
Kopitiam: Modular Incremental Interactive Full
Functional Static Verification of Java Code

Hannes Mehnert

IT University of Copenhagen, 2300 København S, Denmark
hame@itu.dk

Abstract. We are developing Kopitiam, a tool to interactively prove full
functional correctness of Java programs using separation logic by inter-
acting with the interactive theorem prover Coq. Kopitiam is an Eclipse
plugin, enabling seamless integration into the workflow of a developer.
Kopitiam enables a user to develop proofs side-by-side with Java pro-
grams in Eclipse.

1 Introduction

It is challenging to reason about object-oriented programs, because these
contain implicit side effects, shared mutable data and aliasing. Reasoning
with Hoare logic always has to consider the complete heap, which does
not preserve the abstractions of the programming language. Separation
logic [18] extends Hoare logic to allow modular local reasoning about
programs with shared mutable state.
Coq [4] is an interactive theorem prover based on the calculus of construc-
tions with inductive definitions. Kopitiam generates proof obligations
from specifications written in Java, which the user needs to discharge by
providing Coq proof scripts. A proof script is a sequence of tactics.
The contribution is Kopitiam, a tool combining the following verification
properties:
– Modular Extensions of a verified Java library can rely on the spec-

ification of the library, without reverifying the library.
– Incremental While parts of the code can be verified and proven,

other parts might remain unverified, and development of proofs and
code can be interleaved, as in Code Contracts [10].

– Interactive Automated proof systems like jStar [8] are limited in
what they can prove. We use an interactive approach where the
user discharges the proof obligations using provided tactics, thus
Kopitiam does not limit what a user can prove.

– Full functional Given a complete, precise formal specification the
proof shows that the implementation adheres to its specification.

– Static The complete verification is done at compile time, without
execution of the program. Other code verification approaches, like
design by contract [15], may depend on run time checks. Especially
in mission critical systems, compile time verification is indispensable,
since a failing run time check would be disastrous.

The structure of the paper is: we give an overview of Kopitiam in Section
2, demonstrate a detailed example in Section 3, relate Kopitiam to similar
tools in Section 4, and in Section 5 conclude and present future work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50526260?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Overview of Kopitiam

Kopitiam provides an environment that is familiar to both Java program-
mers and Coq users. Coq developers use Proof General (based on Emacs)
or CoqIDE (a self-hosted user interface). Many Java programmers use
an IDE for development, the major Java IDEs are Eclipse and IntelliJ.
To integrate seamlessly into the normal development workflow we de-
velop Kopitiam as a plugin for Eclipse, so a developer does not have to
switch tools to prove her code correct. We base Kopitiam on Eclipse be-
cause it is open source, popular and easily extendible via plugins. While
an Eclipse integration for Coq [6] already exists, Kopitiam provides a
stronger integration of Java code and Coq proofs. This is achieved by a
single intermediate representation for both code and proofs. A change to
either code or proof directly changes this intermediate representation.

Fig. 1. Java and Coq editor side-by-side; closeup of Coq editor in Fig 2

In Figure 1 Kopitiam is shown. It consists of a standard Eclipse Java
editor on the left and a specially developed Coq proof editor on the
right. The content of the Java editor is the method fac, a recursive
implementation of the factorial function. The Java code contains a call
to Coq.requires and a call to Coq.ensures, whose arguments are the
pre- and postcondition of the method. The right side shows the Coq
lemma fac valid, stating that factorial fulfills its specification, together
with parts of the proof script (full code in Section 3). Due to the single
intermediate language, Kopitiam reflects every change to the content of
one editor to the other editor, e.g. a change to the specification on the
Java side changes the Coq proof obligation.
Kopitiam consists of a Java parser, with semantic analysis, a transformer
to SimpleJava (presented in Section 2.2), a Coq parser, and communica-
tion to Coq via standard input and output. All these parts are express-
ible in a functional way, so we chose Scala [16] as the implementation
language of Kopitiam. Scala is a type-safe functional object-oriented lan-
guage supporting pattern matching. It compiles to Java bytecode, allow-
ing for seamless integration with Eclipse (every Scala object is a Java
object and vice versa). Kopitiam is open source under the Simplified
BSD License and available at https://github.com/hannesm/Kopitiam.

2.1 Coq Editor and Goal Viewer

To develop proofs, Kopitiam provides a Coq editor and a goal viewer,
shown in Figure 2. The Coq code on the left side states the lemma
fac step: for all n, n greater than 0 implies that n ∗ fac(n - 1) equals



fac(n) (lines 1-3). All except the last 2 lines of the Coq code that have
been processed by Coq (highlighted in blue in Kopitiam, the unprocessed
ones are black). The goal viewer on the right side shows the current state
of proof assumptions, proof obligations and subgoals. The current state
is after doing induction over n and discharging the base case using the
intuition tactic. The remaining proof obligation is the induction step.

As in other Coq user interfaces, there are buttons (not shown) to step
forward and backward through the proof.

Fig. 2. Coq editor and goal viewer of Kopitiam, closeup of Figure 1

If Coq signals an error while processing, this error is highlighted in Ko-
pitiam. Figure 3 shows on the left side the erroneous Coq proof script
next to Eclipse’s corresponding problems tab. Errors are indicated by
red wiggly lines, similar to the way programming errors are displayed in
Eclipse.

Fig. 3. Coq proof script containing an error and Eclipse’s problems tab

2.2 The SimpleJava Programming Language

We formalized SimpleJava, a subset of Java, and implemented it using
a shallow embedding in Coq (details in an upcoming paper by Bengt-
son, Birkedal, Jensen and Sieczkowski). SimpleJava syntax is a prefix
(S-expression) notation of Java’s abstract syntax tree. Dynamic method
dispatch is the core ingredient of object oriented programming, and sup-
ported by SimpleJava. A SimpleJava program consists of classes and
interfaces. An interface contains a set of method signatures and a set of
interfaces, that it inherits from; a class consists of a set of implemented
interfaces, a set of fields, and a set of method implementations. A method
body consists of a sequence of statements (allocation, conditional, loop,
call, field read, field write and assignment) followed by a single return
statement. Automatic transformation of unstructured returns to a sin-
gle return would impose method-global control flow changes; and the
SimpleJava code would distract the Java programmer while proving.

3 Example Verification of Factorial

An example program is the factorial, shown in Figure 4. Figure 5 shows
the SimpleJava code, automatically translated by Kopitiam. A call (lines



class FacC {
int fac (int n) {
Coq.requires("ege n 0");
Coq.ensures

("ret ·=· facZ n");
int x;
if (n > 0)
x = n * fac(n - 1);

else x = 1;
return x;

}
}

Fig. 4. Java code

(cif (egt (var_expr "n") 0)
(cseq
(ccall "x" "this" "fac"
((eminus

(var_expr "n") 1))
(TClass "FacC"))

(cassign "x"
(etimes
(var_expr "n")
(var_expr "x"))))

(cassign "x" 1))

Fig. 5. SimpleJava code

Fixpoint fac n :=
match n with
| S n => (S n) * fac n
| 0 => 1
end.

Definition facZ :=
fun (n:Z) =>
match ((n ?= 0)%Z) with
| Lt => 0
| _ =>
Z_of_nat(fac(Zabs_nat n))

end.

Fig. 6. Coq definitions
3-6) consists of the return value binding (x), the receiver (this), the
method (fac), the argument list and the receiver class (TClass "FacC").
In Figure 6 the fixpoint fac is defined, which is the common factorial
function on natural numbers. Our Java code uses integers, so we addi-
tionally need facZ, which extends the domain of fac to integers.
The specification of a program consists of specifications for all classes and
interfaces. An example specification of method fac is shown in Figure 7,
whose code is automatically generated by Kopitiam from the Java code
(Figure 4). The precondition (line 3 of both Figures) requires that the
parameter n must be equal or greater (ege) than 0. The postcondition
(lines 4-5 of both Figures) ensures that the returned value (ret) is equal
to facZ n. The bottom block of Figure 7 defines Spec, which connects
the specification fac s to the actual program, class FacC, method fac.
Definition fac_s :=
Build_spec unit (fun _ =>
(ege "n" 0,
((("ret":expr) ·=·

(facZ ("n":expr))):asn))).

Definition Spec := TM.add
(TClass "FacC")
(SM.add "fac" ("n" :: nil, fac_s))
(SM.empty _)

(TM.empty _).

Fig. 7. Specification

Lemma fac_valid : |=G {{spec_p Fac_spec.fac_spec ()}}

Fac.fac_body {{spec_qret Fac_spec.fac_spec () "x"}}.

Proof.

unfold_valid. forward. forward.

call_rule (TClass "FacC") ().

- substitution. unentail. intuition.

- reflexivity. substitution.

forward. unentail. intuition. subst. simpl.

rewrite Fac_spec.facZ_step; [reflexivity | omega].

forward. unentail. intuition. subst.

destruct (Z_dec (val_to_int k) 0).

assert False; [|intuition]. destruct s; intuition.

rewrite e. intuition.

Existential 1:=().

Qed.

Fig. 8. Coq proof script for factorial
Figure 8 shows the hand-written proof that the Java implementation of
factorial satisfies its specification. The proof uses the forward tactic [2].
This extracts the first Hoare triple; the resulting proof obligation (Hoare
triple) is the original precondition combined with the extracted postcon-
dition, the remaining statement sequence, the original postcondition. If
the extracted precondition cannot be discharged trivially, the user has to
do it. After applying forward twice (line 4, for cif and cseq), the proof
obligation for the call is discharged by the call rule tactic (line 5).

4 Related Work

Several currently available proof tools are compared in Table 1. Only
Krakatoa [11], jStar [8] and Kopitiam target Java. Krakatoa uses Why,
which uses a simple While language where mutable variables cannot be
aliased. The automated proof system jStar targets Jimple [19], a Java
intermediate language built from Java bytecode. Kopitiam directly trans-
lates from a subset of Java source code to SimpleJava.
Different code contracts [15] implementations focus on C# (Code Con-
tracts [10]) and Java (JML [5]). Code contract implementations trans-
late some non-trivial specifications to run time checks, while we focus on



Name T Language Specification logic Automation

Krakatoa sta Java; While multi-sorted FOL several provers
Ynot sta higher-order imp separation logic Coq tactics
jStar sta Java; Jimple separation logic user proof rules, SMT
Spec# dyn C# C#/Java run time assertions
Dafny inc imp + generics Boogie Z3 (SMT-solver)
Kopitiam inc Java; SimpleJava separation logic Coq tactics

Table 1. Comparison of verification tools

static verification. The integration of code contracts in an IDE is bene-
ficial, as the developer can incrementally develop code and proofs in the
same environment. An example for an industrial grade IDE with code
contracts is the KeY tool [1], based on UML and OCL. Code Contracts
[10] do not focus on full functional correctness, while some JML tools
such as Mobius [3] do. In contrast to those tools, we use separation logic,
thus a user does not need to specify frame conditions.
Dafny [14] is a proof tool for an imperative programming language sup-
porting generics and algebraic data types, but not subtyping. Dafny is
well integrated into Microsoft Visual Studio and also allows incremental
proofs. It provides a multi-sorted first-order logic as specification logic.
Ynot [7] uses a shallow embedding in Coq for a higher-order imperative
programming language without inheritance. Thus to verify code with
Ynot the program has to be reimplemented in the Ynot tool.
The jStar [8] tool is fully automated and does a proof search on available
proof rules, which are extensible by the user. A user can introduce un-
sound proof rules, since these are treated as axioms and are not verified.
Moreover it is difficult to guide the proof search in jStar, since the order
of rules matters. Both Ynot and Kopitiam use the proof assistant Coq,
in which proof rules have to be proven before usage.

5 Conclusion and Future Work

We are developing Kopitiam, an Eclipse plugin for interactive full func-
tional static verification of Java code using separation logic. Our im-
plementation is complete enough to prove correctness of factorial and
in-place reversal of linked lists. We currently do not handle the complete
Java language, e.g. unstructured returns and switch statements. Class
to class inheritance is also not supported. Kopitiam does not support
more advanced Java features like generics and exceptions.
We plan to integrate more automation: We will provide context aware
suggestions, a technique widely used in Eclipse for code completion, for
specifications, whose syntax we also plan to improve. We will provide
separation logic lemmas and tactics for Coq, allowing the user to focus
on the non-trivial proof obligations. We also want the user to discharge
separation logic proof obligations instead of exposing the Coq layer.
We are also working on more and larger case studies ranging from simple
object-oriented code (Cell and ReCell from [17]), to the composite pat-
tern and other verification challenges [20], to real-world data structures
like Linked Lists with Views [12] and Snapshottable Trees [9], to the C5
collection library [13], the extensive case study of our research project.

Acknowledgement We want to thank Peter Sestoft, Jesper Bengt-
son, Joe Kiniry and the anonymous reviewers for their valuable feedback.



References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R.,
Menzel, W., Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.:
The KeY tool. Software and System Modeling 4 (2005)

2. Appel, A.W.: Tactics for separation logic. INRIA Rocquencourt and
Princeton University, Early Draft (2006)

3. Barthe, G., Crégut, P., Grégoire, B., Jensen, T., Pichardie, D.: The
MOBIUS proof carrying code infrastructure. In: Boer, F.S., Bon-
sangue, M.M., Graf, S., Roever, W.P. (eds.) Formal Methods for
Components and Objects. Springer Verlag (2008)

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Pro-
gram Development. Coq’Art: the Calculus of Inductive Construc-
tions. Springer Verlag (2004)

5. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leav-
ens, G.T., Leino, K.R.M., Poll, E.: An overview of JML tools and
applications. Int. J. Softw. Tools Technol. Transf. 7 (Jun 2005)

6. Charles, J., Kiniry, J.R.: A lightweight theorem prover interface for
Eclipse. UITP at TPHOL’08 (2008)

7. Chlipala, A., Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.:
Effective interactive proofs for higher-order imperative programs.
ACM Proc. of ICFP ’09 (Aug 2009)

8. Distefano, D., Parkinson, M.J.: jStar: towards practical verification
for Java. ACM Proc. of OOPSLA ’08 (Oct 2008)

9. Driscoll, J., Sarnak, N., Sleator, D., Tarjan, R.: Making data struc-
tures persistent. ACM proc. of STOC ’86 (Nov 1986)

10. Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract lan-
guages. ACM Proc. of SAC ’10 (Mar 2010)

11. Filliâtre, J., Marché, C.: The Why/Krakatoa/Caduceus platform for
deductive program verification. Proc. of CAV’07 (Jul 2007)

12. Jensen, J.B., Birkedal, L., Sestoft, P.: Modular verification of linked
lists with views via separation logic. Proc. of FTfJP 2010 (May 2010)

13. Kokholm, N., Sestoft, P.: The C5 generic collection library for C#
and CLI. Tech. Rep. ITU-TR-2006-76, IT University of Copenhagen
(2006)

14. Leino, K.R.M.: Dafny: An automatic program verifier for functional
correctness. Proc. of LPAR-16 (Mar 2010)

15. Meyer, B.: Design by contract. Advances in Object-Oriented Soft-
ware Engineering (1991)

16. Odersky, M., al: An overview of the Scala programming language.
Tech. Rep. IC/2004/64, EPFL Lausanne, Switzerland (2004)

17. Parkinson, M.J., Bierman, G.: Separation logic, abstraction and in-
heritance. ACM Proc. of POPL ’08 (Jan 2008)

18. Reynolds, J.C.: Separation logic: A logic for shared mutable data
structures. IEEE Proc. of 17th Symp. on Logic in CS (Nov 2002)

19. Vallée-Rai, R., Hendren, L.J.: Jimple: Simplifying Java bytecode for
analyses and transformations. Tech. Rep. 4, McGill University (1998)

20. Weide, B., Sitaraman, M., Harton, H., Adcock, B., Bucci, P., Bro-
nish, D., Heym, W., Kirschenbaum, J., Frazier, D.: Incremental
benchmarks for software verification tools and techniques. Proc. of
VSTTE ’08 (Oct 2008)


