t
y
p
e=

"
t
T

a
r
g
e
t
s
"

/>
3
8
4

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
T

a
r
g
e
t
s
">

3
8
5

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
8
6

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

3
8
7

<
x
s
d
:s

e
q
u
e
n
c
e>

3
8
8

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
jo

in
C

o
n
d
it

io
n
"

m
in

O
c
c
u
r
s=

"
1
"

/>
3
8
9

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
t
a
r
g
e
t
"

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
3
9
0

<
/
x
s
d
:s

e
q
u
e
n
c
e>

3
9
1

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

3
9
2

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
9
3

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

3
9
4

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
jo

in
C

o
n
d
it

io
n
"

t
y
p
e=

"
tC

o
n
d
it

io
n
"

/>
3
9
5

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
t
a
r
g
e
t
"

t
y
p
e=

"
tT

a
r
g
e
t
"

/>
3
9
6

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tT

a
r
g
e
t
">

3
9
7

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

3
9
8

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

3
9
9

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
li
n
k
N

a
m

e
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

4
0
0

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
4
0
1

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

4
0
2

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

4
0
3

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

4
0
4

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
s
o
u
r
c
e
s
"

t
y
p
e=

"
tS

o
u
r
c
e
s
"

/>
4
0
5

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tS

o
u
r
c
e
s
">

4
0
6

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

4
0
7

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

4
0
8

<
x
s
d
:s

e
q
u
e
n
c
e>

4
0
9

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
s
o
u
r
c
e
"

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
4
1
0

<
/
x
s
d
:s

e
q
u
e
n
c
e>

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 207

4
1
1

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

4
1
2

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

4
1
3

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

4
1
4

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
s
o
u
r
c
e
"

t
y
p
e=

"
tS

o
u
r
c
e
"

/>
4
1
5

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tS

o
u
r
c
e
">

4
1
6

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

4
1
7

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

4
1
8

<
x
s
d
:s

e
q
u
e
n
c
e>

4
1
9

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
t
r
a
n
s
it

io
n
C

o
n
d
it

io
n

"
m

in
O

c
c
u
r
s=

"
1
"

/>
4
2
0

<
/
x
s
d
:s

e
q
u
e
n
c
e>

4
2
1

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
li
n
k
N

a
m

e
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

4
2
2

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
4
2
3

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

4
2
4

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

4
2
5

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

4
2
6

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
t
r
a
n
s
it

io
n
C

o
n
d
it

io
n

"
t
y
p
e=

"
tC

o
n
d
it

io
n
"

/>
4
2
7

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
a
s
s
ig

n
"

t
y
p
e=

"
tA

s
s
ig

n
"

/>
4
2
8

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tA

s
s
ig

n
">

4
2
9

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

4
3
0

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
">

4
3
1

<
x
s
d
:s

e
q
u
e
n
c
e>

4
3
2

<
x
s
d
:c

h
o
ic

e
m

a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
">

4
3
3

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
c
o
p
y
"

/>
4
3
4

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
e
x
te

n
s
io

n
A

s
s
ig

n
O

p
e
r
a
ti

o
n
"

/>
4
3
5

<
/
x
s
d
:c

h
o
ic

e
>

4
3
6

<
/
x
s
d
:s

e
q
u
e
n
c
e>

4
3
7

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
li

d
a
t
e
"

t
y
p
e=

"
tB

o
o
le

a
n
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
4
3
8

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

4
3
9

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

4
4
0

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

4
4
1

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
o
p
y
"

t
y
p
e=

"
tC

o
p
y
"

/>
4
4
2

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tC

o
p
y
">

4
4
3

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

4
4
4

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

4
4
5

<
x
s
d
:s

e
q
u
e
n
c
e>

4
4
6

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
fr

o
m

"
/>

4
4
7

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
to

"
/>

4
4
8

<
/
x
s
d
:s

e
q
u
e
n
c
e>

4
4
9

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
k
e
e
p
S
r
c
E

le
m

e
n
tN

a
m

e
"

t
y
p
e=

"
tB

o
o
le

a
n
"

4
5
0

u
s
e=

"
o
p
t
io

n
a
l"

/>
4
5
1

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
ig

n
o
r
e
M

is
s
in

g
F

r
o
m

D
a
ta

"
t
y
p
e=

"
tB

o
o
le

a
n
"

4
5
2

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
4
5
3

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

4
5
4

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

4
5
5

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

4
5
6

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
fr

o
m

"
t
y
p
e=

"
tF

r
o
m

"
/>

4
5
7

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tF

r
o
m

"
m

ix
e
d
=
"
t
r
u
e
">

4
5
8

<
x
s
d
:s

e
q
u
e
n
c
e>

4
5
9

<
x
s
d
:a

n
y

n
a
m

e
s
p
a
c
e=

"#
#

o
t
h
e
r
"

p
r
o
c
e
s
s
C

o
n
t
e
n
t
s=

"
la

x
"

m
in

O
c
c
u
r
s=

"
0
"

4
6
0

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
4
6
1

<
x
s
d
:c

h
o
ic

e
m

in
O

c
c
u
r
s=

"
0
">

4
6
2

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
l
i
t
e
r
a
l
"

/>
4
6
3

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
q
u
e
r
y
"

/>
4
6
4

<
/
x
s
d
:c

h
o
ic

e
>

4
6
5

<
/
x
s
d
:s

e
q
u
e
n
c
e>

4
6
6

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

t
y
p
e=

"
x
s
d
:a

n
y
U

R
I
"

/>
4
6
7

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

"
t
y
p
e=

"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
"

/>
4
6
8

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
t
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

/>
4
6
9

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
r
o
p
e
r
ty

"
t
y
p
e=

"
x
sd

:Q
N

a
m

e
"

/>
4
7
0

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
tn

e
r
L

in
k
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

/>
4
7
1

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
e
n
d
p
o
in

tR
e
fe

r
e
n
c
e
"

t
y
p
e=

"
t
R

o
le

s
"

/>
4
7
2

<
x
s
d
:a

n
y
A

t
t
r
ib

u
t
e

n
a
m

e
s
p
a
c
e=

"#
#

o
t
h
e
r
"

p
r
o
c
e
s
s
C

o
n
t
e
n
t
s=

"
la

x
"

/>
4
7
3

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

4
7
4

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"

l
i
t
e
r
a
l
"

t
y
p
e=

"
t
L

i
t
e
r
a
l
"

/>
4
7
5

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
L

i
t
e
r
a
l
"

m
ix

e
d
=
"
t
r
u
e
">

4
7
6

<
x
s
d
:s

e
q
u
e
n
c
e>

4
7
7

<
x
s
d
:a

n
y

n
a
m

e
s
p
a
c
e=

"#
#
a
n
y
"

p
r
o
c
e
s
s
C

o
n
t
e
n
t
s=

"
la

x
"

m
in

O
c
c
u
r
s=

"
0

"
/>

4
7
8

<
/
x
s
d
:s

e
q
u
e
n
c
e>

4
7
9

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

4
8
0

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
q
u
e
r
y
"

t
y
p
e=

"
tQ

u
e
r
y
"

/>

4
8
1

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tQ

u
e
r
y
"

m
ix

e
d
=
"
t
r
u
e
">

4
8
2

<
x
s
d
:s

e
q
u
e
n
c
e>

4
8
3

<
x
s
d
:a

n
y

p
r
o
c
e
s
s
C

o
n
t
e
n
t
s=

"
la

x
"

m
in

O
c
c
u
r
s=

"
0
"

4
8
4

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
4
8
5

<
/
x
s
d
:s

e
q
u
e
n
c
e>

4
8
6

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
q
u
e
r
y
L
a
n
g
u
a
g
e
"

t
y
p
e=

"
x
s
d
:a

n
y
U

R
I
"

/>
4
8
7

<
x
s
d
:a

n
y
A

t
t
r
ib

u
t
e

n
a
m

e
s
p
a
c
e=

"#
#

o
t
h
e
r
"

p
r
o
c
e
s
s
C

o
n
t
e
n
t
s=

"
la

x
"

/>
4
8
8

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

4
8
9

<
x
s
d
:s

im
p
le

T
y
p
e

n
a
m

e=
"
t
R

o
le

s
">

4
9
0

<
x
s
d

:r
e
s
t
r
ic

t
io

n
b
a
s
e=

"
x
s
d
:
s
t
r
i
n
g
">

4
9
1

<
x
s
d
:e

n
u
m

e
r
a
t
io

n
v
a
lu

e
=
"
m

y
R

o
le

"
/>

4
9
2

<
x
s
d
:e

n
u
m

e
r
a
t
io

n
v
a
lu

e
=
"
p
a
r
tn

e
r
R

o
le

"
/>

4
9
3

<
/

x
s
d

:r
e
s
t
r
ic

t
io

n
>

4
9
4

<
/
x
s
d
:s

im
p
le

T
y
p
e>

4
9
5

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
to

"
t
y
p
e=

"
tT

o
"

/>
4
9
6

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tT

o
"

m
ix

e
d
=
"
t
r
u
e
">

4
9
7

<
x
s
d
:s

e
q
u
e
n
c
e>

4
9
8

<
x
s
d
:a

n
y

n
a
m

e
s
p
a
c
e=

"#
#

o
t
h
e
r
"

p
r
o
c
e
s
s
C

o
n
t
e
n
t
s=

"
la

x
"

m
in

O
c
c
u
r
s=

"
0
"

4
9
9

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
5
0
0

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
q
u
e
r
y
"

m
in

O
c
c
u
r
s=

"
0
"

/>
5
0
1

<
/
x
s
d
:s

e
q
u
e
n
c
e>

5
0
2

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

t
y
p
e=

"
x
s
d
:a

n
y
U

R
I
"

/>
5
0
3

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

"
t
y
p
e=

"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
"

/>
5
0
4

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
t
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

/>
5
0
5

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
r
o
p
e
r
ty

"
t
y
p
e=

"
x
sd

:Q
N

a
m

e
"

/>
5
0
6

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
tn

e
r
L

in
k
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

/>
5
0
7

<
x
s
d
:a

n
y
A

t
t
r
ib

u
t
e

n
a
m

e
s
p
a
c
e=

"#
#

o
t
h
e
r
"

p
r
o
c
e
s
s
C

o
n
t
e
n
t
s=

"
la

x
"

/>
5
0
8

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

5
0
9

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
e
x
te

n
s
io

n
A

s
s
ig

n
O

p
e
r
a
ti

o
n
"

5
1
0

t
y
p
e=

"
tE

x
te

n
s
io

n
A

s
s
ig

n
O

p
e
r
a
ti

o
n
"

/>
5
1
1

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tE

x
te

n
s
io

n
A

s
s
ig

n
O

p
e
r
a
ti

o
n
">

5
1
2

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
1
3

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
"

/>
5
1
4

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
1
5

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

5
1
6

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
o
m

p
e
n
s
a
te

"
t
y
p
e=

"
tC

o
m

p
e
n
s
a
te

"
/>

5
1
7

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tC

o
m

p
e
n
s
a
te

">
5
1
8

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
1
9

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
"

/>
5
2
0

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
2
1

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

5
2
2

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
o
m

p
e
n
s
a
te

S
c
o
p
e
"

t
y
p
e=

"
tC

o
m

p
e
n
s
a
te

S
c
o
p
e
"

/>
5
2
3

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tC

o
m

p
e
n
s
a
te

S
c
o
p
e
">

5
2
4

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
2
5

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
">

5
2
6

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
t
a
r
g
e
t
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
5
2
7

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

5
2
8

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
2
9

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

5
3
0

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
e
m

p
ty

"
t
y
p
e=

"
tE

m
p
ty

"
/>

5
3
1

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tE

m
p
ty

">
5
3
2

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
3
3

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
"

/>
5
3
4

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
3
5

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

5
3
6

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
e
x
i
t
"

t
y
p
e=

"
t
E

x
it

"
/>

5
3
7

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
E

x
it

">
5
3
8

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
3
9

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
"

/>
5
4
0

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
4
1

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

5
4
2

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
e
x
t
e
n
s
io

n
A

c
t
iv

it
y
"

t
y
p
e=

"
t
E

x
t
e
n
s
io

n
A

c
t
iv

it
y
"

/
>

5
4
3

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
E

x
t
e
n
s
io

n
A

c
t
iv

it
y
">

5
4
4

<
x
s
d
:s

e
q
u
e
n
c
e>

5
4
5

<
x
s
d
:a

n
y

n
a
m

e
s
p
a
c
e=

"#
#

o
t
h
e
r
"

p
r
o
c
e
s
s
C

o
n
t
e
n
t
s=

"
la

x
"

/>
5
4
6

<
/
x
s
d
:s

e
q
u
e
n
c
e>

5
4
7

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

5
4
8

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
fl

o
w

"
t
y
p
e=

"
tF

lo
w

"
/>

5
4
9

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tF

lo
w

">
5
5
0

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

208 6.B. XML Schema for Core BPEL
5
5
1

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
">

5
5
2

<
x
s
d
:s

e
q
u
e
n
c
e>

5
5
3

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
t
a
r
g
e
t
s
"

m
in

O
c
c
u
r
s=

"
0
"

/>
5
5
4

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
s
o
u
r
c
e
s
"

m
in

O
c
c
u
r
s=

"
0
"

/>
5
5
5

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
li

n
k
s
"

m
in

O
c
c
u
r
s=

"
0
"

/>
5
5
6

<
x
s
d
:g

r
o
u
p

r
e
f=

"
a
c
t
i
v
i
t
y
"

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
5
5
7

<
/
x
s
d
:s

e
q
u
e
n
c
e>

5
5
8

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

t
y
p
e=

"
tB

o
o
le

a
n
"

u
s
e=

"
r
e
q
u
ir

e
d
"
/>

5
5
9

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

5
6
0

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
6
1

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

5
6
2

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
li

n
k
s
"

t
y
p
e=

"
t
L

in
k
s
"

/>
5
6
3

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
L

in
k
s
">

5
6
4

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
6
5

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

5
6
6

<
x
s
d
:s

e
q
u
e
n
c
e>

5
6
7

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
li

n
k
"

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
5
6
8

<
/
x
s
d
:s

e
q
u
e
n
c
e>

5
6
9

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

5
7
0

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
7
1

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

5
7
2

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
li

n
k
"

t
y
p
e=

"
tL

in
k
"

/>
5
7
3

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tL

in
k
">

5
7
4

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
7
5

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

5
7
6

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
n
a
m

e
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
5
7
7

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

5
7
8

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
7
9

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

5
8
0

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
fo

r
E

a
c
h
"

t
y
p
e=

"
tF

o
r
E

a
c
h
"

/>
5
8
1

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tF

o
r
E

a
c
h
">

5
8
2

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
8
3

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
">

5
8
4

<
x
s
d
:s

e
q
u
e
n
c
e>

5
8
5

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
s
ta

r
tC

o
u
n
te

r
V

a
lu

e
"

/>
5
8
6

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
fi

n
a
lC

o
u
n
te

r
V

a
lu

e
"

/>
5
8
7

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
c
o
m

p
le

ti
o
n
C

o
n
d
it

io
n
"

m
in

O
c
c
u
r
s=

"
0
"

/>
5
8
8

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
s
c
o
p
e
"

/>
5
8
9

<
/
x
s
d
:s

e
q
u
e
n
c
e>

5
9
0

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
c
o
u
n
te

r
N

a
m

e
"

t
y
p
e=

"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
"

5
9
1

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
5
9
2

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
a
ll

e
l
"

t
y
p
e=

"
tB

o
o
le

a
n
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
5
9
3

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

5
9
4

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

5
9
5

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

5
9
6

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
s
ta

r
tC

o
u
n
te

r
V

a
lu

e
"

t
y
p
e=

"
t
E

x
p
r
e
s
s
io

n
"

/>
5
9
7

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
fi

n
a
lC

o
u
n
te

r
V

a
lu

e
"

t
y
p
e=

"
t
E

x
p
r
e
s
s
io

n
"

/>
5
9
8

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
o
m

p
le

ti
o
n
C

o
n
d
it

io
n
"

t
y
p
e=

"
tC

o
m

p
le

ti
o
n
C

o
n
d
it

io
n
"

/>
5
9
9

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tC

o
m

p
le

ti
o
n
C

o
n
d
it

io
n
">

6
0
0

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

6
0
1

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

6
0
2

<
x
s
d
:s

e
q
u
e
n
c
e>

6
0
3

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
b
r
a
n
c
h
e
s
"

m
in

O
c
c
u
r
s=

"
0
"

/>
6
0
4

<
/
x
s
d
:s

e
q
u
e
n
c
e>

6
0
5

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

6
0
6

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

6
0
7

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

6
0
8

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
b
r
a
n
c
h
e
s
"

t
y
p
e=

"
tB

r
a
n
c
h
e
s
"

/>
6
0
9

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tB

r
a
n
c
h
e
s
">

6
1
0

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

6
1
1

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
p
r
e
s
s
io

n
">

6
1
2

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
s
u
c
c
e
s
s
fu

lB
r
a
n
c
h
e
s
O

n
ly

"
t
y
p
e=

"
tB

o
o
le

a
n

"
6
1
3

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
6
1
4

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

6
1
5

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

6
1
6

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

6
1
7

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"

i
f
"

t
y
p
e=

"
t
I
f
"

/>
6
1
8

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"

t
I
f
">

6
1
9

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

6
2
0

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
">

6
2
1

<
x
s
d
:s

e
q
u
e
n
c
e>

6
2
2

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
c
o
n
d
it

io
n
"

/>
6
2
3

<
x
s
d
:g

r
o
u
p

r
e
f=

"
a
c
t
i
v
i
t
y
"

/>
6
2
4

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
e
ls

e
"

m
in

O
c
c
u
r
s=

"
1
"

/>
6
2
5

<
/
x
s
d
:s

e
q
u
e
n
c
e>

6
2
6

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

6
2
7

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

6
2
8

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

6
2
9

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
e
ls

e
"

t
y
p
e=

"
t
A

c
t
iv

it
y
C

o
n
t
a
in

e
r
"

/>
6
3
0

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
in

v
o
k
e
"

t
y
p
e=

"
t
I
n
v
o
k
e
"

/>
6
3
1

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
I
n
v
o
k
e
">

6
3
2

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

6
3
3

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

6
3
4

X
S
D

A
u
t
h
o
r
s
:

T
h
e

c
h

il
d

e
le

m
e
n
t

c
o
r
r
e
la

t
io

n
s

n
e
e
d
s

t
o

b
e

a
6
3
5

L
o
c
a
l

E
le

m
e
n
t

D
e
c
la

r
a
t
io

n
,

b
e
c
a
u
s
e

t
h
e
r
e

is
a
n
o
t
h
e
r

6
3
6

c
o
r
r
e
la

t
io

n
s

e
le

m
e
n
t

d
e
fi

n
e
d

fo
r

t
h
e

n
o
n

in
v
o
k
e

a
c
t
i
v

i
t
i
e
s

.
6
3
7

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

6
3
8

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

6
3
9

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

6
4
0

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
">

6
4
1

<
x
s
d
:s

e
q
u
e
n
c
e>

6
4
2

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
o
r
r
e
la

t
i
o
n
s
"

6
4
3

t
y
p
e=

"
t
C

o
r
r
e
la

t
io

n
s
W

it
h
P

a
t
t
e
r
n
"

m
in

O
c
c
u
r
s=

"
0
"

/>
6
4
4

<
/
x
s
d
:s

e
q
u
e
n
c
e>

6
4
5

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
tn

e
r
L

in
k
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

6
4
6

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
6
4
7

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
o
p
e
r
a
ti

o
n
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

6
4
8

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
6
4
9

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
in

p
u
t
V

a
r
ia

b
le

"
t
y
p
e=

"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
"

6
5
0

u
s
e=

"
o
p
t
io

n
a
l"

/>
6
5
1

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
o
u
t
p
u
t
V

a
r
ia

b
le

"
t
y
p
e=

"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
"

6
5
2

u
s
e=

"
o
p
t
io

n
a
l"

/>
6
5
3

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

6
5
4

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

6
5
5

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

6
5
6

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
C

o
r
r
e
la

t
io

n
s
W

it
h
P

a
t
t
e
r
n
">

6
5
7

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

6
5
8

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

6
5
9

X
S
D

A
u
t
h
o
r
s
:

T
h
e

c
h

il
d

e
le

m
e
n
t

c
o
r
r
e
la

t
io

n
n
e
e
d
s

t
o

b
e

a
L

o
c
a
l

6
6
0

E
le

m
e
n
t

D
e
c
la

r
a
t
io

n
,

b
e
c
a
u
s
e

t
h
e
r
e

is
a
n
o
t
h
e
r

c
o
r
r
e
la

t
io

n
6
6
1

e
le

m
e
n
t

d
e
fi

n
e
d

fo
r

t
h
e

n
o
n

in
v
o
k
e

a
c
t
i
v

i
t
i
e
s

.
6
6
2

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

6
6
3

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

6
6
4

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

6
6
5

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

6
6
6

<
x
s
d
:s

e
q
u
e
n
c
e>

6
6
7

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
o
r
r
e
la

t
i
o
n

"
6
6
8

t
y
p
e=

"
tC

o
r
r
e
la

ti
o
n
W

it
h
P

a
tt

e
r
n
"

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
6
6
9

<
/
x
s
d
:s

e
q
u
e
n
c
e>

6
7
0

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

6
7
1

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

6
7
2

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

6
7
3

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tC

o
r
r
e
la

ti
o
n
W

it
h
P

a
tt

e
r
n
">

6
7
4

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

6
7
5

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
C

o
r
r
e
la

t
io

n
">

6
7
6

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
t
t
e
r
n
"

t
y
p
e=

"
t
P

a
t
t
e
r
n
"

/>
6
7
7

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

6
7
8

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

6
7
9

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

6
8
0

<
x
s
d
:s

im
p
le

T
y
p
e

n
a
m

e=
"
t
P

a
t
t
e
r
n
">

6
8
1

<
x
s
d

:r
e
s
t
r
ic

t
io

n
b
a
s
e=

"
x
s
d
:
s
t
r
i
n
g
">

6
8
2

<
x
s
d
:e

n
u
m

e
r
a
t
io

n
v
a
lu

e
=
"
r
e
q
u
e
s
t
"

/>
6
8
3

<
x
s
d
:e

n
u
m

e
r
a
t
io

n
v
a
lu

e
=
"
r
e
s
p
o
n
s
e
"

/>
6
8
4

<
x
s
d
:e

n
u
m

e
r
a
t
io

n
v
a
lu

e
=
"
r
e
q
u
e
s
t

r
e
s
p
o
n
s
e
"

/>
6
8
5

<
/

x
s
d

:r
e
s
t
r
ic

t
io

n
>

6
8
6

<
/
x
s
d
:s

im
p
le

T
y
p
e>

6
8
7

6
8
8

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
p
ic

k
"

t
y
p
e=

"
t
P

ic
k
"

/>
6
8
9

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
P

ic
k
">

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 209

6
9
0

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

6
9
1

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

6
9
2

X
S
D

A
u
t
h
o
r
s
:

T
h
e

c
h

il
d

e
le

m
e
n
t

o
n
A

la
rm

n
e
e
d
s

t
o

b
e

a
L

o
c
a
l

6
9
3

E
le

m
e
n
t

D
e
c
la

r
a
t
io

n
,

b
e
c
a
u
s
e

t
h
e
r
e

is
a
n
o
t
h
e
r

o
n
A

la
rm

e
le

m
e
n
t

6
9
4

d
e
fi

n
e
d

fo
r

e
v
e
n
t

h
a
n
d
le

r
s
.

6
9
5

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

6
9
6

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

6
9
7

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

6
9
8

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
">

6
9
9

<
x
s
d
:s

e
q
u
e
n
c
e>

7
0
0

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
o
n
M

e
s
s
a
g
e
"

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
7
0
1

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
o
n
A

la
r
m

"
t
y
p
e=

"
tO

n
A

la
r
m

P
ic

k
"

7
0
2

m
in

O
c
c
u
r
s=

"
0
"

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
7
0
3

<
/
x
s
d
:s

e
q
u
e
n
c
e>

7
0
4

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
c
r
e
a
t
e
I
n
s
t
a
n
c
e
"

t
y
p
e=

"
tB

o
o
le

a
n
"

7
0
5

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
7
0
6

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

7
0
7

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

7
0
8

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

7
0
9

7
1
0

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
o
n
M

e
s
s
a
g
e
"

t
y
p
e=

"
tO

n
M

e
s
s
a
g
e
"

/>
7
1
1

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tO

n
M

e
s
s
a
g
e
">

7
1
2

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

7
1
3

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
tO

n
M

sg
C
o
m

m
o
n
">

7
1
4

<
x
s
d
:s

e
q
u
e
n
c
e>

7
1
5

<
x
s
d
:g

r
o
u
p

r
e
f=

"
a
c
t
i
v
i
t
y
"

/>
7
1
6

<
/
x
s
d
:s

e
q
u
e
n
c
e>

7
1
7

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

7
1
8

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

7
1
9

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

7
2
0

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tO

n
A

la
r
m

P
ic

k
">

7
2
1

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

7
2
2

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
t
e
n
s
ib

le
E

le
m

e
n
t
s
">

7
2
3

<
x
s
d
:s

e
q
u
e
n
c
e>

7
2
4

<
x
s
d
:g

r
o
u
p

r
e
f=

"
fo

r
O

r
U

n
ti

lG
r
o
u
p
"

/>
7
2
5

<
x
s
d
:g

r
o
u
p

r
e
f=

"
a
c
t
i
v
i
t
y
"

/>
7
2
6

<
/
x
s
d
:s

e
q
u
e
n
c
e>

7
2
7

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

7
2
8

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

7
2
9

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

7
3
0

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
r
e
p
ly

"
t
y
p
e=

"
tR

e
p
ly

"
/>

7
3
1

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tR

e
p
ly

">
7
3
2

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

7
3
3

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

7
3
4

X
S
D

A
u
t
h
o
r
s
:

T
h
e

c
h

il
d

e
le

m
e
n
t

c
o
r
r
e
la

t
io

n
s

n
e
e
d
s

t
o

b
e

a
7
3
5

L
o
c
a
l

E
le

m
e
n
t

D
e
c
la

r
a
t
io

n
,

b
e
c
a
u
s
e

t
h
e
r
e

is
a
n
o
t
h
e
r

7
3
6

c
o
r
r
e
la

t
io

n
s

e
le

m
e
n
t

d
e
fi

n
e
d

fo
r

t
h
e

in
v
o
k
e

a
c
t
iv

it
y

.
7
3
7

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

7
3
8

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

7
3
9

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

7
4
0

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
">

7
4
1

<
x
s
d
:s

e
q
u
e
n
c
e>

7
4
2

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
o
r
r
e
la

t
i
o
n
s
"

t
y
p
e=

"
t
C

o
r
r
e
la

t
io

n
s
"

7
4
3

m
in

O
c
c
u
r
s=

"
0
"

/>
7
4
4

<
/
x
s
d
:s

e
q
u
e
n
c
e>

7
4
5

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
tn

e
r
L

in
k
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

7
4
6

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
7
4
7

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
o
p
e
r
a
ti

o
n
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

7
4
8

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
7
4
9

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

"
t
y
p
e=

"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
"

7
5
0

u
s
e=

"
o
p
t
io

n
a
l"

/>
7
5
1

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
fa

u
lt

N
a
m

e
"

t
y
p
e=

"
x
sd

:Q
N

a
m

e
"

/>
7
5
2

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

7
5
3

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
7
5
4

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

7
5
5

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

7
5
6

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

7
5
7

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
r
e
th

r
o
w

"
t
y
p
e=

"
tR

e
th

r
o
w

"
/>

7
5
8

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tR

e
th

r
o
w

">
7
5
9

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

7
6
0

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
"

/>
7
6
1

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

7
6
2

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

7
6
3

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
s
c
o
p
e
"

t
y
p
e=

"
tS

c
o
p
e
"

/>
7
6
4

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tS

c
o
p
e
">

7
6
5

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

7
6
6

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
">

7
6
7

<
x
s
d
:s

e
q
u
e
n
c
e>

7
6
8

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
p
a
r
tn

e
r
L

in
k
s
"

m
in

O
c
c
u
r
s=

"
0
"

/>
7
6
9

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
"

m
in

O
c
c
u
r
s=

"
0
"

/>
7
7
0

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
v
a
r
i
a
b
le

s
"

m
in

O
c
c
u
r
s=

"
0
"

/>
7
7
1

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
c
o
r
r
e
la

t
i
o
n
S
e
t
s
"

m
in

O
c
c
u
r
s=

"
0
"

/>
7
7
2

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
fa

u
lt

H
a
n
d
le

r
s
"

m
in

O
c
c
u
r
s=

"
1
"

/>
7
7
3

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
c
o
m

p
e
n
s
a
ti

o
n
H

a
n
d
le

r
"

m
in

O
c
c
u
r
s=

"
1
"

/>
7
7
4

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
te

r
m

in
a
ti

o
n
H

a
n
d
le

r
"

m
in

O
c
c
u
r
s=

"
1
"

/>
7
7
5

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
e
v
e
n
tH

a
n
d
le

r
s
"

m
in

O
c
c
u
r
s=

"
0
"

/>
7
7
6

<
x
s
d
:g

r
o
u
p

r
e
f=

"
a
c
t
i
v
i
t
y
"

/>
7
7
7

<
/
x
s
d
:s

e
q
u
e
n
c
e>

7
7
8

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
n
a
m

e
"

t
y
p
e=

"
x
sd

:N
C

N
a
m

e
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
7
7
9

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
i
s
o
la

t
e
d
"

t
y
p
e=

"
tB

o
o
le

a
n
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
7
8
0

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

"
t
y
p
e=

"
tB

o
o
le

a
n
"

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
7
8
1

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

7
8
2

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

7
8
3

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

7
8
4

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
o
m

p
e
n
s
a
ti

o
n
H

a
n
d
le

r
"

t
y
p
e=

"
t
A

c
t
iv

it
y
C

o
n
t
a
in

e
r
"

>
7
8
5

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

7
8
6

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

7
8
7

T
h
is

e
le

m
e
n
t

c
a
n

c
o
n
t
a
in

a
l
l

a
c
t
i
v

i
t
i
e
s

in
c
lu

d
in

g
t
h
e

7
8
8

a
c
t
i
v

i
t
i
e
s

c
o
m

p
e
n
s
a
t
e

a
n
d

c
o
m

p
e
n
s
a
t
e
S
c
o
p
e
.

7
8
9

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

7
9
0

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

7
9
1

<
/
x
s
d
:e

le
m

e
n
t>

7
9
2

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
te

r
m

in
a
ti

o
n
H

a
n
d
le

r
"

t
y
p
e=

"
t
A

c
t
iv

it
y
C

o
n
t
a
in

e
r
">

7
9
3

<
x
s
d
:a

n
n
o
t
a
t
io

n
>

7
9
4

<
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

7
9
5

T
h
is

e
le

m
e
n
t

c
a
n

c
o
n
t
a
in

a
l
l

a
c
t
i
v

i
t
i
e
s

in
c
lu

d
in

g
t
h
e

7
9
6

a
c
t
i
v

i
t
i
e
s

c
o
m

p
e
n
s
a
t
e

a
n
d

c
o
m

p
e
n
s
a
t
e
S
c
o
p
e
.

7
9
7

<
/
x
s
d
:d

o
c
u
m

e
n
t
a
t
io

n
>

7
9
8

<
/
x
s
d
:a

n
n
o
t
a
t
io

n
>

7
9
9

<
/
x
s
d
:e

le
m

e
n
t>

8
0
0

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
th

r
o
w

"
t
y
p
e=

"
tT

h
r
o
w

"
/>

8
0
1

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tT

h
r
o
w

">
8
0
2

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

8
0
3

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
">

8
0
4

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
fa

u
lt

N
a
m

e
"

t
y
p
e=

"
x
sd

:Q
N

a
m

e
"

8
0
5

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
8
0
6

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
f
a
u
lt

V
a
r
i
a
b
le

"
t
y
p
e=

"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
"

/>
8
0
7

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

8
0
8

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

8
0
9

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

8
1
0

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
v
a
li

d
a
t
e
"

t
y
p
e=

"
t
V

a
li

d
a
t
e
"

/>
8
1
1

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
V

a
li

d
a
t
e
">

8
1
2

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

8
1
3

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
">

8
1
4

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

s
"

t
y
p
e=

"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
s
"

8
1
5

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
8
1
6

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

8
1
7

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

8
1
8

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

8
1
9

<
x
s
d
:s

im
p
le

T
y
p
e

n
a
m

e=
"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
s
">

8
2
0

<
x
s
d

:r
e
s
t
r
ic

t
io

n
>

8
2
1

<
x
s
d
:s

im
p
le

T
y
p
e>

8
2
2

<
x

s
d

:
l
i
s
t

it
e
m

T
y
p
e=

"
B

P
E
L
V

a
r
ia

b
le

N
a
m

e
"

/>
8
2
3

<
/
x
s
d
:s

im
p
le

T
y
p
e>

8
2
4

<
x
s
d
:m

in
L

e
n
g
t
h

v
a
lu

e
=
"
1
"

/>
8
2
5

<
/

x
s
d

:r
e
s
t
r
ic

t
io

n
>

8
2
6

<
/
x
s
d
:s

im
p
le

T
y
p
e>

8
2
7

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
w

a
it

"
t
y
p
e=

"
tW

a
it

"
/>

8
2
8

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tW

a
it

">
8
2
9

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

210 6.B. XML Schema for Core BPEL
8
3
0

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
">

8
3
1

<
x
s
d
:c

h
o
ic

e
>

8
3
2

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
fo

r
"

/>
8
3
3

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
u
n
t
i
l
"

/>
8
3
4

<
/
x
s
d
:c

h
o
ic

e
>

8
3
5

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

8
3
6

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

8
3
7

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

8
3
8

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
w

h
il

e
"

t
y
p
e=

"
tW

h
il

e
"

/>
8
3
9

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tW

h
il

e
">

8
4
0

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

8
4
1

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
A

c
t
i
v
i
t
y
">

8
4
2

<
x
s
d
:s

e
q
u
e
n
c
e>

8
4
3

<
x
s
d
:e

le
m

e
n
t

r
e
f=

"
c
o
n
d
it

io
n
"

/>
8
4
4

<
x
s
d
:g

r
o
u
p

r
e
f=

"
a
c
t
i
v
i
t
y
"

/>
8
4
5

<
/
x
s
d
:s

e
q
u
e
n
c
e>

8
4
6

<
/
x
s
d
:e

x
t
e
n
s
io

n
>

8
4
7

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

8
4
8

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

8
4
9

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
t
E

x
p
r
e
s
s
io

n
"

m
ix

e
d
=
"
t
r
u
e
">

8
5
0

<
x
s
d
:s

e
q
u
e
n
c
e>

8
5
1

<
x
s
d
:a

n
y

p
r
o
c
e
s
s
C

o
n
t
e
n
t
s=

"
la

x
"

m
in

O
c
c
u
r
s=

"
0
"

8
5
2

m
a
x
O

c
c
u
rs

=
"
u
n
b
o
u
n
d
e
d
"

/>
8
5
3

<
/
x
s
d
:s

e
q
u
e
n
c
e>

8
5
4

<
x
s
d

:a
t
t
r
ib

u
t
e

n
a
m

e=
"
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

t
y
p
e=

"
x
s
d
:a

n
y
U

R
I
"

8
5
5

u
s
e=

"
r
e
q
u
ir

e
d
"

/>
8
5
6

<
x
s
d
:a

n
y
A

t
t
r
ib

u
t
e

n
a
m

e
s
p
a
c
e=

"#
#

o
t
h
e
r
"

p
r
o
c
e
s
s
C

o
n
t
e
n
t
s=

"
la

x
"

/>
8
5
7

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

8
5
8

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tC

o
n
d
it

io
n
"

m
ix

e
d
=
"
t
r
u
e
">

8
5
9

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t

m
ix

e
d
=
"
t
r
u
e
">

8
6
0

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
p
r
e
s
s
io

n
"

/>
8
6
1

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

8
6
2

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

8
6
3

<
x
s
d
:e

le
m

e
n
t

n
a
m

e=
"
c
o
n
d
it

io
n
"

t
y
p
e=

"
tB

o
o
le

a
n

e
x
p
r
"

/>
8
6
4

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tB

o
o
le

a
n

e
x
p
r
"

m
ix

e
d
=
"
t
r
u
e
">

8
6
5

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t

m
ix

e
d
=
"
t
r
u
e
">

8
6
6

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
p
r
e
s
s
io

n
"

/>
8
6
7

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

8
6
8

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

8
6
9

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tD

u
r
a
ti

o
n

e
x
p
r
"

m
ix

e
d
=
"
t
r
u
e
">

8
7
0

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t

m
ix

e
d
=
"
t
r
u
e
">

8
7
1

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
p
r
e
s
s
io

n
"

/>
8
7
2

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

8
7
3

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

8
7
4

<
x
s
d
:c

o
m

p
le

x
T

y
p
e

n
a
m

e=
"
tD

e
a
d
li

n
e

e
x
p
r
"

m
ix

e
d
=
"
t
r
u
e
">

8
7
5

<
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t

m
ix

e
d
=
"
t
r
u
e
">

8
7
6

<
x
s
d
:e

x
t
e
n
s
io

n
b
a
s
e=

"
t
E

x
p
r
e
s
s
io

n
"

/>
8
7
7

<
/
x
s
d
:c

o
m

p
le

x
C

o
n
t
e
n
t>

8
7
8

<
/
x
s
d
:c

o
m

p
le

x
T

y
p
e>

8
7
9

<
x
s
d
:s

im
p
le

T
y
p
e

n
a
m

e=
"
tB

o
o
le

a
n
">

8
8
0

<
x
s
d

:r
e
s
t
r
ic

t
io

n
b
a
s
e=

"
x
s
d
:
s
t
r
i
n
g
">

8
8
1

<
x
s
d
:e

n
u
m

e
r
a
t
io

n
v
a
lu

e
=
"
y
e
s
"

/>
8
8
2

<
x
s
d
:e

n
u
m

e
r
a
t
io

n
v
a
lu

e
=
"
n
o
"

/>
8
8
3

<
/

x
s
d

:r
e
s
t
r
ic

t
io

n
>

8
8
4

<
/
x
s
d
:s

im
p
le

T
y
p
e>

8
8
5

<
/
x
s
d
:s

c
h
e
m

a
>

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 211

6.
C

T
ra

ns
fo

rm
at

io
n

E
xa

m
pl

e
T
hi
s
ap

pe
nd

ix
sh
ow

s
ho

w
an

ex
am

pl
e
W

S-
B
P
E
L

pr
oc
es
s,

cf
.

Se
ct
io
n
6.
C
.1
,l
oo

ks
af
te
r
be

in
g
tr
an

sf
or
m
ed

by
ou

r
tr
an

sf
or
m
a-

ti
on

s,
cf
.
Se
ct
io
n
6.
C
.2
.
T
he

W
SD

L
in
te
rf
ac
e
fo
r
th
e
pr
oc
es
se
s

is
lis
te
d
in

Se
ct
io
n
6.
C
.3
.

6.
C
.1

ec
h
o.
b
p
el

1
<?

x
m
l

v
e
r
s
i
o
n
=
"
1
.
0
"

e
n
c
o
d
i
n
g
=
"
IS

O
-
8
8
5
9
-
1
"
?
>

2 3
<
p
r
o
c
e
s
s

4
n
a
m
e
=
"
e
c
h
o
S
e
r
v
i
c
e
"

5
t
a
r
g
e
t
N
a
m
e
s
p
a
c
e
=
"
h
t
t
p
:
/
/
b
e
e
p
e
l
l
.
c
o
m
/
s
a
m
p
l
e
s
/
e
c
h
o
"

6
x
m
l
n
s
=
"
h
t
t
p
:
/
/
d
o
c
s
.
o
a
s
i
s
-
o
p
e
n
.
o
r
g
/
w
s
b
p
e
l
/
2
.
0
/

p
r
o
c
e
s
s
/
e
x
e
c
u
t
a
b
l
e
"

7
x
m
l
n
s
:
b
p
e
l
=
"
h
t
t
p
:
/
/
d
o
c
s
.
o
a
s
i
s
-
o
p
e
n
.
o
r
g
/
w
s
b
p
e
l
/
2
.
0
/

p
r
o
c
e
s
s
/
e
x
e
c
u
t
a
b
l
e
"

8
x
m
l
n
s
:
s
r
v
=
"
h
t
t
p
:
/
/
b
e
e
p
e
l
l
.
c
o
m
/
s
a
m
p
l
e
s
/
e
c
h
o
/

d
e
f
i
n
i
t
i
o
n
s
"

9
x
m
l
n
s
:
x
s
d
=
"
h
t
t
p
:
/
/
w
w
w
.
w3

.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
"
>

1
0

1
1

<
i
m
p
o
r
t

1
2

n
a
m
e
s
p
a
c
e
=
"
h
t
t
p
:
/
/
b
e
e
p
e
l
l
.
c
o
m
/
s
a
m
p
l
e
s
/
e
c
h
o
/

d
e
f
i
n
i
t
i
o
n
s
"

1
3

l
o
c
a
t
i
o
n
=
"
./

e
c
h
o
.
w
s
d
l
"

1
4

i
m
p
o
r
t
T
y
p
e
=
"
h
t
t
p
:
/
/
s
c
h
e
m
a
s
.
x
m
l
s
o
a
p
.
o
r
g
/
w
s
d
l
/
"

/
>

1
5

1
6

<
p
a
r
t
n
e
r
L
i
n
k
s
>

1
7

<
p
a
r
t
n
e
r
L
i
n
k

1
8

n
a
m
e
=
"
e
c
h
o
P
a
r
t
n
e
r
L
i
n
k
"

1
9

p
a
r
t
n
e
r
L
i
n
k
T
y
p
e
=
"
s
r
v
:
e
c
h
o
P
a
r
t
n
e
r
L
i
n
k
T
y
p
e
"

2
0

m
y
R
o
l
e
=
"
e
c
h
o
S
e
r
v
i
c
e
P
r
o
v
i
d
e
r
"

/
>

2
1

</
p
a
r
t
n
e
r
L
i
n
k
s
>

2
2

2
3

<
v
a
r
i
a
b
l
e
s
>

2
4

<
v
a
r
i
a
b
l
e

2
5

n
a
m
e
=
"
m
e
s
s
a
g
e
"

2
6

m
e
s
s
a
g
e
T
y
p
e
=
"
s
r
v
:
e
c
h
o
M
e
s
s
a
g
e
"

/
>

2
7

</
v
a
r
i
a
b
l
e
s
>

2
8

2
9

<
s
e
q
u
e
n
c
e
>

3
0

<
r
e
c
e
i
v
e

n
a
m
e
=
"
r
e
c
e
i
v
e
"

3
1

p
a
r
t
n
e
r
L
i
n
k
=
"
e
c
h
o
P
a
r
t
n
e
r
L
i
n
k
"

3
2

o
p
e
r
a
t
i
o
n
=
"
e
c
h
o
O
p
e
r
a
t
i
o
n
"

3
3

c
r
e
a
t
e
I
n
s
t
a
n
c
e
=
"
y
e
s
"

3
4

v
a
r
i
a
b
l
e
=
"
m
e
s
s
a
g
e
"

/
>

3
5

<
r
e
p
l
y

3
6

p
a
r
t
n
e
r
L
i
n
k
=
"
e
c
h
o
P
a
r
t
n
e
r
L
i
n
k
"

3
7

o
p
e
r
a
t
i
o
n
=
"
e
c
h
o
O
p
e
r
a
t
i
o
n
"

3
8

v
a
r
i
a
b
l
e
=
"
m
e
s
s
a
g
e
"

/
>

3
9

</
s
e
q
u
e
n
c
e
>

4
0

</
p
r
o
c
e
s
s
>

6.
C
.2

ec
h
o.
cb
p
el

1
<?

x
m
l

v
e
r
s
i
o
n
=
"
1
.
0
"

e
n
c
o
d
i
n
g
=
"
IS

O
-
8
8
5
9
-
1
"
?
>

2 3
<
b
p
e
l
:
p
r
o
c
e
s
s

4
x
m
l
n
s
:
b
p
e
l
=
"
h
t
t
p
:
/
/
d
o
c
s
.
o
a
s
i
s
-
o
p
e
n
.
o
r
g
/
w
s
b
p
e
l
/
2
.
0
/

p
r
o
c
e
s
s
/
e
x
e
c
u
t
a
b
l
e
"

5
n
a
m
e
=
"
e
c
h
o
S
e
r
v
i
c
e
"

6
t
a
r
g
e
t
N
a
m
e
s
p
a
c
e
=
"
h
t
t
p
:
/
/
b
e
e
p
e
l
l
.
c
o
m
/
s
a
m
p
l
e
s
/
e
c
h
o
"
>

7 8
<
i
m
p
o
r
t

9
x
m
l
n
s
=
"
h
t
t
p
:
/
/
d
o
c
s
.
o
a
s
i
s
-
o
p
e
n
.
o
r
g
/
w
s
b
p
e
l
/
2
.
0
/

p
r
o
c
e
s
s
/
e
x
e
c
u
t
a
b
l
e
"

1
0

x
m
l
n
s
:
s
r
v
=
"
h
t
t
p
:
/
/
b
e
e
p
e
l
l
.
c
o
m
/
s
a
m
p
l
e
s
/
e
c
h
o
/

d
e
f
i
n
i
t
i
o
n
s
"

1
1

x
m
l
n
s
:
x
s
d
=
"
h
t
t
p
:
/
/
w
w
w
.
w3

.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
"

1
2

i
m
p
o
r
t
T
y
p
e
=
"
h
t
t
p
:
/
/
s
c
h
e
m
a
s
.
x
m
l
s
o
a
p
.
o
r
g
/
w
s
d
l
/
"

1
3

l
o
c
a
t
i
o
n
=
"
./

e
c
h
o
.
w
s
d
l
"

1
4

n
a
m
e
s
p
a
c
e
=
"
h
t
t
p
:
/
/
b
e
e
p
e
l
l
.
c
o
m
/
s
a
m
p
l
e
s
/
e
c
h
o
/

d
e
f
i
n
i
t
i
o
n
s
"
/
>

1
5

1
6

<
b
p
e
l
:
s
c
o
p
e

1
7

x
m
l
n
s
=
"
h
t
t
p
:
/
/
d
o
c
s
.
o
a
s
i
s
-
o
p
e
n
.
o
r
g
/
w
s
b
p
e
l
/
2
.
0
/

p
r
o
c
e
s
s
/
e
x
e
c
u
t
a
b
l
e
"

1
8

x
m
l
n
s
:
s
r
v
=
"
h
t
t
p
:
/
/
b
e
e
p
e
l
l
.
c
o
m
/
s
a
m
p
l
e
s
/
e
c
h
o
/

d
e
f
i
n
i
t
i
o
n
s
"

1
9

x
m
l
n
s
:
x
s
d
=
"
h
t
t
p
:
/
/
w
w
w
.
w3

.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
"

2
0

e
x
i
t
O
n
S
t
a
n
d
a
r
d
F
a
u
l
t
=
"
no

"
2
1

i
s
o
l
a
t
e
d
=
"
no

"
2
2

n
a
m
e
=
"
e
c
h
o
S
e
r
v
i
c
e
"
>

2
3

2
4

<
p
a
r
t
n
e
r
L
i
n
k
s
>

2
5

<
p
a
r
t
n
e
r
L
i
n
k

2
6

m
y
R
o
l
e
=
"
e
c
h
o
S
e
r
v
i
c
e
P
r
o
v
i
d
e
r
"

212 6.C. Transformation Example
2
7

n
a
m
e
=
"
e
c
h
o
P
a
r
t
n
e
r
L
i
n
k
"

2
8

p
a
r
t
n
e
r
L
i
n
k
T
y
p
e
=
"
s
r
v
:
e
c
h
o
P
a
r
t
n
e
r
L
i
n
k
T
y
p
e
"
/
>

2
9

</
p
a
r
t
n
e
r
L
i
n
k
s
>

3
0

3
1

<
b
p
e
l
:
m
e
s
s
a
g
e
E
x
c
h
a
n
g
e
s
>

3
2

<
b
p
e
l
:
m
e
s
s
a
g
e
E
x
c
h
a
n
g
e

3
3

n
a
m
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
3
7
D
e
f
a
u
l
t
M
e
s
s
a
g
e
E
x
c
h
a
n
g
e
"
/
>

3
4

</
b
p
e
l
:
m
e
s
s
a
g
e
E
x
c
h
a
n
g
e
s
>

3
5

3
6

<
v
a
r
i
a
b
l
e
s
>

3
7

<
v
a
r
i
a
b
l
e

m
e
s
s
a
g
e
T
y
p
e
=
"
s
r
v
:
e
c
h
o
M
e
s
s
a
g
e
"

n
a
m
e
=
"

m
e
s
s
a
g
e
"
/
>

3
8

</
v
a
r
i
a
b
l
e
s
>

3
9

4
0

<
b
p
e
l
:
f
a
u
l
t
H
a
n
d
l
e
r
s
>

4
1

<
b
p
e
l
:
c
a
t
c
h
A
l
l
>

4
2

<
b
p
e
l
:
f
l
o
w

4
3

n
a
m
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
7
2
F
r
e
s
h
A
c
t
i
v
i
t
y
N
a
m
e

"
4
4

s
u
p
p
r
e
s
s
J
o
i
n
F
a
i
l
u
r
e
=
"
no

"
>

4
5

4
6

<
b
p
e
l
:
l
i
n
k
s
>

4
7

<
b
p
e
l
:
l
i
n
k

n
a
m
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
7
0
F
r
e
s
h
S
e
q
u
e
n
c
e
L
i
n
k
"
/
>

4
8

</
b
p
e
l
:
l
i
n
k
s
>

4
9

5
0

<
b
p
e
l
:
f
l
o
w

5
1

n
a
m
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
7
7
F
r
e
s
h
A
c
t
i
v
i
t
y
N
a
m
e
"

5
2

s
u
p
p
r
e
s
s
J
o
i
n
F
a
i
l
u
r
e
=
"
no

"
>

5
3

<
b
p
e
l
:
s
o
u
r
c
e
s
>

5
4

<
b
p
e
l
:
s
o
u
r
c
e

l
i
n
k
N
a
m
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
7
0
F
r
e
s
h
S
e
q
u
e
n
c
e
L
i
n
k
"
>

5
5

<
b
p
e
l
:
t
r
a
n
s
i
t
i
o
n
C
o
n
d
i
t
i
o
n

5
6

e
x
p
r
e
s
s
i
o
n
L
a
n
g
u
a
g
e
=
"
u
r
n
:
o
a
s
i
s
:
n
a
m
e
s

:
tc

:
w
s
b
p
e
l
:
2
.
0
:
s
u
b
l
a
n
g
:
x
p
a
t
h
1
.0

"
>

5
7

t
r
u
e
()

5
8

</
b
p
e
l
:
t
r
a
n
s
i
t
i
o
n
C
o
n
d
i
t
i
o
n
>

5
9

</
b
p
e
l
:
s
o
u
r
c
e
>

6
0

</
b
p
e
l
:
s
o
u
r
c
e
s
>

6
1

<
b
p
e
l
:
c
o
m
p
e
n
s
a
t
e
/
>

6
2

</
b
p
e
l
:
fl

ow
>

6
3

6
4

<
b
p
e
l
:
f
l
o
w

6
5

n
a
m
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
8
7
F
r
e
s
h
A
c
t
i
v
i
t
y
N
a
m
e
"

6
6

s
u
p
p
r
e
s
s
J
o
i
n
F
a
i
l
u
r
e
=
"
no

"
>

6
7

<
b
p
e
l
:
t
a
r
g
e
t
s
>

6
8

<
b
p
e
l
:
j
o
i
n
C
o
n
d
i
t
i
o
n

6
9

e
x
p
r
e
s
s
i
o
n
L
a
n
g
u
a
g
e
=
"
u
r
n
:
o
a
s
i
s
:
n
a
m
e
s
:

tc
:
w
s
b
p
e
l
:
2
.
0
:
s
u
b
l
a
n
g
:
x
p
a
t
h
1
.0

"
>

7
0

$
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
7
0
F
r
e
s
h
S
e
q
u
e
n
c
e
L
i
n
k

7
1

</
b
p
e
l
:
j
o
i
n
C
o
n
d
i
t
i
o
n
>

7
2

<
b
p
e
l
:
t
a
r
g
e
t

7
3

l
i
n
k
N
a
m
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
7
0
F
r
e
s
h
S
e
q
u
e
n
c
e
L
i
n
k
"
/
>

7
4

</
b
p
e
l
:
t
a
r
g
e
t
s
>

7
5

<
b
p
e
l
:
r
e
t
h
r
o
w
/
>

7
6

</
b
p
e
l
:
fl

ow
>

7
7

</
b
p
e
l
:
fl

ow
>

7
8

</
b
p
e
l
:
c
a
t
c
h
A
l
l
>

7
9

</
b
p
e
l
:
f
a
u
l
t
H
a
n
d
l
e
r
s
>

8
0

8
1

<
b
p
e
l
:
c
o
m
p
e
n
s
a
t
i
o
n
H
a
n
d
l
e
r
>

8
2

<
b
p
e
l
:
c
o
m
p
e
n
s
a
t
e
/
>

8
3

</
b
p
e
l
:
c
o
m
p
e
n
s
a
t
i
o
n
H
a
n
d
l
e
r
>

8
4

8
5

<
b
p
e
l
:
t
e
r
m
i
n
a
t
i
o
n
H
a
n
d
l
e
r
>

8
6

<
b
p
e
l
:
c
o
m
p
e
n
s
a
t
e
/
>

8
7

</
b
p
e
l
:
t
e
r
m
i
n
a
t
i
o
n
H
a
n
d
l
e
r
>

8
8

8
9

<
b
p
e
l
:
f
l
o
w

9
0

n
a
m
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
6
0
3
F
r
e
s
h
A
c
t
i
v
i
t
y
N
a
m
e
"

9
1

s
u
p
p
r
e
s
s
J
o
i
n
F
a
i
l
u
r
e
=
"
no

"
>

9
2

9
3

<
b
p
e
l
:
l
i
n
k
s
>

9
4

<
b
p
e
l
:
l
i
n
k

n
a
m
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
7
8
F
r
e
s
h
S
e
q
u
e
n
c
e
L
i
n
k
"
/
>

9
5

</
b
p
e
l
:
l
i
n
k
s
>

9
6

9
7

<
b
p
e
l
:
f
l
o
w

9
8

n
a
m
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
6
0
8
F
r
e
s
h
A
c
t
i
v
i
t
y
N
a
m
e
"

9
9

s
u
p
p
r
e
s
s
J
o
i
n
F
a
i
l
u
r
e
=
"
no

"
>

1
0
0

<
b
p
e
l
:
s
o
u
r
c
e
s
>

1
0
1

<
b
p
e
l
:
s
o
u
r
c
e

1
0
2

l
i
n
k
N
a
m
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
7
8
F
r
e
s
h
S
e
q
u
e
n
c
e
L
i
n
k
"
>

1
0
3

<
b
p
e
l
:
t
r
a
n
s
i
t
i
o
n
C
o
n
d
i
t
i
o
n

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 213

1
0
4

e
x
p
r
e
s
s
i
o
n
L
a
n
g
u
a
g
e
=
"
u
r
n
:
o
a
s
i
s
:
n
a
m
e
s
:
tc

:
w
s
b
p
e
l
:
2
.
0
:
s
u
b
l
a
n
g
:
x
p
a
t
h
1
.0

"
>

1
0
5

t
r
u
e
()

1
0
6

</
b
p
e
l
:
t
r
a
n
s
i
t
i
o
n
C
o
n
d
i
t
i
o
n
>

1
0
7

</
b
p
e
l
:
s
o
u
r
c
e
>

1
0
8

</
b
p
e
l
:
s
o
u
r
c
e
s
>

1
0
9

1
1
0

<
b
p
e
l
:
f
l
o
w

1
1
1

n
a
m
e
=
"
r
e
c
e
i
v
e
"

s
u
p
p
r
e
s
s
J
o
i
n
F
a
i
l
u
r
e
=
"
no

"
>

1
1
2

<
b
p
e
l
:
p
i
c
k

c
r
e
a
t
e
I
n
s
t
a
n
c
e
=
"
y
e
s
"
>

1
1
3

<
b
p
e
l
:
o
n
M
e
s
s
a
g
e

1
1
4

m
e
s
s
a
g
e
E
x
c
h
a
n
g
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
3
7
D
e
f
a
u
l
t
M
e
s
s
a
g
e
E
x
c
h
a
n
g
e
"

1
1
5

o
p
e
r
a
t
i
o
n
=
"
e
c
h
o
O
p
e
r
a
t
i
o
n
"

1
1
6

p
a
r
t
n
e
r
L
i
n
k
=
"
e
c
h
o
P
a
r
t
n
e
r
L
i
n
k
"

1
1
7

v
a
r
i
a
b
l
e
=
"
m
e
s
s
a
g
e
"
>

1
1
8

<
b
p
e
l
:
e
m
p
t
y
/
>

1
1
9

</
b
p
e
l
:
o
n
M
e
s
s
a
g
e
>

1
2
0

</
b
p
e
l
:
pi

ck
>

1
2
1

</
b
p
e
l
:
fl

ow
>

1
2
2

</
b
p
e
l
:
fl

ow
>

1
2
3

1
2
4

<
b
p
e
l
:
f
l
o
w

1
2
5

n
a
m
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
6
2
7
F
r
e
s
h
A
c
t
i
v
i
t
y
N
a
m
e
"

1
2
6

s
u
p
p
r
e
s
s
J
o
i
n
F
a
i
l
u
r
e
=
"
no

"
>

1
2
7

<
b
p
e
l
:
t
a
r
g
e
t
s
>

1
2
8

<
b
p
e
l
:
j
o
i
n
C
o
n
d
i
t
i
o
n

1
2
9

e
x
p
r
e
s
s
i
o
n
L
a
n
g
u
a
g
e
=
"
u
r
n
:
o
a
s
i
s
:
n
a
m
e
s
:
tc

:
w
s
b
p
e
l
:
2
.
0
:
s
u
b
l
a
n
g
:
x
p
a
t
h
1
.0

"
>

1
3
0

$
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
7
8
F
r
e
s
h
S
e
q
u
e
n
c
e
L
i
n
k

1
3
1

</
b
p
e
l
:
j
o
i
n
C
o
n
d
i
t
i
o
n
>

1
3
2

<
b
p
e
l
:
t
a
r
g
e
t

l
i
n
k
N
a
m
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
7
8
F
r
e
s
h
S
e
q
u
e
n
c
e
L
i
n
k
"
/
>

1
3
3

</
b
p
e
l
:
t
a
r
g
e
t
s
>

1
3
4

1
3
5

<
r
e
p
l
y

1
3
6

m
e
s
s
a
g
e
E
x
c
h
a
n
g
e
=
"
f
r
e
s
h
-
p
r
e
f
i
x
-0

N
6
5
5
3
7
D
e
f
a
u
l
t
M
e
s
s
a
g
e
E
x
c
h
a
n
g
e
"

1
3
7

o
p
e
r
a
t
i
o
n
=
"
e
c
h
o
O
p
e
r
a
t
i
o
n
"

1
3
8

p
a
r
t
n
e
r
L
i
n
k
=
"
e
c
h
o
P
a
r
t
n
e
r
L
i
n
k
"

1
3
9

v
a
r
i
a
b
l
e
=
"
m
e
s
s
a
g
e
"
/
>

1
4
0

</
b
p
e
l
:
fl

ow
>

1
4
1

</
b
p
e
l
:
fl

ow
>

1
4
2

</
b
p
e
l
:
s
c
o
p
e
>

1
4
3

</
b
p
e
l
:
p
r
o
c
e
s
s
>

6.
C
.3

ec
h
o.
w
sd
l

1
<?

x
m
l

v
e
r
s
i
o
n
=
"
1
.
0
"

e
n
c
o
d
i
n
g
=
"
IS

O
-
8
8
5
9
-
1
"
?
>

2 3
<
w
s
d
l
:
d
e
f
i
n
i
t
i
o
n
s

4
t
a
r
g
e
t
N
a
m
e
s
p
a
c
e
=
"
h
t
t
p
:
/
/
b
e
e
p
e
l
l
.
c
o
m
/
s
a
m
p
l
e
s
/
e
c
h
o
/

d
e
f
i
n
i
t
i
o
n
s
"

5
x
m
l
n
s
:
s
r
v
=
"
h
t
t
p
:
/
/
b
e
e
p
e
l
l
.
c
o
m
/
s
a
m
p
l
e
s
/
p
r
o
x
y
/

d
e
f
i
n
i
t
i
o
n
s
"

6
x
m
l
n
s
:
p
l
n
k
=
"
h
t
t
p
:
/
/
d
o
c
s
.
o
a
s
i
s
-
o
p
e
n
.
o
r
g
/
w
s
b
p
e
l
/
2
.
0
/

p
l
n
k
t
y
p
e
"

7
x
m
l
n
s
:
w
s
d
l
=
"
h
t
t
p
:
/
/
s
c
h
e
m
a
s
.
x
m
l
s
o
a
p
.
o
r
g
/
w
s
d
l
/
"

8
x
m
l
n
s
:
x
s
d
=
"
h
t
t
p
:
/
/
w
w
w
.
w3

.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
"
>

9

1
0

<
p
l
n
k
:
p
a
r
t
n
e
r
L
i
n
k
T
y
p
e

n
a
m
e
=
"
e
c
h
o
P
a
r
t
n
e
r
L
i
n
k
T
y
p
e
"
>

1
1

<
p
l
n
k
:
r
o
l
e

n
a
m
e
=
"
e
c
h
o
S
e
r
v
i
c
e
P
r
o
v
i
d
e
r
"

p
o
r
t
T
y
p
e
=
"

s
r
v
:
e
c
h
o
P
o
r
t
T
y
p
e
"

/
>

1
2

</
p
l
n
k
:
p
a
r
t
n
e
r
L
i
n
k
T
y
p
e
>

1
3

1
4

<
w
s
d
l
:
m
e
s
s
a
g
e

n
a
m
e
=
"
e
c
h
o
M
e
s
s
a
g
e
"
>

1
5

<
w
s
d
l
:
p
a
r
t

n
a
m
e
=
"
c
o
n
t
e
n
t
"

t
y
p
e
=
"
x
s
d
:
s
t
r
i
n
g
"

/
>

1
6

</
w
s
d
l
:
m
e
s
s
a
g
e
>

1
7

1
8

<
w
s
d
l
:
p
o
r
t
T
y
p
e

n
a
m
e
=
"
e
c
h
o
P
o
r
t
T
y
p
e
"
>

1
9

<
w
s
d
l
:
o
p
e
r
a
t
i
o
n

n
a
m
e
=
"
e
c
h
o
O
p
e
r
a
t
i
o
n
"
>

2
0

<
w
s
d
l
:
i
n
p
u
t

m
e
s
s
a
g
e
=
"
s
r
v
:
e
c
h
o
M
e
s
s
a
g
e
"

/
>

2
1

<
w
s
d
l
:
o
u
t
p
u
t

m
e
s
s
a
g
e
=
"
s
r
v
:
e
c
h
o
M
e
s
s
a
g
e
"

/
>

2
2

</
w
s
d
l
:
o
p
e
r
a
t
i
o
n
>

2
3

</
w
s
d
l
:
p
o
r
t
T
y
p
e
>

2
4

2
5

</
w
s
d
l
:
d
e
f
i
n
i
t
i
o
n
s
>

214 6.D. XSLT Transformations

6.D XSLT Transformations

6.D.1 Overview

File name Description

6.D.2 constants.xsl
This is a template library with various constants.

6.D.3 default-attribute-values-global.xsl
Make the global default attribute values explicit.
Attributes: expressionLanguage, queryLanguage.

6.D.4 default-attribute-values-inherited.xsl
Make the inherited default attribute values explicit.
Attributes: suppressJoinFailure, exitOnStandardFault.

6.D.5 default-attribute-values-simple.xsl
Make the simple default attribute values explicit.
Attributes: createInstance, ignoreMissingFromData,
initiate, isolated, succesfulBranchesOnly, validate.

6.D.6 default-conditions.xsl
Make the default join, transition, and completion conditions ex-
plicit.

6.D.7 default-handlers.xsl
Make the default fault, compensation, and termination handlers
explicit.

6.D.8 default-message-exchanges.xsl
Add default <messageExchange> to <process>, the immediate
<scope> of <onEvent>, and parallel <forEach>. Also, make the
use of these default message exchanges explicit.

6.D.9 fresh-names.xsl
Utility templates for generating fresh names.

6.D.10 if.xsl
Tranform <elseif>s into <else><if>s and add empty branches
to the <if>s that lack them.

6.D.11 invoke.xsl
Move the <scope>-parts of an <invoke> into an explicit enclosing
<scope>. Also, make temporary variables and assignments, due to
the use of <toParts>, <fromParts>, and/or references to element
variables, explicit.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 215

6.D.12 onEvent.xsl
Make temporary variables and assignments, due to the use
of <fromParts>, and/or references to element variables in
<onEvent>s, explicit.

6.D.13 pick.xsl
Make temporary variables and assignments, due to the use
of <fromParts>, and/or references to element variables in
<onMessage>s, explicit.

6.D.14 process.xsl
Move the scope-parts of a <process> into an explicit <scope>.

6.D.15 receive.xsl
Transform <receive> into <pick>.

6.D.16 remove-documentation.xsl
Remove all documentation elements.

6.D.17 remove-optional-extensions.xsl
Remove all optional extensions and their declarations.

6.D.18 remove-redundant-attributes.xsl
Remove the redundant attributes (only sound when default at-
tribute values have been made explicit).

6.D.19 repeatUntil.xsl
Transform <repeatUntil> into <while>.

6.D.20 reply.xsl
Make temporary variables and assignments, due to the use of
<toParts>, and/or references to an element variable, explicit.

6.D.21 scope.xsl
Make variable initialization explicit in all scopes (including
<process>) and make implicit variables and assignments in
<onEvent>s explicit.

6.D.22 sequence.xsl
Transform <sequence>s into <flow>s.

6.D.23 standard-attributes-elements.xsl

216 6.D. XSLT Transformations

Move <targets>, <sources>, and suppressJoinFailure from
activities to a new wrapping <flow>, except for activities that
have no <targets> or <sources>, where we push the value of
that attribute to all the child activities. Names are also moved
from activities (except <scope>s) to a new wrapping <flow> and
fresh names are added to unnamed <flow>s and <scope>s.

6.D.24 to-from-parts-element-variables.xsl
Utility templates to make temporary variables and assignments,
due to the use of <toParts>, <fromParts>, and/or references to
element variables, explicit.

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 217

6.
D
.2

co
n
st
an

ts
.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
T

h
is

i
s

a
te

m
p
la

te
li

b
r
a
r
y

w
it

h
v
a
r
io

u
s

c
o
n
s
t
a
n
t
s
.

>
4 5

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
6

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
7

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
8 9

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
x
p
a
th

U
R

N
">

u
r
n

:
o
a
s
is

:
n
a
m

e
s
:
t
c

:
w

s
b
p
e
l
:
2
.
0
:

s
u
b
la

n
g

:
x
p
a
t
h
1
.0

<
/

x
s
l
:
v
a
r
ia

b
le

>
1
0

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
W

S
B
P
E
L

n
a
m

e
s
p
a
c
e

U
R
I"

>
h
t
t
p

:/
/

d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/
e
x
e
c
u
t
a
b
le

<
/
x
s
l
:
v
a
r
ia

b
le

>
1
1

1
2

<
!

P
o
s
t
f
i
x
e
s

fo
r

fr
e
s
h

n
a
m

e
s

in
d
i
f
f
e
r
e
n
t

c
o
n
t
e
x
t
s
.

>
1
3

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

p
o
s
t
f
i
x
">

D
e
fa

u
lt

M
e
s
s
a
g
e
E

x
c
h
a
n
g
e
<

/
x
s
l
:
v
a
r
ia

b
le

>
1
4

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
fr

e
s
h

a
c
t
i
v
i
t
y

n
a
m

e
p
o
s
t
f
i
x
">

F
r
e
s
h
A

c
t
iv

it
y
N

a
m

e
<

/
x
s
l
:
v
a
r
ia

b
le

>
1
5

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
fr

e
s
h

s
e
q
u
e
n
c
e

li
n
k

p
o
s
t
f
i
x
">

F
r
e
s
h
S
e
q
u
e
n
c
e
L

in
k

<
/
x
s
l
:
v
a
r
ia

b
le

>
1
6

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
tm

p
c
o
n
d
it

io
n

v
a
r
ia

b
le

p
o
s
t
f
i
x
">

T
m

p
C

o
n
d
it

io
n
V

a
r
<

/
x
s
l
:
v
a
r
ia

b
le

>
1
7

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
tm

p
in

p
u
t

m
e
s
s
a
g
e

v
a
r
ia

b
le

p
o
s
t
f
i
x
">

T
m

p
In

p
u
tM

e
ss

a
g
e
V

a
r
<

/
x
s
l
:
v
a
r
ia

b
le

>
1
8

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
tm

p
o
u
tp

u
t

m
e
s
s
a
g
e

v
a
r
ia

b
le

p
o
s
t
f
i
x
">

T
m

p
O

u
tp

u
tM

e
ss

a
g
e
V

a
r<

/
x
s
l
:
v
a
r
ia

b
le

>
1
9

2
0

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.3

d
ef
au

lt
-a
tt
ri
b
u
te
-v
al
u
es
-g
lo
b
al
.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
M

a
k
e

th
e

g
lo

b
a
l

d
e
f
a
u
lt

a
t
t
r
i
b
u
t
e

v
a
lu

e
s

e
x
p
li

c
i
t
.

4
A

t
t
r
ib

u
t
e
s
:

e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e

,
q
u
e
r
y
L
a
n
g
u
a
g
e

>
5 6

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
7

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
8

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
9

1
0

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
1

1
2

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
c
o
n
s
t
a
n
t
s
.
x
s
l
"

/
>

1
3

1
4

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
5

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

/
>

1
6

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
q
u
e
r
y
L
a
n
g
u
a
g
e
"

/
>

1
7

<
x
s
l
:
c
o
p
y
>

1
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
9

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

2
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

s
e
le

c
t
=
"

$
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

/
>

2
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
q
u
e
r
y
L
a
n
g
u
a
g
e
"

s
e
le

c
t
=
"
$
q
u
e
r
y
L
a
n
g
u
a
g
e

"
/
>

2
2

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

2
3

<
/
x
s
l
:
c
o
p
y
>

2
4

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
5

2
6

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
p
r
o
c
e
s
s
">

2
7

<
x
s
l
:
c
o
p
y
>

2
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

2
9

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

3
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
">

3
1

<
x
s
l
:
c
h
o
o
s
e
>

3
2

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
@

e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
">

3
3

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

/
>

3
4

<
/
x
s
l
:
w

h
e
n
>

3
5

<
x
s
l
:
o
t
h
e
r
w

is
e
>

3
6

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
x
p
a
th

U
R

N
"

/
>

3
7

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

3
8

<
/
x
s
l
:
c
h
o
o
s
e
>

3
9

<
/
x
s
l
:
w

it
h

p
a
ra

m
>

4
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
q
u
e
r
y
L
a
n
g
u
a
g
e
">

4
1

<
x
s
l
:
c
h
o
o
s
e
>

4
2

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
@

q
u
e
r
y
L
a
n
g
u
a
g
e
">

4
3

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

q
u
e
r
y
L
a
n
g
u
a
g
e
"

/
>

4
4

<
/
x
s
l
:
w

h
e
n
>

4
5

<
x
s
l
:
o
t
h
e
r
w

is
e
>

4
6

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
x
p
a
th

U
R

N
"

/
>

4
7

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

4
8

<
/
x
s
l
:
c
h
o
o
s
e
>

4
9

<
/
x
s
l
:
w

it
h

p
a
ra

m
>

5
0

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

5
1

<
/
x
s
l
:
c
o
p
y
>

5
2

<
/
x
s
l
:
t
e
m

p
la

t
e
>

5
3

5
4

<
!

A
d
d
in

g
m

is
s
in

g
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e

a
t
t
r
i
b
u
t
e
s

>
5
5

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
b
r
a
n
c
h
e
s

|
b
p
e
l
:
c
o
n
d
it

io
n

|
b
p
e
l
:

fi
n
a
lC

o
u
n
te

r
V

a
lu

e
|

b
p
e
l
:
fo

r
|

b
p
e
l
:
fr

o
m

[
t
e
x
t
(
)
]

|
b
p
e
l
:

jo
in

C
o
n
d
it

io
n

|
b
p
e
l
:
r
e
p
e
a
tE

v
e
r
y

|
b
p
e
l
:
s
ta

r
tC

o
u
n
te

r
V

a
lu

e
|

b
p
e
l
:
to

[
t
e
x
t
(
)
]

|
b
p
e
l
:
t
r
a
n
s
it

io
n
C

o
n
d
it

io
n

|
b
p
e
l
:
u
n
t
i
l
">

5
6

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

/
>

5
7

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
q
u
e
r
y
L
a
n
g
u
a
g
e
"

/
>

5
8

<
x
s
l
:
c
o
p
y
>

5
9

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

6
0

6
1

<
!

i
f

e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e

a
t
t
r
i
b
u
t
e

i
s

m
is

s
in

g
a
d
d

i
t

>
6
2

<
x
s
l
:
i
f

t
e
s
t=

"
n
o
t
(
@

e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
)
">

6
3

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
">

6
4

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

/
>

6
5

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

6
6

<
/
x
s
l
:
if

>
6
7

6
8

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

6
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

s
e
le

c
t
=
"

$
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

/
>

7
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
q
u
e
r
y
L
a
n
g
u
a
g
e
"

s
e
le

c
t
=
"
$
q
u
e
r
y
L
a
n
g
u
a
g
e

"
/
>

7
1

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

7
2

<
/
x
s
l
:
c
o
p
y
>

7
3

<
/
x
s
l
:
t
e
m

p
la

t
e
>

7
4

7
5

<
!

A
d
d
in

g
m

is
s
in

g
q
u
e
r
y
L
a
n
g
u
g
e

a
t
t
r
i
b
u
t
e
s

>
7
6

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
q
u
e
r
y
">

7
7

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

/
>

7
8

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
q
u
e
r
y
L
a
n
g
u
a
g
e
"

/
>

7
9

<
x
s
l
:
c
o
p
y
>

8
0

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

8
1

8
2

<
!

i
f

q
u
e
r
y
L
a
n
g
u
a
g
e

a
t
t
r
i
b
u
t
e

i
s

m
is

s
in

g
a
d
d

i
t

>
8
3

<
x
s
l
:
i
f

t
e
s
t=

"
n
o
t
(
@

q
u
e
r
y
L
a
n
g
u
a
g
e
)
">

8
4

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
q
u
e
r
y
L
a
n
g
u
a
g
e
">

8
5

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
q
u
e
r
y
L
a
n
g
u
a
g
e
"

/
>

8
6

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

8
7

<
/
x
s
l
:
if

>
8
8

8
9

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

9
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

s
e
le

c
t
=
"

$
e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e
"

/
>

9
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
q
u
e
r
y
L
a
n
g
u
a
g
e
"

s
e
le

c
t
=
"
$
q
u
e
r
y
L
a
n
g
u
a
g
e

"
/
>

9
2

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

9
3

<
/
x
s
l
:
c
o
p
y
>

9
4

<
/
x
s
l
:
t
e
m

p
la

t
e
>

9
5

218 6.D. XSLT Transformations
9
6

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.4

d
ef
au

lt
-a
tt
ri
b
u
te
-v
al
u
es
-i
n
h
er
it
ed

.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
M

a
k
e

th
e

in
h
e
r
it

e
d

d
e
f
a
u
lt

a
t
t
r
i
b
u
t
e

v
a
lu

e
s

e
x
p
li

c
i
t
.

4
A

t
t
r
ib

u
t
e
s
:

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e

,
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

>
5 6

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
7

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
8

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
9

1
0

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
1

1
2

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
p
r
o
c
e
s
s
">

1
3

<
x
s
l
:
c
o
p
y
>

1
4

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
5

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

1
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

">
1
7

<
x
s
l
:
c
h
o
o
s
e
>

1
8

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
@

e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

">
1
9

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

"
/
>

2
0

<
/
x
s
l
:
w

h
e
n
>

2
1

<
x
s
l
:
o
t
h
e
r
w

is
e
>

2
2

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"

’n
o
’
"

/
>

2
3

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

2
4

<
/
x
s
l
:
c
h
o
o
s
e
>

2
5

<
/
x
s
l
:
w

it
h

p
a
ra

m
>

2
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

2
7

<
x
s
l
:
c
h
o
o
s
e
>

2
8

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

2
9

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

3
0

<
/
x
s
l
:w

h
e
n
>

3
1

<
x
s
l
:
o
t
h
e
r
w

is
e
>

3
2

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"

’n
o
’
"

/
>

3
3

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

3
4

<
/
x
s
l
:
c
h
o
o
s
e
>

3
5

<
/
x
s
l
:
w

it
h

p
a
ra

m
>

3
6

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

3
7

<
/
x
s
l
:
c
o
p
y
>

3
8

<
/
x
s
l
:
t
e
m

p
la

t
e
>

3
9

4
0

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
s
c
o
p
e
">

4
1

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

"
/
>

4
2

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

4
3

4
4

<
x
s
l
:
c
o
p
y
>

4
5

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

4
6

4
7

<
x
s
l
:
i
f

t
e
s
t=

"
n
o
t
(
@

e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

)
">

4
8

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

">
4
9

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

"
/
>

5
0

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

5
1

<
/
x
s
l
:
if

>
5
2

5
3

<
x
s
l
:
i
f

t
e
s
t=

"
n
o
t
(
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
)
">

5
4

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

5
5

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

5
6

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

5
7

<
/
x
s
l
:
if

>
5
8

5
9

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

6
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

">
6
1

<
x
s
l
:
c
h
o
o
s
e
>

6
2

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
@

e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

">
6
3

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

"
/
>

6
4

<
/
x
s
l
:
w

h
e
n
>

6
5

<
x
s
l
:
o
t
h
e
r
w

is
e
>

6
6

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

"
/
>

6
7

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

6
8

<
/
x
s
l
:
c
h
o
o
s
e
>

6
9

<
/
x
s
l
:
w

it
h

p
a
ra

m
>

7
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

7
1

<
x
s
l
:
c
h
o
o
s
e
>

7
2

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

7
3

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

7
4

<
/
x
s
l
:
w

h
e
n
>

7
5

<
x
s
l
:
o
t
h
e
r
w

is
e
>

7
6

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

7
7

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

7
8

<
/
x
s
l
:
c
h
o
o
s
e
>

7
9

<
/
x
s
l
:
w

it
h

p
a
ra

m
>

8
0

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

8
1

<
/
x
s
l
:
c
o
p
y
>

8
2

<
/
x
s
l
:
t
e
m

p
la

t
e
>

8
3

8
4

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
a
s
s
ig

n
|

b
p
e
l
:
c
o
m

p
e
n
s
a
te

|
b
p
e
l
:

c
o
m

p
e
n
s
a
te

S
c
o
p
e

|
b
p
e
l
:
e
m

p
ty

|
b
p
e
l
:
e
x
i
t

|
b
p
e
l
:

e
x
t
e
n
s
io

n
A

c
t
iv

it
y
/
∗

|
b
p
e
l
:
fl

o
w

|
b
p
e
l
:
fo

r
E

a
c
h

|
b
p
e
l
:
i
f

|
b
p
e
l
:
in

v
o
k
e

|
b
p
e
l
:
p
ic

k
|

b
p
e
l
:
r
e
c
e
iv

e
|

b
p
e
l
:
r
e
p
e
a
t
U

n
t
il

|
b
p
e
l
:
r
e
p
ly

|
b
p
e
l
:
r
e
th

r
o
w

|
b
p
e
l
:
s
e
q
u
e
n
c
e

|
b
p
e
l
:
th

r
o
w

|
b
p
e
l
:
v
a
li

d
a
t
e

|
b
p
e
l
:
w

a
it

|
b
p
e
l
:
w

h
il

e
">

8
5

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

"
/
>

8
6

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

8
7

8
8

<
x
s
l
:
c
o
p
y
>

8
9

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

9
0

<
x
s
l
:
i
f

t
e
s
t=

"
n
o
t
(
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
)
">

9
1

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

9
2

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

9
3

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

9
4

<
/
x
s
l
:
if

>
9
5

9
6

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

9
7

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

"
s
e
le

c
t
=
"

$
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

"
/
>

9
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

9
9

<
x
s
l
:
c
h
o
o
s
e
>

1
0
0

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

1
0
1

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

1
0
2

<
/
x
s
l
:
w

h
e
n
>

1
0
3

<
x
s
l
:
o
t
h
e
r
w

is
e
>

1
0
4

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

1
0
5

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

1
0
6

<
/
x
s
l
:
c
h
o
o
s
e
>

1
0
7

<
/
x
s
l
:
w

it
h

p
a
ra

m
>

1
0
8

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

1
0
9

<
/
x
s
l
:
c
o
p
y
>

1
1
0

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
1
1

1
1
2

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
1
3

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

"
/
>

1
1
4

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

1
1
5

<
x
s
l
:
c
o
p
y
>

1
1
6

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
1
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

1
1
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

"
s
e
le

c
t
=
"

$
e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

"
/
>

1
1
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"

$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

1
2
0

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

1
2
1

<
/
x
s
l
:
c
o
p
y
>

1
2
2

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
2
3

1
2
4

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 219

6.
D
.5

d
ef
au

lt
-a
tt
ri
b
u
te
-v
al
u
es
-s
im

p
le
.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
M

a
k
e

th
e

s
im

p
le

d
e
f
a
u
lt

a
t
t
r
i
b
u
t
e

v
a
lu

e
s

e
x
p
li

c
i
t
.

4
A

t
t
r
ib

u
t
e
s
:

c
r
e
a
t
e
I
n
s
t
a
n
c
e

,
ig

n
o
r
e
M

is
s
in

g
F
r
o
m

D
a
ta

,
i
n
i
t
i
a
t
e

,
is

o
la

t
e
d

,
s
u
c
c
e
s
fu

lB
r
a
n
c
h
e
s
O

n
ly

,
v
a
li

d
a
t
e

>
5 6

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
7

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
8

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
9

1
0

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
1

1
2

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
3

<
x
s
l
:
c
o
p
y
>

1
4

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
5

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
6

<
/
x
s
l
:
c
o
p
y
>

1
7

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
8

1
9

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
p
ic

k
[
n
o
t
(
@

c
r
e
a
te

I
n
s
ta

n
c
e
)
]

|
b
p
e
l
:

r
e
c
e
iv

e
[
n
o
t
(
@

c
r
e
a
te

I
n
s
ta

n
c
e
)
]
">

2
0

<
x
s
l
:
c
o
p
y
>

2
1

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

2
2

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
c
r
e
a
t
e
I
n
s
t
a
n
c
e
">

n
o
<

/
x
s
l
:
a
t
t
r
ib

u
t
e
>

2
3

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

2
4

<
/
x
s
l
:
c
o
p
y
>

2
5

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
6

2
7

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
c
o
p
y
[
n
o
t
(
@

ig
n
o
r
e
M

is
s
in

g
F
r
o
m

D
a
ta

)
]
">

2
8

<
x
s
l
:
c
o
p
y
>

2
9

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

3
0

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
ig

n
o
r
e
M

is
s
in

g
F

r
o
m

D
a
ta

">
n
o
<

/
x
s
l
:
a
t
t
r
ib

u
t
e

>
3
1

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

3
2

<
/
x
s
l
:
c
o
p
y
>

3
3

<
/
x
s
l
:
t
e
m

p
la

t
e
>

3
4

3
5

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
c
o
r
r
e
la

t
i
o
n

[
n
o
t
(
@

in
it

ia
t
e
)
]
">

3
6

<
x
s
l
:
c
o
p
y
>

3
7

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

3
8

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
i
n

i
t
i
a
t
e
">

n
o
<

/
x
s
l
:
a
t
t
r
ib

u
t
e
>

3
9

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

4
0

<
/
x
s
l
:
c
o
p
y
>

4
1

<
/
x
s
l
:
t
e
m

p
la

t
e
>

4
2

4
3

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
s
c
o
p
e
[
n
o
t
(
@

is
o
la

t
e
d
)
]
">

4
4

<
x
s
l
:
c
o
p
y
>

4
5

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

4
6

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
i
s
o
la

t
e
d
">

n
o
<

/
x
s
l
:
a
t
t
r
ib

u
t
e
>

4
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

4
8

<
/
x
s
l
:
c
o
p
y
>

4
9

<
/
x
s
l
:
t
e
m

p
la

t
e
>

5
0

5
1

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
b
r
a
n
c
h
e
s
[
n
o
t
(
@

s
u
c
c
e
s
s
fu

lB
r
a
n
c
h
e
s
O

n
ly

)
]
"

>
5
2

<
x
s
l
:
c
o
p
y
>

5
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

5
4

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
s
u
c
c
e
s
s
fu

lB
r
a
n
c
h
e
s
O

n
ly

">
n
o
<

/
x
s
l
:

a
t
t
r
ib

u
t
e
>

5
5

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

5
6

<
/
x
s
l
:
c
o
p
y
>

5
7

<
/
x
s
l
:
t
e
m

p
la

t
e
>

5
8

5
9

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
a
s
s
ig

n
[
n
o
t
(
@

v
a
li

d
a
t
e
)
]
">

6
0

<
x
s
l
:
c
o
p
y
>

6
1

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

6
2

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
li

d
a
t
e
">

n
o
<

/
x
s
l
:
a
t
t
r
ib

u
t
e
>

6
3

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

6
4

<
/
x
s
l
:
c
o
p
y
>

6
5

<
/
x
s
l
:
t
e
m

p
la

t
e
>

6
6

6
7

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.6

d
ef
au

lt
-c
on

d
it
io
n
s.
xs
l

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
M

a
k
e

th
e

d
e
f
a
u
lt

jo
in

,
t
r
a
n
s
it

io
n

,
a
n
d

c
o
m

p
le

ti
o
n

c
o
n
d
it

io
n
s

e
x
p
li

c
i
t
.

>
4 5

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
6

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
7

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
8 9

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
0

1
1

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
c
o
n
s
t
a
n
t
s
.
x
s
l
"

/
>

1
2

1
3

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
4

<
x
s
l
:
c
o
p
y
>

1
5

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
6

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
7

<
/
x
s
l
:
c
o
p
y
>

1
8

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
9

2
0

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
s
o
u
r
c
e
[
n
o
t
(
b
p
e
l
:
t
r
a
n
s
it

io
n
C

o
n
d
it

io
n

)
]
">

2
1

<
x
s
l
:
c
o
p
y
>

2
2

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

2
3

<
b
p
e
l
:
t
r
a
n
s
it

io
n
C

o
n
d
it

io
n

e
x
p
r
e
s
s
io

n
L

a
n
g
u
a
g
e
=
"
{
$
x
p
a
th

U
R

N
}
">

t
r
u
e

(
)
<

/
b
p
e
l
:
t
r
a
n
s
it

io
n
C

o
n
d
it

io
n

>
2
4

<
/
x
s
l
:
c
o
p
y
>

2
5

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
6

2
7

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
t
a
r
g
e
t
s
[
n
o
t
(
b
p
e
l
:
jo

in
C

o
n
d
it

io
n

)
]
">

2
8

<
x
s
l
:
c
o
p
y
>

2
9

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

3
0

<
b
p
e
l
:
jo

in
C

o
n
d
it

io
n

e
x
p
r
e
s
s
io

n
L

a
n
g
u
a
g
e
=
"
{
$
x
p
a
th

U
R

N
}
">

3
1

<
x
s
l
:
fo

r
e
a
c
h

s
e
le

c
t
=
"
b
p
e
l
:
t
a
r
g
e
t
">

3
2

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
c
o
n
c
a
t
(
’$

’
,

@
li
n
k
N

a
m

e
)
"
/
>

3
3

<
x
s
l
:
i
f

t
e
s
t=

"
fo

ll
o
w

in
g

s
i
b
li

n
g

:
:
b
p
e
l
:
t
a
r
g
e
t
">

o
r

<
/
x
s
l
:

if
>

3
4

<
/
x
s
l
:
fo

r
e
a
c
h
>

3
5

<
/
b
p
e
l
:
jo

in
C

o
n
d
it

io
n

>
3
6

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

3
7

<
/
x
s
l
:
c
o
p
y
>

3
8

<
/
x
s
l
:
t
e
m

p
la

t
e
>

3
9

4
0

<
!

A
d
d

e
m

p
ty

c
o
m

p
le

ti
o
n

c
o
n
d
it

io
n

w
h
e
r
e

m
is

s
in

g
>

4
1

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
fo

r
E

a
c
h

[
n
o
t
(
b
p
e
l
:
c
o
m

p
le

ti
o
n
C

o
n
d
it

io
n

)
]
"

>
4
2

<
x
s
l
:
c
o
p
y
>

4
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

4
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

4
5

<
b
p
e
l
:
c
o
m

p
le

t
io

n
C

o
n
d
it

io
n

/
>

4
6

<
/
x
s
l
:
c
o
p
y
>

4
7

<
/
x
s
l
:
t
e
m

p
la

t
e
>

4
8

4
9

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.7

d
ef
au

lt
-h
an

d
le
rs
.x
sl

220 6.D. XSLT Transformations
1

<
?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
M

a
k
e

th
e

d
e
f
a
u
lt

f
a
u
lt

,
c
o
m

p
e
n
s
a
ti

o
n

,
a
n
d

te
r
m

in
a
ti

o
n

h
a
n
d
le

r
s

e
x
p
li

c
i
t
.

>
4 5

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
6

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
7

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
8 9

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
0

<
x
s
l
:
c
o
p
y
>

1
1

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
2

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
3

<
/
x
s
l
:
c
o
p
y
>

1
4

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
5

1
6

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
[
n
o
t
(
b
p
e
l
:
c
a
t
c
h
A

ll
)
]
">

1
7

<
x
s
l
:
c
o
p
y
>

1
8

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
c
a
tc

h
"

/
>

1
9

<
b
p
e
l
:
c
a
t
c
h
A

ll
>

2
0

<
b
p
e
l
:
s
e
q
u
e
n
c
e
>

2
1

<
b
p
e
l
:
c
o
m

p
e
n
s
a
t
e

/
>

2
2

<
b
p
e
l
:
r
e
t
h
r
o
w

/
>

2
3

<
/
b
p
e
l
:
s
e
q
u
e
n
c
e
>

2
4

<
/
b
p
e
l
:
c
a
t
c
h
A

ll
>

2
5

<
/
x
s
l
:
c
o
p
y
>

2
6

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
7

2
8

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
s
c
o
p
e
[
n
o
t
(
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s
)

o
r

n
o
t
(

b
p
e
l
:
c
o
m

p
e
n
s
a
ti

o
n
H

a
n
d
le

r
)

o
r

n
o
t
(
b
p
e
l
:
te

r
m

in
a
ti

o
n
H

a
n
d
le

r
)
]
">

2
9

<
x
s
l
:
c
o
p
y
>

3
0

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

3
1

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
t
a
r
g
e
t
s
"

/
>

3
2

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
s
o
u
r
c
e
s
"

/
>

3
3

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
p
a
r
tn

e
r
L

in
k
s
"

/
>

3
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
"

/
>

3
5

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
v
a
r
i
a
b
le

s
"

/
>

3
6

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
c
o
r
r
e
la

t
i
o
n
S
e
t
s
"

/
>

3
7

3
8

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s
"

/
>

3
9

<
x
s
l
:
i
f

t
e
s
t=

"
n
o
t
(
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s
)
">

4
0

<
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s
>

4
1

<
b
p
e
l
:
c
a
t
c
h
A

ll
>

4
2

<
b
p
e
l
:
s
e
q
u
e
n
c
e
>

4
3

<
b
p
e
l
:
c
o
m

p
e
n
s
a
t
e

/
>

4
4

<
b
p
e
l
:
r
e
t
h
r
o
w

/
>

4
5

<
/
b
p
e
l
:
s
e
q
u
e
n
c
e
>

4
6

<
/
b
p
e
l
:
c
a
t
c
h
A

ll
>

4
7

<
/
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s
>

4
8

<
/
x
s
l
:
if

>
4
9

5
0

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
c
o
m

p
e
n
s
a
ti

o
n
H

a
n
d
le

r
"

/
>

5
1

<
x
s
l
:
i
f

t
e
s
t=

"
n
o
t
(
b
p
e
l
:
c
o
m

p
e
n
s
a
ti

o
n
H

a
n
d
le

r
)
">

5
2

<
b
p
e
l
:
c
o
m

p
e
n
s
a
t
io

n
H

a
n
d
le

r
>

5
3

<
b
p
e
l
:
c
o
m

p
e
n
s
a
t
e

/
>

5
4

<
/
b
p
e
l
:
c
o
m

p
e
n
s
a
t
io

n
H

a
n
d
le

r
>

5
5

<
/
x
s
l
:
if

>
5
6

5
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
te

r
m

in
a
ti

o
n
H

a
n
d
le

r
"

/
>

5
8

<
x
s
l
:
i
f

t
e
s
t=

"
n
o
t
(
b
p
e
l
:
te

r
m

in
a
ti

o
n
H

a
n
d
le

r
)
">

5
9

<
b
p
e
l
:
t
e
r
m

in
a
t
io

n
H

a
n
d
le

r
>

6
0

<
b
p
e
l
:
c
o
m

p
e
n
s
a
t
e

/
>

6
1

<
/
b
p
e
l
:
t
e
r
m

in
a
t
io

n
H

a
n
d
le

r
>

6
2

<
/
x
s
l
:
if

>
6
3

6
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
e
v
e
n
tH

a
n
d
le

r
s
"

/
>

6
5

6
6

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(

6
7

s
e
lf

:
:
b
p
e
l
:
t
a
r
g
e
t
s

o
r

6
8

s
e
lf

:
:
b
p
e
l
:
s
o
u
r
c
e
s

o
r

6
9

s
e
lf

:
:
b
p
e
l
:
p
a
r
tn

e
r
L

in
k
s

o
r

7
0

s
e
lf

:
:
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s

o
r

7
1

s
e
lf

:
:
b
p
e
l
:
v
a
r
i
a
b
le

s
o
r

7
2

s
e
lf

:
:
b
p
e
l
:
c
a
n
d
r
e
la

t
io

n
S
e
t
s

o
r

7
3

s
e
lf

:
:
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s

o
r

7
4

s
e
lf

:
:
b
p
e
l
:
c
o
m

p
e
n
s
a
ti

o
n
H

a
n
d
le

r
o
r

7
5

s
e
lf

:
:
b
p
e
l
:
te

r
m

in
a
ti

o
n
H

a
n
d
le

r
o
r

7
6

s
e
lf

:
:
b
p
e
l
:
e
v
e
n
tH

a
n
d
le

r
s

7
7

)
]
"

/
>

7
8

<
/
x
s
l
:
c
o
p
y
>

7
9

<
/
x
s
l
:
t
e
m

p
la

t
e
>

8
0

8
1

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.8

d
ef
au

lt
-m

es
sa
ge
-e
xc
h
an

ge
s.
xs
l

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
A

d
d

d
e
f
a
u
lt

<
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
>

to
<

p
r
o
c
e
s
s
>

,
th

e
im

m
e
d
ia

te
<

s
c
o
p
e
>

o
f

<
o
n
E

v
e
n
t
>

,
a
n
d

p
a
r
a
ll

e
l

<
fo

r
E

a
c
h
>

>
4

<
!

A
ls

o
,

m
a
k
e

th
e

u
s
e

o
f

t
h
e
s
e

d
e
f
a
u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e
s

e
x
p
li

c
i
t

>
5 6

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
7

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
8

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
9

1
0

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
1

1
2

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
c
o
n
s
t
a
n
t
s
.
x
s
l
"

/
>

1
3

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
fr

e
s
h

n
a
m

e
s
.
x
s
l
"

/
>

1
4

1
5

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
6

<
x
s
l
:
c
o
p
y
>

1
7

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
8

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
9

<
/
x
s
l
:
c
o
p
y
>

2
0

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
1

2
2

<
!

F
in

d
o
u
t

w
h
e
th

e
r

th
e

d
e
f
a
u
lt

m
e
s
s
a
g
e

o
f

th
e

g
iv

e
n

a
c
t
i
v
i
t
y

i
s

e
v
e
r

u
s
e
d

.
>

2
3

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
is

d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

u
s
e
d
">

2
4

<
!

A
c
t
i
v
i
t
y

s
h
o
u
ld

b
e

e
i
t
h
e
r

a
<

p
r
o
c
e
s
s
>

,
<

o
n
E

v
e
n
t
>

,
o
r

<
fo

r
E

a
c
h

p
a
r
a
ll

e
l=

"
y
e
s
"
>

.
>

2
5

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
a
c
t
i
v
i
t
y
"

s
e
le

c
t
=
"
a
n
c
e
s
to

r
o
r

s
e
lf

:
:
∗
[
s
e
lf

:
:

b
p
e
l
:
p
r
o
c
e
s
s

o
r

s
e
lf

:
:
b
p
e
l
:
o
n
E

v
e
n
t

o
r

s
e
lf

:
:
b
p
e
l
:
fo

r
E

a
c
h

[
@

p
a
r
a
ll

e
l=

’y
e
s

’
]
]
[
1
]
"

/
>

2
6

2
7

<
!

D
o
e
s

t
h
i
s

a
c
t
i
v
i
t
y

o
r

o
n
e

o
f

i
t
s

d
e
s
c
e
n
d
a
n
ts

,
w

h
ic

h
a
r
e

_
n
o
t_

in
s
id

e
2
8

a
n
o
th

e
r

s
c
o
p
e

w
it

h
a

d
e
f
a
u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

,
u
s
e

th
e

d
e
f
a
u
lt

m
e
s
s
a
g
e

2
9

e
x
c
h
a
n
g
e
?

>
3
0

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
0

&
l
t
;

c
o
u
n
t
(
$
a
c
t
i
v
i
t
y
/
d
e
s
c
e
n
d
a
n
t

o
r

s
e
lf

:
:
∗

3
1

[
(

s
e
lf

:
:
b
p
e
l
:
r
e
p
ly

o
r

s
e
lf

:
:
b
p
e
l
:
r
e
c
e
iv

e
o
r

s
e
lf

:
:
b
p
e
l
:
o
n
M

e
s
s
a
g
e

o
r

s
e
lf

:
:
b
p
e
l
:
o
n
E

v
e
n
t

)
a
n
d

3
2

n
o
t
(
@

m
e
s
s
a
g
e
E

x
c
h
a
n
g
e
)

a
n
d

3
3

a
n
c
e
s
to

r
o
r

s
e
lf

:
:
∗
[
s
e
lf

:
:
b
p
e
l
:
p
r
o
c
e
s
s

o
r

s
e
lf

:
:
b
p
e
l
:
o
n
E

v
e
n
t

o
r

s
e
lf

:
:
b
p
e
l
:

fo
r
E

a
c
h

[
@

p
a
r
a
ll

e
l=

’
y
e
s

’
]
]
[
1
]

=
$
a
c
t
i
v
i
t
y

]
)
"

/
>

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 221

3
4

<
/
x
s
l
:
t
e
m

p
la

t
e
>

3
5

3
6

<
!

C
o
n
s
tr

u
c
t

th
e

d
e
f
a
u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

n
a
m

e
fo

r
th

e
g
iv

e
n

s
c
o
p
e

3
7

(
w

h
ic

h
d
e
f
a
u
lt

s
to

th
e

c
lo

s
e
s
t

e
n
c
lo

s
in

g
s
c
o
p
e
/
p
r
o
c
e
s
s
)
.

>
3
8

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

n
a
m

e
">

3
9

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
s
c
o
p
e
"

s
e
le

c
t
=
"
a
n
c
e
s
to

r
o
r

s
e
lf

:
:
∗
[
s
e
lf

:
:
b
p
e
l
:

p
r
o
c
e
s
s

o
r

s
e
lf

:
:
b
p
e
l
:
s
c
o
p
e
[
p
a
r
e
n
t
:
:
b
p
e
l
:
o
n
E

v
e
n
t

o
r

p
a
r
e
n
t

:
:
b
p
e
l
:
fo

r
E

a
c
h

[
@

p
a
r
a
ll

e
l=

’y
e
s

’
]
]
]
[
1

]
"

/
>

4
0

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

4
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
$
s
c
o
p
e
"

/
>

4
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

p
o
s
t
f
i
x
"

/
>

4
3

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

4
4

<
/
x
s
l
:
t
e
m

p
la

t
e
>

4
5

4
6

<
!

C
r
e
a
te

th
e

d
e
f
a
u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

fo
r

th
e

g
iv

e
n

s
c
o
p
e

4
7

(
w

h
ic

h
d
e
f
a
u
lt

s
to

th
e

c
lo

s
e
s
t

e
n
c
lo

s
in

g
s
c
o
p
e
/
p
r
o
c
e
s
s
)
.

>
4
8

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e
">

4
9

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
s
c
o
p
e
"

s
e
le

c
t
=
"
a
n
c
e
s
to

r
o
r

s
e
lf

:
:
∗
[
s
e
lf

:
:
b
p
e
l
:

p
r
o
c
e
s
s

o
r

s
e
lf

:
:
b
p
e
l
:
s
c
o
p
e
[
p
a
r
e
n
t
:
:
b
p
e
l
:
o
n
E

v
e
n
t

o
r

p
a
r
e
n
t

:
:
b
p
e
l
:
fo

r
E

a
c
h

[
@

p
a
r
a
ll

e
l=

’y
e
s

’
]
]
]
[
1

]
"

/
>

5
0

<
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
>

5
1

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
n
a
m

e
">

5
2

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

n
a
m

e
">

5
3

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
s
c
o
p
e
"

s
e
le

c
t
=
"
$
s
c
o
p
e
"

/
>

5
4

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

5
5

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

5
6

<
/
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
>

5
7

<
/
x
s
l
:
t
e
m

p
la

t
e
>

5
8

5
9

<
!

A
d
d

d
e
f
a
u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e
s

to
th

e
r
e
le

v
a
n
t

e
le

m
e
n
ts

t
h
a
t

a
lr

e
a
d
y

h
a
v
e

a
n

<
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
>

e
le

m
e
n
t

>
6
0

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
p
r
o
c
e
s
s
/
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s

|
b
p
e
l
:

o
n
E

v
e
n
t/

b
p
e
l
:
s
c
o
p
e
/
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s

|
b
p
e
l
:
fo

r
E

a
c
h

[
@

p
a
r
a
ll

e
l=

’y
e
s

’
]
/

b
p
e
l
:
s
c
o
p
e
/
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
">

6
1

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
is

d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

u
s
e
d
">

6
2

<
x
s
l
:
c
h
o
o
s
e
>

6
3

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
p
a
r
e
n
t
:
:
b
p
e
l
:
p
r
o
c
e
s
s
">

6
4

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
is

d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

u
s
e
d

">
6
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
c
t
i
v
i
t
y
"

s
e
le

c
t
=
"

.
.
"

/
>

6
6

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

6
7

<
/
x
s
l
:
w

h
e
n
>

6
8

<
x
s
l
:
o
t
h
e
r
w

is
e
>

6
9

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
is

d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

u
s
e
d

">
7
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
c
t
i
v
i
t
y
"

s
e
le

c
t
=
"

.
.
/
.
.
"

/
>

7
1

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

7
2

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

7
3

<
/
x
s
l
:
c
h
o
o
s
e
>

7
4

<
/
x
s
l
:
v
a
r
ia

b
le

>
7
5

7
6

<
x
s
l
:
c
o
p
y
>

7
7

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

7
8

<
x
s
l
:
i
f

t
e
s
t=

"
$
is

d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

u
s
e
d

=
’
tr

u
e

’
">

7
9

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e
"

/
>

8
0

<
/
x
s
l
:
if

>
8
1

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

8
2

<
/
x
s
l
:
c
o
p
y
>

8
3

<
/
x
s
l
:
t
e
m

p
la

t
e
>

8
4

8
5

<
!

A
d
d

<
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
>

e
le

m
e
n
ts

a
n
d

d
e
f
a
u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e
s

to
th

e
8
6

r
e
le

v
a
n
t

e
le

m
e
n
ts

t
h
a
t

d
o
e
s

n
o
t

a
lr

e
a
d
y

h
a
v
e

a
n

<
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
>

e
le

m
e
n
t

>
8
7

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
p
r
o
c
e
s
s
[
n
o
t
(
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
)
]
">

8
8

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
is

d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

u
s
e
d
">

8
9

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
is

d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

u
s
e
d
">

9
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
c
t
i
v
i
t
y
"

s
e
le

c
t
=
"
.
"

/
>

9
1

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

9
2

<
/
x
s
l
:
v
a
r
ia

b
le

>
9
3

9
4

<
x
s
l
:
c
o
p
y
>

9
5

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

9
6

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
e
x
t
e
n
s
io

n
s
"

/
>

9
7

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
im

p
o
r
t
"

/
>

9
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
p
a
r
tn

e
r
L

in
k
s
"

/
>

9
9

1
0
0

<
x
s
l
:
i
f

t
e
s
t=

"
$
is

d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

u
s
e
d

=
’
tr

u
e

’
">

1
0
1

<
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
>

1
0
2

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e
"

/
>

1
0
3

<
/
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
>

1
0
4

<
/
x
s
l
:
if

>
1
0
5

1
0
6

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(

1
0
7

s
e
lf

:
:
b
p
e
l
:
e
x
t
e
n
s
io

n
s

o
r

1
0
8

s
e
lf

:
:
b
p
e
l
:
im

p
o
r
t

o
r

1
0
9

s
e
lf

:
:
b
p
e
l
:
p
a
r
tn

e
r
L

in
k
s

o
r

1
1
0

s
e
lf

:
:
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s

1
1
1

)
]
"

/
>

1
1
2

<
/
x
s
l
:
c
o
p
y
>

1
1
3

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
1
4

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
o
n
E

v
e
n
t/

b
p
e
l
:
s
c
o
p
e
[
n
o
t
(
b
p
e
l
:

m
e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
)
]

|
b
p
e
l
:
fo

r
E

a
c
h

[
@

p
a
r
a
ll

e
l=

’y
e
s

’
]
/

b
p
e
l
:

s
c
o
p
e
[
n
o
t
(
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
)
]
">

1
1
5

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
is

d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

u
s
e
d
">

1
1
6

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
is

d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

u
s
e
d
">

1
1
7

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
c
t
i
v
i
t
y
"

s
e
le

c
t
=
"

.
.
"

/
>

1
1
8

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

1
1
9

<
/
x
s
l
:
v
a
r
ia

b
le

>
1
2
0

1
2
1

<
x
s
l
:
c
o
p
y
>

1
2
2

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
2
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
p
a
r
tn

e
r
L

in
k
s
"

/
>

1
2
4

1
2
5

<
x
s
l
:
i
f

t
e
s
t=

"
$
is

d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

u
s
e
d

=
’
tr

u
e

’
">

1
2
6

<
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
>

1
2
7

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e
"

/
>

1
2
8

<
/
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
>

1
2
9

<
/
x
s
l
:
if

>
1
3
0

1
3
1

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(

1
3
2

s
e
lf

:
:
b
p
e
l
:
p
a
r
tn

e
r
L

in
k
s

o
r

1
3
3

s
e
lf

:
:
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s

1
3
4

)
]
"

/
>

1
3
5

<
/
x
s
l
:
c
o
p
y
>

1
3
6

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
3
7

1
3
8

<
!

M
a
k
e

th
e

m
e
s
s
a
g
e
E

x
c
h
a
n
g
e

a
t
t
r
i
b
u
t
e

e
x
p
li

c
i
t
.

>
1
3
9

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
o
n
M

e
s
s
a
g
e
[
n
o
t
(
@

m
e
s
s
a
g
e
E

x
c
h
a
n
g
e
)
]

|
b
p
e
l

:
r
e
c
e
iv

e
[
n
o
t
(
@

m
e
s
s
a
g
e
E

x
c
h
a
n
g
e
)
]

|
b
p
e
l
:
r
e
p
ly

[
n
o
t
(

@
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
)
]
">

1
4
0

<
x
s
l
:
c
o
p
y
>

1
4
1

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
">

1
4
2

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

n
a
m

e
"

/
>

1
4
3

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

1
4
4

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
4
5

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
4
6

<
/
x
s
l
:
c
o
p
y
>

1
4
7

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
4
8

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
o
n
E

v
e
n
t
[
n
o
t
(
@

m
e
s
s
a
g
e
E

x
c
h
a
n
g
e
)
]
">

1
4
9

<
x
s
l
:
c
o
p
y
>

1
5
0

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
">

1
5
1

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
d
e
fa

u
lt

m
e
s
s
a
g
e

e
x
c
h
a
n
g
e

n
a
m

e
">

1
5
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
s
c
o
p
e
"

s
e
le

c
t
=
"
b
p
e
l
:
s
c
o
p
e
"

/
>

1
5
3

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

1
5
4

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

1
5
5

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
5
6

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
5
7

<
/
x
s
l
:
c
o
p
y
>

1
5
8

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
5
9

1
6
0

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

222 6.D. XSLT Transformations
6.
D
.9

fr
es
h
-n
am

es
.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
U

t
i
li

t
y

t
e
m

p
la

t
e
s

fo
r

g
e
n
e
r
a
t
in

g
fr

e
s
h

n
a
m

e
s
.

>
4 5

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
6

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

">
7 8

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
f
r
e
s
h
P

r
e
f
i
x
"

/
>

9
1
0

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

1
1

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

1
2

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"

’
’
"

/
>

1
3

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
fr

e
s
h
P

r
e
fi

x
"

/
>

1
4

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
g
e
n
e
r
a
te

id
(
$
e
le

m
e
n
t
)
"

/
>

1
5

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
p
o
s
t
f
i
x
"

/
>

1
6

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
7

1
8

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
a
t
t
r
i
b
u
t
e

w
it

h
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

1
9

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
a
tt

r
ib

u
te

N
a
m

e
"

/
>

2
0

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

2
1

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"

’
’
"

/
>

2
2

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
{
$
a
tt

r
ib

u
te

N
a
m

e
}
">

2
3

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

2
4

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
$
e
le

m
e
n
t
"

/
>

2
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
p
o
s
t
f
i
x
"

/
>

2
6

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

2
7

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

2
8

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
9

3
0

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.1
0

if
.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
T

r
a
n
fo

r
m

<
e
ls

e
i
f
>

s
in

t
o

<
e
ls

e
>
<

if
>

s
a
n
d

a
d
d

e
m

p
ty

b
r
a
n
c
h
e
s

to
th

e
<

if
>

s
4

t
h
a
t

la
c
k

th
e
m

.
>

5 6
<

x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
7

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
8

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
9

1
0

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
1

1
2

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
3

<
x
s
l
:
c
o
p
y
>

1
4

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
5

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
6

<
/
x
s
l
:
c
o
p
y
>

1
7

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
8

1
9

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
e
ls

e
i
f
">

2
0

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"

i
f
"

/
>

2
1

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
c
o
u
n
t
"

/
>

2
2

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
in

d
e
x
"

/
>

2
3

2
4

<
x
s
l
:
c
h
o
o
s
e
>

2
5

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
in

d
e
x

&
l
t
;

$
c
o
u
n
t
">

2
6

<
b
p
e
l
:
e
ls

e
>

2
7

<
b
p
e
l
:
if

>
2
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
∗
"

/
>

2
9

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
$
i
f
/
b
p
e
l
:
e
ls

e
i
f
[
$
in

d
e
x

+
1
]
">

3
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"

i
f
"

s
e
le

c
t
=
"
$
i
f
"
/
>

3
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
c
o
u
n
t
"

s
e
le

c
t
=
"
$
c
o
u
n
t
"
/
>

3
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

d
e
x
"

s
e
le

c
t
=
"
$
in

d
e
x

+
1
"
/
>

3
3

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

3
4

<
/
b
p
e
l
:
if

>
3
5

<
/
b
p
e
l
:
e
ls

e
>

3
6

<
/
x
s
l
:
w

h
e
n
>

3
7

3
8

<
x
s
l
:
o
t
h
e
r
w

is
e
>

3
9

<
b
p
e
l
:
e
ls

e
>

4
0

<
b
p
e
l
:
if

>
4
1

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
∗
"

/
>

4
2

4
3

<
x
s
l
:
c
h
o
o
s
e
>

4
4

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
i
f
/
b
p
e
l
:
e
ls

e
">

4
5

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
$
i
f
/
b
p
e
l
:
e
ls

e
"

/
>

4
6

<
/
x
s
l
:w

h
e
n
>

4
7

<
x
s
l
:
o
t
h
e
r
w

is
e
>

4
8

<
b
p
e
l
:
e
ls

e
>

4
9

<
b
p
e
l
:
e
m

p
ty

/
>

5
0

<
/
b
p
e
l
:
e
ls

e
>

5
1

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

5
2

<
/
x
s
l
:
c
h
o
o
s
e
>

5
3

5
4

<
/
b
p
e
l
:
if

>
5
5

<
/
b
p
e
l
:
e
ls

e
>

5
6

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

5
7

<
/
x
s
l
:
c
h
o
o
s
e
>

5
8

5
9

<
/
x
s
l
:
t
e
m

p
la

t
e
>

6
0

6
1

6
2

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
i
f
[
b
p
e
l
:
e
ls

e
i
f
]
">

6
3

<
x
s
l
:
c
o
p
y
>

6
4

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

6
5

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
c
o
n
d
it

io
n
"

/
>

6
6

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:
c
o
n
d
it

io
n

|
s
e
lf

:
:
b
p
e
l
:
e
ls

e
|

s
e
lf

:
:
b
p
e
l
:
e
ls

e
i
f
)
]
"

/
>

6
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
e
ls

e
i
f
[
1
]
">

6
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"

i
f
"

s
e
le

c
t
=
"

s
e
lf

:
:
n
o
d
e
(
)
"
/
>

6
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
c
o
u
n
t
"

s
e
le

c
t
=
"
c
o
u
n
t
(
b
p
e
l
:
e
ls

e
i
f
)
"
/
>

7
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

d
e
x
"

s
e
le

c
t
=
"
1
"
/
>

7
1

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

7
2

<
/
x
s
l
:
c
o
p
y
>

7
3

<
/
x
s
l
:
t
e
m

p
la

t
e
>

7
4

7
5

7
6

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
i
f
[
n
o
t
(
b
p
e
l
:
e
ls

e
|

b
p
e
l
:
e
ls

e
i
f
)
]
">

7
7

<
x
s
l
:
c
o
p
y
>

7
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

7
9

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

8
0

<
b
p
e
l
:
e
ls

e
>

8
1

<
b
p
e
l
:
e
m

p
ty

/
>

8
2

<
/
b
p
e
l
:
e
ls

e
>

8
3

<
/
x
s
l
:
c
o
p
y
>

8
4

<
/
x
s
l
:
t
e
m

p
la

t
e
>

8
5

8
6

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.1
1

in
vo

ke
.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
M

o
v
e

th
e

<
s
c
o
p
e

>
p
a
r
t
s

o
f

a
n

<
in

v
o
k
e
>

in
t
o

a
n

e
x
p
li

c
i
t

e
n
c
lo

s
in

g
<

s
c
o
p
e
>

.
>

4
<

!
A

ls
o

,
m

a
k
e

te
m

p
o
r
a
r
y

v
a
r
i
a
b
le

s
a
n
d

a
s
s
ig

n
m

e
n
ts

,
d
u
e

to
th

e
u
s
e

o
f

<
to

P
a
r
ts

>
,

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 223

5
<

fr
o
m

P
a
r
ts

>
,

a
n
d
/
o
r

r
e
fe

r
e
n
c
e
s

to
e
le

m
e
n
t

v
a
r
ia

b
le

s
,

e
x
p
li

c
i
t
.

>
6 7

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
8

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
9

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
1
0

1
1

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
2

1
3

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
to

fr
o
m

p
a
r
ts

e
le

m
e
n
t

v
a
r
i
a
b
le

s
.
x
s
l
"

/
>

1
4

1
5

<
!

C
o
p
y

a
ll

e
le

m
e
n
ts

a
n
d

a
t
t
r
i
b
u
t
e
s

>
1
6

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
7

<
x
s
l
:
c
o
p
y
>

1
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
9

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

2
0

<
/
x
s
l
:
c
o
p
y
>

2
1

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
2

2
3

<
!

U
n
fo

ld
in

v
o
k
e

>
2
4

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
in

v
o
k
e
">

2
5

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
in

p
u
t
V

a
r
ia

b
le

"
s
e
le

c
t
=
"
@

in
p
u
tV

a
r
ia

b
le

"
/
>

2
6

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
o
u
t
p
u
t
V

a
r
ia

b
le

"
s
e
le

c
t
=
"
@

o
u
tp

u
tV

a
r
ia

b
le

"
/
>

2
7

2
8

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
in

p
u
tE

le
m

e
n
t
"

s
e
le

c
t
=
"
c
o
u
n
t
(
a
n
c
e
s
to

r
::
∗
/

b
p
e
l
:
v
a
r
i
a
b
le

s
/
b
p
e
l
:
v
a
r
i
a
b
le

[@
n
a
m

e=
$
in

p
u
t
V

a
r
ia

b
le

]
[
1
]
/

@
e
le

m
e
n
t
)

=
1
"

/
>

2
9

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
o
u
tp

u
tE

le
m

e
n
t
"

s
e
le

c
t
=
"
c
o
u
n
t
(
a
n
c
e
s
to

r
::
∗
/

b
p
e
l
:
v
a
r
i
a
b
le

s
/
b
p
e
l
:
v
a
r
i
a
b
le

[@
n
a
m

e=
$
o
u
t
p
u
t
V

a
r
ia

b
le

]
[
1
]
/

@
e
le

m
e
n
t
)

=
1
"

/
>

3
0

3
1

<
x
s
l
:
c
h
o
o
s
e
>

3
2

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
b
p
e
l
:
to

P
a
r
ts

o
r

$
in

p
u
tE

le
m

e
n
t

o
r

b
p
e
l
:

fr
o
m

P
a
r
ts

o
r

$
o
u
tp

u
tE

le
m

e
n
t

o
r

b
p
e
l
:
c
a
tc

h
o
r

b
p
e
l
:

c
a
t
c
h
A

ll
o
r

b
p
e
l
:
c
o
m

p
e
n
s
a
ti

o
n
H

a
n
d
le

r
">

3
3

<
b
p
e
l
:
s
c
o
p
e
>

3
4

<
x
s
l
:
i
f

t
e
s
t=

"
b
p
e
l
:
to

P
a
r
ts

o
r

$
in

p
u
tE

le
m

e
n
t

o
r

b
p
e
l
:

fr
o
m

P
a
r
ts

o
r

$
o
u
tp

u
tE

le
m

e
n
t
">

3
5

<
b
p
e
l
:
v
a
r
ia

b
le

s
>

3
6

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
m

e
s
s
a
g
e

a
c
t
i
v
i
t
i
e
s

te
m

p
v
a
r
i
a
b
le

s
">

3
7

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
ie

s
"

s
e
le

c
t
=
"
.
"

/
>

3
8

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

3
9

<
/
b
p
e
l
:
v
a
r
ia

b
le

s
>

4
0

<
/
x
s
l
:
if

>
4
1

4
2

<
x
s
l
:
i
f

t
e
s
t=

"
b
p
e
l
:
c
a
tc

h
o
r

b
p
e
l
:
c
a
t
c
h
A

ll
">

4
3

<
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s
>

4
4

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
c
a
tc

h
"

/
>

4
5

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
c
a
t
c
h
A

ll
"

/
>

4
6

<
/
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s
>

4
7

<
/
x
s
l
:
if

>
4
8

4
9

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
c
o
m

p
e
n
s
a
ti

o
n
H

a
n
d
le

r
"

/
>

5
0

5
1

<
x
s
l
:
c
h
o
o
s
e
>

5
2

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
b
p
e
l
:
to

P
a
r
ts

o
r

b
p
e
l
:
fr

o
m

P
a
r
ts

o
r

$
in

p
u
tE

le
m

e
n
t

o
r

$
o
u
tp

u
tE

le
m

e
n
t
">

5
3

<
b
p
e
l
:
s
e
q
u
e
n
c
e
>

5
4

<
!

T
r
a
n
s
fo

r
m

to
P

a
r
ts

in
t
o

a
n

a
s
s
ig

n
m

e
n
t
,

i
f

p
r
e
s
e
n
t

>
5
5

<
x
s
l
:
i
f

t
e
s
t=

"
b
p
e
l
:
to

P
a
r
ts

">
5
6

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

to
p
a
r
ts

e
x
p
li

c
i
t
ly

"
/
>

5
7

<
/
x
s
l
:
if

>
5
8

5
9

<
!

C
r
e
a
te

a
s
s
ig

n
m

e
n
t

to
c
o
p
y

e
le

m
e
n
t

v
a
r
i
a
b
le

to
s
i
n
g
le

p
a
r
t

>
6
0

<
x
s
l
:
i
f

t
e
s
t=

"
$
in

p
u
tE

le
m

e
n
t
">

6
1

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

in
p
u
t

e
le

m
e
n
t

e
x
p
li

c
i
t
ly

">

6
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
V

a
r
ia

b
le

"
s
e
le

c
t
=
"

$
in

p
u
t
V

a
r
ia

b
le

"
/
>

6
3

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

6
4

<
/
x
s
l
:
if

>
6
5

6
6

<
x
s
l
:
c
o
p
y
>

6
7

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

6
8

(
lo

c
a
l

n
a
m

e
(
)

=
’

in
p
u
tV

a
r
ia

b
le

’
o
r

6
9

lo
c
a
l

n
a
m

e
(
)

=
’

o
u
tp

u
tV

a
r
ia

b
le

’
o
r

7
0

lo
c
a
l

n
a
m

e
(
)

=
’

p
o
r
tT

y
p
e

’
)
)
]
"

/
>

7
1

7
2

<
x
s
l
:
c
h
o
o
s
e
>

7
3

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
b
p
e
l
:
to

P
a
r
ts

o
r

$
in

p
u
tE

le
m

e
n
t
">

7
4

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
a
t
t
r
i
b
u
t
e

w
it

h
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

7
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
tt

r
ib

u
te

N
a
m

e
"

s
e
le

c
t

=
"

’
in

p
u
tV

a
r
ia

b
le

’
"

/
>

7
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

7
7

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
tm

p
in

p
u
t

m
e
s
s
a
g
e

v
a
r
ia

b
le

p
o
s
t
f
i
x
"

/
>

7
8

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

7
9

<
/
x
s
l
:w

h
e
n
>

8
0

<
x
s
l
:
o
t
h
e
r
w

is
e
>

8
1

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@

in
p
u
tV

a
r
ia

b
le

"
/
>

8
2

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

8
3

<
/
x
s
l
:
c
h
o
o
s
e
>

8
4

8
5

<
x
s
l
:
c
h
o
o
s
e
>

8
6

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
b
p
e
l
:
fr

o
m

P
a
r
ts

o
r

$
o
u
tp

u
tE

le
m

e
n
t
">

8
7

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
a
t
t
r
i
b
u
t
e

w
it

h
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

8
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
tt

r
ib

u
te

N
a
m

e
"

s
e
le

c
t

=
"

’
o
u
tp

u
tV

a
r
ia

b
le

’
"

/
>

8
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

9
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
tm

p
o
u
tp

u
t

m
e
s
s
a
g
e

v
a
r
ia

b
le

p
o
s
t
f
i
x
"

/
>

9
1

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

9
2

<
/
x
s
l
:w

h
e
n
>

9
3

<
x
s
l
:
o
t
h
e
r
w

is
e
>

9
4

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@

o
u
tp

u
tV

a
r
ia

b
le

"
/
>

9
5

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

9
6

<
/
x
s
l
:
c
h
o
o
s
e
>

9
7

9
8

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:

c
a
tc

h
o
r

9
9

s
e
lf

:
:
b
p
e
l
:

c
a
t
c
h
A

ll
o
r

1
0
0

s
e
lf

:
:
b
p
e
l
:

c
o
m

p
e
n
s
a
ti

o
n
H

a
n
d
le

r
o
r

1
0
1

s
e
lf

:
:
b
p
e
l
:

to
P

a
r
ts

o
r

1
0
2

s
e
lf

:
:
b
p
e
l
:

fr
o
m

P
a
r
ts

)
]
"
/
>

1
0
3

<
/
x
s
l
:
c
o
p
y
>

1
0
4

1
0
5

<
!

T
r
a
n
s
fo

r
m

fr
o
m

P
a
r
ts

in
t
o

a
n

a
s
s
ig

n
m

e
n
t
,

i
f

p
r
e
s
e
n
t

>
1
0
6

<
x
s
l
:
i
f

t
e
s
t=

"
b
p
e
l
:
fr

o
m

P
a
r
ts

">

224 6.D. XSLT Transformations
1
0
7

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

fr
o
m

p
a
r
ts

e
x
p
li

c
i
t
ly

"
/
>

1
0
8

<
/
x
s
l
:
if

>
1
0
9

1
1
0

<
!

C
r
e
a
te

a
s
s
ig

n
m

e
n
t

to
c
o
p
y

s
i
n
g
le

p
a
r
t

to
e
le

m
e
n
t

v
a
r
i
a
b
le

>
1
1
1

<
x
s
l
:
i
f

t
e
s
t=

"
$
o
u
tp

u
tE

le
m

e
n
t
">

1
1
2

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

o
u
tp

u
t

e
le

m
e
n
t

e
x
p
li

c
i
t
ly

">
1
1
3

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
o
u
t
p
u
t
V

a
r
ia

b
le

"
s
e
le

c
t
=
"

$
o
u
t
p
u
t
V

a
r
ia

b
le

"
/
>

1
1
4

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

1
1
5

<
/
x
s
l
:
if

>
1
1
6

<
/
b
p
e
l
:
s
e
q
u
e
n
c
e
>

1
1
7

<
/
x
s
l
:w

h
e
n
>

1
1
8

1
1
9

<
x
s
l
:
o
t
h
e
r
w

is
e
>

1
2
0

<
x
s
l
:
c
o
p
y
>

1
2
1

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

1
2
2

lo
c
a
l

n
a
m

e
(
)

=
’

p
o
r
tT

y
p
e

’
)
]
"

/
>

1
2
3

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:
c
a
tc

h
o
r

1
2
4

s
e
lf

:
:
b
p
e
l
:

c
a
t
c
h
A

ll
o
r

1
2
5

s
e
lf

:
:
b
p
e
l
:

c
o
m

p
e
n
s
a
ti

o
n
H

a
n
d
le

r
)
]
"
/
>

1
2
6

<
/
x
s
l
:
c
o
p
y
>

1
2
7

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

1
2
8

<
/
x
s
l
:
c
h
o
o
s
e
>

1
2
9

1
3
0

<
/
b
p
e
l
:
s
c
o
p
e
>

1
3
1

<
/
x
s
l
:
w

h
e
n
>

1
3
2

1
3
3

<
x
s
l
:
o
t
h
e
r
w

is
e
>

1
3
4

<
x
s
l
:
c
o
p
y
>

1
3
5

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

1
3
6

lo
c
a
l

n
a
m

e
(
)

=
’
p
o
r
tT

y
p
e

’
)
]
"

/
>

1
3
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
3
8

<
/
x
s
l
:
c
o
p
y
>

1
3
9

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

1
4
0

<
/
x
s
l
:
c
h
o
o
s
e
>

1
4
1

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
4
2

1
4
3

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.1
2

on
E
ve
nt
.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
M

a
k
e

te
m

p
o
r
a
r
y

v
a
r
i
a
b
le

s
a
n
d

a
s
s
ig

n
m

e
n
ts

,
d
u
e

to
th

e
u
s
e

o
f

4
<

fr
o
m

P
a
r
ts

>
,

a
n
d
/
o
r

r
e
fe

r
e
n
c
e
s

to
e
le

m
e
n
t

v
a
r
i
a
b
le

s
in

<
o
n
E

v
e
n
t>

s
,

e
x
p
li

c
i
t
.

>
5

<
!

T
h
is

s
t
y
le

s
h
e
e
t

i
s

in
c
lu

d
e
d

b
y

s
c
o
p
e
.
x
s
l

a
n
d

s
h
o
u
ld

n
’
t

b
e

a
p
p
li

e
d

a
lo

n
e
.

>
6 7

<
x
s
l
:
s
t
y
le

s
h

e
e
t

8
v
e
r
s
io

n
=
"
1
.0

"
9

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
1
0

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
1
1

1
2

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
to

fr
o
m

p
a
r
ts

e
le

m
e
n
t

v
a
r
i
a
b
le

s
.
x
s
l
"

/
>

1
3

1
4

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
o
n
E

v
e
n
t
[
b
p
e
l
:
fr

o
m

P
a
r
ts

o
r

@
e
le

m
e
n
t
]
">

1
5

<
x
s
l
:
c
o
p
y
>

1
6

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

1
7

(
lo

c
a
l

n
a
m

e
(
)

=
’
p
o
r
tT

y
p
e

’
o
r

1
8

lo
c
a
l

n
a
m

e
(
)

=
’
e
le

m
e
n
t
’
)
)
]
"

/
>

1
9

2
0

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
m

e
s
s
a
g
e
T

y
p
e
">

2
1

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
in

b
o
u
n
d

m
e
s
s
a
g
e

ty
p
e
"

/
>

2
2

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

2
3

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
a
t
t
r
i
b
u
t
e

w
it

h
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

2
4

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
tt

r
ib

u
te

N
a
m

e
"

s
e
le

c
t
=
"

’
v
a
r
ia

b
le

’
"

/
>

2
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

2
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
tm

p
o
u
tp

u
t

m
e
s
s
a
g
e

v
a
r
ia

b
le

p
o
s
t
f
i
x
"

/
>

2
7

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

2
8

2
9

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
c
o
r
r
e
la

t
i
o
n
s
"

/
>

3
0

3
1

<
b
p
e
l
:
s
c
o
p
e
>

3
2

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
s
c
o
p
e
/
@
∗
"

/
>

3
3

3
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
s
c
o
p
e
/
b
p
e
l
:
p
a
r
tn

e
r
L

in
k
s

|
b
p
e
l
:
s
c
o
p
e
/
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s
"

/
>

3
5

3
6

<
b
p
e
l
:
v
a
r
ia

b
le

s
>

3
7

<
x
s
l
:
fo

r
e
a
c
h

s
e
le

c
t
=
"
b
p
e
l
:
fr

o
m

P
a
r
ts

/
b
p
e
l
:
fr

o
m

P
a
r
t
">

3
8

<
b
p
e
l
:
v
a
r
ia

b
le

n
a
m

e=
"
{
@

to
V

a
r
ia

b
le

}
">

3
9

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
in

b
o
u
n
d

m
e
s
s
a
g
e

p
a
r
t

t
y
p
in

g
"

>
4
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"

.
.
/
.
.
"

/
>

4
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

s
e
le

c
t
=
"
@

p
a
r
t"

/
>

4
2

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

4
3

<
/
b
p
e
l
:
v
a
r
ia

b
le

>
4
4

<
/
x
s
l
:
fo

r
e
a
c
h
>

4
5

<
x
s
l
:
i
f

t
e
s
t=

"
@

e
le

m
e
n
t"

>
4
6

<
b
p
e
l
:
v
a
r
ia

b
le

n
a
m

e=
"
{
@

v
a
r
ia

b
le

}
"

e
le

m
e
n
t=

"
{
@

e
le

m
e
n
t}

"
/
>

4
7

<
/
x
s
l
:
if

>
4
8

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
s
c
o
p
e
/
b
p
e
l
:
v
a
r
i
a
b
le

s
/
∗
"

/
>

4
9

<
/
b
p
e
l
:
v
a
r
ia

b
le

s
>

5
0

5
1

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
s
c
o
p
e
/
b
p
e
l
:

c
o
r
r
e
la

t
i
o
n
S
e
t
s

|
b
p
e
l
:
s
c
o
p
e
/
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s

|
b
p
e
l

:
s
c
o
p
e
/
b
p
e
l
:
c
o
m

p
e
n
s
a
ti

o
n
H

a
n
d
le

r
|

b
p
e
l
:
s
c
o
p
e
/
b
p
e
l
:

te
r
m

in
a
ti

o
n
H

a
n
d
le

r
|

b
p
e
l
:
s
c
o
p
e
/
b
p
e
l
:
e
v
e
n
tH

a
n
d
le

r
s
"

/
>

5
2

5
3

<
b
p
e
l
:
s
e
q
u
e
n
c
e
>

5
4

<
!

T
r
a
n
s
fo

r
m

fr
o
m

P
a
r
ts

in
t
o

a
n

a
s
s
ig

n
m

e
n
t
,

i
f

p
r
e
s
e
n
t

>
5
5

<
x
s
l
:
i
f

t
e
s
t=

"
b
p
e
l
:
fr

o
m

P
a
r
ts

">
5
6

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

fr
o
m

p
a
r
ts

e
x
p
li

c
i
t
ly

"
/
>

5
7

<
/
x
s
l
:
if

>
5
8

5
9

<
!

C
r
e
a
te

a
s
s
ig

n
m

e
n
t

to
c
o
p
y

s
i
n
g
le

p
a
r
t

to
e
le

m
e
n
t

v
a
r
i
a
b
le

>
6
0

<
x
s
l
:
i
f

t
e
s
t=

"
@

e
le

m
e
n
t"

>
6
1

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

o
u
tp

u
t

e
le

m
e
n
t

e
x
p
li

c
i
t
ly

">
6
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
o
u
t
p
u
t
V

a
r
ia

b
le

"
s
e
le

c
t
=
"

@
v
a
r
ia

b
le

"
/
>

6
3

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

6
4

<
/
x
s
l
:
if

>
6
5

6
6

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
s
c
o
p
e
/
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:

p
a
r
tn

e
r
L

in
k
s

o
r

s
e
lf

:
:
b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s

o
r

s
e
lf

:
:
b
p
e
l
:
c
o
r
r
e
la

t
i
o
n
S
e
t
s

o
r

s
e
lf

:
:
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s

o
r

s
e
lf

:
:
b
p
e
l
:
c
o
m

p
e
n
s
a
ti

o
n
H

a
n
d
le

r
o
r

s
e
lf

:
:
b
p
e
l
:

te
r
m

in
a
ti

o
n
H

a
n
d
le

r
o
r

s
e
lf

:
:
b
p
e
l
:
e
v
e
n
tH

a
n
d
le

r
s
)
]
"
/
>

6
7

<
/
b
p
e
l
:
s
e
q
u
e
n
c
e
>

6
8

<
/
b
p
e
l
:
s
c
o
p
e
>

6
9

7
0

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:∗

)
]
"

/
>

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 225

7
1

<
/
x
s
l
:
c
o
p
y
>

7
2

<
/
x
s
l
:
t
e
m

p
la

t
e
>

7
3

7
4

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.1
3

p
ic
k.
xs
l

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
M

a
k
e

te
m

p
o
r
a
r
y

v
a
r
i
a
b
le

s
a
n
d

a
s
s
ig

n
m

e
n
ts

,
d
u
e

to
th

e
u
s
e

o
f

4
<

fr
o
m

P
a
r
ts

>
,

a
n
d
/
o
r

r
e
fe

r
e
n
c
e
s

to
e
le

m
e
n
t

v
a
r
i
a
b
le

s
in

<
o
n
M

e
s
s
a
g
e
>

s
,

e
x
p
li

c
i
t
.

>
5 6

<
x
s
l
:
s
t
y
le

s
h

e
e
t

7
v
e
r
s
io

n
=
"
1
.0

"
8

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
9

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
1
0

1
1

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
2

1
3

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
to

fr
o
m

p
a
r
ts

e
le

m
e
n
t

v
a
r
i
a
b
le

s
.
x
s
l
"

/
>

1
4

1
5

<
!

C
o
p
y

a
ll

e
le

m
e
n
ts

a
n
d

a
t
t
r
i
b
u
t
e
s

>
1
6

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
7

<
x
s
l
:
c
o
p
y
>

1
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
9

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

2
0

<
/
x
s
l
:
c
o
p
y
>

2
1

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
2

2
3

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
o
n
M

e
s
s
a
g
e
">

2
4

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
o
u
t
p
u
t
V

a
r
ia

b
le

"
s
e
le

c
t
=
"
@

v
a
r
ia

b
le

"
/
>

2
5

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
o
u
tp

u
tE

le
m

e
n
t
"

s
e
le

c
t
=
"
c
o
u
n
t
(
a
n
c
e
s
to

r
::
∗
/

b
p
e
l
:
v
a
r
i
a
b
le

s
/
b
p
e
l
:
v
a
r
i
a
b
le

[@
n
a
m

e=
$
o
u
t
p
u
t
V

a
r
ia

b
le

]
[
1
]
/

@
e
le

m
e
n
t
)

=
1
"

/
>

2
6

2
7

<
x
s
l
:
c
o
p
y
>

2
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

lo
c
a
l

n
a
m

e
(
)

=
’
p
o
r
tT

y
p
e

’
)
]
"

/
>

2
9

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
c
o
r
r
e
la

t
i
o
n
s
"

/
>

3
0

3
1

<
x
s
l
:
c
h
o
o
s
e
>

3
2

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
b
p
e
l
:
fr

o
m

P
a
r
ts

o
r

$
o
u
tp

u
tE

le
m

e
n
t
">

3
3

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
a
t
t
r
i
b
u
t
e

w
it

h
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

3
4

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
tt

r
ib

u
te

N
a
m

e
"

s
e
le

c
t
=
"

’
v
a
r
ia

b
le

’
"

/
>

3
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

3
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
tm

p
o
u
tp

u
t

m
e
s
s
a
g
e

v
a
r
ia

b
le

p
o
s
t
f
i
x
"

/
>

3
7

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

3
8

3
9

<
b
p
e
l
:
s
e
q
u
e
n
c
e
>

4
0

<
!

T
r
a
n
s
fo

r
m

fr
o
m

P
a
r
ts

in
t
o

a
n

a
s
s
ig

n
m

e
n
t
,

i
f

p
r
e
s
e
n
t

>
4
1

<
x
s
l
:
i
f

t
e
s
t=

"
b
p
e
l
:
fr

o
m

P
a
r
ts

">
4
2

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

fr
o
m

p
a
r
ts

e
x
p
li

c
i
t
ly

"
/
>

4
3

<
/
x
s
l
:
if

>
4
4

4
5

<
!

C
r
e
a
te

a
s
s
ig

n
m

e
n
t

to
c
o
p
y

s
i
n
g
le

p
a
r
t

to
e
le

m
e
n
t

v
a
r
i
a
b
le

>
4
6

<
x
s
l
:
i
f

t
e
s
t=

"
$
o
u
tp

u
tE

le
m

e
n
t
">

4
7

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

o
u
tp

u
t

e
le

m
e
n
t

e
x
p
li

c
i
t
ly

">
4
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
o
u
t
p
u
t
V

a
r
ia

b
le

"
s
e
le

c
t
=
"

$
o
u
t
p
u
t
V

a
r
ia

b
le

"
/
>

4
9

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

5
0

<
/
x
s
l
:
if

>
5
1

5
2

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:
fr

o
m

P
a
r
ts

o
r

s
e
lf

:
:
b
p
e
l
:
c
o
r
r
e
la

t
i
o
n
s
)
]
"
/
>

5
3

5
4

<
/
b
p
e
l
:
s
e
q
u
e
n
c
e
>

5
5

<
/
x
s
l
:
w

h
e
n
>

5
6

<
x
s
l
:
o
t
h
e
r
w

is
e
>

5
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:

c
o
r
r
e
la

t
i
o
n
s
)
]
"
/
>

5
8

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

5
9

<
/
x
s
l
:
c
h
o
o
s
e
>

6
0

<
/
x
s
l
:
c
o
p
y
>

6
1

<
/
x
s
l
:
t
e
m

p
la

t
e
>

6
2

6
3

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
p
ic

k
">

6
4

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
n
e
e
d
s

te
m

p
v
a
r
i
a
b
le

s
">

6
5

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
m

e
s
s
a
g
e

a
c
t
i
v
i
t
i
e
s

n
e
e
d

te
m

p
v
a
r
i
a
b
le

s
">

6
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
ie

s
"

s
e
le

c
t
=
"
b
p
e
l
:

o
n
M

e
s
s
a
g
e
"

/
>

6
7

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

6
8

<
/
x
s
l
:
v
a
r
ia

b
le

>
6
9

7
0

<
x
s
l
:
c
h
o
o
s
e
>

7
1

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
n
e
e
d
s

te
m

p
v
a
r
i
a
b
le

s
=

’
tr

u
e

’
">

7
2

<
b
p
e
l
:
s
c
o
p
e
>

7
3

<
b
p
e
l
:
v
a
r
ia

b
le

s
>

7
4

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
m

e
s
s
a
g
e

a
c
t
i
v
i
t
i
e
s

te
m

p
v
a
r
i
a
b
le

s
">

7
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
ie

s
"

s
e
le

c
t
=
"
b
p
e
l

:
o
n
M

e
s
s
a
g
e
"

/
>

7
6

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

7
7

<
/
b
p
e
l
:
v
a
r
ia

b
le

s
>

7
8

7
9

<
x
s
l
:
c
o
p
y
>

8
0

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

8
1

8
2

<
x
s
l
:
fo

r
e
a
c
h

s
e
le

c
t
=
"
b
p
e
l
:
o
n
M

e
s
s
a
g
e
">

8
3

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
o
n
M

e
s
s
a
g
e
"

/
>

8
4

<
/
x
s
l
:
fo

r
e
a
c
h
>

8
5

8
6

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:
o
n
M

e
s
s
a
g
e

)
]
"

/
>

8
7

<
/
x
s
l
:
c
o
p
y
>

8
8

<
/
b
p
e
l
:
s
c
o
p
e
>

8
9

<
/
x
s
l
:
w

h
e
n
>

9
0

9
1

<
x
s
l
:
o
t
h
e
r
w

is
e
>

9
2

<
x
s
l
:
c
o
p
y
>

9
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

9
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

9
5

<
/
x
s
l
:
c
o
p
y
>

9
6

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

9
7

<
/
x
s
l
:
c
h
o
o
s
e
>

9
8

9
9

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
0
0

1
0
1

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.1
4

p
ro
ce
ss
.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
M

o
v
e

th
e

s
c
o
p
e

p
a
r
t
s

o
f

a
<

p
r
o
c
e
s
s
>

in
t
o

a
n

e
x
p
li

c
i
t

<
s
c
o
p
e
>

.
>

4

226 6.D. XSLT Transformations
5

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
6

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
7

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
8 9

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
0

1
1

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
2

<
x
s
l
:
c
o
p
y
>

1
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
5

<
/
x
s
l
:
c
o
p
y
>

1
6

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
7

1
8

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
p
r
o
c
e
s
s
[
@

e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

o
r

1
9

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e

o
r

2
0

b
p
e
l
:
p
a
r
tn

e
r
L

in
k
s

o
r

2
1

b
p
e
l
:
m

e
s
s
a
g
e
E

x
c
h
a
n
g
e
s

o
r

2
2

b
p
e
l
:
v
a
r
i
a
b
le

s
o
r

2
3

b
p
e
l
:
c
o
r
r
e
la

t
i
o
n
S
e
t
s

o
r

2
4

b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s

o
r

2
5

b
p
e
l
:
e
v
e
n
tH

a
n
d
le

r
s
]
">

2
6

<
x
s
l
:
c
o
p
y
>

2
7

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

2
8

(
lo

c
a
l

n
a
m

e
(
)

=
’

e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

’
o
r

2
9

lo
c
a
l

n
a
m

e
(
)

=
’

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e

’
)
)
]
"

/
>

3
0

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
e
x
t
e
n
s
io

n
s
"

/
>

3
1

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
im

p
o
r
t
"

/
>

3
2

<
b
p
e
l
:
s
c
o
p
e
>

3
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

3
4

(
lo

c
a
l

n
a
m

e
(
)

=
’

ta
r
g
e
tN

a
m

e
s
p
a
c
e

’
o
r

3
5

lo
c
a
l

n
a
m

e
(
)

=
’

e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e

’
o
r

3
6

lo
c
a
l

n
a
m

e
(
)

=
’
q
u
e
r
y
L
a
n
g
u
a
g
e

’
)
)
]
"

/
>

3
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:
im

p
o
r
t

o
r

s
e
lf

:
:
b
p
e
l
:
e
x
t
e
n
s
io

n
s
)
]
"

/
>

3
8

<
/
b
p
e
l
:
s
c
o
p
e
>

3
9

<
/
x
s
l
:
c
o
p
y
>

4
0

<
/
x
s
l
:
t
e
m

p
la

t
e
>

4
1

4
2

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.1
5

re
ce
iv
e.
xs
l

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
T

r
a
n
s
fo

r
m

<
r
e
c
e
iv

e
>

in
t
o

<
p
ic

k
>

.
>

4 5
<

x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
6

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
7

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
8 9

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
0

1
1

<
!

C
o
p
y

a
ll

e
le

m
e
n
ts

a
n
d

a
t
t
r
i
b
u
t
e
s

>
1
2

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
3

<
x
s
l
:
c
o
p
y
>

1
4

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
5

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
6

<
/
x
s
l
:
c
o
p
y
>

1
7

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
8

1
9

<
!

U
n
fo

ld
r
e
c
e
iv

e
>

2
0

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
r
e
c
e
iv

e
">

2
1

<
b
p
e
l
:
p
ic

k
>

2
2

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@

c
r
e
a
te

I
n
s
ta

n
c
e
"

/
>

2
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@

n
a
m

e
"

/
>

2
4

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

2
5

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
t
a
r
g
e
t
s
"

/
>

2
6

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
s
o
u
r
c
e
s
"

/
>

2
7

<
b
p
e
l
:
o
n
M

e
s
s
a
g
e
>

2
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

2
9

(
lo

c
a
l

n
a
m

e
(
)

=
’
c
r
e
a
t
e
I
n
s
t
a
n
c
e

’
o
r

3
0

lo
c
a
l

n
a
m

e
(
)

=
’n

a
m

e
’

o
r

3
1

lo
c
a
l

n
a
m

e
(
)

=
’

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e

’
)
)
]
"

/
>

3
2

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:
t
a
r
g
e
t
s

o
r

s
e
lf

:
:
b
p
e
l
:
s
o
u
r
c
e
s
)
]
"

/
>

3
3

<
b
p
e
l
:
e
m

p
ty

/
>

3
4

<
/
b
p
e
l
:
o
n
M

e
s
s
a
g
e
>

3
5

<
/
b
p
e
l
:
p
ic

k
>

3
6

<
/
x
s
l
:
t
e
m

p
la

t
e
>

3
7

3
8

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.1
6

re
m
ov
e-
d
oc
u
m
en
ta
ti
on

.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
R

e
m

o
v
e

a
n
y

d
o
c
u
m

e
n
ta

ti
o
n

e
le

m
e
n
ts

.
>

4 5
<

x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
6

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
7

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
8 9

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
0

1
1

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
2

<
x
s
l
:
c
o
p
y
>

1
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
5

<
/
x
s
l
:
c
o
p
y
>

1
6

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
7

1
8

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
d
o
c
u
m

e
n
ta

ti
o
n
"

/
>

1
9

2
0

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.1
7

re
m
ov
e-
op

ti
on

al
-e
xt
en

si
on

s.
xs
l

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
R

e
m

o
v
e

a
ll

o
p
t
io

n
a
l

e
x
t
e
n
s
io

n
s

a
n
d

t
h
e
i
r

d
e
c
la

r
a
t
io

n
s
.

>
4 5

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
6

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
7

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
8 9

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
c
o
n
s
t
a
n
t
s
.
x
s
l
"
/
>

1
0

1
1

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
2

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 227

1
3

<
!

I
n

i
t
i
a
t
e

th
e

r
e
m

o
v
a
l

o
f

o
p
t
io

n
a
l

e
x
t
e
n
s
io

n
s

b
y

c
o
ll

e
c
t
i
n
g

th
e

s
e
t

o
f

1
4

n
a
m

e
s
p
a
c
e

U
R

Is
fo

r
m

a
n
d
a
to

r
y

e
x
t
e
n
s
io

n
s
.

>
1
5

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
p
r
o
c
e
s
s
">

1
6

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
c
le

a
n

b
p
e
l

n
o
d
e
">

1
7

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

s
e
le

c
t
=
"
b
p
e
l
:
e
x
t
e
n
s
io

n
s

/
b
p
e
l
:
e
x
t
e
n
s
io

n
[
@

m
u
s
tU

n
d
e
r
s
ta

n
d
=

’y
e
s

’
]
/
@

n
a
m

e
sp

a
c
e
"

/
>

1
8

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

1
9

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
0

2
1

<
!

R
e
m

o
v
e

th
e

<
e
x
t
e
n
s
io

n
s
>

e
le

m
e
n
t

i
f

t
h
e
r
e

a
r
e

n
o

m
a
n
d
a
to

r
y

e
x
t
e
n
s
io

n
s
.

>
2
2

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
e
x
t
e
n
s
io

n
s
[
n
o
t
(
b
p
e
l
:
e
x
t
e
n
s
io

n
[

@
m

u
s
tU

n
d
e
r
s
ta

n
d
=

’y
e
s

’
]
)

]
"

/
>

2
3

2
4

<
!

R
e
m

o
v
e

d
e
c
la

r
a
t
io

n
s

o
f

o
p
t
io

n
a
l

e
x
t
e
n
s
io

n
s
.

>
2
5

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
e
x
t
e
n
s
io

n
[
@

m
u
s
tU

n
d
e
r
s
ta

n
d
=

’n
o

’
]
"

/
>

2
6

2
7

<
!

R
e
p
la

c
e

o
p
t
io

n
a
l

<
e
x
t
e
n
s
io

n
A

c
t
iv

it
y
>

s
w

it
h

<
e
m

p
ty

>
.

>
2
8

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
e
x
t
e
n
s
io

n
A

c
t
iv

it
y
">

2
9

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

3
0

3
1

<
x
s
l
:
c
h
o
o
s
e
>

3
2

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
n
a
m

e
s
p
a
c
e

u
r
i
(
∗
[
1
]
)

=
$
m

a
n
d
a
to

r
y

U
R

Is
">

3
3

<
x
s
l
:
c
o
p
y
>

3
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
@
∗
">

3
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

s
e
le

c
t
=
"

$
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

3
6

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

3
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

3
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

s
e
le

c
t
=
"

$
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

3
9

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

4
0

<
/
x
s
l
:
c
o
p
y
>

4
1

<
/
x
s
l
:
w

h
e
n
>

4
2

<
x
s
l
:
o
t
h
e
r
w

is
e
>

4
3

<
b
p
e
l
:
e
m

p
ty

>
4
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[1

]/
@
∗
">

4
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

s
e
le

c
t
=
"

$
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

4
6

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

4
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[1

]/
c
h
i
ld

:
:
n
o
d
e
(
)
">

4
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

s
e
le

c
t
=
"

$
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

4
9

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

5
0

<
/
b
p
e
l
:
e
m

p
ty

>
5
1

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

5
2

<
/
x
s
l
:
c
h
o
o
s
e
>

5
3

<
/
x
s
l
:
t
e
m

p
la

t
e
>

5
4

5
5

<
!

R
e
p
la

c
e

<
a
s
s
ig

n
>

s
t
h
a
t

w
i
ll

b
e

e
m

p
ty

a
f
t
e
r

r
e
m

o
v
in

g
o
p
t
io

n
a
l

5
6

<
e
x
te

n
s
io

n
A

s
s
ig

n
O

p
e
r
a
ti

o
n
>

s
w

it
h

<
e
m

p
ty

>
.

>
5
7

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
a
s
s
ig

n
">

5
8

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

5
9

6
0

<
x
s
l
:
c
h
o
o
s
e
>

6
1

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
b
p
e
l
:
c
o
p
y

o
r

b
p
e
l
:
e
x
te

n
s
io

n
A

s
s
ig

n
O

p
e
r
a
ti

o
n

/
∗
[
1
]
[
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
$
m

a
n
d
a
to

r
y

U
R

Is
]
">

6
2

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
c
le

a
n

b
p
e
l

n
o
d
e
">

6
3

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

s
e
le

c
t
=
"
$
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

6
4

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

6
5

<
/
x
s
l
:
w

h
e
n
>

6
6

<
x
s
l
:
o
t
h
e
r
w

is
e
>

6
7

<
b
p
e
l
:
e
m

p
ty

>
6
8

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

lo
c
a
l

n
a
m

e
(
)

=
’
v
a
li

d
a
t
e

’
)
]
">

6
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

s
e
le

c
t
=
"

$
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

7
0

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

7
1

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

7
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

s
e
le

c
t
=
"

$
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

7
3

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

7
4

<
/
b
p
e
l
:
e
m

p
ty

>
7
5

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

7
6

<
/
x
s
l
:
c
h
o
o
s
e
>

7
7

<
/
x
s
l
:
t
e
m

p
la

t
e
>

7
8

7
9

<
!

R
e
m

o
v
e

o
p
t
io

n
a
l

<
e
x
te

n
s
io

n
A

s
s
ig

n
O

p
e
r
a
ti

o
n
>

s
.

>
8
0

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
e
x
te

n
s
io

n
A

s
s
ig

n
O

p
e
r
a
ti

o
n
">

8
1

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

8
2

8
3

<
x
s
l
:
i
f

t
e
s
t=

"
n
a
m

e
s
p
a
c
e

u
r
i
(
∗
[
1
]
)

=
$
m

a
n
d
a
to

r
y

U
R

Is
">

8
4

<
x
s
l
:
c
o
p
y
>

8
5

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
@
∗
">

8
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

s
e
le

c
t
=
"
$
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

8
7

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

8
8

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

8
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

s
e
le

c
t
=
"
$
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

9
0

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

9
1

<
/
x
s
l
:
c
o
p
y
>

9
2

<
/
x
s
l
:
if

>
9
3

<
/
x
s
l
:
t
e
m

p
la

t
e
>

9
4

9
5

<
!

P
r
o
te

c
t

<
li

t
e
r
a
l
>

s
.

>
9
6

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
l
i
t
e
r
a
l
">

9
7

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

9
8

9
9

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
.
"

/
>

1
0
0

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
0
1

1
0
2

<
!

B
P
E
L

c
o
n
s
t
r
u
c
t
s

r
e
c
u
r
s
i
v
e
ly

.
>

1
0
3

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:∗

"
n
a
m

e=
"
c
le

a
n

b
p
e
l

n
o
d
e
">

1
0
4

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

1
0
5

1
0
6

<
x
s
l
:
c
o
p
y
>

1
0
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
@
∗
">

1
0
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

s
e
le

c
t
=
"
$
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

1
0
9

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

1
1
0

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

1
1
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

s
e
le

c
t
=
"
$
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

1
1
2

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

1
1
3

<
/
x
s
l
:
c
o
p
y
>

1
1
4

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
1
5

1
1
6

<
!

R
e
m

o
v
e

e
x
t
e
n
s
io

n
s

t
h
a
t

a
r
e

in
a
n

o
p
t
io

n
a
l

n
a
m

e
s
p
a
c
e
,

a
n
d

le
a
v
e

th
e

r
e
s
t

u
n
to

u
c
h
e
d

.
>

1
1
7

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
1
8

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

1
1
9

1
2
0

<
x
s
l
:
i
f

t
e
s
t=

"
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
$
m

a
n
d
a
to

r
y

U
R

Is
">

1
2
1

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
.
"

/
>

1
2
2

<
/
x
s
l
:
if

>
1
2
3

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
2
4

1
2
5

<
!

R
e
m

o
v
e

e
x
t
e
n
s
io

n
a
t
t
r
i
b
u
t
e
s

t
h
a
t

a
r
e

in
a
n

o
p
t
io

n
a
l

n
a
m

e
s
p
a
c
e
.

>
1
2
6

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
@
∗
">

1
2
7

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

a
n
d
a
to

r
y

U
R

Is
"

/
>

1
2
8

1
2
9

<
x
s
l
:
i
f

t
e
s
t=

"
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

o
r

n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
$
m

a
n
d
a
to

r
y

U
R

Is
">

1
3
0

<
x
s
l
:
c
o
p
y

/
>

1
3
1

<
/
x
s
l
:
if

>
1
3
2

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
3
3

1
3
4

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

228 6.D. XSLT Transformations
6.
D
.1
8

re
m
ov
e-
re
d
u
n
d
an

t-
at
tr
ib
u
te
s.
xs
l

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
R

e
m

o
v
e

th
e

r
e
d
u
n
d
a
n
t

a
t
t
r
i
b
u
t
e
s
.

>
4 5

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
6

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
7

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
8 9

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
0

1
1

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
2

<
x
s
l
:
c
o
p
y
>

1
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
5

<
/
x
s
l
:
c
o
p
y
>

1
6

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
7

1
8

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
"

m
o
d
e=

"
e
x
t
e
n
s
io

n
A

c
t
iv

it
y
">

1
9

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

lo
c
a
l

n
a
m

e
(
)

=
’
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e

’
)
]
"

/
>

2
0

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
∗
"

/
>

2
1

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
2

2
3

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
e
x
t
e
n
s
io

n
A

c
t
iv

it
y
">

2
4

<
x
s
l
:
c
o
p
y
>

2
5

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

2
6

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

m
o
d
e=

"
e
x
t
e
n
s
io

n
A

c
t
iv

it
y
"

/
>

2
7

<
/
x
s
l
:
c
o
p
y
>

2
8

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
9

3
0

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
a
s
s
ig

n
|

b
p
e
l
:
c
o
m

p
e
n
s
a
te

|
b
p
e
l
:

c
o
m

p
e
n
s
a
te

S
c
o
p
e

|
b
p
e
l
:
e
m

p
ty

|
b
p
e
l
:
e
x
i
t

|
b
p
e
l
:
fo

r
E

a
c
h

|
b
p
e
l
:
i
f

|
b
p
e
l
:
in

v
o
k
e

|
b
p
e
l
:
p
ic

k
|

b
p
e
l
:
r
e
c
e
iv

e
|

b
p
e
l
:

r
e
p
e
a
t
U

n
t
il

|
b
p
e
l
:
r
e
p
ly

|
b
p
e
l
:
r
e
th

r
o
w

|
b
p
e
l
:
s
c
o
p
e

|
b
p
e
l
:

s
e
q
u
e
n
c
e

|
b
p
e
l
:
th

r
o
w

|
b
p
e
l
:
v
a
li

d
a
t
e

|
b
p
e
l
:
w

a
it

|
b
p
e
l
:

w
h
il

e
">

3
1

<
x
s
l
:
c
o
p
y
>

3
2

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

3
3

lo
c
a
l

n
a
m

e
(
)

=
’

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e

’
)
]
"

/
>

3
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

3
5

<
/
x
s
l
:
c
o
p
y
>

3
6

<
/
x
s
l
:
t
e
m

p
la

t
e
>

3
7

3
8

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
p
r
o
c
e
s
s
">

3
9

<
b
p
e
l
:
p
r
o
c
e
s
s
>

4
0

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

4
1

(
lo

c
a
l

n
a
m

e
(
)

=
’
q
u
e
r
y
L
a
n
g
u
a
g
e

’
o
r

4
2

lo
c
a
l

n
a
m

e
(
)

=
’

e
x
p
r
e
s
s
io

n
L
a
n
g
u
a
g
e

’
o
r

4
3

lo
c
a
l

n
a
m

e
(
)

=
’

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e

’
o
r

4
4

lo
c
a
l

n
a
m

e
(
)

=
’

e
x
it

O
n
S
ta

n
d
a
r
d
F

a
u
lt

’
)
)
]
"

/
>

4
5

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

4
6

<
/
b
p
e
l
:
p
r
o
c
e
s
s
>

4
7

<
/
x
s
l
:
t
e
m

p
la

t
e
>

4
8

4
9

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.1
9

re
p
ea
tU

nt
il
.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
T

r
a
n
s
fo

r
m

<
r
e
p
e
a
t
U

n
t
il

>
in

t
o

<
w

h
il

e
>

.
>

4 5
<

x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
6

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
7

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

"
8

x
m

ln
s
:
x
s
d
=
"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
2
0
0
1
/
X
M

L
S
ch

em
a
">

9
1
0

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
1

1
2

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
c
o
n
s
t
a
n
t
s
.
x
s
l
"
/
>

1
3

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
fr

e
s
h

n
a
m

e
s
.
x
s
l
"
/
>

1
4

1
5

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
6

<
x
s
l
:
c
o
p
y
>

1
7

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
8

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
9

<
/
x
s
l
:
c
o
p
y
>

2
0

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
1

2
2

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
r
e
p
e
a
t
U

n
t
il

">
2
3

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
c
o
n
d
it

io
n
V

a
r
ia

b
le

">
2
4

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

2
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
tm

p
c
o
n
d
it

io
n

v
a
r
ia

b
le

p
o
s
t
f
i
x
"

/
>

2
6

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

2
7

<
/
x
s
l
:
v
a
r
ia

b
le

>
2
8

2
9

<
b
p
e
l
:
s
c
o
p
e
>

3
0

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

3
1

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
t
a
r
g
e
t
s

|
b
p
e
l
:
s
o
u
r
c
e
s
"

/
>

3
2

3
3

<
b
p
e
l
:
v
a
r
ia

b
le

s
>

3
4

<
b
p
e
l
:
v
a
r
ia

b
le

t
y
p
e=

"
x
s
d

:
b
o
o
le

a
n
">

3
5

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
n
a
m

e
">

3
6

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
c
o
n
d
it

io
n
V

a
r
ia

b
le

"
/
>

3
7

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

3
8

<
b
p
e
l
:
fr

o
m

e
x
p
r
e
s
s
io

n
L

a
n
g
u
a
g
e
=
"
{
$
x
p
a
th

U
R

N
}
">

3
9

t
r
u
e

(
)

4
0

<
/
b
p
e
l
:
fr

o
m

>
4
1

<
/
b
p
e
l
:
v
a
r
ia

b
le

>
4
2

<
/
b
p
e
l
:
v
a
r
ia

b
le

s
>

4
3

4
4

<
b
p
e
l
:
w

h
il

e
>

4
5

<
b
p
e
l
:
c
o
n
d
it

io
n

e
x
p
r
e
s
s
io

n
L

a
n
g
u
a
g
e
=
"
{
$
x
p
a
th

U
R

N
}
">

4
6

$
<

x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
c
o
n
d
it

io
n
V

a
r
ia

b
le

"
/
>

4
7

<
/
b
p
e
l
:
c
o
n
d
it

io
n

>
4
8

<
b
p
e
l
:
s
e
q
u
e
n
c
e
>

4
9

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:
t
a
r
g
e
t
s

o
r

s
e
lf

:
:
b
p
e
l
:
s
o
u
r
c
e
s

o
r

s
e
lf

:
:
b
p
e
l
:
c
o
n
d
it

io
n

)
]
"

/
>

5
0

<
b
p
e
l
:
if

>
5
1

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
c
o
n
d
it

io
n
"

/
>

5
2

<
b
p
e
l
:
a
s
s
ig

n
>

5
3

<
b
p
e
l
:
c
o
p
y
>

5
4

<
b
p
e
l
:
fr

o
m

e
x
p
r
e
s
s
io

n
L

a
n
g
u
a
g
e
=
"
{
$
x
p
a
th

U
R

N
}
">

5
5

f
a
ls

e
(
)

5
6

<
/
b
p
e
l
:
fr

o
m

>
5
7

<
b
p
e
l
:
t
o

v
a
r
ia

b
le

=
"
{
$
c
o
n
d
it

io
n
V

a
r
ia

b
le

}
"

/
>

5
8

<
/
b
p
e
l
:
c
o
p
y
>

5
9

<
/
b
p
e
l
:
a
s
s
ig

n
>

6
0

<
/
b
p
e
l
:
if

>
6
1

<
/
b
p
e
l
:
s
e
q
u
e
n
c
e
>

6
2

<
/
b
p
e
l
:
w

h
il

e
>

6
3

<
/
b
p
e
l
:
s
c
o
p
e
>

6
4

<
/
x
s
l
:
t
e
m

p
la

t
e
>

6
5

6
6

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 229

6.
D
.2
0

re
p
ly
.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
M

a
k
e

te
m

p
o
r
a
r
y

v
a
r
i
a
b
le

s
a
n
d

a
s
s
ig

n
m

e
n
ts

,
d
u
e

to
th

e
u
s
e

o
f

<
to

P
a
r
ts

>
,

4
a
n
d
/
o
r

r
e
fe

r
e
n
c
e
s

to
a
n

e
le

m
e
n
t

v
a
r
ia

b
le

,
e
x
p
li

c
i
t
.

>
5 6

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
7

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
8

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
9

1
0

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
1

1
2

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
to

fr
o
m

p
a
r
ts

e
le

m
e
n
t

v
a
r
i
a
b
le

s
.
x
s
l
"

/
>

1
3

1
4

<
!

C
o
p
y

a
ll

e
le

m
e
n
ts

a
n
d

a
t
t
r
i
b
u
t
e
s

>
1
5

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
6

<
x
s
l
:
c
o
p
y
>

1
7

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
8

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
9

<
/
x
s
l
:
c
o
p
y
>

2
0

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
1

2
2

<
!

U
n
fo

ld
r
e
p
ly

>
2
3

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
r
e
p
ly

">
2
4

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
in

p
u
t
V

a
r
ia

b
le

"
s
e
le

c
t
=
"
@

v
a
r
ia

b
le

"
/
>

2
5

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
in

p
u
tE

le
m

e
n
t
"

s
e
le

c
t
=
"
c
o
u
n
t
(
a
n
c
e
s
to

r
::
∗
/

b
p
e
l
:
v
a
r
i
a
b
le

s
/
b
p
e
l
:
v
a
r
i
a
b
le

[@
n
a
m

e=
$
in

p
u
t
V

a
r
ia

b
le

]
[
1
]
/

@
e
le

m
e
n
t
)

=
1
"

/
>

2
6

2
7

<
x
s
l
:
c
h
o
o
s
e
>

2
8

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
b
p
e
l
:
to

P
a
r
ts

o
r

$
in

p
u
tE

le
m

e
n
t
">

2
9

<
b
p
e
l
:
s
c
o
p
e
>

3
0

<
b
p
e
l
:
v
a
r
ia

b
le

s
>

3
1

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
m

e
s
s
a
g
e

a
c
t
i
v
i
t
i
e
s

te
m

p
v
a
r
i
a
b
le

s
">

3
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
ie

s
"

s
e
le

c
t
=
"
.
"

/
>

3
3

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

3
4

<
/
b
p
e
l
:
v
a
r
ia

b
le

s
>

3
5

3
6

<
b
p
e
l
:
s
e
q
u
e
n
c
e
>

3
7

<
!

T
r
a
n
s
fo

r
m

to
P

a
r
ts

in
t
o

a
n

a
s
s
ig

n
m

e
n
t
,

i
f

p
r
e
s
e
n
t

>
3
8

<
x
s
l
:
i
f

t
e
s
t=

"
b
p
e
l
:
to

P
a
r
ts

">
3
9

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

to
p
a
r
ts

e
x
p
li

c
i
t
ly

"
/
>

4
0

<
/
x
s
l
:
if

>
4
1

4
2

<
!

C
r
e
a
te

a
s
s
ig

n
m

e
n
t

to
c
o
p
y

e
le

m
e
n
t

v
a
r
i
a
b
le

to
s
i
n
g
le

p
a
r
t

>
4
3

<
x
s
l
:
i
f

t
e
s
t=

"
$
in

p
u
tE

le
m

e
n
t
">

4
4

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

in
p
u
t

e
le

m
e
n
t

e
x
p
li

c
i
t
ly

">
4
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
V

a
r
ia

b
le

"
s
e
le

c
t
=
"

$
in

p
u
t
V

a
r
ia

b
le

"
/
>

4
6

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

4
7

<
/
x
s
l
:
if

>
4
8

4
9

<
x
s
l
:
c
o
p
y
>

5
0

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

5
1

(
lo

c
a
l

n
a
m

e
(
)

=
’
v
a
r
ia

b
le

’
o
r

5
2

lo
c
a
l

n
a
m

e
(
)

=
’
p
o
r
tT

y
p
e

’
)
)
]
"

/
>

5
3

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
a
t
t
r
i
b
u
t
e

w
it

h
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

5
4

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
tt

r
ib

u
te

N
a
m

e
"

s
e
le

c
t
=
"

’
v
a
r
ia

b
le

’
"

/
>

5
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

5
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
tm

p
in

p
u
t

m
e
s
s
a
g
e

v
a
r
ia

b
le

p
o
s
t
f
i
x
"

/
>

5
7

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

5
8

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:
to

P
a
r
ts

)
]
"

/
>

5
9

<
/
x
s
l
:
c
o
p
y
>

6
0

<
/
b
p
e
l
:
s
e
q
u
e
n
c
e
>

6
1

<
/
b
p
e
l
:
s
c
o
p
e
>

6
2

<
/
x
s
l
:
w

h
e
n
>

6
3

6
4

<
x
s
l
:
o
t
h
e
r
w

is
e
>

6
5

<
x
s
l
:
c
o
p
y
>

6
6

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

lo
c
a
l

n
a
m

e
(
)

=
’
p
o
r
tT

y
p
e

’
)
]
"

/
>

6
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
"

/
>

6
8

<
/
x
s
l
:
c
o
p
y
>

6
9

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

7
0

<
/
x
s
l
:
c
h
o
o
s
e
>

7
1

7
2

<
/
x
s
l
:
t
e
m

p
la

t
e
>

7
3

7
4

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.2
1

sc
op

e.
xs
l

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
M

a
k
e

v
a
r
i
a
b
le

i
n

i
t
i
a
li

z
a
t
i
o
n

e
x
p
li

c
i
t

in
a
ll

s
c
o
p
e
s

(
in

c
lu

d
in

g
<

p
r
o
c
e
s
s
>

)
.

>
4

<
!

M
a
k
e

i
m

p
li

c
i
t

v
a
r
i
a
b
le

s
a
n
d

a
s
s
ig

n
m

e
n
ts

in
<

o
n
E

v
e
n
t>

s
e
x
p
li

c
i
t

.
>

5 6
<

x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
7

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
8

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
9

1
0

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
1

1
2

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
o
n
E

v
e
n
t
.
x
s
l
"

/
>

1
3

1
4

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
5

<
x
s
l
:
c
o
p
y
>

1
6

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
8

<
/
x
s
l
:
c
o
p
y
>

1
9

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
0

2
1

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
p
r
o
c
e
s
s
[
b
p
e
l
:
v
a
r
i
a
b
le

s
/
b
p
e
l
:
v
a
r
i
a
b
le

/
b
p
e
l
:
fr

o
m

]
">

2
2

<
x
s
l
:
c
o
p
y
>

2
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

2
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
e
x
t
e
n
s
io

n
s

|
b
p
e
l
:
im

p
o
r
t
"

/
>

2
5

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
s
c
o
p
e
"

/
>

2
6

<
/
x
s
l
:
c
o
p
y
>

2
7

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
8

2
9

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
s
c
o
p
e
[
b
p
e
l
:
v
a
r
i
a
b
le

s
/
b
p
e
l
:
v
a
r
i
a
b
le

/
b
p
e
l

:
fr

o
m

]
"

3
0

n
a
m

e=
"
s
c
o
p
e
">

3
1

3
2

<
b
p
e
l
:
s
c
o
p
e
>

3
3

<
b
p
e
l
:
v
a
r
ia

b
le

s
>

3
4

<
x
s
l
:
fo

r
e
a
c
h

s
e
le

c
t
=
"
b
p
e
l
:
v
a
r
i
a
b
le

s
/
b
p
e
l
:
v
a
r
i
a
b
le

">
3
5

<
x
s
l
:
c
o
p
y
>

3
6

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"
/
>

3
7

<
/
x
s
l
:
c
o
p
y
>

230 6.D. XSLT Transformations
3
8

<
/
x
s
l
:
fo

r
e
a
c
h
>

3
9

<
/
b
p
e
l
:
v
a
r
ia

b
le

s
>

4
0

4
1

<
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s
>

4
2

<
b
p
e
l
:
c
a
t
c
h
A

ll
>

4
3

<
b
p
e
l
:
r
e
t
h
r
o
w

/
>

4
4

<
/
b
p
e
l
:
c
a
t
c
h
A

ll
>

4
5

<
/
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s
>

4
6

4
7

<
b
p
e
l
:
s
e
q
u
e
n
c
e
>

4
8

<
b
p
e
l
:
s
c
o
p
e
>

4
9

<
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s
>

5
0

<
b
p
e
l
:
c
a
t
c
h
A

ll
>

5
1

<
b
p
e
l
:
t
h
r
o
w

fa
u
lt

N
a
m

e
=

’b
p
e
l
:
s
c
o
p

e
I
n

it
ia

li
z
a
t
io

n
F

a
u

lt
’/

>
5
2

<
/
b
p
e
l
:
c
a
t
c
h
A

ll
>

5
3

<
/
b
p
e
l
:
fa

u
lt

H
a
n
d
le

r
s
>

5
4

5
5

<
b
p
e
l
:
a
s
s
ig

n
>

5
6

<
x
s
l
:
fo

r
e
a
c
h

s
e
le

c
t
=
"
b
p
e
l
:
v
a
r
i
a
b
le

s
/
b
p
e
l
:
v
a
r
i
a
b
le

[
b
p
e
l

:
fr

o
m

]
">

5
7

<
b
p
e
l
:
c
o
p
y
>

5
8

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
fr

o
m

"
/
>

5
9

<
b
p
e
l
:
t
o
>

6
0

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

">
<

x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

n
a
m

e
"
/>

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

6
1

<
/
b
p
e
l
:
t
o
>

6
2

<
/
b
p
e
l
:
c
o
p
y
>

6
3

<
/
x
s
l
:
fo

r
e
a
c
h
>

6
4

<
/
b
p
e
l
:
a
s
s
ig

n
>

6
5

<
/
b
p
e
l
:
s
c
o
p
e
>

6
6

6
7

<
b
p
e
l
:
s
c
o
p
e
>

6
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

6
9

lo
c
a
l

n
a
m

e
(
)

=
’

ta
r
g
e
tN

a
m

e
s
p
a
c
e

’
)
]
"
/
>

7
0

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:
v
a
r
i
a
b
le

s
o
r

s
e
lf

:
:
b
p
e
l
:
e
x
t
e
n
s
io

n
s

o
r

s
e
lf

:
:
b
p
e
l
:
im

p
o
r
t
)
]
"

/
>

7
1

<
/
b
p
e
l
:
s
c
o
p
e
>

7
2

7
3

<
/
b
p
e
l
:
s
e
q
u
e
n
c
e
>

7
4

<
/
b
p
e
l
:
s
c
o
p
e
>

7
5

7
6

<
/
x
s
l
:
t
e
m

p
la

t
e
>

7
7

7
8

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.2
2

se
qu

en
ce
.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
T

r
a
n
s
fo

r
m

<
s
e
q
u
e
n
c
e
>

s
in

t
o

<
fl

o
w

>
s
.

>
4

<
x
s
l
:
s
t
y
le

s
h

e
e
t

5
v
e
r
s
io

n
=
"
1
.0

"
6

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
7

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
8 9

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
0

1
1

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
c
o
n
s
t
a
n
t
s
.
x
s
l
"
/
>

1
2

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
fr

e
s
h

n
a
m

e
s
.
x
s
l
"
/
>

1
3

1
4

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

1
5

<
x
s
l
:
c
o
p
y
>

1
6

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

1
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
8

<
/
x
s
l
:
c
o
p
y
>

1
9

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
0

2
1

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
s
e
q
u
e
n
c
e
">

2
2

<
b
p
e
l
:
fl

o
w

>
2
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

2
4

2
5

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
t
a
r
g
e
t
s

|
b
p
e
l
:
s
o
u
r
c
e
s
"

/
>

2
6

2
7

<
x
s
l
:
c
h
o
o
s
e
>

2
8

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
1

&
l
t
;

c
o
u
n
t
(
b
p
e
l
:
a
s
s
ig

n
|

b
p
e
l
:
c
o
m

p
e
n
s
a
te

|
b
p
e
l
:
c
o
m

p
e
n
s
a
te

S
c
o
p
e

|
b
p
e
l
:
e
m

p
ty

|
b
p
e
l
:
e
x
i
t

|
b
p
e
l

:
e
x
t
e
n
s
io

n
A

c
t
iv

it
y

|
b
p
e
l
:
fl

o
w

|
b
p
e
l
:
fo

r
E

a
c
h

|
b
p
e
l
:

i
f

|
b
p
e
l
:
in

v
o
k
e

|
b
p
e
l
:
p
ic

k
|

b
p
e
l
:
r
e
c
e
iv

e
|

b
p
e
l
:

r
e
p
e
a
t
U

n
t
il

|
b
p
e
l
:
r
e
p
ly

|
b
p
e
l
:
r
e
th

r
o
w

|
b
p
e
l
:
s
c
o
p
e

|
b
p
e
l
:
s
e
q
u
e
n
c
e

|
b
p
e
l
:
th

r
o
w

|
b
p
e
l
:
v
a
li

d
a
t
e

|
b
p
e
l
:

w
a
it

|
b
p
e
l
:
w

h
il

e
)
">

2
9

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
s
e
q
u
e
n
c
e

li
n
k
s
"

/
>

3
0

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
a
s
s
ig

n
|

b
p
e
l
:

c
o
m

p
e
n
s
a
te

|
b
p
e
l
:
c
o
m

p
e
n
s
a
te

S
c
o
p
e

|
b
p
e
l
:
e
m

p
ty

|
b
p
e
l
:
e
x
i
t

|
b
p
e
l
:
e
x
t
e
n
s
io

n
A

c
t
iv

it
y

|
b
p
e
l
:
fl

o
w

|
b
p
e
l
:
fo

r
E

a
c
h

|
b
p
e
l
:
i
f

|
b
p
e
l
:
in

v
o
k
e

|
b
p
e
l
:
p
ic

k
|

b
p
e
l
:
r
e
c
e
iv

e
|

b
p
e
l
:
r
e
p
e
a
t
U

n
t
il

|
b
p
e
l
:
r
e
p
ly

|
b
p
e
l
:

r
e
th

r
o
w

|
b
p
e
l
:
s
c
o
p
e

|
b
p
e
l
:
s
e
q
u
e
n
c
e

|
b
p
e
l
:
th

r
o
w

|
b
p
e
l
:
v
a
li

d
a
t
e

|
b
p
e
l
:
w

a
it

|
b
p
e
l
:
w

h
il

e
"

3
1

m
o
d
e=

"
s
e
q
u
e
n
c
e
C

h
il

d
"

/
>

3
2

<
/
x
s
l
:
w

h
e
n
>

3
3

3
4

<
x
s
l
:
o
t
h
e
r
w

is
e
>

3
5

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
b
p
e
l
:
a
s
s
ig

n
|

b
p
e
l
:

c
o
m

p
e
n
s
a
te

|
b
p
e
l
:
c
o
m

p
e
n
s
a
te

S
c
o
p
e

|
b
p
e
l
:
e
m

p
ty

|
b
p
e
l
:
e
x
i
t

|
b
p
e
l
:
e
x
t
e
n
s
io

n
A

c
t
iv

it
y

|
b
p
e
l
:
fl

o
w

|
b
p
e
l
:
fo

r
E

a
c
h

|
b
p
e
l
:
i
f

|
b
p
e
l
:
in

v
o
k
e

|
b
p
e
l
:
p
ic

k
|

b
p
e
l
:
r
e
c
e
iv

e
|

b
p
e
l
:
r
e
p
e
a
t
U

n
t
il

|
b
p
e
l
:
r
e
p
ly

|
b
p
e
l
:

r
e
th

r
o
w

|
b
p
e
l
:
s
c
o
p
e

|
b
p
e
l
:
s
e
q
u
e
n
c
e

|
b
p
e
l
:
th

r
o
w

|
b
p
e
l
:
v
a
li

d
a
t
e

|
b
p
e
l
:
w

a
it

|
b
p
e
l
:
w

h
il

e
"

/
>

3
6

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

3
7

<
/
x
s
l
:
c
h
o
o
s
e
>

3
8

3
9

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:
t
a
r
g
e
t
s

o
r

s
e
lf

:
:
b
p
e
l
:
s
o
u
r
c
e
s

o
r

s
e
lf

:
:
b
p
e
l
:
a
s
s
ig

n
o
r

s
e
lf

:
:
b
p
e
l
:

c
o
m

p
e
n
s
a
te

o
r

s
e
lf

:
:
b
p
e
l
:
c
o
m

p
e
n
s
a
te

S
c
o
p
e

o
r

s
e
lf

:
:
b
p
e
l
:

e
m

p
ty

o
r

s
e
lf

:
:
b
p
e
l
:
e
x
i
t

o
r

s
e
lf

:
:
b
p
e
l
:
e
x
t
e
n
s
io

n
A

c
t
iv

it
y

o
r

s
e
lf

:
:
b
p
e
l
:
fl

o
w

o
r

s
e
lf

:
:
b
p
e
l
:
fo

r
E

a
c
h

o
r

s
e
lf

:
:
b
p
e
l
:

i
f

o
r

s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e

o
r

s
e
lf

:
:
b
p
e
l
:
p
ic

k
o
r

s
e
lf

:
:
b
p
e
l

:
r
e
c
e
iv

e
o
r

s
e
lf

:
:
b
p
e
l
:
r
e
p
e
a
t
U

n
t
il

o
r

s
e
lf

:
:
b
p
e
l
:
r
e
p
ly

o
r

s
e
lf

:
:
b
p
e
l
:
r
e
th

r
o
w

o
r

s
e
lf

:
:
b
p
e
l
:
s
c
o
p
e

o
r

s
e
lf

:
:
b
p
e
l
:

s
e
q
u
e
n
c
e

o
r

s
e
lf

:
:
b
p
e
l
:
th

r
o
w

o
r

s
e
lf

:
:
b
p
e
l
:
v
a
li

d
a
t
e

o
r

s
e
lf

:
:
b
p
e
l
:
w

a
it

o
r

s
e
lf

:
:
b
p
e
l
:
w

h
il

e
)
]
"

/
>

4
0

4
1

<
/
b
p
e
l
:
fl

o
w

>
4
2

<
/
x
s
l
:
t
e
m

p
la

t
e
>

4
3

4
4

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
s
e
q
u
e
n
c
e

li
n
k
s
">

4
5

<
b
p
e
l
:
li

n
k
s
>

4
6

<
x
s
l
:
fo

r
e
a
c
h

s
e
le

c
t
=
"
b
p
e
l
:
a
s
s
ig

n
|

b
p
e
l
:
c
o
m

p
e
n
s
a
te

|
b
p
e
l
:

c
o
m

p
e
n
s
a
te

S
c
o
p
e

|
b
p
e
l
:
e
m

p
ty

|
b
p
e
l
:
e
x
i
t

|
b
p
e
l
:

e
x
t
e
n
s
io

n
A

c
t
iv

it
y

|
b
p
e
l
:
fl

o
w

|
b
p
e
l
:
fo

r
E

a
c
h

|
b
p
e
l
:
i
f

|
b
p
e
l
:
in

v
o
k
e

|
b
p
e
l
:
p
ic

k
|

b
p
e
l
:
r
e
c
e
iv

e
|

b
p
e
l
:

r
e
p
e
a
t
U

n
t
il

|
b
p
e
l
:
r
e
p
ly

|
b
p
e
l
:
r
e
th

r
o
w

|
b
p
e
l
:
s
c
o
p
e

|
b
p
e
l
:
s
e
q
u
e
n
c
e

|
b
p
e
l
:
th

r
o
w

|
b
p
e
l
:
v
a
li

d
a
t
e

|
b
p
e
l
:
w

a
it

|
b
p
e
l
:
w

h
il

e
">

4
7

<
x
s
l
:
i
f

t
e
s
t=

"
fo

ll
o
w

in
g

s
i
b
li

n
g

:
:
b
p
e
l
:∗

">
4
8

<
b
p
e
l
:
li

n
k
>

4
9

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
a
t
t
r
i
b
u
t
e

w
it

h
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

5
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
tt

r
ib

u
te

N
a
m

e
"

s
e
le

c
t
=
"

’n
a
m

e
’
"

/
>

5
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

5
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
fr

e
s
h

s
e
q
u
e
n
c
e

li
n
k

p
o
s
t
f
i
x
"

/
>

5
3

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

5
4

<
/
b
p
e
l
:
li

n
k
>

5
5

<
/
x
s
l
:
if

>

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 231

5
6

<
/
x
s
l
:
fo

r
e
a
c
h
>

5
7

<
/
b
p
e
l
:
li

n
k
s
>

5
8

<
/
x
s
l
:
t
e
m

p
la

t
e
>

5
9

6
0

<
!

W
ra

p
th

e
c
h
il

d
r
e
n

o
f

<
s
e
q
u
e
n
c
e
>

s
in

<
fl

o
w

>
s

w
it

h
a
p
p
r
o
p
r
ia

t
e

li
n
k
s
.

>
6
1

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
"

m
o
d
e=

"
s
e
q
u
e
n
c
e
C

h
il

d
">

6
2

<
b
p
e
l
:
fl

o
w

>
6
3

<
x
s
l
:
i
f

t
e
s
t=

"
p
o
s
it

io
n

(
)

&
g
t
;

1
">

6
4

<
b
p
e
l
:
t
a
r
g
e
t
s
>

6
5

<
b
p
e
l
:
t
a
r
g
e
t
>

6
6

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
a
t
t
r
i
b
u
t
e

w
it

h
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

6
7

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
tt

r
ib

u
te

N
a
m

e
"

s
e
le

c
t
=
"

’
li
n
k
N

a
m

e
’
"

/
>

6
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
p
r
e
c
e
d
in

g
s
i
b
li

n
g

:
:
∗
[
1
]
"

/
>

6
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
fr

e
s
h

s
e
q
u
e
n
c
e

li
n
k

p
o
s
t
f
i
x
"

/
>

7
0

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

7
1

<
/
b
p
e
l
:
t
a
r
g
e
t
>

7
2

<
/
b
p
e
l
:
t
a
r
g
e
t
s
>

7
3

<
/
x
s
l
:
if

>
7
4

7
5

<
x
s
l
:
i
f

t
e
s
t=

"
fo

ll
o
w

in
g

s
i
b
li

n
g

:
:
b
p
e
l
:∗

">
7
6

<
b
p
e
l
:
s
o
u
r
c
e
s
>

7
7

<
b
p
e
l
:
s
o
u
r
c
e
>

7
8

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
a
t
t
r
i
b
u
t
e

w
it

h
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

7
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
tt

r
ib

u
te

N
a
m

e
"

s
e
le

c
t
=
"

’
li
n
k
N

a
m

e
’
"

/
>

8
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

8
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
fr

e
s
h

s
e
q
u
e
n
c
e

li
n
k

p
o
s
t
f
i
x
"

/
>

8
2

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

8
3

<
/
b
p
e
l
:
s
o
u
r
c
e
>

8
4

<
/
b
p
e
l
:
s
o
u
r
c
e
s
>

8
5

<
/
x
s
l
:
if

>
8
6

8
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
.
"

/
>

8
8

<
/
b
p
e
l
:
fl

o
w

>
8
9

<
/
x
s
l
:
t
e
m

p
la

t
e
>

9
0

9
1

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.2
3

st
an

d
ar
d
-a
tt
ri
b
u
te
s-
el
em

en
ts
.x
sl

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
M

o
v
e

<
t
a
r
g
e
t
s
>

,
<

s
o
u
r
c
e
s
>

,
a
n
d

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e

fr
o
m

a
c
t
i
v
i
t
i
e
s

to
a

4
n
e
w

w
r
a
p
p
in

g
<

fl
o
w

>
,

e
x
c
e
p
t

fo
r

a
c
t
i
v
i
t
i
e
s

t
h
a
t

h
a
v
e

n
o

<
t
a
r
g
e
t
s
>

o
r

5
<

s
o
u
r
c
e
s
>

,
w

h
e
r
e

w
e

p
u
s
h

th
e

v
a
lu

e
o
f

t
h
a
t

a
t
t
r
i
b
u
t
e

to
a
ll

th
e

c
h
i
ld

6
a
c
t
i
v
i
t
i
e
s

.
>

7
<

!
N

a
m

e
s

a
r
e

a
ls

o
m

o
v
e
d

fr
o
m

a
c
t
i
v
i
t
i
e
s

(
e
x
c
e
p
t

<
s
c
o
p
e
>

s
)

to
a

n
e
w

w
r
a
p
p
in

g
8

<
fl

o
w

>
a
n
d

fr
e
s
h

n
a
m

e
s

a
r
e

a
d
d
e
d

to
u
n
n
a
m

e
d

<
fl

o
w

>
s

a
n
d

<
s
c
o
p
e

>
s
.

>
9

1
0

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
1
1

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
1
2

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

">
1
3

1
4

<
x
s
l
:
o
u
t
p
u
t

in
d
e
n
t=

"
y
e
s
"

m
e
th

o
d
=
"
x
m

l"
/
>

1
5

1
6

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
c
o
n
s
t
a
n
t
s
.
x
s
l
"
/
>

1
7

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
fr

e
s
h

n
a
m

e
s
.
x
s
l
"

/
>

1
8

1
9

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
">

2
0

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

2
1

2
2

<
x
s
l
:
c
o
p
y
>

2
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
"

/
>

2
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

2
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"

$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

2
6

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

2
7

<
/
x
s
l
:
c
o
p
y
>

2
8

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
9

3
0

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
n
a
m

e
">

3
1

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
n
a
m

e
"

/
>

3
2

3
3

<
x
s
l
:
c
h
o
o
s
e
>

3
4

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
n
o
r
m

a
li

z
e

s
p
a
c
e
(
s
t
r
i
n
g
(
$
n
a
m

e
)
)

=
’
’
">

3
5

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
a
t
t
r
i
b
u
t
e

w
it

h
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

3
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
tt

r
ib

u
te

N
a
m

e
"

s
e
le

c
t
=
"

’n
a
m

e
’
"

/
>

3
7

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

3
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
fr

e
s
h

a
c
t
i
v
i
t
y

n
a
m

e
p
o
s
t
f
i
x
"

/
>

3
9

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

4
0

<
/
x
s
l
:
w

h
e
n
>

4
1

<
x
s
l
:
o
t
h
e
r
w

is
e
>

4
2

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
$
n
a
m

e
"

/
>

4
3

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

4
4

<
/
x
s
l
:
c
h
o
o
s
e
>

4
5

<
/
x
s
l
:
t
e
m

p
la

t
e
>

4
6

4
7

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
∗
"

m
o
d
e=

"
e
x
t
e
n
s
io

n
A

c
t
iv

it
y
">

4
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

lo
c
a
l

n
a
m

e
(
)

=
’
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e

’
)
]
"

/
>

4
9

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:
t
a
r
g
e
t
s

o
r

s
e
lf

:
:
b
p
e
l
:

s
o
u
r
c
e
s
)
]
"

/
>

5
0

<
/
x
s
l
:
t
e
m

p
la

t
e
>

5
1

5
2

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
e
x
t
e
n
s
io

n
A

c
t
iv

it
y

[
∗
[
1
]
/

b
p
e
l
:
t
a
r
g
e
t
s

o
r

∗
[1

]/
b
p
e
l
:
s
o
u
r
c
e
s

o
r
∗
[1

]/
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]
">

5
3

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

5
4

5
5

<
x
s
l
:
c
h
o
o
s
e
>

5
6

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
n
o
t
(
∗
[1

]/
b
p
e
l
:
t
a
r
g
e
t
s

o
r
∗
[1

]/
b
p
e
l
:
s
o
u
r
c
e
s
)
">

5
7

<
x
s
l
:
c
o
p
y
>

5
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
∗
"

/
>

5
9

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

6
0

<
/
x
s
l
:
c
o
p
y
>

6
1

<
/
x
s
l
:
w

h
e
n
>

6
2

<
x
s
l
:
o
t
h
e
r
w

is
e
>

6
3

<
b
p
e
l
:
fl

o
w

>
6
4

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
∗
[1

]/
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

6
5

<
x
s
l
:
i
f

t
e
s
t=

"
n
o
t
(
∗
[1

]/
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
)

a
n
d

$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

6
6

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

6
7

<
/
x
s
l
:
if

>
6
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
∗
[1

]/
b
p
e
l
:
t
a
r
g
e
t
s
"

/
>

6
9

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
∗
[1

]/
b
p
e
l
:
s
o
u
r
c
e
s
"

/
>

7
0

<
x
s
l
:
c
o
p
y
>

7
1

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

m
o
d
e=

"
e
x
t
e
n
s
io

n
A

c
t
iv

it
y
"

/
>

7
2

<
/
x
s
l
:
c
o
p
y
>

7
3

<
/
b
p
e
l
:
fl

o
w

>
7
4

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

7
5

<
/
x
s
l
:
c
h
o
o
s
e
>

7
6

<
/
x
s
l
:
t
e
m

p
la

t
e
>

7
7

7
8

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
fl

o
w

">
7
9

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

8
0

8
1

<
x
s
l
:
c
o
p
y
>

232 6.D. XSLT Transformations
8
2

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

lo
c
a
l

n
a
m

e
(
)

=
’n

a
m

e
’
)
]
"

/
>

8
3

<
x
s
l
:
i
f

t
e
s
t=

"
n
o
t
(
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
)

a
n
d

$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

8
4

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

8
5

<
/
x
s
l
:
if

>
8
6

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

8
7

<
/
x
s
l
:
c
o
p
y
>

8
8

<
/
x
s
l
:
t
e
m

p
la

t
e
>

8
9

9
0

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
s
c
o
p
e
">

9
1

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

9
2

9
3

<
x
s
l
:
c
h
o
o
s
e
>

9
4

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

9
5

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
s
c
o
p
e

w
it

h
li

n
k
s
">

9
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"

$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

9
7

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

9
8

<
/
x
s
l
:
w

h
e
n
>

9
9

<
x
s
l
:
o
t
h
e
r
w

is
e
>

1
0
0

<
x
s
l
:
c
o
p
y
>

1
0
1

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

lo
c
a
l

n
a
m

e
(
)

=
’n

a
m

e
’
)
]
"

/
>

1
0
2

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
n
a
m

e
">

1
0
3

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
n
a
m

e
"

s
e
le

c
t
=
"
@

n
a
m

e
"
/
>

1
0
4

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

1
0
5

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
0
6

<
/
x
s
l
:
c
o
p
y
>

1
0
7

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

1
0
8

<
/
x
s
l
:
c
h
o
o
s
e
>

1
0
9

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
1
0

1
1
1

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
s
c
o
p
e
[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]
"

1
1
2

n
a
m

e=
"
s
c
o
p
e

w
it

h
li

n
k
s
">

1
1
3

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

1
1
4

1
1
5

<
x
s
l
:
c
h
o
o
s
e
>

1
1
6

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
n
o
t
(
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s
)
">

1
1
7

<
x
s
l
:
c
o
p
y
>

1
1
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

1
1
9

(
lo

c
a
l

n
a
m

e
(
)

=
’

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e

’
o
r

1
2
0

lo
c
a
l

n
a
m

e
(
)

=
’n

a
m

e
’
)
)
]
"

/
>

1
2
1

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
n
a
m

e
">

1
2
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
n
a
m

e
"

s
e
le

c
t
=
"
@

n
a
m

e
"
/
>

1
2
3

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

1
2
4

1
2
5

<
x
s
l
:
c
h
o
o
s
e
>

1
2
6

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

1
2
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

1
2
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

1
2
9

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

1
3
0

<
/
x
s
l
:w

h
e
n
>

1
3
1

<
x
s
l
:
o
t
h
e
r
w

is
e
>

1
3
2

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

1
3
3

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"

$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

1
3
4

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

1
3
5

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

1
3
6

<
/
x
s
l
:
c
h
o
o
s
e
>

1
3
7

<
/
x
s
l
:
c
o
p
y
>

1
3
8

<
/
x
s
l
:
w

h
e
n
>

1
3
9

<
x
s
l
:
o
t
h
e
r
w

is
e
>

1
4
0

<
b
p
e
l
:
fl

o
w

>
1
4
1

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

1
4
2

<
x
s
l
:
i
f

t
e
s
t=

"
n
o
t
(
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
)

a
n
d

$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

1
4
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

1
4
4

<
/
x
s
l
:
if

>
1
4
5

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
t
a
r
g
e
t
s
"

/
>

1
4
6

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
s
o
u
r
c
e
s
"

/
>

1
4
7

<
x
s
l
:
c
o
p
y
>

1
4
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

1
4
9

(
lo

c
a
l

n
a
m

e
(
)

=
’

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e

’
o
r

1
5
0

lo
c
a
l

n
a
m

e
(
)

=
’n

a
m

e
’
)
)
]
"

/
>

1
5
1

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
n
a
m

e
">

1
5
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
n
a
m

e
"

s
e
le

c
t
=
"
@

n
a
m

e
"
/
>

1
5
3

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

1
5
4

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:
t
a
r
g
e
t
s

o
r

s
e
lf

:
:
b
p
e
l
:
s
o
u
r
c
e
s
)
]
"

/
>

1
5
5

<
/
x
s
l
:
c
o
p
y
>

1
5
6

<
/
b
p
e
l
:
fl

o
w

>
1
5
7

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

1
5
8

<
/
x
s
l
:
c
h
o
o
s
e
>

1
5
9

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
6
0

1
6
1

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
a
s
s
ig

n
1
6
2

|
b
p
e
l
:
c
o
m

p
e
n
s
a
te

1
6
3

|
b
p
e
l
:
c
o
m

p
e
n
s
a
te

S
c
o
p
e

1
6
4

|
b
p
e
l
:
e
m

p
ty

1
6
5

|
b
p
e
l
:
e
x
i
t

1
6
6

|
b
p
e
l
:
fo

r
E

a
c
h

1
6
7

|
b
p
e
l
:
i
f

1
6
8

|
b
p
e
l
:
in

v
o
k
e

1
6
9

|
b
p
e
l
:
p
ic

k
1
7
0

|
b
p
e
l
:
r
e
c
e
iv

e
1
7
1

|
b
p
e
l
:
r
e
p
e
a
t
U

n
t
il

1
7
2

|
b
p
e
l
:
r
e
p
ly

1
7
3

|
b
p
e
l
:
r
e
th

r
o
w

1
7
4

|
b
p
e
l
:
s
e
q
u
e
n
c
e

1
7
5

|
b
p
e
l
:
th

r
o
w

1
7
6

|
b
p
e
l
:
v
a
li

d
a
t
e

1
7
7

|
b
p
e
l
:
w

a
it

1
7
8

|
b
p
e
l
:
w

h
il

e
">

1
7
9

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

1
8
0

1
8
1

<
x
s
l
:
c
h
o
o
s
e
>

1
8
2

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

1
8
3

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
a
c
t
i
v
i
t
y

w
it

h
li

n
k
s
">

1
8
4

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"

$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

1
8
5

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

1
8
6

<
/
x
s
l
:
w

h
e
n
>

1
8
7

<
x
s
l
:
o
t
h
e
r
w

is
e
>

1
8
8

<
x
s
l
:
c
o
p
y
>

1
8
9

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

1
9
0

lo
c
a
l

n
a
m

e
(
)

=
’n

a
m

e
’
)
]
"

/
>

1
9
1

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

/
>

1
9
2

<
/
x
s
l
:
c
o
p
y
>

1
9
3

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

1
9
4

<
/
x
s
l
:
c
h
o
o
s
e
>

1
9
5

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
9
6

1
9
7

<
x
s
l
:
t
e
m

p
la

t
e

m
a
tc

h
=
"
b
p
e
l
:
a
s
s
ig

n
[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

1
9
8

|
b
p
e
l
:
c
o
m

p
e
n
s
a
te

[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

1
9
9

|
b
p
e
l
:
c
o
m

p
e
n
s
a
te

S
c
o
p
e
[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:

s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
0
0

|
b
p
e
l
:
e
m

p
ty

[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
0
1

|
b
p
e
l
:
e
x
i
t
[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
0
2

|
b
p
e
l
:
fo

r
E

a
c
h

[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
0
3

|
b
p
e
l
:
i
f
[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
0
4

|
b
p
e
l
:
in

v
o
k
e
[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 233

2
0
5

|
b
p
e
l
:
p
ic

k
[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
0
6

|
b
p
e
l
:
r
e
c
e
iv

e
[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
0
7

|
b
p
e
l
:
r
e
p
e
a
t
U

n
t
il

[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:

s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
0
8

|
b
p
e
l
:
r
e
p
ly

[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
0
9

|
b
p
e
l
:
r
e
th

r
o
w

[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
1
0

|
b
p
e
l
:
s
e
q
u
e
n
c
e
[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
1
1

|
b
p
e
l
:
th

r
o
w

[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
1
2

|
b
p
e
l
:
v
a
li

d
a
t
e

[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
1
3

|
b
p
e
l
:
w

a
it

[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]

2
1
4

|
b
p
e
l
:
w

h
il

e
[
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s

o
r

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
]
"

2
1
5

n
a
m

e=
"
a
c
t
i
v
i
t
y

w
it

h
li

n
k
s
">

2
1
6

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

2
1
7

2
1
8

<
x
s
l
:
c
h
o
o
s
e
>

2
1
9

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
n
o
t
(
b
p
e
l
:
t
a
r
g
e
t
s

o
r

b
p
e
l
:
s
o
u
r
c
e
s
)
">

2
2
0

<
x
s
l
:
c
o
p
y
>

2
2
1

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

2
2
2

(
lo

c
a
l

n
a
m

e
(
)

=
’n

a
m

e
’

o
r

2
2
3

lo
c
a
l

n
a
m

e
(
)

=
’

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e

’
)
)
]

"
/
>

2
2
4

2
2
5

<
x
s
l
:
c
h
o
o
s
e
>

2
2
6

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

2
2
7

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

2
2
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"

@
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

2
2
9

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

2
3
0

<
/
x
s
l
:
w

h
e
n
>

2
3
1

<
x
s
l
:
o
t
h
e
r
w

is
e
>

2
3
2

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

2
3
3

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

s
e
le

c
t
=
"

$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

2
3
4

<
/
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s
>

2
3
5

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

2
3
6

<
/
x
s
l
:
c
h
o
o
s
e
>

2
3
7

<
/
x
s
l
:
c
o
p
y
>

2
3
8

<
/
x
s
l
:
w

h
e
n
>

2
3
9

<
x
s
l
:
o
t
h
e
r
w

is
e
>

2
4
0

<
b
p
e
l
:
fl

o
w

>
2
4
1

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

2
4
2

<
x
s
l
:
i
f

t
e
s
t=

"
n
o
t
(
@

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
)

a
n
d

$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
">

2
4
3

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
$
s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e
"

/
>

2
4
4

<
/
x
s
l
:
if

>
2
4
5

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
t
a
r
g
e
t
s
"

/
>

2
4
6

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
b
p
e
l
:
s
o
u
r
c
e
s
"

/
>

2
4
7

<
x
s
l
:
c
o
p
y
>

2
4
8

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
@
∗
[
n
o
t
(
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

2
4
9

(
lo

c
a
l

n
a
m

e
(
)

=
’n

a
m

e
’

o
r

2
5
0

lo
c
a
l

n
a
m

e
(
)

=
’

s
u
p
p
r
e
s
s
J
o
in

F
a
il

u
r
e

’
)

)
]
"

/
>

2
5
1

<
x
s
l
:
a
p
p
ly

t
e
m

p
la

t
e
s

s
e
le

c
t
=
"
∗
[
n
o
t
(
s
e
lf

:
:
b
p
e
l
:
t
a
r
g
e
t
s

o
r

s
e
lf

:
:
b
p
e
l
:
s
o
u
r
c
e
s
)
]
"

/
>

2
5
2

<
/
x
s
l
:
c
o
p
y
>

2
5
3

<
/
b
p
e
l
:
fl

o
w

>
2
5
4

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

2
5
5

<
/
x
s
l
:
c
h
o
o
s
e
>

2
5
6

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
5
7

2
5
8

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

6.
D
.2
4

to
-f
ro
m
-p
ar
ts
-e
le
m
en
t-
va
ri
ab

le
s.
xs
l

1
<

?
x
m

l
v
e
r
s
io

n
=
"
1
.0

"
e
n
c
o
d
in

g
=
"
IS

O
8
8
5
9

1
"
?>

2 3
<

!
U

t
i
li

t
y

t
e
m

p
la

t
e
s

to
m

a
k
e

te
m

p
o
r
a
r
y

v
a
r
i
a
b
le

s
a
n
d

a
s
s
ig

n
m

e
n
ts

,
d
u
e

to
th

e
4

u
s
e

o
f

<
to

P
a
r
ts

>
,

<
fr

o
m

P
a
r
ts

>
,

a
n
d
/
o
r

r
e
fe

r
e
n
c
e
s

to
e
le

m
e
n
t

v
a
r
ia

b
le

s
,

5
e
x
p
li

c
i
t
.

>
6

<
!

N
B

:
t
h
i
s

te
m

p
la

te
s
h
o
u
ld

_
n
o
t_

b
e

a
p
p
li

e
d

b
y

i
t
s
e
l
f
.

>
7 8

<
x
s
l
:
s
t
y
le

s
h

e
e
t

v
e
r
s
io

n
=
"
1
.0

"
9

x
m

ln
s
:
x
s
l=

"
h
t
t
p

:/
/
w
w
w

.w
3
.
o
r
g
/
1
9
9
9
/
X
S
L
/
T

r
a
n
s
fo

r
m

"
1
0

x
m

ln
s
:
b
p
e
l=

"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
r
o
c
e
s
s
/

e
x
e
c
u
t
a
b
le

"
1
1

x
m

ln
s
:
w

s
d
l=

"
h
t
t
p

:/
/
s
c
h
e
m

a
s
.
x
m

ls
o
a
p

.
o
r
g
/
w

s
d
l/

"
1
2

x
m

ln
s
:
p
ln

k
=
"
h
t
t
p

:/
/
d
o
c
s
.
o
a
s
is

o
p
e
n

.
o
r
g
/
w

s
b
p
e
l
/
2
.0

/
p
ln

k
t
y
p
e
">

1
3

1
4

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
c
o
n
s
t
a
n
t
s
.
x
s
l
"

/
>

1
5

<
x
s
l
:
in

c
lu

d
e

h
r
e
f=

"
fr

e
s
h

n
a
m

e
s
.
x
s
l
"

/
>

1
6

1
7

<
!

G
e
t

th
e

W
SD

L
m

e
s
s
a
g
e

n
a
m

e
fo

r
e
i
t
h
e
r

th
e

in
p
u
t

o
r

o
u
tp

u
t

m
e
s
s
a
g
e

o
f

th
e

1
8

o
p
e
r
a
ti

o
n

in
q
u
e
s
t
io

n
.

1
9

A
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

2
0

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

n
a
m

e
">

2
1

<
!

I
f

$
in

p
u
t

=
t
r
u
e

th
e
n

th
e

in
p
u
t

m
e
s
s
a
g
e

ty
p
e

i
s

r
e
tu

r
n
e
d

,
2
2

o
t
h
e
r
w

is
e

th
e

o
u
tp

u
t

m
e
s
s
a
g
e

ty
p
e

i
s

r
e
tu

r
n
e
d

.
>

2
3

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

/
>

2
4

<
!

I
f

$
m

y
R

o
le

=
t
r
u
e

th
e
n

th
e

o
p
e
r
a
t
io

n
i
s

p
r
o
v
id

e
d

b
y

t
h
i
s

p
r
o
c
e
s
s

,
2
5

o
t
h
e
r
w

is
e

i
t

i
s

p
r
o
v
id

e
d

b
y

th
e

p
a
r
tn

e
r
.

>
2
6

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
/
>

2
7

2
8

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
a
r
tn

e
r
L
in

k
N

a
m

e
"

s
e
le

c
t
=
"
@

p
a
r
tn

e
r
L
in

k
"

/
>

2
9

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
o
p
e
r
a
ti

o
n
"

s
e
le

c
t
=
"
@

o
p
e
r
a
ti

o
n
"

/
>

3
0

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
a
r
tn

e
r
L

in
k
"

s
e
le

c
t
=
"
(
s
e
lf

:
:
∗
[
s
e
lf

:
:
b
p
e
l
:

in
v
o
k
e

o
r

s
e
lf

:
:
b
p
e
l
:
o
n
M

e
s
s
a
g
e

o
r

s
e
lf

:
:
b
p
e
l
:
r
e
c
e
iv

e
o
r

s
e
lf

:
:
b
p
e
l
:
r
e
p
ly

]
|

3
1

s
e
lf

:
:
b
p
e
l
:
o
n
E

v
e
n
t/

b
p
e
l
:
s
c
o
p
e
)

3
2

/
a
n
c
e
s
to

r
o
r

s
e
lf

::
∗
/

b
p
e
l
:
p
a
r
tn

e
r
L

in
k
s

/
b
p
e
l
:
p
a
r
tn

e
r
L

in
k

[@
n
a
m

e=
$
p
a
r
tn

e
r
L
in

k
N

a
m

e
]
[
1
]
"

/
>

3
3

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
a
r
tn

e
r
L
in

k
N

a
m

e
s
p
a
c
e
"

s
e
le

c
t
=
"
n
a
m

e
s
p
a
c
e
:
:
∗
[

lo
c
a
l

n
a
m

e
(
)

=
s
u
b
s
t
r
in

g
b
e
fo

r
e
(
$
p
a
r
tn

e
r
L

in
k
/

@
p
a
r
tn

e
r
L
in

k
T

y
p
e

,
’
:
’
)
]
"

/
>

3
4

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
d
e
f
i
n
i
t
i
o
n
s
"

s
e
le

c
t
=
"
d
o
c
u
m

e
n
t
(
/

b
p
e
l
:
p
r
o
c
e
s
s

/
b
p
e
l
:
im

p
o
r
t
[
@

im
p
o
r
tT

y
p
e
=

’
h
t
t
p

:/
/
s
c
h
e
m

a
s
.
x
m

ls
o
a
p

.
o
r
g
/
w

s
d
l

/
’]

/
@

lo
c
a
ti

o
n

)
/
w

s
d
l
:
d
e
f
i
n
i
t
i
o
n
s
[
@

ta
r
g
e
tN

a
m

e
s
p
a
c
e=

$
p
a
r
tn

e
r
L
in

k
N

a
m

e
s
p
a
c
e
]
"

/
>

3
5

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
o
r
tT

y
p
e
">

3
6

<
x
s
l
:
c
h
o
o
s
e
>

3
7

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
m

y
R

o
le

">
3
8

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
p
ln

k
:

p
a
r
tn

e
r
L
in

k
T

y
p
e
[@

n
a
m

e=
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
p
a
r
tn

e
r
L

in
k
/

@
p
a
r
tn

e
r
L
in

k
T

y
p
e

,
’
:
’
)
]/

p
ln

k
:
r
o
le

[@
n
a
m

e=
$
p
a
r
tn

e
r
L

in
k

/
@

m
y
R

o
le

]/
@

p
o
r
tT

y
p
e
,

’
:
’
)
"

/
>

3
9

<
/
x
s
l
:
w

h
e
n
>

4
0

<
x
s
l
:
o
t
h
e
r
w

is
e
>

4
1

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
p
ln

k
:

p
a
r
tn

e
r
L
in

k
T

y
p
e
[@

n
a
m

e=
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
p
a
r
tn

e
r
L

in
k
/

@
p
a
r
tn

e
r
L
in

k
T

y
p
e

,
’
:
’
)
]/

p
ln

k
:
r
o
le

[@
n
a
m

e=
$
p
a
r
tn

e
r
L

in
k

/
@

p
a
r
tn

e
r
R

o
le

]/
@

p
o
r
tT

y
p
e
,

’
:
’
)
"

/
>

4
2

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

4
3

<
/
x
s
l
:
c
h
o
o
s
e
>

4
4

<
/
x
s
l
:
v
a
r
ia

b
le

>

234 6.D. XSLT Transformations
4
5

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
m

e
s
s
a
g
e
"

s
e
le

c
t
=
"
$
d
e
f
i
n
i
t
i
o
n
s
/
w

s
d
l
:
p
o
r
tT

y
p
e

[
$
in

p
u
t

a
n
d

@
n
a
m

e=
$
p
o
r
tT

y
p
e
]/

w
s
d
l
:
o
p
e
r
a
ti

o
n

[@
n
a
m

e=
$
o
p
e
r
a
ti

o
n

]/
w

s
d
l
:
in

p
u
t

|
4
6

$
d
e
f
i
n
i
t
i
o
n
s
/
w

s
d
l
:
p
o
r
tT

y
p
e

[
n
o
t
(
$
in

p
u
t
)

a
n
d

@
n
a
m

e=
$
p
o
r
tT

y
p
e
]/

w
s
d
l

:
o
p
e
r
a
t
io

n
[@

n
a
m

e=
$
o
p
e
r
a
ti

o
n

]/
w

s
d
l
:

o
u
tp

u
t
"

/
>

4
7

<
!

E
x
p
a
n
d

th
e

n
a
m

e
s
p
a
c
e

>
4
8

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
m

e
s
s
a
g
e
N

a
m

e
s
p
a
c
e
"

s
e
le

c
t
=
"
$
m

e
s
s
a
g
e
/

n
a
m

e
s
p
a
c
e
:
:
∗
[
lo

c
a
l

n
a
m

e
(
)

=
s
u
b
s
t
r
in

g
b
e
fo

r
e
(
$
m

e
s
s
a
g
e
/

@
m

e
s
s
a
g
e
,

’
:
’
)
]
"

/
>

4
9

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
n
a
m

e
s
p
a
c
e
P

r
e
fi

x
"

s
e
le

c
t
=
"
n
a
m

e
(
n
a
m

e
s
p
a
c
e
:
:
∗
[

s
e
lf

:
:
n
o
d
e
(
)

=
$
m

e
s
s
a
g
e
N

a
m

e
s
p
a
c
e
]
[
1
]
)
"

/
>

5
0

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
c
o
n
c
a
t
(
$
n
a
m

e
s
p
a
c
e
P

r
e
fi

x
,

’:
’
,

s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
m

e
s
s
a
g
e
/
@

m
e
s
s
a
g
e
,

’
:
’
)
)
"

/
>

5
1

<
/
x
s
l
:
t
e
m

p
la

t
e
>

5
2

5
3

<
!

G
e
t

th
e

W
SD

L
n
a
m

e
o
f

_
th

e
_

p
a
r
t

in
e
i
t
h
e
r

th
e

in
p
u
t

o
r

o
u
tp

u
t

m
e
s
s
a
g
e

o
f

5
4

th
e

o
p
e
r
a
ti

o
n

in
q
u
e
s
t
io

n
.

5
5

A
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

5
6

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

p
a
r
t

n
a
m

e
">

5
7

<
!

I
f

$
in

p
u
t

=
t
r
u
e

th
e
n

th
e

n
a
m

e
o
f

th
e

p
a
r
t

in
th

e
in

p
u
t

m
e
s
s
a
g
e

ty
p
e

i
s

r
e
tu

r
n
e
d

,
5
8

o
t
h
e
r
w

is
e

th
e

o
u
tp

u
t

m
e
s
s
a
g
e

p
a
r
t

n
a
m

e
i
s

r
e
tu

r
n
e
d

.
>

5
9

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

/
>

6
0

<
!

I
f

$
m

y
R

o
le

=
t
r
u
e

th
e
n

th
e

o
p
e
r
a
t
io

n
i
s

p
r
o
v
id

e
d

b
y

t
h
i
s

p
r
o
c
e
s
s

,
6
1

o
t
h
e
r
w

is
e

i
t

i
s

p
r
o
v
id

e
d

b
y

th
e

p
a
r
tn

e
r
.

>
6
2

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
/
>

6
3

6
4

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
a
r
tn

e
r
L
in

k
N

a
m

e
"

s
e
le

c
t
=
"
@

p
a
r
tn

e
r
L
in

k
"

/
>

6
5

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
o
p
e
r
a
ti

o
n
"

s
e
le

c
t
=
"
@

o
p
e
r
a
ti

o
n
"

/
>

6
6

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
a
r
tn

e
r
L

in
k
"

s
e
le

c
t
=
"
(
s
e
lf

:
:
∗
[
s
e
lf

:
:
b
p
e
l
:

in
v
o
k
e

o
r

s
e
lf

:
:
b
p
e
l
:
o
n
M

e
s
s
a
g
e

o
r

s
e
lf

:
:
b
p
e
l
:
r
e
c
e
iv

e
o
r

s
e
lf

:
:
b
p
e
l
:
r
e
p
ly

]
|

6
7

s
e
lf

:
:
b
p
e
l
:
o
n
E

v
e
n
t/

b
p
e
l
:
s
c
o
p
e
)

6
8

/
a
n
c
e
s
to

r
o
r

s
e
lf

::
∗
/

b
p
e
l
:
p
a
r
tn

e
r
L

in
k
s

/
b
p
e
l
:
p
a
r
tn

e
r
L

in
k

[@
n
a
m

e=
$
p
a
r
tn

e
r
L
in

k
N

a
m

e
]
[
1
]
"

/
>

6
9

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
a
r
tn

e
r
L
in

k
N

a
m

e
s
p
a
c
e
"

s
e
le

c
t
=
"
n
a
m

e
s
p
a
c
e
:
:
∗
[

lo
c
a
l

n
a
m

e
(
)

=
s
u
b
s
t
r
in

g
b
e
fo

r
e
(
$
p
a
r
tn

e
r
L

in
k
/

@
p
a
r
tn

e
r
L
in

k
T

y
p
e

,
’
:
’
)
]
"

/
>

7
0

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
d
e
f
i
n
i
t
i
o
n
s
"

s
e
le

c
t
=
"
d
o
c
u
m

e
n
t
(
/

b
p
e
l
:
p
r
o
c
e
s
s

/
b
p
e
l
:
im

p
o
r
t
[
@

im
p
o
r
tT

y
p
e
=

’
h
t
t
p

:/
/
s
c
h
e
m

a
s
.
x
m

ls
o
a
p

.
o
r
g
/
w

s
d
l

/
’]

/
@

lo
c
a
ti

o
n

)
/
w

s
d
l
:
d
e
f
i
n
i
t
i
o
n
s
[
@

ta
r
g
e
tN

a
m

e
s
p
a
c
e=

$
p
a
r
tn

e
r
L
in

k
N

a
m

e
s
p
a
c
e
]
"

/
>

7
1

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
o
r
tT

y
p
e
">

7
2

<
x
s
l
:
c
h
o
o
s
e
>

7
3

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
m

y
R

o
le

">
7
4

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
p
ln

k
:

p
a
r
tn

e
r
L
in

k
T

y
p
e
[@

n
a
m

e=
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
p
a
r
tn

e
r
L

in
k
/

@
p
a
r
tn

e
r
L
in

k
T

y
p
e

,
’
:
’
)
]/

p
ln

k
:
r
o
le

[@
n
a
m

e=
$
p
a
r
tn

e
r
L

in
k

/
@

m
y
R

o
le

]/
@

p
o
r
tT

y
p
e
,

’
:
’
)
"

/
>

7
5

<
/
x
s
l
:
w

h
e
n
>

7
6

<
x
s
l
:
o
t
h
e
r
w

is
e
>

7
7

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
p
ln

k
:

p
a
r
tn

e
r
L
in

k
T

y
p
e
[@

n
a
m

e=
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
p
a
r
tn

e
r
L

in
k
/

@
p
a
r
tn

e
r
L
in

k
T

y
p
e

,
’
:
’
)
]/

p
ln

k
:
r
o
le

[@
n
a
m

e=
$
p
a
r
tn

e
r
L

in
k

/
@

p
a
r
tn

e
r
R

o
le

]/
@

p
o
r
tT

y
p
e
,

’
:
’
)
"

/
>

7
8

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

7
9

<
/
x
s
l
:
c
h
o
o
s
e
>

8
0

<
/
x
s
l
:
v
a
r
ia

b
le

>
8
1

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
m

e
s
s
a
g
e
">

8
2

<
x
s
l
:
c
h
o
o
s
e
>

8
3

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
in

p
u
t
">

8
4

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
w

s
d
l
:

p
o
r
tT

y
p
e
[@

n
a
m

e=
$
p
o
r
tT

y
p
e
]/

w
s
d
l
:
o
p
e
r
a
ti

o
n

[@
n
a
m

e=
$
o
p
e
r
a
ti

o
n

]/
w

s
d
l
:
in

p
u
t
/
@

m
e
s
s
a
g
e
,

’
:
’
)
"

/
>

8
5

<
/
x
s
l
:
w

h
e
n
>

8
6

<
x
s
l
:
o
t
h
e
r
w

is
e
>

8
7

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
w

s
d
l
:

p
o
r
tT

y
p
e
[@

n
a
m

e=
$
p
o
r
tT

y
p
e
]/

w
s
d
l
:
o
p
e
r
a
ti

o
n

[@
n
a
m

e=
$
o
p
e
r
a
ti

o
n

]/
w

s
d
l
:
o
u
tp

u
t
/
@

m
e
s
s
a
g
e
,

’
:
’
)
"

/
>

8
8

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

8
9

<
/
x
s
l
:
c
h
o
o
s
e
>

9
0

<
/
x
s
l
:
v
a
r
ia

b
le

>
9
1

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
d
e
f
i
n
i
t
i
o
n
s
/
w

s
d
l
:
m

e
s
s
a
g
e
[@

n
a
m

e=
$
m

e
s
s
a
g
e

]/
w

s
d
l
:
p
a
r
t
/
@

n
a
m

e
"

/
>

9
2

<
/
x
s
l
:
t
e
m

p
la

t
e
>

9
3

9
4

<
!

G
e
t

th
e

W
SD

L
t
y
p
in

g
a
t
t
r
i
b
u
t
e

o
f

th
e

g
iv

e
n

p
a
r
t

in
e
i
t
h
e
r

th
e

in
p
u
t

o
r

9
5

o
u
tp

u
t

m
e
s
s
a
g
e

o
f

th
e

o
p
e
r
a
t
io

n
in

q
u
e
s
t
io

n
.

9
6

B
y

d
e
f
a
u
lt

a
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

9
7

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

p
a
r
t

t
y
p
in

g
">

9
8

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"
.
"

/
>

9
9

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

/
>

1
0
0

<
!

I
f

$
in

p
u
t

=
t
r
u
e

th
e
n

th
e

n
a
m

e
o
f

th
e

p
a
r
t

in
th

e
in

p
u
t

m
e
s
s
a
g
e

ty
p
e

i
s

r
e
tu

r
n
e
d

,
1
0
1

o
t
h
e
r
w

is
e

th
e

o
u
tp

u
t

m
e
s
s
a
g
e

p
a
r
t

n
a
m

e
i
s

r
e
tu

r
n
e
d

.
>

1
0
2

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

/
>

1
0
3

<
!

I
f

$
m

y
R

o
le

=
t
r
u
e

th
e
n

th
e

o
p
e
r
a
t
io

n
i
s

p
r
o
v
id

e
d

b
y

t
h
i
s

p
r
o
c
e
s
s

,
1
0
4

o
t
h
e
r
w

is
e

i
t

i
s

p
r
o
v
id

e
d

b
y

th
e

p
a
r
tn

e
r
.

>
1
0
5

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
/
>

1
0
6

1
0
7

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
a
r
tn

e
r
L
in

k
N

a
m

e
"

s
e
le

c
t
=
"
$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

@
p
a
r
tn

e
r
L
in

k
"

/
>

1
0
8

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
o
p
e
r
a
ti

o
n
"

s
e
le

c
t
=
"
$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

@
o
p
e
r
a
ti

o
n
"

/
>

1
0
9

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
a
r
tn

e
r
L

in
k
"

s
e
le

c
t
=
"
(
$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

s
e
lf

:
:
∗
[
s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e

o
r

s
e
lf

:
:
b
p
e
l
:
o
n
M

e
s
s
a
g
e

o
r

s
e
lf

:
:

b
p
e
l
:
r
e
c
e
iv

e
o
r

s
e
lf

:
:
b
p
e
l
:
r
e
p
ly

]
|

1
1
0

$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

s
e
lf

:
:
b
p
e
l
:
o
n
E

v
e
n
t/

b
p
e
l
:
s
c
o
p
e
)

1
1
1

/
a
n
c
e
s
to

r
o
r

s
e
lf

::
∗
/

b
p
e
l
:
p
a
r
tn

e
r
L

in
k
s

/
b
p
e
l
:
p
a
r
tn

e
r
L

in
k

[@
n
a
m

e=
$
p
a
r
tn

e
r
L
in

k
N

a
m

e
]
[
1
]
"

/
>

1
1
2

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
a
r
tn

e
r
L
in

k
N

a
m

e
s
p
a
c
e
"

s
e
le

c
t
=
"

$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/
n
a
m

e
s
p
a
c
e
:
:
∗
[
lo

c
a
l

n
a
m

e
(
)

=
s
u
b
s
t
r
in

g
b
e
fo

r
e
(
$
p
a
r
tn

e
r
L

in
k
/
@

p
a
r
tn

e
r
L
in

k
T

y
p
e

,
’
:
’
)
]
"

/
>

1
1
3

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
d
e
f
i
n
i
t
i
o
n
s
"

s
e
le

c
t
=
"
d
o
c
u
m

e
n
t
(
/

b
p
e
l
:
p
r
o
c
e
s
s

/
b
p
e
l
:
im

p
o
r
t
[
@

im
p
o
r
tT

y
p
e
=

’
h
t
t
p

:/
/
s
c
h
e
m

a
s
.
x
m

ls
o
a
p

.
o
r
g
/
w

s
d
l

/
’]

/
@

lo
c
a
ti

o
n

)
/
w

s
d
l
:
d
e
f
i
n
i
t
i
o
n
s
[
@

ta
r
g
e
tN

a
m

e
s
p
a
c
e=

$
p
a
r
tn

e
r
L
in

k
N

a
m

e
s
p
a
c
e
]
"

/
>

1
1
4

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
o
r
tT

y
p
e
">

1
1
5

<
x
s
l
:
c
h
o
o
s
e
>

1
1
6

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
m

y
R

o
le

">
1
1
7

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
p
ln

k
:

p
a
r
tn

e
r
L
in

k
T

y
p
e
[@

n
a
m

e=
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
p
a
r
tn

e
r
L

in
k
/

@
p
a
r
tn

e
r
L
in

k
T

y
p
e

,
’
:
’
)
]/

p
ln

k
:
r
o
le

[@
n
a
m

e=
$
p
a
r
tn

e
r
L

in
k

/
@

m
y
R

o
le

]/
@

p
o
r
tT

y
p
e
,

’
:
’
)
"

/
>

1
1
8

<
/
x
s
l
:
w

h
e
n
>

1
1
9

<
x
s
l
:
o
t
h
e
r
w

is
e
>

1
2
0

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
p
ln

k
:

p
a
r
tn

e
r
L
in

k
T

y
p
e
[@

n
a
m

e=
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
p
a
r
tn

e
r
L

in
k
/

@
p
a
r
tn

e
r
L
in

k
T

y
p
e

,
’
:
’
)
]/

p
ln

k
:
r
o
le

[@
n
a
m

e=
$
p
a
r
tn

e
r
L

in
k

/
@

p
a
r
tn

e
r
R

o
le

]/
@

p
o
r
tT

y
p
e
,

’
:
’
)
"

/
>

1
2
1

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

1
2
2

<
/
x
s
l
:
c
h
o
o
s
e
>

1
2
3

<
/
x
s
l
:
v
a
r
ia

b
le

>
1
2
4

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
m

e
s
s
a
g
e
">

1
2
5

<
x
s
l
:
c
h
o
o
s
e
>

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 235

1
2
6

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
in

p
u
t
">

1
2
7

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
w

s
d
l
:

p
o
r
tT

y
p
e
[@

n
a
m

e=
$
p
o
r
tT

y
p
e
]/

w
s
d
l
:
o
p
e
r
a
ti

o
n

[@
n
a
m

e=
$
o
p
e
r
a
ti

o
n

]/
w

s
d
l
:
in

p
u
t
/
@

m
e
s
s
a
g
e
,

’
:
’
)
"

/
>

1
2
8

<
/
x
s
l
:
w

h
e
n
>

1
2
9

<
x
s
l
:
o
t
h
e
r
w

is
e
>

1
3
0

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
w

s
d
l
:

p
o
r
tT

y
p
e
[@

n
a
m

e=
$
p
o
r
tT

y
p
e
]/

w
s
d
l
:
o
p
e
r
a
ti

o
n

[@
n
a
m

e=
$
o
p
e
r
a
ti

o
n

]/
w

s
d
l
:
o
u
tp

u
t
/
@

m
e
s
s
a
g
e
,

’
:
’
)
"

/
>

1
3
1

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

1
3
2

<
/
x
s
l
:
c
h
o
o
s
e
>

1
3
3

<
/
x
s
l
:
v
a
r
ia

b
le

>
1
3
4

<
x
s
l
:
c
o
p
y

o
f

s
e
le

c
t
=
"
$
d
e
f
i
n
i
t
i
o
n
s
/
w

s
d
l
:
m

e
s
s
a
g
e
[@

n
a
m

e=
$
m

e
s
s
a
g
e
]/

w
s
d
l
:
p
a
r
t
[@

n
a
m

e=
$
p
a
r
t
]/

@
∗
[
n
a
m

e
s
p
a
c
e

u
r
i
(
)

=
’
’

a
n
d

1
3
5

(
lo

c
a
l

n
a
m

e
(
)

= ’ ty
p
e

’ o
r

1
3
6

lo
c
a
l

n
a
m

e
(
)

= ’ e
le

m
e
n
t

’
)

] " /
>

1
3
7

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
3
8

1
3
9

<
!

D
e
te

r
m

in
e

w
h
e
th

e
r

th
e

W
SD

L
p
a
r
t

h
a
s

a
n

e
le

m
e
n
t

a
t
t
r
i
b
u
t
e

in
e
i
t
h
e
r

th
e

1
4
0

in
p
u
t

o
r

o
u
tp

u
t

m
e
s
s
a
g
e

o
f

th
e

o
p
e
r
a
t
io

n
in

q
u
e
s
t
io

n
.

1
4
1

B
y

d
e
f
a
u
lt

a
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

1
4
2

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

p
a
r
t

is
e
le

m
e
n
t
">

1
4
3

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"
.
"

/
>

1
4
4

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

/
>

1
4
5

<
!

I
f

$
in

p
u
t

=
t
r
u
e

th
e
n

th
e

n
a
m

e
o
f

th
e

p
a
r
t

in
th

e
in

p
u
t

m
e
s
s
a
g
e

ty
p
e

i
s

r
e
tu

r
n
e
d

,
1
4
6

o
t
h
e
r
w

is
e

th
e

o
u
tp

u
t

m
e
s
s
a
g
e

p
a
r
t

n
a
m

e
i
s

r
e
tu

r
n
e
d

.
>

1
4
7

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

/
>

1
4
8

<
!

I
f

$
m

y
R

o
le

=
t
r
u
e

th
e
n

th
e

o
p
e
r
a
t
io

n
i
s

p
r
o
v
id

e
d

b
y

t
h
i
s

p
r
o
c
e
s
s

,
1
4
9

o
t
h
e
r
w

is
e

i
t

i
s

p
r
o
v
id

e
d

b
y

th
e

p
a
r
tn

e
r
.

>
1
5
0

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
/
>

1
5
1

1
5
2

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
a
r
tn

e
r
L
in

k
N

a
m

e
"

s
e
le

c
t
=
"
$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

@
p
a
r
tn

e
r
L
in

k
"

/
>

1
5
3

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
o
p
e
r
a
ti

o
n
"

s
e
le

c
t
=
"
$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

@
o
p
e
r
a
ti

o
n
"

/
>

1
5
4

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
a
r
tn

e
r
L

in
k
"

s
e
le

c
t
=
"
(
s
e
lf

:
:
∗
[
s
e
lf

:
:
b
p
e
l
:

in
v
o
k
e

o
r

s
e
lf

:
:
b
p
e
l
:
o
n
M

e
s
s
a
g
e

o
r

s
e
lf

:
:
b
p
e
l
:
r
e
c
e
iv

e
o
r

s
e
lf

:
:
b
p
e
l
:
r
e
p
ly

]
|

1
5
5

s
e
lf

:
:
b
p
e
l
:
o
n
E

v
e
n
t/

b
p
e
l
:
s
c
o
p
e
)

1
5
6

/
a
n
c
e
s
to

r
o
r

s
e
lf

::
∗
/

b
p
e
l
:
p
a
r
tn

e
r
L

in
k
s

/
b
p
e
l
:
p
a
r
tn

e
r
L

in
k

[@
n
a
m

e=
$
p
a
r
tn

e
r
L
in

k
N

a
m

e
]
[
1
]
"

/
>

1
5
7

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
a
r
tn

e
r
L
in

k
N

a
m

e
s
p
a
c
e
"

s
e
le

c
t
=
"

$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/
n
a
m

e
s
p
a
c
e
:
:
∗
[
lo

c
a
l

n
a
m

e
(
)

=
s
u
b
s
t
r
in

g
b
e
fo

r
e
(
$
p
a
r
tn

e
r
L

in
k
/
@

p
a
r
tn

e
r
L
in

k
T

y
p
e

,
’
:
’
)
]
"

/
>

1
5
8

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
d
e
f
i
n
i
t
i
o
n
s
"

s
e
le

c
t
=
"
d
o
c
u
m

e
n
t
(
/

b
p
e
l
:
p
r
o
c
e
s
s

/
b
p
e
l
:
im

p
o
r
t
[
@

im
p
o
r
tT

y
p
e
=

’
h
t
t
p

:/
/
s
c
h
e
m

a
s
.
x
m

ls
o
a
p

.
o
r
g
/
w

s
d
l

/
’]

/
@

lo
c
a
ti

o
n

)
/
w

s
d
l
:
d
e
f
i
n
i
t
i
o
n
s
[
@

ta
r
g
e
tN

a
m

e
s
p
a
c
e=

$
p
a
r
tn

e
r
L
in

k
N

a
m

e
s
p
a
c
e
]
"

/
>

1
5
9

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
p
o
r
tT

y
p
e
">

1
6
0

<
x
s
l
:
c
h
o
o
s
e
>

1
6
1

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
m

y
R

o
le

">
1
6
2

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
p
ln

k
:

p
a
r
tn

e
r
L
in

k
T

y
p
e
[@

n
a
m

e=
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
p
a
r
tn

e
r
L

in
k
/

@
p
a
r
tn

e
r
L
in

k
T

y
p
e

,
’
:
’
)
]/

p
ln

k
:
r
o
le

[@
n
a
m

e=
$
p
a
r
tn

e
r
L

in
k

/
@

m
y
R

o
le

]/
@

p
o
r
tT

y
p
e
,

’
:
’
)
"

/
>

1
6
3

<
/
x
s
l
:
w

h
e
n
>

1
6
4

<
x
s
l
:
o
t
h
e
r
w

is
e
>

1
6
5

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
p
ln

k
:

p
a
r
tn

e
r
L
in

k
T

y
p
e
[@

n
a
m

e=
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
p
a
r
tn

e
r
L

in
k
/

@
p
a
r
tn

e
r
L
in

k
T

y
p
e

,
’
:
’
)
]/

p
ln

k
:
r
o
le

[@
n
a
m

e=
$
p
a
r
tn

e
r
L

in
k

/
@

p
a
r
tn

e
r
R

o
le

]/
@

p
o
r
tT

y
p
e
,

’
:
’
)
"

/
>

1
6
6

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

1
6
7

<
/
x
s
l
:
c
h
o
o
s
e
>

1
6
8

<
/
x
s
l
:
v
a
r
ia

b
le

>
1
6
9

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
m

e
s
s
a
g
e
">

1
7
0

<
x
s
l
:
c
h
o
o
s
e
>

1
7
1

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
in

p
u
t
">

1
7
2

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
w

s
d
l
:

p
o
r
tT

y
p
e
[@

n
a
m

e=
$
p
o
r
tT

y
p
e
]/

w
s
d
l
:
o
p
e
r
a
ti

o
n

[@
n
a
m

e=
$
o
p
e
r
a
ti

o
n

]/
w

s
d
l
:
in

p
u
t
/
@

m
e
s
s
a
g
e
,

’
:
’
)
"

/
>

1
7
3

<
/
x
s
l
:
w

h
e
n
>

1
7
4

<
x
s
l
:
o
t
h
e
r
w

is
e
>

1
7
5

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
s
u
b
s
t
r
in

g
a
f
t
e
r
(
$
d
e
f
i
n
i
t
i
o
n
s
/
w

s
d
l
:

p
o
r
tT

y
p
e
[@

n
a
m

e=
$
p
o
r
tT

y
p
e
]/

w
s
d
l
:
o
p
e
r
a
ti

o
n

[@
n
a
m

e=
$
o
p
e
r
a
ti

o
n

]/
w

s
d
l
:
o
u
tp

u
t
/
@

m
e
s
s
a
g
e
,

’
:
’
)
"

/
>

1
7
6

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

1
7
7

<
/
x
s
l
:
c
h
o
o
s
e
>

1
7
8

<
/
x
s
l
:
v
a
r
ia

b
le

>
1
7
9

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
b
o
o
le

a
n

(
$
d
e
f
i
n
i
t
i
o
n
s
/
w

s
d
l
:
m

e
s
s
a
g
e
[@

n
a
m

e=
$
m

e
s
s
a
g
e
]/

w
s
d
l
:
p
a
r
t
[@

n
a
m

e=
$
p
a
r
t
]/

@
e
le

m
e
n
t
)
"

/
>

1
8
0

<
/
x
s
l
:
t
e
m

p
la

t
e
>

1
8
1

1
8
2

1
8
3

<
!

F
ig

u
r
e

o
u
t

w
h
a
t

ty
p
e

a
n

a
c
t
i
v
i
t
y

’
s

o
u
tb

o
u
n
d

m
e
s
s
a
g
e

h
a
s
.

1
8
4

A
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

1
8
5

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
o
u
tb

o
u
n
d

m
e
s
s
a
g
e

ty
p
e
">

1
8
6

<
x
s
l
:
c
h
o
o
s
e
>

1
8
7

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e
">

1
8
8

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

n
a
m

e
">

1
8
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

1
9
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

1
9
1

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

1
9
2

<
/
x
s
l
:
w

h
e
n
>

1
9
3

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
s
e
lf

:
:
b
p
e
l
:
r
e
p
ly

">
1
9
4

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

n
a
m

e
">

1
9
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

1
9
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

1
9
7

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

1
9
8

<
/
x
s
l
:
w

h
e
n
>

1
9
9

<
/
x
s
l
:
c
h
o
o
s
e
>

2
0
0

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
0
1

2
0
2

<
!

F
ig

u
r
e

o
u
t

w
h
a
t

ty
p
e

a
n

a
c
t
i
v
i
t
y

’
s

in
b
o
u
n
d

m
e
s
s
a
g
e

h
a
s
.

2
0
3

A
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

2
0
4

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
in

b
o
u
n
d

m
e
s
s
a
g
e

ty
p
e
">

2
0
5

<
x
s
l
:
c
h
o
o
s
e
>

2
0
6

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e
">

2
0
7

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

n
a
m

e
">

2
0
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

2
0
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

236 6.D. XSLT Transformations
2
1
0

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

2
1
1

<
/
x
s
l
:
w

h
e
n
>

2
1
2

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
s
e
lf

:
:
b
p
e
l
:
o
n
M

e
s
s
a
g
e

o
r

s
e
lf

:
:
b
p
e
l
:
r
e
c
e
iv

e
o
r

s
e
lf

:
:
b
p
e
l
:
o
n
E

v
e
n
t"

>
2
1
3

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

n
a
m

e
">

2
1
4

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

2
1
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

2
1
6

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

2
1
7

<
/
x
s
l
:
w

h
e
n
>

2
1
8

<
/
x
s
l
:
c
h
o
o
s
e
>

2
1
9

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
2
0

2
2
1

<
!

F
ig

u
r
e

o
u
t

w
h
a
t

p
a
r
t

a
n

a
c
t
i
v
i
t
y

’
s

o
u
tb

o
u
n
d

m
e
s
s
a
g
e

h
a
s
.

2
2
2

A
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

2
2
3

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
o
u
tb

o
u
n
d

m
e
s
s
a
g
e

p
a
r
t
">

2
2
4

<
x
s
l
:
c
h
o
o
s
e
>

2
2
5

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e
">

2
2
6

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

p
a
r
t

n
a
m

e
">

2
2
7

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

2
2
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

2
2
9

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

2
3
0

<
/
x
s
l
:
w

h
e
n
>

2
3
1

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
s
e
lf

:
:
b
p
e
l
:
r
e
p
ly

">
2
3
2

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

p
a
r
t

n
a
m

e
">

2
3
3

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

2
3
4

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

2
3
5

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

2
3
6

<
/
x
s
l
:
w

h
e
n
>

2
3
7

<
/
x
s
l
:
c
h
o
o
s
e
>

2
3
8

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
3
9

2
4
0

<
!

F
ig

u
r
e

o
u
t

w
h
a
t

p
a
r
t

a
n

a
c
t
i
v
i
t
y

’
s

in
b
o
u
n
d

m
e
s
s
a
g
e

h
a
s
.

2
4
1

A
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

2
4
2

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
in

b
o
u
n
d

m
e
s
s
a
g
e

p
a
r
t
">

2
4
3

<
x
s
l
:
c
h
o
o
s
e
>

2
4
4

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e
">

2
4
5

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

p
a
r
t

n
a
m

e
">

2
4
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

2
4
7

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

2
4
8

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

2
4
9

<
/
x
s
l
:
w

h
e
n
>

2
5
0

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
s
e
lf

:
:
b
p
e
l
:
o
n
M

e
s
s
a
g
e

o
r

s
e
lf

:
:
b
p
e
l
:
r
e
c
e
iv

e
o
r

s
e
lf

:
:
b
p
e
l
:
o
n
E

v
e
n
t"

>
2
5
1

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

p
a
r
t

n
a
m

e
">

2
5
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

2
5
3

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

2
5
4

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

2
5
5

<
/
x
s
l
:
w

h
e
n
>

2
5
6

<
/
x
s
l
:
c
h
o
o
s
e
>

2
5
7

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
5
8

2
5
9

<
!

F
ig

u
r
e

o
u
t

w
h
a
t

t
y
p
in

g
a

n
a
m

e
d

p
a
r
t

o
f

a
n

a
c
t
i
v
i
t
y

’
s

in
b
o
u
n
d

m
e
s
s
a
g
e

h
a
s
.

2
6
0

B
y

d
e
f
a
u
lt

a
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

2
6
1

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
in

b
o
u
n
d

m
e
s
s
a
g
e

p
a
r
t

t
y
p
in

g
">

2
6
2

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"
.
"

/
>

2
6
3

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

/
>

2
6
4

<
x
s
l
:
c
h
o
o
s
e
>

2
6
5

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e
">

2
6
6

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

p
a
r
t

t
y
p
in

g
">

2
6
7

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"

$
m

e
s
s
a
g
e
A

c
ti

v
it

y
"

/
>

2
6
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

s
e
le

c
t
=
"
$
p
a
r
t
"

/
>

2
6
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

2
7
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

2
7
1

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

2
7
2

<
/
x
s
l
:
w

h
e
n
>

2
7
3

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

s
e
lf

:
:
b
p
e
l
:
o
n
M

e
s
s
a
g
e

o
r

$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

s
e
lf

:
:
b
p
e
l
:
r
e
c
e
iv

e
o
r

$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

s
e
lf

:
:
b
p
e
l
:
o
n
E

v
e
n
t"

>
2
7
4

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

p
a
r
t

t
y
p
in

g
">

2
7
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"

$
m

e
s
s
a
g
e
A

c
ti

v
it

y
"

/
>

2
7
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

s
e
le

c
t
=
"
$
p
a
r
t
"

/
>

2
7
7

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

2
7
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

2
7
9

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

2
8
0

<
/
x
s
l
:
w

h
e
n
>

2
8
1

<
/
x
s
l
:
c
h
o
o
s
e
>

2
8
2

<
/
x
s
l
:
t
e
m

p
la

t
e
>

2
8
3

2
8
4

<
!

F
ig

u
r
e

o
u
t

w
h
a
t

w
h
e
th

e
r

a
n
a
m

e
d

p
a
r
t

o
f

a
n

a
c
t
i
v
i
t
y

’
s

in
b
o
u
n
d

m
e
s
s
a
g
e

i
s

2
8
5

a
n

e
le

m
e
n
t
.

2
8
6

B
y

d
e
f
a
u
lt

a
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

2
8
7

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
in

b
o
u
n
d

m
e
s
s
a
g
e

p
a
r
t

is
e
le

m
e
n
t
">

2
8
8

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"
.
"

/
>

2
8
9

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

/
>

2
9
0

<
x
s
l
:
c
h
o
o
s
e
>

2
9
1

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e
">

2
9
2

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

p
a
r
t

is
e
le

m
e
n
t
">

2
9
3

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"

$
m

e
s
s
a
g
e
A

c
ti

v
it

y
"

/
>

2
9
4

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

s
e
le

c
t
=
"
$
p
a
r
t
"

/
>

2
9
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

2
9
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

2
9
7

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

2
9
8

<
/
x
s
l
:
w

h
e
n
>

2
9
9

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

s
e
lf

:
:
b
p
e
l
:
o
n
M

e
s
s
a
g
e

o
r

$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

s
e
lf

:
:
b
p
e
l
:
r
e
c
e
iv

e
o
r

$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

s
e
lf

:
:
b
p
e
l
:
o
n
E

v
e
n
t"

>
3
0
0

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

p
a
r
t

is
e
le

m
e
n
t
">

3
0
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"

$
m

e
s
s
a
g
e
A

c
ti

v
it

y
"

/
>

3
0
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

s
e
le

c
t
=
"
$
p
a
r
t
"

/
>

3
0
3

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

3
0
4

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

3
0
5

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

3
0
6

<
/
x
s
l
:
w

h
e
n
>

3
0
7

<
/
x
s
l
:
c
h
o
o
s
e
>

3
0
8

<
/
x
s
l
:
t
e
m

p
la

t
e
>

3
0
9

3
1
0

<
!

F
ig

u
r
e

o
u
t

w
h
a
t

w
h
e
th

e
r

a
n
a
m

e
d

p
a
r
t

o
f

a
n

a
c
t
i
v
i
t
y

’
s

o
u
tb

o
u
n
d

m
e
s
s
a
g
e

i
s

3
1
1

a
n

e
le

m
e
n
t
.

3
1
2

B
y

d
e
f
a
u
lt

a
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

3
1
3

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
o
u
tb

o
u
n
d

m
e
s
s
a
g
e

p
a
r
t

is
e
le

m
e
n
t
">

3
1
4

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"
.
"

/
>

3
1
5

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

/
>

3
1
6

<
x
s
l
:
c
h
o
o
s
e
>

3
1
7

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e
">

3
1
8

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

p
a
r
t

is
e
le

m
e
n
t
">

3
1
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"

$
m

e
s
s
a
g
e
A

c
ti

v
it

y
"

/
>

3
2
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

s
e
le

c
t
=
"
$
p
a
r
t
"

/
>

3
2
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

3
2
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

3
2
3

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

3
2
4

<
/
x
s
l
:
w

h
e
n
>

3
2
5

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
m

e
s
s
a
g
e
A

c
ti

v
it

y
/

s
e
lf

:
:
b
p
e
l
:
r
e
p
ly

">
3
2
6

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
w

s
d
l

m
e
s
s
a
g
e

p
a
r
t

is
e
le

m
e
n
t
">

3
2
7

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"

$
m

e
s
s
a
g
e
A

c
ti

v
it

y
"

/
>

3
2
8

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

s
e
le

c
t
=
"
$
p
a
r
t
"

/
>

3
2
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
"

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

3
3
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

y
R

o
le

"
s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

3
3
1

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

3
3
2

<
/
x
s
l
:
w

h
e
n
>

3
3
3

<
/
x
s
l
:
c
h
o
o
s
e
>

3
3
4

<
/
x
s
l
:
t
e
m

p
la

t
e
>

3
3
5

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 237

3
3
6

<
!

M
a
k
e

e
x
p
li

c
i
t

t
h
a
t

th
e

m
e
s
s
a
g
e

p
a
r
t
s

a
r
e

c
o
p
ie

d
to

a
te

m
p
o
r
a
r
y

v
a
r
i
a
b
le

.
3
3
7

A
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

3
3
8

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

to
p
a
r
ts

e
x
p
li

c
i
t
ly

">
3
3
9

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
u
n
iq

u
e
E

le
m

e
n
tN

a
m

e
">

3
4
0

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

3
4
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

3
4
2

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

3
4
3

<
/
x
s
l
:
v
a
r
ia

b
le

>
3
4
4

3
4
5

<
x
s
l
:
fo

r
e
a
c
h

s
e
le

c
t
=
"
b
p
e
l
:
to

P
a
r
ts

">
3
4
6

<
b
p
e
l
:
a
s
s
ig

n
>

3
4
7

<
x
s
l
:
fo

r
e
a
c
h

s
e
le

c
t
=
"
b
p
e
l
:
to

P
a
r
t
">

3
4
8

<
b
p
e
l
:
c
o
p
y
>

3
4
9

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
v
a
r
ia

b
le

N
a
m

e
"

s
e
le

c
t
=
"
@

fr
o
m

V
a
r
ia

b
le

"
/
>

3
5
0

3
5
1

<
!

A
r
e

b
o
th

s
o
u
r
c
e

a
n
d

t
a
r
g
e
t

e
le

m
e
n
ts

?
>

3
5
2

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
m

e
s
s
a
g
e
P

a
r
tI

s
E

le
m

e
n
t
">

3
5
3

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
o
u
tb

o
u
n
d

m
e
s
s
a
g
e

p
a
r
t

is
e
le

m
e
n
t
">

3
5
4

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"

.
.
/
.
.
"

/
>

3
5
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

s
e
le

c
t
=
"
@

p
a
r
t"

/
>

3
5
6

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

3
5
7

<
/
x
s
l
:
v
a
r
ia

b
le

>
3
5
8

<
x
s
l
:
i
f

t
e
s
t=

"
$
m

e
s
s
a
g
e
P

a
r
tI

s
E

le
m

e
n
t

=
’
tr

u
e

’
a
n
d

a
n
c
e
s
to

r
::
∗
/

b
p
e
l
:
v
a
r
i
a
b
le

s
/
b
p
e
l
:
v
a
r
i
a
b
le

[@
n
a
m

e=
$
v
a
r
ia

b
le

N
a
m

e
]
[
1
]
/

@
e
le

m
e
n
t"

>
3
5
9

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
k
e
e
p
S
r
c
E

le
m

e
n
tN

a
m

e
">

y
e
s
<

/
x
s
l
:

a
t
t
r
ib

u
t
e
>

3
6
0

<
/
x
s
l
:
if

>
3
6
1

3
6
2

<
b
p
e
l
:
fr

o
m

>
3
6
3

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

">
3
6
4

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

fr
o
m

V
a
r
ia

b
le

"
/
>

3
6
5

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

3
6
6

<
/
b
p
e
l
:
fr

o
m

>
3
6
7

<
b
p
e
l
:
t
o
>

3
6
8

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

">
3
6
9

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
c
o
n
c
a
t
(
$
u
n
iq

u
e
E

le
m

e
n
tN

a
m

e
,

$
tm

p
in

p
u
t

m
e
s
s
a
g
e

v
a
r
ia

b
le

p
o
s
t
f
i
x
)
"

/
>

3
7
0

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

3
7
1

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
t
">

3
7
2

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

p
a
r
t"

/
>

3
7
3

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

3
7
4

<
/
b
p
e
l
:
t
o
>

3
7
5

<
/
b
p
e
l
:
c
o
p
y
>

3
7
6

<
/
x
s
l
:
fo

r
e
a
c
h
>

3
7
7

<
/
b
p
e
l
:
a
s
s
ig

n
>

3
7
8

<
/
x
s
l
:
fo

r
e
a
c
h
>

3
7
9

<
/
x
s
l
:
t
e
m

p
la

t
e
>

3
8
0

3
8
1

<
!

M
a
k
e

e
x
p
li

c
i
t

t
h
a
t

th
e

m
e
s
s
a
g
e

p
a
r
t
s

a
r
e

c
o
p
ie

d
fr

o
m

a
te

m
p
o
r
a
r
y

v
a
r
i
a
b
le

.
3
8
2

A
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

3
8
3

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

fr
o
m

p
a
r
ts

e
x
p
li

c
i
t
ly

">
3
8
4

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
u
n
iq

u
e
E

le
m

e
n
tN

a
m

e
">

3
8
5

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

3
8
6

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

3
8
7

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

3
8
8

<
/
x
s
l
:
v
a
r
ia

b
le

>
3
8
9

3
9
0

<
x
s
l
:
fo

r
e
a
c
h

s
e
le

c
t
=
"
b
p
e
l
:
fr

o
m

P
a
r
ts

">
3
9
1

<
b
p
e
l
:
a
s
s
ig

n
>

3
9
2

<
x
s
l
:
fo

r
e
a
c
h

s
e
le

c
t
=
"
b
p
e
l
:
fr

o
m

P
a
r
t
">

3
9
3

<
b
p
e
l
:
c
o
p
y
>

3
9
4

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
v
a
r
ia

b
le

N
a
m

e
"

s
e
le

c
t
=
"
@

to
V

a
r
ia

b
le

"
/
>

3
9
5

3
9
6

<
!

A
r
e

b
o
th

s
o
u
r
c
e

a
n
d

t
a
r
g
e
t

e
le

m
e
n
ts

?
>

3
9
7

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
m

e
s
s
a
g
e
P

a
r
tI

s
E

le
m

e
n
t
">

3
9
8

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
in

b
o
u
n
d

m
e
s
s
a
g
e

p
a
r
t

is
e
le

m
e
n
t
">

3
9
9

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
y
"

s
e
le

c
t
=
"

.
.
/
.
.
"

/
>

4
0
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
a
r
t
"

s
e
le

c
t
=
"
@

p
a
r
t"

/
>

4
0
1

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

4
0
2

<
/
x
s
l
:
v
a
r
ia

b
le

>
4
0
3

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
v
a
r
ia

b
le

I
s
E

le
m

e
n
t
">

4
0
4

<
x
s
l
:
c
h
o
o
s
e
>

4
0
5

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
.
.
/
.
.
/

s
e
lf

:
:
b
p
e
l
:
o
n
E

v
e
n
t"

>
<

x
s
l
:

v
a
lu

e
o
f

s
e
le

c
t
=
"
$
m

e
s
s
a
g
e
P

a
r
tI

s
E

le
m

e
n
t
"

/>
<

/
x
s
l
:
w

h
e
n
>

4
0
6

<
x
s
l
:
o
t
h
e
r
w

is
e
>
<

x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
a
n
c
e
s
to

r
::
∗
/

b
p
e
l
:
v
a
r
i
a
b
le

s
/
b
p
e
l
:
v
a
r
i
a
b
le

[@
n
a
m

e=
$
v
a
r
ia

b
le

N
a
m

e
]
[
1
]
/

@
e
le

m
e
n
t"

/>
<

/
x
s
l
:
o
t
h
e
r
w

is
e
>

4
0
7

<
/
x
s
l
:
c
h
o
o
s
e
>

4
0
8

<
/
x
s
l
:
v
a
r
ia

b
le

>
4
0
9

<
x
s
l
:
i
f

t
e
s
t=

"
$
m

e
s
s
a
g
e
P

a
r
tI

s
E

le
m

e
n
t

=
’
tr

u
e

’
a
n
d

$
v
a
r
ia

b
le

I
s
E

le
m

e
n
t

=
’
tr

u
e

’
">

4
1
0

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
k
e
e
p
S
r
c
E

le
m

e
n
tN

a
m

e
">

y
e
s
<

/
x
s
l
:

a
t
t
r
ib

u
t
e
>

4
1
1

<
/
x
s
l
:
if

>
4
1
2

4
1
3

<
b
p
e
l
:
fr

o
m

>
4
1
4

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

">
4
1
5

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
c
o
n
c
a
t
(
$
u
n
iq

u
e
E

le
m

e
n
tN

a
m

e
,

$
tm

p
o
u
tp

u
t

m
e
s
s
a
g
e

v
a
r
ia

b
le

p
o
s
t
f
i
x
)
"

/
>

4
1
6

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

4
1
7

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
t
">

4
1
8

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

p
a
r
t"

/
>

4
1
9

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

4
2
0

<
/
b
p
e
l
:
fr

o
m

>
4
2
1

<
b
p
e
l
:
t
o
>

4
2
2

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

">
4
2
3

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

to
V

a
r
ia

b
le

"
/
>

4
2
4

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

4
2
5

<
/
b
p
e
l
:
t
o
>

4
2
6

<
/
b
p
e
l
:
c
o
p
y
>

4
2
7

<
/
x
s
l
:
fo

r
e
a
c
h
>

4
2
8

<
/
b
p
e
l
:
a
s
s
ig

n
>

4
2
9

<
/
x
s
l
:
fo

r
e
a
c
h
>

4
3
0

<
/
x
s
l
:
t
e
m

p
la

t
e
>

4
3
1

4
3
2

<
!

M
a
k
e

e
x
p
li

c
i
t

t
h
a
t

th
e

in
p
u
t

e
le

m
e
n
t

i
s

c
o
p
ie

d
to

th
e

s
i
n
g
le

p
a
r
t

o
f

a
4
3
3

te
m

p
o
r
a
r
y

v
a
r
i
a
b
le

.
4
3
4

A
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

4
3
5

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

in
p
u
t

e
le

m
e
n
t

e
x
p
li

c
i
t
ly

">
4
3
6

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
in

p
u
t
V

a
r
ia

b
le

"
/
>

4
3
7

4
3
8

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
tm

p
In

p
u
tM

e
s
s
a
g
e
N

a
m

e
">

4
3
9

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

4
4
0

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

4
4
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
tm

p
in

p
u
t

m
e
s
s
a
g
e

v
a
r
ia

b
le

p
o
s
t
f
i
x
"

/
>

4
4
2

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

4
4
3

<
/
x
s
l
:
v
a
r
ia

b
le

>
4
4
4

4
4
5

<
b
p
e
l
:
a
s
s
ig

n
>

4
4
6

<
b
p
e
l
:
c
o
p
y

k
e
e
p
S
rc

E
le

m
e
n
tN

a
m

e=
"
y
e
s
">

4
4
7

<
b
p
e
l
:
fr

o
m

>
4
4
8

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

">
4
4
9

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
in

p
u
t
V

a
r
ia

b
le

"
/
>

4
5
0

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

4
5
1

<
/
b
p
e
l
:
fr

o
m

>
4
5
2

<
b
p
e
l
:
t
o
>

4
5
3

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

">
4
5
4

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
tm

p
In

p
u
tM

e
s
s
a
g
e
N

a
m

e
"

/
>

4
5
5

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

4
5
6

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
t
">

4
5
7

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
o
u
tb

o
u
n
d

m
e
s
s
a
g
e

p
a
r
t
"

/
>

4
5
8

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

4
5
9

<
/
b
p
e
l
:
t
o
>

238 6.D. XSLT Transformations
4
6
0

<
/
b
p
e
l
:
c
o
p
y
>

4
6
1

<
/
b
p
e
l
:
a
s
s
ig

n
>

4
6
2

<
/
x
s
l
:
t
e
m

p
la

t
e
>

4
6
3

4
6
4

<
!

M
a
k
e

e
x
p
li

c
i
t

t
h
a
t

th
e

o
u
tp

u
t

e
le

m
e
n
t

i
s

c
o
p
ie

d
to

th
e

s
i
n
g
le

p
a
r
t

o
f

a
4
6
5

te
m

p
o
r
a
r
y

v
a
r
i
a
b
le

.
4
6
6

A
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

4
6
7

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
c
o
p
y

o
u
tp

u
t

e
le

m
e
n
t

e
x
p
li

c
i
t
ly

">
4
6
8

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
o
u
t
p
u
t
V

a
r
ia

b
le

"
/
>

4
6
9

4
7
0

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
tm

p
O

u
tp

u
tM

e
s
s
a
g
e
N

a
m

e
">

4
7
1

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

4
7
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

4
7
3

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
p
o
s
t
f
i
x
"

s
e
le

c
t
=
"
$
tm

p
o
u
tp

u
t

m
e
s
s
a
g
e

v
a
r
ia

b
le

p
o
s
t
f
i
x
"

/
>

4
7
4

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

4
7
5

<
/
x
s
l
:
v
a
r
ia

b
le

>
4
7
6

4
7
7

<
b
p
e
l
:
a
s
s
ig

n
>

4
7
8

<
b
p
e
l
:
c
o
p
y

k
e
e
p
S
rc

E
le

m
e
n
tN

a
m

e=
"
y
e
s
">

4
7
9

<
b
p
e
l
:
fr

o
m

>
4
8
0

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

">
4
8
1

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
tm

p
O

u
tp

u
tM

e
s
s
a
g
e
N

a
m

e
"

/
>

4
8
2

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

4
8
3

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
p
a
r
t
">

4
8
4

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
in

b
o
u
n
d

m
e
s
s
a
g
e

p
a
r
t
"

/
>

4
8
5

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

4
8
6

<
/
b
p
e
l
:
fr

o
m

>
4
8
7

<
b
p
e
l
:
t
o
>

4
8
8

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
v
a
r
i
a
b
le

">
4
8
9

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
o
u
t
p
u
t
V

a
r
ia

b
le

"
/
>

4
9
0

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

4
9
1

<
/
b
p
e
l
:
t
o
>

4
9
2

<
/
b
p
e
l
:
c
o
p
y
>

4
9
3

<
/
b
p
e
l
:
a
s
s
ig

n
>

4
9
4

<
/
x
s
l
:
t
e
m

p
la

t
e
>

4
9
5

4
9
6

<
!

C
r
e
a
te

te
m

p
o
r
a
r
y

v
a
r
i
a
b
le

s
fo

r
th

e
c
u
r
r
e
n
t

m
e
s
s
a
g
in

g
a
c
t
i
v
i
t
y

i
f

i
t

4
9
7

u
s
e
s

<
to

P
a
r
ts

>
,

<
fr

o
m

P
a
r
ts

>
o
r

e
le

m
e
n
t

v
a
r
i
a
b
le

s
.

4
9
8

A
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

4
9
9

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

te
m

p
v
a
r
i
a
b
le

s
">

5
0
0

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
in

p
u
t
V

a
r
ia

b
le

"
/
>

5
0
1

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
o
u
t
p
u
t
V

a
r
ia

b
le

"
/
>

5
0
2

5
0
3

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
u
n
iq

u
e
E

le
m

e
n
tN

a
m

e
">

5
0
4

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
u
n
iq

u
e

e
le

m
e
n
t

n
a
m

e
">

5
0
5

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
e
le

m
e
n
t
"

s
e
le

c
t
=
"
.
"

/
>

5
0
6

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

5
0
7

<
/
x
s
l
:
v
a
r
ia

b
le

>
5
0
8

5
0
9

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
in

p
u
tE

le
m

e
n
t
"

s
e
le

c
t
=
"
c
o
u
n
t
(
a
n
c
e
s
to

r
::
∗
/

b
p
e
l
:
v
a
r
i
a
b
le

s
/
b
p
e
l
:
v
a
r
i
a
b
le

[@
n
a
m

e=
$
in

p
u
t
V

a
r
ia

b
le

]
[
1
]
/

@
e
le

m
e
n
t
)

=
1
"

/
>

5
1
0

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
o
u
tp

u
tE

le
m

e
n
t
"

s
e
le

c
t
=
"
c
o
u
n
t
(
s
e
lf

:
:
∗
[
s
e
lf

:
:

b
p
e
l
:
in

v
o
k
e

o
r

s
e
lf

:
:
b
p
e
l
:
o
n
M

e
s
s
a
g
e

o
r

s
e
lf

:
:
b
p
e
l
:
r
e
c
e
iv

e
o
r

s
e
lf

:
:
b
p
e
l
:
r
e
p
ly

]/
a
n
c
e
s
to

r
::
∗
/

b
p
e
l
:
v
a
r
i
a
b
le

s
/
b
p
e
l
:

v
a
r
i
a
b
le

[@
n
a
m

e=
$
o
u
t
p
u
t
V

a
r
ia

b
le

]
[
1
]
/

@
e
le

m
e
n
t

|
5
1
1

s
e
lf

:
:
b
p
e
l
:

o
n
E

v
e
n
t
[

@
e
le

m
e
n
t

]
)

=
1
"

/
>

5
1
2

5
1
3

<
x
s
l
:
i
f

t
e
s
t=

"
b
p
e
l
:
to

P
a
r
ts

o
r

$
in

p
u
tE

le
m

e
n
t
">

5
1
4

<
b
p
e
l
:
v
a
r
ia

b
le

>
5
1
5

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
n
a
m

e
">

5
1
6

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
c
o
n
c
a
t
(
$
u
n
iq

u
e
E

le
m

e
n
tN

a
m

e
,

$
tm

p
in

p
u
t

m
e
s
s
a
g
e

v
a
r
ia

b
le

p
o
s
t
f
i
x
)
"

/
>

5
1
7

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

5
1
8

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
m

e
s
s
a
g
e
T

y
p
e
">

5
1
9

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
o
u
tb

o
u
n
d

m
e
s
s
a
g
e

ty
p
e
"

/
>

5
2
0

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

5
2
1

<
/
b
p
e
l
:
v
a
r
ia

b
le

>
5
2
2

<
/
x
s
l
:
if

>
5
2
3

<
x
s
l
:
i
f

t
e
s
t=

"
b
p
e
l
:
fr

o
m

P
a
r
ts

o
r

$
o
u
tp

u
tE

le
m

e
n
t
">

5
2
4

<
b
p
e
l
:
v
a
r
ia

b
le

>
5
2
5

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
n
a
m

e
">

5
2
6

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
c
o
n
c
a
t
(
$
u
n
iq

u
e
E

le
m

e
n
tN

a
m

e
,

$
tm

p
o
u
tp

u
t

m
e
s
s
a
g
e

v
a
r
ia

b
le

p
o
s
t
f
i
x
)
"

/
>

5
2
7

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

5
2
8

<
x
s
l
:
a
t
t
r
ib

u
t
e

n
a
m

e=
"
m

e
s
s
a
g
e
T

y
p
e
">

5
2
9

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
in

b
o
u
n
d

m
e
s
s
a
g
e

ty
p
e
"

/
>

5
3
0

<
/
x
s
l
:
a
t
t
r
ib

u
t
e
>

5
3
1

<
/
b
p
e
l
:
v
a
r
ia

b
le

>
5
3
2

<
/
x
s
l
:
if

>
5
3
3

<
/
x
s
l
:
t
e
m

p
la

t
e
>

5
3
4

5
3
5

<
!

C
r
e
a
te

te
m

p
o
r
a
r
y

v
a
r
i
a
b
le

s
fo

r
th

e
g
iv

e
n

s
e
t

o
f

m
e
s
s
a
g
e

a
c
t
i
v
i
t
i
e
s

.
>

5
3
6

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
m

e
s
s
a
g
e

a
c
t
i
v
i
t
i
e
s

te
m

p
v
a
r
i
a
b
le

s
">

5
3
7

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
ie

s
"

/
>

5
3
8

5
3
9

<
x
s
l
:
fo

r
e
a
c
h

s
e
le

c
t
=
"
$
m

e
s
s
a
g
e
A

c
t
iv

it
ie

s
">

5
4
0

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

te
m

p
v
a
r
i
a
b
le

s
">

5
4
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
V

a
r
ia

b
le

">
5
4
2

<
x
s
l
:
c
h
o
o
s
e
>

5
4
3

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e
">

5
4
4

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

in
p
u
tV

a
r
ia

b
le

"
/
>

5
4
5

<
/
x
s
l
:
w

h
e
n
>

5
4
6

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
s
e
lf

:
:
b
p
e
l
:
r
e
p
ly

">
5
4
7

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

v
a
r
ia

b
le

"
/
>

5
4
8

<
/
x
s
l
:
w

h
e
n
>

5
4
9

<
/
x
s
l
:
c
h
o
o
s
e
>

5
5
0

<
/
x
s
l
:
w

it
h

p
a
ra

m
>

5
5
1

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
o
u
t
p
u
t
V

a
r
ia

b
le

">
5
5
2

<
x
s
l
:
c
h
o
o
s
e
>

5
5
3

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e
">

5
5
4

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

o
u
tp

u
tV

a
r
ia

b
le

"
/
>

5
5
5

<
/
x
s
l
:
w

h
e
n
>

5
5
6

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
s
e
lf

:
:
b
p
e
l
:
o
n
M

e
s
s
a
g
e

o
r

s
e
lf

:
:
b
p
e
l
:

r
e
c
e
iv

e
o
r

s
e
lf

:
:
b
p
e
l
:
o
n
E

v
e
n
t"

>
5
5
7

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
@

v
a
r
ia

b
le

"
/
>

5
5
8

<
/
x
s
l
:
w

h
e
n
>

5
5
9

<
/
x
s
l
:
c
h
o
o
s
e
>

5
6
0

<
/
x
s
l
:
w

it
h

p
a
ra

m
>

5
6
1

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

5
6
2

<
/
x
s
l
:
fo

r
e
a
c
h
>

5
6
3

<
/
x
s
l
:
t
e
m

p
la

t
e
>

5
6
4

5
6
5

<
!

D
e
c
id

e
w

h
e
th

e
r

te
m

p
o
r
a
r
y

v
a
r
i
a
b
le

s
a
r
e

n
e
e
d
e
d

fo
r

th
e

c
u
r
r
e
n
t

m
e
s
s
a
g
in

g
5
6
6

a
c
t
i
v
i
t
y

i
f

i
t

u
s
e
s

<
to

P
a
r
ts

>
,

<
fr

o
m

P
a
r
ts

>
o
r

e
le

m
e
n
t

v
a
r
i
a
b
le

s
.

5
6
7

B
y

d
e
fa

u
lt

,
a
s
s
u
m

e
s

t
h
a
t

th
e

c
o
n
t
e
x
t

n
o
d
e

i
s

a
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

.
>

5
6
8

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

n
e
e
d
s

te
m

p
v
a
r
i
a
b
le

s
">

5
6
9

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
a
c
t
i
v
i
t
y
"

s
e
le

c
t
=
"
.
"

/
>

5
7
0

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
in

p
u
t
V

a
r
ia

b
le

"
/
>

5
7
1

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
o
u
t
p
u
t
V

a
r
ia

b
le

"
/
>

5
7
2

5
7
3

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
in

p
u
tE

le
m

e
n
t
"

s
e
le

c
t
=
"
c
o
u
n
t
(
$
a
c
t
i
v
i
t
y
/

a
n
c
e
s
to

r
::
∗
/

b
p
e
l
:
v
a
r
i
a
b
le

s
/
b
p
e
l
:
v
a
r
i
a
b
le

[@
n
a
m

e=
$
in

p
u
t
V

a
r
ia

b
le

]
[
1
]
/

@
e
le

m
e
n
t
)

=
1
"

/
>

5
7
4

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
o
u
tp

u
tE

le
m

e
n
t
"

s
e
le

c
t
=
"
c
o
u
n
t
(
$
a
c
t
i
v
i
t
y
/

s
e
lf

:
:
∗
[
s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e

o
r

s
e
lf

:
:
b
p
e
l
:
o
n
M

e
s
s
a
g
e

o
r

s
e
lf

:
:

b
p
e
l
:
r
e
c
e
iv

e
o
r

s
e
lf

:
:
b
p
e
l
:
r
e
p
ly

]/
a
n
c
e
s
to

r
::
∗
/

b
p
e
l
:

v
a
r
i
a
b
le

s
/
b
p
e
l
:
v
a
r
i
a
b
le

[@
n
a
m

e=
$
o
u
t
p
u
t
V

a
r
ia

b
le

]
[
1
]
/

@
e
le

m
e
n
t

|
5
7
5

$
a
c
t
i
v
i
t
y
/

s
e
lf

:
:
b
p
e
l
:

o
n
E

v
e
n
t
[

@
e
le

m
e
n
t

]
)

=
1
"

/
>

6. Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification
using XSL Transformations 239

5
7
6

5
7
7

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
a
c
t
i
v
i
t
y
/
b
p
e
l
:
to

P
a
r
ts

o
r

$
in

p
u
tE

le
m

e
n
t

o
r

$
a
c
t
i
v
i
t
y
/
b
p
e
l
:
fr

o
m

P
a
r
ts

o
r

$
o
u
tp

u
tE

le
m

e
n
t
"

/
>

5
7
8

<
/
x
s
l
:
t
e
m

p
la

t
e
>

5
7
9

5
8
0

<
!

D
e
c
id

e
w

h
e
th

e
r

te
m

p
o
r
a
r
y

v
a
r
i
a
b
le

s
a
r
e

n
e
e
d
e
d

fo
r

th
e

g
iv

e
n

s
e
t

o
f

m
e
s
s
a
g
e

a
c
t
i
v
i
t
i
e
s

.
>

5
8
1

<
x
s
l
:
t
e
m

p
la

t
e

n
a
m

e=
"
m

e
s
s
a
g
e

a
c
t
i
v
i
t
i
e
s

n
e
e
d

te
m

p
v
a
r
i
a
b
le

s
">

5
8
2

<
x
s
l
:
p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
ie

s
"

/
>

5
8
3

5
8
4

<
x
s
l
:
c
h
o
o
s
e
>

5
8
5

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
0

=
c
o
u
n
t
(
$
m

e
s
s
a
g
e
A

c
t
iv

it
ie

s
/
∗
)
">

5
8
6

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
f
a
ls

e
(
)
"

/
>

5
8
7

<
/
x
s
l
:
w

h
e
n
>

5
8
8

<
x
s
l
:
o
t
h
e
r
w

is
e
>

5
8
9

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
f
i
r
s
t

a
c
t
i
v
i
t
y
"

s
e
le

c
t
=
"

$
m

e
s
s
a
g
e
A

c
t
iv

it
ie

s
[
1
]
"

/
>

5
9
0

<
x
s
l
:
v
a
r
ia

b
le

n
a
m

e=
"
f
i
r
s
t

a
c
t
i
v
i
t
y

n
e
e
d
s

te
m

p
v
a
r
i
a
b
le

">
5
9
1

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
m

e
s
s
a
g
e

a
c
t
i
v
i
t
y

n
e
e
d
s

te
m

p
v
a
r
i
a
b
le

s
">

5
9
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
a
c
t
i
v
i
t
y
"

s
e
le

c
t
=
"
$
f
i
r
s
t

a
c
t
i
v
i
t
y

"
/
>

5
9
3

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
in

p
u
t
V

a
r
ia

b
le

">
5
9
4

<
x
s
l
:
c
h
o
o
s
e
>

5
9
5

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
f
i
r
s
t

a
c
t
i
v
i
t
y

[
s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e
]
"

>
5
9
6

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
f
i
r
s
t

a
c
t
i
v
i
t
y
/

@
in

p
u
tV

a
r
ia

b
le

"
/
>

5
9
7

<
/
x
s
l
:w

h
e
n
>

5
9
8

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
f
i
r
s
t

a
c
t
i
v
i
t
y

[
s
e
lf

:
:
b
p
e
l
:
r
e
p
ly

]
">

5
9
9

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
f
i
r
s
t

a
c
t
i
v
i
t
y
/
@

v
a
r
ia

b
le

"
/
>

6
0
0

<
/
x
s
l
:w

h
e
n
>

6
0
1

<
/
x
s
l
:
c
h
o
o
s
e
>

6
0
2

<
/
x
s
l
:
w

it
h

p
a
ra

m
>

6
0
3

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
o
u
t
p
u
t
V

a
r
ia

b
le

">

6
0
4

<
x
s
l
:
c
h
o
o
s
e
>

6
0
5

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
f
i
r
s
t

a
c
t
i
v
i
t
y

[
s
e
lf

:
:
b
p
e
l
:
in

v
o
k
e
]
"

>
6
0
6

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
f
i
r
s
t

a
c
t
i
v
i
t
y
/

@
o
u
tp

u
tV

a
r
ia

b
le

"
/
>

6
0
7

<
/
x
s
l
:w

h
e
n
>

6
0
8

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
f
i
r
s
t

a
c
t
i
v
i
t
y

[
s
e
lf

:
:
b
p
e
l
:

o
n
M

e
s
s
a
g
e

o
r

s
e
lf

:
:
b
p
e
l
:
r
e
c
e
iv

e
]
">

6
0
9

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
$
f
i
r
s
t

a
c
t
i
v
i
t
y
/
@

v
a
r
ia

b
le

"
/
>

6
1
0

<
/
x
s
l
:w

h
e
n
>

6
1
1

<
/
x
s
l
:
c
h
o
o
s
e
>

6
1
2

<
/
x
s
l
:
w

it
h

p
a
ra

m
>

6
1
3

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

6
1
4

<
/
x
s
l
:
v
a
r
ia

b
le

>
6
1
5

6
1
6

<
x
s
l
:
c
h
o
o
s
e
>

6
1
7

<
x
s
l
:
w

h
e
n

t
e
s
t=

"
$
f
i
r
s
t

a
c
t
i
v
i
t
y

n
e
e
d
s

te
m

p
v
a
r
i
a
b
le

=
’

tr
u
e

’
">

6
1
8

<
x
s
l
:
v
a
lu

e
o
f

s
e
le

c
t
=
"
t
r
u
e
(
)
"

/
>

6
1
9

<
/
x
s
l
:
w

h
e
n
>

6
2
0

<
x
s
l
:
o
t
h
e
r
w

is
e
>

6
2
1

<
x
s
l
:
c
a
ll

t
e
m

p
la

t
e

n
a
m

e=
"
m

e
s
s
a
g
e

a
c
t
i
v
i
t
i
e
s

n
e
e
d

te
m

p
v
a
r
i
a
b
le

s
">

6
2
2

<
x
s
l
:
w

it
h

p
a
ra

m
n
a
m

e=
"
m

e
s
s
a
g
e
A

c
t
iv

it
ie

s
"

s
e
le

c
t
=
"

$
m

e
s
s
a
g
e
A

c
t
iv

it
ie

s
/
∗
[
p
o
s
it

io
n

(
)

&
g
t
;

1
]
"

/
>

6
2
3

<
/
x
s
l
:
c
a
ll

t
e
m

p
la

t
e
>

6
2
4

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

6
2
5

<
/
x
s
l
:
c
h
o
o
s
e
>

6
2
6

<
/
x
s
l
:
o
t
h
e
r
w

is
e
>

6
2
7

<
/
x
s
l
:
c
h
o
o
s
e
>

6
2
8

6
2
9

<
/
x
s
l
:
t
e
m

p
la

t
e
>

6
3
0

6
3
1

<
/
x
s
l
:
s
t
y
le

s
h
e
e
t
>

240 6.D. XSLT Transformations

Part IV

Scalable Simulation of Stochastic
Bigraphs

241

Chapter 7

Towards Scalable Simulation of
Stochastic Bigraphs
Espen Højsgaard and Jean Krivine

Abstract

We report on the progress of the development and implementation of an efficient and scalable
simulation algorithm for stochastic bigraphical reactive systems (BRSs).

The starting point is the stochastic simulation algorithm for the κ-calculus by Danos et al. [12]
(henceforth KaSim). Since the κ-calculus is a graphical formalism with a straightforward BRS
representation, we are hopeful that their algorithm generalizes to BRSs. The KaSim algorithm
relies on a number of concepts that have not previously been developed for BRSs: embeddings,
localized matching, redex and agent modifications, and fine-grained conflict/causality analysis at
the level of rules exploiting the notion of modification. In this report, we rigorously develop bigraph
embeddings and redex/agent modifications, give an algorithm for localized matching, and outline
a fine-grained conflict/causality analysis.

Our implementation strategy is to represent the bigraphical structures as directly as possible,
as we believe that this eases implementation and increases trust in correctness. However, it is
difficult to directly represent the structures of the usual presentation of the theory of BRSs: any
non-trivial BRS contains an infinite number of ground reaction rules, since the set of rules must be
closed under support equivalence and a parametric reaction rules generates an infinite set of ground
reaction rules. In addition, the usual presentation of the dynamic theory of BRSs combines poorly
with the stochastic semantics: the stochastic semantics rely on support, i.e., concrete bigraphs,
while dynamics are defined up to support equivalence. We therefore develop, and prove equivalent,
an alternative dynamic theory for BRSs without these problems: (i) the set of rules need not be
closed under support equivalence, (ii) parametric reaction rules are first-class citizens, and (iii)
integrates a (generalized) stochastic semantics. The development is based on the more general
theory of reactive systems, and is thus applicable in more settings than just (stochastic) BRSs.

The completed parts of our work have been implemented in a prototype called the Stochastic
Bigraphical Abstract Machine (SBAM), which currently allows stochastic simulation of BRSs
where each redex consists of a single connected component and is solid, i.e., matches are determined
by support translations of its nodes.

243

244 7.1. Introduction

Preface This chapter consists of the technical report

E. Højsgaard and J. Krivine. Towards Scalable Simulation of Stochastic Bigraphs. Technical
Report TR-2011-148, IT University of Copenhagen, December 2011.

7.1 Introduction
The theory of bigraphs arose as a generalization of process calculi, and provides a unifying framework
for modeling systems of mobile and communicating agents. The theory excels in that it provides a
general method for deriving labeled transition systems (LTSs) from reaction semantics, with the nice
property that, in the derived LTSs, bisimulation is a congruence.

But it is also a theory with a nice graphical representation, which enables models that are more
intuitive than corresponding process calculi models. This has recently been exploited by Damgaard
et al. [9, 10] and Bacci et al. [1] to give models of protein interaction and dynamic compartmentalization
in cellular biology. In combination with Krivine et al.’s stochastic semantics for bigraphs [25], these
works enable us to construct models of biological cells that may be simulated by a computer; the only
thing missing is a simulator for stochastic bigraphs, which is what we have set out to build.

Our starting point is the efficient and scalable simulator for the κ-calculus [11] by Danos et al.
and its underlying algorithm (which we call KaSim) [12]: Since the κ-calculus is a graphical formalism
with a straightforward BRS representation, we are hopeful that KaSim generalizes to bigraphs. The
KaSim algorithm relies on a number of concepts that have not previously been developed for BRSs:
embeddings, localized matching, redex and agent modifications, and fine-grained causality analysis at
the level of rules exploiting the notion of modification. In this report, we rigorously develop bigraph
embeddings and redex/agent modifications, and outline algorithms for localized matching and fine-
grained causality analysis:

bigraph embeddings:
We develop a general theory of bigraph embeddings that are isomorphic to decompositions of the
form H = C ◦ ((G⊗ idX) ◦D⊗ id〈k,Y 〉) where D is discrete (some detail omitted). In particular,
embeddings of redexes into agents are isomorphic to matches. We also show that embeddings of
so-called solid bigraphs are determined by support translations of their nodes.

edit scripts:
We propose a set of minimal modifications to a redex, called edits, and show how the modification
of a redex can be transferred to an agent through an embedding, giving rise to an alternative,
but equivalent, way to define reaction. We prove that a sequence of edits, an edit script, can
realize any parametric reaction rule and vice versa.

rule activation and inhibition:
We outline an approach to characterizing causality and conflict at the level of rules, called
respectively rule activation and rule inhibition, based on the idea of characterizing overlaps
between bigraphs as a set of pullbacks in the category of embeddings.

anchored matching:
We give a localized matching algorithm, based on the idea of expanding a partial embedding of
a redex to total embeddings.

However, before we can hope to generalize and implement the KaSim algorithm for bigraphs, we
must develop a formulation of stochastic bigraphs that is more amenable to implementation than

7. Towards Scalable Simulation of Stochastic Bigraphs 245

the usual formulations. For example, neither Milner’s definition of bigraph dynamics [29] nor Krivine
et al.’s stochastic semantics for bigraphs [25] lend themselves easily to implementation for the following
reasons:

• The various definitions, e.g., the definitions of matches, reactions, and stochastic rates, rely on
support, i.e., node and edge identities. But at the same time, the same definitions always close
under support equivalence, whereby it becomes unclear how to handle support in practice.

• The, from a modeling perspective, essential concept of parametric reaction rules are treated as
generators of infinite families of ground (non-parametric) reaction rules, which clearly cannot be
represented directly in an implementation.

Furthermore, the formulation of stochastic bigraphs in [25] have two minor deficiencies: it only defines
stochastic semantics for BRSs with linear rules and so-called solid redexes, and there is a gap between
the definition of the reaction semantics and the stochastic semantics, as they rely on seemingly different
definitions of matches. We develop a theory of stochastic parametric reactive systems (SPRS) which
unifies and generalizes Milner’s reactive systems and the stochastic semantics of Krivine et al., while
avoiding the above issues. Similar to Milner’s reactive systems, we define SPRSs at the more abstract
level of s-categories, of which bigraphs are an instance.

7.1.1 Related work
Parametric Reactive Systems Our SPRSs are related to, and their formulation inspired by, the
parametric reactive systems of Debois, where parametric reaction rules are also first-class citizens [13].
However, contrary to our formulation, Debois does not make explicit that context and parameter
may be connected without the involvement of the redex. This has the consequence that bigraphical
reaction rules become generators of infinite families of rules. Furthermore, we go further than Debois,
by formally showing that our formulation is equivalent to the usual (non-parametric) reactive systems.

Bigraph Implementations A number of implementations of bigraphs are being developed at vari-
ous institutions. Unfortunately, it is hard to find the implementations themselves or papers describing
them, but here is a complete list of the implementations which we are aware of:

BigMC: A model checker for bigraphs which includes a command line interface and visualization [4].

bigraphspace: A Java library which provides a tuple-space-like API based on bigraphs [21].

Big Red: A graphical editor for bigraphs with easily extensible support for various file formats [17].

BigWB: A graphical workbench for bigraphs, aiming at providing a unifying GUI for the various
bigraph tools (work in progress, no website or papers at the time of writing).

BPL Tool: A command line tool for experimenting with (abstract) binding bigraphs based on Dam-
gaard et al.’s inductive characterization of matching in binding bigraphs [6] [7, 20, 23].

CLF based: Beauquier and Schürmann have given a model of bigraphs in the type theory CLF [3],
and thus CLF implementations, such as Celf [33], may be used for bigraphs.

DBtk: A tool for directed bigraphs, which provides calculation of IPOs, matching, and visualization
[2].

SAT based algorithm: Sevegnani et al. have presented a SAT based algorithm for matching in place
graphs with sharing [34] and an implementation is in progress based on MiniSAT [14].

246 7.1. Introduction

Bigraphs vs Graph Transformation Ehrig and Milner have explored the connection between
traditional graph transformation and the bigraph approach [15, 28]. They have in particular focused on
the fact that in the traditional approach, graphs are objects in a category whereas they are morphisms
in the bigraphical approach. Following ideas by Cattani [8] and Sobocinsky [35] they use the cospan
construction to turn objects into morphisms, and the coslice construction to turn morphisms into
objects, thereby enabling transfer of results. As part of this work, Milner defines embeddings of
ground link graphs and show that they are isomorphic to link graph contexts [28]; this definition
serves as the basis of our bigraph embeddings.

Stochastic Simulation of Process Algebra A number of simulators for various stochastic process
algebras have been developed in recent years, most notably

KaSim: A simulator for the κ-calculus based on the Gillespie-based algorithm presented in [12].

PEPA: The PEPA Eclipse Plug-in Project [30] provides an editor and various tools for PEPA [22],
including a stochastic simulator.

PRISM: Though not quite a stochastic simulator – it is a probabilistic model checker – it supports
(a subset of) PEPA models and is very efficient [26].

SPiM: The Stochastic Pi Machine is, as the name implies, a simulator for the stochastic π-calculus
[31].

7.1.2 Outline of the Report

Though this report is self contained, it is not a gentle introduction to bigraphs: we assume that the
reader has a keen intuition of bigraphs and bigraphical reactive systems and a reasonable grasp of its
categorical underpinnings.

The remainder of the report is organized as follows:

Section 7.2: Background
We provide a terse recap of the theory of bigraphs, along with a few new related definitions and
results that we shall need in the following sections.

Section 7.3: The Simulation Algorithm
We give an overview of the KaSim algorithm, recast to the setting of stochastic bigraphs.

Section 7.4: Stochastic Parametric Reactive Systems
We develop stochastic parametric reactive systems and prove that they generate the same abstract
reactions as Milner’s reactive systems.

Section 7.5: Bigraph Embeddings
We develop a general notion of bigraph embeddings which are isomorphic to certain decomposi-
tions of bigraphs. In particular, in the case of redexes, bigraph embeddings are isomorphic to
matches.

Section 7.6: Bigraph Edit Scripts
We develop bigraph edit scripts, fine-grained reconfigurations of redexes that may be mediated
by embeddings and generate the same reactions as bigraphical parametric reaction rules.

7. Towards Scalable Simulation of Stochastic Bigraphs 247

Section 7.7: Rule Activation and Inhibition
We outline a construction of fine-grained causality/conflict relations between parametric reaction
rules based on pullbacks in the category of bigraph embeddings.

Section 7.8: Anchored Matching
We give a backtracking algorithm for extending partial bigraph embeddings to total embeddings,
which, since embeddings of redexes into agents are matches, is equivalent to a localized matching
algorithm.

Section 7.9: Conclusions and Future Work
We conclude and discuss future work.

7.2 Background
We provide the necessary background theory upon which this report builds: some basic mathematical
preliminaries and a recap of the basic theory of bigraphs and bigraphical reactive systems (enriched
with a few simple definitions and results).

7.2.1 Mathematical Preliminaries
We briefly review the basic mathematical notations and conventions used in this report.

Natural Numbers and Sets We shall frequently treat a natural number m as a finite ordinal, the
set of all preceding ordinals: m = {0, 1, . . . ,m − 1}. We write sets as capital letters, e.g., S, T , or as
a symbol with a tilde on top to denote a set of what that symbol denotes, e.g., m̃ is a set of natural
numbers. For singletons S = {s} we often use s and S interchangeably. We write S − s and S + s
to mean S \ {s} and S ∪ {s} respectively. We write S#T for disjoint sets, i.e., S ∩ T = ∅. We write
S] T for the union of sets known or assumed to be disjoint. We write S + T for the disjoint union
{(0, s) | s ∈ S}∪ {(1, t) | t ∈ T}, and we write πi(S0 +S1) for Si. We use ı̄ to mean 1− i for i ∈ {0, 1}.

Vectors We write vectors as a symbol with an arrow on top to denote a vector of what that symbol
denotes, e.g., ~m is a vector of natural numbers. We write |~·| for the number of elements in a vector
and ~·i (i ∈ |~·|) for the ith element of the vector (i.e., indices begin at 0). We write {~·} for the set
{~·i | i ∈ |~·|}.

Functions We write IdS for the identity function on the set S. We write ∅S for the function whose
domain and codomain are the empty set and S respectively; S is sometimes omitted when it is un-
derstood from the context. We write ~f : ~S → T for the vector consisting of functions fi : Si → T
(i ∈ |~f | = |~S|), and symmetrically ~f : S → ~T for the vector consisting of functions fi : S → Ti
(i ∈ |~f | = |~T |). We write {s0 7→ t0, . . . , sn−1 7→ tn−1} for the function mapping si to ti (assuming
the si are distinct) and {S 7→ t} for the function that maps all elements of S to t. For a function
f : S → T we write f − s : (S − s)→ T for the function defined as (f − s)(s′) = f(s′) for s′ ∈ S − s,
and for sets S′ = {s0, . . . , sn−1} ⊆ S we write f − S to mean (· · · (f − s0) · · · − sn−1. Symmetrically,
we write f [s 7→ t] : (S + s)→ (T + t) for the function defined as

f [s 7→ t](s′) =

{
t if s = s′

f(s′) otherwise
.

248 7.2. Background

If f : S → T is a function and S′ ⊆ S,T ′ ⊆ T , then f �S′ denotes the restriction of f to S′ and f �T
′

denotes the outward restriction of f to T ′, i.e., f �T
′

(s) = t iff f(s) ∈ T ′, and we write f(S′) to mean
{f(s) | s ∈ S′}. For an injective function f : S�T we write f−1 : rng(f)�S for its inverse which is
total, injective and surjective. For a function f : S → T we write f−1 for its preimage function defined
as f−1(t) = {s ∈ S | f(s) = t} : T → P(S), and we extend the preimage function to sets T ′ ⊆ T as
follows: f−1(T ′) = {s ∈ S | f(s) ∈ T ′} : P(T) → P(S). For a function f : S → P(T) we shall write
f(S′) to mean

⋃
s∈S′ f(s) when S′ ⊆ S, and, by extension, we shall sometimes write rng(f) to mean

f(S) when the context prevents ambiguity. We write f �T
′
for the outward restriction of f to T ′ ⊆ T ,

i.e., f �T
′

(s) = f(s) ∩ T ′. We say that f is fully injective iff ∀s, s′ ∈ S : f(s) ∩ f(s′) 6= ∅ ⇒ s = s′.
When f is fully injective we write f−1(t) (t ∈ rng(f)) for the unique s for which t ∈ f(s). Note that
for a fully injective function f we have f−1 : rng(f)�S, t ∈ f(f−1(t)), and {s} = f−1(f(s)). For two
functions f and g with disjoint domains S and T we write f] g for the function with domain S] T
such that (f] g)�S= f and (f] g)�T= g. We write� to indicate that a function is injective and ⇀
indicates partiality. We write ↪→ (↪⇀) for (partial) graph embeddings.

Stochastics We use rand(S, f) to denote a random variate of a stochastic variable with outcomes S
and probability distribution f .

7.2.2 Bigraphs

This section is not meant as an introduction to bigraphs, but rather as a simplified and unified reference
for the parts of the bigraphical theory that we shall need in this report. In other words, we assume the
reader is already familiar with bigraphs; please refer to Milner’s recent book [29] for an introduction
to, and more complete treatment of, the theory of bigraphs.

Below we recall the definitions, notation, conventions, and terminology of bigraphs that we shall
use in this report. We follow Milner’s book closely [29], most of the time verbatim, but we have in a
few places omitted details that are irrelevant for our purposes (most significantly the notions of width
and sorting), slightly tweaked the notation to improve the readability of this report, and corrected
some minor mistakes.

We also prove a few straightforward results that will shall need later and introduce notation for
extracting subgraphs from bigraphs.

Concrete Bigraphs

We assume that names, node-identifiers, and edge-identifiers are drawn from three countably infinite,
mutually disjoint, sets: X , V, and E , respectively.

Nodes in bigraphs are assigned kinds, called controls, and the controls specify the number of ports
nodes of that kind have:

Definition 7.2.1 (basic signature (after [29, Def. 1.1])). A basic signature takes the form (K, ar). It
has a set K whose elements are kinds of node called controls, and a map ar : K → N assigning an
arity, a natural number, to each control. The signature is denoted by K when the arity is understood.
A bigraph over K assigns to each node a control, whose arity indexes the ports of a node, where links
may be connected.

A bigraph is a pair of a place graph and a link graph, called its constituents. Bigraphs and their
constituents are either concrete or abstract ; in this section we are concerned with concrete bigraphs,

7. Towards Scalable Simulation of Stochastic Bigraphs 249

and we shall defer the discussion of abstract bigraphs to Section 7.2.2. We denote concrete bigraphs
and their constituents by upper case letters A, . . . ,H.

We define concrete place and link graphs separately, and then combine them into bigraphs:

Definition 7.2.2 (concrete place graph (after [29, Def. 2.1])). A concrete place graph

F = (VF , ctrlF , prntF) : m→ n

is a triple having an inner face m and an outer face n, both finite ordinals. These index respectively the
sites and roots of the place graph. F has a finite set VF ⊂ V of nodes, a control map ctrlF : VF → K
and a parent map

prntF : m] VF → VF] n
which is acyclic, i.e., if prnt iF (v) = v for some v ∈ VF then i = 0. We shall call nodes, roots and sites
the places of F .

We say that a root i is idle iff there is no c ∈ VF]m with prntF (c) = i. A site i is guarding iff
its parent is a node, i.e., prntF (i) ∈ VF . Sites and nodes are siblings if they have the same parent. A
place graph with inner face m = 0 is called ground or an agent.

Definition 7.2.3 (concrete link graph (after [29, Def. 2.2])). A concrete link graph

F = (VF , EF , ctrlF , linkF) : X → Y

is a quadruple having an inner face X and an outer face Y , both finite subsets of X , called respectively
the inner and outer names of the link graph. F has finite sets VF ⊂ V of nodes and EF ⊂ E of edges,
a control map ctrlF : VF → K and a link map

linkF : X] PF → EF] Y

where PF
def
= {(v, i) | v ∈ VF ∧ i ∈ ar(ctrl(v))} is the set of ports of F . Thus (v, i) is the ith port

of node v. We write Pv,ctrlF for the ports of node v given control map ctrlF , i.e., it denotes the set
{(v, i) | i ∈ ar(ctrlF (v))}; we extend the notation to sets of nodes, PV,ctrlF

def
=
⋃
v∈V Pv,ctrlF , and we

sometimes omit ctrl when it is evident from the context. We shall call X] PF the points of F , and
EF] Y its links. We say that outer names are open links and edges are closed links.

We say that a link l is idle iff there is no p ∈ X] PF with linkF (p) = l. An inner name x is
guarding iff its link is connected to a node, i.e., ∃(v, i) ∈ PF : linkF (v, i) = linkF (x). Points and inner
names are siblings if they are connected to the same link. A link graph with inner face X = ∅ is called
ground or an agent.

Definition 7.2.4 (concrete bigraph (after [29, Def. 2.3])). An interface, denoted by upper case letters
I, J,K, for bigraphs is a pair I = 〈m,X〉 of a place graph interface and a link graph interface. We call
m the width of I, and we say that I is nullary, unary or multiary according as m is 0, 1 or >1. A
concrete bigraph

F = (VF , EF , ctrlF , prntF , linkF) : 〈k,X〉 → 〈m,Y 〉

consists of a concrete place graph FP = (VF , ctrlF , prntF) : k → n and a concrete link graph FL =
(VF , EF , ctrlF , linkF) : X → Y . We write the concrete bigraph as F = 〈FP , FL〉. We shall call
VF] EF] k]X]m] Y the entities of F .

A bigraph is called ground or an agent iff both of its constituents are ground. A bigraph is called
discrete iff it has no edges and its link map is a bijection. A bigraph is called prime iff is has no inner
names and a unary outer face.

250 7.2. Background

It should be clear from the above definitions, that the choice of node- and edge-identifiers have no
impact on the structure of the graphs. We shall now make this precise:

Definition 7.2.5 (support for bigraphs (after [29, Def. 2.4])). To each place graph, link graph or
bigraph F is assigned a finite set |F |, its support. For a place graph we define |F | = VF , and for a link
graph or bigraph we define |F | = VF] EF .

For two bigraphs F : I → J and G : I → J , a support translation ρ : |F | → |G| from F to G
consists of a pair of bijections ρV : VF → VG and ρE : EF → EG that respect structure, in the following
sense:

(i) ρ preserves controls, i.e., ctrlG ◦ρV = ctrlF . It follows that ρ induces a bijection ρP : PF → PG
on ports, defined by ρP ((v, i))

def
= (ρV (v), i).

(ii) ρ commutes with the structural maps as follows:

prntG ◦(Idm] ρV) = (Idn] ρV) ◦ prntF

linkG ◦(IdX] ρP) = (IdY] ρE) ◦ linkF .

Given F and the bijection ρ, these conditions uniquely determine G. We therefore denote G by
ρ F , and call it the support translation of F by ρ. We call F and G support equivalent, and
we write F l G, if such a support translation exists. Support translations ρ : |F | → |F | where
ρ F = F are called support automorphisms if they are not identities.

Support translation is defined similarly for place graphs and link graphs.

The interfaces of bigraphs and their constituents enable their composition: if the inner face of a
bigraph is the same the outer face of another, they may be composed:

Definition 7.2.6 (composition and identities (after [29, Def. 2.5])). We define composition for place
graphs and link graphs separately, and then combine them for the composition of bigraphs.

• If F : k → m and G : m→ n are two place graphs with |F |# |G|, their composite

G ◦ F = (V, ctrl , prnt) : k → n

has nodes V = VF] VG and control map ctrl = ctrlF] ctrlG. Its parent map prnt is defined as
follows: If w ∈ k] VF] VG is a site or node of G ◦ F then

prnt(w)
def
=

prntF (w) if w ∈ k] VF and prntF (w) ∈ VF
prntG(j) if w ∈ k] VF and prntF (w) = j ∈ m
prntG(w) if w ∈ VG.

The identity place graph at m is idm
def
= (∅, ∅, Idm) : m→ m.

• If F : X → Y and G : Y → Z are two link graphs with |F |# |G|, their composite

G ◦ F = (V,E, ctrl , link) : X → Z

7. Towards Scalable Simulation of Stochastic Bigraphs 251

has V = VF] VG, E = EF]EG, ctrl = ctrlF] ctrlG, and its link map link is defined as follows:
If q ∈ X] PF] PG is a point of G ◦ F then

link(q)
def
=

linkF (q) if q ∈ X] PF and linkF (q) ∈ EF
linkG(y) if q ∈ X] PF and linkF (q) = y ∈ Y
linkG(q) if q ∈ PG.

The identity link graph at X is idX
def
= (∅, ∅, ∅, IdX) : X → X.

• If F : I → J and G : J → K are two bigraphs with |F |# |G|, their composite is

G ◦ F def
= 〈GP ◦ FP , GL ◦ FL〉 : I → K

and the identity bigraph at I = 〈m,X〉 is 〈idm, idX〉.

We shall often omit the composition operator and simply write GF for G ◦ F .

Bigraphs also have a notion of partial tensor product, called juxtaposition, which is defined for
disjoint graphs:

Definition 7.2.7 (disjoint graphical structure (after [29, Def. 2.6])). Two place graphs Fi (i = 0, 1) are
disjoint if |F0|# |F1|. Two link graphs Fi : Xi → Yi are disjoint if X0 #X1, Y0 #Y1 and |F0|# |F1|.
Two bigraphs Fi are disjoint if FP0 #FP1 and FL0 #FL1 .

In each of the three cases we write F0 #F1.

Definition 7.2.8 (juxtaposition and units (after [29, Def. 2.7])). We define juxtaposition for place
graphs and link graphs separately, and then combine them in order to juxtapose bigraphs. In each
case we indicate the obvious unit for juxtaposition.

• For place graphs, the juxtaposition of two interfaces mi (i = 0, 1) is m0 + m1 and the unit is
0. If Fi = (Vi, ctrl i, prnt i) : mi → ni are disjoint place graphs (i = 0, 1), their juxtaposition
F0 ⊗ F1 : m0 +m1 → n0 + n1 is given by

F0 ⊗ F1
def
= (V0] V1, ctrl0] ctrl1, prnt0] prnt ′1),

where prnt ′1(m0 + i) = n0 + j whenever prnt1(i) = j.

• For link graphs, the juxtaposition of two disjoint link graph interfaces is X0]X1 and the unit
is ∅. If Fi = (Vi, Ei, ctrl i, link i) : Xi → Yi are disjoint link graphs (i = 0, 1), their juxtaposition
F0 ⊗ F1 : X0]X1 → Y0] Y1 is given by

F0 ⊗ F1
def
= (V0] V1, E0] E1, ctrl0] ctrl1, link0] link1).

• For bigraphs, the juxtaposition of two disjoint interfaces Ii = 〈mi, Xi〉 (i = 0, 1) is 〈m0+m1, X0]
X1〉 and the unit is ε = 〈0, ∅〉. If Fi =: Ii → Ji are disjoint bigraphs (i = 0, 1), their juxtaposition
F0 ⊗ F1 : I0 ⊗ I1 → J0 ⊗ J1 is given by

F0 ⊗ F1
def
= 〈FP0 ⊗ FP1 , FLo ⊗ FL1 〉.

252 7.2. Background

Notations and terminology An interface 〈n,X〉 is sometimes written as n if X = ∅ or as X if
n = 0; hence ε, 0 and ∅ all denote the same interface.

We shall denote bigraphs known to be ground using small letters and we shall often omit their
inner face ε, e.g., g : I.

We call bigraphs with zero width linkings (sometimes wirings) and we use λ and ω to denote
them. We shall often write linkings simply as their link map, and, as instance of this convention,
the empty bigraph can be denoted by ∅. We call linkings with no edges substitutions, denoted by σ
and τ . Discrete substitutions are called renamings, denoted by α and β. Ground substitutions are
called (name) introductions and we denote them by their outer face X, or just x if X is the singleton
set {x}. A linking with empty outer and inner faces and a single edge e is denoted by /e. Linkings
with empty outer face, a single inner name x, and a single edge e are called closures, denoted /ex; the
tensor product of multiple closures /e1x1 ⊗ · · · ⊗ /enxn is sometimes written as /[e1,...,en]{x1, . . . , xn}.
We sometimes omit edge when their identity is irrelevant.

We often omit identities in compositions when there is no ambiguity, and e.g., write σ ◦ G for
(σ ⊗ idm) ◦G. Also, we sometimes want to apply a linking λ : X] Y → Z to a graph g : I → 〈m,X〉
with fewer outer names than are in the inner face of the linking; in this case we write λ ◦G to mean
(λ⊗ idm) ◦ (G⊗ Y).

Bigraphs with no nodes or links are called placings. We shall often write placings simply as their
parent map. Placings where the parent map is a bijection are called permutations, denoted π.

Subtrees, Subforests, and their Contexts We shall sometimes need to extract subgraphs from
bigraphs:

Definition 7.2.9 (subtree, subforest). Given a bigraph H : 〈n,X〉 → 〈m,Y 〉 and a node or site
c ∈ VH] n. Then the subtree rooted at c is the set of nodes and sites defined by

H �c
def
= {c′ | c′ ∈ kH] VH ∧ ∃i ≥ 0 : prnt iH(c′) = c}.

For a set of nodes or sites C ⊆ VH] n we define the subforest as the union of the subtrees:

H �C =
⋃

c∈C
H �c .

We shall also need the dual, i.e., the context of subgraphs:

Definition 7.2.10 (context graph). Given a bigraph H : 〈n,X〉 → 〈m,Y 〉 and a node or root p ∈
VH]m. Then the context graph at p is the set of nodes, roots, and sites defined by

H �p
def
= (VH] n]m) \H �prnt−1(p) .

For a set of nodes or roots P ⊆ VH]m we define the context graph as the intersection of the individual
context graphs:

H �P =
⋂

p∈P
H �p .

Subforests and context graphs possess a number of properties:

7. Towards Scalable Simulation of Stochastic Bigraphs 253

Proposition 7.2.11 (subforest and context graph). Given a bigraph H : 〈n,X〉 → 〈m,Y 〉, a set of
nodes or sites c ∈ C ⊆ VH] n, and a set of nodes or roots p ∈ P ⊆ VH] m. Then we have the
following properties:

1. H �C⊆ n] VH ,
2. c ∈ H �c,
3. C ⊆ H �C ,
4. ∀c′ ∈ H �c: ∃i ≥ 0 : prnt iH(c′) = c,

5. H �P⊆ n] VH]m,

6. H �P= (VH] n]m) \ {c | c ∈ k] VH ∧ ∃i > 0 : prnt iH(c) ∈ P}
7. p ∈ H �P , and
8. P ⊆ H �P if ∀v, p ∈ P : ∀i > 0 : prnt iH(v) 6= p.

Proof. The first 5 properties are immediate from the definitions. We prove the remaining three:

6: Expanding the definitions we get:

H �p = (VH] n]m) \H �prnt−1(p)

= (VH] n]m) \
⋃

c∈prnt−1(p)

H �c

= (VH] n]m) \
⋃

c∈prnt−1(p)

{c′ | c′ ∈ n] VH ∧ ∃i ≥ 0 : prnt iH(c′) = c}

= (VH] n]m) \ {c′ | c′ ∈ n] VH ∧ ∃i ≥ 0 : prnt iH(c′) ∈ prnt−1(p)}
= (VH] n]m) \ {c′ | c′ ∈ n] VH ∧ ∃i > 0 : prnt iH(c′) = p}.

7: From (6) we can deduce p ∈ H �p iff p is a root or if it is a node satisfying ∀i > 0 : prnt iH(p) 6= p,
which is satisfied since prntH is acyclic.

8: We must show ∀p, p′ ∈ P : p′ ∈ H �p, assuming ∀v, p ∈ P : ∀i > 0 : prnt iH(v) 6= p. From the proof
of (7) we have p′ ∈ H �p iff p′ is a root or if it is a node satisfying ∀i > 0 : prnt iH(p′) 6= p which follows
from the assumption.

Derived operations When composing and juxtapositioning bigraphs we shall often want to fuse
links from the two graphs if they have the same name, and we therefore introduce two derived opera-
tions, parallel product || and nesting (sometimes dotting) .:

Definition 7.2.12 (parallel product (after [29, Def. 3.11])). The parallel product || is given on interfaces
by

〈m,X〉 || 〈n, Y 〉 def
= 〈m+ n,X ∪ Y 〉.

Now let Gi : Ii → Ji (i = 0, 1) be two bigraphs with disjoint supports. Denote the link map of Gi by
link i (i = 0, 1), and assume further that link0 ∪ link1 is a function. Then the parallel product

G0 ||G1 : I0 || I1 → J0 || J1

is defined just as tensor product, except that its link map allows name-sharing.

254 7.2. Background

Proposition 7.2.13 (parallel product (after [24, Prop. 9.14])). Let G0 ||G1 be defined. Then

G0 ||G1 = σ(G0 ⊗ τG1),

where the substitutions σ and τ are defined as follows: If zi (i ∈ n) are the names shared between
G0 and G1, and wi are fresh names in bijection with the zi, then τ(zi) = wi and σ(wi) = σ(zi) = zi
(i ∈ n).

Definition 7.2.14 (nesting (after [29, Def. 3.13])). Let F : I → 〈m,X〉 and G : m → 〈n, Y 〉 be
bigraphs. Define the nesting G.F : I → 〈n,X ∪ Y 〉 by:

G.F
def
= (idX ||G) ◦ F.

S-categories and spm-categories

Large parts of the theory of bigraphs is formulated at the more general level of spm categories and
s-categories, the definitions of which we shall briefly recall here. We shall assume that the reader is
familiar with the basic definitions of category theory. We shall use upper case bold letters to denote
categories (e.g., C) and we presuppose an infinite repository of support elements S.

Definition 7.2.15 (partial monoidal category (after [29, Def. 2.10])). A category is said to be partial
monoidal when it has a partial tensor product ⊗ both on objects and on arrows satisfying the following
conditions.

On objects, I⊗J and J⊗I are either both defined or both undefined. The same holds for I⊗(J⊗K)
and (I ⊗ J) ⊗ K; moreover, they are equal when defined. There is a unit object ε, often called the
origin, for which ε⊗ I = I ⊗ ε = I for all I.

On arrows, the tensor product of f : I0 → I1 and g : J0 → J1 is defined iff I0 ⊗ J0 and I1 ⊗ J1 are
both defined. The following must hold when both sides are defined:

(M1) f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h

(M2) idε ⊗ f = f ⊗ idε = f

(M3) (f1 ⊗ g1) ◦ (f0 ⊗ g0) = (f1 ◦ f0)⊗ (g1 ◦ g0).

A functor of partial monoidal categories preserves unit and tensor product.

Definition 7.2.16 (spm category (after [29, Def. 2.11])). A partial monoidal category is symmetric
(spm) if, whenever I⊗J is defined, there is an arrow γI,J : I⊗J → J⊗I called a symmetry, satisfying
the following equations when the compositions and products are defined:

(S1) γI,ε = idI

(S2) γJ,I ◦ γI,J = idI⊗J

(S3) γI1,J1 ◦ (f ⊗ g) = (g ⊗ f) ◦ γI0,J0 (for f : I0 → I1, g : J0 → J1)

(S4) γI⊗J,K = (γI,K ⊗ idJ) ◦ (idI ⊗ γJ,K).

A functor between spm categories preserves unit, product and symmetries.

7. Towards Scalable Simulation of Stochastic Bigraphs 255

Definition 7.2.17 (precategory (after [29, Def. 2.12])). A precategory C̀ is like a category except
that composition of f and g may be undefined even when cod(f) = dom(g). We use a tag, as in C̀, to
distinguish precategories. Composition satisfies the following conditions (the first being weaker than
for a category):

(C1) if g ◦ f is defined then cod(f) = dom(g)

(C2) h ◦ (g ◦ f) = (h ◦ g) ◦ f when either is defined

(C3) id ◦ f = f and f = f ◦ id.

We understand (C3) to imply that composition of an arrow f with the identities on its domain and
codomain is always defined.

Definition 7.2.18 (s-category (after [29, Defs. 2.13 & A.1])). An s-category C̀ is a precategory in
which each arrow f is assigned a finite support |f | ⊂ S. Further, C̀ possesses a partial tensor product,
unit and symmetries, as in an spm category. The identities idI and symmetries γI,J are assigned empty
support. In addition:

(i) For f : I → J and g : J ′ → K, the composition g ◦ f is defined iff J = J ′ and |f |# |g|; then
|g ◦ f | = |f |] |g|.

(ii) For f : I0 → I1 and g : J0 → J1, the tensor product f ⊗ g is defined iff Ii⊗Ji is defined (i = 0, 1)
and |f |# |g|; then |f ⊗ g| = |f |] |g|.

The equations (M1)–(M3) and (S1)–(S4) from Definitions 7.2.15 and 7.2.16 are required to hold when
both sides are defined.

For any arrow f : I → J in an s-category C̀ and any partial injective map ρ : S⇀S whose domain
includes |f |, there is an arrow ρ f : I → J called a support translation of f . Support translations
satisfy the following equations when both sides are defined:

(T1) ρ idI = idI

(T2) ρ (f ◦ g) = ρ f ◦ ρ g

(T3) Id|f | f = f

(T4) (ρ′ ◦ ρ) f = ρ′ (ρ f)

(T3) ρ f = (ρ�|f |) f

(T4) |ρ f | = ρ(|f |)

(T5) ρ (f ⊗ g) = ρ f ⊗ ρ g.

Two arrows f and g are support-equivalent, written f l g, if ρ f = g for some support translation ρ.
The support automorphisms of an arrow f are the non-identity support translations ρ : |f | → |f | such
that ρ f = f .

A functor between s-categories preserves tensor product, unit, symmetries and support equivalence.

We shall later need a few results about s-categories:

Lemma 7.2.19. Let a l c ◦ r, c l d, and r l s with |d|# |s| in some s-category C̀. Then a l d ◦ s.

Proof. By the definition of support equivalence, we have support bijections ρ : |c◦r| → |a|, ρ′ : |d| → |c|
and ρ′′ : |s| → |r| such that a = ρ (c ◦ r), c = ρ′ d and r = ρ′′ s. Since c ◦ r is defined we have and

256 7.2. Background

|c|# |r|. Thus ρ′] ρ′′ is well-defined and we get the following equivalences:

a = ρ (c ◦ r)
= ρ ((ρ′ d) ◦ (ρ′′ s))

= ρ (((ρ′] ρ′′) d) ◦ ((ρ′] ρ′′) s))

= (ρ ◦ (ρ′] ρ′′)) (d ◦ s)

and thus a l d ◦ s (using the support translation equalities of Def. 7.2.18).

Lemma 7.2.20. Let a l c ◦ r and r l s in some s-category C̀. Then a l c′ ◦ s for some c′ with
c l c′.

Proof. Choose some bijection ρ′′ : |c| → S \|s| (where S is the infinite support repository of C̀) and let
c′

def
= ρ′′ c. By construction we have c l c′ and |c′|# |s|, so by Lemma 7.2.19 a l c′ ◦ s as required.

Obviously, spm categories can be seen as s-categories where arrows have empty support. Conversely,
we can obtain spm categories from s-categories as follows:

Definition 7.2.21 (support quotient (after [29, Def. 2.14])). For any s-category C̀, its support quotient

C
def
= C̀/ l

is the spm category whose objects are those of C̀, and whose arrows [f] : I → J are support-equivalence
classes of the homset C̀(I → J). The composition of [f] : I → J with [g] : J → K is defined as
[g] ◦ [f]

def
= [g′ ◦ f ′], where f ′ ∈ [f] and g′ ∈ [g] are chosen with disjoint supports.

The tensor product is defined analogously. The identities and symmetries of C are singleton
equivalence classes since they have empty support.

Notations and terminology In any category C a pair of arrows ~f : I → ~J is a span. Dually, a
pair of arrows ~f : ~I → J is a cospan.

If ~f : I → ~J is a span and ~g : ~J → K is a cospan satisfying g0 ◦ f0 = g1 ◦ f1, then ~g is a bound for
~f and, dually, ~f is a cobound for ~g.

Bigraphical Categories

Concrete bigraphs and their constituents form s-categories, and by quotienting these by (essentially)
support equivalence we get spm categories of abstract bigraphs.

Definition 7.2.22 (graphical s-categories (after [29, Def. 2.17])). A basic signature K was defined in
Def. 7.2.1. Concrete place graphs, link graphs and bigraphs over an arbitrary signature were defined
in Defs. 7.2.2, 7.2.3 and 7.2.4. We now cast each of these kinds of graph as arrows in an s-category,
denoted respectively by P̀g(K), L̀g(K) and B̀g(K).

The objects in these three s-categories are called interfaces, or faces. For place graphs they are
natural numbers, for link graphs they are finite name-sets, and for bigraphs they are pairs of a natural
number m and a finite name-set.

Support for the three kinds of graph was defined in Def. 7.2.5, with support elements V] E .
Composition and identities were set out in Def. 7.2.6, and juxtaposition and units in Def. 7.2.8,
determining tensor product.

To complete our definition it remains to define symmetries γI,J as follows:

7. Towards Scalable Simulation of Stochastic Bigraphs 257

in P̀g : γm,n
def
= (∅, ∅, prnt), where prnt(i) = n+ i (i ∈ m)

and prnt(m+ j) = j (j ∈ n)

in L̀g : γX,Y
def
= idX]Y

in B̀g : γ〈m,X〉,〈n,Y 〉
def
= 〈γm,n, γX,Y 〉.

Definition 7.2.23 (lean, lean-support quotient, abstract bigraphs (after [29, Def. 2.19])). A bigraph
is lean if it has no idle edges. Two bigraphs F and G are lean-support equivalent, written F m G,
if they are support-equivalent ignoring their idle edges. It is easily seen that both composition and
tensor product preserve this equivalence.

For the bigraphical s-category B̀g(K), its lean-support quotient

Bg(K)
def
= B̀g(K)/ m

is the spm category whose objects are those of B̀g(K) and whose arrows JGK : I → J , called abstract
bigraphs, are lean-support equivalence classes of the homset (I → J) in B̀g(K). Composition, tensor
product, identities and symmetries for the lean-support quotient are defined just as for support quotient
in Def. 7.2.21.

The spm categories Pg(K) of abstract place graphs and Lg(K) of abstract link graphs are con-
structed similarly.

We shall sometimes use hat to denote that an arrow is abstract, e.g., Ĝ. We shall say that G is a
concretion of JGK.

We shall later need the following result regarding lean support equivalence:

Lemma 7.2.24. Let F,G,C,D be concrete bigraphs with G m F and F = C ◦D. Then there exists
concrete bigraphs C ′, D′ with C ′ m C and D′ m D such that G = C ′ ◦D′.

Proof. Let ρ be a witness of the support equivalence part of G m F . Then ρ G and F = C ◦ D
differ only in their idle edges. Construct C ′′ and D′′ by removing the idle edges of C and D that
are not in ρ G, and add the idle edges of |ρ G| \ |F | to either one. Then clearly C ′′ m C, D′′ m D
and ρ G = C ′′ ◦ D′′. Since support translations are bijections, we have G = ρ−1 C ′′ ◦ ρ−1 D′′,
C ′

def
= ρ−1 C ′′ l C ′′ m C, and D′ def

= ρ−1 D′′ l D′′ m D as required.

Corollary 7.2.25 (lean support equivalence vs support equivalence). Let F,G,C,D be concrete bi-
graphs with G m F and F l C ◦ D. Then there exists concrete bigraphs C ′, D′ with C ′ m C and
D′ m D such that G l C ′ ◦D′.

Furthermore, if C is lean, a lean C ′ exists, i.e., C l C ′. The same holds for D and D′. Both C ′
and D′ can be lean iff G is lean.

Proof. Let ρ′ be the witness of F l C ◦D and use the construction from the proof of Lemma 7.2.24
for G and ρ′ F = C ◦D (obviously G m ρ F), putting all the idle edges of |ρ G| \ |ρ′ F | in either
C ′′ or D′′.

The notations, terminology and derived operations pertaining to concrete bigraphs carry over to
abstract bigraphs.

258 7.2. Background

Reactive Systems

Bigraph dynamics are defined as an instance of the more general basic reactive systems, where a set of
ground reaction rules generates a reaction relation by closing the set under all contexts and support
equivalence:1

Definition 7.2.26 (basic reactive system (BaRS) (after [29, Sec. 7.1])). A basic reactive system,
written C̀(R̀), consists of an s-category C̀ equipped with a set R̀ of reaction rules. An arrow
a : ε→ I in C̀ with domain ε is a ground arrow or agent, often written a : I.

Each reaction rule R consists of a pair (r : I, r′ : I) of ground arrows, a redex and a reactum. The
set R̀ must be closed under support translation, i.e., if (r, r′) is a rule then so is (s, s′) whenever r l s
and r′ l s′.

The reaction relation _ over agents is the smallest such that a _ a′ whenever a l c ◦ r and
a′ l c ◦ r′ for some reaction rule (r, r′) and context c for r and r′.

When the underlying s-category disregards support we say that the BaRS is abstract:

Definition 7.2.27 (abstract BaRS (after [29, Def. 7.3])). A BaRS is abstract if its underlying s-
category is an spm category.

We saw in section 7.2.2 how we can construct spm categories from s-categories by quotienting by
support equivalence. Similarly, we may construct abstract BaRSs from concrete ones by quotienting
by support equivalence. However, as we saw in section 7.2.2, abstract bigraphs are constructed from
concrete bigraphs by quotienting by a more coarse-grained equivalence: lean-support equivalence. We
therefore generalize the constructions of spm categories and abstract BaRSs from concrete ones to
more general equivalences, so-called abstractions:

Definition 7.2.28 (structural congruence (after [29, Def. 7.4])). An equivalence relation ≡ on each
homset of an s-category C̀ is a structural congruence if it is preserved by composition and tensor
product. It is called an abstraction if it includes support equivalence. We denote the ≡-equivalence
class of f by JfK.

In a BaRS C̀(r)(R̀) an abstraction is dynamic if in addition it respects reaction, i.e., if f _ f ′

and g ≡ f then g _ g′ for some g′ ≡ f ′.

Clearly, support equivalence is a dynamic abstraction on any BaRS:

Proposition 7.2.29 (support equivalence is a dynamic abstraction). Support equivalence l is a
dynamic abstraction on a BaRS C̀(R̀).

We can now state the more general abstraction constructions and show that they indeed yield spm
categories and abstract BaRSs:

Definition 7.2.30 (quotient s-category (after [29, Def. 7.5])). Let C̀ be an s-category, and let ≡ be
an abstraction on C̀. Then

C
def
= C̀/ ≡

1We avoid the added complexity of the so-called passive contexts, contexts that disallow reaction, from this presen-
tation as our work can be straightforwardly extended to include such contexts. Omitting passive contexts allows us to
ignore the refinement of reactive systems to wide reactive systems [29, Def. 7.2], which are only introduced to handle
passive contexts when deriving labeled transition systems (LTSs).

7. Towards Scalable Simulation of Stochastic Bigraphs 259

is the spm category whose objects are those of C̀, and whose arrows JfK : I → J are ≡-equivalence
classes of the homset I → J in C̀. The composition of JfK : I → J with JgK : J → K is defined as
JgK◦ JfK def

= Jf ′ ◦g′K, where f ′ ∈ JfK and g′ ∈ JgK are chosen with disjoint supports. The tensor product
is defined analogously. The identities and symmetries in C are necessarily the equivalence classes of
their C̀ counterparts.

Lemma 7.2.31 (quotient s-category). Let C̀ be an s-category, and let ≡ be an abstraction on C̀.
Then the quotient C = C̀/ ≡ is an spm category. Its construction defines a functor of s-categories

J·K : C̀→ C.

Proof. C is an spm category, since it inherits the tensor product, unit, and symmetries of the s-category
C̀, and the construction eliminates the partiality of composition and tensor product. J·K is a functor
by construction and it is between s-categories because any spm category is an s-category with empty
supports.

Definition 7.2.32 (quotient BaRS (after [29, Def. 7.6])). Let C̀(R̀) be a BaRS, and ≡ a dynamic
abstraction on C̀. Then define C(R), the quotient of C̀(R̀) by ≡, as follows:
• C = C̀/ ≡, and
• R = {(JrK, Jr′K) | (r, r′) ∈ R̀}.

Theorem 7.2.33 (abstract BaRS (after [29, Thm. 7.7])). The construction of Def. 7.2.30 and Def. 7.2.32,
applied to a concrete BaRS C̀(R̀), yields an abstract BaRS C(R), whose underlying spm category C
is the codomain of a functor of s-categories

J·K : C̀→ C.

Moreover the construction preserves the reaction relation, in the following sense:

1. if f _ f ′ in C̀(R̀) then JfK _ Jf ′K in C(R)

2. if JfK _ g′ in C(R) then f _ f ′ in C̀(R̀) for some f ′ with Jf ′K = g′.

Proof. The first part follows immediately from Lemma 7.2.31 and Def. 7.2.27.

1: We have f l c ◦ r and f ′ l c ◦ r′ for some reaction rule (r, r′) and context c for r and r′. We must
show JfK _ Jf ′K, i.e., JfK l Jc′K ◦ JsK and Jf ′K l Jc′K ◦ Js′K for some reaction rule (s, s′) and context
Jc′K for JsK and Js′K.

Letting c′ def
= c, s def

= r, s′ def
= r′ and exploiting that ≡ includes support equivalence and that J·K is a

functor, we get (JsK, Js′K) = (JrK, Jr′K) ∈ R, JfK = Jc ◦ rK = Jc′ ◦ sK = Jc′K ◦ JsK, and Jf ′K = Jc ◦ r′K =
Jc′ ◦ s′K = Jc′K ◦ Js′K as required.

2: We have JfK l JcK ◦ JrK and g′ l JcK ◦ Jr′K for some reaction rule (r, r′) and context JcK for JrK and
Jr′K. We must show f _ f ′ for some f ′ with Jf ′K = g′, i.e., f l c′ ◦ s and f ′ l c′ ◦ s′ for some reaction
rule (s, s′) and context c′ for s and s′.

Let s def
= r, s′ def

= r′ and choose some context c′ ∈ JcK with c′# r and c′# r′. By definition of
composition in C and since abstraction includes support equivalence, we get JfK = JcK ◦ JrK = Jc′ ◦ rK
and g′ = JcK ◦ Jr′K = Jc′ ◦ r′K. By Def. 7.2.26 we have f ≡ c′ ◦ r _ c′ ◦ r′ and since ≡ is dynamic, there
is some f ′ ≡ c′ ◦ r′ ∈ g′ such that f _ f ′ as required.

260 7.2. Background

Bigraphical Reactive Systems

While the rules of basic reactive systems are required to be ground, bigraphical reaction rules are
allowed to take parameters. But by viewing such parametric reaction rules as generators of ground
reaction rules, we can view bigraphical reactive systems as a sugared variant of basic reactive systems.

Before we define bigraphical parametric reaction rules and bigraphical reactive systems, let us first
define what a parameter is and how a parametric reaction rule is allowed to manipulate it through
instantiation.

First, note that ground bigraphs can be seen as the juxtaposition of a number of discrete primes
bound together by some linking:

Corollary 7.2.34 (ground discrete normal form (DNF) (after [29, Corol. 3.10])). A ground bigraph
g : 〈n,Z〉 can be expressed uniquely, up to renaming on Y , as g = (idn ⊗ λ) ◦ (d0 ⊗ · · · ⊗ dn−1), where
λ : Y → Z is a linking and the di are discrete primes.

We shall regard the individual primes of a ground bigraph as parameters of reaction and shall allow
each of them to be copied, discarded, or left unchanged using instantiation:

Definition 7.2.35 (instantiation (after [29, Def. 8.5])). In a bigraphical s-category C̀ = B̀g(K), let
η : n → m be a map of finite ordinals. Define the instance function family η̄X,S : C̀(ε, 〈m,X〉) →
C̀(ε, 〈n,X〉), indexed by name setX and support set S, on agents as follows: Given an agent g : 〈m,X〉,
find its DNF g = λ ◦ (d0 ⊗ · · · ⊗ dm−1) (Corol. 7.2.34). Then

η̄X,S(g)
def
= λ ◦ (d′0 || · · · || d′n−1)

where d′j l dη(j) and |d′j |#S for each j ∈ n. The function is defined up to l.
We shall often omit X and/or S when they are evident from the context.

We have reformulated Milner’s definition to index η̄ by X and S; X was already a somewhat
implicit index whereas S is a technical measure that will allow us to ensure that instantiation chooses
fresh support with respect to the context in which it will be used.

Note that η̄X,S(g) has the same outer names as g and that linking commutes with instantiation:

Proposition 7.2.36 (linking an instance (after [29, Def. 8.4])). Linking commutes with instantiation;
that is, ω ◦ η̄X,S(g) l η̄X,S(ω ◦ g).

Let us now define parametric reaction rules for bigraphs and how they generate ground reaction
rules:

Definition 7.2.37 (bigraphical parametric reaction rules (after [29, Def. 8.5])). A parametric reaction
rule R for bigraphs is a triple of the form

(R : m→ J,R′ : m′ → J, η)

where R is the parametric redex, R′ the parametric reactum, and η : m′ → m a map of finite ordinals.
The rule generates all ground reaction rules (r, r′), where

r l R.d, r′ l R′.η̄(d)

and d : 〈m,Y 〉 is discrete.
With this definition in mind, it is clear that the following definition of bigraphical reactive systems

is an instance of the basic reactive systems defined above:

7. Towards Scalable Simulation of Stochastic Bigraphs 261

Definition 7.2.38 (bigraphical reactive system (BRS) (after [29, Def. 8.6])). A (concrete) bigraphical
reactive system (BRS) over K consists of B̀g(K) equipped with a set R̀ of parametric reaction rules
closed under support equivalence; that is, if R l S and R′ l S′ and R̀ contains (R,R′, η), then it
also contains (S, S′, η). We denote the BRS by B̀g(K, R̀).

Comparing the definition of BaRSs with the generation of ground bigraphical reaction rules from
parametric ones, it is clear that reactions are generated by occurrences of redexes, what we callmatches:

Definition 7.2.39 (match). Given a parametric reaction rule R = (R,R′, η), agent a, and bigraphs
c,d, we say that (c, d) is a match of R in a iff a l c ◦ R.d. Two matches (c, d),(c′, d′) are regarded as
the same if they differ only by a bijection on the outer faces of d and d′; otherwise they are distinct.
We write match(a,R) for the set of distinct matches of R in a.

We may construct abstract BRSs by quotienting by lean-support equivalence m since it is a dynamic
abstraction on BRSs:

Proposition 7.2.40 (lean-support equivalence is a dynamic abstraction). Lean-support equivalence
m is a dynamic abstraction on a BRS B̀g(K, R̀).

Proof. It is immediate from its definition that lean-support equivalence is an abstraction, so we just
need to check that it is dynamic.

Assume bigraphs a, a′, b with a _ a′ and b m a. Since a _ a′ we must have a l c ◦ r and a′ l c ◦ r′
for some rule (r, r′) and context c. By Corollary 7.2.25, noting that bigraph rules are lean, there are
bigraphs d, s with d m c and s l r such that b l d◦s. Since rules are closed under support translation,
there is a rule (s, s′) with s′ l r′, and we thus have the reaction b l d ◦ s _ b′ where b′ = d ◦ s′. Since
lean-support equivalence is preserved by composition we have b′ = d ◦ s′ m c ◦ r′ l a′ as required.

7.3 The Simulation Algorithm

We give an overview of the simulation algorithm for the κ-calculus by Danos et al. [12] recast to
stochastic bigraphs. We shall refer to the algorithm in loc. cit. as KaSim. This reformulation of KaSim
to stochastic bigraphs is independent of the physical and stochastic underpinnings of the algorithm,
so we shall not concern ourselves with the details of these matters; the interested reader may refer to
[12, 18, 19].

7.3.1 Gillespie’s algorithm

KaSim is a generalization of what is known as Gillespie’s algorithm, an algorithm for stochastic simula-
tion of coupled chemical reactions [18, 19]. It is based on the idea of assigning probabilities to reaction
rules which are proportional to the number of instances of each rule in the current state of the system,
and letting the frequency of reaction be proportional to the total number of rule instances.

Recast to bigraphs, the algorithm in overview works as follows: given a set of reaction rules R,
with each reaction rule R assigned a rate constant %R, an agent a, and a simulation time tstop, perform
the following steps:

0. Initialization:

Initialize the simulation state:

262 7.3. The Simulation Algorithm

Initialization
- find all matches
- compute rule activity
- compute system activity

Monte Carlo step
- generate time advance
- choose rule
- choose match

Update
- apply reaction
- update time
- update matches
- update activities

Figure 7.1: The basic simulation loop.

t := 0 current simulation time, initially 0
M(a,R) := match(a,R) set of matches of R’s redex in a (∀R ∈ R)

αR := |M(a,R)| × %R activity of R
α := ΣR∈RαR system activity

If α = 0 then no reaction is possible and the simulation ends.

1. Monte Carlo step:

Sample the following random values:

R := rand(R, λR. |M(a,R)|×%R
α) rule to be applied

φ := rand(M(a,R), λm.1/|M(a,R)|) match to be applied
δt := rand(R+, λt.αeαt) time advance

2. Update:

Update the simulation state:

a := a′, if a _R,φ a
′ perform reaction

t := t+ δt advance time
M(a,R) := match(a,R) update sets of matches (∀R ∈ R)

αR := |M(a,R)| × %R update rule activities
α := ΣR∈RαR update system activity

3. Iterate:

If t > tstop or α = 0, stop; otherwise repeat from step 1.

Figure 7.1 illustrates the simulation loop.

7.3.2 Incremental and Local Updates
It should be clear that the update step as expressed above does not scale: it requires recomputation
of all matches at each simulation cycle. Instead, KaSim employs an incremental update phase where
(i) matches are only removed from M(a,R) if they are invalidated by the reaction and (ii) matches are

7. Towards Scalable Simulation of Stochastic Bigraphs 263

only searched for in the parts of the agent that were affected by the reaction. Thus, the update phase
actually consists of three steps2:

2a. Negative update:

Remove matches that will be invalidated by the chosen reaction and decrease activities accord-
ingly.

2b. Rewrite:

Rewrite the agent using the chosen rule and match.

2c. Positive update:

Find new matches created by the reaction and increment activities accordingly.

These steps presume that we can determine conflict and causality in an efficient manner: we must
be able to quickly identify (2a) the reactions that are in conflict with the chosen reaction and (2c)
the reactions that it causes. This is achieved in KaSim by (i) assuming that rules are enriched with
a notion of modification which characterizes how reaction modifies the redex, and (ii) assuming the
existence of two relations, called the inhibition and activation maps, that characterize the interplay
between rules:

inhibition: We say that rule R0 inhibits rule R1, written R0 #R1, iff there is some agent a and
embeddings φi : Ri ↪→ a such that cod(φ0)∩ cod(φ1) contains at least one entity modified by R0.

activation: Rule R0 activates rule R1, written R0 ≺ R1, iff there is some agent a and embeddings
φ0 : ∆0(R0) ↪→ a, φ1 : R1 ↪→ a such that cod(φ0) ∩ cod(φ1) contains at least one entity modified
by R0.

Note that these relations are not necessarily symmetric.
Assuming we can construct these relations during initialization, we may express the negative and

positive update steps in more detail as follows (recall that R is the chosen rule, φ the chosen match,
and that step 2b. sets a := a′):

2a. Negative update:

For each R′ with R#R′

(i) remove the embeddings φ′ : R′ ↪→ a fromM(a,R′) for which some elements of rng(φ)∩rng(φ′)
will be modified by the chosen reaction, and

(ii) decrease the system activity and the activity of the rule by the number of removed embed-
dings times %R′ .

2c. Positive update:

For each R′ with R ≺ R′

(i) add new embeddings φ′ : R′ ↪→ a to M(a,R′). At least one element of rng(φ′) must be
modified by the reaction in order for φ′ to be new, and

(ii) increase the system activity and the activity of the rule by the number of added embeddings
times %R′ .

2As a technicality, we have swapped steps 2a. and 2b. as it in the case of SBAM leads to a more direct implementation.

264 7.4. Stochastic Parametric Reactive Systems

Thus, using this approach we avoid considering rules that are known to never generate reactions that
are causally related to those of the chosen rule. But even in the worst case, ≺= # = R × R, this
approach is an improvement since we have restricted the part of the agent that we need to consider.

Let us consider steps 2a(i) and 2c(i) in a bit more detail:

2a(i): Though we have restricted the set of embeddings we need to consider, it is still unclear how to
efficiently identify the affected embeddings. The approach in KaSim is actually to not use the
inhibition relation, but instead maintain a so-called lift map l : |a| →M(a, ·) from entities in the
agent to the embeddings that have those entities in their co-domain. While less space-efficient,
it enables us to quickly remove invalidated embeddings.

2c(i): The notion of modification that rules are enriched with, allows us to determine which entities in
the agent have been modified, so we can perform localized matching as follows: for each modified
entity e ∈ |a| and entity e′ ∈ |R′| such that [e′ 7→ e] is a partial embedding, attempt to extend it
to a complete embedding of R′.

By extending we mean incrementally adding mappings f 7→ f ′ of entities f ∈ |a| \ rng(φ′),
f ′ ∈ |R′| \ dom(φ′) which are adjacent to elements of rng(φ′) and dom(φ′) respectively. We call
this anchored matching.

In κ, anchored matching is deterministic and there is at most one complete extension of a partial
embedding. This is not generally the case for bigraphs.

Note that anchored matching only yields complete embeddings for redexes consisting of one con-
nected component and the KaSim algorithm is actually slightly more complicated than what we have
sketched above, as it handles redexes with more than one connected component. However, the KaSim
approach to handling such redexes transfer unaltered to the bigraph version of the algorithm, so in
this report we shall simply assume that redexes consist of exactly one connected component.

7.4 Stochastic Parametric Reactive Systems

Concrete bigraphs are a means to constructing a tractable behavioral theory for abstract bigraphs:
Abstract bigraphs could be defined directly instead of being derived from concrete bigraphs3. However,
abstract bigraphs have insufficient structure for constructing minimal transition labels which is a key
construction in the behavioral theory of BRSs. By defining abstract bigraphs in terms of concrete
bigraphs, where such minimal labels can be constructed, one gets the means for obtaining minimal
labels for abstract bigraphs.

The dynamic theory of bigraphs have been designed with this construction in mind, which is
reflected in the treatment of support : (a) sets of rules are required to be closed under support
translation (cf. Def. 7.2.26 and Def. 7.2.38), (b) the construction of the reaction relation closes under
support translation (cf. Def. 7.2.26), and (c) the construction of ground reaction rules from parametric
ones closes under support translation (cf. Def. 7.2.37). In other words, these constructions are aimed
at support equivalence classes of concrete bigraphs, i.e., abstract bigraphs.

While this approach is sufficient for most applications of abstract bigraphs, it is insufficient in
the context of stochastic bigraphs, where support provides the means for counting matches: closing
under support translation would lead to an infinite number of matches for non-trivial redexes. In their
definition of stochastic bigraphs [25], Krivine et al. solve this issue by (a) replacing support equivalence

3Milner’s algebra for abstract bigraphs could be one such definition [27].

7. Towards Scalable Simulation of Stochastic Bigraphs 265

by equality in the definition of a match (cf. Def. 7.2.39)4, and (b) defining the number of matches in
an abstract bigraph as the number of matches in one of its concretions. However, in loc. cit. the
definition of a match is not (directly) related to the definition of the reaction relation, resulting in a
conceptual gap between the usual reaction semantics and the stochastic reaction semantics. A unified
presentation of these two aspects of stochastic BRSs would promote understanding.

Another issue is the infinite set of ground reaction rules that a parametric reaction rule generate.
Clearly, we cannot represent these explicitly in an implementation, so we cannot implement BRSs
directly as stated in Def. 7.2.26 and Def. 7.2.38. We believe that direct representations in implemen-
tations increase trust in correctness, and it would therefore be desirable if we could give a directly
representable definition of BRSs with parametric reaction rules.

In this section we tackle both of these issues, by developing a variant of reactive systems, which
we call stochastic parametric reactive systems, that have none of the above shortcomings while giving
rise to the same abstract reaction relation. The idea is to prevent arbitrary support translation during
reaction by restricting the use of support translation to the identification of matches of redexes in an
agent.

Specifically, we incrementally develop the following kinds of reactive systems:

representative basic reactive systems (RBaRS):
Almost as BaRSs but different in two respects:

• the set of rules must not contain support equivalent rules and
• reaction cannot change the support of the context.

parametric reactive systems (PRS):
A generalization of RBaRSs where parametric reaction rules are first class citizens. Reaction is
refined further by restricting the manipulation of support in parameters.

stochastic parametric reactive systems (SPRS):
PRSs equipped with a stochastic semantics, which for bigraphs generalizes the stochastic se-
mantics of Krivine et al. [25]. The reaction relation is refined such that a match determines a
reaction.

The concrete reaction relation becomes smaller for each increment, while the abstract reaction relation
remains the same. To prove this, we for each of these systems show that its concrete reaction relation
is closely related to that of its predecessor, indeed so closely that it becomes immediate that they have
the same abstract reactions. Figure 7.2 gives an overview of the relations between the four kinds of
reactive systems.

7.4.1 Representative Basic Reactive Systems
In this section we show how one may limit Milner’s liberal use of support equivalence in the definition
of basic reactive systems, while maintaining the same dynamic behavior. We do so in two steps: (1)
first we show that we need not require the set of reaction rules to be closed under support translation,
and then (2) we reduce the reaction relation to preclude support translation in the context.

Recall from Def. 7.2.26 that in a BaRS

• the set of reaction rules R̀ must be closed under support translation, i.e., if (r, r′) is a rule then
so is (s, s′) whenever r l s and r′ l s′, and

4Krivine et al. use the term occurrence and use a slightly different definition, cf. [25, Def. 4.1 and Def. 4.2], but this
is an insignificant technicality.

266 7.4. Stochastic Parametric Reactive Systems

BaRS

≡

RBaRS

≈_/≡

PRS

≈_/≡

SPRS

choose rule representatives close rule set under sup-
port translation

extend rules with the in-
stantiation idε→ε

generate ground reaction
rules

extend rules with a rate
constant discard rate constants

Figure 7.2: The four kinds of reactive systems and how to transform one into another. The topmost
two are equivalent modulo dynamic abstraction ≡ (e.g., l) while the others have the same reaction
relation modulo dynamic abstraction.

• the reaction relation is also closed under support translation, since a _ a′ whenever a l c ◦ r
and a′ l c ◦ r′ for some reaction rule (r, r′) ∈ R̀.

Since the construction of the reaction relation closes under support translation, we need only consider
one concretion, a representative, of an abstract rule in order to generate all the corresponding reactions:

Proposition 7.4.1 (reaction rule representatives are sufficient). Let C̀(R̀) be a BaRS and let a _ a′

be a reaction generated by rule (r, r′). Then any other support equivalent rule (s, s′), i.e., r l s and
r′ l s′, generates the same reaction.

Proof. We have a l c ◦ r and a′ l c ◦ r′ for some context c for r and r′, and must show that there
is a context c′ for s and s′ such that a l c′ ◦ s and a′ l c′ ◦ s′. This follows from the proof of
Lemma 7.2.20 if we strengthen the requirement on the choice of c′ by also precluding the support of
s′, i.e., ρ′′ : |c| → S \ (|s| ∪ |s′|).

Thus we need not close the reaction rule set under support translation. But the reaction relation
is still somewhat unmanageable, since it is closed under support translation, and one wonders why we
must be able to change the support of the context of a reaction? Indeed, this does not strictly increase
the number of reactions, in a sense that we shall now make precise.

First, note that the reaction relation is indeed closed under support equivalence:

Lemma 7.4.2. Let C̀(R̀) be a BaRS and let a _ a′. Then ∀b, b′ : b l a ∧ b′ l a′ ⇒ b _ b′.

Proof. We have a l c ◦ r and a′ l c ◦ r′ for some rule (r, r′) and context c. Since b l a l c ◦ r and
b′ l a′ l c ◦ r′ we also get b _ b′.

Based on the above observations, it should be clear that a BaRS contains support equivalence
classes of rules and reactions; this naturally leads to a notion of a representative BaRS:

7. Towards Scalable Simulation of Stochastic Bigraphs 267

Definition 7.4.3 (representative basic reactive system (RBaRS)). A representative basic reactive
system, written C̀r(R̀), consists of an s-category C̀ equipped with a set R̀ of reaction rules.

The reaction relation _ over agents is the smallest such that a _ a′ whenever a = c ◦ ρ r and
a′ = c ◦ ρ′ r′ for some reaction rule (r, r′), support translations ρ, ρ′, and context c for ρ r and ρ′ r′.

The intuition is that an RBaRS represents a BaRS by allowing us to single out representatives for
each equivalence class of rules and reactions:

Definition 7.4.4 (RBaRS corresponding to BaRS). Let C̀(R̀) be a BaRS. Then the RBaRS cor-
responding to C̀(R̀) is C̀r(R̀r), where R̀r contains a single chosen representative of each support
equivalence class of rules, i.e.,

∀(r, r′) ∈ R̀ : ∃(s, s′) ∈ R̀r : r l s ∧ r′ l s′
∀(r, r′), (s, s′) ∈ R̀r : r l s ∧ r′ l s′ ⇒ r = s ∧ r′ = s′.

Proposition 7.4.5 (RBaRS corresponding to BaRS). The RBaRS corresponding to a BaRS is indeed
an RBaRS.

Conversely, we can easily construct a BaRS from an RBaRS:

Definition 7.4.6 (BaRS corresponding to RBaRS). Let C̀r(R̀) be an RBaRS. Then the BaRS
corresponding to C̀r(R̀) is C̀(R̀∗), where R̀∗ is the support equivalence closure of R̀, i.e.,
R̀∗ = {(s, s′) | (r, r′) ∈ R̀ ∧ r l s ∧ r′ l s′}.
Proposition 7.4.7 (BaRS corresponding to RBaRS). The BaRS corresponding to an RBaRS is indeed
a BaRS.

Note that this construction is inverse to the previous one:

Lemma 7.4.8. For any BaRS C̀(R̀), the BaRS C̀((R̀r)∗) obtained through Def. 7.4.4 followed by
Def. 7.4.6 is the same, i.e., C̀(R̀) = C̀((R̀r)∗).
Proof. Immediate from the definitions.

It is immediate from the definitions, that reactions in an RBaRS are indeed reactions in the
corresponding BaRS:

Proposition 7.4.9 (Representative Reactions are Reactions). Let _r and _f denote the reaction
relations of a RBaRS and its corresponding BaRS respectively. Then

a _r a
′ ⇒ a _f a

′.

It is also clear that RBaRSs in general have a smaller reaction relations than their corresponding
BaRS, since they do not allow reaction to change the support of the context. But this has a very
limited impact: any series of reactions in a BaRS can be matched by a series of reactions followed by
a single support translation in an RBaRS:

Proposition 7.4.10 (Representative Reactions are Sufficient). Let _r and _f denote the reaction
relations of an RBaRS C̀r(R̀) and its corresponding BaRS respectively. Then

∀n ∈ N : a _n
f a
′ ⇒ ∃a′′ : a _n

r a
′′ ∧ a′ l a′′.

268 7.4. Stochastic Parametric Reactive Systems

Proof. By induction on n, the base case being trivial. In the induction case we have a _n−1
f b _f a

′,
a _n−1

r c, and b l c, and must show c _r a
′′ and a′ l a′′ for some a′′.

From b _f a
′ we get b l d ◦ s and a′ l d ◦ s′ for some rule (s, s′) ∈ R̀∗, i.e., b l d ◦ ρ r and

a′ l d ◦ ρ′ r′ for some rule (r, r′) ∈ R̀ and support translations ρ, ρ′. Since c l b l d ◦ ρ r, we have
c = ρ′′ (d ◦ ρ r) = (ρ′′ d) ◦ ((ρ′′ ◦ ρ) r) for some support translation ρ′′. We then choose any support
translation ρ′′′ such that a′′ def

= (ρ′′ d) ◦ (ρ′′′ r′) is defined and thus get c _r a
′′. By Lemma 7.2.19 a′′

is support equivalent to a′: a′ l d ◦ ρ′ r′ l (ρ′′ d) ◦ (ρ′′′ r′) = a′′.

Abstract Representative Basic Reactive Systems

Let us now show that, once we abstract identities away, the reaction relations of RBaRS and BaRS are
the same. The construction and properties of abstract BaRSs from Section 7.2.2 transfer unchanged to
RBaRS, so we shall not repeat them here. We shall use Cr(R) to denote the abstract RBaRS obtained
as the quotient of an RBaRS C̀r(R̀) by a dynamic abstraction.

An RBaRS has the same abstract reactions as its corresponding BaRS:

Theorem 7.4.11 (abstract RBaRSs are abstract BaRSs). Let C̀r(R̀) be an RBaRS and let C̀(R̀∗)
be the corresponding BaRS. Then the quotient RBaRS Cr(R) and quotient BaRS C(R∗), both obtained
using the construction of Def. 7.2.30 and Def. 7.2.32, are the same.

Proof. Given that both C̀r(R̀) and C̀(R̀∗) have the same underlying s-category, the underlying spm
categories of the quotients are also the same. Also, since abstraction includes support equivalence, we
have R = R∗.

We now show that the reaction relations are also the same. Let _f , _JfK, _r, and _JrK denote
the reaction relations of C̀(R), C(R), C̀r(R), and Cr(R) respectively.

_JfK⊆_JrK: Assume JfK _JfK Jf ′K. From Theorem 7.2.33 we have f _f g
′ for some g′ ∈ Jf ′K, and

Prop. 7.4.10 then gives us f _r h
′ for some h′ l g′. Since abstraction includes support equivalence we

have Jh′K = Jg′K = Jf ′K, and Theorem 7.2.33 gives us JfK _JrK Jh′K, we have JfK _JrK Jf ′K as required.

_JrK⊆_JfK: Assume JfK _JrK Jf ′K. From Theorem 7.2.33 we have f _r g
′ for some g′ ∈ Jf ′K,

and Prop. 7.4.9 then gives us f _f g′. Finally, Theorem 7.2.33 gives us JfK _JfK Jg′K = Jf ′K as
required.

Conversely, a BaRS has the same abstract reactions as its corresponding RBaRS:

Theorem 7.4.12 (abstract BaRSs are abstract RBaRSs). Let C̀(R̀) be a BaRS and let C̀r(R̀r) be
the corresponding RBaRS. Then the quotient BaRS C(R) and quotient RBaRS Cr(Rr), both obtained
using the construction of Def. 7.2.30 and Def. 7.2.32, are the same.

Proof. By Theorem 7.4.11, Cr(Rr) andC((Rr)∗) are the same. The latter is the quotient of C̀((̀Rr)∗),
which, by Lemma 7.4.8, is the same as C̀(R̀), and thus Cr(Rr) = Cr((Rr)∗) = C(R).

7.4.2 Parametric Reactive Systems

Having tamed the use of support equivalence in BaRSs, we now turn our attention to the rule set
blow-up caused by treating parametric reaction rules as generators of ground reaction rules. To avoid
this blow-up, we generalize RBaRSs to parametric reactive systems (PRSs) where parametric reaction
rules are first-class citizens.

7. Towards Scalable Simulation of Stochastic Bigraphs 269

Definition 7.4.13 (parametric reactive systems (PRS)). A parametric reactive system, written C̀(̀R, D̀, Ì),
consists of an s-category C̀ equipped with a set R̀ of parametric reaction rules, and two subcate-
gories Ì and D̀ of identities and parameters respectively. C̀ and D̀ must be closed under support
translation.

A parametric reaction rule is a triple of the form

(R : I → J,R′ : I ′ → J, η̄J′,S)

where R is the parametric redex, R′ the parametric reactum, and the instance function is a function
family η̄J′∈ Ì,S⊂S : D̀(ε, I⊗J ′)→ D̀(ε, I ′⊗J ′) defined for all finite S and whenever I⊗J ′ is defined.

Furthermore, instantiation maps must respect support equivalence and choose sufficiently fresh
support, i.e.,

1. d l d′ ⇒ η̄J′,S(d) l η̄J′,S′(d′) for any finite S, S′ ⊂ S, and

2. |η̄J′,S(d)|#S.

We shall often omit J ′ and/or S when they are evident from the context.
The reaction relation _ over agents a, a′ ∈ C̀(ε, ·) is the smallest such that a _ a′ whenever

a = c ◦ (ρ R ⊗ idJ′) ◦ d and a′ = c ◦ (ρ′ R′ ⊗ idJ′) ◦ η̄|c|∪rng(ρ′)(d) for some parametric reaction rule
(R : I → J,R′ : I ′ → J, η̄), support translations ρ, ρ′ with dom(ρ) = |R| and dom(ρ′) = |R′|, context c
for ρ R⊗ idJ′ and ρ′ R′ ⊗ idJ′ , parameter d ∈ D̀(ε, I ⊗ J ′), and identity idJ′ ∈ Ì.

To some extent, one could argue that we have simply moved the infinitude to the instance func-
tion. However, in the case of bigraphs the instance function is finitely representable, cf. Def. 7.2.37,
so bigraphical PRSs with finite sets of reaction rules can be directly and finitely represented in an
implementation.

Another important difference, when we compare this definition to Def. 7.4.3, and in particular the
definition of the reaction relation, is that we have factored the parameter d out of the ground redex
r. One would perhaps expect the equations to simply read a = c ◦ ρ R ◦ d and a′ = c ◦ ρ′ R′ ◦ η̄(d)
– what is the purpose of the identities? The answer is that this enables parameter and context to be
connected without the involvement of the redex. To illustrate this, let us examine how BRSs can be
expressed as PRSs.

Bigraphical Parametric Reactive Systems

In bigraphs, context and parameter may share links (and nothing else) without the involvement of the
redex. To see that this is the case, let us examine Milner’s generation of ground rules from parametric
ones, cf. Def. 7.2.37: It relies on the bigraph specific nesting operator ’.’ (Def. 7.2.14) which is derived
from the parallel product ’||’ (Def. 7.2.12) which again can be seen as derived from the tensor product
’⊗’ . Unfolding the nestings and applying Prop. 7.2.13, we obtain

R.d = (R || idX) ◦ d = σ(R⊗ τ ◦ idX) ◦ d
R′.η̄(d) = (R′ || idX) ◦ η̄(d) = σ(R′ ⊗ τ ◦ idX) ◦ η̄(d)

for a suitable bijection τ : X → X ′ and a substitution σ that ensure definedness as well as the aliasing
of the shared names between R and d.

Ignoring τ , this resembles an instance of our PRS reactions, namely in the case where the context
is a substitution that aliases some of the links of the parameter and redex. But what about τ?
The purpose of τ is to rename the links of the parameter such that the tensor product is defined.

270 7.4. Stochastic Parametric Reactive Systems

But the names of the parameter are internal to the reaction, as they only serve as mediators in the
decomposition of the agent into context, redex, and parameter. To see this, let us rewrite R.d a bit
more:

R.d = (R⊗ τ ◦ idX) ◦ d by def. of ’.’ and Prop. 7.2.13
= σ(R ◦ idm ⊗ idX′ ◦ τ) ◦ d by def. of identities
= σ(R⊗ idX′) ◦ (idm ⊗ τ) ◦ d since ⊗ is a functor

Since d is discrete so is (idm ⊗ τ) ◦ d and thus R.d corresponds to the left hand side of a parametric
reaction.

We shall now make this precise by defining a bigraphical PRS and showing that the ground bi-
graphical reaction rules generated from parametric ones are reactions in that PRS:

Definition 7.4.14 (bigraphical parametric reactive system (BPRS)). A bigraphical parametric reactive
system over K with bigraphical parametric reaction rules R̀, written B̀g(K, R̀), is the parametric
reactive system B̀g(K)(R̀, D̀, Ì) where D̀ consists of the discrete ground bigraphs of B̀g(K) and Ì
consists of the zero-width (i.e., link graph) identities. For each rule (R : m→ J,R′ : m′ → J, η) ∈ R̀
we interpret η as the corresponding instance function family η̄X,S as given in Def. 7.2.35.

Proposition 7.4.15. Let B̀g(K, R̀) be a BPRS. Then R.d _ R′.η̄(d) is a reaction in the BPRS for
any parametric rule (R : m→ J,R′ : m′ → J, η) ∈ R̀ and discrete parameter d : 〈m,Y 〉.

Proof. By unfolding the derived operators in the left and right hand sides of the claimed reaction, and
then rewriting them according to the categorical axioms, it becomes clear that it is indeed a reaction:

R.d = σ(R⊗ τ ◦ idX) ◦ d by def. of ’.’ and Prop. 7.2.13
= σ((Id|R| R) ◦ idm ⊗ idX′ ◦ τ) ◦ d by def. of identities
= σ((Id|R| R)⊗ idX′) ◦ (idm ⊗ τ) ◦ d since ⊗ is a functor

R′.η̄(d) = σ(R′ ⊗ τ ◦ idX) ◦ η̄(d) by def. of ’.’ and Prop. 7.2.13
= σ((Id|R′| R

′) ◦ idm′ ⊗ idX′ ◦ τ) ◦ η̄(d) by def. of identities
= σ((Id|R′| R

′)⊗ idX′) ◦ (idm′ ⊗ τ) ◦ η̄(d) since ⊗ is a functor
= σ((Id|R′| R

′)⊗ idX′) ◦ η̄((idm ⊗ τ) ◦ d) by Prop. 7.2.36

Note that σ and τ are validly chosen to be the same in both cases, since R and R′ have the same outer
names and ditto for d and η̄(d).

Note that Prop. 7.4.15 only covers the ground reaction rule (R.d,R′.η̄(d)), though (R : m→ J,R′ :
m′ → J, η) generates all rules on the form (ρ (R.d), ρ′ (R′.η̄(d))). This is because our definition of
PRSs does include arbitrary support translation of parameters in the reaction relation, just as it was
the case for RBaRSs. We could distinguish between PRSs and representative PRSs, analogously to the
distinction between BaRSs and RBaRS, in which case all the generated ground reaction rules would
be reactions in the PRS but not the representative PRS. However, we leave this as an exercise to the
reader as we shall not need this distinction.

7. Towards Scalable Simulation of Stochastic Bigraphs 271

Relating Concrete PRSs and RBaRSs

Having demonstrated the crux of the correspondence between BRSs and BPRSs, let us now return to
the general case of RBaRSs and PRSs. First, note that a RBaRS is a PRS in a very straightforward
sense:

Definition 7.4.16 (PRS corresponding to a RBaRS). Let C̀r (̀R) be a RBaRS. Then the corresponding
PRS is C̀(R̀ × {idε→ε},1,1) (where ε ∈ C̀ is the singleton object of 1).

Proposition 7.4.17 (PRS corresponding to a RBaRS). The PRS corresponding to an RBaRS is
indeed a PRS.

Dually, it is straightforward to derive a RBaRS from a PRS by simply generating ground reaction
rules:

Definition 7.4.18 (RBaRS corresponding to a PRS). Let C̀(R̀, D̀, Ì) be a PRS. Then the corre-
sponding RBaRS is C̀r(R̀′) where R̀′ is generated from R̀ as follows: (r, r′) ∈ R̀′ whenever r =
(R⊗ idJ′)◦d and r′ = (R′⊗ idJ′)◦ η̄|R′|(d) for some parametric reaction rule (R : I → J,R′ : I ′ → J, η̄),
parameter d ∈ D̀(ε, I ⊗ J ′), and identity idJ′ ∈ Ì.

Proposition 7.4.19 (RBaRS corresponding to a PRS). The RBaRS corresponding to a PRS is indeed
an RBaRS.

Note that the first of these constructions is the inverse of the second:

Lemma 7.4.20. For any RBaRS C̀r(R̀), the RBaRS C̀r(R̀′) obtained through Def. 7.4.16 followed
by Def. 7.4.18 is the same.

Proof. Immediate from the definitions.

From these definitions, it is no surprise that PRS reactions are also reactions in the corresponding
RBaRS:

Proposition 7.4.21 (Parametric Reactions are Representative Reactions). Let _p and _r denote
the reaction relations of a PRS C̀(R̀, D̀, Ì) and its corresponding RBaRS, respectively. Then

a _p a
′ ⇒ a _r a

′.

Proof. Assume a _p a
′, i.e., a = c ◦ (ρ R ⊗ idJ′) ◦ d and a′ = c ◦ (ρ′ R′ ⊗ idJ′) ◦ η̄(d) for some

parametric reaction rule (R : I → J,R′ : I ′ → J, η̄), support translations ρ, ρ′, context c for ρ R⊗ idJ′
and ρ′ R′ ⊗ idJ′ , parameter d ∈ D̀(ε, I ⊗ J ′), and identity idJ′ ∈ Ì.

By Def. 7.4.18 ((R⊗ idJ′) ◦ d, (R′ ⊗ idJ′) ◦ η̄|R′|(d)) is a rule in the corresponding RBaRS, and so,
by Def. 7.4.3, c◦ (ρ] id|d|) ((R⊗ IdJ′)◦d) _r c◦ (ρ′]ρ′′) ((R′⊗ idJ′)◦ η̄|R′|(d)), where ρ′′ is a witness
of η̄|c|∪rng(ρ′)(d) l η̄|R′|(d). Applying the definition of support translation it is easy to see that this is
indeed a _r a

′.

As we saw in the case of bigraphs, the reaction relation of a PRS will be smaller than that of its
corresponding RBaRS, since RBaRSs allow support translation of parameters. But the PRS reaction
relation characterizes that of the corresponding RBaRS, similar to how the reactions of an RBaRS
characterizes the reactions of the corresponding BaRS, cf. Prop. 7.4.10: any series of RBaRS reactions
can be matched by a series of PRS reactions followed by a single support translation:

272 7.4. Stochastic Parametric Reactive Systems

Proposition 7.4.22 (Parametric Reactions are Sufficient). Let _p and _r denote the reaction rela-
tions of a PRS C̀(R̀, D̀, Ì) and its corresponding RBaRS, respectively. Then

∀n ∈ N : a _n
r a
′ ⇒ ∃a′′ : a _n

p a
′′ ∧ a′ l a′′.

Proof. By induction on n, the base case being trivial. In the induction case we have a _n−1
r b _r a

′,
a _n−1

p c, and b l c, and must show c _p a
′′ and a′ l a′′ for some a′′. Let ρ′′ : |b| → |c| be a witness

of b l c.
From b _r a′ we get b = e ◦ ρ r and a′ = e ◦ ρ′ r′ for some reaction rule (r, r′), support

translations ρ, ρ′, and context e for ρ r and ρ′ r′. By Def. 7.4.18 we must have r = (R ⊗ idJ′) ◦ d
and r′ = (R′ ⊗ idJ′) ◦ η̄|R′|(d) for some parametric reaction rule (R : I → J,R′ : I ′ → J, η̄), parameter
d ∈ D̀(ε, I ⊗ J ′), and identity idJ′ ∈ Ì.

We therefore get the following equalities for c:

c = ρ′′ b ρ′′ is a witness of b l c
= ρ′′ (e ◦ ρ r) b is the LHS of a representative reaction
= ρ′′ (e ◦ ρ ((R⊗ idJ′) ◦ d)) (r, r′) generated from parametric rule
= ρ′′ e ◦ ((ρ′′ ◦ ρ) R⊗ idJ′) ◦ ((ρ′′ ◦ ρ) d) by def. of supp. trans.

Letting a′′ = ρ′′ e ◦ (ρ′ R′ ⊗ idJ′) ◦ η̄|ρ′′ e|∪|ρ′ R′|((ρ′′ ◦ ρ) d), Def. 7.4.13 gives us c _p a
′′, and

a′ l a′′ as witnessed by ρ′′′ = ρ′′ �|e|]Id|ρ′ R′|] ρ′′′′ ◦ (ρ′ �|η̄(d)|)−1, where ρ′′′′ is a witness of η̄|R′|(d) l
η̄|ρ′′ e|∪|ρ′ R′|((ρ′′ ◦ ρ) d):

ρ′′′ a′ = ρ′′′ (e ◦ ρ′ r′) a is the RHS of a representative reaction
= ρ′′′ (e ◦ ρ′ ((R′ ⊗ idJ′) ◦ η̄|R′|(d))) (r, r′) generated from parametric rule
= ρ′′ e ◦ (ρ′ R′ ⊗ idJ′) ◦ ρ′′′′ η̄|R′|(d) by def. of supp. trans.
= ρ′′ e ◦ (ρ′ R′ ⊗ idJ′) ◦ η̄|ρ′′ e|∪|ρ′ R′|((ρ′′ ◦ ρ) d) since η̄ respects supp. eq.

Abstract Parametric Reactive Systems

As we have seen above, the difference between the reaction relations of a PRS and its corresponding
RBaRS is that the latter includes support translation of parameters. So we expect that if we quotient
these systems with an abstraction, as in Section 7.4.1, we get the same abstract reactive systems. This
is indeed the case, as we shall show below.

But first, we must extend the abstraction constructions and results of Section 7.2.2 to PRSs:

Definition 7.4.23 (abstract PRS). A PRS is abstract if its underlying s-category is an spm category.

Since we shall need to abstract instantiation maps, we must require abstractions to be well-behaved
with respect to these:

Definition 7.4.24 (dynamic PRS abstraction). In a PRS C̀(R̀, D̀, Ì), an abstraction ≡, as defined
in Def. 7.2.28, is dynamic if it respects reaction and instantiation, i.e.,

1. if f _ f ′ and g ≡ f then g _ g′ for some g′ ≡ f ′, and

2. if (R : I → J,R′, η̄) ∈ R̀, d, d′ ∈ D̀(ε, I ⊗ J ′) and d ≡ d′ then η̄S(d) ≡ η̄S′(d′).

7. Towards Scalable Simulation of Stochastic Bigraphs 273

Clearly, support equivalence is a dynamic abstraction on any PRS:

Proposition 7.4.25 (support equivalence is a dynamic PRS abstraction). Support equivalence l is
a dynamic abstraction on a PRS C̀(R̀, D̀, Ì).

More importantly, the lean-support equivalence of bigraphs is a dynamic abstraction on BPRSs:

Proposition 7.4.26 (lean-support equivalence is a dynamic BPRS abstraction). Lean-support equiv-
alence m is a dynamic abstraction on a bigraphical PRS B̀g(K, R̀).

Proof. The proof is similar to that of Prop. 7.2.40 only more tedious.

We can now define how to obtain abstract PRSs by quotienting by dynamic abstractions:

Definition 7.4.27 (quotient PRS). Let C̀(R̀, D̀, Ì) be a PRS, and ≡ a dynamic abstraction on
C̀. Then define C(R,D, I), the quotient of C̀(R̀, D̀, Ì) by ≡, as follows:

• C = C̀/ ≡,

• D = D̀/ ≡,

• I = Ì/ ≡, and

• R = {(JRK, JR′K, η̄) | (R,R′, η̄) ∈ R̀}.

We define η̄S(JdK) def
= Jη̄S′(d)K whenever η̄S′(d) is defined; this is unambiguous since ≡ is dynamic.

Theorem 7.4.28 (abstract PRS). The construction of Def. 7.2.30 and Def. 7.4.27, applied to a
concrete PRS C̀(R̀, D̀, Ì), yields an abstract PRS C(R,D, I), whose underlying spm category C is
the codomain of a functor of s-categories

J·K : C̀→ C.

Moreover the construction preserves the reaction relation, in the following sense:

1. if f _ f ′ in C̀(R̀, D̀, Ì) then JfK _ Jf ′K in C(R,D, I)

2. if JfK _ g′ in C(R,D, I) then f _ f ′ in C̀(R̀, D̀, Ì) for some f ′ with Jf ′K = g′.

Proof. The first part follows immediately from Lemma 7.2.31 and Def. 7.4.23.

1: We have f = c◦(ρ R⊗ idJ′)◦d and f ′ = c◦(ρ′ R′⊗ idJ′)◦ η̄|c|∪rng(ρ′)(d) for some parametric reaction
rule (R : I → J,R′ : I ′ → J, η̄), support translations ρ, ρ′ with dom(ρ) = |R| and dom(ρ′) = |R′|,
context c for ρ R⊗ idJ′ and ρ′ R′ ⊗ idJ′ , parameter d ∈ D̀(ε, I ⊗ J ′), and identity idJ′ ∈ Ì.

Quotienting f and f ′ we get JfK = Jc ◦ (ρ R ⊗ idJ′) ◦ dK = JcK ◦ (JRK ⊗ JidJ′K) ◦ JdK and Jf ′K =
Jc ◦ (ρ′ R′ ⊗ idJ′) ◦ η̄|c|∪rng(ρ′)(d)K = JcK ◦ (JR′K ⊗ JidJ′K) ◦ η̄∅(JdK), since J·K is a functor, abstraction
includes support equivalence, and η̄∅(JdK) = Jη̄|c|∪rng(ρ′)(d)K. Thus, JfK _ Jf ′K as required.

2: We have JfK = JcK ◦ (JRK⊗ JidJ′K) ◦ JdK and g′ = JcK ◦ (JR′K⊗ JidJ′K) ◦ η̄∅(JdK) for some parametric
reaction rule (R : I → J,R′ : I ′ → J, η̄), context JcK for JRK ⊗ JidJ′K and JR′K ⊗ JidJ′K, parameter
JdK ∈ D(ε, I ⊗ J ′), and identity JidJ′K ∈ I (we disregard the support translations ρ, ρ′ since spm
categories are s-categories with empty support).

274 7.4. Stochastic Parametric Reactive Systems

Choose some context c′ ∈ JcK and parameter d′ ∈ JdK with supports that are disjoint from each
other and from |R|, |R′|. By definition of composition in C and since η̄∅(JdK) = Jη̄|c′|∪|R′|(d′)K, we
get JfK = JcK ◦ (JRK ⊗ JidJ′K) ◦ JdK = Jc′ ◦ (R ⊗ idJ′) ◦ d′K and g′ = JcK ◦ (JR′K ⊗ JidJ′K) ◦ η̄∅(JdK) =
Jc′◦(R′⊗idJ′)◦η̄|c′|∪|R′|(d′)K. By Def. 7.4.13 we have f ≡ c′◦(R⊗idJ′)◦d′ _ c′◦(R′⊗idJ′)◦η̄|c′|∪|R′|(d′)
and since ≡ is dynamic, there is some f ′ ≡ c′ ◦ (R′ ⊗ idJ′) ◦ η̄|c′|∪|R′|(d′) ∈ g′ such that f _ f ′ as
required.

Now we are ready for the main results of this section, which states that a PRS has the same abstract
behavior as its corresponding RBaRS and vice versa:

Theorem 7.4.29 (abstract PRSs are abstract RBaRSs). Let C̀(R̀, D̀, Ì) be a PRS and let C̀r(R̀′)
be the corresponding RBaRS. Then the quotient PRS C(R,D, I) and quotient RBaRS Cr(R′) have the
same reaction relations.

Proof. Let _r, _JrK, _p, and _JpK denote the reaction relations of C̀r(R̀′), Cr(R′), C̀(R̀, D̀, Ì),
and C(R,D, I) respectively.

_JrK⊆_JpK: Assume JfK _JrK Jf ′K. From Theorem 7.2.33 we have f _r g
′ for some g′ ∈ Jf ′K, and

Prop. 7.4.22 then gives us f _p h
′ for some h′ l g′. Since abstraction includes support equivalence we

have Jh′K = Jg′K = Jf ′K, and Theorem 7.4.28 gives us JfK _JpK Jh′K, we have JfK _JpK Jf ′K as required.

_JpK⊆_JrK: Assume JfK _JpK Jf ′K. From Theorem 7.4.28 we have f _p g′ for some g′ ∈ Jf ′K,
and Prop. 7.4.21 then gives us f _r g

′. Finally, Theorem 7.2.33 gives us JfK _JrK Jg′K = Jf ′K as
required.

Conversely, an RBaRS has the same abstract reactions as its corresponding PRS:

Theorem 7.4.30 (abstract RBaRSs are abstract PRSs). Let C̀r(R̀) be an RBaRS and let C̀(R̀ ×
{idε→ε},1,1) be the corresponding PRS. Then the quotient RBaRS Cr(R) and quotient PRS C(R ×
{idε→ε},1,1) are the same.

Proof. By Theorem 7.4.29, C(R× {idε→ε},1,1) is equal to the quotient Cr(R′) of its corresponding
RBaRS C̀r(R̀′). By Lemma 7.4.20, the latter is the same as C̀r(R̀), and thus C(R×{idε→ε},1,1) =
Cr(R′) = Cr(R).

7.4.3 Stochastic Parametric Reactive Systems

We now proceed to give a stochastic semantics to PRSs, generalizing and recasting the work on
stochastic reduction semantics for a subset of BRSs in [25].

Intuitively, this is done by interpreting reaction rules as follows: a redex models a physical con-
figuration that may lead to reaction which, over stochastic time, results in the physical configuration
described by the corresponding reactum. In other words, we assign reaction rules a stochastic speed
which will allow us to assign stochastic behavior to reactions.

In more detail, we wish to associate reactions with a rate, which “is the parameter of an exponential
distribution that characterizes the stochastic behavior of that reaction” [25]. The rate of a reaction is
then derived from the reaction rules that generate that reaction as follows:

(a) We associate a rate constant % with every reaction rule (its speed).

(b) The sum of the rate constants of all the rule instances that generate a reaction is its rate.

7. Towards Scalable Simulation of Stochastic Bigraphs 275

It is desirable for the rate of a reaction to be determined from the matches in its left-hand-side, since
the stochastic behavior of an agent may then be determined without considering the right-hand-sides
of reaction. In other words, we want each match to determine a single reaction. This is not the case
for the definition of PRSs in the previous section: since we are free to choose any support translation
of the reactum a match leads to infinitely many reactions for non-trivial reactums. We shall therefore
refine the definition of the PRS reaction relation such that the support translation of the reactum is
deterministic.

First, let us make precise what a match is in a PRS.

Matches

The usual definition of a bigraph match (cf. Def. 7.2.39) is too coarse-grained for PRSs, as it is defined
up to support equivalence. Instead, we shall use the following definition:

Definition 7.4.31 (match). In a PRS C̀(R̀, D̀, Ì), a match o of a parametric rule R = (R : I →
J,R′ : I ′ → J, η̄J′,S) in an agent a is a quadruple

(ρ, idJ′ , c, d)

where ρ : |R|� |a| is a support translation, idJ′ ∈ Ì an identity, c a context, and d ∈ D̀(ε, I ⊗ J ′) a
parameter such that a = c ◦ (ρ R⊗ idJ′) ◦ d.

Two matches (ρ, idI , c, d), (ρ′, idI′ , c′, d′) are regarded as the same if they differ only by an iso between
I and I ′; otherwise they are distinct. We say that a match results in a′ if c ◦ (ρ R ⊗ idJ′) ◦ d _ a′.
We write µR[a] for the number of distinct matches of R in a, and µR[a, a′] for the number of distinct
matches of R in a resulting in a′.

Note that non-trivial support automorphisms, i.e., a non-identity support translation ρ : |G| → |G|
such that ρ G = G, give rise to distinct matches:

Lemma 7.4.32. Given a match o = (ρ, idJ′ , c, d) of a parametric rule R = (R : I → J,R′ : I ′ →
J, η̄J′,S) in an agent a, all in a PRS C̀(R̀, D̀, Ì). Then any support automorphism ρ′ : |R| → |R|
for R gives rise to a match o′ = (ρ ◦ ρ′, idJ′ , c, d). Furthermore, if ρ′ is not the identity then o and o′
are distinct.

Proof. Since

a = c ◦ (ρ R⊗ idJ′) ◦ d
= c ◦ (ρ (ρ′ R)⊗ idJ′) ◦ d
= c ◦ ((ρ ◦ ρ′) R⊗ idJ′) ◦ d

o′ is an match. Assuming ρ′ is not an identity we have ρ 6= ρ ◦ ρ′ since both ρ and ρ′ are bijections,
and thus o′ is distinct from o.

This is a point where our stochastic semantics differ from that of Krivine et al. [25]: they consider
matches the same if they differ by a support automorphism. However, the difference is just a matter
of convention and boils down to a scaling of rate constants by the number of support automorphisms
of the corresponding redexes – we leave the details as an exercise to the reader.

276 7.4. Stochastic Parametric Reactive Systems

Deterministic Support Translation of Reactums

Let us now turn to the matter of ensuring that a match determines a single reaction. The solution
is rather simple: we shall simply assume the existence of a family of canonical support translations,
ρ̄S⊂S,T⊂S : S → S \ T , defined for finite S and T . For a reactum R′ to be inserted in a context with
support T , ρ̄|R′|,T is the canonical support translation of R′ such that its support becomes disjoint
from the context. We shall often omit S and/or T when they are evident from the context.

As was the case for the instantiation families η̄J′,S , one could think that we have introduced an
intractable infinite structure. However, ρ̄S,T is simply a technical measure that need not be specified or
represented in practice: when we abstract away support, the choice of the support translation family
becomes irrelevant. In other words, as long as we are only interested in the abstract behavior of SPRSs,
an implementation is free to generate suitable support for reactums as it pleases.

We can now define stochastic PRSs:

Definition 7.4.33 (stochastic parametric reactive systems (SPRS)). A stochastic parametric reactive
system, written C̀s(R̀, D̀, Ì), is a PRS apart from the addition of rates and that reactum support
is chosen canonically in the reaction relation:

A stochastic parametric reaction rule is a quadruple of the form

(R : I → J,R′ : I ′ → J, η̄J′,S , %)

where the first three elements are as before and % ∈ R+ is its rate constant.
The reaction relation _ over agents a, a′ ∈ C̀(ε, ·) is the smallest such that a _ a′ whenever

(ρ, idJ′ , c, d) is a match of some parametric reaction rule R = (R,R′, η̄, %) in a and a′ = c ◦ (ρ̄|R′|,|c|
R′ ⊗ idJ′) ◦ η̄|c|∪rng(ρ̄|R′|,|c|)(d).

We define the rate rate[a, a′] of a reaction a _ a′ to be

rate[a, a′]
def
=

∑

R=(R,R′,η̄J′,S ,%)∈ R̀
% · µR[a, a′].

For now, let us disregard stochastics and focus on the relation between SPRSs and PRSs (cf.
Def. 7.4.13). The difference from PRSs is that we have refined the reaction relation such that a match
determines a single reaction instead of an infinite family of support equivalent reactions (for non-trivial
reactums).

Let us make the relation between SPRSs and PRSs precise in the same manner used in the previous
sections; the proofs are trivial so we omit them.

Definition 7.4.34 (SPRS corresponding to PRS). Let C̀(R̀, D̀, Ì) be a PRS. Then the SPRS
corresponding to C̀(R̀, D̀, Ì) is C̀s(R̀′, D̀, Ì) where

R̀′ = {(R : I → J,R′ : I ′ → J, η̄J′,S , 1)

| (R : I → J,R′ : I ′ → J, η̄J′,S) ∈ R̀}.

Proposition 7.4.35 (SPRS corresponding to PRS). The SPRS corresponding to a PRS is indeed an
SPRS.

7. Towards Scalable Simulation of Stochastic Bigraphs 277

Definition 7.4.36 (PRS corresponding to SPRS). Let C̀s(R̀, D̀, Ì) be an SPRS. Then the PRS
corresponding to C̀s(R̀, D̀, Ì) is C̀(R̀′, D̀, Ì) where

R̀′ = {(R : I → J,R′ : I ′ → J, η̄J′,S)

| (R : I → J,R′ : I ′ → J, η̄J′,S , %) ∈ R̀}.

Proposition 7.4.37 (PRS corresponding to SPRS). The PRS corresponding to an SPRS is indeed a
PRS.

Lemma 7.4.38. For any PRS C̀(R̀, D̀, Ì), the PRS C̀(R̀′, D̀, Ì) obtained through Def. 7.4.34
followed by Def. 7.4.36 is the same.

Proof. Immediate from the definitions.

Proposition 7.4.39 (Stochastic Parametric Reactions are Parametric Reactions). Let _s and _p

denote the reaction relations of an SPRS C̀s(R̀, D̀, Ì) and its corresponding PRS, respectively. Then

a _s a
′ ⇒ a _p a

′.

Proposition 7.4.40 (Stochastic Parametric Reactions are Sufficient). Let _s and _p denote the
reaction relations of an SPRS C̀s(R̀, D̀, Ì) and its corresponding PRS, respectively. Then

∀n ∈ N : a _n
p a
′ ⇒ ∃a′′ : a _n

s a
′′ ∧ a′ l a′′.

Abstract Stochastic Parametric Reactive Systems

Given the relations between PRSs and SPRSs we saw above it is clear that the abstractions of their
reaction relations are the same. But before we can make this formal, we must first define how to
construct abstract SPRSs. The abstraction constructions and results for PRSs (cf. Def. 7.4.2) transfer
directly to SPRSs, except that the quotient construction must be extended to handle rates:

Definition 7.4.41 (quotient SPRS). Let C̀s(R̀, D̀, Ì) be an SPRS, and ≡ a dynamic abstraction
on C̀. Then define Cs(R,D, I), the quotient of C̀s(R̀, D̀, Ì) by ≡, as in Def. 7.4.27.

The rate of reaction in Cs(R,D, I) is defined as:

rate[â, â′] =
∑

a′∈â′
rate[a, a′] for any a ∈ â.

Thus we define the rate of an abstract reaction by choosing a representative of its left-hand-side
and then summing the rates of all reactions into the equivalence class of the right-hand-side.

This is well-defined since ≡ is a dynamic abstraction, and thus reactions, and thereby matches,
and rates are independent of the choice of representative:

Proposition 7.4.42. If a ≡ b for a dynamic abstraction ≡, then
∑

a′∈â′
rate[a, a′] =

∑

a′∈â′
rate[b, a′].

278 7.5. Bigraph Embeddings

Proof. Follows straightforwardly from the fact that ≡ is dynamic (cf. Def. 7.4.24).

We can now show that, indeed, SPRSs have the same abstract reactions as their corresponding
PRSs:

Theorem 7.4.43 (abstract SPRSs are abstract PRSs). Let C̀s(R̀, D̀, Ì) be an SPRS and let
C̀(R̀′, D̀, Ì) be the corresponding PRS. Then the quotient SPRS Cs(R,D, I) and quotient PRS
C(R′,D, I) have the same reaction relations.

Proof. Follows easily from Prop. 7.4.39 and Prop. 7.4.40.

Conversely, a PRS has the same abstract reactions as its corresponding SPRS:

Theorem 7.4.44 (abstract PRSs are abstract SPRSs). Let C̀(̀R, D̀, Ì) be a PRS and let C̀s(̀R′, D̀, Ì)
be the corresponding SPRS. Then the quotient PRS C(R,D, I) and quotient SPRS Cs(R′,D, I) have
the same reaction relations.

Proof. By Theorem 7.4.43, Cs(R′,D, I) has the same reaction relation as C(R′′,D, I), the quotient
of its corresponding PRS C̀(R̀′′, D̀, Ì). By Lemma 7.4.38, the latter is the same as C̀(R̀, D̀, Ì),
and thus C(R,D, I) = C(R′′,D, I) so Cs(R′,D, I) has the same reaction relation as C(R,D, I).

Finally, as a sanity check, we verify that rates are consistent with the reaction relation:

Proposition 7.4.45 (consistency). Let C̀s(R̀, D̀, Ì) be an SPRS and Cs(R,D, I) its quotient by a
dynamic abstraction ≡ on C̀. Then

rate[a, a′] > 0 iff a _ a′, and rate[â, â′] > 0 iff â _ â′

Proof. rate[a, a′] > 0⇒ a _ a′: From the definition of rate[a, a′] we see that there must be some rule
R = (R,R′, η̄J′,S , %) with µR[a, a′] > 0 and thus, by definition of µR[a, a′], a _ a′.

a _ a′ ⇒ rate[a, a′] > 0: By the definition of the reaction relation, we have a match of a rule in a
resulting in a′ and thus µR[a, a′] > 0 which implies rate[a, a′] > 0.

rate[â, â′] > 0⇒ â _ â′: From the definition of rate[â, â′] we see that there must be some a ∈ â, a′ ∈ â′
such that rate[a, a′] > 0 and thus, as shown above, a _ a′. Lastly, Theorem 7.4.28 gives us â _ â′.

â _ â′ ⇒ rate[â, â′] > 0: Theorem 7.4.28 tells us that there must be some a ∈ â, a′ ∈ â′ such
that a _ a′ and thus, as shown above, rate[a, a′] > 0. Now it is obvious from its definition that
rate[â, â′] > 0.

7.5 Bigraph Embeddings
In the previous section we defined stochastic parametric reactive systems. A key component in that
development was to make precise the algebraic notion of a match of a parametric redex in an agent.
The KaSim algorithm relies on a representation of matches as embeddings (cf. Section 7.3), so in this
section we shall develop a general theory of bigraph embeddings, where embeddings of redexes are
isomorphic to matches.

We shall exploit the orthogonality of the link and place graphs, by developing link and place graph
embeddings independently and then combine them to obtain bigraph embeddings.

In overview, the development proceeds as follows:

7. Towards Scalable Simulation of Stochastic Bigraphs 279

embedding maps:
We define an embedding of a graph as the union of maps of identities (i.e., a support translation)
and maps of the inner and outer faces. The maps must satisfy certain conditions that ensure
structure preservation and correspondence with certain algebraic decompositions.

embedding/context isomorphism:
For place graphs and bigraphs, we show that embeddings are isomorphic to certain decompo-
sitions, giving constructions in both directions. For redexes this implies that embeddings and
matches are isomorphic.

Link graphs seem to lack the necessary structure for embeddings to have this property.

We shall take special interest in the embeddings of a particular class of bigraphs: those that are
solid. Simply put, a bigraph is solid if all elements of the outer and inner interfaces are connected to a
node and not connected to each other. Solid bigraphs are interesting for two reasons: many bigraphical
models in the literature have solid redexes5 and an embedding of a solid bigraph is determined by a
support translation of its nodes, making matches compactly representable.

7.5.1 Link Graph Embeddings

Embeddings of link graphs are mostly what one would expect of a graph embedding: a pair of injections
of the nodes and edges which preserve the structure of the embedded graph (i.e., a support translation).
In addition, we need to specify how the names of the interfaces should be mapped; in bigraphs, a context
is allowed to alias names, so any map from the outer face names to the links of the host graph will do.
Dually, we map the names of the inner face to sets of points in the host graph.

The definition is based on Milner’s definition of link graph inclusion [28], extended to cover link
graphs in general and with a minor correction6.

Definition 7.5.1 (link graph embedding). Let G : XG → YG, H : XH → YH be two concrete
link graphs. Then a link graph embedding, written φ : G ↪→H, is a map φ : |G|] XG] YG →
|H|] P(XH] PH)] YH , where φ = φv] φe] φi] φo satisfies the following conditions:

maps:

(LGE-1) φv : VG�VH is an injective map

(LGE-2) φe : EG�EH is an injective map

(LGE-3) φi : XG�P(XH] PH) is a fully injective map

(LGE-4) φo : YG → EH] YH is an arbitrary map

injectivity:

(LGE-5) rng(φe) # rng(φo)

(LGE-6) rng(φi) # rng(φport)

surjective on edge points:

(LGE-7) φp ◦ link−1
G �EG= link−1

H ◦φe

5For example, all BRSs in [24, 25, 29] have solid redexes.
6In [28] Milner missed that embeddings must be surjective on the points of an edge, cf. Example 1.

280 7.5. Bigraph Embeddings

structure preservation:

(LGE-8) ctrlG = ctrlH ◦φv
(LGE-9) ∀p ∈ XG] PG : ∀p′ ∈ φp(p) : (φl ◦ linkG)(p) = linkH(p′)

where

φl = φe] φo (map of links)
φport(v, i) = (φv(v), i) ((v, i) ∈ PG) (map of ports)

φp = φi] φport (map of points).

We do not take the codomain of φ as part of its definition, and thus it may be an embedding into
several link graphs. We write φ G when applying the underlying support translation to G. If any
of the maps are partial, φ is partial, written φ : G ↪⇀H. Partial embeddings need only satisfy the
conditions where they are defined; in particular the surjectivity condition only applies to an edge e iff
φe is defined for e and φp is defined for link−1

G (e). A partial embedding is said to be non-trivial iff its
range is non-empty.

Condition (LGE-7) deserves an explanation:

Example 1. Consider the following ground link graphs

G = ({v}, {e}, {v 7→ K}, {(v, 0) 7→ e}) : ∅ → ∅
H = ({v, v′}, {e}, {v 7→ K, v′ 7→ K}, {(v, 0) 7→ e, (v′, 0) 7→ e}) : ∅ → ∅

ar(K) = 1

Then the following would be a link graph embedding if we did not include condition (LGE-7):

φ = Id{v,e} : G ↪→H

But there is no link graph C such that H = C ◦ φ G!

The problem is that the context cannot add more points to an edge, so the points of an edge in G
must cover all the points the corresponding edge in H.

In [28] Milner showed that, in the case of ground link graphs, contexts and embeddings are iso-
morphic. Unfortunately, there is no such correspondence in the general case, as the following example
shows:

Example 2. Consider the following link graphs

G = ({v}, ∅, {v 7→ K}, ∅) : ∅ → ∅
H = ({v, v′}, ∅, {v 7→ K, v′ 7→ K}, ∅) : ∅ → ∅

ar(K) = 0

Then φ = Id{v} : G ↪→H is a link graph embedding and there are two different decompositions of H
that include φ G: H = C ◦ φ G ◦D = D ◦ φ G ◦ C where

C = (∅, ∅, ∅, ∅) : ∅ → ∅
D = ({v′}, ∅, {v′ 7→ K}, ∅) : ∅ → ∅

Though one could perhaps recover the correspondence by restricting to some canonical contexts,
we shall not pursue this here, as we shall recover the correspondence once we combine link and place
graph embeddings.

7. Towards Scalable Simulation of Stochastic Bigraphs 281

Solid Link Graphs

For an important class of link graphs, those that are solid, embeddings are determined by the injections
of nodes:

Definition 7.5.2 (solid link graph (after [25, Def. 2.1])). A link graph is solid iff these conditions
hold:

1. no links are idle

2. no inner names are siblings

3. every inner name is guarding

4. no outer name is linked to an inner name.

The notion of solidness comes from stochastic bigraphs [25] where redexes are required to be solid,
which essentially ensures that a match is determined by the support translation. We have strengthened
the condition in two respects, which enables us to obtain a stronger and more general result without
diminishing the set of solid redexes: (a) we preclude idle edges and (b) we require inner names to be
guarding. To see that these condition do not rule out any redexes, remember that (a) we may simple
choose concretions of the abstract redexes with no idle edges, and (b) that redexes have no inner names
and thus 3. is vacuously satisfied.

The conditions ensure that an embedding and its context and parameters are determined by just
the support translation of the nodes:

Proposition 7.5.3 (solid link graph embeddings). Given a solid link graph G : XG → YG and an
embedding φ : G ↪→H into a link graph H : XH → YH . Then φe, φi, and φo are uniquely determined
from φv.

Proof. Here we give only the constructions of φe, φi and φo. Proofs that they are unique and satisfy
the embedding conditions may be found in Appendix 7.A.1.

φe: Construct the map of each edge e ∈ EG as follows: choose a port p = (v, i) ∈ link−1
G (e), which is

always possible since no edge is idle and every inner name is guarding, and let

φe(e) = linkH(φv(v), i).

φi: Construct the map of each inner name x ∈ XG as follows:

φi(x) = pointsH,x \φp(PG,x)

pointsH,x = (link−1
H ◦φe)(linkG(x))

PG,x = (link−1
G ◦ linkG)(x) \ {x}

φp(v, i) = (φv(v), i).

φo: Construct the map of each outer name y ∈ YG as follows: choose a port p = (v, i) ∈ link−1
G (y),

which is always possible since no outer name is idle or connected to an inner name, and let

φo(y) = linkH(φv(v), i).

282 7.5. Bigraph Embeddings

7.5.2 Place Graph Embeddings

As for link graph embeddings, place graph embeddings are simply support translations along with
maps of the interfaces:

Definition 7.5.4 (place graph embedding). Let G : kG → mG, H : kH → mH be two concrete
place graphs. Then a place graph embedding, written φ : G ↪→H, is a map φ : |G|] kG] mG →
|H|] P(kH] VH)]mH , where φ = φv] φs] φr satisfies the following conditions:

maps:

(PGE-1) φv : VG�VH is an injective map

(PGE-2) φs : kG → P(kH] VH) is a fully injective map

(PGE-3) φr : mG → VH]mH is an arbitrary map

injectivity:

(PGE-4) rng(φv) # rng(φr)

(PGE-5) rng(φs) # rng(φv)

(PGE-6) H �rng(φs) # rng(φr)

surjective on node children:

(PGE-7) φc ◦ prnt−1
G �VG= prnt−1

H ◦φv

structure preservation:

(PGE-8) ctrlG = ctrlH ◦φv

(PGE-9) ∀c ∈ kG] VG : ∀c′ ∈ φc(c) : (φf ◦ prntG)(c) = prntH(c′)

where

φf = φv] φr (map of parents)
φc = φv] φs (map of children).

We do not take the codomain of φ as part of its definition, and thus it may be an embedding into
several place graphs. We write φ G when applying the underlying support translation to G. If any
of the maps are partial, φ is partial, written φ : G ↪⇀H. Partial embeddings need only satisfy the
conditions where they are defined; in particular the surjectivity condition only applies to a node v iff
φv is defined for v and φc is defined for prnt−1

G (v). A partial embedding is said to be non-trivial iff its
range is non-empty.

The conditions are analogous to those for link graph embeddings, except condition (PGE-6) which
deserves an explanation. Let us first motivate it by an example:

Example 3. Consider the following place graphs

G = (∅, ∅, {0 7→ 0, 1 7→ 1}) : 2→ 2

H = ({v, v′}, {v 7→ K, v′ 7→ K}, {v 7→ 0, v′ 7→ v}) : 1

7. Towards Scalable Simulation of Stochastic Bigraphs 283

Then the following would be a place graph embedding if we did not include condition (PGE-6):

φ = φs] φr : G ↪→H

φr = {0 7→ 0, 1 7→ v′}
φs = {0 7→ {v}, 1 7→ ∅}

But there are no place graphs C and D such that H = C ◦ φ G ◦D! The problem is that root 1 of G
is mapped to node v′ which is part of the tree that site 0 is mapped to.

The issue is that there are no place graph operations that can make one root of a place graph a
descendant of one of its other roots. In other words, roots do not just model possibly disjoint locations,
but subtrees that are disjoint. This is a design choice in the bigraphical model, and it is out of scope
for this report to investigate the consequences of relaxing this restriction. Thus, for embeddings
to correspond to decompositions, we need to rule out embeddings where one root is mapped to a
descendant of another, hence condition (PGE-6).

The decompositions that we can express with an embedding are the following:

Definition 7.5.5 (embedding corresponding to decomposition). Given a place graph decomposition

H = C ◦ (G ◦D ⊗ idk) ◦ π.
Then the corresponding embedding φ = φv] φs] φr : G ↪→H is defined by

φv = IdVG φr = prntC �mG φs = (IdVD] π−1) ◦ prnt−1
D �kG .

Proposition 7.5.6 (embedding corresponding to decomposition). The embedding φ : G ↪→H of
Def. 7.5.5 is indeed an embedding.

Proof. Cf. Appendix 7.A.1.

Note that in the case where k = 0 and π = id, the decomposition becomes H = C ◦ G ◦ D,
demonstrating that embeddings are indeed just decompositions into context, redex, and parameter.
The identity idk allows some of the sites of H to be in the context C. The permutation π is a technical
measure to handle the fact that sites are not names but consecutive numbers: it expresses that the
sites of H may belong to either the context or the parameter, and in a decomposition we have to
partition and renumber them accordingly.

Let us make this precise, by defining when we consider decompositions equivalent:

Definition 7.5.7 (decomposition equivalence). Say that two decompositions

H = C ◦ (G ◦D ⊗ idk) ◦ π
= C ′ ◦ (G ◦D′ ⊗ idk) ◦ π′

are the same iff they differ only on their internal numbering of sites, i.e.,

VD = VD′

VC = VC′

prntD �VD = prntD′ �VD
prntC �VC]mG = prntC′ �VC]mG

prntD ◦π �kD = prntD′ ◦π′ �kD
prntC(π(i)− kD +mG) = prntC′(π

′(i)− kD +mG) (i ∈ π−1(kH \ kD)).

284 7.5. Bigraph Embeddings

prmt(φ)
def
= (VD, ctrlH �VD , prntD) : kD → kG where

VD = VH ∩H �rng(φs)

k̃D = kH ∩H �rng(φs)

kD = |k̃D|
fD : kD� k̃D a bijection

prntD = ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD)

ctxt(φ)
def
= (VC , ctrlH �VC , prntC) : kC → mH where

VC = (VH \ φv(VG)) \ VD
k̃C = kH \ k̃D
kC = mG + |k̃C |
f ′C : |k̃C |� k̃C a bijection

fC(i+mG) = f ′C(i) for i ∈ |k̃C |
prntC = φr] prntH �VC] prntH ◦fC

f ′(i+ kD) = f ′C(i) for i ∈ |k̃C |
π = f−1

D] f ′−1 : kH → kH

H = ctxt(φ) ◦ (φ G ◦ prmt(φ)⊗ id|k̃C |) ◦ π

Figure 7.3: Decomposition of place graph H : kH → mH into parameter prmt(φ) and context ctxt(φ)
corresponding to an embedding φ : G ↪→H of a place graph G : kG → mG.

Let us now turn to showing that embeddings can only express such decompositions:

Definition 7.5.8 (decomposition corresponding to embedding). Given a place graph G : kG → mG

and an embedding φ : G ↪→H into a place graphH : kH → mH . Then the corresponding decomposition
into parameter prmt(φ) and context ctxt(φ) place graphs are as defined in Figure 7.3.

Proposition 7.5.9 (embeddings are decompositions). Given a place graph G : kG → mG and an
embedding φ : G ↪→H into a place graph H : kH → mH . Then construction Def. 7.5.8 defines a
decomposition up to decomposition equivalence.

Proof. Cf. Appendix 7.A.1.

The bijections fD and f ′C are the realizations of the internal partitioning and renumbering of
sites that we discussed above and they express the variation within decomposition equivalence classes.
Note that the support translation of G slightly muddles the correspondence with the decomposition
of Def. 7.5.5 above. However, letting F def

= φ G we see that an embedding indeed specifies such a
decomposition.

7. Towards Scalable Simulation of Stochastic Bigraphs 285

Together, the above constructions form an isomorphism between embeddings and decompositions:

Theorem 7.5.10 (embeddings and decompositions are isomorphic). The constructions of Def. 7.5.5
and Def. 7.5.8 are mutually inverse.

Proof. Cf. Appendix 7.A.1.

When we get to edit scripts, we shall need a number of disjointness results in addition to the
injectivity conditions:

Lemma 7.5.11. Given a place graph G : kG → mG and an embedding φ : G ↪→H into a place graph
H : kH → mH . Then

1. rng(φf) #H �rng(φs),

2. rng(φc) #H �rng(φr),

3. H �rng(φs) #H �rng(φr), and

4. ∀i ∈ kG : rng(φc) #(H �φ
s(i) \φs(i)).

Proof. Cf. Appendix 7.A.1.

Solid Place Graphs

As was the case with link graph embeddings, place graph embeddings are determined by the injection
of nodes iff the place graph is solid:

Definition 7.5.12 (solid place graph (after [25, Def. 2.1])). A place graph is solid iff these conditions
hold:

1. no roots are idle

2. no sites are siblings

3. every site is guarding .

Proposition 7.5.13. Given a solid place graph G : kG → mG and an embedding φ : G ↪→H into a
place graph H : kH → mH . Then φs and φr are uniquely determined from φv.

Proof. Here we give only the constructions of φs and φr. Proofs that they are unique and satisfy the
embedding conditions may be found in Appendix 7.A.1.

φs: Construct the map of each site i ∈ kG as follows:

φs(i) = childrenH,i \φv(siblingsG,i)

childrenH,i = (prnt−1
H ◦φv)(prntG(i))

siblingsG,i = (prnt−1
G ◦ prntG)(i) \ {i}.

φr: Construct the map of each root j ∈ mG as follows: choose a node v ∈ prnt−1
G (j), which is always

possible since no root is idle or has a site as a child, and let

φr(j) = (prntH ◦φv)(v).

286 7.5. Bigraph Embeddings

7.5.3 Bigraph Embeddings
Having defined embeddings for each of the two constituent graphs, we can now define embeddings of
bigraphs as the combination of the two, adding only a single condition:

Definition 7.5.14 (bigraph embedding). Let G : 〈kG, XG〉 → 〈mG, YG〉, H : 〈kH , XH〉 → 〈mH , YH〉
be two concrete bigraphs. Then a bigraph embedding, written φ : G ↪→H, is a map φ : |G|]kG]mG]
XG] YG → |H|] P(kH] VH)]mH] P(XH] PH)] YH , where φP = φ �VG]kG]mG : GP ↪→HP is
place graph embedding and φL = φ �|G|]XG]YG : GL ↪→HL is a link graph embedding. Furthermore,
the map must satisfy the following condition:

consistency:

(BGE-1) rng(φi) ⊆ XH] PH�rng(φs)∩VH .

We do not take the codomain of φ as part of its definition, and thus it may be an embedding into
several bigraphs. We write φ G when applying the underlying support translation to G. If φP or φL
are partial, φ is partial, written φ : G ↪⇀H; if either is non-trivial, so is φ.

The consistency condition ensures that the link graph embedding only maps inner names to ports
on nodes that are in the place graph parameter. If we did not have this condition, the link and place
graph embeddings might disagree on whether a node belongs to the context or the parameter.

We saw in the previous section that the place graph structure gives us a unique way to separate
the nodes that are not in the image of the embedding into a context and parameter. Link graphs have
less structure and for a given embedding there may be several ways to decompose the link graph (e.g.,
different ways to partition the edges between context and parameter). Depending on the definition
of reaction, this may affect the reaction relation. For pure bigraphs, Milner resolves this issue by
disallowing inner names in redexes and requiring parameters to be discrete [29, Def. 8.5]. For binding
bigraphs, inner names are allowed in redexes as long as they are local and the definition of discreteness
is conservatively extended to exempt bound links [24, Sec. 11]. We shall adapt (a variant of) the latter
approach in order to avoid restricting redexes and to make our work extensible to binding bigraphs:
we shall require the parameter to be discrete except that (1) we shall discard the bijection constraint
for the links that connect to the redex, and (2) inner names can only connect to the redex. We call
this semi-discreteness:

Definition 7.5.15 (semi-discrete bigraph). A bigraph D : 〈XD, kD〉 → 〈XG]XI ,mD〉 is semi-discrete
on XG iff it has no edges, no outer name is idle, linkD �XI is a bijection, and linkD(XD) ⊆ XG.

Thus the decompositions that our embeddings correspond to are the following:

Definition 7.5.16 (embedding corresponding to decomposition). Given a bigraph

H = C ◦ ((G⊗ idXI) ◦D ⊗ idk ⊗ α) ◦ (π ⊗ idXH)

whereD is semi-discrete onXG. Then the corresponding embedding φ = φv]φe]φs]φr]φi]φo : G ↪→H
is defined by

φv = IdVG φr = prntC �mG φs = (IdVD] π−1) ◦ prnt−1
D �kG

φe = IdEG φo = linkC �YG φi = link−1
D �XG .

7. Towards Scalable Simulation of Stochastic Bigraphs 287

Proposition 7.5.17 (embedding corresponding to decomposition). The embedding φ : G ↪→H of
Def. 7.5.16 is indeed an embedding.

Proof. Cf. Appendix 7.A.1.

As we discussed for place graph embeddings, idk allows sites of H to be in the context C and
π is a technical artifact reflecting that sites are consecutive numbers and not names. Similarly, the
renaming α allows inner names of H to be in the context C, though suitably renamed to handle the
case where inner names of H collide with the outer names of G. If idk = α = idε and π is an identity,
the decomposition becomes H = C ◦ (G ⊗ idXI) ◦ D, again demonstrating that embeddings are just
decompositions into context, redex, and parameter. The identity idXI expresses the fact that we allow
the parameter and context to share links without the involvement of the redex; in this sense the exact
choice of XI is internal to the decomposition.

Let us extend our definition of decomposition equivalence to disregard the internal names:

Definition 7.5.18 (decomposition equivalence). Say that two decompositions

H = C ◦ ((G⊗ idXI) ◦D ⊗ idk ⊗ α) ◦ (π ⊗ idXH)

= C ′ ◦ ((G⊗ idXI′) ◦D′ ⊗ idk ⊗ α′) ◦ (π′ ⊗ idXH)

with D,D′ discrete, are the same iff the place graph decompositions are the same and the link graph
decompositions differ only in their internal names, i.e.,

ED = ED′ linkD �
XG = linkD′ �

XG

EC = EC′ linkC �PC]YG = linkC′ �PC]YG
linkC ◦α = linkC′ ◦α′

linkC ◦ linkD �
XI = linkC′ ◦ linkD′ �

XI′ .

In the case of bigraph matches, i.e., Def. 7.4.31 instantiated to BPRSs, this definition captures
exactly what it means for matches to be the same:

Proposition 7.5.19 (matches are decompositions). Two matches in an agent are the same iff they
are equivalent decompositions.

Proof. Cf. Appendix 7.A.1.

As we did for place graphs, we shall now prove that embeddings can only express such decomposi-
tions, by showing how to construct them from an embedding:

Definition 7.5.20 (decomposition corresponding to embedding). Given a bigraph G : 〈kG, XG〉 →
〈mG, YG〉 and an embedding φ : G ↪→H into a bigraph H : 〈kH , XH〉 → 〈mH , YH〉. Then the cor-
responding decomposition into parameter prmt(φ) and context ctxt(φ) bigraphs are as defined in
Figure 7.4.

Proposition 7.5.21 (embeddings are decompositions). Given a bigraph G : 〈kG, XG〉 → 〈mG, YG〉
and an embedding φ : G ↪→H into a bigraph H : 〈kH , XH〉 → 〈mH , YH〉. Then constructions Def. 7.5.8
and Def. 7.5.20 define a decomposition up to decomposition equivalence.

Proof. Cf. Appendix 7.A.1.

288 7.5. Bigraph Embeddings

prmt(φ)
def
= (VD, ∅, ctrlD, prntD, linkD) : 〈kD, XD〉 → 〈kG, XG]XI〉 where

P ′D = PD \ rng(φi)

XD = rng(φi) ∩XH

XI : a set of names satisfying
|XI | = |P ′D|, XI #XG, and XI #YG

link ′D : P ′D�XI a bijection

linkD = (φi)−1] link ′D

ctxt(φ)
def
= (VC , EC , ctrlC , prntC , linkC) : 〈kC , YG]XI]XC〉 → 〈mH , YH〉 where

EC = EH \ rng(φe)

X ′C = XH \XD

XC : a set of names satisfying
|XC | = |X ′C |, XC #YG, and XC #XI

αC : XC�X ′C a bijection

linkC = φo] linkH ◦(IdPC] link ′−1
D]αC)

H = ctxt(φ) ◦ ((φ G⊗ idXI) ◦ prmt(φ)⊗ id|k̃C | ⊗ α
−1
C) ◦ (π ⊗ idXH)

Figure 7.4: Decomposition of bigraph H : 〈kH , XH〉 → 〈mH , YH〉 into parameter prmt(φ) and context
ctxt(φ) corresponding to an embedding φ : G ↪→H of a place graph G : 〈kG, XG〉 → 〈mG, YG〉. The
decomposition of the place graph is given in Figure 7.3.

7. Towards Scalable Simulation of Stochastic Bigraphs 289

We discussed the place graph aspects of the construction in Section 7.5.2. The bijections link ′D and
αC are the realizations of the choice of suitable internal names as discussed above and they express
the variation within decomposition equivalence classes.

Let us now prove that these constructions form an isomorphism between embeddings and decom-
positions:

Theorem 7.5.22 (embeddings and decompositions are isomorphic). The constructions of Def. 7.5.16
and Def. 7.5.20 are mutually inverse.

Proof. Cf. Appendix 7.A.1.

As an instance of this result we get that redex embeddings into agents are isomorphic to matches:

Corollary 7.5.23 (matches isomorphic to redex embeddings into agents). In a BPRS B̀g(R̀), a
match o = (ρ, idXI , c, d) of a parametric rule R = (R : m → 〈n, Y 〉, R′, η) in an agent a is isomorphic
to the embedding

φ = φv] φe] φs] φr] φi] φo : R ↪→ a

φv = ρ�VR φr = prntc �n φs = prnt−1
d �m

φe = ρ�ER φo = link c �Y φi = ∅.

Proof. Follows immediately from Prop. 7.5.19 and Theorem 7.5.22.

The disjointness results for place graph embeddings extend to bigraph embeddings; we shall need
them in Section 7.6.

Corollary 7.5.24. Given a bigraph G : 〈kG, XG〉 → 〈mG, YG〉 and an embedding φ : G ↪→H into a
bigraph H : 〈kH , XH〉 → 〈mH , YH〉. Then

1. rng(φport) #PH�rng(φs) and

2. rng(φport) #PH�rng(φr) .

Proof. 1: From Lemma 7.5.11 we have rng(φv) #H �rng(φs) so clearly rng(φport) #PH�rng(φs) .

2: From Lemma 7.5.11 we have rng(φv) #H �rng(φr) so clearly rng(φport) #PH�rng(φr) .

Solid Bigraphs

The results regarding solid link and place graphs of course also hold for bigraphs, i.e., embeddings of
solid bigraphs are determined by the injection of nodes:

Definition 7.5.25 (solid bigraph (after [25, Def. 2.1]7)). A bigraph is solid iff these conditions hold:

1. no roots or links are idle

2. no sites or inner names are siblings

3. every site and inner name is guarding

4. no outer name is linked to an inner name .
7These conditions are slightly stronger than those in loc. cit. cf. Sec. 7.5.1.

290 7.6. Bigraph Edit Scripts

Corollary 7.5.26. Given a solid bigraph G : 〈kG, XG〉 → 〈mG, YG〉 and an embedding φ : G ↪→H into
a bigraph H : 〈kH , XH〉 → 〈mH , YH〉. Then φs, φr, φe, φi, and φo are uniquely determined from φv.

Proof. Follows from Prop. 7.5.3 and Prop. 7.5.13.

7.6 Bigraph Edit Scripts

As we have seen in the previous sections, bigraphical reactions are usually defined in terms of re-
placement: rewriting is performed by replacing a redex with a reactum. While this yields a simple
and elegant presentation of reaction semantics, it does not capture the relation between entities in
the redex and reactum, which is needed in the KaSim algorithm: we require a description of what is
modified by a reaction rule, which implies a relation between entities before and after reaction.

In this section, we shall develop an alternative formulation of bigraphical reaction based on recon-
figuration instead of replacement. The key ideas are:

reconfiguration rules:
Reconfiguration rules are fine-grained descriptions of how a reaction modifies the redex. They
consist of a redex and an edit script : a series of minimal modifications, edits, to the redex which
turn it into the reactum.

reaction as reconfiguration:
Exploiting that matches and embeddings are isomorphic, we define reaction as the mediation of
edits to agents through embeddings.

This formulation is equivalent to the usual formulation in that it generates the same abstract reactions,
but in addition it provides the notion of modification that is needed for the KaSim algorithm: edit
scripts allow us to characterize causation and conflict in a fine-grained and concise way, as we already
saw in the overview of KaSim (cf. Section 7.3.2).

In overview, the development proceeds as follows:

Section 7.6.1: Patterns
To simplify the development, we first introduce an alternative formulation of concrete bigraphs,
where roots and sites are named instead of being consecutive numbers. We shall call these
patterns to avoid confusion with the usual concrete bigraphs.

We also recast BPRSs and bigraph embeddings to this setting where redexes and reactums are
patterns.

Section 7.6.2: Edits
We introduce a set of minimal edits and define how they reconfigure compatible redexes, i.e.,
redexes that have a suitable structure for the edit to be meaningful.

Next, we show how we can extract an instantiation map from an edit, which is necessary in order
to relate edits to reaction rules.

Finally, we transfer edits to agents, by defining how an embedding of a redex can mediate an
edit to the agent, and show that such mediated edits correspond to abstract reactions in certain
BPRSs.

7. Towards Scalable Simulation of Stochastic Bigraphs 291

Section 7.6.3: Edit Scripts
Reaction rules cannot in general be expressed as a single edit, but require a sequence of edits,
i.e., an edit script. We show how the concepts and results for edits transfer to such edit scripts.

Section 7.6.4: Reconfiguration Systems
Putting the above developments together, we define reconfiguration rules and reconfiguration
systems (RCSs). We give constructions between RCSs and BPRSs that preserve and reflect
abstract reactions.

7.6.1 Patterns

A pattern is an alternative representation of a concrete bigraph where roots and sites are named. To
avoid confusion with the names of the link graph, we shall call these identifiers variables. We shall
assume a countably infinite set U of variables, ranged over by q, r ∈ Q,R and disjoint from X , V, and
E .

Definition 7.6.1 (pattern). A pattern

P̃ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ , link P̃) : 〈Q,X〉 → 〈R, Y 〉

is an alternative representation of the concrete bigraph

JP̃ K def
= (VP̃ , EP̃ , ctrl P̃ , prntJP̃ K, link P̃) : 〈|Q|, X〉 → 〈|R|, Y 〉

where

prnt P̃ : Q] VP̃ → VP̃]R,
Q = {q0, . . . , qk−1} where ∀i ∈ [0; k − 2] : qi < qi+1,

R = {r0, . . . , rm−1} where ∀i ∈ [0;m− 2] : ri < ri+1,

prntJP̃ K = (IdVP̃] {r0 7→ 0, . . . , rm−1 7→ m− 1})
◦ prnt P̃
◦ (IdVP̃] {0 7→ q0, . . . , k − 1 7→ qk−1}).

As we shall see when we define edits, the virtue of patterns is that we can add and remove sites
without having to renumber those that remain. Note that there are infinitely many patterns that
correspond to a concrete bigraph:

Proposition 7.6.2. Two patterns P̃ ,P̃ ′ differ only by order preserving bijections on their outer and
inner variables respectively iff JP̃ K = JP̃ ′K.

Proof. Immediate from the definition.

Parametric reaction rules, BPRSs, and bigraph embeddings are easily adapted to patterns:

Definition 7.6.3 (pattern rule). A pattern rule

R = (P̃ : Q→ 〈R, Y 〉, P̃ ′ : Q′ → 〈R, Y 〉, η : Q′ → Q)

292 7.6. Bigraph Edit Scripts

where η is a function called the variable instance map, is an alternative representation of the parametric
bigraphical reaction rule

JRK def
= (JP̃ K : |Q| → 〈|R|, Y 〉, JP̃ ′K : |Q′| → 〈|R|, Y 〉, JηK : |Q′| → |Q|)

where

Q = {q0, . . . , qk−1} where ∀i ∈ [0; k − 2] : qi < qi+1,

Q′ = {q′0, . . . , q′m−1} where ∀i ∈ [0;m− 2] : q′i < q′i+1,

JηK(i) = j if η(q′i) = qj .

Definition 7.6.4 (pattern-based BPRS). A pattern-based BPRS over K with pattern rules R̀, written
B̀g(K, R̀), is the BPRS B̀g(K, R̀′) where R̀′ = {JRK | R ∈ R̀}.
Definition 7.6.5 (pattern embedding). Let P̃ : 〈QP̃ , XP̃ 〉 → 〈RP̃ , YP̃ 〉 and H̃ : 〈QH̃ , XH̃〉 → 〈RH̃ , YH̃〉
be patterns. Then a pattern embedding, written φ : P̃ ↪→ H̃, is a map φ : |P̃ |]QP̃]RP̃]XP̃] YP̃ →
|H̃|] P(QH̃] VH̃)] RH̃] P(XH̃] PH̃)] YH̃ which is an alternative representation of the bigraph
embedding

JφK : JP̃ K ↪→JH̃K

where the constituent maps are defined as:

JφK∗ def
= φ∗ where ∗ ∈ {v, e, i, o}

JφKs def
= (IdVH̃] {qH̃,0 7→ 0, . . . , qP̃ ,kH̃−1 7→ kH̃ − 1})
◦ φs ◦ {0 7→ qP̃ ,0, . . . , kP̃ − 1 7→ qP̃ ,kP̃−1}

JφKr def
= (IdVH̃] {rH̃,0 7→ 0, . . . , rP̃ ,mH̃−1 7→ mH̃ − 1})

φr ◦ {0 7→ rP̃ ,0, . . . ,mP̃ − 1 7→ rP̃ ,mP̃−1}
QP̃ = {qP̃ ,0, . . . , qP̃ ,kP̃−1} where ∀i ∈ [0; kP̃ − 2] : qP̃ ,i < qP̃ ,i+1

RP̃ = {rP̃ ,0, . . . , rP̃ ,mP̃−1} where ∀i ∈ [0;mP̃ − 2] : rP̃ ,i < rP̃ ,i+1

QH̃ = {qH̃,0, . . . , qH̃,kH̃−1} where ∀i ∈ [0; kH̃ − 2] : qH̃,i < qH̃,i+1

RH̃ = {rH̃,0, . . . , rH̃,mH̃−1} where ∀i ∈ [0;mH̃ − 2] : rH̃,i < rH̃,i+1.

Clearly, it is easy to define embeddings between patterns and concrete bigraphs in a similar manner,
and we shall freely use such embeddings.

7.6.2 Edits
An edit is a minimal reconfiguration of a pattern. We are concerned with edits that correspond to
reactions and shall therefore only consider edits of redexes, i.e., patterns with no inner names, which
preserve the outer face.

Definition 7.6.6 (edits). An edit δ over a signature K is any of the operators in Table 7.1. The
application of an edit δ to a pattern P̃ , written δ(P̃), is defined in Table 7.2. We say that an edit δ is
compatible with a pattern P̃ iff δ(P̃) is defined.

7. Towards Scalable Simulation of Stochastic Bigraphs 293

Affected Entity Type

port node edge site

E
ff

ec
t

rebind �(v,i) 7→l

change control }v:K

add ⊕v:K~y@p ⊕e
delete 	v 	e 	q
move �v@p �q@p
copy ⊗q→r@p

Table 7.1: The set of edits organized by their effect (rows) and the type of entity they affect (columns)
(v ∈ V, K ∈ K, {~y} ⊆ X , p ∈ V] U , e ∈ E , q, r ∈ U ,i ∈ N, and l ∈ E] X).

It is straightforward to verify that edits yield patterns:

Proposition 7.6.7 (edits). Given a pattern P̃ : Q → 〈R, Y 〉 and a compatible edit δ. Then δ(P̃) :
Q′ → 〈R, Y 〉 is a pattern and

Q′ =

Q− q if δ = 	q
Q+ r if δ = ⊗q→r@p
Q otherwise.

Note that other choices of edits are possible. For instance, one could imagine allowing deletion
of nodes that have children – but what should happen to the children? Should they also be deleted
or should they become children of the deleted node’s parent? We have chosen the above set of edits
as they express minimal modifications to each of the elements of a concrete bigraph quintuple which
result in another concrete bigraph. As we shall see below, the chosen set of edits is sufficient for
completeness, so we leave it to future work to explore other sets of edits.

Deriving Named Instance Maps

To relate edits to reaction rules and reaction, we must define how edits relate to instantiations. There
are two important things to take into account when we define the instantiations for edits: (a) edits are
not tied to a specific pattern and thus the corresponding instance map should be the identity on all
sites except those that are affected by the edit; and (b) edits will be chained together into edit scripts
and thus the corresponding instance maps should be easily composable.

We meet these criteria by defining instance maps for edits in two steps:

forward instance map: A map which is defined for all compatible patterns and describes how sites
are modified by an edit.

derived instance map: From the forward map we derive the variable instance maps for specific
compatible patterns.

As we shall see when we get to edit scripts, the forward instance maps compose easily and we can
reuse the derivation of the pattern specific instance maps.

294 7.6. Bigraph Edit Scripts

Rebind a port:

�(v,i)7→l(P̃)
def
= (VP̃ , EP̃ , ctrl P̃ , prnt P̃ , link P̃ [(v, i) 7→ l]) : Q→ 〈R, Y 〉
if v ∈ VP̃ and i ∈ ar(ctrl P̃ (v)) and l ∈ EP̃] Y

Change a control:

}v:K(P̃)
def
= (VP̃ , EP̃ , ctrl P̃ [v 7→ K], prnt P̃ , link P̃) : Q→ 〈R, Y 〉
if v ∈ VP̃ and ar(K) = ar(ctrl P̃ (v))

Add node or edge:

⊕v:K~y@p(P̃)
def
= (VP̃ + v,EP̃ , ctrl P̃ [v 7→ K], prnt P̃ [v 7→ p],

link P̃ [(v, 0) 7→ ~y0, . . . , (v, n− 1) 7→ ~yn−1]) : Q→ 〈R, Y 〉
if v 6∈ VP̃ and p ∈ VP̃]R and {~y} ⊆ EP̃] Y and ar(K) = n

⊕e(P̃)
def
= (VP̃ , EP̃ + e, ctrl P̃ , prnt P̃ , link P̃) : Q→ 〈R, Y 〉
if e 6∈ EP̃

Delete node, edge, or site:

	v(P̃)
def
= (VP̃ − v,EP̃ , ctrl P̃ −v, prnt P̃ −v, link P̃ −Pv): Q→ 〈R, Y 〉
if v ∈ VP̃ and prnt−1

P̃
(v) = ∅

	e(P̃)
def
= (VP̃ , EP̃ − e, ctrl P̃ , prnt P̃ , link P̃) : Q→ 〈R, Y 〉
if e ∈ EP̃ and link−1

P̃
(e) = ∅

	q(P̃)
def
= (VP̃ , EP̃ , ctrl P̃ , prnt P̃ −q, link P̃) : (Q− q)→ 〈R, Y 〉
if q ∈ Q

Move node or site:

�v@p(P̃)
def
= (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [v 7→ p], link P̃) : Q→ 〈R, Y 〉
if v ∈ VP̃ and p ∈ VP̃]R

�q@p(P̃)
def
= (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [q 7→ p], link P̃) : Q→ 〈R, Y 〉
if q ∈ Q and p ∈ VP̃]R

Copy site:

⊗q→r@p(P̃)
def
= (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [r 7→ p], link P̃) : (Q+ r)→ 〈R, Y 〉
if q ∈ Q and r 6∈ Q and p ∈ VP̃]R

Table 7.2: Application of edit δ to pattern P̃ : Q→ 〈R, Y 〉, denoted δ(P̃).

7. Towards Scalable Simulation of Stochastic Bigraphs 295

Definition 7.6.8 (forward instance map). A forward instance map z : U → P(U) is a fully injective
map on named sites.

The forward instance map finst(δ) corresponding to an edit δ is

finst(q) def
= IdU [q 7→ ∅]

finst(⊗q→r@a)
def
= IdU−r[q 7→ {q, r}]

finst(δ)
def
= IdU in all other cases

It is clear from this definition and the definition of edits that a forward instance map corresponding
to an edit maps the sites of compatible patterns to the sites of the resulting patterns:

Proposition 7.6.9 (forward instance map). Given a pattern P̃ : Q → J and a compatible edit δ.
Then Q ⊆ dom(finst(δ)) and finst(δ)(Q) = Q′ where δ(P̃) : Q′ → J .

To derive an instance map for a particular compatible pattern, we simply restrict the domain of
the forward instance map and then invert it:

Definition 7.6.10 (derived variable instance map). The derived variable instance map instQ(z)
corresponding to a forward instance map z for a set of named sites Q ⊆ dom(z) is

instQ(z)
def
= (z�Q)−1.

Note that the inverse of the forward instance map z−1, and thus instQ(z), is a function since z is
fully injective.

Corollary 7.6.11 (derived variable instance map). Given a pattern P̃ : Q→ J and a compatible edit
δ. Then instQ(finst(δ)) : Q′ → Q where δ(P̃) : Q′ → J .

Proof. Follows from Def. 7.6.10 and Prop. 7.6.9.

Mediating edits

In order to realize reactions by using edits, we must define how an embedding of a pattern can mediate
the edit of an agent. Since we wish to combine sequences of edits, the result of a mediated edit
should be both a new agent and a new embedding that can mediate the next edit into the new agent.
Furthermore, we shall define mediation of edits through embeddings into arbitrary bigraphs as we shall
need this to characterize conflict and causality in Section 7.7.

Definition 7.6.12 (mediated edits). For a pattern P̃ and compatible edit δ, the mediated edit, written
δ(a, φ), of a pattern H̃ through an embedding φ : P̃ ↪→ H̃ is defined in Table 7.3. When (H̃ ′, φ′) =
δ(H̃, φ) we shall often abuse the notation and write δ(H̃, φ) for H̃ ′.

Proposition 7.6.13 (mediated edits). Given a pattern P̃ : QP̃ → 〈RP̃ , YP̃ 〉, a compatible edit δ, and
an embedding φ : P̃ ↪→ H̃ into a pattern H̃ : 〈QH̃ , XH̃〉 → I. Then H̃ ′ : 〈Q′

H̃
, XH̃〉 → I is a pattern

and φ′ : P̃ ′ ↪→ H̃ ′ is an embedding, where (H̃ ′ : 〈Q′
H̃
, XH̃〉 → I, φ′) = δ(H̃, φ) and P̃ ′ = δ(P̃) for some

set of variables Q′
H̃
.

Proof. Cf. Appendix 7.A.2.

296 7.6. Bigraph Edit Scripts

Rebind a port:

�(v,i)7→l(H̃, φ)
def
= ((VH̃ , EH̃ , ctrl H̃ , prntH̃ , link H̃ [(φ(v), i) 7→ φ(l)]), φ)

Change a control:

}v:K(H̃, φ)
def
= ((VH̃ , EH̃ , ctrl H̃ [φ(v) 7→ K], prntH̃ , link H̃), φ)

Add node or edge:

⊕v:K~y@p(H̃, φ)
def
= ((VH̃ + v′, EH̃ , ctrl H̃ [v′ 7→ K], prntH̃ [v′ 7→ φ(p)],

link H̃ [(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)]),

φ[v 7→ v′])

if v′ 6∈ VH̃
⊕e(H̃, φ)

def
= ((VH̃ , EH̃ + e′, ctrl H̃ , prntH̃ , link H̃), φ[e 7→ e′])

if e′ 6∈ EH̃

Delete node, edge, or parameter:

	v(H̃, φ)
def
= ((VH̃ − φ(v), EH̃ , ctrl H̃ −φ(v), prntH̃ −φ(v), link H̃ −Pφ(v)), φ − v)

	e(H̃, φ)
def
= ((VH̃ , EH̃ − φ(e), ctrl , prntH̃ , link H̃), φ − e)

	q(H̃, φ)
def
= ((VH̃ \ H̃ �φ(q), EH̃ , ctrl H̃ −H̃ �φ(q), prntH̃ −H̃ �φ(q), link H̃ −PH̃�φ(q))

: 〈Q \ H̃ �φ(q), X〉 → I,

φ − q)

Move node or parameter:

�v@p(H̃, φ)
def
= ((VH̃ , EH̃ , ctrl H̃ , prntH̃ [φ(v) 7→ φ(p)], link H̃), φ)

�q@p(H̃, φ)
def
= ((VH̃ , EH̃ , ctrl H̃ , prntH̃ [φ(q) 7→ φ(p)], link H̃), φ)

Copy parameter:

⊗q→r@p(H̃, φ)
def
= ((VH̃] Vr, EH̃ , ctrl H̃] ctrlr, prntH̃] prntr, link H̃] linkr),

: 〈Q]Qr, X〉 → I,

φ[r 7→ f−1(φ(q))])

where Vq = H̃ �φ(q) ∩VH̃ Qq = H̃ �φ(q) ∩Q
|Vr| = |Vq| |Qr| = |Qq|
Vr # VH̃ Qr # Q

fv : Vr�Vq fs : Qr�Qq

f = fv] fs
ctrlr = ctrl H̃ ◦fv

prntr = {f−1(φ(q)) 7→ φ(p)}] f−1
v ◦ prntH̃ ◦(f − f−1(φ(q)))

linkr(v, i) = link H̃(fv(v), i) (v ∈ Vr)

Table 7.3: Mediating compatible edit δ of P̃ to H̃ : 〈Q,X〉 → I through embedding φ : P̃ ↪→ H̃.
Interfaces are omitted for clarity in all but the two cases where they change.

7. Towards Scalable Simulation of Stochastic Bigraphs 297

Mediated edits are well-behaved in the sense that the reconfigurations they cause in agents can
also be expressed as reactions:

Lemma 7.6.14 (mediated edits are reactions). Given a pattern P̃ : Q→ 〈R, Y 〉, a compatible edit δ,
and an embedding φ : P̃ ↪→ a into a concrete agent a : 〈ma, Ya〉. Then a _ a′, where (a′, φ′) = δ(a, φ),
is a reaction in any pattern-based BPRS containing the rule (P̃ , δ(P̃), instQ(finst(δ))).

Proof. Cf. Appendix 7.A.2.

The converse does not hold for two reasons:

• A single edit of course cannot express any reaction. We will solve this by introducing edit scripts
in the next section.

• Edits are much more restrictive in their handling of support: we cannot change support arbi-
trarily, but are only free to choose support for added/copied nodes and edges.

We can, however, show that any abstract reaction can be realized by edits. In general, this requires
edit scripts, but let us first show that abstract reactions generated by rules derived from edits can also
be obtained through mediated edits:

Lemma 7.6.15. Given a pattern-based BPRS and a reaction a _ a′ generated by some pattern rule
R = (P̃ : Q→ 〈R, Y 〉, δ(P̃) : Q′ → 〈R, Y 〉, instQ(finst(δ))). Then there is an agent a′′ and embeddings
φ : P̃ ↪→ a, φ′ : δ(P̃) ↪→ a′′ such that a′ l a′′ and (a′′, φ′) = δ(a, φ).

Proof. Cf. Appendix 7.A.2.

7.6.3 Edit Scripts

In the previous section we took care to define the constructions such that they could easily be trans-
ferred to sequences of edits. In this section we reap the benefits: we transfer the concepts and results
from edits to edit scripts without further comment.

Definition 7.6.16 (edit script). An edit script is a finite sequence of edits ∆ = δ1 · · · δn. An edit
script is compatible with a pattern P̃ iff δ1 is compatible with P̃ and n = 1 or δ2 · · · δn is compatible
with δ(P̃). The application of an edit script ∆ to a compatible pattern P̃ is defined to be

∆(P̃)
def
= δn(· · · δ1(P̃) · · ·).

Similarly, the mediated application of an edit script ∆ to a pattern H̃ through an embedding φ : P̃ ↪→ H̃
of a compatible pattern P̃ is defined to be

∆(H̃, φ)
def
= δn(· · · δ1(H̃, φ) · · ·).

When (H̃ ′, φ′) = ∆(H̃, φ) we shall often abuse the notation and write ∆(H̃, φ) for H̃ ′.

Corollary 7.6.17 (edit scripts). Given a pattern P̃ : Q → 〈R, Y 〉 and a compatible edit script ∆.
Then ∆(P̃) : Q′ → 〈R, Y 〉 is a pattern.

Proof. Follows from Prop. 7.6.7 by straightforward induction on the length of ∆.

298 7.6. Bigraph Edit Scripts

Corollary 7.6.18 (mediated edit scripts). Given a pattern P̃ : QP̃ → 〈RP̃ , YP̃ 〉, a compatible edit
script ∆, and an embedding φ : P̃ ↪→ H̃ into a pattern H̃ : 〈QH̃ , XH̃〉 → I. Then H̃ ′ : 〈Q′

H̃
, XH̃〉 → I is

an agent and φ′ : P̃ ′ ↪→ H̃ ′ is an embedding, where (H̃ ′ : 〈Q′
H̃
, XH̃〉 → I, φ′) = ∆(H̃, φ) and P̃ ′ = ∆(P̃)

for some set of variables Q′
H̃
.

Proof. Follows from Prop. 7.6.13 by straightforward induction on the length of ∆.

Definition 7.6.19 (edit script forward instance map). The forward instance map finst(∆) correspond-
ing to an edit script ∆ = δ1 · · · δn is

finst(∆)
def
= finst(δn) ◦ (· · · ◦ (finst(δ1)�dom(finst(δ2))) · · ·�dom(finst(δn))).

Corollary 7.6.20 (edit script forward instance map). Given a pattern P̃ : Q → J and a compatible
edit script ∆. Then Q ⊆ dom(finst(∆)) and finst(∆)(Q) = Q′ where ∆(P̃) : Q′ → J .

Proof. Follows from Prop. 7.6.9 by straightforward induction on the length of ∆.

Corollary 7.6.21 (derived variable instance map). Given a pattern P̃ : Q→ J and a compatible edit
script ∆. Then instQ(finst(∆)) : Q′ → Q is a variable instance map where ∆(P̃) : Q′ → J .

Proof. Follows from Def. 7.6.10 and Corol. 7.6.20.

Corollary 7.6.22 (mediated edit scripts are reactions). Given a pattern P̃ : Q→ 〈R, Y 〉, a compatible
edit script ∆, and an embedding φ : P̃ ↪→ a into a concrete agent a : 〈ma, Ya〉. Then a _ a′, where
(a′, φ′) = ∆(a, φ), is a reaction in any pattern-based BPRS containing the rule (P̃ ,∆(P̃), instQ(finst(∆))).

Proof. Follows from Lemma 7.6.14 by straightforward induction on the length of ∆.

Corollary 7.6.23. Given a pattern-based BPRS and a reaction a _ a′ generated by some pattern
rule R = (P̃ : Q → 〈R, Y 〉,∆(P̃) : Q′ → 〈R, Y 〉, instQ(finst(∆))). Then there is an agent a′′ and
embeddings φ : P̃ ↪→ a, φ′ : ∆(P̃) ↪→ a′′ such that a′ l a′′ and (a′′, φ′) = ∆(a, φ).

Proof. Follows from Lemma 7.6.15 by straightforward induction on the length of ∆.

7.6.4 Reconfiguration Systems
In the previous sections, we have seen (a) that edit scripts generate reactions and (b) that if we can
express a pattern rule as an edit script, that edit script generates the same abstract reactions as the
pattern rule. Thus, if any pattern rule can be expressed as an edit script, we can generate all abstract
reactions through edit scripts. In this section we shall give a construction of an edit script for any
pattern rule, thus providing the final piece of the puzzle.

To show the correspondence between mediated edits and reactions, we shall define reconfiguration
rules and reconfiguration systems (RCSs) and show that they are equivalent to pattern rules and
pattern-based BPRS.

In overview, the development proceeds as follows:

reconfiguration rules:
We first define reconfiguration rules as pairs of patterns and edit scripts. We give constructions
of pattern rules from reconfiguration rules and vice versa.

reconfiguration systems:
Next, we define RCSs, give constructions of pattern-based BPRS from RCSs and vice versa, and
show that the constructions preserve and reflect abstract reactions.

7. Towards Scalable Simulation of Stochastic Bigraphs 299

Reconfiguration Rules

A reconfiguration rule is simply a pattern paired with a compatible edit script:

Definition 7.6.24 (reconfiguration rule). A reconfiguration rule R̃ = (P̃ ,∆) consists of a pattern
P̃ : Q→ J and a compatible edit script ∆.

From a reconfiguration rule, we can easily construct a pattern rule:

Definition 7.6.25 (pattern rule corresponding to reconfiguration rule). The pattern rule correspond-
ing to a reconfiguration rule R̃ is defined as

JR̃K def
= (P̃ ,∆(P̃), instQ(finst(∆))).

Proposition 7.6.26 (pattern rule corresponding to reconfiguration rule). The pattern rule corre-
sponding to a reconfiguration rule is indeed a pattern rule.

Proof. Let

R̃ = (P̃ : Q→ 〈R, Y 〉,∆)

JR̃K = (P̃ ,∆(P̃), instQ(finst(∆))).

By Corol. 7.6.17 and Corol. 7.6.21, ∆(P̃) : Q′ → 〈R, Y 〉 is a pattern and instQ(finst(∆)) : Q′ → Q
is a variable instance map.

The reverse direction is more tricky: in general, there will be infinitely many edit scripts that
express a reaction, since we can always extend an edit script by two edits that cancel out, e.g., by
adding and removing an edge. Here we shall give a naive construction, which first removes all the
nodes, edges, and redundant sites from the redex and then builds up the reactum. In overview, the
edit script will consist of the following steps:

(1) Copy the sites that will be in the reactum to a root (using fresh variables to avoid clashes.

(2) Delete the original sites.

(3) Delete all nodes (deleting children before their parents, i.e., bottom-up).

(4) Delete all edges.

(5) Add the edges of the reactum.

(6) Add the nodes of the reactum (adding parents before their children).

(7) Copy the sites to their proper place in the reactum (assigning the proper variable to the copy).

(8) Delete the sites created in step (1).

The formal construction is given by the following definition:

Definition 7.6.27 (naive pattern rule edit script). For a pattern rule R the corresponding naive edit
script, written es(R), is defined in Figure 7.5.

300 7.6. Bigraph Edit Scripts

es(R) =

(1) ⊗η(q′0)→f(q′1)@r · · · ⊗η(q′
n′)→f(q′

n′)@r
copy sites as prescribed by η
but using temporary names
and placed at root r

(2) 	q1 · · · 	qn delete redex sites

(3) 	v1
· · · 	vk delete redex nodes

(4) 	e1 · · · 	em delete redex edges

(5) ⊕e′1 · · · ⊕em′ add reactum edges

(6) ⊕v′1:ctrlP̃ ′ (v
′
1)[...,link

P̃ ′ (v
′
1,i),...]

@ prntP̃ ′ (v
′
1)

· · · ⊕v′
k′ :ctrlP̃ ′ (v

′
k′)[...,link

P̃ ′ (v
′
k′ ,i),...]

@ prntP̃ ′ (v
′
k′)

add reactum nodes

(7) ⊗f(q′1)→q′1@ prntP̃ ′ (q
′
1)

· · · ⊗f(q′
n′)→q

′
n′@ prntP̃ ′ (q

′
n′)

copy sites to their proper
places with proper names

(8) 	f(q′1) · · · 	f(q′
n′)

delete temporary sites

for some r ∈ R and set of variables Q′′#Q∪Q′ in bijection to Q′, i.e., f : Q′�Q′′, and assuming the
following sequencing of the entities of P̃ and P̃ ′:

Q = {q1, . . . , qn} Q′ = {q′1, . . . , q′n′}
EP̃ = {e1, . . . , em} EP̃ ′ = {e′1, . . . , e′m′}
VP̃ = {v1, . . . , vk} where ∀i, j ∈ [1; k] : prnt P̃ (vi) = vj ⇒ i < j

VP̃ ′ = {v′1, . . . , v′k′} where ∀i, j ∈ [1; k′] : prnt P̃ ′(v
′
i) = v′j ⇒ i > j.

Figure 7.5: Naive construction of edit script from pattern rule R = (P̃ : Q → 〈R, Y 〉, P̃ ′ : Q′ →
〈R, Y 〉, η : Q′ → Q), denoted by es(R).

7. Towards Scalable Simulation of Stochastic Bigraphs 301

Proposition 7.6.28 (naive pattern rule edit script). Given a pattern rule R = (P̃ : Q→ J, P̃ ′ : Q′ →
J, η). Then es(R) is compatible with P̃ , es(R)(P̃) = P̃ ′, and instQ(finst(es(R))) = η.

Proof. Cf. Appendix 7.A.2.

Thus, for any parametric reaction rule we can construct a corresponding reconfiguration rule:

Definition 7.6.29 (reconfiguration rule corresponding to pattern rule). The reconfiguration rule cor-
responding to a pattern rule R is defined as

(P̃ , es(R)).

Proposition 7.6.30 (reconfiguration rule corresponding to pattern rule). The reconfiguration rule
corresponding to a pattern rule is indeed a reconfiguration rule.

Proof. Follows immediately from Def. 7.6.24 and Prop. 7.6.28.

Reconfiguration Systems

Let us now give an alternative formulation of BPRSs based on reconfiguration rules:

Definition 7.6.31 (reconfiguration systems (RCS)). A reconfiguration system (RCS) over K, written
B̀g(K, R̃), consists of the s-category B̀g(K) equipped with a set R̃ of reconfiguration rules.

The reaction relation _ over agents a, a′ is the smallest such that a _ a′ whenever φ : P̃ ↪→ a is
a match of some reconfiguration rule R̃ = (P̃ ,∆) ∈ R̃ in a and (a′, φ′) = ∆(a, φ) for some embedding
φ′.

From the results for edit scripts, it should be clear that RCSs have the same abstract reaction
relations as pattern-based BPRSs. We shall now show this formally.

First, we can construct a pattern-based BPRS with the same abstract reactions as an RCS:

Definition 7.6.32 (BPRS corresponding to RCS). The pattern-based BPRS corresponding to an RCS
B̀g(K, R̃) is

B̀g(K, {JR̃K | R̃ ∈ R̃}).

Proposition 7.6.33 (BPRS corresponding to RCS). The pattern-based BPRS corresponding to an
RCS is indeed a pattern-based BPRS.

Proof. Follows immediately from Def. 7.6.4 and Prop. 7.6.26.

Theorem 7.6.34 (abstract reaction equivalence of BPRS corresponding to RCS). Given a reaction
a _r a

′ in an RCS, then the corresponding pattern-based BPRS has the same reaction. Conversely, for
any reaction a _p a

′ in the corresponding BPRS, there is an agent a′′ such that a′ l a′′ and a _r a
′′

in the RCS.

302 7.7. Rule Activation and Inhibition

Proof. ⇒: Assume a reaction a _r a
′ in an RCS, i.e., there is some match φ : P̃ ↪→ a of a reconfig-

uration rule R̃ = (P̃ ,∆) ∈ R̃ in a and (a′, φ′) = ∆(a, φ) for some embedding φ′. By Def. 7.6.32 and
Def. 7.6.25 the corresponding pattern-based BPRS contains the rule (P̃ ,∆(P̃), instQ(finst(∆))), so, by
Corol. 7.6.22, a _p a

′.

⇐: Assume a reaction a _p a′ generated by some pattern rule (P̃ ,∆(P̃), instQ(finst(∆))) in the
pattern-based BPRS corresponding to an RCS. By Corol. 7.6.23, there is an agent a′′ and embeddings
φ : P̃ ↪→ a, φ′ : ∆(P̃) ↪→ a′′ such that a′ l a′′ and (a′′, φ′) = ∆(a, φ). Thus, a _r a

′′.

Conversely, for any pattern-based BPRS we can construct an RCS which has the same abstract
reactions:

Definition 7.6.35 (RCS corresponding to BPRS). The RCS corresponding to a pattern-based BPRS
B̀g(K, R̀) is

B̀g(K, {(P̃ , es(R)) | R ∈ R̀}).

Proposition 7.6.36 (RCS corresponding to BPRS). The RCS corresponding to a pattern-based BPRS
is indeed an RCS.

Proof. Follows immediately from Def. 7.6.31 and Prop. 7.6.30.

Theorem 7.6.37 (abstract reaction equivalence of RCS corresponding to BPRS). Given a reaction
a _p a

′ in a pattern-based BPRS, then there is an agent a′′ such that a′ l a′′ and a _r a
′′ in the

corresponding RCS. Conversely, any reaction a _r a
′ in the corresponding RCS is a reaction in the

pattern-based BPRS.

Proof. ⇒: Assume a reaction a _p a
′ in the pattern-based BPRS generated by some pattern rule

(P̃ , P̃ ′, η), i.e., there is a match φ : P̃ ↪→ a. By Def. 7.6.35 the corresponding RCS has the reconfig-
uration rule (P̃ , es(R)) and, by Prop. 7.6.28, es(R)(P̃) = P̃ ′, and instQ(finst(es(R))) = η. Thus, by
Corol. 7.6.23, there is an agent a′′ and embeddings φ : P̃ ↪→ a, φ′ : ∆(P̃) ↪→ a′′ such that a′ l a′′ and
(a′′, φ′) = ∆(a, φ). Thus, a _r a

′′.

⇐: Assume a reaction a _r a
′ in generated by some reconfiguration rule (P̃ , es(R)) in the RCS corre-

sponding to a pattern-based BPRS with R = (P̃ , P̃ ′, η). By Prop. 7.6.28,
R = (P̃ , es(R)(P̃), instQ(finst(es(R)))), so, by Corol. 7.6.22, a _p a

′.

7.7 Rule Activation and Inhibition

The KaSim algorithm presumes that we can characterize causality and conflict at the level of reaction
rules: it requires two relations over reaction rules, activation R0 ≺ R1 and inhibition R0 #R1, capturing
whether a reaction using R0 can cause or prevent, respectively, reactions using R1. These relations
reduce the number of rules that must be considered in the positive and negative update phases of the
algorithm.

In this section, we outline how we hope to construct these relations through a characterization
of causality and conflict in terms of pullbacks and pushouts in the category of bigraph embeddings:
intuitively, a pullback characterizes one way two bigraphs can overlap in a context, while the pushout

7. Towards Scalable Simulation of Stochastic Bigraphs 303

of a pullback is the minimal example of such an overlap. For simplicity, we shall assume that rules are
linear, i.e., they do not copy or delete parameters.

This section proceeds as follows:

1. First, we give definitions of the usual notions of causality and conflict in the contexts of re-
configuration systems and show how they can be expressed in terms of embeddings and edit
scripts.

2. We then define and discuss the category of bigraph embeddings and state a number of conjectures
which our approach relies on. In particular, we argue that the embedding category has pullbacks
and pushout of pullbacks if we relax the embedding conditions slightly.

3. Finally, we discuss how our conjectures about the category of bigraph embeddings should allow
us to characterize causality and conflict at the level of rules and thus construct the activation
and inhibition relations.

7.7.1 Causality and Conflict

The notions of causality and conflict between events are well-studied in the literature also for graph
rewriting, though sometimes through their duals, sequential and parallel independence [16, 32]: events
are causally related if one must precede the other, and in conflict if one prevents the other. In this
section we shall, essentially, take events to be reactions in an RCS where the reaction relation a _R,φ a

′

is extended with labels that record the rule R = (P̃ ,∆) and embedding φ : P̃ ↪→ a that generated the
reaction.

More precisely, we define causality and conflict as follows:

Definition 7.7.1 (causality). In an RCS, say that reaction a _R0,φ0
b causes reaction b _R1,φ1

c iff
there is no b′ such that a _R1,φ1

b′.

Definition 7.7.2 (conflict). In an RCS, say that reaction a _R0,φ0
b conflicts with reaction a _R1,φ1

b′

iff there is no c such that b _R1,φ1
c.

Inspecting the definition of RCSs (Def. 7.6.31) it is clear that causality and conflict can be restated
in terms of embeddings and edit scripts as follows:

Proposition 7.7.3 (causality). In an RCS, the reaction a _R0,φ0
∆0(a, φ0) causes the reaction

∆0(a, φ0) _R1,φ1
∆1(∆0(a, φ0), φ1) iff φ1 : P̃1 6↪→ a, where Ri = (P̃i,∆i) (i = 0,1). The following

diagram illustrates the situation:

P̃0 P̃1

a

φ0

↓

∩

.

φ1

←

+

⊃

∆0(a, φ0)

φ1

↓

∩

. ∆1(∆0(a, φ0), φ1).

Proposition 7.7.4 (conflict). In an RCS, the reaction a _R0,φ0
∆0(a, φ0) conflicts with the reaction

a _R1,φ1
∆1(a, φ1) iff φ1 : P̃1 6↪→∆0(a, φ0), where Ri = (P̃i,∆i) (i = 0,1). The following diagram

304 7.7. Rule Activation and Inhibition

illustrates the situation:

P̃0 P̃1

∆1(a, φ1) / a

φ0

↓

∩

.

φ1

←

⊃

∆0(a, φ0)

+ φ1

↓

∩

.

In both cases, reaction using R0 must modify something in the range of φ1 since it becomes, or
stops being, an embedding. Furthermore, the reaction generated by φ0 can only modify the parts of
the agent that are in its range. Thus, there must be some overlap between the embeddings which is
modified by reaction. It turns out that we can express this modification of overlaps concisely using
category theory, so let us now discuss the category of bigraph embeddings.

7.7.2 Category of Bigraph Embeddings

The embeddings of Section 7.5 form categories where the objects are graphs and the arrows are
embeddings:

Definition 7.7.5 (category of bigraph embeddings). The bigraphical embedding categories LgEmb(K),
PgEmb(K), BgEmb(K) over a basic signature K respectively have link graphs, place graphs, and bi-
graphs over K as their objects and the arrows are embeddings.

Composition is function composition and identities idG : G ↪→G are identity functions on the
support and interfaces of G.

These categories should not be confused with the usual bigraphical categories (cf. Section 7.2.2)
where the arrows are bigraphs. For the remainder of this section we shall use lower case letters f, g, . . .
for arrows in addition to φ.

We are interested in these categories as the categorical notions of pullback and pushout, if the
embedding categories have them, will allow us to characterize overlaps and minimal contexts exhibiting
those overlaps, respectively. Let us discuss these two notions and their interpretations in some depth:

Pullbacks of Embeddings

An overlap between two embeddings ~φ : ~G ↪→H can be thought of as a maximal shared subgraph
I and a pair of embeddings ~p : I ↪→ ~G such that the following diagram is a pullback diagram in the
category of bigraph embeddings:

I ⊂
p0

→ G0

G1

p1

↓

∩

⊂

φ1

→ H

φ0

↓

∩

.

The subgraph should be maximal to ensure that ~p : I ↪→ ~G describes all of the overlap and the pullback
property captures this maximality requirement. More precisely, if there is another subgraph I ′ and

7. Towards Scalable Simulation of Stochastic Bigraphs 305

embeddings ~p′ : I ′ ↪→ ~G that make the above diagram commute, then I ′ is a subgraph of I, i.e., there
is a (unique) embedding u : I ′ ↪→ I such that the following diagram commutes:

I ′

I ⊂
p0

→

⊂............u→
G0

p′0

⊂

→

G1

p1

↓

∩

⊂

φ1

→

p′1

⊂

→

H

φ0

↓

∩

.

As an interesting special case, note that if the two embeddings do not overlap, the pullback is the
empty bigraph and two empty maps.

We believe that the embedding formulation in Section 7.5 will have to be relaxed slightly in order
for the embedding categories to have pullbacks. Let us first illustrate the issue with the embeddings
of Section 7.5 through an example:

Example 4. Assume that we have the following overlapping link graph embeddings:

G0 = [x 7→ v, y 7→ w] : {x, y} → {v, w}
G1 = [{x, y, z} 7→ u] : {x, y, z} → {u}
H = [{x, y} 7→ u] : {x, y} → {u}
φ0 = Id{x,y}[{v, w} 7→ u] : G0 ↪→H

φ1 = Id{x,y,u}[z 7→ ∅] : G1 ↪→H.

What should the pullback be? Since G0 embeds into G1 via φ0 it seems reasonable that G0 could be
the maximal overlap, i.e.,:

I ′ = G0 g0 = IdG0
: I ′ ↪→G0 g1 = φ0 : I ′ ↪→G1.

Alas, this is not a pullback! Consider the link graph

I ′′ = G0 ⊗ [z 7→ a] : {x, y, z} → {v, w, a}.

It has the following embeddings into G0,G1

f0 = IdG0
] [a 7→ v, z 7→ ∅] : I ′′ ↪→G0

f ′0 = IdG0
] [a 7→ w, z 7→ ∅] : I ′′ ↪→G0

f1 = f ′1 = φ0] [a 7→ u, z 7→ z] : I ′′ ↪→G1

which satisfy φ0◦f0 = φ0◦f ′0 = φ1◦f1. If ~g : I ′ ↪→ ~G was a pullback there should be unique embeddings
u : I ′′ ↪→ I ′, u′ : I ′′ ↪→ I ′ such that f0 = g0 ◦ u, f ′0 = g0 ◦ u′, and f1 = g1 ◦ u = g1 ◦ u′. But this is
impossible since rng(f1) 3 z 6∈ rng(g1).

306 7.7. Rule Activation and Inhibition

Furthermore, neither ~f : I ′′ ↪→ ~G nor ~f ′ : I ′′ ↪→ ~G are pullbacks. For example, if ~f : I ′′ ↪→ ~G was a
pullback, there should be a unique u : I ′′ ↪→ I ′′ such that f ′0 = f0 ◦ u and f ′1 = f1 ◦ u = f ′1 ◦ u. Since
f ′1(z) = z and f ′−1

1 (z) = z we must have u(z) = z, and since f ′0(a) = f ′0(w) = w and f−1
0 (w) = w we

must have u(a) = u(w) = w. But this violates structure preservation which dictates (u ◦ prntI′′)(z) =
prntI′′(z)⇒ u(a) = a.

Intuitively, the problems arise because φ1 maps z to the empty set. As we saw, though ~g : I ′ ↪→ ~G
is an overlap, other subgraphs may include z which is not in I ′ and thus I ′ is not maximal. But if we
add z to the overlap, we have to choose a single link of G0 which it belongs to, cf. f0 and f ′0. Any such
choice is equally good but not isomorphic to the others and thus not a pullback.

It is easy to transfer this example to place graph embeddings (and this is a good exercise for the
reader!) and the issues thus apply in that setting as well.

We believe that this problem can be solved by allowing outer names/roots to embed into multiple
outer names/roots, i.e., by changing conditions (LGE-4) and (PGE-3) to

(LGE-4’) φo : YG → EH] P(YH) \ ∅ is an arbitrary map

(PGE-3’) φr : mG → VH] P(mH) \ ∅ is an arbitrary map

The structure preservation conditions will ensure that outer names/roots, which contain at least one
point/child that is not mapped to the empty set, will only be mapped to a single link/place. In other
words, only outer names/roots, where all their points/children map to the empty set, are allowed to
map to multiple outer names/roots. Intuitively, this models the situation where it is irrelevant which
of the outer names/roots the outer name/root maps to.

Note that the results about decompositions and bigraph embeddings in Section 7.5 probably do not
hold for the more general embeddings allowed by the relaxed conditions. However, this is unimportant,
as we only need those result for the subset of embeddings that satisfy the original conditions, and they
are still embeddings under the new conditions.

With the relaxed conditions on embeddings, we can construct the pullback in the above example:

Example 5. The pullback of the embeddings ~φ : ~G ↪→H from Example 4 is

I = I ′′ = G0 ⊗ [z 7→ a] : {x, y, z} → {v, w, a}
p0 = IdG0] [a 7→ {v, w}, z 7→ ∅] : I ↪→G0

p1 = φ0] [a 7→ u, z 7→ z] : I ↪→G1.

The unique embeddings ug : I ′ ↪→ I,uf : I ′′ ↪→ I, and uf ′ : I ′′ ↪→ I for the spans ~g : I ′ ↪→ ~G, ~f : I ′′ ↪→ ~G,
and ~f ′ : I ′′ ↪→ ~G, respectively, are

ug = Id{x,y,v,w} uf = IdI uf ′ = IdI .

We have a construction which we believe gives pullbacks for link graph embeddings, but have yet to
prove it correct. So far, however, we have no indications that it should not be correct, and we believe
that the construction transfers to place graphs and bigraphs. We therefore venture a conjecture:

Conjecture 7.7.6 (pullbacks in the category of bigraph embeddings). The bigraphical embedding
categories LgEmb(K), PgEmb(K), BgEmb(K), where conditions (LGE-4) and (PGE-3) are replaced
by conditions (LGE-4’) and (PGE-3’), have pullbacks.

7. Towards Scalable Simulation of Stochastic Bigraphs 307

Furthermore, since bigraphs are finite, we believe that there are only a finite number of ways that
two bigraphs can overlap in any context, when we disregard the choice of support in those contexts.
In other words, we conjecture that there is a finite set of pullbacks, up to isomorphism, for any two
bigraphs:

Conjecture 7.7.7. For any two objects ~G in one of the bigraphical embedding categories LgEmb(K),
PgEmb(K), BgEmb(K), where conditions (LGE-4) and (PGE-3) are replaced by conditions (LGE-4’)
and (PGE-3’), there are finitely many spans ~p : I ↪→ ~G (up to iso on I) which are pullbacks of a cospan
φ : ~G ↪→H.

In other words, we expect to be able to construct a finite representation of all possible overlaps
between two bigraphs. We shall defer discussion of this construction until we have discussed pushouts
on which the construction relies.

Pushouts of Embeddings

Where a pullback is a maximal subgraph that characterizes the overlap of two embeddings, the dual
notion of a pushout, if it exists, is a minimal context where two embeddings exhibit a given overlap.
Pushouts do not in general exist in the bigraphical embedding categories as the following example
illustrates:

Example 6. Consider the following span of place graph embeddings (we leave out controls for brevity):

I = ({v}, [v 7→ 0]) : 1

G0 = ({v, u}, [v 7→ u, u 7→ 0]) : 1

G1 = ({v, w}, [v 7→ 0, w 7→ 0]) : 1

g0 = [v 7→ v, 0 7→ u] : I ↪→G0

g1 = [v 7→ v, 0 7→ 0] : I ↪→G1.

This span has no pushout because G1 insists that v has a sibling whereas G0 insists that v has no
siblings and clearly no context can satisfy both of these requirements.

Intuitively, this just means that we cannot single out a subgraph in two bigraphs and then construct
a context where they overlap at that subgraph – which is unsurprising, since embeddings are structure
preserving.

However, for pullbacks we know, by definition, that there are contexts where the overlap can be
found. The remaining question is then: can we construct a minimal such context? We believe the
answer is yes, but, as was the case for pullbacks, we shall have to relax the embedding conditions, as
the following example illustrates:

Example 7. Consider the following pullback of place graph embeddings (we again leave out controls

308 7.7. Rule Activation and Inhibition

for brevity and use named sites and roots q, r, s for clarity):

I = (∅, ∅) : ∅
G0 = ({v}, [s 7→ v, v 7→ r]) : {s} → {r}
G1 = ({w}, [w 7→ q]) : {q}
H = ({v, u, x, w}, [w 7→ x, x 7→ u, u 7→ v, v 7→ r]) : {r}
p0 = ∅ : I ↪→G0

p1 = ∅ : I ↪→G1

φ0 = [v 7→ v, s 7→ u, r 7→ r] : G0 ↪→H

φ1 = [w 7→ w, q 7→ x] : G1 ↪→H.

What should the pushout of ~p : I ↪→ ~G be? The two embeddings do not overlap, so what is the
canonical context where two place graphs do not overlap? Perhaps the pushout should be the tensor
product of the two place graphs:

K = G0 ⊗G1 o0 = IdG0 : G0 ↪→K o1 = IdG1 : G1 ↪→K.

Alas, there is no embedding u : K ↪→H such that u ◦ o0 = φ0 and u ◦ o1 = φ1 since condition (PGE-6)
prevents us from mapping the root q to a descendant of the site s (in fact, this was the motivation for
adding that condition, as discussed in Example 3).

If we disregard condition (PGE-6) then ~o : ~G0 ↪→ ~G1 is a pushout. In particular, the embedding
u = φ0] φ1 is the only one that satisfies u ◦ o0 = φ0 and u ◦ o1 = φ1.

Thus, it seems that in order to have pushouts, we must discard condition (PGE-6). In fact, we
believe that this all that is required in order to have pushouts of pullbacks in the bigraphical embedding
categories. As for pullbacks, we have a construction of pushouts for pullbacks of link graph embeddings,
which we think transfers to place graphs and bigraphs. But we have yet to prove it correct, though so
far nothing indicates that it is incorrect. So, again, we venture a conjecture:

Conjecture 7.7.8. For any pullback ~p : I ↪→ ~G of some cospan in one of the bigraphical embedding
categories LgEmb(K), PgEmb(K), BgEmb(K), where condition (PGE-6) is discarded and conditions
(LGE-4) and (PGE-3) are replaced by conditions (LGE-4’) and (PGE-3’), there is a pushout ~o :
~G ↪→K.

Characterizing Overlaps

As we discussed in Section 7.7.2, we think that there are only finitely many pullbacks for any two
bigraphs (up to iso). While we hope to eventually find a direct method for enumerating these pullbacks,
we will initially be content with any method. In particular, we believe that the following brute-force
method will work (assuming we wish to characterize the overlaps of ~G):

1. Generate overlap candidates, i.e., spans ~g : I ′ ↪→ ~G, by equating subsets of entities of G0 and
G1. It is still unclear to us exactly how this should be done, but for let us assume that we can
generate such candidates and that there are finitely many.

2. For each overlap candidate ~g : I ′ ↪→ ~G, apply the pushout construction. If it results in a bound
~o : ~G ↪→K for ~g, i.e., K is a bigraph and o0 ◦ g0 = o1 ◦ g1, then we can construct a pullback.

7. Towards Scalable Simulation of Stochastic Bigraphs 309

Let us now assume that the conjectures of the previous two sections hold and that we have a
method for obtaining the finite set of pullback spans for any pair ~G of bigraphs. In other words, for
each pair ~G of bigraphs assume that we have a finite set of pullback-pushout (PP) diagrams

I ⊂
p0

→ G0

G1

p1

↓

∩

⊂

o1

→ H

o0

↓

∩

.

such that for any pair of embeddings ~φ : ~G ↪→H ′ its pullback is in one of the PP diagrams, i.e.,

I ⊂
p0

→ G0

G1

p1

↓

∩

⊂
o1 → H

o0

↓

∩

H ′

φ0

⊂

→

⊂...........u→φ1

⊂

→
.

Thus, if our conjectures hold, we can give a finite characterization of all overlaps between two
bigraphs in any context.

7.7.3 PP Diagrams, Activation and Inhibition
Let us now return to the question of characterizing causality at the level of rules, i.e., the activation
and inhibition relations. The characterization of overlaps based on PP diagrams, as outlined in the
previous section, in itself provides the means to approximate the activation and inhibition relations
≺ and #. For example, if two redexes can never overlap in a context, i.e., the only PP diagram has
I = ∅, then they can never be in conflict. However, as discussed above in Section 7.7.1, we can do
better than that by exploiting that edit scripts provide a notion of modification, and in this section
we outline how.

We shall need a development for edit scripts which we, due to time constraints, only state as an
assumption: we assume that we can construct an inverse ∆−1 of any linear edit script ∆ which satisfies

φ : ∆(P̃) ↪→H

⇒ ∃H ′, φ′ : P̃ ↪→H ′ . (H,φ) = ∆(H ′, φ′) ∧ (H ′, φ′) = ∆−1(H,φ).

Inhibition

Recall from Section 7.3.2 that rule R0 inhibits rule R1, written R0 #R1 iff R0 generates at least one
reaction which conflicts with a reaction generated by R1.

We believe that we can construct the inhibition relation through the PP diagrams of the previous
section. More precisely, we make the following conjecture:

310 7.7. Rule Activation and Inhibition

Conjecture 7.7.9. Assume an agent a, two linear reconfiguration rules Ri = (P̃i,∆i) (i = 0,1),
and embeddings ~φ : ~̃P ↪→ a. By definition, the rules and embeddings generate the reactions a _R0,φ0

∆0(a, φ0) and a _R1,φ1
∆1(a, φ1), as illustrated by the following diagram:

P̃0 P̃1

∆0(a, φ0) / a .

φ1

←

⊃

φ0

⊂

→
∆1(a, φ1) .

Also, assume that the cospan ~φ : ~̃P ↪→ a has the PP diagram

I ⊂
p0

→ P̃0

P̃1

p1

↓

∩

⊂
o1 → H

o0

↓

∩

a

φ0

⊂

→

⊂.............u→
φ1

⊂

→
.

We then conjecture

φ0 : P̃0 6↪→∆1(a, φ1) ⇔ o0 : P̃0 6↪→∆1(H, o1)

φ1 : P̃1 6↪→∆0(a, φ0) ⇔ o1 : P̃1 6↪→∆0(H, o0).

Assuming this conjecture holds, we get that PP diagrams characterize inhibition:

Theorem 7.7.10. Given two linear reconfiguration rules Ri = (P̃i,∆i) (i = 0,1) then R0 #R1 iff there
is a PP diagram

I ⊂
p0

→ P̃0

P̃1

p1

↓

∩

⊂
o1 → H

o0

↓

∩

such that o1 : P̃1 6↪→∆0(H, o0).

Proof. Follows immediately from Prop. 7.7.4 and Conjecture 7.7.9.

Activation

Recall from Section 7.3.2 that rule R0 activates rule R1, written R0 ≺ R1 iff R0 generates at least one
reaction which enables a reaction generated by R1.

7. Towards Scalable Simulation of Stochastic Bigraphs 311

We believe that we can construct the activation relation through the PP diagrams of the previous
section. More precisely, we make the following conjecture:

Conjecture 7.7.11. Assume an agent a, two linear reconfiguration rules Ri = (P̃i,∆i) (i = 0,1), and
embeddings φ0 : P̃0 ↪→ a, φ′0 : ∆0(P̃) ↪→ a′, φ1 : P̃1 ↪→ a′ where (a′, φ′0) = ∆0(a, φ0), as illustrated by the
following diagram:

P̃0 ∆0(P̃0) P̃1

a

φ0

↓

∩

. ∆0(a, φ0)

φ′0

↓

∩

φ1

←

⊃

.

Also, assume that the cospan φ′0 : ∆0(P̃0) ↪→ a′, φ1 : P̃1 ↪→ a′ has the PP diagram

I ⊂
p0

→ ∆0(P̃0)

P̃1

p1

↓

∩

⊂
o1 → H

o0

↓

∩

∆0(a, φ0)

φ′0

⊂

→

⊂...........u→
φ1

⊂

→
.

We then conjecture

φ1 : P̃1 6↪→ a ⇔ o1 : P̃1 6↪→∆−1
0 (H, o0).

Assuming this conjecture holds, we get that PP diagrams characterize activation:

Theorem 7.7.12. Given two linear reconfiguration rules Ri = (P̃i,∆i) (i = 0,1) then R0 ≺ R1 iff
there is a PP diagram

I ⊂
p0

→ ∆0(P̃0)

P̃1

p1

↓

∩

⊂
o1 → H

o0

↓

∩

.

such that o1 : P̃1 6↪→∆−1
0 (H, o0).

Proof. Follows immediately from Prop. 7.7.3 and Conjecture 7.7.11.

312 7.8. Anchored Matching

7.8 Anchored Matching

A pillar in the scalability of the KaSim algorithm is that, after reaction, we only search for new matches
in the parts of the agent that have been modified. In other words, KaSim requires a localized matching
algorithm that only searches a subset of the agent. Such an algorithm has not yet been presented in
the bigraph literature. Previously published matching algorithms find matches anywhere in the agent
[20, 34]; these algorithms are useful for the initialization phase of KaSim, where all matches must be
found, but it is unclear how to specialize them to local matching.

In this section we shall present a localized matching algorithm, based on the idea of expanding
partial embeddings to total embeddings, i.e., matches. Not only is this a localized matching algorithm,
but it combines well with our edit scripts and causality analysis:

1. Mediation of an edit script results in a reaction a _ a′ and an embedding φ0 : R′0 ↪→ a′ of the
reactum of the applied reaction rule R0 = (R0, R

′
0, η0) into the resulting agent a′.

2. For any rule R1 that may be activated by R1 = (R1, R
′
1, η1), i.e., R0 ≺ R1, the causality analysis

gives us a set of PP diagrams of the form

I ⊂
p0

→ R′0

R1

p1

↓

∩

⊂

o1

→ H

o0

↓

∩

where I 6= ε, which characterizes all matches of R′0 and R1 that overlap exactly as prescribed by
~p : I ↪→ ~R.

3. Iff φ0 ◦ o−1
0 : H ↪⇀a′ is a partial embedding

I ⊂
p0

→ R′0

R1

p1

↓

∩

⊂

o1

→ H

o0

↓

∩

a′

φ0

⊂

→

⊂

φ
0 ◦
o −

10

⇀

then any and all extensions to a total embedding of H, i.e., φH : H ↪→ a′ where φH �rng(o0)=

7. Towards Scalable Simulation of Stochastic Bigraphs 313

φ0 ◦ o−1
0 , is a match of R1, as witnessed by the composition φH ◦ o1 : R1 ↪→H

I ⊂
p0

→ R′0

R1

p1

↓

∩

⊂

o1

→ H

o0

↓

∩

a′.

φ0

⊂

→

⊂

φ
H

→φH ◦ o1

⊂

→

We call the initial partial embedding of H the anchor and, derived from this, we call the algorithm
anchored matching. Note that we assume that the redex is one connected component. However, as
discussed in the original presentation of the KaSim algorithm [12], this is not a problem, since the
separate connected components of a redex can be matched separately and then combined ad hoc during
simulation; see loc. cit. for details.

7.8.1 Algorithm

Due to time constraints, we shall only present a very naive algorithm, and only discuss possible
optimizations. While this algorithm is too naive to be practical in an implementation, it is sufficient
for communicating our approach and it can probably serve as a nice and simple starting point for
soundness and completeness proofs.

The algorithm builds on the following two ideas:

fringe: For a bigraph G : 〈k,X〉 → 〈m,Y 〉 and a subset of its entities S ⊂ VG]EG] k]X]m] Y ,
the fringe of S in G are the entities of G that are adjacent to entities of S but not in S, i.e.,

fringe(G,S) = {c ∈ (k] VG) \ S | ∃p ∈ S : prnt(c) = p}
] {p ∈ (VG]m) \ S | ∃c ∈ S : prnt(c) = p}
] {l ∈ EG] Y \ S | ∃v ∈ S, i ∈ N : link(p) = l

∨ ∃x ∈ S : link(x) = l}
] {v ∈ VG \ S | ∃l ∈ S, i ∈ N : link(v, i) = l}
] {x ∈ X \ S | ∃l ∈ S : link(x) = l}.

If G consists of a single connected component and S is non-empty, then if we keep expanding S
by entities in its fringe, eventually S will cover G.

valid extension: For a partial embedding φ : G ↪⇀a into an agent a : 〈m,Y 〉, an entity s in the fringe
of φ in G, and subset T of the entities of a, i.e.,

s ∈ fringe(G, dom(φ))

T ⊆ Va] Ea]m] Y

314 7.8. Anchored Matching

Algorithm 1 The Anchored Matching algorithm
Require: φ : G ↪⇀a non-trivial, G has one connected component
1: procedure Anchored-Matching(φ : G ↪⇀a)
2: if fringe(G, dom(φ)) = ∅ then
3: return {φ}
4: else
5: M ← ∅
6: choose s ∈ fringe(G, dom(φ))
7: for all T ⊆ fringe(a, rng(φ)) do
8: if validExt(φ, s 7→ T) then
9: M ←M ∪ Anchored-Matching(φ[s 7→ T])

10: return M

the define the predicate validExt(φ, s 7→ T) to be true when φ[s 7→ T] : G ↪⇀a is also a partial
embedding. Note that T is a subset of the entities of a, since embeddings of sites and inner
names map to subsets; for the other entities T should be a singleton.

Note that the injectivity and structure preservation conditions on embeddings imply that T must
be on the fringe of φ in a.

The algorithm is listed in Algorithm 1. In brief, it works as follows:

line 2: If the fringe of φ in G is empty, φ is total (since G is a connected component) and thus we
have found a match.

line 6: Otherwise, choose an entity s on the fringe of φ in G which shall be matched next.

line 7: For any possible mapping of s to entities T on the fringe of φ in a:

line 8: If s 7→ T is a valid extension of φ

line 9: find all total extensions of φ[s 7→ T].

The obvious places to optimize this algorithm are the choices of s and T :

choosing T : It should be possible to only choose T ’s such that validExt(φ, s 7→ T). In particular, the
structure preservation conditions on embeddings should guide the choice of T . For instance, if s
is a node, T should be a singleton {t} where t is a node with ctrlG(s) = ctrla(t), and if s is on
the fringe of φ because prntG(s) ∈ dom(φ), then t ∈ prnt−1

a (φ(prntG(s))).

choosing s: The heuristic for choosing s is critical for narrowing down the number of T ’s we will have
to explore for each s. We believe that a good strategy could be to choose an s that is estimated
to have a small number of possible embeddings.

For instance, note that if s is on the fringe of φ because of one of its children c, i.e., c ∈ prnt−1
G (s)∩

dom(φ), then structure preservation dictates that the only choice is T = {prnta(φ(c))}. Similarly,
embeddings of nodes and inner names determine the embeddings of the connected links.

We therefore envision a representation of the fringe of φ in G as a prioritized queue, where the
priority of each entity is an estimation number of possible embeddings based on its adjacency
relation to dom(φ). Whenever the embedding is extended with an entity, the estimate of adjacent
entities in the fringe should be updated.

7. Towards Scalable Simulation of Stochastic Bigraphs 315

Furthermore, note that an inner will only be on the fringe of φ in G if the link is connected to
is already mapped by φ. Together with the embedding conditions, this means that extending
an embedding by an inner name will only affect the choice of sibling inner names. In fact, there
are very few restrictions on how such sibling inner names should be mapped, and it therefore
seems reasonable to postpone matching of inner names to the end. Similarly, sites could also be
postponed.

7.9 Conclusions and Future Work

In this report we have laid a firm, formal foundation for an implementation of stochastic bigraphs:

1. We have defined stochastic parametric reactive systems, an alternative foundation for the dy-
namic semantics of bigraphs which is amenable to implementation: support is handled explicitly,
parametric reaction rules are first-class citizens, and the stochastic rates of an agent is deter-
mined by its matches. Furthermore, we have shown that stochastic parametric reactive systems
have the same abstract reactions as Milner’s reactive systems.

2. We have defined bigraph embeddings and shown that they are isomorphic to certain decompo-
sitions of bigraphs; in particular, embeddings of redexes into agents are isomorphic to matches.
Furthermore, we have shown that embeddings of a solid bigraph are determined by support
translations of its nodes.

3. We have proposed, and proven sound and complete, a set of minimal edits of parametric redexes
which, when put in sequence to form edit scripts, are equivalent to parametric reaction rules and
generate the same abstract reactions.

4. We have outlined a characterization of causality and conflict for linear parametric reaction rules,
based on pullbacks in the category of bigraph embeddings.

5. We have given a localized matching algorithm: starting from a partial match, i.e., a partial
embedding, of a connected component, it finds all completions.

The presented work is part of an effort to build an efficient and scalable simulator for stochastic bi-
graphs: the Stochastic Bigraphical Abstract Machine. So far a prototype based on SPRSs, embeddings,
edit scripts, and anchored matching have been implemented. It allows stochastic simulation of certain
BRSs: all controls must be active, reaction rules must be linear, and redexes must be solid and consist
of a single connected component.

7.9.1 Future Work

Localized matching and causality analysis of rules should be investigated in more detail. In particular,
we must prove our conjectures about the embedding categories and soundness and completeness of an-
chored matching. Furthermore, it it unclear whether the pullback approach to characterizing causality
and conflict will (a) result in a practical algorithm, and (b) generalize to non-linear reaction rules.

Our presentation of bigraph embeddings, and the related proofs, could probably be simplified by
using a formulation of concrete bigraphs where roots and sites are named (as we did in our development
of edit scripts). In fact, we believe that, for many purposes, the theory of bigraphs would be simpler
to work with if roots and sites were named.

316 7.10. Bibliography

From an implementation perspective, there is a need for representing sets of embeddings efficiently:
in biological models there will often be a large number of embeddings of each redex. This needs further
investigation, but as a first step we believe the following conjecture may prove useful: embeddings of
solid bigraphs are determined by the support translation of the leaves of the place graph.

For the biological simulation scenarios we have in mind, we expect the user to provide edit scripts
as they provide a natural way to express protein-protein interaction as well as dynamic compartmen-
talization. However, there might be applications where the user would prefer to provide reaction rules
and have the system infer suitable edit scripts. While we have given a simple construction of edit
scripts for any parametric reaction rule, it is very naive and assumes that there is no relation between
nodes and edges of redex and reactum, resulting in inefficient simulation. It should therefore be inves-
tigated how one can derive better edit scripts. This seems related to the tree edit distance problem,
where one wishes to find a minimal edit script that transforms one tree into another [5].

7.10 Bibliography
[1] G. Bacci, D. Grohmann, and M. Miculan. Bigraphical models for protein and membrane in-

teractions. In Proceedings of the Third International Workshop on Membrane Computing and
Biologically Inspired Process Calculi (MeCBIC 2009), pages 3–18. EPTCS 11, 2009.

[2] G. Bacci, D. Grohmann, and M. Miculan. Dbtk: A toolkit for directed bigraphs. In CALCO,
pages 413–422, 2009.

[3] M. Beauquier and C. Schürmann. A bigraph reactive systems realtion model. Technical Report
TR-2010-126, IT University of Copenhagen, June 2010.

[4] BigMC. BigMC – Bigraphical Model Checker. http://bigraph.org/bigmc/.

[5] P. Bille. A survey on tree edit distance and related problems. Theoretical Computer Science, 337:
217–239, June 2005.

[6] L. Birkedal, T. C. Damgaard, A. J. Glenstrup, and R. Milner. Matching of bigraphs. Electronic
Notes in Theoretical Computer Science, 175(4):3–19, 2007.

[7] BPLTool. BPL Tool. http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool.

[8] G. L. Cattani, J. J. Leifer, and R. Milner. Contexts and embeddings for closed shallow action
graphs. Technical Report UCAM-CL-TR-496, University of Cambridge, Computer Laboratory,
July 2000.

[9] T. C. Damgaard and J. Krivine. A generic language for biological systems based on bigraphs.
Technical Report TR-2008-115, IT University of Copenhagen, December 2008.

[10] T. C. Damgaard, V. Danos, and J. Krivine. A language for the cell. Technical Report TR-2008-
116, IT University of Copenhagen, December 2008.

[11] V. Danos and C. Laneve. Formal molecular biology. Theoretical Computer Science, 325, 2004.

[12] V. Danos, J. Feret, W. Fontana, and J. Krivine. Scalable simulation of cellular signaling networks.
In Proceedings of the 5th Asian conference on Programming languages and systems, APLAS’07,
pages 139–157. Springer-Verlag, 2007.

http://bigraph.org/bigmc/
http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool

7. Towards Scalable Simulation of Stochastic Bigraphs 317

[13] S. Debois. Computation in the informatic jungle. Technical Report TR-2011-147, IT University
of Copenhagen, 2011. (forthcoming).

[14] N. Eén and N. Sörensson. MiniSAT. http://minisat.se.

[15] H. Ehrig. Bigraphs meet double pushouts. Bulletin of the EATCS, 78:72–85, 2002.

[16] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of graph grammars
and computing by graph transformation, Volume 3: Concurrency, Parallelism, and Distribution.
World Scientific Publishing Co., Inc., 1999. ISBN 9-810240-21-X.

[17] A. Faithfull. Big Red. http://www.itu.dk/research/pls/wiki/index.php/Big_Red, 2010.

[18] D. T. Gillespie. A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. Journal of Computational Physics, 22(4):403–434, 1976.

[19] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical
Chemistry, 81(25):2340–2361, 1977.

[20] A. J. Glenstrup, T. C. Damgaard, L. Birkedal, and E. Højsgaard. An implementation of bigraph
matching. Technical Report TR-2010-135, IT University of Copenhagen, December 2010.

[21] C. Greenhalgh. bigraphspace. http://bigraphspace.svn.sourceforge.net/, 2009.

[22] J. Hillston. A compositional approach to performance modelling. Cambridge University Press,
1996. ISBN 0-521-57189-8.

[23] E. Højsgaard and A. J. Glenstrup. The BPL Tool: A tool for experimenting with bigraphical
reactive systems. Technical Report TR-2011-145, IT University of Copenhagen, October 2011.

[24] O. H. Jensen and R. Milner. Bigraphs and mobile processes (revised). Technical Report UCAM-
CL-TR-580, University of Cambridge – Computer Laboratory, February 2004.

[25] J. Krivine, R. Milner, and A. Troina. Stochastic bigraphs. Electronic Notes in Theoretical Com-
puter Science, 218:73 – 96, 2008. ISSN 1571-0661. Proceedings of the 24th Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXIV).

[26] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time
systems. In CAV, pages 585–591, 2011.

[27] R. Milner. Axioms for bigraphical structure. Journal of Mathematical Structures in Computer
Science, 15(6):1005–1032, 2005.

[28] R. Milner. Embeddings and contexts for link graphs. In H.-J. Kreowski, U. Montanari, F. Orejas,
G. Rozenberg, and G. Taentzer, editors, Formal Methods in Software and Systems Modeling,
volume 3393 of Lecture Notes in Computer Science, pages 343–351. Springer Berlin / Heidelberg,
2005.

[29] R. Milner. The Space and Motion of Communicating Agents. Cambridge University Press, 2009.

[30] PEPAPlugIn. The PEPA Plug-in Project. http://www.dcs.ed.ac.uk/pepa/tools/plugin/
index.html.

[31] C. Priami. Stochastic π-calculus. Computer Journal, 38(7):578–589, 1995.

http://minisat.se
http://www.itu.dk/research/pls/wiki/index.php/Big_Red
http://bigraphspace.svn.sourceforge.net/
http://www.dcs.ed.ac.uk/pepa/tools/plugin/index.html
http://www.dcs.ed.ac.uk/pepa/tools/plugin/index.html

318 7.A. Proofs

[32] G. Rozenberg, editor. Handbook of graph grammars and computing by graph transformation,
Volume 1: Foundations. World Scientific Publishing Co., Inc., 1997. ISBN 98-102288-48.

[33] A. Schack-Nielsen and C. Schürmann. Celf - a logical framework for deductive and concurrent
systems (system description). In IJCAR, pages 320–326, 2008.

[34] M. Sevegnani, C. Unsworth, and M. Calder. A SAT based algorithm for the matching problem
in bigraphs with sharing. Technical Report TR-2010-311, University of Glasgow, Department of
Computing Science, 2010.

[35] P. Sobocinsky. Relative pushouts in graphical reactive systems. February 2002.

7.A Proofs

7.A.1 Bigraph Embeddings

Proof of Prop. 7.5.3

φe: Construct the map of each edge e ∈ EG as follows: choose a port p = (v, i) ∈ link−1
G (e), which is

always possible since no edge is idle and every inner name is guarding, and let

φe(e) = linkH(φv(v), i).

By construction it satisfies condition (LGE-9); it must satisfy the other conditions since φ is an
embedding and φe is the only embedding of edges that will satisfy condition (LGE-9): To see that φe
is unique, assume that there is a different φ′e, i.e., φe(e) 6= φ′e(e) for some e ∈ EG. Since they both
satisfy condition (LGE-9), the following must hold for the port p we chose when defining φe(e):

φe(e) = (φe ◦ linkG)(p)

= (linkH ◦φp)(p)
= (φ′e ◦ linkG)(p) = φ′e(e)

which contradicts our assumption that φe and φ′e are different.

φi: Construct the map of each inner name x ∈ XG as follows:

φi(x) = pointsH,x \φp(PG,x)

pointsH,x = (link−1
H ◦φe)(linkG(x))

PG,x = (link−1
G ◦ linkG)(x) \ {x}

φp(v, i) = (φv(v), i).

This is well-defined since no outer name of G is linked to an inner name, thus linkG(x) ∈ EG, and
no inner names are siblings. By construction it satisfies condition (LGE-7); it must satisfy the other
conditions since φ is an embedding and φi is the only embedding of inner names that will satisfy
condition (LGE-7): To see that φi is unique, assume that there is a different φ′i that satisfies the
conditions of Def. 7.5.1, i.e., there must be some x ∈ XG and p ∈ XH] PH with p ∈ φi(x), p 6∈ φ′i(x)

7. Towards Scalable Simulation of Stochastic Bigraphs 319

(or vice versa). Since they both satisfy condition (LGE-7) and G no outer name is linked to an inner
name we have:

linkG(x) ∈ EG
(φp ◦ link−1

G �EG)(linkG(x)) = (link−1
H ◦φe)(linkG(x))

= (φ′p ◦ link−1
G �EG)(linkG(x))

where

φp(p′) =

{
(φv(v), i) if p′ = (v, i) ∈ PG
φi(p′) if p′ ∈ XG

φ′p(p′) =

{
(φv(v), i) if p′ = (v, i) ∈ PG
φ′i(p′) if p′ ∈ XG

And since p ∈ φi(x), and φp(p′) and φ′p(p′) agree on ports, we must have p ∈ φ′i(x′) for some
x′ ∈ link−1

G �EG (linkG(x)). But no inner names are siblings, so x′ = x and thus p ∈ φ′i(x′) which
contradicts our assumption that p 6∈ φ′i(x).

φo: Construct the map of each outer name y ∈ YG as follows: choose a port p = (v, i) ∈ link−1
G (y),

which is always possible since no outer name is idle or connected to an inner name, and let

φo(y) = linkH(φv(v), i).

By construction it satisfies condition (LGE-9); it must satisfy the other conditions since φ is an
embedding and φo is the only embedding of outer names that will satisfy condition (LGE-9): To see
that φo is unique, assume that there is a different φ′o, i.e., φo(y) 6= φ′o(y) for some y ∈ YG. Since they
both satisfy condition (LGE-9), the following must hold for the port p we chose when defining φo(y):

φo(y) = (φo ◦ linkG)(p)

= (linkH ◦φp)(p)
= (φ′o ◦ linkG)(p) = φ′o(y)

which contradicts our assumption that φo and φ′o are different.

Proof of Prop. 7.5.6

From the definitions of support translation, composition, and tensor product we have:

VH = VC] VG] VD C : mG + k → mH

ctrlH = ctrlC] ctrlG] ctrlD D : kD → kG

kD ⊆ kH

To show that φ is an embedding we need to express the parent map of H in terms of it decomposition
C ◦ (G ◦D⊗ idk) ◦ π. We construct the map incrementally according to the definitions of composition
and tensor product (cf. Def. 7.2.6 and Def. 7.2.8)

320 7.A. Proofs

G ◦D: We write prnt1 for the parent map of the resulting place graph:

prnt1(w) =

prntD(w) if w ∈ kD] VD and prntD(w) ∈ VD
prntG(j) if w ∈ kD] VD and prntD(w) = j ∈ kG
prntG(w) if w ∈ VG

G ◦D ⊗ idk: We write prnt2 for the parent map of the resulting place graph:

prnt ′idk(kD + i) = mG + i (i ∈ k)

prnt2(w) = (prnt1] prnt ′idk)(w)

=

prntD(w) if w ∈ kD] VD and prntD(w) ∈ VD
prntG(j) if w ∈ kD] VD and prntD(w) = j ∈ kG
prntG(w) if w ∈ VG
mG − kD + w if w ∈ (kD + k) \ kD

(G ◦D ⊗ idk) ◦ π: We write prnt3 for the parent map of the resulting place graph:

prnt3(w) =

{
prnt2(π(w)) if w ∈ kH
prnt2(w) if w ∈ VG] VD

=

prntD(π(w)) if w ∈ kH and π(w) ∈ kD and prntD(π(w)) ∈ VD
prntG(j) if w ∈ kH and π(w) ∈ kD and prntD(π(w)) = j ∈ kG
mG − kD + π(w) if w ∈ kH and π(w) ∈ (kD + k) \ kD
prntD(w) if w ∈ VD and prntD(w) ∈ VD
prntG(j) if w ∈ VD and prntD(w) = j ∈ kG
prntG(w) if w ∈ VG

7. Towards Scalable Simulation of Stochastic Bigraphs 321

H = C ◦ (G ◦D ⊗ idk) ◦ π:

prntH(w) =

prnt3(w) if w ∈ kH] VG] VD and prnt3(w) ∈ VG] VD
prntC(j) if w ∈ kH] VG] VD and prnt3(w) = j ∈ kC
prntC(w) if w ∈ VC

=

prntD(π(w)) if w ∈ kH and π(w) ∈ kD
and prntD(π(w)) ∈ VD

prntG(j) if w ∈ kH and π(w) ∈ kD
and prntD(π(w)) = j ∈ kG
and prntG(j) ∈ VG

prntD(w) if w ∈ VD and prntD(w) ∈ VD
prntG(j) if w ∈ VD and prntD(w) = j ∈ kG

and prntG(j) ∈ VG
prntG(w) if w ∈ VG and prntG(w) ∈ VG
prntC(j) if w ∈ kH and π(w) ∈ kD

and prntD(π(w)) = i ∈ kG
and prntG(i) = j ∈ mG

prntC(mG − kD + π(w)) if w ∈ kH and π(w) ∈ (kD + k) \ kD
prntC(j) if w ∈ VD and prntD(w) = i ∈ kG

and prntG(i) = j ∈ mG

prntC(j) if w ∈ VG and prntG(w) = j ∈ mG

prntC(w) if w ∈ VC

We can now verify that φ is a place graph embedding, i.e., that it satisfies the conditions of
Def. 7.5.4:

(PGE-1) Satisfied since IdVG is an identity map.

(PGE-2) Since prntD : kD] VD → VD] kG, kD ⊆ kH , VD ⊆ VH , and π : kH → kH we have
φs = (IdVD] π−1) ◦ prnt−1

D �kG : kG → P(kH] VH); it is fully injective since prntD, IdVD , and π
are functions.

(PGE-3) Since prntC : (mG + k)] VC → VC]mH and VC ⊆ VH we have φr = prntC �mG : mG →
VH]mH .

(PGE-4) Satisfied since rng(φv) = VG, rng(φr) = rng(prntC �mG) ⊆ VC]mH , and VG #(VC]mH).

(PGE-5) Satisfied since rng(φs) = rng((IdVD] π−1) ◦ prnt−1
D �kG) ⊆ kH] VD, rng(φv) = VG, and

VG #(kH] VD).

(PGE-6) We have H �φ
s(kG)⊆ kH] VD which can be seen as follows (noting that prntH(w) ∈ VD ⇒

322 7.A. Proofs

w ∈ kH] VD):

H �φ
s(kG) = {c′ | c′ ∈ kH] VH ∧ ∃i ≥ 0 : prnt iH(c′) ∈ φs(kG)}

= {c′ | c′ ∈ kH] VH ∧ ∃i ≥ 0 : prnt iH(c′) ∈ ((IdVD] π−1) ◦ prnt−1
D)(kG)}

= {c′ | c′ ∈ kH] VH ∧ ∃i ≥ 0 : prnt iH(c′) ∈ kH] VD}
= {c′ | c′ ∈ kH] VD ∧ ∃i ≥ 0 : prnt iH(c′) ∈ VD}
⊆ kH] VD

Since rng(φr) = rng(prntC �mG) ⊆ VC]mH and (kH]VD) #(VC]mH) the condition is satisfied.

(PGE-7) Satisfied since we have the following equalities:

(φc ◦ prnt−1
G �VG)(w) = φc(prnt−1

G (w))

= φs(kG ∩ prnt−1
G (w))

∪ φv(VG ∩ prnt−1
G (w))

= ((IdVD] π−1) ◦ prnt−1
D �kG)(kG ∩ prnt−1

G (w))

∪ (VG ∩ prnt−1
G (w))

= {i ∈ π−1(kD) | prntD(π(i)) = j ∈ kG and prntG(j) = w}
∪ {v ∈ VD | prntD(v) = j ∈ kG and prntG(j) = w}
∪ {v ∈ VG | prntG(v) = w}

= prnt−1
H (w)

= (prnt−1
H ◦IdVG)(w)

= (prnt−1
H ◦φv)(w).

(PGE-8) Satisfied since φv = idVG and ctrlG ⊆ ctrlH .

(PGE-9) We check the condition separately for the nodes and sites:

v ∈ VG: We check the condition separately for the cases where the parent is a node or a root:

prntG(v) ∈ VG:

(φf ◦ prntG)(v) = (φv ◦ prntH)(v)

= (IdVG ◦ prntH)(v)

= (prntH ◦IdVG)(v)

= (prntH ◦φc)(v).

prntG(v) ∈ mG:

(φf ◦ prntG)(v) = (φr ◦ prntG)(v)

= (prntC ◦ prntG ◦IdVG)(v)

= (prntH ◦φc)(v).

i ∈ kG: We check the condition separately for the cases where the parent is a node or a root:

7. Towards Scalable Simulation of Stochastic Bigraphs 323

prntG(i) ∈ VG:

(φf ◦ prntG)(i) = (φv ◦ prntG)(i)

= (IdVG ◦ prntG)(i)

= prntG(i)

= prntH(((IdVD] π−1) ◦ prnt−1
D �kG)(i))

= (prntH ◦φs)(i)
= (prntH ◦φc)(i).

prntG(i) ∈ mG:

(φf ◦ prntG)(i) = (φr ◦ prntG)(i)

= (prntC ◦ prntG)(i)

= prntH(((IdVD] π−1) ◦ prnt−1
D �kG)(i))

= (prntH ◦φs)(i)
= (prntH ◦φc)(i).

Proof of Prop. 7.5.9

We first show that prmt(φ) and ctxt(φ) are indeed place graphs:

prmt(φ) : Clearly, ctrlH �VD is a control map defined for VD. We must check that the parent map
prntD : kD] VD → VD] kG is (1) well-defined and (2) acyclic:

1. Since φs : kG → P(kH] VH) is fully injective, (φs)−1 is a function and thus prntD is clearly
well-defined.

2. It is immediate that prntD is acyclic iff ∀c ∈ kD] VD : ∃i > 0 : prnt iD(c) ∈ kG. This is clearly
the case for the elements of (fD] IdVD)−1(dom((φs)−1)) and for the remaining elements it follows
from the definition of the subtree operator, cf. Def. 7.2.9, and the fact that rng(prntH) # kD.

ctxt(φ) : Clearly, ctrlH �VC is a control map defined for VC . We must check that the parent map
prntC : kC] VC → VC]mH is (1) well-defined and (2) acyclic:

1. The constituent functions have the following domains and codomains:

φr : mG → VH]mH

prntH ◦fC : {i+mG | i ∈ |k̃C |} → VC]mH

prntH �VC : VC → VC]mH

Since kC = mG+ |k̃C | it is clear that prntC is well-defined, but we must show rng(φr) ⊆ VC]mH

to know cod(prntC) = VC]mH . Since VC = (VH \ φv(VG)) \ VD and VD = VH ∩H �rng(φs) this
amounts to showing rng(φr) # rng(φv) and rng(φr) #H �rng(φs), which follows from the fact that
φ is an embedding and thus satisfies conditions (PGE-4) and (PGE-6).

324 7.A. Proofs

2. Since prntH is acyclic and rng(prntH) # kC , prntC is acyclic.

To see that any valid choices of fD and f ′C yield equivalent decompositions, cf. Def. 7.5.7, assume that
we have two other bijections

gD : kD� k̃D g′C : |k̃C |� k̃C

and construct the corresponding parent maps prntD′ and prntC′ and permutation π′

prntD′ = ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (gD] IdVD)

gC(i+mG) = g′C(i) for i ∈ |k̃C |
prntC′ = φr] prntH �VC] prntH ◦gC

g′(i+ kD) = g′C(i) for i ∈ |k̃C |
π′ = g−1

D] g′−1 : kH → kH .

7. Towards Scalable Simulation of Stochastic Bigraphs 325

Finally, we check the equivalence conditions

prntD �VD = ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD)�VD

= ((φs)−1] prntH �(VD]k̃D)\rng(φs))�VD

= ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (gD] IdVD)�VD

= prntD′ �VD
prntC �VC]mG = (φr] prntH �VC] prntH ◦fC)�VC]mG

= (φr] prntH �VC)�VC]mG
= (φr] prntH �VC] prntH ◦gC)�VC]mG
= prntC′ �VC]mG

prntD ◦π �kD = ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD) ◦ π �kD

= ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD) ◦ (f−1
D] f ′−1)�kD

= ((φs)−1] prntH �(VD]k̃D)\rng(φs))�k̃D
= ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (gD] IdVD) ◦ (g−1

D] g′−1)�kD

= ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (gD] IdVD) ◦ π′ �kD

= prntD′ ◦π′ �kD
prntC(π(i)− kD +mG) = (φr] prntH �VC] prntH ◦fC)(π(i)− kD +mG)

= prntH(fC((f−1
D] f ′−1)(i)− kD +mG))

= prntH(f ′C(f ′−1(i)− kD))

= prntH(f ′C(f ′C
−1

(i)))

= prntH(i)

= prntH(g′C(g′C
−1

(i)))

= prntH(g′C(g′−1(i)− kD))

= prntH(gC((g−1
D] g′−1)(i)− kD +mG))

= (φr] prntH �VC] prntH ◦gC)(π′(i)− kD +mG)

= prntC′(π
′(i)− kD +mG).

We now show that prmt(φ) and ctxt(φ) are indeed parameter and context for the embedding of G:
Let

D : kD → kG = prmt(φ),

C : kC → mH = ctxt(φ), and

(V, ctrl , prnt) = ctxt(φ) ◦ (φ G ◦ prmt(φ)⊗ id|k̃C |) ◦ π.

By the definitions of composition and tensor product (cf. Def. 7.2.6 and Def. 7.2.8) we have the following

326 7.A. Proofs

equalities:

V = VC] φv(VG)] VD Defs. 7.2.6 and 7.2.8
= ((VH \ φv(VG)) \ VD)] φv(VG)] VD Def. 7.5.8
= VH

ctrl = ctrlH �VC] ctrlG ◦(φv)−1] ctrlH �VD Defs. 7.2.6 and 7.2.8

= ctrlH �VC] ctrlH ◦φv ◦ (φv)−1] ctrlH �VD Condition (PGE-8)
= ctrlH �VC] ctrlH �φv(VG)] ctrlH �VD φv is injective on VG
= ctrlH VH = VC] φv(VG)] VD

We construct the parent map prnt incrementally according to the definitions of composition and tensor
product (cf. Def. 7.2.6 and Def. 7.2.8), and then verify prnt(w) = prntH(w):

φ G: We write prntφ G for the parent map of the resulting place graph:

prntφ G = (φv] IdmG) ◦ prntG ◦((φv)−1] IdkG).

φ G ◦ prmt(φ): We write prnt1 for the parent map of the resulting place graph:

prnt1(w) =

prntD(w) if w ∈ kD] VD and prntD(w) ∈ VD
prntφ G(j) if w ∈ kD] VD and prntD(w) = j ∈ kG
prntφ G(w) if w ∈ φv(VG)

.

φ G ◦ prmt(φ)⊗ id|k̃C |: We write prnt2 for the parent map of the resulting place graph:

prnt2 = prnt1] prnt ′id|k̃C |

where

prnt ′id|k̃C |
(kD + i) = mG + i for i ∈ |k̃C |.

7. Towards Scalable Simulation of Stochastic Bigraphs 327

(φ G ◦ prmt(φ)⊗ id|k̃C |) ◦ π: We write prnt3 for the parent map of the resulting place graph:

prnt3(w) =

π(w) if w ∈ kH] ∅ and π(w) ∈ ∅
prnt2(j) if w ∈ kH] ∅ and π(w) = j ∈ kH
prnt2(w) if w ∈ φv(VG)] VD

=

{
prnt2(j) if w ∈ kH and π(w) = j ∈ kH
prnt1(w) if w ∈ φv(VG)] VD

=

prnt1(j) if w ∈ kH and π(w) = j ∈ kD
prnt ′id|k̃C |

(j) if w ∈ kH and π(w) = j ∈ kH \ kD
prnt1(w) if w ∈ φv(VG)] VD

=

prnt1(j) if w ∈ kH and π(w) = j ∈ kD
j +mG − kD if w ∈ kH and π(w) = j ∈ kH \ kD
prnt1(w) if w ∈ φv(VG)] VD

ctxt(φ) ◦ (φ G ◦ prmt(φ)⊗ id|k̃C |) ◦ π: Finally, we have

prnt(w) =

prnt3(w) if w ∈ kH] φv(VG)] VD and prnt3(w) ∈ φv(VG)] VD
prntC(j) if w ∈ kH] φv(VG)] VD and prnt3(w) = j ∈ kC
prntC(w) if w ∈ VC

.

Let us now verify prnt = prntH . prnt is defined for w ∈ kH] VC] φv(VG)] VD and so is prntH
since VC] φv(VG)] VD = VH , so let us consider prnt(w) in each case (noting that kH = k̃C] k̃D):
w ∈ k̃C : This implies

π(w) = f ′−1(w)

⇔ kD ≤ π(w) < kD + |k̃C |
⇒ prnt3(w) = π(w) +mG − kD and mG ≤ prnt3(w) < mG + |k̃C |
⇒ prnt(w) = prntC(π(w) +mG − kD)

= (prntH ◦fC)(π(w) +mG − kD)

= (prntH ◦fC)(f ′−1(w) +mG − kD)

= (prntH ◦fC)((f ′C)−1(w) +mG)

= (prntH ◦fC)((fC)−1(w))

= prntH(w)

w ∈ k̃D: This implies

π(w) = (fD)−1(w) ∈ kD
⇒ prnt3(w) = prnt1(π(w))

which further divides into two cases:

328 7.A. Proofs

prntD(π(w)) ∈ VD: This implies

prnt1(π(w)) = prntD(π(w)) ∈ VD
⇒ prnt(w) = prnt3(w) = prntD(π(w))

= prntD((fD)−1(w))

= (((φs)−1] prntH �(VD]k̃D)\rng(φs))

◦ (fD] IdVD))((fD)−1(w))

= prntH(w)

prntD(π(w)) ∈ kG: This implies

prnt1(π(w)) = prntφ G(prntD(π(w)))

= prntφ G(prntD((fD)−1(w)))

= prntφ G((((φs)−1] prntH �(VD]k̃D)\rng(φs))

◦ (fD] IdVD))((fD)−1(w)))

= prntφ G((φs)−1(w))

which again divides into two cases:

prntφ G((φs)−1(w)) ∈ φv(VG): This implies

prnt(w) = prnt3(w) = prnt1(π(w)) = prntφ G((φs)−1(w))

= ((φv] IdmG) ◦ prntG ◦((φv)−1] IdkG))((φs)−1(w))

= (φv ◦ prntG �
VG)((φs)−1(w))

= (prntH ◦φs)((φs)−1(w))

= prntH(w)

prntφ G((φs)−1(w)) ∈ kC : This implies

prnt(w) = prntC(prnt3(w)) = prntC(prnt1(π(w)))

= prntC(prntφ G((φs)−1(w)))

= prntC(((φv] IdmG) ◦ prntG ◦((φv)−1] IdkG))((φs)−1(w)))

= prntC(prntG((φs)−1(w)))

= (φr] prntH �VC] prntH ◦fC)(prntG((φs)−1(w)))

= φr(prntG((φs)−1(w)))

= (prntH ◦φs)((φs)−1(w))

= prntH(w)

7. Towards Scalable Simulation of Stochastic Bigraphs 329

w ∈ VD: This implies

prnt3(w) = prnt1(w)

which further divides into two cases:

prntD(w) ∈ VD: This implies

prnt1(w) = prntD(w) ∈ VD
⇒ prnt(w) = prnt3(w) = prntD(w)

= (((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD))(w)

= (prntH �(VD]k̃D)\rng(φs))(w)

= prntH(w)

prntD(w) ∈ kG: This implies

prnt1(w) = prntφ G(prntD(w))

= prntφ G((((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD))(w))

= prntφ G((φs)−1(w))

which again divides into two cases:

prntφ G((φs)−1(w)) ∈ φv(VG): This implies

prnt(w) = prnt3(w) = prnt1(w) = prntφ G((φs)−1(w))

= ((φv] IdmG) ◦ prntG ◦((φv)−1] IdkG))((φs)−1(w))

= (φv ◦ prntG �
VG)((φs)−1(w))

= (prntH ◦φs)((φs)−1(w))

= prntH(w)

prntφ G((φs)−1(w)) ∈ kC : This implies

prnt(w) = prntC(prnt3(w)) = prntC(prnt1(w))

= prntC(prntφ G((φs)−1(w)))

= prntC(((φv] IdmG) ◦ prntG ◦((φv)−1] IdkG))((φs)−1(w)))

= prntC(prntG((φs)−1(w)))

= (φr] prntH �VC] prntH ◦fC)(prntG((φs)−1(w)))

= φr(prntG((φs)−1(w)))

= (prntH ◦φs)((φs)−1(w))

= prntH(w)

330 7.A. Proofs

w ∈ VC :

prnt(w) = prntC(w) cf. def. of prnt

= prntH(w) cf. def. of prntC

w ∈ φv(VG):

prnt3(w) = prnt1(w) = prntφ G(w)

= ((φv] IdmG) ◦ prntG ◦((φv)−1] IdkG))(w)

= ((φv] IdmG) ◦ prntG ◦(φv)−1)(w)

There are two cases for prnt3(w):

prnt3(w) ∈ φv(VG)] VD: This implies

prnt(w) = prnt3(w) = prnt1(w) = prntφ G(w)

= ((φv] IdmG) ◦ prntG ◦(φv)−1)(w)

= (φv ◦ prntG �
VG ◦(φv)−1)(w)

= (prntH ◦φv ◦ (φv)−1)(w)

= prntH(w)

prnt3(w) ∈ kC : This implies

prnt(w) = prntC(prnt3(w)) = prntC(prnt1(w)) = prntC(prntφ G(w))

= prntC(((φv] IdmG) ◦ prntG ◦(φv)−1)(w))

= prntC((prntG ◦(φv)−1)(w))

= (φr] prntH �VC] prntH ◦fC)((prntG ◦(φv)−1)(w))

= φr((prntG ◦(φv)−1)(w))

= (φr ◦ prntG ◦(φv)−1)(w)

= (prntH ◦φv ◦ (φv)−1)(w)

= prntH(w)

Proof of Theorem 7.5.10

Def. 7.5.5 ◦ Def. 7.5.8 = Id: Assume

H = C ◦ (G ◦D ⊗ idk) ◦ π
φ = φv] φs] φr : G ↪→H

φv = IdVG
φr = prntC �mG

φs = (IdVD] π−1) ◦ prnt−1
D �kG

7. Towards Scalable Simulation of Stochastic Bigraphs 331

and the results from the proof of Prop. 7.5.6.

Now, using construction Def. 7.5.8 we obtain:

prmt(φ) = (VD′ , ctrlH �VD′ , prntD′) : kD′ → kG where

VD′ = VH ∩H �rng(φs)

k̃D′ = kH ∩H �rng(φs)

kD′ = |k̃D′ |
fD′ : kD′� k̃D′ a bijection

prntD′ = ((φs)−1] prntH �(VD′]k̃D′)\rng(φs)) ◦ (fD′] IdVD′)

ctxt(φ) = (VC′ , ctrlH �VC′ , prntC′) : kC′ → mH where
VC′ = (VH \ φv(VG)) \ VD′
k̃C′ = kH \ k̃D′
kC′ = mG + |k̃C′ |
f ′C′ : |k̃C′ |� k̃C′ a bijection

fC′(i+mG) = f ′C′(i) for i ∈ |k̃C′ |
prntC′ = φr] prntH �VC′] prntH ◦fC′

H = ctxt(φ) ◦ (φ G ◦ prmt(φ)⊗ id|k̃C′ |) ◦ π
′

= ctxt(φ) ◦ (G ◦ prmt(φ)⊗ id|k̃C′ |) ◦ π
′

π′ = f−1
D′] f ′−1 : kH → kH

f ′(i+ kD′) = f ′C′(i) for i ∈ |k̃C′ |.

332 7.A. Proofs

We must show D = prmt(φ), C = ctxt(φ), and π = π′. First, let us unfold some of the definitions:

rng(φs) = rng((IdVD] π−1) ◦ prnt−1
D �kG)

= (IdVD] π−1)({c | c ∈ kD] VD ∧ prntD(c) ∈ kG})
= {c | (c ∈ π−1(kD) ∧ prntD(π(c)) ∈ kG) ∨ (c ∈ VD ∧ prntD(c) ∈ kG)}

H �rng(φs) = {c′ | c′ ∈ kH] VH ∧ ∃i ≥ 0 : prnt iH(c′) ∈ rng(φs)}
= {c′ | c′ ∈ kH] VH
∧ ∃i ≥ 0 : (prnt iH(c′) ∈ π−1(kD) ∧ prntD(π(prnt iH(c′))) ∈ kG)

∨ (prnt iH(c′) ∈ VD ∧ prntD(prnt iH(c′)) ∈ kG)}
= {c′ | ∃i > 0 : (c′ ∈ π−1(kD) ∧ prntD(π(c′)) ∈ kG)

∨ (c′ ∈ VD ∧ prntD(c′) ∈ kG)

∨ (c′ ∈ π−1(kD) ∧ prnt i−1
H (prntD(π(c′))) ∈ VD ∧ prntD(prnt i−1

H (prntD(π(c′)))) ∈ kG)

∨ (c′ ∈ VD ∧ prnt i−1
H (prntD(c′)) ∈ VD ∧ prntD(prnt i−1

H (prntD(c′))) ∈ kG)}
= {c′ | ∃i > 0 : (c′ ∈ π−1(kD) ∧ prntD(π(c′)) ∈ kG)

∨ (c′ ∈ VD ∧ prntD(c′) ∈ kG)

∨ (c′ ∈ π−1(kD) ∧ prnt i−1
D (prntD(π(c′))) ∈ VD ∧ prntD(prnt i−1

D (prntD(π(c′)))) ∈ kG)

∨ (c′ ∈ VD ∧ prnt i−1
D (prntD(c′)) ∈ VD ∧ prntD(prnt i−1

D (prntD(c′))) ∈ kG)}
= {c′ | ∃i > 0 : (c′ ∈ π−1(kD) ∧ prnt iD(π(c′)) ∈ kG)

∨ (c′ ∈ VD ∧ prnt iD(c′) ∈ kG)}
= π−1(kD)] VD

k̃D′ = kH ∩H �rng(φs)= kH ∩ (π−1(kD)] VD) = π−1(kD)

kD′ = |k̃D′ | = |π−1(kD)| = kD

fD′ : kD = kD′ � k̃D′ = π−1(kD)

k̃C′ = kH \ k̃D′ = kH \ π−1(kD) = π−1(kH \ kD)

kC′ = mG + |k̃C′ | = mG + |π−1(kH \ kD)| = mG + kH − kD
f ′C′ : (kH − kD) = |k̃C′ | � k̃C′ = π−1(kH \ kD)

fC′(i+mG) = f ′C′(i) for i ∈ |k̃C′ | = (kH − kD)

f ′(i+ kD′) = f ′C′(i) for i ∈ |k̃C′ | = (kH − kD)

With these in mind, we proceed to prove D = prmt(φ), C = ctxt(φ), and π = π′:

π = π′: Remember that in Def. 7.5.8 we are free to choose the two bijections fD′ ,f ′C′ as they are
internal to the decomposition. We choose them to be suitable restrictions of the inverse of π:

fD′ = π−1 �kD : kD�π−1(kD)

f ′C′(i) = π−1(i+ kD) : (kH − kD)�π−1(kH \ kD)

7. Towards Scalable Simulation of Stochastic Bigraphs 333

Expanding these in the derived functions we get:

fC′(i+mG) = f ′C′(i) = π−1(i+ kD)

f ′(i) = f ′C′(i− kD) = π−1(i− kD + kD) = π−1(i) for (i− kD) ∈ |k̃C′ | = kH − kD
π′ = f−1

D′] f ′−1

π′(i) =

{
f−1
D′ (i) if i ∈ π−1(kD)

f ′−1(i) if i ∈ π−1(kH \ kD)

=

{
π(i) if i ∈ π−1(kD)

π(i) if i ∈ π−1(kH \ kD)

= π(i).

D = prmt(φ): It suffices to show VD′ = VD and prntD′ = prntD, which is easily seen by unfolding the
definitions:

VD′ = VH ∩H �rng(φs)= VH ∩ (π−1(kD)] VD) = VD

prntD′ = ((φs)−1] prntH �(VD′]k̃D′)\rng(φs)) ◦ (fD′] IdVD′)

= (((IdVD] π−1) ◦ prnt−1
D �kG)−1

] prntH �(VD]π−1(kD))\({c | (c∈π−1(kD)∧prntD(π(c))∈kG)∨(c∈VD∧prntD(c)∈kG)}))

◦ (fD′] IdVD)

= ((prntD ◦(IdVD] π))�{c | (c∈π−1(kD)∧prntD(π(c))∈kG)∨(c∈VD∧prntD(c)∈kG)}

] (prntD ◦(IdVD] π))�{c | (c∈π−1(kD)∧prntD(π(c)) 6∈kG)∨(c∈VD∧prntD(c)6∈kG)}))

◦ (fD′] IdVD)

= ((prntD ◦(IdVD] π))�{c | (c∈π−1(kD)∧prntD(π(c))∈kG)∨(c∈VD∧prntD(c)∈kG)}

] (prntD ◦(IdVD] π))�{c | (c∈π−1(kD)∧prntD(π(c)) 6∈kG)∨(c∈VD∧prntD(c)6∈kG)}))

◦ (fD′] IdVD)

= prntD ◦(IdVD] π) ◦ (fD′] IdVD)

= prntD ◦(IdVD] π′ ◦ fD′)
= prntD ◦(IdVD] (f−1

D′] f ′−1) ◦ fD′)
= prntD .

C = ctxt(φ): It suffices to show VC′ = VC and prntC′ = prntC , which is seen by unfolding the

334 7.A. Proofs

definitions:

VC′ = (VH \ φv(VG)) \ VD′ = (VH \ VG) \ VD = VC

(prntH ◦fC′)(i) = prntC(mG + π(fC′(i))) for i ∈ kH − kD
= prntC(mG + π(π−1(i−mG + kD)))

= prntC(mG + i−mG + kD)

= prntC(i+ kD)

prntC(i) = prntH(π−1(i−mG + kD)) for i ∈ (mG + kH − kD) \mG

= (prntH ◦fC′)(i)
prntC′ = φr] prntH �VC′] prntH ◦fC′

= prntC �mG] prntH �VC] prntH ◦fC′
= prntC �mG] prntC �VC] prntC �(mG+kH−kD)\mG
= prntC .

Def. 7.5.5 ◦ Def. 7.5.8 = Id: Assume a place graph G : kG → mG, an embedding φ : G ↪→H into a
place graph H : kH → mH (for simplicity, assume φ G = G),

prmt(φ) = (VD, ctrlH �VD , prntD) : kD → kG where

VD = VH ∩H �rng(φs)

k̃D = kH ∩H �rng(φs)

kD = |k̃D|
fD : kD� k̃D a bijection

prntD = ((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD)

ctxt(φ) = (VC , ctrlH �VC , prntC) : kC → mH where
VC = (VH \ VG) \ VD
k̃C = kH \ k̃D
kC = mG + |k̃C |
f ′C : |k̃C |� k̃C a bijection

fC(i+mG) = f ′C(i) for i ∈ |k̃C |
prntC = φr] prntH �VC] prntH ◦fC

H = ctxt(φ) ◦ (G ◦ prmt(φ)⊗ id|k̃C |) ◦ π
π = f−1

D] f ′−1 : kH → kH

f ′(i+ kD) = f ′C(i) for i ∈ |k̃C |
where we assume that the bijections are chosen as in the previous proof case, i.e.,

fD = π−1 �kD : kD�π−1(kD)

f ′C(i) = π−1(i+ kD) : (kH − kD)�π−1(kH \ kD).

7. Towards Scalable Simulation of Stochastic Bigraphs 335

Now, using construction Def. 7.5.5 we obtain:

φ′ = φ′v] φ′s] φ′r : G ↪→H

φ′v = IdVG
φ′r = prntC �mG

φ′s = (IdVD] π−1) ◦ prnt−1
D �kG .

We must prove φ = φ′, and it suffices to show φv = φ′v, φr = φ′r, and φs = φ′s.

φv = φ′v: Satisfied by assumption.

φr = φ′r: Easily seen by unfolding the definitions:

φ′r = prntC �mG
= (φr] prntH �VC] prntH ◦fC)�mG
= φr.

φs = φ′s: Easily seen by unfolding the definitions:

φ′s = (IdVD] π−1) ◦ prnt−1
D �kG

= (IdVD] π−1) ◦ (((φs)−1] prntH �(VD]k̃D)\rng(φs)) ◦ (fD] IdVD))−1 �kG

= (IdVD] π−1) ◦ (f−1
D] IdVD) ◦ (φs] (prntH �(VD]k̃D)\rng(φs))

−1)�kG

= (IdVD] π−1) ◦ (π] IdVD) ◦ φs
= φs.

Proof of Lemma 7.5.11

1: We show that v ∈ H �rng(φs)= {v | v ∈ VH ∧ ∃i ≥ 0 : prnt iH(v) ∈ φs(kG)} implies v 6∈ rng(φf) by
induction on i:

i = 0: We have v ∈ rng(φs) and conditions (PGE-5) and (PGE-6) then give us v 6∈ rng(φf).

i > 0: We have prnt iH(v) ∈ rng(φs), i.e., prnt i−1
H (prntH(v)) ∈ rng(φs) which by the induction hypoth-

esis means prntH(v) 6∈ rng(φf). Thus condition (PGE-9) cannot be satisfied if v ∈ rng(φv) and
condition (PGE-6) prevents v ∈ rng(φr), so v 6∈ rng(φf).

2: First, we show that prnt iG(c) = p (i > 0) implies prnt iH(φc(c)) = φf(p). We show this by induction
on i:

i = 1: Assuming prntG(c) = p, we have φf(prntG(c)) = φf(p) and thus, by condition (PGE-9),
prntH(φc(c)) = φf(p) as required.

i > 1: Assuming prnt iG(c) = p, we have prnt i−1
G (prntG(c)) = p and thus, by the induction hypothesis,

prnt i−1
H (φc(prntG(c))) = φf(p). Since dom(φc)∩ cod(prntG) = VG, φf = φv]φr and φc = φv]φs,

we have

prnt i−1
H (φc(prntG(c)))

= prnt i−1
H (φv(prntG(c)))

= prnt i−1
H (φf(prntG(c)))

=φf(p)

336 7.A. Proofs

and thus, by condition (PGE-9), prnt i−1
H (prntH(φc(c))) = prnt iH(φc(c)) = φf(p) as required.

Now, since prntG is acyclic we have:

c ∈ VG] kG ⇒ ∃i > 0 : prnt iG(c) ∈ mG

and thus, using the above result, we have

c ∈ VG] kG ⇒ ∃i > 0 : prnt iH(φc(c)) ∈ φr(mG) = rng(φr)

i.e., for any c ∈ rng(φc) we have

∃i > 0 : prnt iH(c) ∈ rng(φr).

But this cannot be satisfied by any c ∈ H �rng(φr), since Prop. 7.2.11 gives us

H �rng(φr) = (VH] kH]mH)

\ {c′ | c′ ∈ kH] VH ∧ ∃i > 0 : prnt iH(c′) ∈ rng(φr)}

i.e., c ∈ H �rng(φr) iff ∀i > 0 : prnt iH(c) 6∈ rng(φr).

3: From the previous proof case, we have that any c ∈ rng(φc) satisfies

∃i > 0 : prnt iH(c) ∈ rng(φr).

Now, from Prop. 7.2.11 we have that c ∈ H �rng(φs) implies c ∈ kH]VH and ∃i ≥ 0 : prnt iH(c) ∈ φs(kG),
which combined the above result and the fact φs(kG) ⊆ rng(φc) we get

∃i > 0 : prnt iH(c) ∈ rng(φr)

which by Prop. 7.2.11 means c 6∈ H �rng(φr).

4: Let i ∈ kG be a site and c ∈ H �φs(i) \φs(i). Then by Def. 7.2.9

H �φ
s(i) \φs(i)

= {c | c ∈ kH] VH ∧ ∃i ≥ 0 : prnt iH(c) ∈ φs(i)} \ φs(i)
= {c | c ∈ kH] VH ∧ ∃i > 0 : prnt iH(c) ∈ φs(i)}.

We show that c ∈ H �φs(i) \φs(i) implies c 6∈ rng(φc)] rng(φr) by induction on i:

i = 1: We have prntH(c) ∈ φs(i). We obtain a contradiction if c ∈ rng(φc)] rng(φr):

c ∈ rng(φc): (φc)−1(c) is defined and so, by condition (PGE-9), prntH(c) = φf(prntG((φc)−1(c))) ∈
φs(i) which violates conditions (PGE-5) and (PGE-6).

c ∈ rng(φr): This violates condition (PGE-6).

i > 1: We have prnt iH(c) = prnt i−1
H (prntH(c)) ∈ φs(i), so by the induction hypothesis prntH(c) 6∈

rng(φc)] rng(φr). We obtain a contradiction if c ∈ rng(φc), because then (φc)−1(c) is defined
and so, by condition (PGE-9), prntH(c) = φf(prntG((φc)−1(c))) which contradicts prntH(c) 6∈
rng(φc)] rng(φr).

7. Towards Scalable Simulation of Stochastic Bigraphs 337

Proof of Prop. 7.5.13

φs: Construct the map of each site i ∈ kG as follows:

φs(i) = childrenH,i \φv(siblingsG,i)

childrenH,i = (prnt−1
H ◦φv)(prntG(i))

siblingsG,i = (prnt−1
G ◦ prntG)(i) \ {i}.

This is well-defined since every site of G is guarding, thus prntG(i) ∈ VG, and no sites are siblings. By
construction it satisfies condition (PGE-7); it must satisfy the other conditions since φ is an embedding
and φs is the only embedding of inner names that will satisfy condition (PGE-7): To see that φs is
unique, assume that there is a different φ′s that satisfies the conditions of Def. 7.5.4. For the two to be
different, there must be some i ∈ kG and c ∈ kH] VH with c ∈ φs(i), c 6∈ φ′s(i) (or vice versa). Since
they both satisfy condition (PGE-7) and no root has a site as a child we have:

prntG(i) ∈ VG
(φc ◦ prnt−1

G �VG)(prntG(i)) = (prnt−1
H ◦φv)(prntG(i))

= (φ′c ◦ prnt−1
G �VG)(prntG(i))

where

φc = φv] φs
φ′c = φv] φ′s.

And since c ∈ φs(i), and φc and φ′c agree on nodes, we must have c ∈ φ′s(i′) for some i′ ∈ prnt−1
G �VG

(prntG(i)). But no sites are siblings, so i′ = i and thus c ∈ φ′s(i) which contradicts our assumption
that c 6∈ φ′s(i).
φr: Construct the map of each root j ∈ mG as follows: choose a node v ∈ prnt−1

G (j), which is always
possible since no root is idle or has a site as child, and let

φr(j) = (prntH ◦φv)(v).

By construction it satisfies condition (PGE-9); it must satisfy the other conditions since φ is an
embedding and φr is the only embedding of outer names that will satisfy condition (PGE-9): To see
that φr is unique, assume that there is a different φ′r that satisfies the conditions of Def. 7.5.4. For
the two to be different, we must have φr(j) 6= φ′r(j) for some j ∈ mG. But since they both satisfy
condition (PGE-9), the following must hold for the node v we chose when defining φr(j):

φr(j) = (φr ◦ prntG)(v)

= (prntH ◦φc)(v)

= (φ′r ◦ prntG)(v) = φ′r(j)

which contradicts our assumption that φr and φ′r are different.

Proof of Prop. 7.5.17

It is clear that the place graph may be expressed as

HP = CP ◦ (GP ◦DP ⊗ idk) ◦ π

338 7.A. Proofs

and thus Prop. 7.5.6 applies, whereby we have that φP = φv] φs] φr : GP ↪→HP is a place graph
embedding and that VD = VH∩H �rng(φs). What remains to show is that φL = φv]φe]φi]φo : GL ↪→HL

is a link graph embedding and that the two embeddings are consistent.

From the definitions of support translation, composition, tensor product, and VD = VH ∩H �rng(φs)

we have:

VH = VC] VG] VD ctrlH = ctrlC] ctrlG] ctrlD

PH = PC] PG] PD C : 〈mG + k, YG]XI]XC〉 → 〈mH , YH〉
EH = EC] EG D : 〈kD, XD〉 → 〈kG, XG]XI〉
XH = XD]X ′C α : X ′C → XC

PD = PH�rng(φs)∩VH

To show that φL is a link graph embedding, we need to express the link map of H in terms of it
decomposition. It is clear that the link graph may be expressed as

HL = CL ◦ ((GL ⊗ idXI) ◦DL ⊗ α).

We construct the link map incrementally according to the definitions of composition and tensor product
(cf. Def. 7.2.6 and Def. 7.2.8)

GL ⊗ idXI : We write link1 for the link map of the resulting link graph:

link1 = linkG]IdXI .

(GL ⊗ idXI) ◦DL: We write link2 for the link map of the resulting link graph:

link2(p) =

linkD(p) if p ∈ XD] PD and linkD(p) ∈ ∅
link1(y) if p ∈ XD] PD and linkD(p) = y ∈ XG]XI

link1(p) if p ∈ PG

=

linkG(y) if p ∈ XD] PD and linkD(p) = y ∈ XG

y if p ∈ XD] PD and linkD(p) = y ∈ XI

linkG(p) if p ∈ PG.

(GL ⊗ idXI) ◦DL ⊗ α: We write link3 for the link map of the resulting link graph:

link3 = link2]α.

7. Towards Scalable Simulation of Stochastic Bigraphs 339

HL = CL ◦ ((GL ⊗ idXI) ◦DL ⊗ α):

linkH =

link3(p) if p ∈ XD]X ′C] PD] PG and link3(p) ∈ EG
linkC(y) if p ∈ XD]X ′C] PD] PG and link3(p) = y ∈ YG]XI]XC

linkC(p) if p ∈ PC

=

link2(p) if p ∈ XD] PD] PG and link2(p) ∈ EG
linkC(y) if p ∈ XD] PD] PG and link2(p) = y ∈ YG]XI

linkC(α(p)) if p ∈ X ′C
linkC(p) if p ∈ PC

=

linkG(y) if p ∈ XD] PD and linkD(p) = y ∈ XG

and linkG(y) ∈ EG
linkG(p) if p ∈ PG and linkG(p) ∈ EG
linkC(y) if p ∈ XD] PD and linkD(p) = z ∈ XG

and linkG(z) = y ∈ YG
linkC(y) if p ∈ XD] PD and linkD(p) = y ∈ XI

linkC(y) if p ∈ PG and linkG(p) = y ∈ YG
linkC(α(p)) if p ∈ X ′C
linkC(p) if p ∈ PC .

We can now verify φL is a link graph embedding and that φ is a bigraph embedding, i.e., they
satisfy the conditions of Def. 7.5.1 and Def. 7.5.14:

φL:

(LGE-1) Satisfied since IdVG is an identity map.

(LGE-2) Satisfied since IdEG is an identity map.

(LGE-3) Since linkD : XD]PD → XG]XI , XD ⊆ XH , and PD ⊆ PH we have φi = link−1
D �XG :

XG → P(XH]XH); it is fully injective since linkD is a function.

(LGE-4) Satisfied since EC ⊆ EH .

(LGE-5) Satisfied since rng(φe) = rng(IdEG) = EG, rng(φo) = rng(linkC �YG) ⊆ EC] YH , and
(Ec] YH) #EG.

(LGE-6) Satisfied since rng(φi) = rng(link−1
D �XG) ⊆ XD] PD, rng(φport) ⊆ PG, and XD]

PD #PG.

(LGE-7) Satisfied since we have the following equalities:

link−1
H ◦φe = ((φe] IdYG) ◦ linkG ◦(φp)−1)−1 ◦ φe

= φp ◦ link−1
G ◦(φe] IdYG)−1 ◦ φe

= φp ◦ link−1
G �EG .

(LGE-8) Satisfied since φv = idVG and ctrlG ⊆ ctrlH .

(LGE-9) We check the condition separately for the ports and inner names:

340 7.A. Proofs

p ∈ PG: We check the condition for edges and outer names separately (noting φp(p) = p):
linkG(p) ∈ EG:

(φl ◦ linkG)(p) = (φe ◦ linkH)(p)

= (IdEG ◦ linkH)(p)

= (linkH ◦φp)(p).

linkG(p) ∈ YG:

(φl ◦ linkG)(p) = (φo ◦ linkG)(p)

= (linkC �YG ◦ linkG)(p)

= (linkC ◦ linkG ◦φp)(p)
= (linkH ◦φp)(p).

x ∈ XG: We check the condition for edges and outer names separately:
linkG(x) ∈ EG:

(φl ◦ linkG)(x) = (φe ◦ linkG)(x)

= (IdEG ◦ linkG)(x)

= linkG(x)

= linkH(link−1
D (x))

= (linkH ◦φp)(x).

linkG(x) ∈ YG:

(φl ◦ linkG)(x) = (φo ◦ linkG)(x)

= (linkC ◦ linkG)(x)

= linkH(link−1
D (x)

= (linkH ◦φp)(x).

φ: We have verified that φ is both a place and link graph embedding, so it only remains to show that
these are consistent:

(BGE-1) Satisfied since rng(φi) = rng(link−1
D �XG) ⊆ XD] PD, XD ⊆ XH , and PD =

PH�rng(φs)∩VH .

Proof of Prop. 7.5.19

⇒: Assume two matches (ρ, idI , c, d), (ρ′, idI′ , c′, d′) in an agent a that are regarded the same, i.e.,

a = c ◦ (ρ R⊗ idXI) ◦ d = c′ ◦ (ρ R⊗ idXI′) ◦ d′

Vc = Vc′ Ec = Ec′ ctrlc = ctrlc′ prntc = prntc′

Vd = Vd′ Ed = Ed′ = ∅ ctrld = ctrld′ prntd = prntd′

link c �Pc]YG= link c′ �Pc]YG

7. Towards Scalable Simulation of Stochastic Bigraphs 341

and there is a bijection α : XI′�XI such that

link c ◦α = link c′ �XI′ linkd = α ◦ linkd′ .

The matches are clearly decompositions

a = c ◦ ((ρ R⊗ idXI) ◦ d⊗ id0 ⊗ id∅) ◦ (id0 ⊗ id∅)

= c′ ◦ ((ρ R⊗ idXI′) ◦ d′ ⊗ id0 ⊗ id∅) ◦ (id0 ⊗ id∅)

and all but the following decomposition equivalence condition are trivially satisfied:

link c ◦ linkd �
XI = link c ◦(α ◦ linkd′)�

XI

= link c ◦α ◦ linkd′ �
XI′

= linkd′ ◦ linkd′ �
XI′ .

⇐: Assume two decompositions of an agent a

a = c ◦ ((ρ R⊗ idXI) ◦ d⊗ id0 ⊗ id∅) ◦ (id0 ⊗ id∅)

= c′ ◦ ((ρ R⊗ idXI′) ◦ d′ ⊗ id0 ⊗ id∅) ◦ (id0 ⊗ id∅)

where R is a redex and d,′d are discrete and ground, and assume that they are equivalent, i.e.,

Vc = Vc′ Ec = Ec′ ctrlc = ctrlc′ prntc = prntc′

Vd = Vd′ Ed = Ed′ = ∅ ctrld = ctrld′ prntd = prntd′

link c �Pc]YG= link c′ �Pc]YG linkC ◦ linkD �XI= linkC′ ◦ linkD′ �XI′ .

Clearly, the decompositions are matches

a = c ◦ (ρ R⊗ idXI) ◦ d = c′ ◦ (ρ R⊗ idXI′) ◦ d′

differing only by a bijection α : XI′�XI defined by

α = linkd ◦ link−1
d′ .

Proof of Prop. 7.5.21

We first show that prmt(φ) and ctxt(φ) are indeed bigraphs:

From Prop. 7.5.9 we have that prmt(φ)P and ctxt(φ)P are place graphs, so we just need to show that
the following are link graphs:

prmt(φ)L = (VD, ∅, ctrlD, linkD) : XD → XG]XI

ctxt(φ)L = (VC , EC , ctrlC , linkC) : YG]XI]XC → YH .

342 7.A. Proofs

In both cases the node sets and control maps are shared with the corresponding place graphs and are
thus well-defined, and thus we just need to show that linkD and linkC are well-defined:

linkD : Since φi is fully injective (φi)−1 is a function and thus so is linkD.
What remains to show is dom(linkD) = XD]PD and cod(linkD) = XG]XI . Since, by definition,

we have dom(link ′D) = P ′D ⊆ PD and cod(link ′D) = XI , this amounts to showing dom((φi)−1) =
XD] (PD \ P ′D) and rng((φi)−1) ⊆ XG] XI . The latter is immediate since dom(φi) = XG. To see
dom((φi)−1) = rng(φi) = XD] (PD \ P ′D), we expand the definitions of XD and P ′D:

XD] (PD \ P ′D) = (rng(φi) ∩XH)] (PD \ (PD \ rng(φi)))

= (rng(φi) ∩XH)] (PD ∩ rng(φi))

= rng(φi) ∩ (XH] PD).

Thus dom((φi)−1) = XD] (PD \ P ′D) if rng(φi) ⊆ XH] PD. But this is exactly the consistency
condition (BGE-1) and must thus be satisfied since φ is an embedding.

linkC : The constituent functions have the following domains and codomains:

φo : YG → EH] YH
linkH : XH] PH → EH] YH
IdPC : PC → PC

link ′−1
D : XI → P ′D
αC : XC → X ′C

Since link ′D is a bijection, link ′−1
D : XI → P ′D is a function. By construction we have XI #XC and

clearly PC #XI] XC , so IdPC] link ′−1
D]αC : PC] XI] XC → PC] P ′D] X ′C is a function. By

construction X ′C ⊆ XH and as shown in the proof of Theorem 7.5.9 we have VC , VD ⊆ VH and by
definition ctrlC = ctrlH �VC and ctrlD = ctrlH �VD , so PC ⊆ PH and P ′D ⊆ PD ⊆ PH , and thus
linkH ◦(IdPC] link ′−1

D]αC) is a function. Also by construction we have YG #XI , YG #XC and clearly
PC #YG, so linkC is a function.

What remains to show is dom(linkC) = YG] XI] XC] PC and cod(linkC) = EC] YH . The
first is immediate from the domains of the constituent functions. The latter amounts to showing
cod(φo) = cod(linkH ◦(IdPC] link ′−1

D]αC)) = EC] YH . Noting cod(φo) : EH] YH , cod(linkH) :
EH]YH , cod(linkH), and EC]YH = (EH \ rng(φe))]YH , we just have to show rng(φo) # rng(φe) and
rng(linkH ◦(IdPC] link ′−1

D]αC)) # rng(φe):

rng(φo) # rng(φe): This is the first injectivity condition for link graph embeddings, condition (LGE-5),
and is thus assumed to be satisfied.

rng(linkH ◦(IdPC] link ′−1
D]αC)) # rng(φe): By the surjectivity condition (LGE-7), a point p ∈ link−1

H (e)
of an edge e ∈ rng(φe) in the image of edges must be in the image of points, i.e.,

p ∈ rng(φp)

= rng(φport)] rng(φi)

⊆ rng(φport)]XH] PD.

where the last inclusion follows from the consistency condition (BGE-1). Note that rng(φport) #PD
and rng(φport) #XH .

7. Towards Scalable Simulation of Stochastic Bigraphs 343

But the images of the three functions IdPC , link ′−1
D , αC are not in the image of points, which can

be seen as follows:

PC : Immediate from the construction of PC :

PC = PH \ rng(φport) \ PD.

P ′D: Unfolding the construction of P ′D it becomes immediate:

P ′D = PD \ rng(φi).

X ′C : Unfolding the construction of X ′C it becomes immediate:

X ′C = XH \XD

= XH \ (rng(φi) ∩XH)

= XH \ rng(φi).

We now turn to the matter of showing that the construction is defined up to decomposition equivalence.
Since the place graph decomposition is defined up to decomposition equivalence, it suffices to show
that any valid choices of XI , link ′D, XC , and αC yield equivalent decompositions cf. Def. 7.5.18.

Assume that we have alternative choices:

XI′ : a set of names satisfying
|XI′ | = |P ′D|, XI′ #XG, and XI′ #YG

link ′D′ : P ′D�XI′ a bijection
XC′ : a set of names satisfying

|XC′ | = |X ′C |, XC′ #YG, and XC′ #XI′

αC′ : XC′�X ′C a bijection

and construct the corresponding link maps

linkD′ = (φi)−1] link ′D′

linkC′ = φo] linkH ◦(IdPC] link ′−1
D′]αC′).

344 7.A. Proofs

Finally, we check the equivalence conditions:

linkD �
XG = ((φi)−1] link ′D)�XG

= (φi)−1 �XG

= ((φi)−1] link ′D′)�
XG

= linkD′ �
XG

linkC �PC]YG = (φo] linkH ◦(IdPC] link ′−1
D]αC))�PC]YG

= (φo] linkH ◦IdPC)�PC]YG

= (φo] linkH ◦(IdPC] link ′−1
D]αC′))�PC]YG

= linkC′ �PC]YG

linkC ◦α−1
C = (φo] linkH ◦(IdPC] link ′−1

D]αC)) ◦ α−1
C

= linkH

= (φo] linkH ◦(IdPC] link ′−1
D]αC′)) ◦ α−1

C′

= linkC′ ◦α−1
C′

linkC ◦ linkD �
XI = (φo] linkH ◦(IdPC] link ′−1

D]αC)) ◦ ((φi)−1] link ′D)�XI

= linkH �P ′D
= (φo] linkH ◦(IdPC] link ′−1

D′]αC′)) ◦ ((φi)−1] link ′D′)�
XI

= linkC′ ◦ linkD′ �
XI′ .

We now show that prmt(φ) and ctxt(φ) are indeed parameter and context for the embedding of G:
Let

D : 〈kD, XD〉 → 〈kG, XG]XI〉 = prmt(φ),

C : 〈kC , YG]XI]XC〉 → 〈mH , YH〉 = ctxt(φ), and

(V,E, ctrl , prnt , link) = ctxt(φ)

◦ ((φ G⊗ idXI) ◦ prmt(φ)⊗ id〈|k̃C |,XC〉)

◦ (π ⊗ idXH).

As composition and tensor product of bigraphs are defined pointwise on the constituent place and
link graphs (cf. Def. 7.2.6 and Def. 7.2.8), it is straightforward to see that the proof of Theorem 7.5.9 is
also a proof of VH = V, ctrlH = ctrl , prntH = prnt , since this theorem only adds link graph structure.

By the definitions of composition and tensor product (cf. Def. 7.2.6 and Def. 7.2.8) we have the
following equalities:

E = EC] φe(EG)] ED Defs. 7.2.6 and 7.2.8
= (EH \ rng(φe))] φe(EG)] ∅ Def. 7.5.20
= EH .

To prove linkH = link , we construct the link map link incrementally according to the definitions
of composition and tensor product (cf. Def. 7.2.6 and Def. 7.2.8), and then verify linkH(p) = link(p):

7. Towards Scalable Simulation of Stochastic Bigraphs 345

φ G: We write linkφ G for the link map of the resulting bigraph:

linkφ G = (φe] IdYG) ◦ linkG ◦((φp)−1] IdXG).

where

φp(v, i) = (φv(v), i).

Also, we write Pφ G for the ports of that bigraph: Pφ G = φp(PG).

φ G⊗ idXI : We write link1 for the link map of the resulting bigraph:

link1 = linkφ G]IdXI .

(φ G⊗ idXI) ◦ prmt(φ): We write link2 for the link map of the resulting bigraph:

link2(p) =

linkD(p) if p ∈ XD] PD and linkD(p) ∈ ∅
link1(x) if p ∈ XD] PD and linkD(p) = x ∈ XG]XI

link1(p) if p ∈ Pφ G

=

{
link1(x) if p ∈ XD] PD and linkD(p) = x ∈ XG]XI

link1(p) if p ∈ Pφ G
.

(φ G⊗ idXI) ◦ prmt(φ)⊗ id|k̃C | ⊗ α
−1
C : We write link3 for the link map of the resulting bigraph:

link3 = link2]α−1
C .

π ⊗ idXH : We write link4 for the link map of the resulting bigraph:

link4 = Id∅] IdXH = IdXH .

((φ G⊗ idXI) ◦ prmt(φ)⊗ id|k̃C | ⊗ α
−1
C) ◦ (π ⊗ idXH): We write link5 for the link map of the resulting

bigraph:

link5(p) =

link4(p) if p ∈ XH and link4(p) ∈ ∅
link3(x) if p ∈ XH and link4(p) = x ∈ XH

link3(p) if p ∈ Pφ G] PD

=

{
link3(x) if p ∈ XH and IdXH (p) = x ∈ XH

link3(p) if p ∈ Pφ G] PD

=

{
link3(p) if p ∈ XH

link3(p) if p ∈ Pφ G] PD
= link3(p).

ctxt(φ) ◦ ((φ G⊗ idXI) ◦ prmt(φ)⊗ id|k̃C | ⊗ α
−1
C) ◦ (π ⊗ idXH): Finally, we have

link(p) =

link3(p) if p ∈ XH] Pφ G] PD and link3(p) ∈ φe(EG)

linkC(x) if p ∈ XH] Pφ G] PD and link3(p) = x ∈ YG]XI]XC

linkC(p) if p ∈ PC

346 7.A. Proofs

Unfolding the definitions of the involved link maps, we get the following equalities:

link(p) =

α−1
C (p) if p ∈ X ′C and α−1

C (p) ∈ φe(EG)

link2(p) if p ∈ XD] Pφ G] PD and link2(p) ∈ φe(EG)

linkC(y) if p ∈ XD] Pφ G] PD and link2(p) = y ∈ YG]XI

linkC(y) if p ∈ X ′C and α−1
C (p) = y ∈ XC

linkC(p) if p ∈ PC

=

link1(x) if p ∈ XD] PD and link1(x) ∈ φe(EG) and linkD(p) = x ∈ XG]XI

link1(p) if p ∈ Pφ G and link1(p) ∈ φe(EG)

linkC(y) if p ∈ XD] PD and link1(x) = y ∈ YG]XI and linkD(p) = x ∈ XG]XI

linkC(y) if p ∈ Pφ G and link1(p) = y ∈ YG
linkC(y) if p ∈ X ′C and α−1

C (p) = y ∈ XC

linkC(p) if p ∈ PC

=

linkφ G(x) if p ∈ XD] PD and linkφ G(x) ∈ φe(EG) and linkD(p) = x ∈ XG

linkφ G(p) if p ∈ Pφ G and linkφ G(p) ∈ φe(EG)

linkC(x) if p ∈ XD] PD and linkD(p) = x ∈ XI

linkC(y) if p ∈ XD] PD and linkφ G(x) = y ∈ YG and linkD(p) = x ∈ XG

linkC(y) if p ∈ Pφ G and linkφ G(p) = y ∈ YG
linkC(y) if p ∈ X ′C and α−1

C (p) = y ∈ XC

linkC(p) if p ∈ PC

.

Let us now verify link = linkH . link is defined for XD] X ′C] PC] Pφ G] PD and so is linkH
since XD]X ′C = XH and VC]φv(VG)]VD = VH , ctrlH �VC] ctrlG ◦(φv)−1] ctrlH �VD= ctrlH which
implies PC] Pφ G] PD = PH . Let us examine each case of link(p) separately:

p ∈ XD] PD and linkφ G(x) ∈ φe(EG) and linkD(p) = x ∈ XG:

We have

link(p) = linkφ G(linkD(p))

= ((φe] IdYG) ◦ linkG ◦((φp)−1] IdXG))(linkD(p))

= (φe ◦ linkG)(linkD(p))

= (φe ◦ linkG)(((φi)−1] link ′D)(p))

= (φe ◦ linkG)((φi)−1(p))

= (linkH ◦φp
′
)((φi)−1(p))

= linkH(p)

where

φp
′
(p) =

{
(φv(v), i) if p = (v, i) ∈ PG
φi(p) if p ∈ XG

.

p ∈ Pφ G and linkφ G(p) ∈ φe(EG):

7. Towards Scalable Simulation of Stochastic Bigraphs 347

We have

link(p) = linkφ G(p)

= ((φe] IdYG) ◦ linkG ◦((φp)−1] IdXG))(p)

= (φe ◦ linkG ◦(φp)−1)(p)

= (linkH ◦φp
′ ◦ (φp)−1)(p)

= linkH(p)

where

φp
′
(p) =

{
(φv(v), i) if p = (v, i) ∈ PG
φi(p) if p ∈ XG

.

p ∈ XD] PD and linkD(p) = x ∈ XI : We have

link(p) = linkC(linkD(p))

= linkC(((φi)−1] link ′D)(p))

= linkC(link ′D(p))

= (φo] linkH ◦(IdPC] link ′−1
D]αC))(link ′D(p))

= (linkH ◦ link ′−1
D)(link ′D(p))

= linkH(p).

p ∈ XD] PD and linkφ G(x) = y ∈ YG and linkD(p) = x ∈ XG:

We have

link(p) = linkC(linkφ G(linkD(p)))

= linkC(linkφ G(((φi)−1] link ′D)(p)))

= linkC(linkφ G((φi)−1(p)))

= linkC(((φe] IdYG) ◦ linkG ◦((φp)−1] IdXG))((φi)−1(p)))

= linkC(linkG((φi)−1(p)))

= (φo] linkH ◦(IdPC] link ′−1
D]αC))(linkG((φi)−1(p)))

= φo(linkG((φi)−1(p)))

= (φo ◦ linkG)((φi)−1(p))

= (linkH ◦φp
′
)((φi)−1(p))

= linkH(p)

where

φp
′
(p) =

{
(φv(v), i) if p = (v, i) ∈ PG
φi(p) if p ∈ XG

.

348 7.A. Proofs

p ∈ Pφ G and linkφ G(p) = x ∈ YG:
We have

link(p) = linkC(linkφ G(p))

= linkC(((φe] IdYG) ◦ linkG ◦((φp)−1] IdXG))(p))

= linkC((linkG ◦(φp)−1)(p))

= (φo] linkH ◦(IdPC] link ′−1
D]αC))((linkG ◦(φp)−1)(p))

= φo((linkG ◦(φp)−1)(p))

= (φo ◦ linkG ◦(φp)−1)(p)

= (linkH ◦φp
′ ◦ (φp)−1)(p)

= linkH(p)

where

φp
′
(p) =

{
(φv(v), i) if p = (v, i) ∈ PG
φi(p) if p ∈ XG

.

p ∈ X ′C and α−1
C (p) = y ∈ XC :

We have

link(p) = linkC(α−1
C (p))

= (φo] linkH ◦(IdPC] link ′−1
D]αC))(α−1

C (p))

= (linkH ◦αC)(α−1
C (p))

= linkH(p).

p ∈ PC :
We have

link(p) = linkC(p)

= (φo] linkH ◦(IdPC] link ′−1
D]αC))(p)

= linkH(p).

Proof of Theorem 7.5.22

Def. 7.5.20 ◦ Def. 7.5.16 = Id: Assume

H = C ◦ ((G⊗ idXI) ◦D ⊗ idk ⊗ α) ◦ (π ⊗ idXH)

φv = IdVG φr = prntC �mG φs = (IdVD] π−1) ◦ prnt−1
D �kG

φe = IdEG φo = linkC �YG φi = link−1
D �XG

where D is semi-discrete on XG. Also, assume the results from the proof of Prop. 7.5.17.

7. Towards Scalable Simulation of Stochastic Bigraphs 349

It is clear that the place graph may be expressed as

HP = CP ◦ (GP ◦DP ⊗ idk) ◦ π

and thus Theorem 7.5.10 applies, so using construction Def. 7.5.20 we obtain

prmt(φ)
def
= (VD, ∅, ctrlD, prntD, linkD′) : 〈kD, XD′〉 → 〈kG, XG]XI′〉

ctxt(φ)
def
= (VC , EC′ , ctrlC , prntC , linkC′) : 〈kC , YG]XI′]XC′〉 → 〈mH , YH〉

P ′D′ = PD \ rng(φi)

XD′ = rng(φi) ∩XH

XI′ : a set of names satisfying
|XI′ | = |P ′D′ |, XI′ #XG, and XI′ #YG

link ′D′ : P ′D′�XI′ a bijection

linkD′ = (φi)−1] link ′D′

EC′ = EH \ rng(φe)

X ′C′ = XH \XD′

XC′ : a set of names satisfying
|XC′ | = |X ′C′ |, XC′ #YG, and XC′ #XI′

αC′ : XC′�X ′C′ a bijection

linkC′ = φo] linkH ◦(IdPC] link ′−1
D′]αC′)

H = ctxt(φ) ◦ ((φ G⊗ idXI′) ◦ prmt(φ)⊗ idk ⊗ α−1
C′) ◦ (π ⊗ idXH).

Thus it suffices to show DL = prmt(φ)L, CL = ctxt(φ)L, XI = XI′ , and α = α−1
C′ .

Let us first unfold some of the definitions (noting that XD ⊆ XH and that D is semi-discrete on

350 7.A. Proofs

XG):

P ′D = PD \ rng(φi)

= PD \ rng(link−1
D �XG)

= PD \ link−1
D (XG)

XD′ = rng(φi) ∩XH

= rng(link−1
D �XG) ∩XH

= rng(link−1
D �XG) ∩XH

= XD

EC′ = EH \ rng(φe)

= EH \ EG
= EC

X ′C′ = XH \XD′

= XH \XD

= X ′C .

With these in mind, we proceed to prove DL = prmt(φ)L, CL = ctxt(φ)L, XI = XI′ , XC = XC′ ,
and α = α−1

C′ :

XI = XI′ : Remember that we are free to choose XI′ as it is internal to the decomposition, as long as
it satisfies |XI′ | = |PD|, XI′ #XG, and XI′ #YG. From the initial decomposition we know that
XI satisfies these conditions, and thus we simply choose XI′ = XI .

Similarly, we are free to choose a suitable bijection link ′D′ : P ′D�XI , so we simply choose
link ′D′ = linkD �P ′D .

XC = XC′ : Again, we are free to choose XC′ as it is internal to the decomposition, as long as it
satisfies |XC′ | = |X ′C′ |, XC′ #YG, and XC′ #XI′ . From the initial decomposition we know that
XC satisfies these conditions, and thus we simply choose XC′ = XC .

α = α−1
C′ : Again, we are free to choose αC′ as it is internal to the decomposition. So we simply choose
αC′ = α−1.

DL = prmt(φ)L: Since DP = prmt(φ)P it suffices to show ED = ∅, and linkD = linkD′ :

ED = ∅: Satisfied since D is semi-discrete.

linkD = linkD′ : Easily seen by expanding the definitions:

linkD′ = (φi)−1] link ′D′

= (link−1
D �XG)−1] linkD �P ′D

= linkD �
XG] linkD �PD\link−1

D (XG)

= linkD .

7. Towards Scalable Simulation of Stochastic Bigraphs 351

CL = ctxt(φ)L: Since CP = ctxt(φ)P and EC′ = EC it suffices to show linkC = linkC′ which is easily
seen by expanding the definitions:

linkC′ = φo] linkH ◦(IdPC] link ′−1
D′]αC′)

= linkC �YG] linkH ◦(IdPC] (linkD �P ′D)−1] α−1)

= linkC �YG] linkH �PC] linkH ◦(linkD �PD\link−1
D (XG))

−1] linkH ◦α−1)

= linkC �YG] linkC �PC] linkH ◦(linkD �
XI)−1] linkC �XC

= linkC �YG] linkC �PC] linkC �XI] linkC �XC
= linkC .

Def. 7.5.16 ◦ Def. 7.5.20 = Id: Assume a bigraph G : 〈kG, XG〉 → 〈mG, YG〉 and an embedding
φ : G ↪→H into a bigraph H : 〈kH , XH〉 → 〈mH , YH〉 (for simplicity, assume φ G = G),

prmt(φ)
def
= (VD, ∅, ctrlD, prntD, linkD) : 〈kD, XD〉 → 〈kG, XG]XI〉

ctxt(φ)
def
= (VC , EC , ctrlC , prntC , linkC) : 〈kC , YG]XI]XC〉 → 〈mH , YH〉

(VD, ctrlD, prntD) : kD → kG = prmt(φP)

P ′D = PD \ rng(φi)

XD = rng(φi) ∩XH

XI : a set of names satisfying
|XI | = |P ′D|, XI #XG, and XI #YG

link ′D : P ′D�XI a bijection

linkD = (φi)−1] link ′D

(VC , ctrlC , prntC) : kC → mH = ctxt(φP)

EC = EH \ rng(φe)

X ′C = XH \XD

XC : a set of names satisfying
|XC | = |X ′C |, XC #YG, and XC #XI

αC : XC�X ′C a bijection

linkC = φo] linkH ◦(IdPC] link ′−1
D]αC)

H = ctxt(φ) ◦ ((G⊗ idXI) ◦ prmt(φ)⊗ id|k̃C | ⊗ α
−1
C) ◦ (π ⊗ idXH)

π = f−1
D] f ′−1 : kH → kH

f ′(i+ kD) = f ′C(i) for i ∈ |k̃C |.

where we assume that the name sets and bijections are chosen as in the previous proof case, i.e.,

XI′ = XI XC′ = XC link ′D′ = linkD �P ′D αC′ = α−1.

352 7.A. Proofs

It is clear that the place graph may be expressed as

HP = ctxt(φ)P ◦ (GP ◦ prmt(φ)P ⊗ id|k̃C |) ◦ π
and thus Theorem 7.5.10 applies, so using construction Def. 7.5.16 we obtain

φ′ = φv] φ′e] φs] φr] φ′i] φ′o : G ↪→H

φ′e = IdEG φ′o = linkC �YG φ′i = link−1
D �XG .

We must prove φ = φ′, and it suffices to show φe = φ′e, φo = φ′o, and φi = φ′i.

φe = φ′e: Satisfied by assumption.

φo = φ′o: Easily seen by unfolding the definitions:

φ′o = linkC �YG

= (φo] linkH ◦(IdPC] link ′−1
D]αC))�YG

= φo.

φi = φ′i: Easily seen by unfolding the definitions:

φ′i = link−1
D �XG

= ((φi)−1] link ′D)−1 �XG

= ((φi)−1] linkD �P ′D)−1 �XG

= ((φi)−1] linkD �PD\link−1
D (XG))

−1 �XG

= φi.

7.A.2 Bigraph Edit Scripts
Proof of Prop. 7.6.13

It is straightforward to check that H̃ ′ is a pattern, since δ is compatible with P̃ and φ is an embedding
and thus satisfies the embedding conditions of Def. 7.5.1 Def. 7.5.4, and Def. 7.5.14. Also, H̃ ′ clearly
has the same outer face and inner names as H̃ since mediated edits can only affect the set of inner
variables of a patterns interfaces.

What remains is to check that for each mediated edit, φ′ : P̃ ′ ↪→ H̃ ′ is an embedding, i.e., that it
satisfies the embedding conditions. In most cases this follows easily from the fact that φ satisfies the
conditions and we shall omit these, but a few cases are more interesting. Note that, by Prop. 7.6.7, P̃ ′
is a pattern.

⊕v:K~y@p: We have v 6∈ VP̃ , p ∈ VP̃]RP̃ , v′ 6∈ VH̃ , and

P̃ ′ = (VP̃ + v,EP̃ , ctrl P̃ [v 7→ K], prnt P̃ [v 7→ p],

link P̃ [(v, 0) 7→ ~y0, . . . , (v, n− 1) 7→ ~yn−1]) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ + v′, EH̃ , ctrl H̃ [v′ 7→ K], prntH̃ [v′ 7→ φ(p)],

link H̃ [(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)])

φ′ = φ[v 7→ v′].

The interesting cases are:

7. Towards Scalable Simulation of Stochastic Bigraphs 353

(LGE-7) Assuming e ∈ EP̃ we have the following equalities:

(φ′p ◦ (link P̃ [(v, 0) 7→ ~y0, . . . , (v, n− 1) 7→ ~yn−1])−1)(e)

=φ′p(link−1

P̃
(e) ∪ [(v, 0) 7→ ~y0, . . . , (v, n− 1) 7→ ~yn−1]−1(e))

=(φ′p ◦ link−1

P̃
)(e) ∪ (φ′p ◦ [(v, 0) 7→ ~y0, . . . , (v, n− 1) 7→ ~yn−1]−1)(e)

=(φp ◦ link−1

P̃
)(e) ∪ [(v′, 0) 7→ ~y0, . . . , (v

′, n− 1) 7→ ~yn−1]−1(e)

=(link−1

H̃
◦φe)(e) ∪ ([(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)]−1 ◦ φ′e)(e)

=(link−1

H̃
◦φ′e)(e) ∪ ([(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)]−1 ◦ φ′e)(e)

=((link H̃ [(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)])−1 ◦ φ′e)(e).

(PGE-7) We check the two cases for w ∈ VP̃ + v:

w ∈ VP̃ : We have the following equalities:

(φ′c ◦ (prnt P̃ [v 7→ p])−1)(w)

=φ′c(prnt−1

P̃
(w) ∪ [v 7→ p]−1(w))

=(φ′c ◦ prnt−1

P̃
)(w) ∪ (φ′c ◦ [v 7→ p]−1)(w)

=(φc ◦ prnt−1

P̃
)(w) ∪ [v′ 7→ p]−1(w)

=(prnt−1

H̃
◦φv)(w) ∪ ([v′ 7→ φ(p)]−1 ◦ φ′v)(w)

=(prnt−1

H̃
◦φ′v)(w) ∪ ([v′ 7→ φ(p)]−1 ◦ φ′v)(w)

=((prntH̃ [v′ 7→ φ(p)])−1 ◦ φ′v)(w).

w = v: Since v 6∈ VP̃ and v′ 6∈ VH̃ we have v 6= p, v 6∈ rng(prnt P̃), v′ 6= φ(p), and v′ 6∈
rng(prntH̃). Thus (prnt P̃ [v 7→ p])−1(v) = ∅ = (prntH̃ [v′ 7→ φ(p)])−1(v′).

⊕e : We have e 6∈ EP̃ , e′ 6∈ EH̃ , and

P̃ ′ = (VP̃ , EP̃ + e, ctrl P̃ , prnt P̃ , link P̃) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ , EH̃ + e′, ctrl H̃ , prntH̃ , link H̃)

φ′ = φ[e 7→ e′].

All the conditions are obviously satisfied.

	v : We have v ∈ VP̃ , prnt−1

P̃
(v) = ∅, and

P̃ ′ = (VP̃ − v,EP̃ , ctrl P̃ −v, prnt P̃ −v, link P̃ −Pv) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ − φ(v), EH̃ , ctrl H̃ −φ(v), prntH̃ −φ(v), link H̃ −Pφ(v))

φ′ = φ − v.

The interesting cases are:

354 7.A. Proofs

(LGE-7) Assuming e ∈ EP̃ we have the following equalities:

(φ′p ◦ (link P̃ −Pv)−1)(e)

=φp(link−1

P̃
(e) \ Pv)

=(φp ◦ link−1

P̃
)(e) \ φ(Pv)

=(link−1

H̃
◦φe)(e) \ Pφ(v)

=((link H̃ −Pφ(v))
−1 ◦ φ′e)(e).

(PGE-7) Assuming w ∈ VP̃ − v we have the following equalities:

(φ′c ◦ (prnt P̃ −v)−1)(w)

=φc(prnt−1

P̃
(w)− v)

=(φc ◦ prnt−1

P̃
)(w)− φ(v)

=(prnt−1

H̃
◦φv)(w)− φ(v)

=((prntH̃ −φ(v))−1 ◦ φ′v)(w).

	e : We have e ∈ EP̃ , link−1

P̃
(e) = ∅, and

P̃ ′ = (VP̃ , EP̃ − e, ctrl P̃ , prnt P̃ , link P̃) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ , EH̃ − φ(e), ctrl H̃ , prntH̃ , link H̃)

φ′ = φ − e.

All the conditions are obviously satisfied.

	q: We have q ∈ QP̃ , and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ −q, link P̃) : (QP̃ − q)→ 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ \ H̃ �φ(q), EH̃ , ctrl H̃ −H̃ �φ(q), prntH̃ −H̃ �φ(q), link H̃ −PH̃�φ(q))

: 〈QH̃ \ H̃ �φ(q), XH̃〉 → I

φ′ = φ − q.

The interesting cases are:

(LGE-7) Assuming e ∈ EP̃ we have the following equalities:

(φ′p ◦ link−1

P̃
)(e)

=(φp ◦ link−1

P̃
)(e) \ PH̃�φ(q)

=(link−1

H̃
◦φe)(e) \ PH̃�φ(q)

=((link H̃ −PH̃�φ(q))
−1 ◦ φ′e)(e)

since rng(φp) = rng(φport) #PH̃�rng(φs) ⊇ PH̃�φ(q) , cf. Corollary 7.5.24.

7. Towards Scalable Simulation of Stochastic Bigraphs 355

(PGE-7) Assuming w ∈ VP̃ we have the following equalities:

(φ′c ◦ (prnt P̃ −q)−1)(w)

=φc(prnt−1

P̃
(w)− q) \ (H̃ �φ

s(q) \φs(q))
=((φc ◦ prnt−1

P̃
)(w) \ φ(q)) \ (H̃ �φ

s(q) \φs(q))
=(prnt−1

H̃
◦φv)(w) \ H̃ �φs(q)

=((prntH̃ −H̃ �φ
s(q))−1 ◦ φ′v)(w)

since rng(φc) #(H̃ �φ
s(q) \φs(q)), cf. Lemma 7.5.11.

�v@p: We have v ∈ VP̃ , p ∈ VP̃]RP̃ , and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [v 7→ p], link P̃) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ , EH̃ , ctrl H̃ , prntH̃ [φ(v) 7→ φ(p)], link H̃)

φ′ = φ.

All the conditions are obviously satisfied.

�q@p: We have q ∈ QP̃ , p ∈ VP̃]RP̃ , and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [q 7→ p], link P̃) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ , EH̃ , ctrl H̃ , prntH̃ [φ(q) 7→ φ(p)], link H̃)

φ′ = φ.

All the conditions are obviously satisfied.

⊗q→r@p: We have q ∈ QP̃ , r 6∈ QP̃ , p ∈ VP̃]RP̃ , and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [r 7→ p], link P̃) : (QP̃ + r)→ 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃] Vr, EH̃ , ctrl H̃] ctrlr, prntH̃] prntr, link H̃] linkr)

: 〈QH̃]Qr, X〉 → I

φ′ = φ[r 7→ f−1(φ(q))]

where
Vq = H̃ �φ(q) ∩VH̃ Qq = H̃ �φ(q) ∩Q
|Vr| = |Vq| |Qr| = |Qq|
Vr # VH̃ Qr # Q
fv : Vr�Vq fs : Qr�Qq
f = fv] fs

ctrlr = ctrl H̃ ◦fv
prntr = {f−1(φ(q)) 7→ φ(p)}] f−1

v ◦ prntH̃ ◦(f − f−1(φ(q)))
linkr(v, i) = link H̃(fv(v), i) (v ∈ Vr)

The interesting cases are:

356 7.A. Proofs

(LGE-7) Assuming e ∈ EP̃ we have the following equalities:

(φ′p ◦ link−1

P̃
)(e)

=(φp ◦ link−1

P̃
)(e)

=(link−1

H̃
◦φe)(e)

=(link−1

H̃
◦φ′e)(e) ∪ (link−1

r ◦φ′e)(e)
=((link H̃] linkr)

−1 ◦ φ′e)(e)

since link−1

H̃
(rng(φe)) ⊆ rng(φp) = rng(φport) #PH̃�rng(φs) ⊇ PH̃�φ(q) , cf. condition (LGE-7)

and Corollary 7.5.24, and thus link−1
r (rng(φ′e)) = φ′p((link H̃ �PVq)−1(rng(φ′e))) = φ′p((link H̃ �PH̃�φ(q)

)−1(rng(φe))) = φ′p(∅) = ∅.
(PGE-7) Assuming w ∈ VP̃ we have the following equalities:

(φ′c ◦ (prnt P̃ [r 7→ p])−1)(w)

=φ′c(prnt−1

P̃
(w) ∪ [r 7→ p]−1(w))

=(φ′c ◦ prnt−1

P̃
)(w) ∪ (φ′c ◦ [r 7→ p]−1)(w)

=(φc ◦ prnt−1

P̃
)(w) ∪ [f−1(φ(q)) 7→ p]−1(w)

=(prnt−1

H̃
◦φv)(w) ∪ ([f−1(φ(q)) 7→ φ′v(p)]−1 ◦ φ′v)(w)

∪ ((f−1
v ◦ prntH̃ ◦(f − f−1(φ(q))))−1 ◦ φ′v)(w)

=(prnt−1

H̃
◦φ′v)(w)

∪ (([f−1(φ(q)) 7→ φ′v(p)]] f−1
v ◦ prntH̃ ◦(f − f−1(φ(q))))−1 ◦ φ′v)(w)

=(prnt−1

H̃
◦φ′v)(w) ∪ (prnt−1

r ◦φ′v)(w)

=((prntH̃] prntr)
−1 ◦ φ′v)(w)

since rng(f−1
v) = Vr #VH̃ ⊇ rng(φ′v) and thus ((f−1

v ◦prntH̃ ◦(f−f−1(φ(q))))−1 ◦φ′v)(w) =
∅.

�(v,i)7→l: We have v ∈ VP̃ , i ∈ ar(ctrl P̃ (v)), l ∈ EP̃] YP̃ , and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ , link P̃ [(v, i) 7→ l]) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ , EH̃ , ctrl H̃ , prntH̃ , link H̃ [(φ(v), i) 7→ φ(l)])

φ′ = φ.

All the conditions are obviously satisfied.

}v:K : We have v ∈ VP̃ , ar(K) = ar(ctrl P̃ (v)), and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ [v 7→ K], prnt P̃ , link P̃) : QP̃ → 〈RP̃ , YP̃ 〉
H̃ ′ = (VH̃ , EH̃ , ctrl H̃ [φ(v) 7→ K], prntH̃ , link H̃)

φ′ = φ.

All the conditions are obviously satisfied.

7. Towards Scalable Simulation of Stochastic Bigraphs 357

Proof of Lemma 7.6.14

By Corol. 7.5.23 we have a match

a = ctxt(JφK) ◦ (JφK JP̃ K⊗ idXI) ◦ prmt(JφK)

for some set of names XI , so we just have to show

a′ = ctxt(JφK) ◦ (Jφ′K Jδ(P̃)K⊗ idXI) ◦ JinstQ(finst(δ))K(prmt(JφK))

and a _ a′ then follows from cf. Def. 7.4.14.

Let

D : 〈|Q|, XI〉 = prmt(JφK)
C : 〈|R|, Y]XI〉 → J = ctxt(JφK)

P̃ ′ : Q′ → 〈R, Y 〉 = δ(P̃)

Q = {q0, . . . , qk−1} where ∀i ∈ [0; k − 2] : qi < qi+1

Q′ = {q′0, . . . , q′k′−1} where ∀i ∈ [0; k′ − 2] : q′i < q′i+1

R = {r0, . . . , rm−1} where ∀i ∈ [0;m− 2] : ri < ri+1.

By the definitions of parameter (cf. Defs. 7.5.8 and 7.5.20) and patterns (cf. Def. 7.6.1) we have
the following equalities:

D : 〈|Q|, XI〉 = (a�rng(φs), ∅, ctrla �a�rng(φs) ,

[φ(q0) 7→ 0, . . . , φ(qk−1) 7→ k − 1]

] prnta �a�rng(φs)\ rng(φs),

link ′D) Defs. 7.5.8 and 7.5.20
= d0 ⊗ · · · ⊗ d|Q|−1 Def. 7.2.34 and

link ′D a bijection

Vdi = a�φ
s(qi) Defs. 7.6.1 and 7.2.9

where

link ′D : Pa�rng(φs) → XI a bijection.

By the definitions of composition and tensor product (cf. Def. 7.2.6 and Def. 7.2.8) and the con-

358 7.A. Proofs

structions from Defs. 7.5.8, 7.5.20, and 7.6.1 we have the following equalities:

Va = VC] φv(VP̃)] VD
Ea = EC] φe(EP̃)

ctrla = ctrla �VC] ctrl JφK JP̃ K] ctrla �VD

prnta(w) =

prntD(w) if w ∈ VD and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φv(VP̃)

prntC(j) if w ∈ VD and prntD(w) = i ∈ |Q|
and prntJφK JP̃ K(i) = j ∈ |R|

prntJφK JP̃ K(w) if w ∈ φv(VP̃) and prntJφK JP̃ K(w) ∈ φv(VP̃)

prntC(i) if w ∈ φv(VP̃) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC

linka(p) =

linkC(x) if p ∈ PD and linkD(p) = x ∈ XI

link JφK JP̃ K(p) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) ∈ φe(EP̃)

linkC(y) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) = y ∈ Y
linkC(p) if p ∈ PC

where

ctrl JφK JP̃ K = ctrl P̃ ◦(φv)−1

link JφK JP̃ K = φl ◦ link P̃ ◦(φp)−1,

prntJφK JP̃ K = (φv] {r0 7→ 0, . . . , rm−1 7→ m− 1})
◦ prnt P̃

◦ ((φv)−1] {0 7→ q0, . . . , k − 1 7→ qk−1}).

Similarly, unfolding the definitions of composition and tensor product (cf. Def. 7.2.6 and Def. 7.2.8)
and the constructions from Defs. 7.5.8, 7.5.20, and 7.6.1, we see that we have to show the following

7. Towards Scalable Simulation of Stochastic Bigraphs 359

equalities in order for a′ to be on the prescribed form:

Va′ = VC] φ′v(VP̃ ′)] VD′
Ea′ = EC] φ′e(EP̃ ′)

ctrla′ = ctrla �VC] ctrl Jφ′K JP̃ ′K] ctrla �VD′

prnta′(w) =

prntD′(w) if w ∈ VD′
and prntD′(w) ∈ VD′

prntJφ′K JP̃ ′K(i) if w ∈ VD′
and prntD′(w) = i ∈ |Q′|
and prntJφ′K JP̃ ′K(i) ∈ φ′v(VP̃ ′)

prntC(j) if w ∈ VD′
and prntD′(w) = i ∈ |Q′|
and prntJφ′K JP̃ ′K(i) = j ∈ |R|

prntJφ′K JP̃ ′K(w) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

linka′(p) =

linkC(x) if p ∈ PD′ and linkD′(p) = x ∈ XI

link Jφ′K JP̃ ′K(p) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) ∈ φ′e(EP̃ ′)
linkC(y) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) = y ∈ Y
linkC(p) if p ∈ PC

where

D′ : 〈|Q′|, XI〉 = JinstQ(finst(δ))K(prmt(JφK)),

ctrl Jφ′K JP̃ ′K = ctrl P̃ ′ ◦(φ′v)−1,

link Jφ′K JP̃ ′K = φ′l ◦ link P̃ ′ ◦(φ′p)−1,

prntJφ′K JP̃ ′K = (φ′v] {r0 7→ 0, . . . , rm−1 7→ m− 1})
◦ prnt P̃ ′

◦ ((φ′v)−1] {0 7→ q′0, . . . , k − 1 7→ q′k−1}),

We show that this is the case for each edit:

⊕v:K~y@p: We have v 6∈ VP̃ , p ∈ VP̃]R, v′ 6∈ Va, and

P̃ ′ = (VP̃ + v,EP̃ , ctrl P̃ [v 7→ K], prnt P̃ [v 7→ p],

link P̃ [(v, 0) 7→ ~y0, . . . , (v, n− 1) 7→ ~yn−1]) : Q→ 〈R, Y 〉
a′ = (Va + v′, Ea, ctrla[v′ 7→ K], prnta[v′ 7→ φ(p)],

linka[(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)])

φ′ = φ[v 7→ v′]

instQ(finst(δ)) = IdU
D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

360 7.A. Proofs

The interesting cases are the parent and link maps:

prnta′(w) = prnta[v′ 7→ φ(p)](w)

=

prntD(w) if w ∈ VD and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φv(VP̃)

prntC(j) if w ∈ VD and prntD(w) = i ∈ |Q|
and prntJφK JP̃ K(i) = j ∈ |R|

prntJφK JP̃ K(w) if w ∈ φv(VP̃) and prntJφK JP̃ K(w) ∈ φv(VP̃)

prntC(i) if w ∈ φv(VP̃) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC
φ(p) if w = v′

=

prntD′(w) if w ∈ VD′ and prntD′(w) ∈ VD′
prntJφ′K JP̃ ′K(i) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) ∈ φv(VP̃) + v′

prntC(j) if w ∈ VD′ and prntD′(w) = i ∈ |Q|
and prntJφ′K JP̃ ′K(i) = j ∈ |R|

prntJφ′K JP̃ ′K(w) if w ∈ φv(VP̃) + v′

and prntJφ′K JP̃ ′K(w) ∈ φv(VP̃) + v′

prntC(i) if w ∈ φv(VP̃) + v′

and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

=

prntD′(w) if w ∈ VD′ and prntD′(w) ∈ VD′
prntJφ′K JP̃ ′K(i) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) ∈ φ′v(VP̃ ′)
prntC(j) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) = j ∈ |R|
prntJφ′K JP̃ ′K(w) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

since v′ 6∈ Va]ma = cod(φf) ⊇ rng(prntJφ′K JP̃ ′K) and prntJφ′K JP̃ ′K = prntJφK JP̃ K[v
′ 7→ φ(p)].

7. Towards Scalable Simulation of Stochastic Bigraphs 361

linka′(p) = linka[(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)](p)

=

linkC(x) if p ∈ PD and linkD(p) = x ∈ XI

link JφK JP̃ K(p) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) ∈ φe(EP̃)

linkC(y) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) = y ∈ Y
linkC(p) if p ∈ PC
[. . . , (v′, i) 7→ φ(~yi), . . .](p) if p ∈ Pv′

=

linkC(x) if p ∈ PD′ and linkD′(p) = x ∈ XI

link Jφ′K JP̃ ′K(p) if p ∈ Pφv(VP̃)] Pv′ and link Jφ′K JP̃ ′K(p) ∈ φ′e(EP̃ ′)
linkC(y) if p ∈ Pφv(VP̃)] Pv′ and link Jφ′K JP̃ ′K(p) = y ∈ Y
linkC(p) if p ∈ PC

=

linkC(x) if p ∈ PD′ and linkD′(p) = x ∈ XI

link Jφ′K JP̃ ′K(p) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) ∈ φ′e(EP̃ ′)
linkC(y) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) = y ∈ Y
linkC(p) if p ∈ PC

since link Jφ′K JP̃ ′K = link JφK JP̃ K[. . . , (v
′, i) 7→ φ(~yi), . . .].

⊕e : We have e 6∈ EP̃ , e′ 6∈ Ea, and
P̃ ′ = (VP̃ , EP̃ + e, ctrl P̃ , prnt P̃ , link P̃) : Q→ 〈R, Y 〉
a′ = (Va, Ea + e′, ctrla, prnta, linka)

φ′ = φ[e 7→ e′]

instQ(finst(δ)) = IdU
D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

The interesting case is the link map:

linka′(p) = linka(p)

=

linkC(x) if p ∈ PD and linkD(p) = x ∈ XI

link JφK JP̃ K(p) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) ∈ φe(EP̃)

linkC(y) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) = y ∈ Y
linkC(p) if p ∈ PC

=

linkC(x) if p ∈ PD and linkD(p) = x ∈ XI

link JφK JP̃ K(p) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) ∈ φe(EP̃) + e′

linkC(y) if p ∈ Pφv(VP̃) and link JφK JP̃ K(p) = y ∈ Y
linkC(p) if p ∈ PC

=

linkC(x) if p ∈ PD′ and linkD′(p) = x ∈ XI

link Jφ′K JP̃ ′K(p) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) ∈ φ′e(EP̃ ′)
linkC(y) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) = y ∈ Y
linkC(p) if p ∈ PC

362 7.A. Proofs

since e′ 6∈ Ea] Y ⊇ rng(link JφK JP̃ K).

	v : We have v ∈ VP̃ , prnt−1

P̃
(v) = ∅, and

P̃ ′ = (VP̃ − v,EP̃ , ctrl P̃ −v, prnt P̃ −v, link P̃ −Pv) : Q→ 〈R, Y 〉
a′ = (Va − φ(v), Ea, ctrla−φ(v), prnta−φ(v), linka−Pφ(v))

φ′ = φ − v
instQ(finst(δ)) = IdU
D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

The interesting case is the link map:

linka′(p) = (linka−Pφ(v))(p)

=

linkC(x) if p ∈ PD \ Pφ(v) and linkD(p) = x ∈ XI

link JφK JP̃ K(p) if p ∈ Pφv(VP̃) \ Pφ(v) and link JφK JP̃ K(p) ∈ φe(EP̃)

linkC(y) if p ∈ Pφv(VP̃) \ Pφ(v) and link JφK JP̃ K(p) = y ∈ Y
linkC(p) if p ∈ PC \ Pφ(v)

=

linkC(x) if p ∈ PD′ and linkD′(p) = x ∈ XI

link Jφ′K JP̃ ′K(p) if p ∈ Pφ′v(VP̃−v) and link Jφ′K JP̃ ′K(p) ∈ φ′e(EP̃ ′)
linkC(y) if p ∈ Pφ′v(VP̃−v) and link Jφ′K JP̃ ′K(p) = y ∈ Y
linkC(p) if p ∈ PC

=

linkC(x) if p ∈ PD′ and linkD′(p) = x ∈ XI

link Jφ′K JP̃ ′K(p) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) ∈ φ′e(EP̃ ′)
linkC(y) if p ∈ Pφ′v(VP̃ ′) and link Jφ′K JP̃ ′K(p) = y ∈ Y
linkC(p) if p ∈ PC

since φ(v) ∈ φv(VP̃), φv(VP̃) #VD, φv(VP̃) #VC , and link Jφ′K JP̃ ′K = link JφK JP̃ K−Pφ(v).

	e : We have e ∈ EP̃ , link−1

P̃
(e) = ∅, and

P̃ ′ = (VP̃ , EP̃ − e, ctrl P̃ , prnt P̃ , link P̃) : Q→ 〈R, Y 〉
a′ = (Va, Ea − φ(e), ctrla, prnta, linka)

φ′ = φ − e
instQ(finst(δ)) = IdU
D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

All the equalities obviously hold.

7. Towards Scalable Simulation of Stochastic Bigraphs 363

	q: We have q ∈ Q, and (noting that a has no sites)

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ −q, link P̃) : (Q− q)→ 〈R, Y 〉
a′ = (Va \ a�φ(q), Ea, ctrla−a�φ(q), prnta−a�φ(q), linka−Pa�φ(q)))

φ′ = φ − q
iq = i if qi = q

instQ(finst(δ)) = (IdU [q 7→ ∅]�Q)−1

= IdQ−q
JinstQ(finst(δ))K = JIdQ−qK

= Idiq] [iq 7→ iq + 1, . . . , |Q| − 2 7→ |Q| − 1]

D′ : 〈|Q′|, XI〉 = JIdQ−qK(D)

By the definition of instantiation (Def. 7.2.35), we obtain:

D′ : 〈|Q′|, XI〉 = JIdQ−qK(D)

= dJIdQ−qK(0) || · · · || dJIdQ−qK(|Q|−2)

= d0 ⊗ · · · ⊗ diq−1 ⊗ diq+1 ⊗ · · · ⊗ d|Q|−1

= (a�rng(φs) \a�φs(q), ∅, ctrla �a�rng(φs)\a�φs(q) ,

(JIdQ−qK−1] Ida�rng(φs)\a�φs(q))

◦ (prntD −a�φ
s(q)),

link ′D −Pa�φs(q))

364 7.A. Proofs

The interesting case is the parent map:

prnta′(w) = (prnta−a�φ(q))(w)

=

prntD(w) if w ∈ VD \ a�φ(q) and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD \ a�φ(q) and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φv(VP̃)

prntC(j) if w ∈ VD \ a�φ(q) and prntD(w) = i ∈ |Q|
and prntJφK JP̃ K(i) = j ∈ |R|

prntJφK JP̃ K(w) if w ∈ φv(VP̃) \ a�φ(q) and prntJφK JP̃ K(w) ∈ φv(VP̃)

prntC(i) if w ∈ φv(VP̃) \ a�φ(q) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC \ a�φ(q)

=

prntD(w) if w ∈ VD′ and prntD′(w) ∈ VD′
prntJφ′K JP̃ ′K(i) if w ∈ VD′ and prntD′(w) = i ∈ |Q′|

and prntJφ′K JP̃ ′K(i) ∈ φ′v(VP̃ ′)
prntC(j) if w ∈ VD′ and prntD′(w) = i ∈ |Q′|

and prntJφ′K JP̃ ′K(i) = j ∈ |R|
prntJφ′K JP̃ ′K(w) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

since

φv(VP̃) # a�φ(q) Lemma 7.5.11

VC # a�φ(q) Def. 7.5.8

prntD′ = (JIdQ−qK−1] IdVD′)

◦ (prntD −a�φ
s(q))

rng(prntD′) = VD′] |Q′|
prntJφ′K JP̃ ′K = prntJφK JP̃ K ◦(JIdQ−qK] Idrng(φ′v)).

�v@p: We have v ∈ VP̃ , p ∈ VP̃]R, and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [v 7→ p], link P̃) : Q→ 〈R, Y 〉
a′ = (Va, Ea, ctrla, prnta[φ(v) 7→ φ(p)], linka)

φ′ = φ

instQ(finst(δ)) = IdU
D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

7. Towards Scalable Simulation of Stochastic Bigraphs 365

The interesting case is the parent map:

prnta′(w) = prnta[φ(v) 7→ φ(p)](w)

=

prntD(w) if w ∈ VD − φ(v) and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD − φ(v) and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φv(VP̃)

prntC(j) if w ∈ VD − φ(v) and prntD(w) = i ∈ |Q|
and prntJφK JP̃ K(i) = j ∈ |R|

prntJφK JP̃ K(w) if w ∈ φv(VP̃)− φ(v) and prntJφK JP̃ K(w) ∈ φv(VP̃)

prntC(i) if w ∈ φv(VP̃)− φ(v) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC − φ(v)

φ(p) if w = φ(v)

=

prntD′(w) if w ∈ VD′ and prntD′(w) ∈ VD′
prntJφ′K JP̃ ′K(i) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) ∈ φ′v(VP̃ ′)
prntC(j) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) = j ∈ |R|
prntJφ′K JP̃ ′K(w) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

since φ(v) ∈ φv(VP̃), φv(VP̃) #VD, φv(VP̃) #VC , and prntJφ′K JP̃ ′K = prntJφK JP̃ K[φ(v) 7→ φ(p)].

�q@p: We have q ∈ Q, p ∈ VP̃]R, and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [q 7→ p], link P̃) : Q→ 〈R, Y 〉
a′ = (Va, Ea, ctrla, prnta[φ(q) 7→ φ(p)], linka)

φ′ = φ

instQ(finst(δ)) = IdU
D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

366 7.A. Proofs

The interesting case is the parent map:

prnta′(w) = prnta[φ(q) 7→ φ(p)](w)

=

prntD(w) if w ∈ VD \ φ(q) and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD \ φ(q) and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φv(VP̃)

prntC(j) if w ∈ VD \ φ(q) and prntD(w) = i ∈ |Q|
and prntJφK JP̃ K(i) = j ∈ |R|

prntJφK JP̃ K(w) if w ∈ φv(VP̃) \ φ(q) and prntJφK JP̃ K(w) ∈ φv(VP̃)

prntC(i) if w ∈ φv(VP̃) \ φ(q) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC \ φ(q)

φ(p) if w ∈ φ(q)

=

prntD′(w) if w ∈ VD′ and prntD′(w) ∈ VD′
prntJφ′K JP̃ ′K(i) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) ∈ φ′v(VP̃ ′)
prntC(j) if w ∈ VD′ and prntD′(w) = i ∈ |Q|

and prntJφ′K JP̃ ′K(i) = j ∈ |R|
prntJφ′K JP̃ ′K(w) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

since prntD(φ(q)) ∈ |Q|, φ(q) ⊆ VD, cf. Def. 7.5.8, VD #φv(VP̃), VD #VC , and prntJφ′K JP̃ ′K =

prntJφK JP̃ K[i 7→ p′] if q = qi and

p′ =

{
j if p = rj

φv(p) if p ∈ VP̃
.

⊗q→r@p: We have q ∈ Q, r 6∈ Q, p ∈ VP̃]R, and (noting that a has no sites)

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ [r 7→ p], link P̃) : (Q+ r)→ 〈R, Y 〉
a′ = (Va] Vr, Ea, ctrla] ctrlr, prnta] prntr, linka] linkr)

φ′ = φ[r 7→ f−1
v (φ(q))]

Q′ = {q0, . . . , qir−1, r, qir , . . . , qk−1} where qir−1 < r < qir

iq = i if qi = q

instQ(finst(δ)) = (IdU−r[q 7→ {q, r}]�Q)−1

= IdQ[r 7→ q]

JinstQ(finst(δ))K = JIdQ[r 7→ q]K
= Idir] [ir 7→ iq]] [ir + 1 7→ ir, . . . , |Q| 7→ |Q| − 1]

D′ : 〈|Q′|, XI〉 = JIdQ[r 7→ q]K(D)

7. Towards Scalable Simulation of Stochastic Bigraphs 367

where

Vq = a�φ(q)

|Vr| = |Vq|
Vr #Va

fv : Vr�Vq

ctrlr = ctrla ◦fv
prntr = {f−1

v (φ(q)) 7→ φ(p)}] f−1
v ◦ prnta ◦(fv − f−1

v (φ(q)))

linkr(v, i) = linka(fv(v), i) (v ∈ Vr)

By the definition of instantiation (Def. 7.2.35), we obtain:

D′ : 〈|Q′|, XI〉 = JIdQ[r 7→ q]K(D)

= dJIdQ[r 7→q]K(0) || · · · || dJIdQ[r 7→q]K(|Q|)

= d0 ⊗ · · · || dir−1 || dr || dir || · · · ⊗ d|Q|−1

= (VD] Vr, ∅, ctrla �a�rng(φs)] ctrlr,

((Idir] [ir + 1 7→ ir, . . . , |Q| 7→ |Q| − 1])−1] Ida�rng(φs)) ◦ prntD

] ([ir 7→ iq]
−1] f−1

v) ◦ prntD ◦fv,
linkD] linkr)

dr = f−1
v diq .

368 7.A. Proofs

The interesting case is the parent map:

prnta′(w) = (prnta] prntr)(w)

=

prntD(w) if w ∈ VD and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φv(VP̃)

prntC(j) if w ∈ VD and prntD(w) = i ∈ |Q|
and prntJφK JP̃ K(i) = j ∈ |R|

prntJφK JP̃ K(w) if w ∈ φv(VP̃) and prntJφK JP̃ K(w) ∈ φv(VP̃)

prntC(i) if w ∈ φv(VP̃) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC
prntr(w) if w ∈ Vr

=

prntD(w) if w ∈ VD and prntD(w) ∈ VD
prntJφK JP̃ K(i) if w ∈ VD and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) ∈ φ′v(VP̃ ′)
prntC(j) if w ∈ VD and prntD(w) = i ∈ |Q|

and prntJφK JP̃ K(i) = j ∈ |R|
prntJφK JP̃ K(w) if w ∈ φ′v(VP̃ ′) and prntJφK JP̃ K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφK JP̃ K(w) = i ∈ |R|
prntC(w) if w ∈ VC
prntD′(w) if w ∈ Vr and prntD′(w) ∈ Vr
φ(p) if w ∈ Vr and prntD′(w) = ir

=

prntD′(w) if w ∈ VD′ and prntD′(w) ∈ VD′
prntJφ′K JP̃ ′K(i) if w ∈ VD′ and prntD′(w) = i ∈ |Q′|

and prntJφ′K JP̃ ′K(i) ∈ φ′v(VP̃ ′)
prntC(j) if w ∈ VD′ and prntD′(w) = i ∈ |Q′|

and prntJφ′K JP̃ ′K(i) = j ∈ |R|
prntJφ′K JP̃ ′K(w) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) ∈ φ′v(VP̃ ′)
prntC(i) if w ∈ φ′v(VP̃ ′) and prntJφ′K JP̃ ′K(w) = i ∈ |R|
prntC(w) if w ∈ VC

7. Towards Scalable Simulation of Stochastic Bigraphs 369

since

prntD′ = ((Idir] [ir + 1 7→ ir, . . . , |Q| 7→ |Q| − 1])−1] Ida�rng(φs)) ◦ prntD

] ([ir 7→ iq]
−1] f−1

v) ◦ prntD ◦fv

prntr = [f−1
v (φ(q)) 7→ φ(p)]

] f−1
v ◦ prnta ◦(fv − f−1

v (φ(q)))

= [iq 7→ φ(p)] ◦ prntD ◦[f−1
v (φ(q)) 7→ φ(q)]

] f−1
v ◦ prnta ◦(fv − f−1

v (φ(q)))

= [φ(p) 7→ iq]
−1 ◦ prntD ◦[f−1

v (φ(q)) 7→ φ(q)]

] f−1
v ◦ prnta ◦(fv − f−1

v (φ(q)))

= [φ(p) 7→ iq]
−1 ◦ prntD ◦fv �f−1

v (φ(q))

] f−1
v ◦ prntD ◦(fv − f−1

v (φ(q)))

= ([φ(p) 7→ iq]
−1] f−1

v) ◦ prntD ◦fv
= ([ir 7→ φ(p)]] IdVr) ◦ ([ir 7→ iq]

−1] f−1
v) ◦ prntD ◦fv

= ([ir 7→ φ(p)]] IdVr) ◦ prntD′ �Vr

prntJφ′K JP̃ ′K = prntJφK JP̃ K ◦(Idir] [ir 7→ iq]] [ir + 1 7→ ir, . . . , |Q| 7→ |Q| − 1]] Idrng(φ′)).

�(v,i)7→l: We have v ∈ VP̃ , i ∈ ar(ctrl P̃ (v)), l ∈ EP̃] Y , and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ , prnt P̃ , link P̃ [(v, i) 7→ l]) : Q→ 〈R, Y 〉
a′ = (Va, Ea, ctrla, prnta, linka[(φ(v), i) 7→ φ(l)])

φ′ = φ

instQ(finst(δ)) = IdU
D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

All the equalities obviously hold.

}v:K : We have v ∈ VP̃ , ar(K) = ar(ctrl P̃ (v)), and

P̃ ′ = (VP̃ , EP̃ , ctrl P̃ [v 7→ K], prnt P̃ , link P̃) : Q→ 〈R, Y 〉
a′ = (Va, Ea, ctrla[φ(v) 7→ K], prnta, linka)

φ′ = φ

instQ(finst(δ)) = IdU
D′ : 〈|Q′|, XI〉 = D : 〈|Q|, XI〉.

All the equalities obviously hold.

370 7.A. Proofs

Proof of Lemma 7.6.15

By Def. 7.6.4 we have a match of R in a and thus by Corol. 7.5.23 we have an embedding φ : P̃ ↪→ a
such that

a = ctxt(JφK) ◦ (JφK JP̃ K⊗ idXI) ◦ prmt(JφK)

a′ = ctxt(JφK) ◦ (ρ′ Jδ(P̃)K⊗ idXI) ◦ JinstQ(finst(δ))K(prmt(JφK)).

What remains is to show (a′′, φ′) = δ(a, φ) and a′ l a′′ for each edit. The difficulty lies in the
instantiation and the interesting cases are those that delete or copy a parameter; the others are very
similar to each other, and we only show the first one.

⊕v:K~y@p: We have v 6∈ VP̃ , p ∈ VP̃]R, {~y} ⊆ EP̃] Y , ar(K) = n, and

a′′ = (Va + v′, Ea, ctrla[v′ 7→ K], prnta[v′ 7→ φ(p)],

linka[(v′, 0) 7→ φ(~y0), . . . , (v′, n− 1) 7→ φ(~yn−1)])

φ′ = φ[v 7→ v′]

instQ(finst(δ)) = IdQ

for some v′ 6∈ Va.
By Corol. 7.5.23 we have

a′′ = ctxt(Jφ′K) ◦ (Jφ′K Jδ(P̃)K⊗ idXI) ◦ prmt(Jφ′K).

From Def. 7.5.20 and φ′ = φ[v 7→ v′] it is clear that ctxt(Jφ′K) = ctxt(JφK) and prmt(Jφ′K) =
prmt(JφK), so it is sufficient to show

prmt(JφK) l JinstQ(finst(δ))K(prmt(JφK))

Jφ′K Jδ(P̃)K l ρ′ Jδ(P̃)K.

where the latter is immediate from the definition of support equivalence. By definition of instan-
tiation (cf. Def. 7.2.35) and instQ(finst(δ)) = IdQ we get

JinstQ(finst(δ))K(prmt(JφK)) = JIdQK(prmt(JφK))

= Id|Q|(prmt(JφK))
l prmt(JφK)

as required.

⊕e : Similar to the first case.

	v : Similar to the first case.

	e : Similar to the first case.

	q: We have q ∈ Q and (noting that a has no sites)

a′′ = (Va \ a�φ(q), Ea, ctrla−a�φ(q),

prnta−a�φ(q), linka−Pa�φ(q))

φ′ = φ − q
instQ(finst(δ)) = IdQ−q.

7. Towards Scalable Simulation of Stochastic Bigraphs 371

For simplicity, assume ∀q′ ∈ Q− q : q > q′.

By Corol. 7.5.23 we have

a′′ = ctxt(Jφ′K) ◦ (Jφ′K Jδ(P̃)K⊗ idXI) ◦ prmt(Jφ′K).

From Def. 7.5.20 and φ′ = φ − q it is easy to see that

ctxt(Jφ′K) = ctxt(JφK)
prmt(JφK) = d0 ⊗ · · · ⊗ d|Q|−1

prmt(Jφ′K) = d0 ⊗ · · · ⊗ d|Q|−2

so it is sufficient to show

prmt(φ′) l JinstQ(finst(δ))K(prmt(JφK))

Jφ′K Jδ(P̃)K l ρ′ Jδ(P̃)K.

where the latter is immediate from the definition of support equivalence. By definition of instan-
tiation (cf. Def. 7.2.35) and instQ(finst(δ)) = IdQ−q we get

JinstQ(finst(δ))K(prmt(JφK)) = JIdQ−qK(prmt(JφK))

= Id|Q|−2(prmt(JφK))
l d0 ⊗ · · · ⊗ d|Q|−2

l prmt(Jφ′K)

as required.

�v@p: Similar to the first case.

�q@p: Similar to the first case.

⊗q→r@p: We have q ∈ Q, r 6∈ Q, p ∈ VP̃]R, and (noting that a has no sites)

a′′ = (Va] Vr, Ea, ctrla] ctrlr, prnta] prntr, linka] linkr)

φ′ = φ[r 7→ f−1
v (φ(q))]

instQ(finst(δ)) = IdQ[r 7→ q]

where

Vq = a�φ(q)

|Vr| = |Vq|
Vr #Va

fv : Vr�Vq

ctrlr = ctrla ◦fv
prntr = {f−1

v (φ(q)) 7→ φ(p)}] f−1
v ◦ prnta ◦(fv − f−1

v (φ(q)))

linkr(v, i) = linka(fv(v), i).

For simplicity, assume r > q and ∀q′ ∈ Q− q : q > q′.

372 7.A. Proofs

By Corol. 7.5.23 we have

a′′ = ctxt(Jφ′K) ◦ (Jφ′K Jδ(P̃)K⊗ idXI) ◦ prmt(Jφ′K).

From Def. 7.5.20 and φ′ = φ[r 7→ f−1
v (φ(q))] it is easy to see that

ctxt(Jφ′K) = ctxt(JφK)
prmt(JφK) = d0 ⊗ · · · ⊗ d|Q|−1 = (VD, ∅, ctrlD, prntD, linkD)

R = (Vr, ∅, ctrlr, prntR, linkR)

prntR = {f−1
v (φ(q)) 7→ 0)}] f−1

v ◦ prnta ◦(fv − f−1
v (φ(q)))

linkR(v, i) = linkD(fv(v), i)

prmt(Jφ′K) = prmt(JφK) ||R
d|Q|−1 = (Vq, ∅, ctrlD �Vq , prntD �Vq , linkD �PVq)

l R

so it is sufficient to show

prmt(φ′) l JinstQ(finst(δ))K(prmt(JφK))

Jφ′K Jδ(P̃)K l ρ′ Jδ(P̃)K.

where the latter is immediate from the definition of support equivalence. By definition of instan-
tiation (cf. Def. 7.2.35), instQ(finst(δ)) = IdQ[r 7→ q], and d|Q|−1 l R we get

JinstQ(finst(δ))K(prmt(JφK)) = JIdQ[r 7→ qK](prmt(JφK))

= Id|Q|−1[|Q| 7→ |Q| − 1](prmt(JφK))
l prmt(JφK) ||R
l prmt(Jφ′K)

as required.

�(v,i)7→l: Similar to the first case.

}v:K : Similar to the first case.

Proof of Prop. 7.6.28

For each section of the script, we show (1) that it is compatible with the pattern at that point, (2)
what the resulting pattern is, and (3) what the resulting forward instance map is. Finally, we show
that the named instance map we derive from the forward instance map is η.

⊗η(q′i)→f(q′i)@r
: Compatible since η(q′i) ∈ cod(η) = Q, f(q′i) ∈ Q′′#Q, and the redex must have a root

if it has sites, since the parent map is acyclic.

The resulting pattern is

(VP̃ , EP̃ , ctrl P̃ , prnt P̃][f(Q′) 7→ r], link P̃) : Q]Q′′ → 〈R, Y 〉.

7. Towards Scalable Simulation of Stochastic Bigraphs 373

The resulting forward instance map is

IdU−f(q′
n′)

[η(q′n′) 7→ {η(q′n′), f(q′n′)}]
◦ (· · · ◦ (IdU−f(q′1)[η(q′1) 7→ {η(q′1), f(q′1)}]�U−f(q′2)) · · ·�U−f(q′

n′))

= IdU−f(Q′)[η(q′1) 7→ {η(q′1), f(q′1)}, . . . , η(q′n′) 7→ {η(q′n′), f(q′n′)}].

	qi : Compatible since qi ∈ Q.

The resulting pattern is

(VP̃ , EP̃ , ctrl P̃ , (prnt P̃][f(Q′) 7→ r])−Q, link P̃) : Q′′ → 〈R, Y 〉.

The resulting forward instance map is

IdU [qn 7→ ∅]
◦ (· · · ◦ (IdU [q1 7→ ∅]
◦ (IdU−f(Q′)[η(q′1) 7→ {η(q′1), f(q′1)}, . . . , η(q′n′) 7→ {η(q′n′), f(q′n′)}]�U)

�U) · · ·�U)

= IdU−f(Q′)[q1 7→ ∅, . . . , qn 7→ ∅]
[η(q′1) 7→ {f(q′1)}, . . . , η(q′n′) 7→ {f(q′n′)}].

	vi : Compatible since vi‖nVP̃ and the nodes has no remaining children since sites are only at root r
and for any node vvj ∈ prnt−1

P̃
(vi) we have j < i and thus vj has already been deleted.

The resulting pattern is

(∅, EP̃ , ctrl P̃ −VP̃ , ((prnt P̃][f(Q′) 7→ r])−Q)− VP̃ , link P̃ −PP̃) : Q′′ → 〈R, Y 〉
= (∅, EP̃ , ∅, [f(Q′) 7→ r], ∅) : Q′′ → 〈R, Y 〉.

The forward instance map is unchanged.

	ei : Compatible since ei‖nEP̃ and there are no points left.

The resulting pattern is

(∅, ∅, ∅, [f(Q′) 7→ r], ∅) : Q′′ → 〈R, Y 〉.

The forward instance map is unchanged.

⊕e′i : Compatible since there are no edges left.

The resulting pattern is

(∅, EP̃ ′ , ∅, [f(Q′) 7→ r], ∅) : Q′′ → 〈R, Y 〉.

The forward instance map is unchanged.

374 7.A. Proofs

⊕v′i:ctrlP̃ ′ (v
′
i)[...,link

P̃ ′ (v
′
i
,i),...]@ prntP̃ ′ (v

′
i)
: Compatible since there are no nodes left, the links and roots are

all present and if the parent is a node v′j = prnt P̃ ′(v
′
i) then we have j < i and thus it has been

added before its children.

The resulting pattern is

(VP̃ ′ , EP̃ ′ , ctrl P̃ ′ , (prnt P̃ ′ −Q′)] [f(Q′) 7→ r], link P̃ ′) : Q′′ → 〈R, Y 〉.

The forward instance map is unchanged.

⊗f(q′i)→q′i@ prntP̃ ′ (q
′
i)
: Compatible since f(q′i) ∈ Q′′, q′i ∈ Q′#Q′′, and prnt P̃ ′(q

′
i) ∈ VP̃ ′]R.

The resulting pattern is

(VP̃ ′ , EP̃ ′ , ctrl P̃ ′ , prnt P̃ ′][f(Q′) 7→ r], link P̃ ′) : Q′]Q′′ → 〈R, Y 〉.

The resulting forward instance map is

IdU−q′
n′

[f(q′n′) 7→ {f(q′n′), q
′
n′}]

◦ (· · · ◦ (IdU−q′1 [f(q′1) 7→ {f(q′1), q′1}]
◦ (IdU−f(Q′)[q1 7→ ∅, . . . , qn 7→ ∅]

[η(q′1) 7→ {f(q′1)}, . . . , η(q′n′) 7→ {f(q′n′)}�U−q
′
1)

�U−q
′
2) · · ·�U−q′n′)

= Id(U−f(Q′))−Q′ [q1 7→ ∅, . . . , qn 7→ ∅]
[η(q′1) 7→ {f(q′1), q′1}, . . . , η(q′n′) 7→ {f(q′n′), q

′
n′}].

	f(q′i)
: Compatible since f(q′i) ∈ Q′′.
The resulting pattern is

(VP̃ ′ , EP̃ ′ , ctrl P̃ ′ , prnt P̃ ′ , link P̃ ′) : Q′ → 〈R, Y 〉 = P̃ ′.

The resulting forward instance map is

finst(es(R))

= IdU [f(q′n′) 7→ ∅]
◦ (· · · ◦ (IdU [f(q′1) 7→ ∅]
◦ (Id(U−f(Q′))−Q′ [q1 7→ ∅, . . . , qn 7→ ∅]

[η(q′1) 7→ {f(q′1), q′1}, . . . , η(q′n′) 7→ {f(q′n′), q
′
n′}]�U)

�U) · · ·�U)

= Id(U−f(Q′))−Q′ [q1 7→ ∅, . . . , qn 7→ ∅]
[η(q′1) 7→ {q′1}, . . . , η(q′n′) 7→ {q′n′}]

7. Towards Scalable Simulation of Stochastic Bigraphs 375

The derived named instance map for the entire script is thus:

instQ(finst(es(R))) = (Id(U−f(Q′))−Q′ [q1 7→ ∅, . . . , qn 7→ ∅]
[η(q′1) 7→ {q′1}, . . . , η(q′n′) 7→ {q′n′}]�Q)−1

= ([q1 7→ ∅, . . . , qn 7→ ∅]
[η(q′1) 7→ {q′1}, . . . , η(q′n′) 7→ {q′n′}])−1

= [q′1 7→ η(q′1), . . . , q′n′ 7→ η(q′n′)]

= η.

376 7.A. Proofs

Part V

A Bigraphical Language for Cell
Biology

377

Chapter 8

Formal Cellular Machinery
Troels C. Damgaard, Espen Højsgaard, and Jean Krivine

Abstract

Various calculi have been proposed to model different levels of abstraction of cell signaling and
molecular interactions. In this paper we propose a framework inspired by some of these calculi
that structures interactions and agents from the most basic elements of the cell (protein interaction
sites) to higher order ones (compartments and molecular species).

Preface This chapter consists of the paper

T. C. Damgaard, E. Højsgaard, and J. Krivine. Formal Cellular Machinery. Proceedings of SASB
2011, the Second International Workshop on Static Analysis and Systems Biology. September
2011. Keynote talk. (to appear)

8.1 Introduction
It has been about 10 years now since part of the theoretical computer science community got interested
in applying formal methods to systems biology. Since then it seems that the quest for a calculus having
proteins, compartments or channels as first class citizens has not reached an end. Among the large
variety of languages that have been proposed to tackle various aspects of systems biology (see Refs. [1–
5, 10, 12, 14, 15, 17–22] for a non exhaustive list), several ideas seem of particular importance to
us: (i) the cellular medium can be described as a graph where nodes represent molecules and edges
represent physical contacts between these molecules [1, 10, 12, 14], (ii) languages with a natural notion
of location of reaction can be used to represent cellular compartments [2, 15, 19–21], (iii) interactions
between compartments and proteins or vesicle transformations can be described using local patches
of membranes, without committing to any particular global curvature [4, 11], and (iv) although laws
governing interactions of molecular components are numerous, they can be engendered by a small set
of generators [3].

The present work proposes to integrate points (i) to (iv) in a single formalism. More specifically we
define a language for proteins and cells in an incremental way, making explicit the trade-off between
expressiveness and complexity. We decompose the construction of the language in four steps:

379

380 8.2. C0: forming molecules

– C0: an “untyped” calculus aimed at modeling protein-protein interactions. The dynamics of these
interactions is presented as a small set of generator rules, which modelers can refine and compose but
not change.

– C1: an intermediate version of the term language that allows modelers to type reactions introduced
at the previous stage.

– C2: the main expressiveness increment of our language. It introduces compartments and the notion
of projectivity of membrane reactions, i.e., the possibility to mention patches of membrane, without
having to deal with their global curvature. We propose a matching algorithm, that is proven both
sound and complete. At this stage, generators allow modelers to create and destroy compartments in
a projective fashion.

– C3: the final step of the construction deals with the diffusion problem. In particular we incorporate
means to talk about connected components of reactants, which is a key feature for a new set of
generators modeling diffusion of molecular species and intra-molecular complex formation. To the
best of our knowledge C3 is the first calculus of its kind that allows one to model molecular agents both
at a micro level (where interactions are purely local) and a macro level (where interactions involve
connected components of agents).

The language we build is inspired by and closely related to the κ-calculus of Danos and Laneve [9,
10] and Milner’s bigraphical reactive systems [16], however these connections will be left informal
throughout the paper. The reader might refer to Appendix 8.A and to Ref. [6] for some preliminary
work on the subject.

8.2 C0: forming molecules
Proteins are long polymers built over an alphabet of 20 amino acids. Each protein’s interaction capa-
bilities are mediated by its 3D folding in space which in turn depends on its amino acid composition.
Protein interactions are either structural when they form non-covalent bonds to other molecular agents
(DNA, RNA, other proteins) or enzymatic when they can catalyze the chemical modification of the
substrate to which they are bound. In the first case one usually talks about complex formation, in
the latter one talks about post-transcriptional modification. It has been observed that the amino acid
sequence of most proteins appearing in living organisms can be regrouped into domains which are
strings of amino acids that have a specific fold in space that is rather context free. Biologists tend to
associate “functions” to domains, for instance zinc finger domains are often linked to the specific DNA
binding capability of their host protein.

The first step of our construction, termed C0, is aimed at representing domains as a collection of
interaction sites, proteins as a collection of domains and interactions as protein assembly and complex
formation.

8.2.1 Terms
Consider an infinite set of site names S = {x, y, z, . . . } and a disjoint infinite set of backbone names
B = {a, b, c, . . . }. Let D be a terminal symbol, distinct from all others, that we use to denote domains.
Terms T of C0 are built on the following grammar:

D,D′ ::= Da(x1, . . . , xk) for a ∈ B, xi ∈ S
T, S ::= D | 0 | (T, S) | T\v for v ∈ S ∪ B

8. Formal Cellular Machinery 381

(S, T) ≡ (T, S)
((T, S), T ′) ≡ (T, (S, T ′))
(T, 0) ≡ T
T\u ≡ T u 6∈ fn(T)
(T\u)\v ≡ (T\v)\u
T\u ≡ (T {v/u})\v v 6∈ fn(T)
(T\u, S) ≡ (T, S)\u u 6∈ fn(S)

Figure 8.1: Structural congruence for C0.

Intuitively a k-ary domain Da(x1, . . . , xk) is the placeholder of k (interaction) sites and one backbone.
Each site i is equipped with a name xi ∈ S and each domain with a backbone name a ∈ B. Backbone
name sharing denotes domains that belong to the same protein, site name sharing denotes complex
formation. We inductively define free occurrences of names as:

fn (Da(x1, . . . , xk)) = {a, x1, . . . , xk}
fn(0) = ∅

fn(T, S) = fn(T) ∪ fn(S)
fn(T\v) = fn(T)− {v}

Symmetrically, one can define the bound occurrences of names, which we shall denote by bn(T).
Terms are equipped with a natural notion of structural congruence defined in Fig. 8.1. The structural
congruence relation rules include a natural α-equivalence on bound names. In the following we assume
that names that are not under the same binder are kept distinct.

8.2.2 Graphical notation

T =
�
Da(x, y), Db(x, z)

�
\y

D D

S = (Da(x), Da(x)) \x

D D

U = (Da(x, x),Da(z),Da()) \a\x

11

2 2 1 1
x

aa b

z

D DD1 1

2
z

Intuitively, the term to port graph correspondence is the following: domains are nodes, sites and
backbones are ports and name sharing denotes (hyper) edges. Bound names denote closed ports and
we use the term closed edges to denote a bound name that is shared. Similarly, free names denote open
ports and form open edges when they are shared. Open ports or edges can be merged or closed in the
context (see later). With these conventions, one may view any term (up to structural congruence) as
the isomorphism class of a port graph (with hyper-edges), in the style of bigraphs [16], where nodes
(domains) are equipped with connection ports (sites and backbones). As an example we give above
the port graph representation of terms T, S and U . The reader familiar with bigraphs will notice that
we drift slightly away from Milner’s notation: site ports are represented by small circles that are filled
when they are closed. Backbone ports are represented as small triangles that are also filled when they
are closed. We use curved lines for site edges and straight lines for backbone edges. We label open

382 8.2. C0: forming molecules

edges or open ports with the corresponding free name (closed edges and ports are not labelled). Note
that we will omit site numbers whenever they are not necessary.

Connections between sites correspond to physical contacts between protein parts. This connection
being exclusive we want to restrict to terms where restrictions bind at most two occurrences of site
names. In the following of this paper we will assume that for any term T , free site names occur exactly
once in T and bound site names have at most two occurrences. Note that we do not impose such
restrictions on backbone name sharing.

8.2.3 Pattern matching and dynamics

A match for T in S is defined as a context C[•] with exactly one hole such that C[T] ≡ S. Such
contexts are defined inductively as:

C[•] ::= • | C[•]\u | C[•], T u ∈ B ∪ S

A rule is a pair of terms 〈T, S〉 such that fn(S) ⊆ fn(T). Given a set R of such pairs, one may
rewrite terms by letting these rules be applied in a context free manner, i.e.,:

r = 〈T, S〉 ∈ R T ′ ≡ C[Tσ] S′ ≡ C[Sσ]

T ′ →r S′

for some name substitution σ.

8.2.4 Generators

It is clear that not all rules make sense from a biological point of view: the fact that backbone names
denote the core of a protein and that site names denote connection between protein domains is purely
conventional and this convention could be easily broken. A way to proceed is to define some sorting
discipline that allows one to screen off undesired terms from admissible ones [2], invalid rule applications
being discarded “on the fly”. Instead of doing this, we adopt a strategy of pre-conceiving what “laws”
a modeler is able to invoke when defining her own rule set. This is achieved by defining a set G0 of
basic rule generators that a modeler can only refine to her needs, cf. Fig. 8.2. These generators allow
one to perform standard atomic actions of graph rewriting. It is noteworthy that these generators,
including degrade, are side effect free. We shall carry this set of generators throughout the rest of this
paper, incorporating new generators as the language grows.

Say a rule r = 〈T, S〉 is generated if and only if it can be obtained by:

– refinement: there exists 〈T ′, S′〉 ∈ G0 such that T ≡ C[T ′σ] and S ≡ C[S′σ] for some context C[•]
and substitution σ.

– composition: one can generate two rules 〈T, T ′〉 and 〈T ′, S〉.

8.2.5 Discussion

We have introduced so far a simple calculus that rewrites proteins structured as connected domains.
Proteins can be connected to each other (as in complex formation), new domains can be fused to
proteins (as in protein synthesis) or severed (as trans-membrane proteins can be cleaved to emit
signals into the inter cellular medium). This calculus is fairly abstract in the sense that two proteins
may only differ in the number of domains they have and in the number of sites these domains possess.

8. Formal Cellular Machinery 383

D

x1 . . . xk

D D

x1 . . . xk

Di j i j

D

x1 . . . xk

D

disconnect

connect

cleave

fuse

degradeD

x1 . . . xk

synthesize
D

D

x1 . . . xk

D
a a

y1 . . . yq y1 . . . yq

y1 . . . yqy1 . . . yq

a a

a

bb

. . .

Figure 8.2: The set G0 of generators for C0.

It is clear that we lack means of naming molecular components such as domain names (SH2, Tyrosine,
PWWP etc.) or protein names (SOS, EGF, IGF, p53, etc.). Before performing a bigger increment in
expressiveness, when we introduce compartments in Section 8.4, we would like to briefly introduce a
way to deal with names as a particular type of context in which unamed proteins can be embedded.
The intent is to provide a way to define molecular reactions as refinements of the generators we have
just presented, in keeping with the biological intuition that information about molecular objects is
always partial and that more context could reveal more about the nature of a molecule. In particular,
we have the ontology problem in mind that several names can denote the same protein or gene.

8.3 C1: naming molecules

8.3.1 Terms

Consider a new set of names M that is pairwise disjoint from B and S. Terms of C1 are essentially
those of C0 where domains have an extra meta name m,m′ ∈M that will point to new type of terms
called info terms (denoted by I, J, . . .). Let I be a set of terminal symbols (distinct from all previous
ones) called informations (think of protein or domain names). The grammar of C1 is:

D,D′ ::= Dam(x1, . . . , xk) a ∈ B, m ∈M, xi ∈ S (domains)
I, J ::= Infom Info ∈ I, m ∈M (info)
T, S ::= 0 | D | I | (T, S) | T\v for v ∈ S ∪ B ∪M (named terms)

Structural congruence coincides with the one defined earlier.

8.3.2 Graphical notation

This simple extension has a natural impact on the graphical notation, as shown in Fig. 8.3 with an
example of amino acid synthesis. Info nodes are represented by their type (Nucl., G, Ribosome, Prot.
compl., Amino acid, Glycine) without drawing borders around them. Meta names that are shared by
nodes induce thin straight hyper edges. Open meta ports are not drawn, and closed meta edges are
represented with filled arrowheads (as in the Amino acid and Glycine nodes on the right hand side).

384 8.4. C2: placing molecules

Ribosome

D

D

D

D

D

Nucl.
G Nucl.

G

Nucl.

Prot. compl.

Ribosome

DD

Prot. compl.

D

Amino acid Glycine

D DD

D

Nucl.
G Nucl.

G

Nucl.

D

a
a

b b

�G, ∗, G� → Glycine

Figure 8.3: Graphical illustration of the role of info nodes and meta names, with the rule for the
RNA translation of a Glycine amino acid. Node shape is purely illustrative. A ribosome is bound
to a guanine being part of an RNA strand (backbone b) and has started to assemble a new protein
(backbone a). The next nucleotide on the right is of unspecified type followed by a G nucleotide, this
triplet 〈G, ∗, G〉 codes for the Glycine that is produced on the right.

There are only two specific generators for C1, for all Info ∈ I:

(Concretize) Dam(x1, . . . , xk)→ Dam(x1, . . . , xk), Infom
(Abstract) Dam(x1, . . . , xk), Infom → Dam(x1, . . . , xk)

and again, rules can be generated by refinement and composition of generators.

8.3.3 Discussion

With little symbol pushing burden we obtain a fairly expressive language which, at this stage, is already
a reasonable candidate for representing most types of synthetic biology systems. It is noteworthy that
the nature of an interaction can be expressed here as a form of type instantiation. One may think of
C0 generators as polymorphic reaction types: (α, β) connect or α synthesize. They can be instantiated
as (A,B) connect or Amino acid synthesize.

This second step brings us closer to the κ-calculus of Danos and Laneve [10]. In fact, our calculus
now encompasses κ in a straightforward way (see Appendix 8.A).

8.4 C2: placing molecules

As we already stressed in the previous sections, we have for now abstracted away from space and
geometry: molecules are assumed to be floating in a uniform medium that lets domains react freely
with each other. One could for instance encode a discrete compartment as info nodes attached to each
domain and make sure they are compatible when two domains encounter. Yet, not only would this
induce an explosion in the number of rules to write, but also entail a lot of book keeping rules in order
to make sure that protein domains remain co-localized. We propose here to exploit our informal yet
underlying relationship with bigraphs in order to add a simple notion of compartmentalization to our
language.

8. Formal Cellular Machinery 385

8.4.1 Terms

Let V be an infinite set of parameter names {X,Y, Z, . . . } assumed to be pairwise disjoint from S, B
andM. Let C be a terminal symbol, distinct from previous ones. Terms P,Q, . . . of C2 are generated
by the following extension of the grammar for C1:

T, S ::= · · · | Cm(T) | X m ∈M, X ∈ V (local terms)
P,Q ::= T | (T ‖ P) | P\v v ∈M∪ S ∪ B (wide terms)

Terms of the form Cm(T) denote compartments. They are nodes with a meta name, like domains, but
have neither sites nor backbone. In the way defined in the previous section, this meta name allows one
to specify a type of compartment: for instance nucleus,membrane ∈ I (one may also think of region ∈ I
to denote compartments with no physical boundaries).

Note also the use parameters as in Cm(X), whereX denotes the unspecified content of compartment
Cm. We use V(P) to denote the set of parameter names in P . For simplicity we consider here “linear
terms", i.e., terms that do not contain multiple copies of the same parameter variables. It entails that
a rule may delete parameters but not duplicate them.

Terms of C2 are either local, in which case we use T, S to denote them, or wide in which case
we use P,Q. The term P = (T ‖ S) is a pattern requiring T and S to be separated by exactly
one compartment boundary in any context; note that this differs from the interpretation of wide
composition in bigraphs, where they may be separated by any number of boundaries. Hence we will
see that P has a match in both (Cm(T), S) and (T,Cm(S)). We want to absorb here the projective
view of membrane reactions introduced by Danos and Pradalier [11] and also present in a later work
by Cardelli [4]. The underlying idea is that membrane curvature is a global property that one may
not want to consider when expressing cellular mechanisms. This trait will turn out to be very useful
when defining a minimal set of generators for C2.

Definition 8.4.1 (Local contexts). A context C[•] with exactly one hole is a local context if it is of
the form:

C[•] ::= • | C[•]\u | C[•], T u ∈ B ∪ S
�

Note that the context Cm(•) is not a local context. It is however a derivable wide context as we
will see shortly.

Structural congruence for C2 extends the one of C1 with the following laws for wide composition of
terms:

Cm(T) ≡ Cm(T ′) if T ≡ T ′
Cm(T\u) ≡ Cm(T)\u if u 6= m
(P\u)\v ≡ (P\v)\u
P\u ≡ (P {v/u})\v v 6∈ fn(P)
T\u ‖ P ≡ (T ‖ P)\u u 6∈ fn(P)
T ‖ P\u ≡ (T ‖ P)\u u 6∈ fn(T)

It is clear that any wide term is structurally congruent to a term of the form (T1 ‖ · · · ‖ Tn)\V (using
the shorthand P\V for the restriction of the names of V). We sometimes write P ‖ Q to denote
the concatenation P and Q (in the style of list concatenation). Importantly a pattern of the form
T ‖ S ‖ T ′ specifies that T and T ′ are exactly two compartment layers away from each other, and that
S is one compartment layer away from both T and T ′, we will call this distance projective because it

386 8.4. C2: placing molecules

does not take the orientation of the compartment borders, that will separate the terms in the context,
into account. We shall see that valid matches for a wide term (T1 ‖ . . . ‖ Tn)\V will correspond to
those in which the distance between Ti and Ti+k is exactly k, for all i ∈ {1, . . . , n− k}.

8.4.2 Pattern matching

For any wide term P , say that P has width w(P) = n if P ≡ (T1 ‖ . . . ‖ Tn)\V for some local terms
Ti.

Definition 8.4.2 (Projective distance). Let P be a wide term and Ti, Tj two disjoint term occurrences
in P . The projective distance of Ti, Tj in P , written ∆Ti,Tj (P) is inductively defined as:

∆Ti,Tj (Ti, Tj) = 0
∆Ti,Tj (T, S) = ∆Ti,Tj (T) if Ti, Tj 6∈ S
∆Ti,Tj (P\u) = ∆Ti,Tj (P)
∆Ti,Tj (Cm(T)) = ∆Ti,Tj (T)
∆Ti,Tj (Cm(T), S) = ∆Ti,Tj (T, S) + 1 if Ti ∈ T and Tj ∈ S
∆Ti,Tj (T ‖ P) = ∆Ti,Tj (P) if Ti, Tj ∈ P
∆Ti,Tj (T ‖ P) = ∆Ti,Tj (T) if Ti, Tj ∈ T
∆Ti,Tj (T ‖ S ‖ P) = ∆Ti,Tj (T ‖ P) + 1 if Ti, Tj 6∈ S
∆Ti,Tj (T ‖ S) = ∆Ti,Tj (T, S) + 1 if Ti ∈ T, Tj ∈ S

�

In other terms, the projective distance between Ti and Tj is equal to the number of wide composi-
tions and compartment layers that separate Ti from Tj .

Given a wide term P = (T1 ‖ . . . ‖ Tn)\V , we need to define contexts Cn[•, . . . , •] with exactly
n holes in which one may embed P while preserving nesting distance. Let generic contexts (with an
arbitrary number of holes) be inductively defined as:

T•, S• ::= • | T | (T•, S•) | (T•)\u | Cm (T•) u ∈ B ∪ S ∪M & m ∈M

For any such context T• with exactly k holes, we write T• = Ck[•, . . . , •] or simply T = Ck. Importantly,
not all contexts of the form C1 is a local context since Cm(•) is not local. Furthermore, not all contexts
of k holes will be valid placeholders for wide terms of width k. Rather than trying to enumerate valid
contexts with n holes we use a procedure that generates valid matches for terms of arbitrary width.
We will then prove that this procedure is both sound and complete in the sense that it finds only
correct matches for wide terms, and finds them all.

Let projection constraints π be words on the alphabet Π
def
= {L, M, •,⊥}. We use these constraints

during the construction of a wide context Cn, as an abstraction of the context that retains only the
positions of compartments borders, symbols L and M, and holes, symbol •. In order to check that Cn is
a valid context, it will suffice to make sure that the projection constraint is well-formed. For instance,
the constraint π = • · L· • ·M · • is an abstraction of an invalid context with exactly three holes, that
would place the term T ‖ S ‖ T ′ in an environment where T and T ′ would be at (projective) distance 0
instead of 2. Invalid constraints are detected during the construction of a wide context (cf. Table 8.1),
using the reduction relation of Table 8.1.

8. Formal Cellular Machinery 387

(ax.)
T ↪→• C[•]

P ↪→π T• v 6∈ fn(T•) ∪ bn(T•)
P\v ↪→π T•

(rest)

P ↪→π T• m fresh L·π·M 6→ ⊥
P ↪→L·π·M Cm(T•)

(wrap)

P ↪→π0
T• Q ↪→π1

S• π0 · π1 6→ ⊥
P ‖ Q ↪→π0·π1 C[T•, S•]

(comp)

Table 8.1: The extension relation. Contexts C[•] are the local contexts of Definition 8.4.1.

Definition 8.4.3 (Valid constraints). Let π ∈ Π∗ be a projection constraint. Let · denote the con-
catenation of words over the alphabet Π. Say that π is valid if π 6→ ⊥ with → ⊆ Π∗ × Π∗ the least
reflexive, transitive, and compatible relation engendered by:

• · L ·L→ ⊥ M·M · • → ⊥ M · L→ ⊥
• · • → ⊥ • · L · • · M · • → ⊥ ⊥ · π → ⊥ π · ⊥ → ⊥

�

The inductive construction of the extension relation is given in Table 8.1. Let µ, µ′, . . . denote
(possibly empty) lists of parameter assignation of the form [X1 ← T1]; . . . ; [Xn ← Tn] with V(Ti) = ∅.
We use |µ| to denote the set of parameter names in µ, and Pµ to denote P in which parameters have
been substituted according to µ.

Definition 8.4.4 (Matches). A wide context Cn[•, . . . , •] with exactly n holes and a parameter assig-
nation list µ form a match 〈Cn, µ〉 for a wide term P = (T1 ‖ . . . ‖ Tn)\V in S if and only if:

P ↪→π Cn and |µ| = V(P) and ((Cn[T1, . . . , Tn]µ)\V)σ ≡ S

for some name substitution σ. �

Furthermore, a pair r = 〈P,Q〉 with w(P) = w(Q) = n and V(P) = V (Q) generates a transition
T →r S if the match 〈Cn[•, . . . , •], µ〉 for P in T is a match for Q in S.

We conclude this section with the expected soundness and completeness results for our extension
relation with respect to projective distance.

Theorem 8.4.5 (Soundness). Let 〈Cn[•, . . . , •], µ〉 be a match for a wide term P in a local term T .
For all disjoint local term occurrences S, S′ ∈ P , we have ∆S,S′(P) = ∆S,S′(T).

Theorem 8.4.6 (Completeness). Let P = (T1 ‖ . . . ‖ Tn)\V be a wide term and Cn[•, . . . , •] be
a generic context with exactly n holes. Let also T ≡ ((Cn[T1, . . . , Tn]µ)\V)σ for some parameter
assignation µ and name substitution σ.

If for all i, j ≤ n one has ∆Ti,Tj (P) = ∆Ti,Tj (T), then P ↪→π Cn is derivable, for some π ∈
(Π\ {⊥})∗.

388 8.4. C2: placing molecules

D

. . .

D

. . .

cleave

fuse
D

. . .

D

. . .

a a
2

2

C

pinch
channel channel

C

channel channel

X

merge
XX

channel channel

touch

part
X X

C C

X

Da(x1, . . . , xk) � Db(y1, . . . , yq)\b→ Da(x1, . . . , xk) � Da(y1, . . . , yq)

0 � 0→ (channelm � C(channelm))\m

(channelm � C(channelm, X))\m→ X � 0

0 � C(X)→ (channelm � C(channelm, X))\m

X

X

Informal InformalLeft hand side Right hand side

X
X

channel channel

X

(X, channelm � 0 � channelm)\m→ (channelm � 0 � channelm, X)\m

unsafe-diffuse

X

channel channel

Figure 8.4: Generators for C2.

8. Formal Cellular Machinery 389

8.4.3 Generators

The generators are presented in Fig. 8.4, keeping with the graphical convention introduced earlier.
We add here compartments, represented as nodes with double line boundaries, and variables. Wide
terms are simply represented next to each other. Crucially, the possibility to express compartment
patches independently of their general curvature allows us to maintain a minimal set of generators.
Rules specifying curvature are then obtained as refinements of these generators. The wide versions
of the fuse and cleave generators now allow for the representation of transmembrane proteins (aka
receptors). Note that we do not generalize the connect and disconnect generators to keep with the fact
that protein-protein interactions are local.

The other generators rely on the intuition, sketched in an earlier work on bigraphs [15], that
dynamic molecular compartments can be modeled using an intermediate step where two compartments
are connected by a “neck”. This neck, visible in generators pinch, merge, touch and unsafe-diffuse, is
represented by two connected channel nodes, which are particular info nodes. In the unsafe-diffuse
rule, they are used to indicate that molecules can translocate from one location to another, along the
channel edge. This rule can be applied in order to populate a vesicle after pinch or touch, and until
part or merge is applied.

At this stage our language is equipped with ways to model dynamic compartments and diffusion.
Yet, consistency of the biological interpretation of C2 terms relies on a careful usage of the unsafe-diffuse
rule. Indeed, nothing prevents modelers from using this generator to stretch a protein across several
membranes by diffusing only a part of it, violating the desired invariant that only a backbone edge
may cross a compartment (in the case of a receptor). In order to correct for this, we need to restrict
diffusion to instances that will preserve biological soundness of terms. The final step in the design of
our language is aimed at solving this question.

8.5 C3: moving molecules

8.5.1 Terms

Let specBS be a family of B and S indexed terminal symbols (distinct from all others) with B ⊆ B and
S ⊆ S ∪M. The grammar generating terms of C3 extends the previous one in the following way:

T, S ::= . . . (local terms)
G,H ::= T | specBS (T) | (G,H) (global terms)
P,Q ::= G | (P ‖ Q) | . . . (wide terms)

where specBS (T) denotes the fact that term T describes a partial species, i.e., is either a connected
component or a pattern that should be placed in a context that will make it connected. The sets B and
S denote respectively the free backbone names of the species and its free site and meta names. These
names are kept separated for convenience because backbones will be allowed to cross membranes while
meta and site names will not be shared by nodes that are not co-located in the same compartment. For
instance, the expression spec

{a}
∅ ((Db

m(x), X)\b, x,m) denotes a partial species that contains a domain
Db
m(x) and that may only have a connection with other nodes outside the species boundaries by sharing

the backbone name a.
The idea behind C3 is that although connectivity, i.e., transitive closure of name sharing, is a

property one may not want to consider in general, it becomes relevant for some particular interactions
including diffusion. We will come back to this in the section describing the new generators.

390 8.5. C3: moving molecules

Structural congruence allows us to form spec nodes on demand. To do so, we extend previous
structural laws with the following ones:

Dam(x1, . . . , xk) ≡ spec
{a}
{m,x1,...,xk}(D

a
m(x1, . . . , xk))

(init)

fn(A) ∩ (B ∪ S) 6= ∅ B′ = B ∪ (fn(A) ∩ B) S′ = S ∪ (fn(A) ∩ S)

specBS (T), A ≡ specB
′

S′ (T,A)
(grow)

u ∈ B ∪ S B′
def
= B− {u} S′

def
= S− {u}

specBS (T)\u ≡ specB
′

S′ (T\u)

T ≡ T ′
specBS (T) ≡ specBS (T ′)

Where A is either a domain node or an info node. Intuitively, the left-to-right orientation of the above
first three equations allows one to capture more knowledge about connectivity, while the other direction
is forgetful. If one wishes to consider diffusion of vesicles, one needs the additional rule:

fn(T ′) ∩ (B ∪ S) 6= ∅ B′ = B ∪ (fn(T ′) ∩ B) S′ = S ∪ (fn(T ′) ∩ S)

specBS (T),Cm(T ′) ≡ specB
′

S′ (T,Cm(T ′))

that allows one to encompass compartments in the recognition of molecular species.
In order to ease the understanding of the generators presented in the next section, let us give a simple

example of the usage of a species term in a pattern. Consider the term P = (speca∅(X) ‖ speca∅(Y))\a
which denotes a transmembrane complex split in two parts X and Y on both sides of a membrane.
We wish to find a match for P in the term:

T =
(
Dam1

(x),SH2m1
,Cm2

(Dam3
(y),Dbm4

(y))
)
\ {a, b, x, y,mi}

To do so, we first need to turn T into a form that makes the desired connectivity apparent:

T ≡
(
speca∅(D

a
m1

(x),SH2m1
\ {x,m1}),

Cm2
(speca∅((D

a
m3

(y),Dbm4
(y))\ {b, y,m3,m4})\m2

)
\a

Then, using the extension relation, we generate a context for P

P ↪→•·L·•·M (•,Cm(•)) = C2[•, •]

which, together with a list of parameter assignations

µ
def
= [X ← (Dam1

(x),SH2m1
)\ {x,m1}]; [Y ← (Dam3

(y),Dbm4
(y))\ {b, y,m3,m4}]

defines a valid match for P in T . One verifies that, indeed:

(C[speca∅(X), speca∅(Y)]µ) {m2/m} \a ≡ T

8.5.2 Generators

Generators are given in Fig. 8.5. They extend the generators of all previous stages, to the exception of
the unsafe-diffuse rule that is replaced by its safe counterparts. We keep with the graphical conventions
introduced earlier, and use cloud nodes to denote (partial or total) species.

8. Formal Cellular Machinery 391

channel channel m channel channel

X XY Y

(speca
∅(X), channelm � specA∪a

S (Y) � channelm)\m\a (channelm � specA∪a
S (Y) � channelm, speca

∅(X))\m\a→

D
x1 . . . xk

D D
x1 . . . xk

Di j i j

intra

a b ba

specab
x̃,ỹ(Da(x1, . . . , xi, . . . , xk), Db(y1, . . . , yj , . . . , yq))\xi\yj specab

x̃�,ỹ�(Da(x1, . . . , z, . . . , xk), Db(y1, . . . , z, . . . , yq))\z→

diffuse

channel channel channel channel

X X

diffuse

(spec∅∅(X), channelm � 0 � channelm)\m→ (channelm � 0 � channelm, spec∅∅(X))\m

y1 . . . yq y1 . . . yq

Figure 8.5: C3 generators. In the intra generator, let x̃ def
= {x1, . . . , xk} and ỹ def

= {y1, . . . , yq}, x̃′ def
=

x̃ {z/xi} and ỹ′ def
= ỹ {z/yj}

As one may see in Fig. 8.5, we now have two generators for diffusion. The first one models classical
diffusion: a total species may move from one compartment connected to another via a channel. The
second generator models diffusion of transmembrane species: two partial and parametric species denote,
respectively, both sides of a transmembrane complex. The side of the complex whose content is X
may translocate while the other side stays in its current location. The result of this operation in
the two possible projections, is informally depicted on both sides of the generator and corresponds
to the diffusion of a transmembrane complex along the neck. Finally, the intra generator stands for
intra-molecular complex formation1.

Definition 8.5.1 (Mixture). Say that a term P is a mixture if:

– w(P) = 1, fn(P) = ∅ and P is parameter free

– Site edges have exactly two sites and do not cross compartments

– Backbone hyper edges cross at most one compartment

– P is structurally equivalent to a term that contains no species node.

�

The last condition essentially states that species nodes that are present in a mixture are derivable
from a species free mixture to which the above structural congruence rules have been applied. To
ensure this one simply needs to verify the simple syntactical condition:

1This generator cannot be obtained as a refinement of connect since specBS (•) is not a valid local context.

392 8.6. Conclusion

Proposition 8.5.2. A global term of the form G = specBS (T) is a mixture if and only if T :

– T is a mixture.

– fn(T) = B ∪ S.

– T is a connected component.

The above proposition guarantees that one may always eliminate species nodes of the form specBS (T)
from a mixture, provided the sets B and S capture the free names of T and provided T defines a single
connected set of agents. Note however, that general global terms need not be mixtures and one may
have occurrences of species node in rules that do not satisfy this condition as it is for instance the
case in the diffusem generator. Yet not all species node make sense in a C3 expression. For instance
spec∅∅(D

a
m(x), X) will never have a match in any mixture since the structural congruence for species

node introduction will always insure that the free names a,m and x will appear in the superscript and
subscript of spec. The following proposition defines well-formed expressions with species nodes:

Proposition 8.5.3. For any term G = specBS (T), there exists a mixture M such that G has a match
in M if and only if:

– fn(T) ⊆ B ∪ S

– and either:

– T is connected
– V(T) 6= ∅ and fn(T) 6= ∅
– fn(T) = ∅ and T = X1, . . . , Xn for some parameters Xi .

Note that the second condition says that either T needs to be already connected in the expression
or leave "room enough" so that the context will make T connected. It is easy to check that all the
generators introduced in Fig. 8.5 satisfy this condition.

Lemma 8.5.4 (Preservation). Let R be a set of generated rules and let P be a mixture. If P →r Q
with r ∈ R then Q is a mixture.

As a corollary of the above lemma and Proposition 8.5.2, one has that a term containing specBS (T, S)
can only have a match in a mixture where T and S are part of the same connected component, which
is a guarantee of the soundness of the intra generator.

8.6 Conclusion
The idea that models of signaling pathways or protein assembly should be considered as programs
is now wending its way through the systems biology crowd. This is an appealing fact to language
theoreticians, because it implies that one needs to accomplish in Systems Biology the same mutation
that was accomplished in software engineering, when programs became too cumbersome and unwieldy
to be developed in a non uniform way. This suggests that systems biology will soon require the
development of high level languages, debuggers, and IDEs to compensate for the increasing gap between
accumulation of data and its representation in executable models. The work we have presented here
is an attempt to comply with Fontana’s requirement that “a model should be a data structure that
contains a transparent, formal, and executable representation of the facts it rests upon" [13]. In order
to do so, we have structured our language in order to be able to tune the resolution level of the entities

8. Formal Cellular Machinery 393

we wanted to describe: from anonymous domains, to molecular species, and from membrane patches
to full fledged compartments.

We have already mentioned several approaches that were conducted with similar motivations,
some of which we took inspiration from. Yet, we believe that the presented language offers a level
of expressivity that was not accessible before in a single formalism. In particular we should mention
that our language strictly contains the κ-calculus and corresponds to a particular class of bigraphical
reactive systems that is yet to be defined formally2. Obviously, expressiveness and relative ease of
use is not enough and future work should aim at developing quantitative simulation and analysis
techniques. Here again, previous works have paved the way for such developments. In particular,
proximity with the κ-calculus for which such analysis and simulation technique have been defined
[7, 8] and the stochastic semantics for bigraphs [15], should be of great help.

8.7 Bibliography
[1] Andrei, O. and H. Kirchner, Graph rewriting and strategies for modeling biochemical networks, in: Proc.

SYNASC, 2007, pp. 407–414.

[2] Bacci, G., D. Grohmann and M. Miculan, A framework for protein and membrane interactions, in: Proc.
MeCBIC’09, 2009, pp. 19–33.

[3] Cardelli, L., Brane calculi - interactions of biological membranes, in: Computational Methods in Systems
Biology, Springer, 2004 pp. 257–278.

[4] Cardelli, L., Bitonal membrane systems - interactions of biological membranes, Theoretical Computer
Science 404 (2008).

[5] Chabrier, N. and F. Fages, Symbolic model checking of biochemical networks, in: Proc. CMSB’03, LNCS
2602, 2003, pp. 146–162.

[6] Damgaard, T. C. and J. Krivine, A generic language for biological systems based on bigraphs, Technical
Report 115, IT University of Copenhagen (2009).

[7] Danos, V., J. Feret, W. Fontana, R. Harmer and J. Krivine, Abstracting the differential semantics of
rule-based models: exact and automated model reduction, in: IEEE Symposium LICS, 2010, pp. 362–381.

[8] Danos, V., J. Féret, W. Fontana and J. Krivine, Scalable simulation of cellular signaling networks, in:
Proc. APLAS’07, LNCS 4807, 2007, pp. 139–157.

[9] Danos, V. and C. Laneve, Core formal molecular biology, in: Proc. ESOP’03, LNCS 2618, 2003, pp.
302–318.

[10] Danos, V. and C. Laneve, Graphs for formal molecular biology, in: Proc. CMSB’03, LNCS 2602, 2003,
pp. 34–46.

[11] Danos, V. and S. Pradalier, Projective brane calculus, in: Proc. CMSB’04, 2004, pp. 134–148.

[12] Faeder, J. R., M. L. Blinov and W. S. Hlavacek, Rule based modeling of biochemical networks, Complexity
(2005), pp. 22–41.

[13] Fontana, W., Systems biology, models, and concurrency, in: Proc. POPL’08, 2008, pp. 1–2.

2This may prove to be a complex task, since projectivity is not a trivial concept to capture with the standard definition
of bigraphs. See Ref. [6] for some hints on how to do this.

394 8.A. Retrieving the κ-calculus.

[14] John, M., C. Lhoussaine, J. Niehren and C. Versari, Biochemical reaction rules with constraints, in: Proc.
ESOP 2011, LNCS 6602, 2011, pp. 338–357.

[15] Krivine, J., R. Milner and A. Troina, Stochastic bigraphs, in: Proceedings of MFPS XXIV, ENTCS 218,
2008, p. 7396.

[16] Milner, R., “The Space and Motion of Communicating Agents,” Cambridge University Press, 2009.

[17] Phillips, A. and L. Cardelli, Efficient, correct simulation of biological processes in the stochastic pi-calculus,
in: CMSB, 2007, pp. 184–199.

[18] Priami, C. and P. Quaglia, Beta binders for biological interactions, in: Computational Methods in Systems
Biology, LNCS 3082, 2005, pp. 20–33.

[19] Păun, G. and F. J. Romero-Campero, Membrane computing as a modeling framework. cellular systems
case studies, in: Formal Methods for Computational Systems Biology, LNCS 5016, 2008, pp. 168–214.

[20] R.Barbuti, A.Maggiolo-Schettini, P.Milazzo and A.Troina, A calculus of looping sequences for modelling
microbiological systems, Fundamenta Informaticæ72 (2006), pp. 21–35.

[21] Regev, A., E. M. Panina, W. Silverman, L. Cardelli and E. Shapiro, Bioambients: An abstraction for
biological compartments, Theoretical Computer Science 325 (2004), pp. 141–167.

[22] Regev, A., W. Silverman and E. Y. Shapiro, Representation and simulation of biochemical processes using
the π-calculus process algebra, in: Pacific Symposium on Biocomputing, 2001, pp. 459–470.

8.A Retrieving the κ-calculus.
In this section we show how one may naturally represent any κ-calculus model at the C1 level of our
language. As the encoding is rather straightforward from a technical point of view, we shall simply
describe here the translation of a particular example. We then show how C3 enables us to go beyond
what one can express in κ.

8.A.1 The κ-calculus
We consider here the definition of κ that is implemented in the κ-simulator KaSim3. Terms of the
κ-calculus are built on the following grammar:

Definition 10 (κ-Agents).

(i) agent a ::= N(σ)
(ii) agent name N ::= A ∈ A
(iii) interface σ ::= ∅ | s, σ
(iv) site s ::= nλι
(v) site name n ::= x ∈ S
(vi) internal state ι ::= ε (any state)

| m ∈ V
(vii) binding state λ ::= ε (free)

| − (semi-link)
| ? (wild-card)
| i ∈ N

3http://kappalanguage.org

http://kappalanguage.org

8. Formal Cellular Machinery 395

D

D

D

DD

ErbB1
l

CRY1016
Y1092p

r

p

ErbB1

ErbB1

ErbB1

EGF

D

D

D

ErbB1
l

CR

r

ErbB1

EGF

D

Y1016
ErbB1

D

u

a

x

b

c

Figure 8.6: Representation of the κ expression into C1.

Expressions are simply formed by concatenation of agents E ::= a,E | ∅. Every agent represents
a molecular entity (such as a protein) that has sites that can be used for complex formation (i.e.,
binding with other sites). For instance the expression:

EGF(r1),ErbB1(l1,CR3,Y1016p,Y1092?
p),EGF(r

2),ErbB1(l2,CR3,Y1092−u)

corresponds to a molecular soup containing two instances of the agent ErbB1 (a membrane receptor for
the epidermial growth factor protein) and two instances of the agent EGF (the growth factor signal).
In κ, each agent name comes with a fixed signature Σ : N → P(S) that specifies the names of the sites
each instance has. For instance Σ(ErbB1)

def
= {l, CR, Y1016, Y1092, . . . }. Note that the protein ErbB1

has in fact numerous tyrosine domains (whose name are of the form Yxxx where xxx corresponds to
some amino acid position in the chain) that we do not list here. As a convention in κ, one does not
represent sites that take no part in a given rule. In the example above, the site Y1092 is left aside in
one of the instances of ErbB1.

The superscript on a site indicate its binding state. The empty superscript ε marks a site that is
free of any connection, _ indicates that the site is bound to an unspecified partner, ? indicates a site
that is either free or bound and an integer is used to denote an explicit edge, as the one that connects
the site r of the leftmost EGF to the site l of ErbB1.

The subscript on a site indicate its internal state. This is essentially a placeholder for a tag that
serves to identify sites that have been chemically modified. Note that the absence of tag indicates that
one does not care about its internal state in the expression.

8.A.2 The κ-calculus in C1
Fig. 8.6 shows the C1 representation of the above κ-expression.

The convention we adopt for the representation of κ-terms is the following: we use a domain node
for each site of the kappa expression to translate. Internal states, site and agent names are represented

396 8.A. Retrieving the κ-calculus.

D

D

D

DD

ErbB1
l

CRY1016
Y1092p

r

p

ErbB1

ErbB1

ErbB1

EGF

D

D

D

ErbB1
l

CR

r

ErbB1

EGF

D

Y1016
ErbB1

D

u

a

x

b

c

cell

X

Figure 8.7: Adding compartments to the the κ expression.

by info nodes. Sites that belong to the same κ-agents will share the same backbone. Sites that are
connected in the κ expression will be bound in the C1-term. Notice that the backbone of both instances
of ErbB1 are both open. This captures the fact that not all sites of the signature of ErbB1 are present
in the expression.

8.A.3 Expressiveness of C3

As said, ErbB1 proteins are in fact membrane receptors. ErbB1 protein is composed of an extra
cellular domain that holds the ligand binding site l and an intra cellular domain that bears the other
interaction sites. Now that we have represented our expression in a richer language, it becomes natural
to represent these facts as we show in Fig. 8.7.

A key regulatory mechanism of the EGF pathway is called receptor internalization. It is a mech-
anism by which receptors become trapped in inner vesicles that may eventually bubble down to the
cytoplasm of the cell. This prevents the receptor from binding to new incoming signals. It is not pos-
sible to represent this behavior in κ for two reasons. The first reason, which we have already solved,
is that there is no way to represent compartments in κ. The second reason is more subtle. Indeed,
during receptor internalization, not only will ErbB1 get trapped inside the vesicle, but along with it
will be any protein complex attached to its extra cellular domain. In the example of Fig. 8.7, one
should capture also the EGF ligand that is bound to it. This is what we do in Fig. 8.8 by defining an
internalization rule that utilizes a species node.

8. Formal Cellular Machinery 397

D

ErbB1

x
D

ErbB1

x

channel

channel

C vesicle

Intern.

ErbB1
l

CRY1016
Y1092p

r

p

ErbB1

ErbB1

ErbB1

EGF

ErbB1
l

CR

r

ErbB1

EGF

Y1016
ErbB1

u

a

x

b

c

cell

vesicle

ErbB1
l

CRY1016
Y1092p

r

p

ErbB1

ErbB1

ErbB1

EGF

D

ErbB1
l

CR

r

ErbB1

EGF

D

Y1016
ErbB1

u

a

x

b

c

cell

channel

channel

(specb
∅(X) � specb

∅(D
b
m(x), ErbB1m))\b channelp � (Cm�(channelp, specb

∅(X)), vesiclem� , specb
∅(D

b
m(x), ErbB1m))\b→

X

b

X
b

Figure 8.8: The Intern. rule is obtained by composition of the pinch and diffusem generators and
invoking the species node where it is needed. Below is the result of the application of this rule to our
example. Notice that the receptor gets internalized together with its ligand protein EGF.

398 8.B. Proof of the soundness Theorem

8.B Proof of the soundness Theorem
Definition 8.B.1. Let ε denote the empty word on Π∗ and · the concatenation of words. The
abstraction map on generic wide contexts α : T• → (Π\ {⊥})∗ is defined as:

α(T)
def
= ε

α((T•)\u)
def
= α(T•)

α(•) def
= •

α(T•, S•)
def
= α(T•) · α(S•)

α(Cm(T•))
def
= L·α(T•)·M

�

Lemma 8.B.2. Let P be a wide term such that P ↪→π T• for some π ∈ (Π\ {⊥})∗. Then α(T•) = π.

Proof. By induction on the derivation of P ↪→π T•.

(Base case). T ↪→• C[•] by (ax.). Since C is a local context with exactly one hole, the unique
• cannot be wrapped in a compartment. From Def.8.B.1 it follows that α(C[•]) = •.
(Inductive step).

- (rest). By induction hypothesis we have α(T•) = π.
- (wrap). By induction hypothesis we have α(T•) = π. According to Def 8.B.1 we have
α(C(T•)) = Lα(T•)M = L·π·M.

- (comp). By induction hypothesis we have π0 = α(T•) and π1 = α(S•). Since C[•] is a local
context with exactly one hole, we have that α(C[T•, S•]) = α(T•, S•) which, by Def 8.B.1 is
equal to α(T•) · α(S•) = π0 · π1. �

�

Let π̄ denote a well parenthesized word of the form L·π·M.
Lemma 8.B.3. If π is a derivable projective constraint, then π 6= π0 • π̄1 • π2 for all π0, π1, π2.

Proof. By induction on the size of π1.

(Base case). According to Def 8.4.3 we have •L•M• → ⊥ so π 6→ ⊥ implies π 6= •L•M• .
(Inductive step). By red. ad abs. suppose:

π = π0 • Lπ1M • π2

Since π 6→ ⊥ we have necessarily π1 = •π′1• (since •LL→ ⊥ and MM• → ⊥ and LM is not derivable).
Now by induction hypothesis π′1 6= π̄′′, so the only possibility is π′1 =Mπ3L for some π3. So we
obtain:

π = π0 • L•Mπ3L•M • π2

From L·M→ ⊥ it follows that π3 = •π′3• and we have a contradiction. �

8. Formal Cellular Machinery 399

�

In order to define the projective distance between two occurrences of • symbols in a word π, we
need the following labeling operation.

Definition 8.B.4 (labeling). Assume an infinite set of labels Λ. Let Π+ = {Mα, Lα, •i} be a decoration
of the alphabet Π where α ∈ Λ and i ∈ N. We define the labeling function ` : (Π\ {⊥})∗×N×Λ∗ → Π+

as:
`(• · π)(i)(λ)

def
= •i · `(π)(i+ 1)(λ)

`(L·π)(i)(λ)
def
= Lα · `(π)(i)(α · λ) with α ∈ Λ fresh

`(M · π)(i)(α · λ)
def
= Mα · `(π)(i)(λ)

`(ε)(i)(λ)
def
= ε

�

We now consider labelled versions of projective constraints.

Definition 8.B.5. Let |α denote either Lα or Mα and let α�λ be defined as α�λ def
= α·λ if λ 6= α·λ′and

α � λ def
= λ otherwise. Let |λ| denote the size of the word λ. Define ∆#

i,j(π) the projective distance
between •i and •j in π as:

∆#
i,j(•k · |α · •k+1 · π)(λ)

def
= ∆#

i,j(•k+1 · π)(λ) if k < i

∆#
i,j(•k · |α · •k+1 · π)(λ)

def
= ∆#

i,j(•k+1 · π)(α� λ) if k ≥ i and k < j

∆#
i,j(•k · π)(λ)

def
= |λ| if k ≥ j

We write ∆#
i,j(π) for ∆#

i,j(π)(ε) �

The following proposition will be useful for the upcoming proofs.

Proposition 8.B.6. The following equalities hold:

∆#
i,j(•kπ)(ε) = ∆#

k,j(•kπ)(ε) if i ≤ k < j

∆#
i,j(π)(α · λ) = ∆#

i,j(π)(λ) + 1 if α 6∈ π
∆#
i,j(π0 •i π1)(ε) = ∆#

i,j(•iπ1)(ε)

∆#
i,j(π0 •j π1)(ε) = ∆#

i,j(π0•j)(ε)
Lemma 8.B.7. Let π = π0 •i π1 •j π2 •k π3 be a derivable projective constraint, for some π0, π1, π3.
We have:

∆#
i,k(π) = ∆#

i,j(π) + ∆#
j,k(π)

Proof. By induction on k − i.
(Base case). Suppose π = π0 •i |α •i+1 |β •i+2 π1. Since π is derivable, α 6= β otherwise π → ⊥.
We have:

∆#
i,i+2(π) = ∆#

i,k(•i|α •i+1 |β•i+2)(ε)

= ∆#
i,k(•i+1|β•i+2)(α)

= |α · β|
= 2 = ∆#

i,i+1(π) + ∆#
i+1,i+2(π)

400 8.B. Proof of the soundness Theorem

(Inductive step). Suppose π = π0 •i |απ′1 •j π2 •k π3. We have:

∆#
i,k(π)

def
= ∆#

i,k(•i|α •i+1 π
′
1 •j π2•k)(ε)

def
= ∆#

i,k(•i+1π
′
1 •j π2•k)(α)

Using Lemma 8.B.3 we know that α 6= π′1 and α 6= π2. So we have:

∆#
i,k(π) = (∆#

i,k(•i+1π
′
1 •j π2•k)(ε)) + 1

= (∆#
i+1,k(•i+1π

′
1 •j π2•k)(ε)) + 1

By induction hypothesis we obtain:

∆#
i,k(π) = (∆#

i+1,j(•i+1π
′
1•j) + ∆#

j,k(•jπ2•k)) + 1

∆#
i,k(π) = (∆#

i+1,j(•i+1π
′
1•j) + 1) + ∆#

j,k(•jπ2•k)

∆#
i,k(π) = ∆#

i,j(•i|α •i+1 π
′
1•j) + ∆#

j,k(•jπ2•k)

∆#
i,k(π) = ∆#

i,j(π) + ∆#
j,k(π)

�

�

Corollary 8.B.8. For any derivable π, ∆#
i,i+k(π) = k.

Proof. By induction on k.

(Base case). The base case is ∆#
i,i+1(π) = 1 which is true, by definition of ∆#.

(Inductive step). Now we want to find ∆#
i,i+k(π) for some π of the form π = π0 •i |απ1 •i+k π2.

We have:
∆#
i,i+k(π)(ε)

def
= ∆#

i,i+k(•i|α •i+1 π1•i+k)(ε)

= ∆#
i,i+k(•i+1π1•i+k)(α)

Using Lemma 8.B.3 we know that α 6∈ π1 so:

∆#
i,i+k(π)(ε) = ∆#

i,i+k(•i+1π1•i+k)(ε) + 1

= ∆#
i+1,i+k(•i+1π1•i+k)(ε) + 1

By induction hypothesis we have:

∆#
i,i+k(π)(ε) = (k − 1) + 1 = k

�

�

We obtain the soundness Theorem as a corollary of Lemma 8.B.2 and Lemma 8.B.7.

8. Formal Cellular Machinery 401

Theorem 8.4.5. Let P = (T1 ‖ . . . ‖ Tn)\V , and P ↪→π T• with 〈T•, µ〉 a match for P in S for
some µ (|µ| = V (P)). We have ∆Ti,Ti+k(P)

def
= k. Suppose P ↪→π 〈T•, µ〉. Using Lemma 8.B.2,

we have α(T•) = π. Now using Corollary 8.B.8 we also know that ∆#
i,i+k(π) = k and we have

∆Ti,Ti+k(P) = ∆#
i,i+k(π) = k. We conclude by noticing that α(T•) preserves nesting distances between

holes (it doesn’t remove compartments that contain holes). So, ∆Ti,Ti+k(P) = ∆Ti,Ti+k(S). �
�

8.C Proof of the completeness Theorem
In order to prove Theorem 8.4.6 we need some properties on extensions.

Lemma 8.C.1. Let Cn(T) denote a term of the form:

C(C1[C(C2[. . .C(Cn[T]) . . .])])

For all wide term P = (T1 ‖ . . . ‖ Tn)\V , we have:

P ↪→π• T ⇒ T = C[Tn] (8.1)

P ↪→•π T ⇒ T = C[T1] (8.2)

P ↪→πMM T ⇒ T = C[Ck(Tn)] (8.3)

P ↪→LLπ T ⇒ T = C[Ck(T1)] (8.4)

for some k ≥ 2 and:
P ↪→π•M T ⇒ T = C1[C(C2[Tn])] (8.5)

P ↪→L•π T ⇒ T = C1[C(C2[T1])] (8.6)

P ↪→L•M•π T ⇒ T = C[T2] (8.7)

Lemma 8.C.1. By induction on |π|. For simplicity we consider here terms without restriction on names,
without loss of generality.

[cases (8.1)0 and (8.2)0] For both Equations (8.1) and (8.2) the only derivation producing a •
symbol is (ax.) which gives the expected conclusion.

[case (8.3)0 and (8.4)0] The smallest π such that P ↪→πMM T or P ↪→LLπ T is respectively π = LL•
and π = •MM. They both stem from the derivation:

T1 ↪→• C1[T1] = T ′
(ax.)

P ↪→L•M C(T ′)
(wrap)

P ↪→LL•MM C(C(T ′)
(wrap)

402 8.C. Proof of the completeness Theorem

and we have P ↪→LL•MM C(C(C[T1]) = C(C(C[Tn]) which is in the expected form.

[case (8.5)0 and (8.6)0] The smallest π for P ↪→π•M T is π = L and the only possible derivation
is:

P ↪→• T
(ax.)

P ↪→L•M C(T)
(wrap)

It follows that P = T1 and T = C[T1]. So we have:

P ↪→L•M C(C[T1])

which is in the expected form. One proceeds in a symmetric manner for (8.6)0.

[case (8.7)0] The derivation is :

T1 ↪→L•M C(C1[T1]) T2 ↪→• C2[T2]

P = T1 ‖ T2 ↪→L•M• T

It entails that T = C(C1[T1]),C2[T2] which can also be written C[T2] with C[•] = C(C1[T1]),C2[•].

[case (8.1)n] Suppose:
P ↪→π0 T Q ↪→π1• S π0π1 = π

P ‖ Q ↪→π• T, S

By induction hypothesis on Q ↪→π1• S one has S = C[Tn] which in turn implies:

P ‖ Q ↪→π• T,C[Tn]

By defining C′[•] def
= T, •, one obtains P ‖ Q ↪→π• C′[Tn]

[case (8.2)n] Suppose:
P ↪→•π0

T Q ↪→π1
S π0π1 = π

P ‖ Q ↪→•π T, S
One proceeds as before using induction hypothesis on P ↪→•π0 T .

[case (8.3)n] Suppose P ↪→πMM T . There are two sub-cases:

[case (wrap)] The derivation was:

P ↪→π′M T
′

P ↪→Lπ′MM C(T ′)
(wrap)

Again we have two possible cases for π′:

8. Formal Cellular Machinery 403

[case π′ = π′′M] We have P ↪→π′′MM T
′. Using the induction hypothesis we deduce:

P ↪→π′MM C[Ck(Tn)] = T ′

P ↪→Lπ′MM Ck+1(Tn)
(wrap)

which gives the desired form.

[case π′ = π′′•] Thanks to Lemma 8.C.1.(8.5) we know that P ↪→π′′•M T ′ implies T ′ = C1[C(C2(Tn)].
Hence we obtain P ↪→Lπ′MM C

2(Tn) as required.

[case (comp)] The derivation was:

P ↪→π0 T Q ↪→π1 S π0π1 = π′MM
P ‖ Q ↪→π′MM T, S

(comp)

It results that π1 = π′1MM for some π′1 since no derivation may produce Q ↪→MM S or Q ↪→M S. We
can apply induction hypothesis to Q ↪→π′1MM S from which we get the derivation:

P ‖ Q ↪→π′MM T,C
k(Tn)

Defining C[•] = T, • one has P ‖ Q ↪→π′MM C[Ck(Tn)] which is in the desired form.

[case (8.4)n] The inductive step for P ↪→LLπ T is symmetric to the previous case.

[case (8.5)n] Suppose:
P ↪→π0

T Q ↪→π1
S π0π1 = π•M

P ‖ Q ↪→π•M T, S

From π0π1 = π•M it results that π1 = π′1•M since π1 =M or π1 = •M is not a valid derivation. One
may now apply induction hypothesis to Q ↪→π1 S from which we get the derivation:

P ↪→π0
T Q ↪→π1

C1[C(C2[Tn])]

P ‖ Q ↪→π•M T,C1[C(C2[Tn])]

Defining C′1[•] def
= C1[C(C2[Tn])], •, one obtains the desired form:

P ‖ Q ↪→π•M C′1[C(C2[Tn])]

[case (8.6)n] Suppose:
P ↪→π0 T Q ↪→π1 S π0π1 = L•π

P ‖ Q ↪→L•π T, S

and the case is similar to [case (8.5)n] using induction hypothesis on P ↪→L•π′0 T .

404 8.C. Proof of the completeness Theorem

[case (8.7)n] Suppose:

P ↪→π0
T Q ↪→π1

S π0π1 = L•M • π
P ‖ Q ↪→L•M•π T, S

Then either π0 = L•M • π′0 for some π′0 in which case, by induction hypothesis we have T = C[T2]
and we can conclude, or π0 = L•M and π1 = •π. If so, we have P = T1 and T = C(C1[T1]) and by
Lemma 8.C.1.(8.7) we have S = C2[T2]. It follows that T, S = C(C1[T1]),C2[T2] which can be
written in the desired form with C[•] = C(C1[T1]),C2[•]. �

�

We proceed now with the proof of the completeness theorem.

Completeness. Let P = T1 ‖ . . . ‖ Tk and T = Ck[T1 ‖ . . . ‖ Tk] with ∆Ti,Tj (P) = ∆T1,Tj (T) for all
i, j ∈ {1, . . . , k}. We prove P ↪→π T for some π by induction on s(T), the size of T , defined inductively
as:

s(0)
def
= 0

s(D)
def
= 1

s(I)
def
= 1

s(X)
def
= 1

s(C(T))
def
= 1 + s(T)

s(T, S)
def
= s(T) + s(S)

For simplicity we consider here terms without restriction on names, without loss of generality.

[case s(T) = 0] We have P = 0 ↪→• 0 thanks to the (ax.) rule and the trivial local context
C[•] = •.

[case s(T) = n] By hypothesis we have P = T1 ‖ . . . ‖ Tk and a context Ck with exactly k-holes
such that Ck[T1, . . . , Tk] = T for some local term T with ∆(P) = ∆(T). We need to prove
P ↪→π T for some π. There are two cases, either:

T = C(Ck[T1, . . . , Tk]) (8.8)

or there are two contexts Ci,Ck−(i+1) with exactly i and k − (i+ 1) holes such that:

T = Ci[T1, . . . , Ti],Ck−(i+1)[Ti+1, Tk] (8.9)

[case (8.8)] According to Definition 8.4.2:

∆(C(Ck[T1, . . . , Tk]))
def
= ∆(Ck[T1, . . . , Tk])
= ∆(P)

8. Formal Cellular Machinery 405

In addition, Ck[T1, . . . , Tk]) <s T so we apply induction hypothesis to deduce P ↪→π Ck[T1, . . . , Tk]
and we can conclude using (wrap):

P ↪→π Ck[T1, . . . , Tk]

P ↪→LπM C(Ck[T1, . . . , Tk])

[case (8.9)] Let P def
= (P ′ ‖ Q) with P ′ def

= (T1 ‖ . . . ‖ Ti) and Q def
= (Ti+1 ‖ . . . ‖ Tk). According

to Definition 8.4.2, for all Tq, Tl ∈ P ′ we have:

∆Tq,Tl(T)
def
= ∆Tq,Tl(Ci[T1, . . . , Ti])

∆Tq,Tl(P)
def
= ∆Tq,Tl(P

′)

It follows that ∆(P ′) = ∆(Ci[T1, . . . , Ti]). By the same reasoning we also have that ∆(Q) =
∆(Ck−(i+1)[Ti+1, . . . , Tk]). Therefore, by induction hypothesis we have:

P ′ ↪→π0
Ci[T1, . . . , Ti] (8.10)

and
Q ↪→π1 Ck−(i+1)[Ti+1, . . . , Tk] (8.11)

Recall that according to definition 8.4.2, ∆Ti,Ti+1(P ′ ‖ Q)
def
= 1. We show that π0π1 → ⊥ implies

a contradiction. We have four cases to check:

(i) π0 = π•
(ii) π0 = π•M
(iii) π0 = πMM
(iv) π1 = LLπ

[case (i)] Using Lemma 8.C.1.(8.1) one has

Ci[T1, . . . , Ti] = C[Ti]

Now there are two possibilities in order to have π0π1 = ⊥:

[case π1 = •π′1] using Lemma 8.C.1.(8.2) one has

Ck−(i+1)[Ti+1, . . . , Tk] = C[Ti+1]

from which we deduce ∆Ti,Ti+1
(T) = 0 which contradicts hypothesis ∆(P) = ∆(T).

[case π1 = L•M • π′1] Using Lemma 8.C.1.(8.7) we have:

Ck−(i+1)[Ti+1, . . . , Tk] = C[Ti+2]

from which we deduce ∆Ti,Ti+2
(T) = 0 which contradicts hypothesis ∆(P) = ∆(T).

406 8.C. Proof of the completeness Theorem

[case (ii)] Using Lemma 8.C.1.(8.5) one has

Ci[T1, . . . , Ti] = C1[C(C2[Ti])]

and using Lemma 8.C.1.(8.6) one has:

Ck−(i+1)[Ti+1, . . . , Tk] = C3[C(C4[Ti+1])]

It results that ∆Ti,Ti+1
(T) = 2 which contradicts hypothesis ∆(P) = ∆(T).

[case (iii)] Lemma 8.C.1.(8.3) implies:

Ci[T1, . . . , Ti] = Ck(Ti), k ≥ 2

It results that ∆Ti,Ti+1(T) ≥ 2 which contradicts hypothesis ∆(P) = ∆(T).

[case (iv)] Lemma 8.C.1.(8.4) implies:

Ck−(i+1)[Ti+1, . . . , Tk] = Ck(Ti+1), k ≥ 2

It results that ∆Ti,Ti+1(T) ≥ 2 which contradicts hypothesis ∆(P) = ∆(T).

Therefore we must have π0π1 6→ ⊥. We can thus conclude using the (comp) rule:

P ′ ↪→π0 Ci[T1, . . . , Ti] Q ↪→π1 Ck−(i+1)[Ti+1, . . . , Tk] π0π1 6→ ⊥
P ↪→π0π1 Ci[T1, . . . , Ti],Ck−(i+1)[Ti+1, . . . , Tk]

�

�

	Part I: Overview
	Introduction
	Papers
	Background

	Summary
	A Tool for Bigraphical Programming Languages (Part II)
	Bigraphical Semantics for Business Processes (Part III)
	Scalable Simulation of Stochastic Bigraphs (Part IV)
	A Bigraphical Language for Cell Biology (Part V)
	Conclusion
	Future Work

	Bibliography

	Part II: A Tool for Bigraphical Programming Languages
	An Implementation of Bigraph Matching
	Introduction
	Bigraphs and Reactive Systems
	Inferring Matches Using a Graph Representation
	From Graph Matching to Term Matching
	Normal Inferences
	Bigraph Matching Algorithm
	Nondeterminism
	Tool Implementation and Example Modelling
	Conclusion and Future Work
	Bibliography
	Auxiliary Technologies Details

	The BPL Tool: A Tool for Experimenting with Bigraphical Reactive Systems
	Introduction
	Installation
	Example: Polyadic pi and Mobile Phones
	Reference
	Conclusions and Future Work
	Bibliography

	Part III: Bigraphical Semantics for Business Processes
	Formalizing WS-BPEL and Higher Order Mobile Embedded Business Processes in the Bigraphical Programming Languages (BPL) Tool
	Introduction
	Binding Bigraphs and BPL Tool
	Formalizing WS-BPEL in the BPL Tool
	Motivating HomeBPEL
	Formalizing HomeBPEL
	Conclusion and Future Work
	Bibliography

	Core BPEL: Semantic Clarification of WS-BPEL 2.0 through Syntactic Simplification using XSL Transformations
	Introduction
	Transformation Considerations
	Default Values and Elements
	Standard Attributes and Elements
	Desugaring Constructs
	Extensions
	Combining the Transformations
	Conclusions
	Bibliography
	WS-BPEL vs. Core BPEL Syntax Summaries
	XML Schema for Core BPEL
	Transformation Example
	XSLT Transformations

	Part IV: Scalable Simulation of Stochastic Bigraphs
	Towards Scalable Simulation of Stochastic Bigraphs
	Introduction
	Background
	The Simulation Algorithm
	Stochastic Parametric Reactive Systems
	Bigraph Embeddings
	Bigraph Edit Scripts
	Rule Activation and Inhibition
	Anchored Matching
	Conclusions and Future Work
	Bibliography
	Proofs

	Part V: A Bigraphical Language for Cell Biology
	Formal Cellular Machinery
	Introduction
	C0: forming molecules
	C1: naming molecules
	C2: placing molecules
	C3: moving molecules
	Conclusion
	Bibliography
	Retrieving the kappa-calculus.
	Proof of the soundness Theorem
	Proof of the completeness Theorem

