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c©d’aquesta edició: Vladimir Zaiats, Digital Technologies Research Group,
Department of Digital Technologies and Information, Escola Politècnica
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Welcome to BAS2012

We are pleased to present the third edition of the BAS International Con-
ference. The previous conferences go back to 2003 and 2008 under the name
of the Barcelona Conference on Asymptotic Statistics.
This time we have aimed at expanding the scope of the conference and
we have called it The Barcelona International Conference on Advances in
Statistics, maintaining the same acronym BAS. The three main topics the
conference would like to focus on are:

• theoretical advances in statistics;

• applications of statistics;

• statistical software and its use.

Of course, these topics are intrinsically related to each other and it is some-
times difficult to clearly delimit them. A recent breakthrough in biomedical
and financial applications of statistics calls for creating new tools, often
requiring refined numerical techniques and simulating for further develop-
ment of probability fundamentals of statistics. Therefore the BAS confer-
ence is intended as a forum for discussion of a wide range of ideas bringing
together researchers whose contribution to statistics is already world-wide
recognized, as well as young scientists whose professional career in statistics
is making first steps.
The BAS venue at CosmoCaixa Barcelona is an excellent place for this
type of events. The infrastructure offered by CosmoCaixa and, which is
important, the atmosphere created for everybody coming to this center is
stimulating and encourages for a fruitful work.
The BAS conference would have been impossible without financial sup-
port from the Ministerio de Economı́a y Competitividad. We gratefully
acknowledge this support.
We would like to thank everybody involved in preparation of BAS2012 and
hope that all BAS2012 participants will enjoy their stay in Barcelona.

Vladimir Zaiats
BAS2012 Coordinator
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Cox proportional hazards model with
measurement error

Alexander Kukush1 and Elena Usoltseva1

1 National Taras Shevchenko University of Kyiv, 01601 Kyiv, Volodymyrska st.
64, Ukraine

E-mail for correspondence: alexander kukush@univ.kiev.ua

Abstract: Cox proportional hazards model under covariate measurement error
is considered. We investigate a simultaneous estimation method for the baseline
hazard and covariate parameter. The strong consistency of the considered esti-
mators is obtained. We also estimate rate of convergence of the estimators in
terms of Kullback-Leibler distance.

Keywords: Cox proportional hazards; measurement error; censored observa-
tions; baseline hazard function.

1 Model

We consider Cox semiparametric proportional hazards model with censored
observations in the presence of measurement errors. The baseline hazard
function is not parametrized and belongs to a infinite-dimensional compact
set of continuous positive functions. We use the partial log-likelihood func-
tion and correct it for censoring and measurement error following the ideas
of Augustin (2004). In the Cox proportional hazards model, the intensity
of failure at time point t of an individual covariate vector X is specified as

Λ(t|X;λ, β) := λ(t) exp(βTX). (1)

Here β is k-dimensional parameter, β ∈ Θβ ⊂ Rk, λ(t) ∈ Θλ ⊂ C[0, τ ], τ >
0. The pdf of the survival time T is equal to

fT (t|X;λ, β) = Λ(t|X;λ, β) exp

(
−
∫ t

0

Λ(s|X;λ, β)ds

)
,

∫ ∞
0

Λ(t|X;λ, β)dt =∞,

where

Λ(t|X;λ, β) =
fT (t|X;λ, β)

GT (t|X;λ, β)
, GT (t|X;λ, β) := 1− FT (t|X;λ, β).
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2 Estimator

First suppose that we observe independent triples (Yi, Xi,∆i), i = 1, n,
Yi = min(Ti, Ci) are censored lifetimes Ti, and ∆i are censorship indicators
∆i = I(Ti ≤ Ci). We use the partial log-likelihood function for estimating
λ(t) and β,

Qn(t) :=
1

n

n∑
i=1

q(Yi,∆i, Xi;λ, β),

where q(Y,∆, X;λ, β) := ∆
(
log λ(Y ) + βTX

)
− eβ

TX

∫ Y

0

λ(u)du.

In the case of the presence of the measurement error we observe instead of
Xi the surrogate data

Wi = Xi + Ui, (2)

i = 1, n. The errors Ui are independent copies of a k-dimensional random

vector U with known moment generating function MU (β) := Eeβ
TU , ,and

they are independent of {Xi, Ti, Ci}. In Augustin (2004) the corrected ob-
jective function was proposed,

Qcorn (λ, β) :=
1

n

n∑
i=1

qcor(Yi,∆i,Wi;λ, β),

with

qcor(Y,∆,W ;λ, β) := ∆
(
log λ(Y ) + βTW

)
− eβ

TW

MU (β)

∫ Y

0

λ(u)du.

The estimators
(
λ̂n, β̂n

)
are defined as(

λ̂n, β̂n

)
:= arg max

(λ,beta)∈Θ
Qcorn (λ, β), Θ := Θλ ×Θβ .

3 Consistency of estimator

Our main results are obtained under the following assumptions.

1. Θλ ⊂ C[0, τ ] is the compact convex set of such positive functions
f : [0, τ ]→ R that f(t) > a,∀ ∈ [0, τ ], |f(t)− f(s)| ≤ L|t− s|,∀t, s ∈
[0, τ ], where a > 0 and L > 0 are fixed constants.

2. Θβ ⊂ Rk is compact and convex.

3. EU = 0; for a fixed ε > 0, EeD‖U‖ <∞ where D := maxβ∈Θβ ‖β‖+ε.

4. EeD‖X‖ <∞, where the positive constant D was defined above.
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5. τ is the right endpoint of the distribution of censor C, i.e. P (C > τ) =
0 and for all ε > 0 we have P (C > τ − ε) > 0.

6. The covariance matrix SX of the random vector X is positive definite.

Theorem 1 In the Cox proportional hazards model under measurement
error (1), (2) with true parameters λ0 and β0, assume that conditions (1)-

(6) are satisfied. Then
(
λ̂n, β̂n

)
are strongly consistent estimators, that

is
sup
t∈[0,τ ]

|λ̂n(t)− λ0| → 0 and β̂n → β0 a.s. as n→∞.

4 Rate of convergence

We give the rate of convergence of the estimator
(
λ̂n, β̂n

)
defined above to

the true parameter values (λ0, β0) under the following condition:

7. X has a density, E
(
e2Dβ‖X‖ + e2Dβ‖U‖

)
<∞, Dβ := max

β∈Θβ
‖β‖ > 0.

Theorem 2 In the Cox proportional hazards model under measurement
error (1), (2) with true parameters λ0 and β0, assume that conditions (1),
(2), (4)-(7) hold. Then

D
(
f (Y,∆, X;λ0, β0) , f

(
Y,∆, X; λ̂n, β̂n

))
=
Op(1)√

n
,

where f stands for the joint pdf of the triple (Y,∆, X) w.r.t. a standard
measure µ (here µ is a product of two Lebesgue measures and counting
measure), and for densities f1 and f2 with respect to the measure µ,

D (f1, f2) :=

∫
f1(x) log

f1(x)

f2(x)
dµ(x)

denotes the Kullback-Leibler distance between f1 and f2.

The results are joint with Prof. I. Fazekas and Dr. S. Baran (Hungary) and
published in Kukush et al. (2011).
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On Identification of Threshold Models for
Time Series and Diffusion Processes

Yury A. Kutoyants1

1 University of Maine, av. O. Messiaen, Le Mans, 72085, FRANCE

Abstract: We consider the problem of threshold estimation for autoregressive
time series with a “space switching” in the situation, when the regression is
nonlinear and the innovations have a smooth, possibly non Gaussian, probabil-
ity density. Assuming that the unknown threshold parameter is sampled from a
continuous positive density, we find the asymptotic distribution of the Bayes es-
timator and show that these estimators are asymptotically efficient. The similar
problems for threshold diffusion processes are discussed too.

Keywords: TAR time series; threshold estimation; singular estimation.

1 Introduction

The simplest threshold autoregressive (TAR) process is the time series,
generated by the recursion

Xj+1 = ρ1Xj 1I{Xj<ϑ} + ρ2Xj 1I{Xj≥ϑ} + εj+1, j = 0, . . . , n− 1,

where εj ∼ N
(
0, σ2

)
are i.i.d. random variables, ρ1 6= ρ2, |ρi| < 1 and σ2

are known constants. The unknown threshold parameter ϑ ∈ Θ = (α, β)
is to be estimated from the data Xn = (X0, X1, . . . , Xn). This model and
some of its generalizations has been extensively studied during the last
decades (see Tong(2011)). Particularly, much attention focused on the prop-
erties of the least squares estimator (Chan (1993)).
This talk gives a review of some recent results concerning the study of
the Bayes estimator for the TAR models. We present the results obtained
by Chan and Kutoyants (2009), (2010), Chigansky and Kutoyants (2012),
Kutoyants (2012). The case of colored noise (Chigansky and Kutoyants
(2011)) will be presented separately by Chigansky.
We consider the following nonlinear TAR(1) model

Xj+1 = h (Xj) 1I{Xj<ϑ} + g (Xj) 1I{Xj≥ϑ} + εj+1, j = 0, . . . , n− 1, (1)

where h(x) and g(x) are known functions, (εj) are i.i.d. random variables
with a known density function f (x) > 0, x ∈ R and the initial condition
X0 is independent of (εj) and has a probability density f0(x). We suppose
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that the condition of strong mixing are fulfilled and the time series has
invariant density ϕ (ϑ, x).
The likelihood function of the sample Xn is given by

L (ϑ,Xn) = f0 (X0)

n−1∏
j=0

f
(
Xj+1 − h (Xj) 1I{Xj<ϑ} − g (Xj) 1I{Xj≥ϑ}

)
,

and the Bayes estimator ϑ̃n with respect to the mean square risk is the
conditional expectation

ϑ̃n = E (ϑ|Xn) =

∫
Θ
θ p (θ) L (θ,Xn) dθ∫

Θ
p (θ) L (θ,Xn) dθ

.

Since the likelihood L(ϑ,Xn) is piecewise constant in ϑ, the estimate can
be computed efficiently (see Chan and Kutoyants (2010)).
The asymptotic properties of (ϑ̃n) are formulated in terms of the following
compound Poisson process

Z (u) =


exp

(∑N+( u )
l=1 ln

f(ε+l +δ(ϑ0))
f(ε+l )

)
, u ≥ 0,

exp

(∑N−(−u)
l=1 ln

f(ε−l −δ(ϑ0))
f(ε−l )

)
, u < 0.

Here ϑ0 is the true value of the patrameter, ε±l are independent random
variables with the density function f (x), N+ (·), N− (·) are independent
Poisson processes with the same intensity λ = ϕ (ϑ0, ϑ0) (Z(u) := 1 on the
sets {N±(u) = 0}).
Define the random variable

ũ =

∫
R
uZ (u) du∫
R
Z (u) du

.

We have the following lower bound on the mean square risk of an arbitrary
sequence of estimators (ϑ̄n):

lim
δ→0

lim
n→∞

sup
|ϑ−ϑ0|<δ

n2Eϑ

(
ϑ̄n − ϑ

)2 ≥ Eϑ0
ũ2,

and the Bayes estimates (ϑ̃n) are efficient, attaining this lower bound
asymptotically. Our typical result is the following

Theorem 1 The sequence of estimates (ϑ̃n) is consistent, the convergence
in distribution

n
(
ϑ̃n − ϑ0

)
=⇒ ũ

holds and the moments converge:

lim
n→∞

npEϑ0

∣∣∣ϑ̃n − ϑ0

∣∣∣p = Eϑ0
|ũ|p , p > 0.



12 Identification of TAR models

This result is generalized in several directions (many thresholds, TAR(p)
process, misspesification models etc. At particularly, we consider diffusion
process

dXt =

k+1∑
j=1

Sj (Xt) 1I{ϑj−1<Xt≤ϑj}dt+ σ (Xt) dWt,

where ϑ0 = −∞, ϑj ∈ Θj = (αj , βj) , j = 1, . . . , k, ϑk+1 = ∞, βj < αj+1.
The functions Sj(x) and σ (x) are such that the process Xt is ergodic with
invariant density f (ϑ, x).
Problem: how to estimate ϑ by observations XT = (Xt, 0 ≤ t ≤ T ) and
what are the properties of estimators as T →∞?
We describe the properties of the MLE and BE of the parameter ϑ (Ku-
toyants(2012))
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On maximum integrated likelihood
estimators

Aleksander Zaigrajew1
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E-mail for correspondence: alzaig@mat.uni.torun.pl

Abstract: The problem of parameter estimation in the presence of a nuisance
parameter is considered. We concentrate on the situation when the nuisance
parameter is either location or scale and compare two estimators: maximum like-
lihood estimator and maximum integrated likelihood estimator.

Keywords: Maximum likelihood estimator; Maximum integrated likelihood es-
timator; Scale parameter; Location parameter.

Let a sample x = (x1, x2, . . . , xn) be drawn from an absolutely continuous
distribution with the density p(·; θ, λ), where θ is a parameter of interest
and λ is a nuisance parameter. We do not assume the orthogonality of these
parameters.
To estimate θ, one can adopt the well-known maximum likelihood (ML)
method, that consists in taking the so-called likelihood function

L(x; θ, λ) =

n∏
j=1

p(xj ; θ, λ)

and searching for
(θ∗, λ∗) ∈ Arg sup

θ,λ
L(x; θ, λ).

Throughout the talk we assume that

sup
θ,λ

L(x; θ, λ) = sup
θ

sup
λ

L(x; θ, λ). (1)

The function

L̂(x; θ) = sup
λ

L(x; θ, λ) = L(x; θ, λ̂(x; θ)),

where λ̂(x; θ) ∈ Arg sup
λ

L(x; θ, λ) is the ML estimator (MLE) of λ given θ,

is known as the profile likelihood function. Under condition (1), the MLE
θ∗ of θ can be obtained by maximizing the profile likelihood function.
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The main goal of the talk is to compare the MLE with another estimator of
θ obtained by integration of the likelihood function, with a weight function,
over the nuisance parameter.
The idea of using the integrated likelihood for estimation of the parameter
of interest isn’t new: see e.g. Berger et al. (1999) or Severini (2000, 2010).
The integrated likelihood can be written as

L̃(x; θ) =

∫
L(x; θ, λ)w(λ)dλ,

where w(·) is the weight function which can be interpreted, using Bayesian
language, as a conditional density a priori corresponding to the parameter
λ given θ. There are several arguments to choose the weight function as
follows: w(λ) = λ−1, if λ is the scale parameter, and w(λ) ≡ 1, if λ is the
location parameter.
Then as an estimator of θ (we call it MILE) we take θ∗∗ ∈ Arg sup

θ
L̃(x; θ).

Some properties of the MILE is given in the next theorem.

Theorem 1 Under usual regularity conditions on the distribution, the MILE
θ∗∗ is consistent and asymptotically normal with the same asymptotic dis-
tribution as the MLE θ∗, i.e. n1/2(θ∗∗−θ)→ N (0, (H−1)11) in distribution,
as n → ∞, where (H−1)11 is the left upper element of the inverse matrix
with respect to the Fisher information matrix H = H(θ, λ).

To compare the estimators we use two criteria: the bias and the mean
square error. As an example of results obtaining, we present here that on
comparison the biases of both estimators in the asymptotic case.

Theorem 2 Under some regularity conditions on the distribution, at least
for all sufficiently large values of n: the sign of the difference |Eθ∗ − θ| −
|Eθ∗∗ − θ| coincides with the sign of the product

E
b(x; θ)

h′(x; θ)
E
(2nh(x; θ)

h′(x; θ)
+
nh′′(x; θ)h2(x; θ)

(h′(x; θ))3
− b(x; θ)

h′(x; θ)

)
.

Here b(x; θ) = 1
2

(
ln(−l′′λλ(x; θ, λ̂(x; θ)))

)′
θ
−
(

lnw(λ̂(x; θ))
)′
θ
, h(x; θ) =

1
n l
′
θ(x; θ, λ̂(x; θ))), l(x; θ, λ) = lnL(x; θ, λ).

Further on, we consider different two-parametric families of distributions.
The results are supported with numerical calculations.
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Insurance premiums and risk measures:
models and estimation

Ričardas Zitikis1

1 Department of Statistical and Actuarial Sciences, University of Western On-
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E-mail for correspondence: zitikis@stats.uwo.ca

Abstract: Numerous risk measures and premium calculation principles have
appeared in the literature. Many of them are special cases of two highly encom-
passing functionals, distortion and weighted, which are based on two different
modifications of probabilities with which insurance (or financial) risks and losses
take on their values. Here we discuss these functionals, as well as related statis-
tical inferential methods and results.

Keywords: Insurance; Losses; Risks; Premiums; Inference.

1 Introduction

Insurance losses are non-negative random variables, X ∈ R+. The mean of
X is the net premium E[X], to which we add a loading to have a useful
premium. For an overview, we refer to Young (2004). Serious issues arise
when constructing premiums, including the choice of loading: should it
reflect the mean loss, volatility, or something else? The reason is that the
loading is not just a reflection of the severity of the loss X but also of the
risk perception by those (to be) insured, as well as of many other factors.
Naturally, decision theory under risk and uncertainty plays a pivotal role in
defining risk measures and premiums. In summary, given the net premium,
we want to modify it in such a way that the resulting premium would
reflect:

1. The distribution of the loss X as well as with it associated collateral
loss, which can be expenses associated with the claim processing time,
human resources required, etc. Hence, mathematically, we deal with
the transformed loss v(X) for a function v. We may view v as a utility
function (think of classical economic theory) or perhaps as a value
function (think of behavioural economics).

2. The potential distortion of loss probabilities, due to various factors
(natural and artificial). Mathematically, this means modifying the
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underlying de-cumulative distribution function (ddf) or, alternatively,
the probability density function (pdf) of the loss X.

We shall next discuss these topics in more detail.

2 Distortion premiums and risk measures

To begin, we write the net premium E[X] as the integral∫
R+

S(x)dx, (1)

where S(x) = P[X > x] is the ddf of X, also known as the survival func-
tion. Modifying the values of X means using a ‘value’ function v as the
integrator in (1). Distorting probabilities means integrating the function
g(S(x)) instead of the ddf S(x) in (1) for a ‘distortion’ function g. Since
we want g(S(x)) to be a ddf, we use a non-decreasing g : [0, 1]→ [0, 1] such
that g(0) = 0, g(1) = 1, and g(t) ≥ t for all t ∈ [0, 1]. In summary, we have
the distortion risk measure

∆g,v[X] :=

∫
R+

g(S(x))dv(x). (2)

The role of this risk measure in insurance was discussed and explored in
a series of pioneering papers by Shaun Wang (e.g., Wang (1998) and ref-
erences therein). A thorough mathematical treatment of integral (2) was
given by Denneberg (1994). For a role of ∆g,v[X] in economics, we refer to
Quiggin (1982), Schmeidler (1986), Yaari (1987), Quiggin (1993), and ref-
erences therein. An impetus for developing statistical inferential results in
the area was given by Jones and Zitikis (2003), who noted a close relation-
ship between ∆g,v[X] and L-statistics. Necir et al. (2007) explained how
to handle heavy-tailed losses when estimating ∆g,v[X]. Numerous articles
dealing with statistical inferential results have appeared during the last five
years or so (cf., e.g., Brazauskas et al. (2008), Greselin et al. (2009), Zitikis
et al. (2010), and references therein).

3 Weighted premiums and risk measures

This time, we write the net premium E[X] as the integral∫
R+

xdF (x), (3)

where F (x) = P[X ≤ x] is the cumulative distribution function (cdf) of the
loss X. Modifying the values of X with a function v means integrating v(x)
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instead of x, whereas ‘weighing’ the cdf F with a function w : R+ → R+

means replacing F with its weighted version Fw, which is defined by the
equation

dFw(x) =
w(x)dF (x)∫

R+
w(z)dF (z)

. (4)

In summary, from (3) and (4) we have the weighted premium (cf. Furman
and Zitikis, 2008a)

Πv,w[X] :=

∫
R+

v(x)dFw(x) =
E[v(X)w(X)]

E[w(X)]
.

Various special cases of the weighted premium have appeared in the liter-
ature, but in full generality, the premium was discussed and explored by
Furman and Zitikis (2008a, 2009, 2010). For related econometric, insur-
ance, and financial insights, we refer to Schechtman et al. (2008), Furman
and Zitikis (2008b, 2009), and references therein. Statistical inferential re-
sults have been explored by Necir and Zitikis (2012), who concentrate on
the case of heavy-tailed losses. As we see from equation (4), the weighted
premium Πv,w[X] relies on the notion of weighted distributions, which have
been extensively discussed in the statistical literature (cf., e.g., Rao (1997),
Patil (2002), and references therein).

Acknowledgments: The research has been partially supported by the
Natural Sciences and Engineering Research Council (NSERC) of Canada.
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Abstract: Artificial neural networks (ANN) have been widely used in various
time series forecasting problems in recent years because of the ability to model
both the linear and the nonlinear parts of time series. Although ANN produces
accurate forecasts in many time series implementations, there are still some prob-
lems with using ANN. ANN method consists of some main components such as
architecture structure, learning algorithm and activation function. It is a well-
known fact that these components directly affect the forecasting performance of
ANN. Since artificial neural networks approach is data-driven method, determin-
ing the elements of ANN issue should be carefully considered due to the data
examined. An important decision is the selection of optimum architecture of neu-
ral network that consists of determining the numbers of neurons in the layers of
the network. Therefore, various approaches have been proposed to find the best
ANN architecture in the literature. On the other hand, trial and error method
have been still the most preferred method to find a good architecture when ANN
method is utilized to forecast time series. In this study, occupational accidents
in Turkey is forecasted by using a hybrid heuristic method proposed by Aladag
(2011) which is based on feed forward neural networks and Tabu search algo-
rithm. Data was collected from Republic of Turkey Social Security Institution
from January 2003 to December 2011. In Aladag’s (2011) forecasting approach,
tabu search heuristic method is utilized to determine the best neural network ar-
chitecture which gives the most accurate forecasts. Occupational accidents issue
is very important for every country in the world. Hence, forecasting the number
of occupational accidents accurately is a crucial problem. As a result of the imple-
mentation, it is observed that the hybrid forecasting approach produces accurate
forecasts for the number of occupational accidents in Turkey.

Keywords: Artificial neural networks; Forecasting; Occupational accidents; Tabu
search; Time series.
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1 Introduction

ANN approach has been successfully used in time series forecasting in re-
cent years. In the literature, there have been various forecasting studies
in which it is observed that ANN method produces very accurate forecasts
(Aladag and Aladag, 2011). In spite of the fact that ANN is an effective fore-
casting tool for time series, there are still some problems with using ANN
(Aladag et al., 2010b). ANN is a data driven method so the components of
the method should be determined due to the data. Main components of the
method can be given as architecture structure, learning algorithm and acti-
vation function (Egrioglu, 2008). Especially, choosing the best architecture
is an important decision in order to reach accurate forecasts (Aladag, 2011).
In the literature, there have been some systematic approaches to find the
best architectures but trial and error method is the most preferred method
(Aladag et al., 2010a). In this study, occupational accidents in Turkey is
forecasted by using a hybrid heuristic method proposed by Aladag (2011)
which is based on feed forward neural networks and tabu search algorithm.
To forecast same time series, trial and error method was also utilized. The
results obtained from tabu search algorithm and trial and error methods
were obtained with each other and it was observed that the most accurate
forecasts are obtained when tabu search algorithm was used to determine
the best architecture.

2 The implementation

In this study, occupational accidents in Turkey is forecasted by using a
hybrid heuristic method proposed by Aladag (2011) which is based on feed
forward neural networks and Tabu search algorithm. Data was collected
from Republic of Turkey Social Security Institution from January 2003
to December 2011. In Aladag’s (2011) forecasting approach, tabu search
heuristic method is utilized to determine the best neural network archi-
tecture which gives the most accurate forecasts. The time series is also
forecasted with FFNN in which trial and error method is employed to find
best architecture. The time series has 121 observations. The first 110 and
the last 12 observations are used for training and test sets, respectively.
The best feed forward neural network architecture, which has the mini-
mum objective function value, was tried to be found by using the hybrid
forecasting approach. Before searching process was started, other elements
of the networks are fixed like in Aladag (2011). The logistic activation
function is used in all of the neurons of networks. Levenberg Marquardt
algorithm is employed as training algorithm. In all computations, Matlab
2010 computer package is utilized. Besides, same parameters which were
used in Aladag (2011) are employed for tabu search algorithm. (See Aladag
[10] for detailed information about the parameters of the used tabu search
algorithm).
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Observed Tabu Search Trial&Error

3963 4226.48 5174.79
5400 4317.09 5281.53
5633 5639.32 5517.52
6523 6125.12 5420.91
6193 6351.20 5805.44
6721 6650.38 6570.22
5647 6690.41 5301.75
6483 6541.01 7263.70
5577 6350.07 6505.20
6568 6439.02 5851.06
5204 6331.70 5801.76
5954 6367.37 6964.25

hline TBA 2-4-1 12-1-1
RMSE 617.74 728.32

TABLE 1. The obtained forecasting results

As mentioned above, when the time series is forecasted with FFNN, to
determine the best architecture, both the trial and error, and the tabu
search algorithm are exploited. The obtained results are summarized in
Table 1. In the table, observed and forecast values produced by trial and
error, and tabu search methods are presented. Also, the best architectures
(TBA) found and corresponding root mean square error (RMSE) values
are shown in Table 1. When the tabu search algorithm is employed in
the architecture selection, the architecture 2-4-1, which contains 2, 4, and
1 neurons in the input, the hidden, and the output layers, respectively,
is determined as the best architecture with 617.74 RMSE. The obtained
results calculated over the test set are also visually examined. As a result
of the implementation, it can be said that using tabu search algorithm
proposed by Aladag (2011) to find the best architecture produces accurate
forecasts for the number of occupational accidents in Turkey.

3 Conclusions

Occupational accidents issue is very important for every country in the
world (Dimitrov, 2011). Hence, forecasting the number of occupational ac-
cidents accurately is a crucial problem (Aidoo and Eshun, 2012). In this
study, a hybrid forecasting method combines feed forward neural networks
(FFNN) and tabu search algorithm is employed to forecast occupational
accidents in Turkey in order to reach high forecasting accuracy level.
The hybrid forecasting approaches proposed by Aladag (2001) is employed
in this study. In this method, tabu search algorithm is utilized to solve
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architecture selection problem. It is aimed to obtain accurate forecasts for
the number of occupational accidents in Turkey. It is a well-known fact that
ANN approach can produce more accurate forecasts that those produced
by conventional time series (Zhang et al., 1998). Therefore, the time series
are analyzed with FFNN and to find the best architecture, which gives
the most accurate forecasts, both tabu search and trial and error methods
are employed. Then, the obtained forecasting results are compared with
each other. As a result of the comparison, it is observed that the best
architecture which was found by tabu search produces better forecasts than
those obtained from the best architecture determined by trial and error
method.
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1 The model

Consider the first order autoregressive process of the form

Xt = ρXt−1 + εt, t = 0, 1, ...., n. (1)

Where the εt’s are independently distributed according to an exponential
distribution Exp(1), i.e., the density of εt is

fεt(y) = e−y, y > 0.

Suppose that all what we observe is a segment of the process

X1, X2, ..., Xn, n fixed, (2)

and ρ is unknown and is to be estimated.
Assuming that X0 is distributed according to Exp(1 − ρ), the maximum
likelihood estimator for ρ is (see Andel (1988))

ρ̂ = min
2≤t≤n

(Xt/Xt−1) = ρ+ min
2≤t≤n

εt
Xt−1

(3)

Andel (1988) considered the following modification. Since the process is
stationary with mean m = 1/(1 − ρ), he proposed a new estimator which
was
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ρ̂∗ = ρ+
1

m
min

2≤t≤n
εt (4)

He found then the distribution for this new estimator of ρ.
The aim of our paper is to present some results concerning the bias and
the MSE of ρ̂∗ when the innovations are contaminated following the Sinha
model (see Sinha and Kale, (1969)).
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Abstract: Gene filtering is a useful preprocessing technique often applied to
microarray datasets. However, it is no common practice because clear guidelines
are lacking and it bears the risk of excluding some potentially relevant genes. In
this work, we propose to model microarray data as a mixture of two Gaussian
distributions that will allow us to obtain an optimal filter threshold in terms of
the gene expression level.
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1 Introduction

Non-specific gene filtering is a very useful technique as it increases the
sensitivity of the microarray data analysis and reduces the dimensional-
ity of the dataset. Thus, correct and stringent filtering will substantially
reduce the problem of overfitting in classification problems. Several filter-
ing approaches exist, some of them often used in combination. The most
used are based on (i) filtering by expression level and (ii) filtering by gene
variance across samples. These techniques involve the use of more or less
subjective thresholds. The drawback of data-independent thresholds is that
gene expression distributions are very variable between different microarray
datasets and can result in too stringent or too loose filtering conditions. In
this work we develop a data-driven selection of a threshold based on the
minimization of the classification error.

2 Materials and Methods

ALL Dataset: The Acute Lymphoblastic Leukemia (ALL) data were re-
ported by Chiaretti et al [Chiaretti et al, S. 2004]. We consider the com-
parison of the 37 samples from patients with the BCR/ABL fusion gene
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resulting from a chromosomal translocation (9;22) with the 42 samples from
the NEG group. They are available in the R package ALL. The compar-
isons conducted in this work maintain the criteria of removing the genes
with inter-quartile range (IQR) below 0.5 used by Scholtens and Heyde-
breck [Scholtens D. and Von Heydebreck A., 2005] but using an optimized
threshold for intensity filtering instead of 6.64 = log2(100).
Mixture Of Gaussian (MOG) model: We assume that each gene be-
longs to one of the following two classes: class C1 (un-expressed genes),
class C2 (expressed genes), and each one of these classes can be well mod-
eled using a Gaussian distribution with specific means µ1, µ2, and standard
deviations σ1, σ2. Then, the probability density functions (pdfs) for gene

expression values conditioned to a particular class is: p(x|Cp) = Φ
(
x−µp
σp

)
,

(p = 1, 2) with Φ(x) = 1
2π exp (− 1

2x
2) being the zero-mean and unit-norm

Gaussian pdf. Then, the pdf for the variable x (gene expression value)
is: p(x) = α1p(x|C1) + α2p(x|C2), where αp = P (Cp) (p = 1, 2) are the
probabilities of each class.
Fitting the MOG model: We use the Maximum Likelihood (ML) crite-
rion to fit the model. Since it is difficult to obtain a closed form of the like-
lihood for a MOG model, a well-known solution is to use the Expectation-
Maximization (EM) algorithm. Optimal threshold selection: Once the
MOG model is fitted to the available data we need to determine the op-
timal threshold h to classify samples as belonging to C1 (x < h) or C2

(x ≥ h). Our objective is to choose h such that the error of classifica-
tion is minimized. It is easy to show that such a value of h must satisfy

α1Φ
(
h−µ1

σ1

)
= α2Φ

(
h−µ2

σ2

)
, which can be explicitly solved.

Differential expression analysis: NEG samples were compared to BCR/
ABL samples applying a Welch t-test for equality of the mean expression
levels in the two groups in order to obtain the differential expression p-value
for each gene.

3 Results

For ALL dataset, after 151 iterations the MOG model converged to an
optimal intensity threshold (OIT) value of 4.17 on a log2 scale (Figure 1).
This value is clearly lower than the 6.64 arbitrary intensity threshold (AIT)
used by Scholtens and Heydebreck. Table 1 shows how the selection of the
threshold affects to the number of significant genes (pval < 0.05) discarded
by the filtering process. Using an arbitrary threshold set up at 6.64 the
total number of discarded significant genes is 101, which represents the
61.6% of significant genes of the whole dataset. On the other hand, using
our optimal threshold at 4.17 determined by the MOG model, the total
number of discarded significant genes is 37 which represents the 22.6% of
significant genes of the whole dataset. Clearly our method increases the
number of significant genes not discarded by the filtering process.
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FIGURE 1. Gaussian mix model of the ALL data.

TABLE 1. Discarded genes depending on the selected threshold.

#Genes % Genes #Genes %Genes
pval < 0.05 pval < 0.05

Total 12625 100% 164 100%

Discarded with AIT (h = 6.64) 10231 81% 101 61.6%
Discarded with OIT (h = 4.17) 8599 68.1% 37 22.6%

4 Conclusions

A new method for the automatic selection of a threshold for filtering genes
in microarray datasets has been proposed and compared to classical filtering
techniques. Our experimental results on the ALL dataset demonstrates the
advantage of using the proposed technique.

Acknowledgments: This work has been in part supported by the MINCYT-
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versity of Vic under the grants R0904 and R0901.
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1 Introduction

The present work is concerned with the evaluation of non-ruin probabilities
for a two-dimensional risk process. The extension to multivariate cases is
rather simple. The model is a discrete-time process with independent claim
increments. Our model is a variant of the multivariate model studied by
Picard et al. (2003) and is an extension of the univariate model investigated
by Castañer et al. (2011).
Let {U1(t), U2(t)} be the bivariate surplus process for the two risks. Fol-
lowing e.g. Cai and Li (2007), we consider three possible definitions.
(i) Ruin occurs at time Tor as soon as one of the two surpluses becomes
negative. Thus, Tor = min(T1, T2) where Ti = inf{t ≥ 1 : Ui(t) < 0} is the
ruin time for risk i.
(ii) Ruin occurs at time Tand when the two surpluses become negative, not
necessarily at the same time. Thus, Tand = max(T1, T2).
(iii) Ruin occurs at time Tsim when the two surpluses become negative
simultaneously, i.e. at the same time. Thus, Tsim = inf{t ≥ 1 : U1(t) <
0 and U2(t) < 0}.
Our main purpose is to derive, for these three definitions of ruin, a simple
formula that enables us to calculate survival probabilities over a finite-time
horizon.
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2 A discrete-time bivariate risk model

The risk process is a discrete-time model for two dependent risks, labelled
1 and 2. Let t ∈ N = {0, 1, . . .} be the time scale. The initial reserves are
u1 and u2. During each period (t − 1, t], t ≥ 1, the company receives a
total premium income of c1,t for risk 1 and c2,t for risk 2. These premiums
are collected at the beginning of the period, i.e. at time (t− 1)+, as often
(other cases might be considered).
The total claim amounts during (t − 1, t], t ≥ 1, are non-negative random
variables X1,t for risk 1 and X2,t for risk 2. These amounts are registered
at the end of the period, i.e. at time t. Claim amounts have any continu-
ous distribution, possibly time-dependent, but with also an atom at 0 to
allow the possibility of no claim. The two risk processes have independent
increments, i.e. the random vectors (X1,t, X2,t), t ≥ 1, are independent.
For each risk i = 1, 2, during the first t periods, the aggregate premiums
with the initial reserves are

hi(t) = ui + ci,1 + . . .+ ci,t,

and the aggregate claim amounts to be covered are

Si(t) =

t∑
j=1

Xi,j , t ≥ 1.

Let Ft(s1, s2) denote the joint distribution function of [S1(t), S2(t)]. We
recall that, for instance, Ft(∞, 0) = P [S2(t) = 0] > 0 by hypothesis. The
two surpluses Ui(t) are then given by

Ui(t) = hi(t)− Si(t), t ≥ 1.

We are going to propose a method to evaluate the non-ruin probabilities
over any finite horizon, for the three definitions of ruin indicated in the
introduction. The key case will be concerned with the definition (i).

Finite-time survival probabilities. Consider any time t ≥ 1 and define

φor(t, x1, x2) = P [Tor > t, U1(t) ≥ x1, U2(t) ≥ x2].

This is the probability that ruin for each risk does not occur until t and
the two surpluses at t are at least equal to x1 and x2. By construction,
0 ≤ x1 ≤ h1(t), 0 ≤ x2 ≤ h2(t). Note also that

φor(t, 0, 0) ≡ φor(t) = P (Tor > t) = P (T1 > t and T2 > t).



Castañer et al. 35

Theorem 1 (Proposition) For the definition (i),

φor(t, x1, x2) = Ft(0, 0) +

∫ h1(t)−x1

w1=0

b(w1, 0)Ft[h1(t)− x1 − w1, 0] dw1

+

∫ h2(t)−x2

w2=0

b(0, w2)Ft[0, h2(t)− x2 − w2] dw2

+

∫ h1(t)−x1

w1=0

∫ h2(t)−x2

w2=0

b(w1, w2)Ft[h1(t)− x1 − w1, h2(t)− x2 − w2]dw1dw2,

where b(w1, w2) is a real function satisfying the equations

0 =

∫ s1

w1=0

b(s1 − w1, 0) dFv(s1,0)(w1, 0), s1 > 0,

0 =

∫ s2

w2=0

b(0, s2 − w2) dFv(0,s2)(0, w2), s2 > 0,

0 =

∫ s1

w1=0

∫ s2

w2=0

b(s1 − w1, s2 − w2) dFv(s1,s2)(w1, w2), s1, s2 > 0.

being v(s1, s2) a family of integers, for any non-negative reals s1, s2 defined
as follows. If s1 ≤ h1(1) and s2 ≤ h2(1), then v(s1, s2) = 0; otherwise, put

v(s1, s2) = sup{t ≥ 1 : h1(t) < s1 or h2(t) < s2}.

The marginal survival probabilities are easily deduced. For instance, to
obtain φ1(t,X1) = P (T1 > t, U1(t) ≥ x1), it suffices to put above x2 = 0
and X2,t = 0 a.s. for all t. So, for each risk i = 1, 2, let Fi,t(s) be the
distribution function of Si(t), and define vi(s) = 0 if s ≤ ui, otherwise

vi(s) = sup{t ∈ N : hi(t) < si}.

We then get the result that can be found in Castañer et al. (2011).
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Abstract: The peaks over thresholds method is used for estimating high quan-
tiles of distributions. The main goal is select the point from which the generalized
Pareto distribution (GPD) may be used. Here we are interested in this problem
when the tail distribution has compact support, as happens in hydrology and
other environmental sciences.
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1 Introduction

The generalized Pareto distribution (GPD) is closely related to the ex-
treme values theory. Since Pickands (1975) is well known that the residual
distribution of any random variable follows approximately a GPD. The
cumulative distribution function for the GPD is given by

F (x) = 1− (1 + ξx/ψ)−1/ξ (1)

where ψ > 0 and ξ are scale and shape parameters. For ξ > 0 the range of
x is x > 0 and the GPD is the Pareto distribution. For ξ > 0 the range of
x is 0 < x < −ψ/ξ; then the GPD have bounded support. The limit case
ξ = 0 corresponds to the exponential distribution.
Castillo, Daoudi and Lockhart (2011) have developed new methods to dis-
tinguish between polynomial and exponential tails of a distribution. In this
work the applicability of the above methods to distinguish between tails
with exponential decrease and tails with finite support is studied. This al-
lows us to distinguish between tails that behave asymptotically as GPD
with ξ < 0 and ξ = 0. These distributions have been used to model ex-
ceedances in fields such as hydrology, see Castillo and Hadi (1997).

2 The residual coefficient of variation

The coefficient of variation (CV) of a GPD plays an important role in this
work. It determines the behaviour of the likelihood function, see Castillo
and Daoudi (2009), and a constant residual CV characterizes the GPD, see
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Gupta and Kirmani (2000).
The CV of the residual distribution for a GPD from a threshold u takes
the following form

CV (u) =
√

1/(1− 2ξ), (2)

which is always defined for the case of finite variance (ξ < 0.5) in particular
when there are compact support (the case ξ < 0), it takes values smaller
than 1. In the extreme case ξ = 0 we have that CV is exactly 1.
The methods of Castillo, Daoudi and Lockhart (2011) are based on the
study of the process that assigns each threshold the coefficient of variation
of the residual distribution.
Given that this value remains constant for any residual distribution from
a threshold u, we can make the graphic analysis of a sample of data drawn
for each threshold value of CV (u), so if there is a trend around a constant
value smaller than 1 may be thought to follow the distribution of these
data is compactly supported. This chart is called CV-plot.
We have applied the graphics methods and we have made different contrasts
on data from Bilbao waves, see Castillo and Hadi (1997), and we have
compared our results with theirs. Figure 1 shows the CV-plot of these data
set having first subtracted the value 7, of the initial threshold. All graphics
have been made ââin R language, see R Development Core Team (2010).

3 The mixture of distributions

In this work we study the mixture of GDP with finite support, which is
also a distribution with finite support, but with a much larger coefficient
of variation of the distributions involved in the mixture.
Using the parametritzation β = −1/ξ > 0, σ = −ψ/ξ, the probability
density function of the GPD with compact support is

p(x;β, σ) = βσ−1(1− x/σ)β−1, (3)

for 0 < x < σ, therefore, the mixture of GPD with finite support takes the
following form

f(x) = λp1(x) + (1− λ)p2(x) (4)

where pi(x)=p(x; βi, σi).
Given λ, σ1 and σ2, taking β1=β2= β from the following expression

β =
−σ2

1λ+ 4σ1λσ2 − 4σ1λ
2σ2 + 2σ2

2λ
2 − 3σ2

2λ+ 2σ2
1λ+ σ2

2

λ(2σ1λσ2 − σ2
2λ+ σ2

1 − 2σ1σ2 + σ2
2 − σ2

1λ)
(5)

gives a mixture distribution with CV(0)=1. Hence, the samples from the
corresponding distribution looks like and exponential distribution and we
face the problem of select the threshold from which the residual distribu-
tion belongs to GPD. A test based on the CV could accept a mixture as
exponential, while our tests based on different thresholds, are able to detect
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FIGURE 1. In left CV-plot from Bilbao waves. In right theoretical CV-plot for
different mixtures.

cases as we have just outlined.
Figure 1 shows the theoretical CV-plot of three GPD mixtures with com-
pact support; parameters given by the Table 1, which shows also the CV
of the mixture and the two GPD appearing in it.

TABLE 1. Parameters selected to represent CV-plot.

λ β1 σ1 β2 σ2 CV(0) CV1 (0) CV2 (0)
0.9 12.76 0.7 8.53 1 1 0.93 0.9
0.6 1.92 0.3 2 1 1 0.70 0.707
0.45 1.69 0.1 0.5 1 1 0.94 0.45
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Abstract: Large sample statistical analysis of threshold autoregressive (TAR)
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is white. In this paper, we consider a model, driven by Gaussian colored noise
with geometric correlation tail and derive a complete characterization of the
asymptotic distribution for the Bayes estimator of the threshold parameter.
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1 Introduction

Let (Xj) be the sequence generated by the recursion

Xj =
(
ρ+1{Xj−1≥θ} + ρ−1{Xj−1<θ}

)
Xj−1 + εj , j ≥ 1 (1)

where (εj) is a random process with known distribution, ρ+ and ρ− are
known constants and θ is the unknown threshold parameter to be estimated
from the sample Xn := (X1, ..., Xn). The equation (1) is a basic instance of
the threshold autoregression (TAR) models, which play a considerable role
in the theory and practice of time series. This type of models have been
studied by statisticians for already more than three decades, producing
interesting theory and finding many important applications, some of which
can be traced in the early and more recent surveys Tong (1983), Tong
(2011), Tsay (1989), Hansen (2011), Chan and Kutoyants (2010).
When it comes to the asymptotic analysis of the estimators, the standard
conditions imposed on the models such as (1) is strong ergodicity of the
observed process (Xj) and independence of εj ’s. Departure from these as-
sumptions often poses challenging problems. While the former assumption
has been relaxed by a number of authors Pham et al (1991), Caner and
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Hansen (2001), Liu et al (2011) the independence assumption of the driving
noise sequence has not yet been addressed.
As we shall shortly see, in the dependent case the problem falls into the
framework of statistical inference of hidden Markov models (HMM), where
the driving noise plays the role of the hidden signal (see Ch. 10-12 in
Cappe et al (2005) and the references therein). However, most of the HMM
literature deals with locally asymptotically normal (LAN) experiments and,
to the best of our knowledge, non-LAN models with partial observations
have not yet been studied systematically.
In this paper, we consider the model (1) in which (εj) is a sequence with ge-
ometrically decaying correlation. More precisely, let X = (Xj) be generated
by the recursion

Xj =
(
ρ+1{Xj−1≥θ} + ρ−1{Xj−1<θ}

)
Xj−1 + ξj−1 + εj , (2)

subject to X0 ∼ N(0, 1), where ρ := |ρ+| ∨ |ρ−| < 1 and the unknown
parameter θ takes values in an open bounded subset of the real line Θ.
We shall consider the problem with discontinuous drift function f(x, θ) :=(
ρ+1{x≥θ}+ρ−1{x<θ}

)
x, and thus assume ρ+ 6= ρ− and 0 6∈ Θ. The driving

noises (εj) and (ξj) are independent: the white noise component (εj) is a
sequence of i.i.d. N(0, 1) random variables and the colored noise (ξj) is the
Gaussian process, generated by the linear recursion

ξj = aξj−1 + ζj , j ≥ 1, (3)

where (ζj) are i.i.d. N(0, 1) random variables and a is a known constant
|a| < 1, controlling the bandwidth of the noise.
As we shall see below, the threshold θ can be estimated at the rate of n
and hence the asymptotic analysis of the estimators for the other parame-
ters, such as ρ+, ρ− and a, can be essentially carried out within the LAN
framework (see Chan (1993)).
The recursions (2) and (3) form a conditionally Gaussian system, which
means that the conditional law of ξn given Xn is Gaussian, and by Theorem
13.5 in Liptser and Shiryaev (2001)

Xj = f(Xj−1, θ) + ξ̂j−1(θ) +
√

1 + γε̂j , (4)

where (ε̂j) is the innovation sequence of i.i.d. N(0, 1) random variables.

The process ξ̂j(θ) := Eθ
(
ξj |FXj

)
satisfies the Kalman filter equation

ξ̂j(θ) = aξ̂j−1(θ) +
aγ

1 + γ

(
Xj − f(Xj−1, θ)− ξ̂j−1(θ)

)
, (5)

subject to ξ̂0 = 0, where γ := Eθ
(
ξj(θ)− ξ̂j

)2
= Eθξ

2
0 is the unique positive

root of

γ = a2γ + 1− a2γ2

1 + γ
.
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The the innovation representation (4) implies that the likelihood of the
data Xn is given by

Ln(Xn; θ) =
1√
2π

exp
(
− 1

2
X2

0

)
×(

1√
2π(1 + γ)

)n
exp

−1

2

1

1 + γ

n∑
j=1

(
Xj − f(Xj−1, θ)− ξ̂j−1(θ)

)2

 .

The likelihood function is discontinuous in θ and hence we are faced with an
irregular statistical experiment. In such problems, the maximum likelihood
estimator is often asymptotically inferior to the Bayes estimator θ̃n and the
latter is typically efficient for arbitrary positive priors in the asymptotic
minimax sense (see Theorem 9.1, Ibragimov and Hasminskii (1981)). Since
the likelihood function is piecewise constant in θ and has at most n jumps at
{X0, ..., Xn−1}, the Bayes estimator for the problem at hand has relatively
low computational complexity.

2 The main result

The main result of the presented paper Chigansky et al (2011) is the fol-
lowing characterization of the asymptotic distribution of the sequence of
Bayes estimators:

Theorem 1 Let (θ̃n) be the sequence of the Bayes estimators with respect
to the quadratic loss function and a prior with continuous positive density
π. Then for any continuous function φ with at most polynomial growth

lim
n
Eθ0φ

(
n
(
θ̃n − θ0

))
= Eθ0φ(ũ),

uniformly on compacts from Θ, where

ũ =

∫
R
uZ(u)du∫

R
Z(u)du

and lnZ(u), u ∈ R is the following two sided compound Poisson process:

lnZ(u) =


∑Π+(u)
j=1

(
βε+

j − 1
2β

2
)

u ≥ 0

∑Π−(|u|)
j=1

(
βε−j − 1

2β
2
)

u < 0

(6)

Here Π+, Π− are i.i.d Poisson processes with the intensity

$ =

∫
R

p(θ0, y; θ0)dy,
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p(x, y; θ0) is the unique invariant probability density of the Markov process
(Xj , ξj) under Pθ0 ,

(
ε±j
)

are i.i.d. N(0, 1) random variables, independent

of Π+ and Π− and

β2 =

(
θ0(ρ+ − ρ−)√

1 + γ

)2
1 +

( aγ

1 + γ

)2 ∞∑
j=0

( a

1 + γ

)2j

 =

θ2
0(ρ+ − ρ−)2 1 + γ3

(1 + γ)(1 + γ2)
.
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1 Departament de Matemàtica Econòmica, Financera i Actuarial, Universitat de
Barcelona
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Abstract: In this work we analyse goodness-of-prediction aspects of distance-
based logistic regression in the framework of credit risk, concerning the depen-
dence of predictions on the cut-off point, as shown in the ROC curve. We illustrate
these analyses with a real credit risk portfolio. We use our R package, dbstats, in
computations.
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1 Empirical analysis

In Boj et al. (2011a) we apply Distance-Based (DB) logistic regression to
the Australian data set, using a cut-off point of 0.5. We obtain a competitive
result compared with other techniques such as discriminant analysis, ordi-
nary logistic regression, k nearest neighbor, and decision trees (see West,
2000). In the present contribution we study the goodness-of-prediction of
the DB logistic model for different cut-off points.
The credit scoring data set concerns credit card applications, http://archive.
ics.uci.edu/ml/datasets/Statlog +(Australian+Credit+Approval). Data are
quite balanced, with 307 good and 383 bad credit risks, the set of predic-
tors consisting of six continuous and eight categorical nominal variables.
We calculate the predictor distance matrix, D2, with Gower’s similarity
index. We fit the model with the dbstats package for R (Boj et al., 2011b):

dbglm.D2(y, D2, family = binomial (link = "logit"), maxiter =

50, eps1 = 0.05, eps2 = 0.05, rel.gvar = 0.99)

We summarize in Table 1 the next quantities for different cut-off points:
“Good credit”, proportion of applicants that are creditworthy but are clas-
sified as a bad credit risk; “Bad credit”, proportion of applicants that are
not creditworthy but are incorrectly identified as creditworthy; “Overall”,
proportion of all applicants that are incorrectly classified; “Cost (0.144)”
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FIGURE 1. ROC curve of the Australian data set fitted with the DB logistic
regression.

and “Cost (0.249)”, error cost function of formula (13) in West (2000) for
π2 = 0.144 and 0.249 respectively. We obtain the minimums for “Overall”,
“Cost (0.144)” and “Cost (0.249)” in the cut-off points 0.49, 0.48 and 0.3.
Figure 1 gives the well known ROC curve for the DB logistic model. We
obtain that the cut-off must be 0.51 to maximize the K-S coefficient. Then,
we can consider that for this data set the cut-off of 0.5 is adequate.

Acknowledgments: Authors have partially been supported by the Span-
ish Ministerio de Educación y Ciencia under grant MTM2010-17323, and
by the Generalitat de Catalunya, AGAUR under grant 2009SGR970.
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TABLE 1. Probabilities and costs of the Australian data set fitted with the DB
logistic regression for different cut-off points.

Cut-off Good credit Bad credit Overall Cost (0.144) Cost (0.249)

0.05 0.478827 0.005222 0.215942 0.247207 0.224456
0.1 0.348534 0.005222 0.157971 0.194817 0.176993
0.15 0.260586 0.010444 0.121739 0.161661 0.152452
0.2 0.224756 0.010444 0.105797 0.143740 0.136246
0.25 0.179153 0.013055 0.086957 0.122738 0.119614
0.3 0.143322 0.020888 0.075362 0.111145 0.115617
0.35 0.133550 0.026110 0.073913 0.110860 0.119483
0.4 0.127036 0.036554 0.076812 0.117568 0.133595
0.41 0.120521 0.039164 0.075362 0.116097 0.134136
0.42 0.107492 0.041775 0.071014 0.110344 0.130647
0.43 0.100977 0.041775 0.068116 0.106125 0.126714
0.44 0.097720 0.041775 0.066667 0.104003 0.124737
0.45 0.097720 0.044386 0.068116 0.106481 0.128884
0.46 0.094463 0.044386 0.066667 0.104337 0.126882
0.47 0.091205 0.046997 0.066667 0.104624 0.128961
0.48 0.087948 0.046997 0.065217 0.102449 0.126928
0.49 0.081433 0.052219 0.065217 0.102837 0.130840
0.5 0.081433 0.054830 0.066667 0.105198 0.134801
0.51 0.081433 0.060052 0.069565 0.109879 0.142651
0.52 0.078176 0.060052 0.068116 0.107618 0.140516
0.53 0.071661 0.070496 0.071014 0.112128 0.151449
0.54 0.068404 0.073107 0.071014 0.112012 0.152963
0.55 0.065147 0.073107 0.069565 0.109653 0.150720
0.56 0.061889 0.075718 0.069565 0.109471 0.152151
0.57 0.061889 0.075718 0.069565 0.109471 0.152151
0.58 0.061889 0.078329 0.071014 0.111645 0.155810
0.59 0.061889 0.080940 0.072464 0.113807 0.159448
0.6 0.061889 0.083551 0.073913 0.115957 0.163065
0.65 0.045603 0.107050 0.079710 0.122046 0.182363
0.7 0.035831 0.127937 0.086957 0.129554 0.200771
0.75 0.029316 0.138381 0.089855 0.131444 0.207930
0.8 0.026059 0.180157 0.111594 0.156267 0.252096
0.85 0.019544 0.227154 0.134783 0.178450 0.294083
0.9 0.013029 0.292428 0.168116 0.206764 0.346924
0.95 0.000000 0.407311 0.226087 0.242592 0.419482
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Abstract: Walsh-Hadamard Tramsformation (WHT) (and WHT-based codes)
of digital random sequences is used widely in many computer science and data
transmission areas. In some cases, in order to enhance performance and to re-
strict memory resources as well, a truncated set of the WHT coefficients is used.
In this presentation we suggest a model for accuracy of reconstruction a binary
sequence from a truncated Walsh-Hadamard series, and analyze possible prob-
abilistic models which could be used in the framework of suggested conceptual
model. We consider the number of erroneously reconstructed bits as the accuracy
measure.
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1 Introduction

Walsh-Hadamard tramsformation (WHT) (and WHT-based codes) of dig-
ital random sequences is used widely in many computer science and data
transmission areas, for example, for image data transmission (H. Y. Jung,
R. Prost, T. Y. Choi (1997)). In some cases, in order to enhance perfor-
mance and to restrict memory resources as well, many system’s designers
try to restrict the number of the WHT coefficients used as much as pos-
sible. A question is to define a model in order to estimate and predict
reconstruction accuracy from this truncated WH series. We will consider
the number of erroneously reconstructed bits as the accuracy measure. In
contrast to well-known mean square metric used for estimation of Fourier
transformation-based reconstruction accuracy, which is an L2 metric, we
consider an L1 one, as it equal to the Hamming distance between origi-
nal and reconstructed sequence. One of principal challenges in the using
of truncated Walsh-Hadamard series to reconstruct a binary sequence is
necessary to apply a threshold rule in the reconstruction process as the
values of truncated Walsh-Hadamard (WH) series have not to belong to
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the GF (2) field. Therefore, we must decide for each estimation of original
value, computed by the truncated WH series, to what of two quantiza-
tion level (0 or 1) the estimated value belongs. In contrast to traditional
signal quantization task, where there are some plausible reasons to con-
sider the ”‘quantization noise” as a random normal process independent
of the reconstructed signal, in our case there is not any explicit reasons
for such conclusion. In this presentation we suggest a model for accuracy
of reconstruction a binary sequence from a truncated WH series. We ana-
lyze possible probabilistic models which could be used in the framework of
suggested conceptual model.

2 Waslh-Hadamard Spectrum of a binary sequence

The Walsh-Hadamard transformation is based on a complete set of orthog-
onal functions. That is, if b = (b1, b2, . . . , bm) is a binary file (sequence),
then n-character encoding of the file b can be represented as cT = WT b,
where c = (c1, . . . , cn), c = 2k, k is an integer, is the Walsh-Hadamard
coefficients. These orthogonal functions use only the values 1 or −1. More
detailed, the spectral coefficients of WHT are ch = (1/n)

∑n−1
i=0 biW (h, i),

and the inverse transform is bi =
∑n−1
h=0 ciW (h, i).

Let b = b0, b2 . . . , bn−1 be an uncorrelated (”‘white-noise’-like”) sequence
of n bits, where n is a power of two integer, and, due to the uncorrela-
tion, Prob(bi = 1)=Prob(bi = 0)=1/2. Note, that these settings fit sev-
eral applications for example, when a secure data sequence is produced by
pseudo-random generator, for example as in S.Dolev and S.Frenkel (2010).
Let us we use for the original sequence reconstruction only l � n WHT
coefficients c1, . . . , cl. In this case, we can estimate each bit bi of the ran-
domized sequence b by WHT mentioned above as b̂i = b̃i + ei(l), where

b̃i =
∑l
j=0 cjW (j, i), and ei(l) =

∑n−1
q=l+1 cqW (q, i).

Our goal is to compute a metric that captures the difference of the bits bi
and b̃i. The result may depend on the coefficients we choose for reconstruc-
tion, in dependency on the application requirements. Each coefficient ci is
transmitted/stored with its index i in the WHT matrix, namely the pairs
(ci; i) are stored as the representation of the data. We may consider vari-
ous ways of the l choice, for example, either random choice of l coefficients
(which can be reasonable, say, for distributed communication channels), or
using first greatest l coefficients.

3 WHT coefficients choice

Inverse WHT with partial sums may result in non-binary values, that dif-
fer from binary domain of original sequence. Therefore, the reconstruction
metric should be considered along with a decision rule mapping each value
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to a corresponding binary value. We suggest to round the values to the
closest value in the field during the decoding process.
We consider a probabilistic model that takes into account the rounding and
the mentioned above accuracy metric requirement.
The reconstructed estimation of a bit bi = round(b̂i), where b̂i is the es-
timation of the i-th value before rounding, computed by a partial sum of
inverse WHT, is determined by the following random events:
e0 : (bi = 0), e1 : (bi = 1), that is the bit bi of randomized file F is 0 (event
e0) or 1 (event e1), vi0 : b̃i ≤ 1/2, vi1 : b̃i ≥ 1/2, (defined on the space of
the rational values b̃i).
Let Prerr=0(i) be the probability that the actually zero bit bi was erro-
neously reconstructed as bi = 1, and Prerr=1(i) be the probability that the
bit bi = 1 was erroneously reconstructed as bi = 0.
Both the probabilities Prob(vi0), Prob(vi1) are the probabilities of the
partial sums mentioned above that have a value that can be estimated
to be close to 1/2. Formally, in order to estimate error of the sequence
reconstruction by truncated number of coefficients we should know both
joint and marginal distributions both the sum of l terms of the WHT
Sl =

∑l
j=0 cjW (j, i)) and sum of residue SR =

∑N
j=n−l+1 cjW (j, i). Then,

taking into account that the sum Sl + SR is an exact value bi = 0 or
1, we could compute the error probability as Prob(Sl ≥ Tr/Sl + SR =
0) + Prob(Sl ≤ Tr/Sl + SR = 1). In accordance with Theorem 6.4 in P.
A. Morettin (1981), WHT coefficients are distributed (asymptotically) as
some independent normal random values with zero mean and dispersion
of n × f(i), where i is the WHT coefficient index and f(i) is the (dyadic)
spectral density of b.
If we deal with random chosen of l � n coefficients, we may use an as-
sumption about independence of the partial sums from the complete one.
In this case we use the following way to estimate the error.
Let l be large enough for using an asymptotic approach for the normal
approximation of the WHT sums. Then, taking into account that the WHT
coefficients are orthogonal, and that asymptotic distribution of the Inverse
WHT sums is also normal, we can get that the error probability can be
expressed as a probability that a normal distributed random variable v,
taking the values in accordance with the events vi0,vi1, falls into an interval
[a, b], that is:

Prob(a ≤ v ≤ b) = Φ((b− E(v))/sv)− Φ((a− E(v))/sv) (1)

Prob(vio) = Prob(bmin ≤ v ≤ 1/2) (2)

where sv = sqrt(V ar(v))

Prob(vi1) = Prob(1/2 ≤ v ≤ bmax) (3)

where bmin, bmax are lower and upper bounds on v.
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FIGURE 1. Fractions of correctly reconstructed bits (for a 2K bit file) vrs. number
of coefficients. The solid line is the theoretical curve (Equations (1)-(3)), the
dashed line is the experimental results.

Standard intervals based on ± σ can be used for bmin and bmax. Then we
compute the number of correct reconstructed bits as n(

∑n
i=0 Prerr(i)).

Thus, using Equations (1) to (3) we may compute the probability of erro-
neous reconstruction, which depends on the number of transmitted coef-
ficients l, the relationship between l and the length of the file n, and the
coefficients values (i.e., the value of the sum

∑l
j=0 |cj |).

4 Most significant coefficients

Let us consider Walsh-Hadamard series truncation via a choice of most
significant coefficients. The most simple way to estimate significance of a
coefficients subset is a choice of l largest (over absolute values) coefficients.
In this case assumption about independency of partial and total sums is not
true totally. First, each next largest coefficients depends on the previously
chosen coefficients, secondly, as the sum for bi is the sum of the largest
coefficients, in general there is no reason to suggest that the sum of the
truncated Inverse WHT has insignificant influence on the full Inverse WHT
sum. Besides, there is an ambiguity in the definition of choice of l largest
(over absolute values) coefficients if there exist pair of coefficients ci, cj ,
such that abs(ci) = abs(cj). Indeed, there is a question in this case, what of
the two coefficients should be included in the l-set. It is possible to use an
identification of all WHT coefficients indexes that contribute significantly
to the binary sequences energy, that is the sum of the sequence of Boolean
ones. Following A. C. Gilbert et al.(2002) there is a polynomial-complex
algorithm of the coefficients choice.
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Thus, in both ways we keep the coefficients in accordance with the mean
square (energy) criterion, but we use an L1 metric in order to approve
them. This is a consequence of the fact, that the result of computations of
the Inverse truncated WHT are perform in a real domain whereas the esti-
mation metric is formed for the Hamming distance of d(x; y) = |b− b̃| that
is an object from GF(2). Further, if we consider ordered WHT coefficients
as an order statistic, we may reduce our problem of the original file recon-
struction by l � n coefficients to known method of a linear combination
distribution estimation (R. Arellano-Valle and A. Genton (2007)).

Acknowledgments: The first author has partially been supported by the
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been supported by the Russian Foundation for Basic Research under grant
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Abstract: This article gives a construction of a weighted mean which has good
robust properties (qualitative robustness, bounded influence function, high break-
down points). This method can be applied to some other statistical problems: the
estimation of shape parameter at stable, Student- and Weibull-family.
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1 Introduction

One of the simplest statistical problems is the location-scale problem on
the real line. Given a data set {x1, x2, . . . , xn}, we are required to specify
two numbers Tn and sn, together with upper and lower bounds, which
describe the location and the scale, respectively, of the data with given
probability. In spite of its apparent simplicity, the problem has as yet no
satisfactory solution. Most approaches including robust ones are based on a
central model G0 which is assumed to be true or to contain the truth within
some small metric ball. Data rarely come accompanied by a central model
and when analyzing large numbers of data sets in an automatic manner,
such an approach is unwarranted. The estimation of the parameters is a
well discussed problem. Usually, the location parameter µ and the scale
parameter σ are estimated by the maximum likelihood (ML) estimators µ̂
and σ̂, respectively, which are asymptotically the best.
Our location and scale problem is the following: Let us assume that ξ =
ση + µ, where the distribution of the random variable η is G0(x). Given
the sample ξ1, ξ2, . . . , ξn and the type of distribution G0, the distribution of

the random variable ξi is G0

(
x− µ
σ

)
with estimate the location (µ ∈ R)

and scale (σ > 0) parameters from the sample.
We can solve this statistical problem, e.g., by the maximum likelihood or
by the method of moments. However, if g0 is the density function and the
derivative of − ln g0 is not bounded then the maximum likelihood estima-
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tion is very sensitive to outliers in the sample and the moments are also
sensitive.
The system of equations for the parameters, using Huber’s (1981) notations,

is given by

n∑
i=1

ψ

(
ξi − µ
σ

)
= 0,

n∑
i=1

χ

(
ξi − µ
σ

)
= 0,

where ψ(x) = G0(x)− 0.5, χ(x) = ψ2(x)− 1

12
.

Therefore,
n∑
i=1

(
G0

(
ξi − Tn
sn

)
− 1

2

)
= 0,

n∑
i=1

((
G0

(
ξi − Tn
sn

)
− 1

2

)2

− 1

12

)
= 0. (1.1)

If the solutions Tn and sn of this system of equations exist, Tn and sn
are called the probability integral transformation (PT)-estimators of the
location and the scale parameters, respectively.

2 Main results, numerical algorithm

Theorem 1 Assume that G0 is differentiable, strictly monotone increasing
and G0(0) = 0.5, then Tn and sn are well defined, that is, (1.1) has a unique
solution with sn > 0.

Theorem 2 The two dimensional joint distribution of (Tn, sn), under the
conditions of Theorem 2.1, converges to a normal one:

√
n ((Tn, sn)− (µ, σ))

d−→N(0,Σ),

where the covariance matrix Σ is given by Σ = C−1S[C−1]T . The matrices
C and S are given by

C =
E

(
∂

∂µ
ψ

(
ξ − µ
σ

))
E

(
∂

∂σ
ψ

(
ξ − µ
σ

))
E

(
∂

∂µ
χ

(
ξ − µ
σ

))
E

(
∂

∂σ
χ

(
ξ − µ
σ

)),
and

S =
E(ψ2(η)) E(ψ(η)χ(η))

E(ψ(η)χ(η)) E(χ2(η))
=

1

12
0

0
1

180

,

where η ∼ G0.
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Theorem 3 The (PT)-estimators, under the conditions of Theorem 2.1,
are B-robust, V-robust, qualitatively robust and their breakdown points

ε∗(Tn) =
δ

1 + δ
= 0.5, where δ = min

{
−ψ(−∞)

ψ(+∞)
,−ψ(+∞)

ψ(−∞)

}
,

and

ε∗(sn) =
−χ(0)

χ(−∞)− χ(0)
=

1

3
,

We propose an algorithm for estimating the location and the scale simul-
taneously. Let the general system be

n∑
i=1

ψ

(
ξi − T
s

)
= 0,

n∑
i=1

χ

(
ξi − T
s

)
= 0,

where the functions ψ and χ are given by (1.1).
Step 1: Preestimation of location and scale by median (med) and median
absolute deviation (MAD), i.e.,

Tn
(0) = med{ξi} and sn

(0) = MAD{ξi}.

Step 2: Estimation of location by

Tn
(m+1) = Tn

(m) +

s
(m)
n

n∑
i=1

ψ

(
ξi − Tn(m)

s
(m)
n

)
n

.

Step 3: Estimation of scale by

[sn
(m+1)]2 =

12

(n− 1)

n∑
i=1

ψb
2

(
ξi − Tn(m+1)

sn(m)

)
[sn

(m)]2.

Step 4: Stop or goto step 2.

3 Estimators of the parameters of t-distribution

Consider the standard t-distribution written in general form of the density
function

fa(x) =

Γ

(
a+ 1

2

)
√
aπΓ

(a
2

) (1 +
x2

a

)−a+ 1

2
,

where the shape parameter a is a positive real number and denote its
probability distribution function Fa(x).
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PROBLEM: Given a sample ξ1, ξ2, . . . , ξn with common probability dis-

tribution function Fa

(
x− T
s

)
. Estimate the parameters T, s, a by the

sample.
The statistical analysis of classical methods (maximum likelihood estima-
tion, method of moments) was performed by Cramer. Since the fourth
moment does not exist for a ≤ 4, these methods lead to an estimate of a
which is greater than 4. This is a subtantial defect. Moreover, the variance
of the estimator of a is infinite if a ≤ 8. Because our major interest is in
small a we turn to the use of robust estimators.
Let

β1(a) =

∫ +∞

−∞
(F1(x)− 0.5)2dFa(x),

β∞(a) =

∫ +∞

−∞
(Φ(x)− 0.5)2dFa(x),

where Φ(x) is the standard normal distribution function.
By our theory of M-estimators we can give the following systems of equa-
tions

n∑
i=1

F1

(
ξi − T1

s1(a)

)
=
n

2
,

n∑
i=1

(
F1

(
ξi − T1

s1(a)

)
− 0.5

)2

= nβ1(a),

n∑
i=1

Φ

(
ξi − T∞
s∞(a)

)
=
n

2
,

n∑
i=1

(
Φ

(
ξi − T∞
s∞(a)

)
− 0.5

)2

= nβ∞(a).

The function d(a) = s1(a) − s∞(a) is stricly monotone increasing and
d(a) = 0 iff a is the shape parameter of the distribution of the sample
elements.
We can give an iterative algorithm for estimators of parameters T, s, a with
the cut-and-try method and the above mentioned recursive algorithm.

Acknowledgments: This research has benn supported by TAMOP- 4.2.1.B-
10/2/KONV-2010-0001 project with support by the European Union, co-
finance by the European Social Fund.
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Abstract: We consider a discrete-time semi-Markov process with finite state
space and an observation censored at a fixed time. Some results on the non-
parametric empirical estimation of the stationary distribution of the embedded
Markov chain and the mean sojourn times are given. We propose two empirical
estimators for the stationary distribution of the semi-Markov process and study
their asymptotic properties, as strong consistency and asymptotic normality, as
the length of the observation tends to infinity. Finally, a numerical application is
presented to illustrate the comparison of the two estimators.

Keywords: Semi-Markov Chains; Nonparametric Estimation; Stationary Distri-
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1 Introduction and Preliminaries

Semi-Markov chains are a class of discrete-time stochastic processes that
generalize Markov chains and discrete-time renewal processes. These pro-
cesses are very useful in stochastic modeling. A study on the semi-Markov
chains is given toward applications by Barbu and Limnios (2008).
Let Z := (Zk)k∈N be a semi-Markov chain with finite state space E. Let
(J ,S) := (Jn, Sn)n∈N be the corresponding homogeneous Markov renewal
chain, where J := (Jn)n∈N is the embedded Markov chain (EMC) of the
successive visited states with state space E and S := (Sn)n∈N are the jump
times with values in N. Also, we denote by Xn := Sn − Sn−1, n ∈ N∗, the
sojourn times in these states with values in N. Let us now define the jump
counting process of the jump times S, as N(k) = max{n ≥ 0 : Sn ≤ k}.
That is, the semi-Markov chain is defined as

Zk := JN(k), k ∈ N.

We denote by ν = (νi; i ∈ E) the stationary distribution of the EMC J
and by m := (mi; i ∈ E) the mean sojourn times of Z in each state. The
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stationary distribution π = (πi; i ∈ E) of the SMC Z is given by

πi :=
νimi∑

k∈E νkmk
.

From now on, we assume that the EMC J is irreducible with finite mean
sojourn times.
Let U := (Uk)k∈N be the sequence of the backward recurrence times, where
Uk := k − SN(k). The coupled process (Z,U) := (Zk, Uk)k∈N is a Markov
chain with values in E ×N. In our case, where S0 = 0, we get that U0 = 0.
Let R]

0 := (R](i, u)(j, v); (i, u)(j, v) ∈ (E×N)) be the fundamental matrix
of (Z,U) defined as

R]
0 := (Π] − P ] + I])−1 −Π],

where π] := (π](i, u); (i, u) ∈ E×N) and P ] := (P ](i, u)(j, v); (i, u), (j, v) ∈
E ×N) are the stationary distribution and the transition kernel of (Z,U),
respectively, Π] = 1>π] is the limiting matrix of the sequence (P ])n,
n ∈ N, 1 a column-array with all entries equal to 1, and I] equals to 1, if
i = j and u = v, and 0 otherwise.

2 Nonparametric Empirical Estimation

We observe a SMC in the interval [0,M ], where M ∈ N∗ a fixed censoring
time. The observation of the SMC Z censored at time M ∈ N∗ is defined

HM := {Zu; 0 ≤ u ≤M} := {J0, X1, J1, . . . , XN(M), JN(M), UM},

where UM := M − SN(M).
First, the empirical estimators ν̂(M) := (ν̂i(M); i ∈ E) and m̂(M) :=
(m̂i(M); i ∈ E), M ∈ N∗, for the stationary distribution ν of J and the
mean sojourn times are given as

ν̂i(M) :=
Ni(M)

N(M)
and m̂i(M) =

1

Ni(M)

Ni(M)∑
r=1

Xi,r,

where Ni(k) is the number of visits of Z to state i ∈ E up to time k, and
Xi,r the r-th sojourn time in state i ∈ E. Both estimators are proved to be
strongly consistent and asymptotically normally distributed, as M tends
to infinity.
Now, we propose two nonparametric empirical estimators for the station-
ary distribution of a semi-Markov chain and give their asymptotic prop-
erties. The empirical estimators π̃(M) := (π̃i(M); i ∈ E) and π̂(M) :=
(π̂i(M); i ∈ E) of the stationary distribution π of Z are defined as follows

π̃i(M) :=
1

M

M∑
k=1

1{Zk−1=i}, (1)
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π̂i(M) :=
ν̂i(M)m̂i(M)∑

k∈E ν̂k(M)m̂k(M)
. (2)

Limnios et al. (2005) have studied the properties of the second estimator
in continuous time case. Our main results follow.

Theorem 1 The proposed estimator (1) of the stationary distribution for
a SMC satisfies the following properties :

1. Strong consistency

max
i
|π̃i(M)− πi|

a.s.−−→ 0, M →∞.

2. Asymptotic normality

√
M(π̃i(M)− πi)

D−→ N (0, σ2
πi), M →∞,

where
σ2
πi = 2

∑
u,v≥0

π](i, u)R](i, u)(i, v)− πi(1− πi).

Theorem 2 The proposed estimator (2) of the stationary distribution for
a SMC satisfies the following properties :

1. Strong consistency

max
i
|π̂i(M)− πi|

a.s.−−→ 0, M →∞.

2. Asymptotic normality

√
M(π̂i(M)− πi)

D−→ N (0, σ2
πi), M →∞,

with σ2
πi as given in Theorem 1.

Finally, a numerical application on a three state semi-Markov system is
presented.
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Abstract: Nowadays there is a great collection of scientific evidence about
air pollution exposure assessment. Nevertheless, in a global community, little is
known about Moscow and Russian Federation in general. This information bias
occurs because the absolute majority of relevant studies have been published in
Russian language. This research presents several air pollution modeling methods
in application to Moscow data. Those methods are: kriging, land-use regression
and machine learning methods.
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1 Description of the study

Air pollution is an important problem for Moscow city and its surroundings.
Moscow is a busy city; it counts about 12 million inhabitants, and almost 4
million vehicles are registered in the area. Traffic is the main source of air
pollution, and thus Moscow has a strong necessity in monitoring, evaluation
and reduction of contamination burden.
This research presents several exposure assessment models. One of them
is geostatistical interpolation method, that is kriging. Simple and ordinary
kriging has been performed for GIS monitoring data. A land-user regression
model has also been developed, taking into consideration traffic density and
other land-use information.
Finally, a newly developed machine learning method called conformal pre-
dictors has been used (see Vovk and Gammerman and Shafer (2005)). By
its definition, a conformal predictor always provides valid estimates with
confidence, where the level of confidence is chosen. Such a predictor is very
flexible, because it can be constructed on the basis of almost any machine
learning algorithm. In this research, two regression conformal predictors
have been derived: one of them - on the basis of the interpolation model,
and another one - on the basis of the land-use model. Overall modeling
results have been compared and discussed.
All the data for this study has been kindly provided by “Mosecomonitor-
ing,” an environmental unit of the Government of Moscow.



62 Air pollution modeling for Moscow city

References

Gilbert, N.L., et al. (2005). Assessing Spatial Variability of Ambient Ni-
trogen Dioxide in Montreal, Canada, with a Land-Use Regression
Model. Journal of the Air & Waste Management Association, 55,
10591063.

Jerrett, M., et al. (2005). A review and evaluation of intraurban air pol-
lution exposure models. Journal of Exposure Analysis and Environ-
mental Epidemiology, 15, 185-204.

Vovk, V., Gammerman, A., Shafer, G. (2005). Algorithmic learning in a
random world. Springer.



Statistical and econometric practicum at the
Moscow School of Economics

E. Ivin1, A. Kurbatskiy1

1 Moscow School of Economics, Lomonosov Moscow State University

E-mail for correspondence: evg.ivin@gmail.com

Keywords: Air pollution; Land-use regression; Kriging; Machine learning.

Moscow School of Economics (MSE) is a joint project of Russian Academy
of Science (RAS) and Lomonosov Moscow State University (MSU), launched
in order to train and educate researchers who would further analyze and
solve the problems of Russia’s economy. The head of the School is Prof.
Nekipelov, A. D., Academician of RAS. MSE works as follows. The bache-
lors are taught in one stream (80 persons, 4 years), while the masters (50-
60 persons, 2 years) are divided into two programs: ”National and World’s
Economy” and ”Financial Strategies”. Moreover, there is also a doctorate
program called “Mathematical Methods in Economy.” General supervision
of these programs is realized by Prof. Polterovich, V.M., Academician of
RAS. The program ”National and World’s Economy” is carried out by
the chair of Economical Theory. The head of the chair is Prof. Glinkina,
S.P., and the deputy director is Prof. Golovnin, M.Yu., both are deputy
directors of the Institute of Economy of RAS. The program named “Fi-
nancial strategies” is run by the chair with the same name. The head of
the chair is Prof. Kvint, V.L., Academician of RAS, and the deputy head
is Prof. Alimuradov, M.K. Moscow School of Economics assigns a great
share of its educational programs to mathematics. All the mathematical
courses in bachelor, master and doctorate programs are executed by the
chair of Econometrics and Mathematical Methods in Economy. This chair
is directed by Prof. Aivazian, S.A., deputy director of CEMI RAS, and the
deputy head of the chair is Dr. Ivin, E.A.
When it comes to mathematical disciplines, the major accent is put onto
probability theory, statistics, econometrics and time series analysis. All of
these courses are accompanied by practical classes with computers. Two
practical courses are defined: “Data analysis with computers” (probability
theory and statistics) and “Practical work in econometrics and time series
analysis.” These courses are independent, because they not only accom-
pany the theoretical ones, but they are also aimed to solve unique prob-
lems. These tasks are directed to educate students how to solve economical
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and socio-economical problems in classical settings, and also to help stu-
dents cope with their own final projects. We will provide more information
regarding these specific tasks in our presentation, and here we will just
shortly mention their global features.
Within the framework of these courses, we study basic distribution laws
and the beginnings of the estimation theory, together with the analysis of
one or two sets, contingency tables, nonparametric methods, and begin-
nings of factor and dispersion analysis. Moreover, we teach various types
of regression analysis and prediction, including the choice of the appropri-
ate model and hypothesis testing. Then, we continue with the problems
of binary and multiple choice, systems of regression equations, systems of
simultaneous equations, dynamic models, classical time series problems,
distributed lags models, cointegration, ARCH and GARCH models, and
classical and modern models of financial markets.
As for mathematical software, we make use of Excel, EViews and Stata.
The data are taken from the state statistical databases, both Russian and
international. We also use regional data and the data from big enterprises.
Recently, due to broadening of collaboration between MSE and European
universities, we have become very interested in R statistical software. Thus,
we will be very thankful if your European colleagues could share their
scientific knowledge and practical experience with us.
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Abstract: A covariance function is the cornerstone geostatistical modeling tool.
It is well-known that covariance functions are similar to kernels in signal process-
ing. In geostatistics, a vast variety of models are developed under assumption that
a spatial process is a) Gaussian, b) second-order stationary. Thus the covariance
functions used for geostatistical modeling are functions only of distance between
spatial points. This research takes up a classical geostatistical technique, that is
ordinary kriging, and opposes it to a newly developed machine learning method,
that is ridge regression confidence machine. In the latter, kernels are introduced
via “kernel trick” technique. These kernels are of the same analytical form as the
corresponding covariance functions. Barcelona air pollution data has been used,
and R statistical software has been applied for practical computation.

Keywords: Kriging; Covariance function; Conformal predictor; Kernel trick.

1 Introduction

Covariance function in geostatistics is aimed to model spatial variability
of a factor of interest. As being tightly binder with variograms, covariance
functions are used in practice to approach empirical variograms for the data
with a proper variomodel. Also, they are used for prediction geostatistical
models as they help consider spatial dependence between observations. One
of the most widely used geostatistical methods, ordinary kriging, uses co-
variance functions to consider spatial features of data distribution.
Kernel trick is aimed to deal with high-dimensional, and thus computa-
tionally difficult, problems. This method consists in mapping the initial
input space into another Euclidian space, called feature space, where the
modeling is performed. The mapping is performed with the use of kernel
functions. A kernel function is used to express the dot product of the vec-
tors of feature space in terms of the input space. This approach has been
first suggested by V. Vapnik for support vector machines, but it has later
been implemented for other model types.
A recently developed method of conformal predictors can be successfully
used in geostatistics. A conformal predictor allows to obtain predictions
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with high confidence, and it is always valid. Its main strength is that it
can be developed upon almost any (not necessarily) regression algorithm,
as inheriting the predictive power of the latter, but always providing valid
predictions with high confidence. In application to geostatistics, a con-
formal prediction can be derived on top of classical ordinary kriging. An
existing regression conformal predictor called ridge regression confidence
machine (RRCM) (Vovk et. al (2005)) has been used in this research and
adjusted to meet kriging specification. It is noteworthy that this RRCM
specification does not require that data follows any specific distribution,
apart from being iid.
Kernels can be used for this newly derived confidence interpolation predic-
tor in the same manner as the covariance functions are used in ordinary
kriging. The space in geostatistical problems is not high-dimensional, as
it is based on only two parameters: longitude and latitude. Nevertheless,
(non-linear) variomodels help introduce spatial dependence between obser-
vations and thus more precisely adjust data distribution when fitting pre-
diction models. In the same way, (non-linear) kernels can be implemented
in regression conformal predictors, such as RRCM.

2 An example

To demonstrate, how kernels match widely used isotropic covariance func-
tions, the following example is provided. Gaussian covariance (correlation)
function is represented as:

C(h) = exp

(
−
(
h

σ

)2
)
, (1)

where h is a distance between points and σ is a scale parameter. It is a
direct analogue of the Gassian radial basis function, otherwise known as
RBF-kernel (Schölkopf and Smola (2002)):

K(x(1), x(2)) = exp−||x
(1) − x(2)||2

2a2
, (2)

where a is a scale parameter. Other covariance function can be used as
kernels for a geostatistical conformal predictor, too.

3 Practical computation

Apart from Gaussian, the following covariance functions have been taken
up and approached by kernels: exponential, spherical and Maérn. Barcelona
air pollution data has been used. This dataset has been kindly provided
by XVPCA of the Generalitat of Catalonia. R statistical software has been
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employed for computations. Kriging models have been fitted with the geoR
package (Ribeiro and Diggle (2001)), and RRCM models have been imple-
mented with the derivations of the PredictiveRegression package (Vovk et.
al (2009)).

Acknowledgments: Many thanks to Ilia Nouretdinov, PhD, and Prof.
Alex Gammerman, PhD, from the Royal Holloway University of London for
their incredibly valuable counseling on conformal predictors and, generally,
machine learning methods.
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1 Weakly stable distribution and generalized
convolution

There exists a very interesting and not completely characterized class of
weakly stable probability distributions µ ∈ P with the following property:

∀ a, b ∈ R ∃λ ∈ P Taµ ∗ Tbµ = µ ◦ λ

where Taµ(A) = µ(A/a) for every Borel set A when a 6= 0, T0µ = δ0, ◦ de-
notes multiplicative convolution and ? deneotes classical convolution (cor-
responding to the sum of two independent random elements). The measure
µ generates a binary operation ⊗µ called a weak generalized convolution.
One can prove that equivalently, µ is weakly stable if

∀ λ1, λ2 ∈ P ∃λ ∈ P µ ◦ λ1 ∗ µ ◦ λ2 = µ ◦ λ.

The most known examples are symmetric α -stable distributions (α ∈ (0, 2])
and uniform distribution on the unit sphere in Rn. ,

2 Random walks under the Kendall convolution

We construct discrete time Markov processes based on the weak generalized
convolution, i.e. such random walks that theirs increments are independent
and instead of summation of unit steps we take their cumulation in the
weak stability sense. Theorem about asymptotical properties such objects
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will be showed. As an example of constructed processes we present random
walk under the Kendall convolution having the following probability kernel:

δx ⊗µα δ1 = |x|απ2α + (1− |x|α)δ1,

for x ∈ [−1, 1] and α ∈ (0, 1] where π2α is the Pareto distribution with
the density 2αy−(2α+1)I[1,∞)(y). Considering the random walks under the
Kendall convolution we obtain new classes of heavy tailed distributions
containing the Pareto distribution π2α. We present basic properties of con-
structed random walks.
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McNeil, A.J., Nešlehová, J. (2009). Multivariate Archimedean Copulas, d−
monotone Functions and l1− norm Symmetric Distributions. Ann.
Statist., 37(5B), 3059–3097.

Misiewicz, J.K., Oleszkiewicz, K. and Urbanik, K. (2005). Classes of mea-
sures closed under mixing and convolution. Weak stability. Studia
Math., 167(3), 195–213.

Urbanik, K. Generalized convolutions I-V. Studia Math.,23(1964), 217–
245, 45(1973), 57–70, 80(1984), 167–189, 83(1986), 57–95, 91(1988),
153–178.



Joint asymptotic normality of kernel type
density estimator for spatial observations

Zsolt Karácsony1, István Fazekas2, Renáta Vas2
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Abstract: The Central Limit Theorem is considered for m-dependent random
fields. The random field is observed in a sequence of irregular domains. The se-
quence of domains is increasing and at the same time the locations of the observa-
tions become more and more dense in the domains. The Central Limit Theorem is
applied to prove asymptotic normality of kernel type density estimators. It turns
out that the covariance structure of the limiting normal distribution can be a
combination of those of the continuous parametric and the discrete parametric
results. Numerical evidence is presented.
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1 CLT for stationary random fields

Consider a domain D in Rd. We observe a random field ξ(·) in certain
points of the domain D and we assume the following setup. Suppose that
the random field ξ(·) is observed at finitely many locations i.e. at the el-
ements sn1, . . . , snn ∈ Dn lying in the sampling region Dn ⊂ D. We shall
use the notion of the mixed (or nearly infill or infill-increasing) domain
sampling which means that the sampling region Dn increases and at the
same time, the data sites {sn1, . . . , snn} fill in any given sub-region of Dn

increasingly densely as n → ∞. This approach was studied e.g. by Lahiri
(1999), Fazekas and Chuprunov (2006) and Park, Kim, Park and Hwang
(2009) (see also Karácsony and Filzmoser (2010)). It can be useful in geo-
statistics, environmental sciences etc.
Let ξ(·) be an m-dependent field which means that m is the infimum of
the numbers denoted by b such that if ‖s1 − s2‖ > b then ξ(s1) and ξ(s2)
are independent. Let Im,n(u) = {s ∈ Dn : ‖s − u‖ ≤ m} and κn =
maxu ]{Im,n(u)}. So κn denotes the number of elements of the set Im,n(u)
with maximal cardinality. We assume that κn > 0 holds for each n. We
suppose that the measure κn of density satisfies κn ∼ na with a constant
0 < a < 1.
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Introduce the notations ξi = ξn(sni), Sn =
∑n
i=1 ξn(sni) =

∑n
i=1 ξi,

νn = var(ξn(s)), In = {(i, j) : 0 < ‖sni − snj‖ ≤ m},
τn = 1

nκn

∑
(i,j)∈In cov(ξn(sni), ξn(snj)). We know that var(Sn) = nνn +

nκnτn and τn can be negative as well.

Theorem 1 (Park-Kim-Park-Hwang, (2009)) Let {ξn} be a sequence of
strictly stationary random fields on D ⊂ Rd with Eξn(s) = 0. Assume

that sups∈D |ξn(s)| is bounded with probability one and E
∣∣∣∏l

j=1 ξn(s
′

nj)
∣∣∣ =

O
(
νln
)

holds uniformly for all the different points s
′

nj ∈ {sn1, . . . , snn}. If

νn + κnτn ≥ δκnν
2
n for some δ > 0 then we have Sn√

var(Sn)
⇒ N (0, 1) in

distribution.

2 Application to density estimation

Let {Z(s) : s ∈ D} be a strictly stationary m-dependent random field,
D ⊆ Rd. For each z ∈ R, let F (z) = P (Z(s) ≤ z). We call the function
F marginal distribution function. Assume that there exist the appropriate
marginal density function f . Suppose that we observe the values of Z at
the points sn1, . . . , snn in D. In this section we study the nonparametric es-
timation of the marginal density function. Consider the kernel type density

estimator f̂n(z) = 1
nhn

∑n
i=1K

(
z−Z(sni)

hn

)
. Here K is a kernel.

Let fsni,snj be the joint density function of Z(sni), Z(snj). Let z ∈ R be
fixed. Consider the following assumptions.

(1) (a) f(z) > 0, f is continuous at z,

(b) fsni,snj are equicontinuous at (z, z), i.e. if (z1, z2)→ (z, z) then
supi,j |fsni,snj (z1, z2)− fsni,snj (z, z)| → 0,

(c) all finite dimensional densities of Z(sn1), Z(sn2), . . . exist and
are bounded and continuous,

(d) if n→∞ then 1
nκn

∑
(i,j)∈Tn{fsni,snj (z, z)− f(z)2} → τ, where

τ is a nonnegative constant depending on z,

(2) The kernelK is nonnegative on R and satisfies
∫
R
K = 1; |z|K(z)→ 0

as |z| → ∞.

(3) hn > 0 is a sequence satisfying hn → 0 and nhn →∞, as n→∞.

(4) There exists a constant δ > 0 such that f(z)
∫
R
K2 +τκnhn ≥ δκnhn.

Theorem 2 (Park-Kim-Park-Hwang, (2009)) Let us suppose that the as-
sumptions (1)− (4) hold.

1. Then
{
n−1h−1

n f(z)
∫
R
K2 + n−1κnτ

}− 1
2 {f̂n(z)−Ef̂n(z)} ⇒ N (0, 1).
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2. Suppose that f is twice differentiable in a neighbourhood of z and∫
uK(u)du = 0. Moreover assume that f ′′ is continuous and bounded

and nh5
n → 0, nκ−1

n h4
n → 0. Then{

n−1h−1
n f(z)

∫
R

K2 + n−1κnτ

}− 1
2

{f̂n(z)− f(z)} ⇒ N (0, 1).

3 Joint asymptotic normality for the density
estimator

Our aim is to study the multidimensional version of Theorem 2, i.e. the
joint asymptotic normality of the density estimator. Let z1, z2, . . . , zq be
given distinct real numbers. We assume that

1

nκn

∑
i,j∈Tn

(
fsni,snj (zr, zt)− f(zr)f(zt)

)
→ τrt if n→∞.

Then (f̂n(zi)− f(zi), i = 1, . . . , q) is asymptotically N (0,Σ) with

Σ =
1

nhn


f(z1)

∫
K2(t)dt+ τ11κnhn . . . τ1qκnhn
τ21κnhn . . . τ2qκnhn

...
. . .

...
τq1κnhn . . . f(zq)

∫
K2(t)dt+ τqqκnhn

 .
We also present examples that give numerical evidence for the phenomena
described in the above proposition.
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financed by the European Social Fund.
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Abstract: In this work, we propose a copula-based method to generate synthetic
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genes in the synthetic dataset in a controlled manner, giving the possibility of
testing new detection algorithms under more realistic environments.
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1 Introduction

Detection of differentially expressed genes in microarray experiments has
been subject of great effort in the bioinformatics community. Optimal de-
tection methods allow to reduce the amount of both, pathological and con-
trol experiments and, in consequence, time and costs [Dupuy A. and Simon
R. M., 2007]. However, most of the developed algorithms have been tested
with synthetic data using simple generative models and assuming incorrect
hypothesis about variable statistics and their dependence. The proposed
method captures the statistical structure of real datasets allowing us to
generate new random samples drawn from a copula-based random genera-
tor.

2 Materials and Methods

The proposed method is shown in figure 1. Briefly, we fit real microar-
ray data to a t-copula [Nelsen R. B., 1999] and then we generate random
gene expression data sharing marginal and high-order dependence with the
original data.
Firstly, original gene expressions dataset (Fig. 1.a) are mapped into a
unitary hypercube by means of a monotonically increasing function, i.e.
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the inverse cumulative distribution function of the marginal distributions.
An approximated Maximum Likelihood (ML) method is used for fitting
this transformed data to a t-copula. Once the copula parameters are ob-
tained, random samples are generated according to this copula structure
(Fig. 1.b). This new dataset, which have uniform marginal distributions,
is then mapped to a N (0, 1) marginal Gaussian distributions (Fig. 1.c). It
is important to remark that monotonically increasing transformations do
not alter high-order dependence measures like Kendall-τ or Spearman-ρ.
At this point, significantly expressed genes are introduced in a controlled
manner into the data (Fig. 1.d). By means of the inverse transformations
used before, we then back-transform the data to the original space, obtain-
ing a synthetic dataset which preserve the same marginal distributions and
high-order variable dependence as the real one (Fig. 1.e-f).

3 Results

When added to the synthetic data, significant genes were recovered by the
step-down minP adjusted p-values method [Westfall P. H. and Young S.
S., 1993] in all the cases. However, its important to ensure that the al-
gorithm is able to minimize the number of false positive (FP) cases. To
prove the robustness of the method against FP generation, we compare
the results of our method versus synthetic data generated by multivariable
gaussian random process with the same covariance matrices of the original
data [Carmona-Saez P. et al, 2006]. We ran 30 experiments for both types
of synthetic data with no significant genes added, meaning that the signif-
icance test should recover (almost) zero genes differentially expressed be-
tween pathological and control groups. Due to the sparseness of significant
genes in microarray experiments (less than 1%, under and over-expressed
genes) the copula captures the distribution of normally expressed genes. In
that sense, our synthetic microarray data produces much less FP genes that
the ones generated with a multivariable gaussian process having the same
covariance matrix (1.5± 0.23 vs 24.76± 1.04, p < 0.0001, mean± s.e.m.)

4 Conclusions

In this paper, we propose a new copula-based method for synthetic mi-
croarray data generation that allows us to control the number of under
and over-expressed genes, preserving the original statistical structure of
real data. To our knowledge, this is the first work that overcomes the prob-
lem of building synthetic data using simple generative models. Experimen-
tal results show the robustness of the method and its usefulness helping
researchers to develop new and more powerful algorithms for gene filtering
and clustering.
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FIGURE 1. Proposed method to generate synthetic data preserving the same
marginal distributions and high-order variable dependences of the real data.
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1 Introduction

In fisheries research, regression models are often used to analyze CPUE
(Catch per Unit Effort), an index of relative abundance of an exploited
species. To date CPUE has been mainly analyzed through Generalized
Linear Models (GLM), e.g. Goñi et al. (1999), and rarely Generalized Ad-
ditive Models (GAM) e.g. Damalas et al. (2007). Instead, fishery data usu-
ally hold a random nature, being associated to fishing vessels, unrepeatable
units. That is not conteplated in such kind of models. In very few occasions
random effects has been considered, e.g. using Generalizad Linear Mixed
Models (GLMM), Cooper et al. (2004).
On the other side, recent advancements in regression methodologies provide
many estimators of random effects in a Generalized Additive Mixed model
(GAMM) framework using frequentist (Lin and Zhang, 1999) or Bayesian
(Fahrmeir and Lang, 2001) inference.
In this work we present a regression analysis of red shrimp (Aristeus anten-
natus) CPUE from the port of Barcelona (Spain). The last update of red
shrimp CPUE modeling in the NW Mediterranean Sea was implementing
GLM (Maynou et al, 2003).
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The main porpuses of this stady were: 1. improve red shrimp CPUE mod-
eling and 2. compare the Frequentist REstricted Maximum Likelihood,
REML (FR), the Empirical Bayesian version of REML (EB) and the Full
Bayesian MCMC simulation (FB).

2 Methodology

The frequentist REML was used, implementing the R-package mgcv (Wood,
2006), to obtain the final model, that is, after checking assumptions, the one
with the highest deviance explained (DE%). Predictors were selected by a
stepwise forward procedure and 2-nd order P-spline was used as smoother.,
Afterwards, the final model was fitted using the two Bayesian inferences as
well, with the impementation of BayesX software (Brezger et al., 2005).
J = 21 subsets, excluding vessel j, were used to estimate the model by
each method. Then they were compared using the mean square error of pre-
dictions, MSEP, calculated on predictions from subset {J − j} on subset
{j}. Variables implemented in the model are reported in Table 1.

TABLE 1. Variables used in the study.

Name Description

cpue monthly CPUE for each vessel, i = 1, . . . , 2314
time months from 01-1992 to 12-2008, t = 1, . . . , 204

vessel a numeric code assigned to each vessel, j = 1, . . . , 21
trips number of trips performed monthly by each vessel, j during month t
grt Gross Registered Tonnage of vessels

nao3 NAO index of 3 years before the observed cpue
period season variable with 2 levels, p2: Jun and Nov; p1: otherwise

3 Results

The selected final model belongs to the class of GAMMs:

ln(cpue) = α+βgrt+f(time)+g(trips)+h(nao3)+γp2+

J∑
j=1

bjvessel+ ε

(1)
where ε ∈ Gamma(a, b).
The partial effects of model 1 are visualized in Figure 1. Effort predictor
(trips) is the most important sources of variability. The NAO (North At-
lantic Oscillation) index is to date the only environmental predictor avail-
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FIGURE 1. Partial effects of model 1 estimated through EB method.

FIGURE 2. Box plot of MSEP estimated for the different methods.

able for deep sea fisheries. Random effects allow to predict for unknown
boat effects. Smooth functions increase the explanatory power of the model.
Figure 2 shows that there is no difference in predictions between methods,
however the EB gives lowest MSEP in almost the 50% of subsets.

4 Conclusion

That study update the red shrimp CPUE modeling through the implemen-
tation of effort and environmental predictors and of smooth functions. It
also demonstrate that there is no difference in predictions between meth-
ods. The use of mixed models permits to infer on the entire population
however when units, boats in this case, are not repeatable.
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Abstract: We present a methodology to create and dynamically simulate food
webs in the open source software R. This is done in three steps. First a plausible
binary food web is generated with a preset number of species (S) and links (L).
Then a quantified steady-state foodweb is generated using linear inverse mod-
eling (LIM) techniques. Thirdly, the food web flows are converted into dynamic
formulations. The flexibility of this methodology allows to study the stability of
these webs and how they react when perturbed.
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1 Introduction

Food webs describe who eats whom in an ecosystem. For a given number
of species S, and links L, a food web can be represented by an S × S
matrix S, where if the species i is a prey of species j then element si,j = 1
while si,j = 0 otherwise. This is a “binary food web”. However, species
interactions are only feasible if enough energy is transferred to the predator.
To assess the energetic feasibility, a foodweb needs to be quantified. This
generates a S × S flow matrix X, whose elements x are estimates of the
magnitude of each feeding flow. This is a “quantified food web”.
Theoretical ecologists have suggested simple models to generate binary
food webs, based on the assumption that L ∈ U(0, 1) (i.e. random and
cascade models: Cohen and Newman, 1985) or L ∈ B(α, β), (i.e. niche
model: Williams and Martinez, 2000; and nested-hierarchy model: Cattin
et al. 2004). The two latter models describe more realistic food webs.
On the other hand, applied ecologists have used Linear Inverse Modeling
(LIM) to quantify the flows of real food webs (see van Oevelen et al., 2010),
given an incomplete data set. The LIM methodology consists in solving the
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following linear problem for the unknown flows x:

Ex = F (1)

Ax ≈ B (2)

Gx > H (3)

Here the first and/or second set of equations typically contain the com-
ponent’s mass balance equations and observed data, while the third set
of equations holds physiological information and positivity constraints (i.e.
the flows have a direction).
A LIM returns a “steady-state” snapshot of a food web, although the behav-
ior of food webs under changing conditions is often of interest. This implies
that the food web should be written as a dynamic model and solved by
numerical integration.
Recently the R software has been made suitable for solving LIMs and for
dynamic simulation thanks to two add-on packages (the R-package limSolve
(Soetaert et al., 2009), and deSolve (Soetaert et al., 2010).

2 Methodology

We present how these three approaches can be combined in R:

1. We first generate binary food webs according to a theoretical model.
Three functions generate the random, the cascade and the niche bi-
nary webs.

2. We then check the (energetic) feasibility, using the LIM methodology
and quantify the flows. To do this, we convert the binary matrices into
a LIM (1) assuming a minimal “growth efficiency” when consuming
a species. If the LIM can be solved, then the problem is feasible and
allows to estimate the flows.

3. The stability and long-term behavior of the quantified food web is
then studied in dynamic simulations. To generate the dynamic system
the species biomasses are needed, to convert the total ingestion and
respiration rates into mass-specific rates and second order rates. We
assumed allometric scaling of rates according to the trophic level of
each species. The Jacobian matrix of the dynamic system allows to
check the model’s stability properties.

3 Examples

Figure 1 gives an illustration of the three types of simulated food webs. The
random model was not feasible and could not be solved given the energetic
constraints, so its flows are not represented. The cascade and niche model
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FIGURE 1. The binary food web and the quantitative food web for the three
theoretical models.

FIGURE 2. Output of the dynamic simulation for a niche food web.

were feasible and the flows could be quantified. Figure 2 represents the the
dynamic simulation made for the niche food web. The output represents
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a stable unperturbated foodweb (black line), and an increasingly instable
foodweb when perturbed (the red and green lines).

4 Conclusion

The functions implemented in the open source framework R will allow to
study the effect of human and environmental perturbations on artificially
generated food webs.

Acknowledgments: The first author thanks to the CSIC grant program
JAE-predoc, that made possible this study.
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Abstract: The Cox’s proportional hazards regression is widely used in the med-
ical, biological, actuarial and engineering sciences, although the validity of the
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1 Cox’s proportional hazards model

Let random variable X be the lifetime of an item and let f (x) and F (x)
denote the probability density function and the cumulative distribution
function of random variable X. The survival function (reliability function)
of the item is defined as

S (x) = P (X > x) = 1− F (x) .

The hazard rate function λ (x) is defined as the probability per time unit
that an individual (item) that has survived to the beginning of the time
interval will die (fail) in this particular time interval

λ (x) =
f (x)

S (x)
=

f (x)

1− F (x)
= −S

′ (x)

S (x)
= −d [lnS (x)]

dx
.

In other words λ (x) is the conditional probability that an individual of age
x will die in the interval (x, x+ ∆x).
There are several problems with survival data when traditional regression
techniques are applied. They are typically non-normally distributed and the
observations are generally heavily censorised. In Cox D. R. (1972) suggested
a regression model and method for analyzing heavily censored survival data
in order to know whether survival is influenced by certain factors (covari-
ates) and if yes then how can one calculate the risk of a certain individual in
a particular situation, with given covariates. The model is known as Cox’s
Proportional Hazards Model depends on ’proportionality’assumption. The
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survival time is investigated as a function of a given set of independent
variables (or covariates).
The continuous random variable T is investigated. Let x = (x1, x2, . . . , xp)

′

denote the covariates, then the hazard rate of random variable T is sup-
posed to have the form

λ (t;x) = λ0 (t) eβ
′x = λ0 (t) eβ1x1+β2x2+···+βpxp ,

where λ0 (t) the so-called baseline hazard, while β is a (p× 1) vector of un-
known parameters. There is no supposition on the specific form of λ0 (t).
The baseline hazard describes the hazard rate of an individual with zero co-
variates. The name ’proportional hazards model’ describes the supposition
on the hazard rate namely that the ratio of the hazard rates of two per-
sons with the same covariates is constant over time. Otherwise there are no
other assumptions on the distribution of random variable T , therefore this
regression model can be considered as a nonparametric model. Cox’s idea
for the determination of the parameter β is the so-called partial likelihood.
In the last two decades Cox-regression became extremly popular, it is
widely used even in proving the efficiency of drogs . It is interesting to
investigate the validity of the proportional hazards condition, which is the
vital condition for the applicability of the Cox-regression. In these cases
stochastic simulation is very important to test the validity of a model.

2 Generation of survival times

The generation of survival times for a CR-model is more complicated than
in case of traditional regression methods, since the usual statistical soft-
wares can generate just with a given probability distribution, not with a
given hazard (rate) function.

The cumulative distribution function in terms of the hazard rate function

F (t) = 1− S (t) = 1 + exp

(∫ t

0

λ (u) du

)
,

and in the special case of the proportional hazard model

λ (u) = λ0 (u) eβ
′x.

Introducing the baseline hazard function

Λ0 (t) =

∫ t

0

λ0 (u) du

The distribution function can be expressed in terms of the baseline hazard
function as

F (t;x) = 1− exp
(
−Λ0 (t) eβ

′x
)
.
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If F (x) is the cumulative distribution function of random variable X,

P (X < x) = F (x) ,

then F (X) is uniformly distributed in the interval (0, 1) .
Therefore F−1 (u) has cumulative distribution function F (x) when u is
uniformly distributed in the interval (0, 1). Furthermore if u is uniformly
distributed in the interval (0, 1), then so is 1− u.
Using these statements, if t is survival time in the CR-model, then

U = exp
(
−Λ0 (t) eβ

′x
)

is uniformly distributed in the interval (0, 1). If λ0 (t) > 0, then

t = Λ−1
0

(
− log (u) · e−β

′x
)
,

where is uniformly distributed in the interval (0, 1).
Bender, Augustin and Blettner suggested to determine the inverse of the
baseline hazard function numerically. This is solved in MATLAB.

Acknowledgments: The author was supported by TAMOP-4.2.1.B-10/2/
KONV-2010-0001 project with support by the European Union, co-financed
by the European Social Fund.
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1 Introduction

The estimators of inequality-constrained regression models can be com-
puted by iterative algorithms of mathematical programming, but they do
not have analytical expressions in terms of given data. It brings obstacles
for further analysis of the constrained regression.
Asymptotic behavior of such class of estimators in the models with strong
dependence (in discrete and continuous cases) but without constraints on
the parameter was investigated by many authors. In the papers by Taqqu,
Dobrushin and Major a noncentral limit theorem describing the model
mentioned above was formulated. Then asymptotic theory for least squares
estimators in models with strong dependence (in cases without constraints)
was developed, for example in papers by Yajima, Künsch, Dahlhaus, Ivanov
and Leonenko etc.
On the other hand, regression models with independent or weakly depen-
dent errors under restrictions on parameters were considered in papers by
Korkhin, Knopov, Dupacova and Wets, Nagaraj and Fuller for discrete
cases, Wang.
Asymptotic properties of least squares estimators in regression models with
long memory and non-linear inequality-constraints on the parameter have
been studied in papers by Moldavskaya. It was proved that least squares es-
timators converges in distribution to the optimal solution of the quadratic
programming problem, but from this result it was not clear, what the spe-
cific asymptotic distribution of this estimators is.
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We present approximate representation of the least squares estimators
(LSE) in the regression models with long range dependence in the noise
and inequality-constraints on the parameters. From this representation one
can see the concrete structure of the estimators of these problems.

2 Basic model and main result

Consider the following inequality-constrained regression problem

N∑
t=1

[yt − f(xt, β)]2 −→ min
β∈Rp

(1)

gi(β) ≤ 0, i = 1, . . . ,m hj(β) = 0, j = 1, . . . , n

where β = (β1, . . . , βp)
′ is the unknown vector-parameter to be estimated,

{(xt, yt), t = 1, . . . , N} is the sample data in the model

yt = f(xt, β0) + ηt (2)

and β0 is the true value of β. Denote the estimator of the problem (1) by

β̂N .
gi(β), i = 1, . . . ,m, hj(β), j = 1, . . . , n, f(xt, β)

are known functions and ηt, t ∈ R, is a random noise subordinated to
process with long-range dependence.

V (N)(β̂N − β0) = D
N∑
t=1

∇f(xt, β0)ηt +Op(N
−αL(N) log logN)

1
2 ), (3)

where V(N) is a normalizing multiplier, D is a matrix, not related to the
random noise. The first term on the right hand side of (3) is the main part
and the second term is the remainder. From this expression we know what
V (N)(β̂N − β0) looks like (approximately).
To prove main result, we follow Wang (2000) (who provided the analogous
results for the case with independent errors), using results of Moldavskaya
(2010) and law of the iterated logarithm for sums of non-linear functions
of Gaussian variables exhibit a long range dependence provided by Taqqu
(1977).
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1 Introduction

An application for downloading any series of financial asset day prices from
a free provider has been developed. This application also allows to back-test
any day-trading strategy with the mined data easily. In a previous work we
have proposed and evaluated different day trading methods in terms of the
mean losses and benefits they produce under different market conditions,
after 200 days of activity; see Marti and Rivera (2011). Those methods are
formulated by algorithms that clearly specify all the actions to be taken and
make investment decisions independent of the emotional aspects of trading
because the strategy is governed by a set of defined rules. A trading strat-
egy can be automated and performed by a computer that wraps trading
formulas into automated order and execution systems. However, obtaining
good trading algorithms is quite complicate and what we have observed is
that a certain strategy may exhibit great results during a certain period of
time, and instead, may work terribly wrong in another. Moreover, often it is
not clear the reason that originates this disparity of results. The day trad-
ing strategies are mainly used by small investors. This contribution focuses
on validating or invalidating different day trading strategies by performing
a back-testing with data of different financial assets in a diary framework.
The developed application is designed to study the methods mainly used
by small investors to operate on the stock market.
This paper is organized as follows. In part 2 we present the kind of algo-
rithms and strategies that we want to evaluate as well as the framework
in which we observe the markets. In part 3 we present some simulation
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experiments and the results obtained. Finally, section 4 contains some con-
clusions.

2 Approach, assumptions and application overview

The algorithms in which we are interested are those that do not assume
any model to predict the financial asset behaviours as, for example, any
future evolution of price, volatility or risk. We evaluate and explore tech-
niques based on computing signals from the available series of prices and
taking advantage of some patterns that those signals could exhibit in order
to automatically generate orders of buying or selling. In some way we could
say that we evaluate using statistics some empirical methods and we try to
discover some operation rules that could work in practice. To develop the
method of generating signals we use different signal processing tools, like
linear, non-linear and adaptive filters, but we avoid the uses of models try-
ing to model the behaviour of prices. The reason of avoiding complicated
models of prediction is that the most common methods assume Gaussian
statistics. However, the probability density functions of financial data dif-
fers from the Gaussian because exhibit bigger tails in both extremes. As
a consequence, the common Gaussian assumption to model the variation
of prices origins a lot of mistakes because the extreme events are under-
estimated; see Mandelbrot and Freeman (1982), Richard and Mandelbrot
(2009), Mandelbrot and Taleb (2006). Long before the last financial cri-
sis, Mandelbrot, who first reported this observation, strongly criticized the
Black-Scholes model, widely used in banking to estimate the price of options
and many other financial derivatives, because of its Gaussian behaviour as-
sumption; see Mandelbrot and Freeman (1982).
In the day trading literature and on the Internet we can find many methods
that fulfil our strategy requirements. Very often the authors state that their
strategies perform quite well with poor statistic arguments justifying their
statements. Some of these methods, e.g., Wilder (1978), Cava (2006), Ortiz
de Zárate (2009), have been analysed with our application. The developed
application mines the prices of financial assets from free web information
providers like google/finaces and yahoo/finances. These two providers offer
for free to their users the historic of day prices of any financial asset nego-
tiated in any important market in the world. The huge among of available
data will be very useful for the back-testing. That application is developed
with Matlab because this software offers a lot of facilities for testing algo-
rithms quickly and visualizing the results. With Matlab it is also easy to
implement functions for mining web information.

3 Simulations and experiments

Almost all the trading algorithms, also those used in this work, depend
on some parameters that are required to be tuned and that are commonly
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FIGURE 1. Histograms of the profits obtained with the ADX based method after
200 consecutive days in the market with N = 6 for signal ADXN (n) and N = 24
for signals ADX+

N (n) and ADI−N (n). On the left, total profits; centre, profits from
long operations; right, profits from short operations.

obtained from historical analysis using prices of the past. In some previous
work Marti and Rivera (2011) we have explored the best parameter com-
binations that maximize the benefits over an historic of 10.000 prices of
the Santander and Telefonica Spanish IBEX35 stocks. That operation was
performed for both methods. Then, maintaining the best set of parameters
for each method we have explored the same historic, but now computing
the benefits/losses obtained from all periods of 200 consecutive days we
can form from the historic. The results are presented by histograms. In
Figures 1 and 2 there are represented tree histograms; the total of benefits
obtained in 200 days (left), the benefits of the same period obtained from
long operations (centre) and the benefits obtained from short operations
(righ). These histograms are computed operating exclusively on the Tele-
fonica stock. The histograms provide a fast interpretation of the dispersion
of the results. The mean is represented using a red line. Figure 1 is obtained
by applying the ADX method with N = 6 for signal ADXN (n) and N=24
for signals ADX+

N (n) and ADI−N (n). In that case the mean of benefits is
positive and we can conclude that most of benefits are given from long op-
erations with a very poor contribution due to short operations. Figure 2 is
obtained by applying the own method on the Telefonica stock prices data
with parameters P = 4, Mc = 5 and Mv = 1. In that case the results are
better than the ADX method with important expectations of mean benefits
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FIGURE 2. Histograms of the profits obtained using our own method after 200
consecutive days in the market with parameters P = 4, Mc = 5 and Mv = 1.
On the left, total profits; centre, profits from long operations; right, profits from
short operations.

even for short operations.
Some other experiments where done in order to provide an idea of how the
systems work. An interesting result is that the benefits are strong dependent
on the day in which the operations begin. Starting the operations one day or
the day after can significantly modify the benefits. In Figure 3 we represent
the total profits obtained as a function of time, so that the longitudinal axis
begins with the first 200 day block analyzed and finishes with the block of
200 days that ends in the present. Note the strong dependency of benefits
on the moment of acting in the market and its discrete nature.
In Figure 3 the time dependence of the benefits of operating 200 days
consecutive days using the own method with P=19 and Mc = 6 and Mv = 6
against the Spanish Santader stock value is given.
A drawback of this experiment is that to identify the best set of parameters
we use all the data available and then, with a selection of parameters, we
use short periods (of 200 day) extracted from the same data used to tune
the system.

A more realistic approach

The following set of experiments differs from the last ones because use the
available data more realistically. Once an historic of prices of a particular
financial asset is selected we always proceed in the same way. Consider
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FIGURE 3. Evolution of 200-day profits over in time using our own method with
parameters P = 19, Mc = 6 and Mv = 6. The discontinuous line represents the
mean.

a test of benefits for the day n. Then we take N consecutive past days
beginning with the day n−1 and going back to day n−N . We use those N
past prices to find the best set of parameters that maximize the benefits in
this period by a brute force exploration. Once the parameters are obtained,
and maintaining these parameters, the trading method is evaluated with
the next M consecutive days, indexed from n+1 to n+M−1, to show how
the system performance on the next M future days. Then, after these M
days in the market, the system closes positions and computes the total of
benefits. So, for the simulation started at day n we obtain, at day n+M ,
one benefit (or loss) value. Next we do the same operation for the day n+1,
for the day n+ 2, and so on until finishing all the historic available.
This kind of experiments is done to explore if updating each day the pa-
rameters with the recent past prices can improve or not the benefits.
In next pair of histograms we represent the results of those experiments.
The histogram on the left represents the maximum of benefits obtained in
the bloc of training days. The combination of parameters that maximize
the benefits will be used to the operations of next bloc of ’future days.’ On
the right it is represented the histogram of benefits generated in the blocs
of ’future days.’ In the experiments below we have used the prices of the
Santander stock.
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FIGURE 4. Performance of the ADX method when 100 days are used for the
training and 100 days for the test. In the histogram on the left, the benefits
reached in the training periods and, on the right, the performance of the method
over 100 days. The red line indicates the mean.

FIGURE 5. Performance of the own method when 100 days are used for the
training and 100 days for the test. In the histogram on the left, the benefits
reached in the training periods and on the right, the performance of the method
over 100 days. The red line indicates the mean.

In Figure 4 we can see the performance of the ADX method when 100
days are used for the training and 100 days for the test. In that case we
can observe, in the histogram on the left, that the benefits reached in the
training periods, that are the maximum benefits possible for each period
because he have found the set of parameters by a brute force exploration,
has a mean of 24.45 while their standard deviation is only of 17.72. However,
in the histogram on the right, we can observe that the parameters that
maximize the benefits for the past 100 days do not work properly to the
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next 100 days and the mean of benefits decreases to 1.57 while the standard
deviation is practically the same.
A similar result is found when using the own method. The results of using
100 days for training are represented in Figure 5. In that case the mean of
benefits reached in the training process is about 28.38% with a standard
deviation of 26.72 as we can see in the histogram on the left. In that case,
the benefits obtained in the next 100 days are showed in the histogram on
the right, showing a mean of 3.12, which is better – the double – than the
one of experiment of figure 4, but has decreased a lot.

4 Conclusions

We have developed a Matlab based application for downloading series of
financial asset day prices. This application also allows to back-test any
day-trading strategy with the mined data. The application visualize by
graphic representations the generation of signals and orders produced by
a selected strategy together with a price representation. So, observing the
cases in which the system fails, it is possible to improve the strategy. Al-
most all the algorithms applied depend on a small number of parameters
that can be adapted for different financial assets and different market con-
ditions. One of the most interesting possibilities that the application offers
is to perform exhaustive explorations of a set of parameters on all the his-
torical to maximize some criteria in order to find the best combinations.
These explorations can be time consuming intensive, however the Matlab
platform is oriented to perform mathematical calculations and simulation.
Other Matlab platform advantage is that we can use a lot of statistics and
signal processing tools available in their toolboxes. Therefore, new trading
strategies can be easily developed with some basic knowledge of program-
ming on Maltlab. In this article we investigate the performance of two day
trading strategies. Depending on the way to present the results obtained
by these two systems it could seem that they work pretty well. In fact,
after an exhaustive exploration in the space of tuning parameters on a past
series of data we always find combinations that, on these data, produce
spectacular benefits. The same also happens if we look for combinations
that work terribly wrong. Some information about this kind of algorithms
are often not presented whit rigor and small investors may be tempted to
use strategies that offer few guarantees. Works like this can help to protect
them. What we have observed is, for example, that the day the simulation
begins on can strongly affect the resulting profits and that both methods
can produce large benefits in only a few days but they can also lead to
large losses. As the marked conditions change on time we have prepared
some simulations to know what happen when we use the recent past data
in order to determine the tuning strategy parameters and use them on a
short future period of 100 day and we have observed that the histograms
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of benefits obtained are centered near zero, with positive means close to
zero and large standard deviations.
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We consider general regression problem with response Y and random dis-
crete regressor X, which has possible outcomes 1, 2, ...,m. Let X be true
value which can be misclassified, and X∗ be observed regressor. Misclassifi-
cation error is described by the misclassification matrix Π, which is assumed
to be known. The parameter of interest is regression vector parameter β. We
investigate estimators for the MC-SIMEX approach suggested by Kuchen-
hoff et al. (2006).
We observe data (Yi, X

∗
i )ni=1 and construct naive estimator

β̂naive[(Yi, X
∗
i )ni=1], neglecting the presence of misclassification. For a fixed

grid of values 0 = λ0 < λ1 < ... < λM , we simulate B new pseudo data
sets with higher misclassification by

X∗b,i(λk) := MC[Πλk ](X∗i ), i = 1, n, b = 1, B, k = 1,M,

where the misclassification operation MC[M ](X∗i ) denotes the simulation
of a variable given X∗i with misclassification matrix M . Then we replace
regressors X∗i by X∗b,i(λk) and for each pseudo samples we construct the

naive estimator β̂naive[(Yi, X
∗
b,i)

n
i=1]. Define

β̂λk = B−1
B∑
b=1

β̂naive[(Yi, X
∗
b,i)

n
i=1], k = 1,M.

Thus, β̂λk is the mean value of naive estimators that correspond to the

matrix of misclassification Πλk+1. Notice that β̂λ0 = β̂naive[(Yi, X
∗
i )ni=1] for

λ0 = 0.
Then extrapolate back to the case of no misclassification. We select extrap-
olation function G(1+λ,Γ) = {Gi(1+λ,Γi)}dim β

i=0 of MC-SIMEX estimator
in a form

Gi(1 + λ,Γi) =
t∑

j=0

(1 + λ)jγij = ATλΓi, λ ≥ 0, i = 1,dimβ,
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such that for each λ ≥ 0 :

β∗(Πλ) ≈ G(1 + λ,Γ),

where β∗ is the limit of naive estimators a.s. as n → ∞,
Aλ = {(1 + λ)j}tj=0,Γi = {γij}tj=0, i = 1,dimβ.

The parameter Γ is estimated by the least squares method for (1+λk, β̂λk)Mk=1

and the estimator is denoted by Γ̂. The MC-SIMEX estimator is then given
by β̂MC−SIMEX = G(0, Γ̂) which corresponds to λ = −1.
We assume conditions which ensure that Πλ is again the misclassification
matrix for any λ ≥ 0.
Let s = dimβ. Suppose that the true value β0 is an interior point of some
compact K in Rs and U is an open set in Rs, K ⊂ U . Assume that without
misclassification, the estimation to the parameter β0 can be obtained as a
solution to the estimating equation for β ∈ K

1

n

n∑
i=1

ψ(Yi, Xi, β) = 0,

where ψ : R× {1, 2, ..,m} × U → Rs.
The naive estimate with misclassification matrix Π is defined as a solution
to estimating equation

1

n

n∑
i=1

ψ(Yi, X
∗
i , β) = 0, β ∈ K.

Therefore, the limit value β∗(Π) is a solution to equation

Eψ(Y,X∗, β) = 0, β ∈ K.

Similarly β∗(Π(λk)) is a solution to equation

Eψ(Y,X∗(λk), β) = 0, β ∈ K.

We apply MC-SIMEX approach to the multiple-choice misclassification
model (m ≥ 3) and obtain expansions of naive estimator

β̂naive = β∗(Π) + o(1) a.s. as n→∞,

where

β∗(Π) = β0 +

l∑
k=1

dkβ(I; Π− I)

k!
+O(‖Π− I‖l+1), Π→ I, (1)

and MC-SIMEX estimate satisfies

β̂MC−SIMEX = β∗MC−SIMEX + o(1) a.s. as n→∞,
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where
β∗MC−SIMEX = β0 +O(‖Π− I‖l+1), Π→ I. (2)

Here by the differential dkβ(I; Π−I) we mean the value of multilinear form
at point I with arguments Π− I,and I is identity matrix.
It follows from (1) and (2) that MC-SIMEX estimator is closer to the true
value than naive estimator when Π → I. This explains that MC-SIMEX
approach gives better results than some consistent estimators in small and
medium samples.
The results in this paper are joint with Prof. Alexander G. Kukush.
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This study deals with cumulant analysis of sample cross-correlograms and
of other second-order statistics of stochastic processes and random fields.
We will consider different types of second-order statistics and various classes
of stochastic processes. In any case, a dominant role will be played by in-
tegral representations for cumulants of these statistics. Earlier studies of
integral representations for the cumulants of different second-order statis-
tics of stationary stochastic processes are due to R. Bentkus (1972, 1976).
The cumulants of different polynomial statistics were considered in a later
paper by the same author R. Bentkus (1977). Similar integral represen-
tations of the cumulants for periodograms of homogeneous random fields
were considered in Guyon (1995) and Rosenblatt (1985).
Our main interest is with a particular integral representation for cumulants.
This representation involves cyclic products of kernels, see Buldygin et el.
(2002). We give some examples of integral representations for the cumulants
of different bilinear forms of random vectors, stochastic processes, and ran-
dom fields. All of these representations are finite sums of integrals involving
cyclic products of kernels. We obtain a formula expressing the Gaussian
component of cumulants of simple bilinear forms of random vectors. This
representation follows from the Leonov-Shiryaev-Brillinger representation
for cumulants. Since the cumulant of a simple bilinear form of a Gaussian
random vector coincides with the Gaussian component of this cumulant, we
obtain integral representations for the cumulants of different bilinear forms
of Gaussian random vectors, stationary Gaussian stochastic processes, and
homogeneous Gaussian random fields. We also establish some inequalities
useful in applications. We consider the Rosenblatt distribution, see, e.g.
Rosenblatt (1985). The explicit form of the logarithm of the characteristic
function of the Rosenblatt distribution is an infinite sum of integrals involv-
ing cyclic products of kernels. We show that the Bentkus representation for
the cumulants of spectral estimators of a stationary time series is reduced,
after some algebra, to an integral involving cyclic products of kernels. We
give a representative collection of statements and examples showing that
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integrals involving cyclic products of kernels appear naturally in cumulants
of second-order statistics of both Gaussian and non-Gaussian random vec-
tors, time series, stochastic processes, and random fields. These examples
make clear that integrals involving cyclic products of kernels merit a special
attention.
This presentation is based on joint results obtained with V. Buldygin† and
F. Utzet.

Acknowledgments: The author has been partially supported by the grant
R0904 from the Universitat de Vic.
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Abstract: We formulate the new results about the rate of strong approximation
in the multidimensional invariance principle which were published in the recent
papers of Zaitsev (2006, 2007) and Götze and Zaitsev (2007). They can be con-
sidered as multidimensional generalizations and improvements of some results
of Komlós, Major and Tusnády (1975–1976), Sakhanenko (1985) and Einmahl
(1989).
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We consider the problem of constructing on a probability space a sequence
of independent Rd-valued random vectors X1, . . . , Xn (with given dis-
tributions) and a corresponding sequence of independent Gaussian random

vectors Y1, . . . , Yn so that the quantity ∆(X,Y ) = max1≤k≤n
∥∥∑k

j=1Xj −∑k
j=1 Yj

∥∥ would be so small as possible with large probability. The esti-
mation of the rate of strong approximation in the invariance principle may
be reduced to this problem.
We formulate the results published in the papers of Zaitsev (2006, 2007)
and Götze and Zaitsev (2007). They can be considered as multidimensional
generalizations and improvements of some results of Komlós, Major and
Tusnády (1975–1976), Sakhanenko (1985) and Einmahl (1989).
Let H be the class of non-negative non-decreasing continuous functions
H : [0,∞) → R1 such that (for some δ > 0 and x0 > 0) the functions
H(x)/x2+δ and x/ logH(x) are non-decreasing, for x ≥ x0. The distribu-
tion of a random vector ξ will be denoted below by L(ξ).
We consider the rate of strong approximation assuming that, for some
function H ∈ H, EH (‖Xj‖) <∞, j = 1, 2, . . . , n. The X1, . . . , Xn will be
generally speaking non-i.i.d., but, for the sake of simplicity, we give below
the results in the case of i.i.d. X1, . . . , Xn only.

Theorem 1 Let H ∈ H and ξ be a random vector with E ξ = 0 and
EH (‖ξ‖) <∞. Then, for any z > 0 and n ≥ 1, there exists a construction
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such that
L(Xj) = L(ξ), EYj = 0, covYj = cov ξ, (1)

for j = 1, 2, . . . , n, and

P
(
∆(X,Y ) > c1 z

)
≤ c2 n

H(z)
, (2)

where c1 and c2 are positive quantities depending only on L(ξ) and on the
function H( · ).

Theorem 2 Let H and ξ satisfy the conditions of Theorem 1. Then there
exists a construction such that (1) is satisfied for all j = 1, 2, . . ., and

P
(

lim sup
n→∞

∥∥∥ n∑
j=1

Xj −
n∑
j=1

Yj

∥∥∥/H−1(n) <∞
)

= 1.

Theorems 1 and 2 generalize to the multidimensional case the results of
Komlós, Major and Tusnády (1975–1976). Einmahl (1989) proved the same

statements for the functions H from the class H̃ of non-negative non-
decreasing continuous functions H such that the functions H(x)/x3+δ and√
x/ logH(x) are non-decreasing, for x ≥ x0. Clearly, there exists a lot of

functions belonging to H and not belonging to H̃. For example, we may
mention the functions H(x) = exp

(
λxβ

)
, 1/2 < β ≤ 1, λ > 0.

Theorem 3 Let H and ξ satisfy the conditions of Theorem 1, and the
function x/ log(H(x)/LH) be non-decreasing for x > u, where LH =
nEH (‖ξ‖) and

u = C1H
−1(C2 LH), (3)

with some constants C1 ≥ 1 and C2 ≥ 1, where H−1( · ) is the inverse
function for H. Then, for any n ≥ 1, there exists a construction such that
(1) is satisfied for j = 1, 2, . . . , n, and

P
(
∆(X,Y ) > c3 z

)
≤ c4 n

H(z)
, (4)

for any z > 0, where c3 and c4 are positive quantities depending only on
C1, C2, L(X1) and on the function H( · ).

The conditions of Theorem 3 are satisfied, for example, for the function
H ∈ H such that the function H(x)/xγ is non-increasing for some γ > 2.
Then, in the proof of Corollary 2 of Zaitsev (2006), it was shown that one
can take u = H−1(eγLH) in (3).
Another example is given by H(x) = exp

(
λxβ

)
, λ > 0, 0 < β < 1. In this

case one can take u = (1− β)−1/β H−1(LH) in (3). It is clear that the list
of examples may be prolonged.
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The statement of Theorem 3 is much stronger than that of Theorem 1, since
(4) is satisfied for all z > 0 simultaneously, on the same probability space,
while, in Theorem 1, the probability space depends on z and (2) may be
not valid for other z’s. On the other hand, in Theorem 3, a condition with
u from (3) is supposed to be satisfied. There exist functions which satisfy
the conditions of Theorem 1, while the conditions of Theorem 3 are not
satisfied for u from (3). For example, we may mention the functions which
behave as exp

(
λx
)
, λ > 0, on some intervals of values of the argument x.

Note, however, that the statement of Theorem 3 for H(x) ≡ exp
(
λx
)

may
be easily derived from the main result of Zaitsev (1998). It seems that
Theorem 3 is new, even for d = 1.

Theorem 4 Assume that γ > 2 and ξ is a random vector with E ξ = 0,
E ‖ξ‖γ < ∞ and cov ξ = I, the identity operator. Then, for any n ≥ 1,
there exists a construction such that (1) is satisfied for j = 1, 2, . . . , n, and

E
(
∆(X,Y )

)γ ≤ c5 nE ‖ξ‖γ , (5)

where c5 is a positive constant depending only on γ and on L(ξ).

Theorem 5 (Corollary) Let ξ satisfy the conditions of Theorem 4. Then
there exists a construction such that (1) is satisfied for all j = 1, 2, . . ., and

E
(
∆(X,Y )

)γ ≤ c6 nE ‖ξ‖γ , (6)

for all n ≥ 1, where c6 is a positive constant depending only on γ and
on L(ξ).

Theorem 4 and Corollary 5 provide the statements which are stronger than
that of Theorem 3 in the case, where H (x) = xγ . Corollary 5 provides for-
mally stronger assertion than Theorem 4, since (6) is valid in Corollary 5
for all n ≥ 1 simultaneously, on the same probability space, while, in The-
orem 4, the probability space depends on n. However, Corollary 5 follows
from Theorem 4 by the application of an idea used by Lifshits (2007) for the
corresponding generalization of a result of Sakhanenko (1985). One should
construct independent blocks of 2m summands, m = 1, 2, . . ., according to
Theorem 4, and then use the Rosenthal-type inequality for sums of non-
negative random variables, see, e.g., Johnson, Schechtman and Zinn (1985).
Theorems 1 and 3 were proved in Zaitsev (2007). The proof of Theorem
2 is based on the main result of Zaitsev (1998). It repeats the proof of
Theorem 2 of Einmahl (1989). Theorem 4 is a i.i.d. case of Theorem 4 of
Götze and Zaitsev (2007).
In this talk we also discuss the non-i.i.d. results from Zaitsev (2006) and
Götze and Zaitsev (2007), which are multidimensional generalizations of
weakened versions of the results of Sakhanenko (1985). In Götze and Zaitsev
(2007), we considered the case H (x) = xγ , γ > 2. The paper of Zaitsev
(2006) is devoted to the general case, where H ∈ H.
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Let X,X1, . . . , Xn be independent identically distributed random variables.
This talk deals with the behavior of the concentration functions of the
weighted sums

∑n
k=1 akXk with respect to the arithmetic structure of co-

efficients ak. Such concentration results recently became important in con-
nection with investigations about singular values of random matrices. We
formulate some refinements of results of Rudelson and Vershynin (2009),
Friedland and Sodin (2007), Vershynin (2011). which are proved in the re-
cent preprints Eliseeva and Zaitsev (2012) and Eliseeva, Götze and Zaitsev
(2012).
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Abstract: The time dynamics of magnetotelluric parameters is investigated by
studying their daily measurements of Earth’s apparent resistivity and phase by
using the Fisher-Shannon Information plane method. The obtained results sug-
gest a relationship between the informational properties of the time series and
the sounding depth.
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1 Introduction

The temporal fluctuations of a signal can be studied in the so-called Fisher-
Shannon information plane (FS), which is a plane whose coordinate axes
are two statistical measures, the Fisher Information Measure (FIM) and the
Shannon entropy power (NX). Both the statistical quantities are used to
investigate complex and nonstationary signals; in particular the FIM quan-
tifies the amount of organization or order of a system, while NX quantifies
the amount of uncertainty or disorder of a system. Fisher (1925) intro-
duced in the framework of statistical estimation the FIM, which was later
employed by Frieden (1929) to develop as a versatile method able to de-
scribe the evolution laws of physical systems. The accurate description of
the behavior of dynamical systems and the characterization of complex
signals generated by these systems is efficiently performed by the FIM (Vi-
gnat and Bercher, 2003). The characterization of the time dynamics of
EEG records and the detection of significant variations in the evolution of
nonlinear dynamical systems were performed by Martin et al. (1999) by
using the FIM that was revealed to be a very useful tool in dealing with
theoretical as well as observational characteristics of dynamical systems
(Martin et al., 2001). FIM was used in studying several geophysical and
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environmental phenomena, revealing its ability in describing the complex-
ity of a system (Telesca et al., 2008; Telesca et al., 2009) and suggesting its
use as to reveal reliable precursors of critical events (Telesca et al., 2009b,
Telesca et al., 2005; Telesca et al., 2005b; Telesca et al., 2010). Shannon
entropy represents the well known method used to capture the fundamental
state of things (Angulo et al., 2008). It is generally applied to quantify the
amount of uncertainty that is inherent in the prediction of the output of a
probabilistic event (Shannon, 1948). For instance, in case of discrete distri-
butions, if one is able to predict exactly the outcome of a probabilistic event
before it happens, the probability assumes the maximum value, but, as a
consequence, the Shannon entropy assumes the minimum value. Thus the
Shannon entropy will be zero for deterministic events. In case of continuous
distributions (probability densities), in which the variable ranges over the
real line, the Shannon entropy can take any real value, positive or negative.
To avoid the difficulty of dealing with negative information measures, we
use the Shannon power entropy NX that will be defined below.
In this work, we analyze the time series of magnetotelluric (MT) parame-
ters measured in southern Italy by using the combination of the statistical
measures of FIM and Shannon entropy (the Fisher-Shannon Information
plane), in order to identify hidden dynamical patterns.

2 The magnetotelluric method

The magnetotelluric method (MT) is a geophysical technique used to im-
age the subsurface electrical resistivity by using the Earth’s natural vary-
ing electromagnetic field, characterized by a broad range of periods. On
the base of the skin depth formula, δ = 503(ρT )1/2(in meters), where ρ
is the Earth’s resistivity and T the period (Kaufmann and Keller, 1981),
the investigation depth increases with period and can reach several tens
of kilometers for longer periods. Simultaneously measuring the horizontal
components of the electric (E) and magnetic (H) field, the frequency de-
pendent impedance tensor (Z) (called transfer function) of the subsoil can
be estimated: ∣∣∣∣ Ex(ω)

Ey(ω)

∣∣∣∣ =

∣∣∣∣ Zxx(ω) Zxy(ω)
Zyx(ω) Zyy(ω)

∣∣∣∣ =

∣∣∣∣ Hx(ω)
Hy(ω)

∣∣∣∣
(1)

where ω is the angular frequency, (Ex, Ey) and (Hx, Hy) represent respec-
tively the electric and magnetic components in an orthogonal reference
and Z(ω) is the MT transfer function tensor. As a simple linear system,
the transfer function Z(ω) acts as a filter, while the magnetic and electric
fields represent the input and output respectively.
The apparent resistivity and phase is defined by the following equations:
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ρij(ω) =
1

µ0ω
|Zij(ω)|2

(2)

and

φij(ω) = tan−1 Im[Zij(ω)]

Re[Zij(ω)]

(3)

where µ0 is the permeability of the vacuum, Zij are the complex compo-
nents of the tensor defined in Eq. 1, with i, j = x or y.

3 The methods

Let f(x) be the probability density of a signal x. Its FIM I is given by

I =

∫ +∞

−∞

(
df(x)

dx

)2
dx

f(x)
.

(4)

The Shannon entropy is given by

HX = −
∫ +∞

−∞
f(x)log (f(x)) dx.

(5)

For convenience the alternative notion of Shannon entropy power will be
used

NX = − 1

2πe
e2HX .

(6)

The NX satisfies the so-called ’isoperimetric inequality,’ a lower bound
to the Fisher-Shannon product, given by INX1, in case of 1-dimensional
space. Theisoperimetric inequality indicates that the FIM and the Shannon
entropy power are intrinsically linked quantities; thus the analysis of the
time dynamic of signals should be improved when analyzed in the so called
Fisher-Shannon (FS) information plane, whose y- and x-axis are the FIM
and the Shannon entropy power, respectively. Vignat and Bercher (2003)
showed that examining simultaneously both the Shannon entropy power
and the FIM by means of the FS plane the characterization of the non-
stationary dynamics of complex signals could be improved. The product
INX can also be employed as a statistical measure of complexity (Angulo
et al., 2008). The line INX=1 separates the FS plane in two parts, of which
one is allowed (INX >1) and the other not (INX <1).
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FIGURE 1. FS Information plane for the MT parameters.

4 Results

We analyzed the informational properties of the daily time series of normal-
ized apparent Earth’s resistivity and phase calculated from the electromag-
netic field measured in Tramutola station, located in southern Italy, cor-
responding to 25 sounding periods (0.74473s, 0.93091s, 1.17029s, 1.46286s,
1.86182s, 2.40941s, 3.15077s, 4.096s, 5.28516s, 6.82667s, 8.62316s, 10.92267s,
13.65333s, 16.384s, 21.14064s, 27.30667s, 34.49263s, 43.69067s, 54.61333s,
65.536s, 84.56258s, 113.97565s, 154.20235s, 163.84s, 238.31273s). We in-
vestigated the two components of the magnetotelluric field (xy and yx).
We calculated the Shannon entropy power NX and the FIM I for all the
analyzed series with the increase of the sounding period T (which is re-
lated to the sounding depth). In order to identify particular pattern and
organization in the resistivity and phase, we analyzed their behavior in the
Fisher-Shannon (FS) information planes. Figure 1 shows the FS plane for
the analysed magnetotelluric parameters. The FS information plane shows
that: 1) the phases are well discriminated from the resistivities; 2) the re-
sistivities are characterized by lower organization and higher disorder than
the phases. The complexity measures INX for the resistivity (Figure 2)
and phases (Figure 3) were calculated. It is observed that in both cases
the complexity measure is the highest for two periods 5.28s and 6.82s. The
complexity pattern for the resistivity ρxy is approximately stable for all the
sounding periods, while that of ρyx changes significantly with the sounding
depth showing an abrupt increase starting from 34.49263s; both the com-
ponents, however, are characterized by a minimum in the range [8.62316s,
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FIGURE 2. Complexity measure for resitivities (a) and phases (b).

34.49263s]. The complexity pattern of both phases is approximately similar
for both directions, with a maximum at T=21.14s.

5 Conclusions

We studied the daily Earth’s magnetotelluric apparent resistivity and phase
in 25 sounding periods in a site in southern Italy by means of two information-
theoretic measures: the FS information plane and the complexity measure.
The series were calculated in directions xy and yx. It was observed that or-
der or organization and uncertainty generally decrease and increase respec-
tively as the sounding period (sounding depths) increases. Shannon entropy
is characterized by a minimum in the period range [1.86182s, 8.62316s]. In
this work, two different dynamics were found to drive resistivity fluctu-
ations in two different period band with a transition zone corresponding
more or less with the range[1.86182s, 8.62316s]. The phase presents a non
trivial relationship between the order or the uncertainty with the sounding
periods; the maximum (minimum) order degree (uncertainty degree) cor-
responds to sounding periods ranging around 10s. The higher regularity of
the resistivity respect to that of the phases is also shown in the FS plane,
in which the phases are less aligned than the resistivity. Our findings, al-
though still preliminary, would suggest that investigating the informational
properties of magnetotelluric parameters (apparent resistivity and phase)
could contribute to better understand the complex processes occurring in
the Earth’s crust.
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FIGURE 3. Complexity measure for resitivities (a) and phases (b).
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