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1 Introduction

Seaborne transportation has become the most important transportation mean for trade cargo. Approximately90% of
all non-bulk cargo is carried in container vessels. An important economical parameter for liner shipping companies
is to be able to stow their vessels fast. This not only saves port fees but also increases the buffer time in schedules
which saves bunker due to reduced speeds. For this reason, there has recently been an increasing interest in developing
stowage planning optimization algorithms that can providedecision support for human stowage coordinators. These
algorithms must also be fast, since stowage coordinators work under time pressure and may have to recompute plans
due to loadlist changes. The desire of our industrial collaborator within the liner shipping industry is to use at most 10
minutes of computation time.

A container vessel stowage plan assigns containers to slotson the vessel. It is hard to generate good stowage plans
manually since containers cannot be stacked freely due to global constraints like stability, stress forces, and many
interfering local rules for arranging containers in stacks.

Early work on stowage planning optimization has mainly focused on “flat” models that introduce a decision vari-
able for each possible slot assignment of the containers (e.g.,Botter and Brinati [1992], Giemesch and Jellinghaus
[2003]). None of these models scale beyond small feeder vessels of a few hundred 20-foot equivalent units (TEUs).
Approaches with some scalability are heuristic (e.g., Ambrosino et al. [2004], Avriel et al. [1998], Dubrovsky and Penn
[2002]), in particular by decomposing the problem hierarchically (e.g.,Ambrosino et al. [2006], Kang and Kim [2002],
Wilson and Roach [2000], Gumus et al. [2008], Ambrosino et al. [2009]). These hierarchically decompositions are
based on a natural two-level decomposition of the problem that follows the approach used by stowage coordinators.
At the first level, containers are assigned to locations (stowage areas in bays) such that the re-handling of containers
is minimized, crane utility in ports is maximized, and high-level constraints such as stability and stress requirements
of the vessel are satisfied. At the second level, each location is stowed independently by assigning the containers to
specific physical positions called slots such that stackingrules and intra location objectives are satisfied. Thus, forthe
decomposed methods, an important sub-problem is to stow a given set of containers into a location. Since modern
vessels typically are divided into more than 100 locations,these sub-problems must be solved within a few seconds in
order to solve the overall stowage planning problem in less than 10 minutes, unless heavy parallelization is used.

In this paper, we present the first accurate model of these sub-problems called theCSPUDLthat we have for-
mulated in collaboration with our industrial partner. We then introduce an Integer Programming (IP) and Constraint
Programming (CP) model for solving theCSPUDLto optimality. The CP model uses state-of-the-art modelling tech-
niques including multiple viewpoints, specific domain pruning rules, and dynamic lower bounds. The IP model is a
0-1 formulation where cuts are introduced to strengthen theLP relaxation.

It is to our knowledge the first time that modern CP modelling techniques have been applied to stowage planning,
and even though we are dealing with an optimization problem,which is typically not a type of problem where CP
techniques are applied, it turns out that our instances are solved faster with state-of-the-art CP software applied to our
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CP model than with state-of-the-art IP software applied to our IP model. Furthermore, our CP model has the advantage
that it is easy for industrial modelers to understand, maintain and extend.

In general, theCSPUDLis NP-Complete when stacks are uncapacitated Avriel et al. [2000], but our experimental
evaluation of the IP and CP models shows that these sub-problems often are very easy to solve in practice. We have
generated 236 test instances by re-stowing containers assigned to locations in real stowage plans used by our industrial
collaborator. 92% of the instances could be solved by using state-of-the-art CP software on our CP model within one
second.

The rest of the paper is organized as follows: Section 2 provides a definition of the problem that we address in this
paper. Section 4 gives a brief introduction to global constraint modelling. In Section 3 we give a detailed description
of our IP model, and in Section 5 we present our CP model. The experimental evaluation is presented in Section 6.
Related work is presented in Section 7, and finally Section 8 draws conclusions and discusses directions for future
work.

2 Container stowage

A container vessel is a ship that transports box formed containers on a fixed cyclic route. The cargo space in a vessel is
divided in sub-sections calledbays, each bay is divided into anover deckandunder deckpart by ahatch cover, which
is a flat, leak-proof structure that prevents the vessel fromtaking in water and allows containers to be stowed on top
of it (see Figure 1). An under deck stack, as depicted in the left picture of Figure 2, is composed of two Twenty-foot
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Figure 1: The arrangement of bays in a container vessel. The hatch cover is drawn as a thick line between the over
and under deck part of a bay.

Equivalent Unit (TEU) stacks and a Forty-foot Equivalent Unit (FEU) stack, holding vertically arrangedcells indexed
by tiers. Quay cranes at ports carry out the loading and unloading of containers inthe vessel, accessing only those
containers on top the of each stack at a time.

A location is a set of stacks that are either over or under deck. These stacks are not necessarily adjacent, but the
stacks are all either over or under deck. The left drawing of Figure 2 shows a typical arrangement of locations in a bay.
Each stack has a weight and height limit that must be satisfiedby the containers allocated there. Cells in stacks are
divided in twoslots, fore andaft. The aft slot refers to the position toward the stern on the vessel, while fore slots are
allocated on the bow side. Some slots have a power plug to provide electricity to containers in case their cargo needs
to be refrigerated. Such slots are calledreeferslots. Right picture of Figure 2 shows the structure of a stack.

A containeris a box in which goods are stored. Each container has a weight, height, length, and port where it
has to be unloaded (discharge port), and may need to be provided with electric power (reefer container). In an under
deck location, containers can be 20 or 40 feet long and 8’6” or9’6” high. Containers that are 9’6” high are called
high-cube containers. High-cube containers are 40 feet long. Each cell in a stack can hold one 40-foot container or
two 20-foot containers, but there may be some cells in the location that are limited to a single length. Container that
are already on board the vessel when the stowage plan is made are calledloaded containers. A container in a stack
is overstowinganother container in the stack if it is stowed above it and discharged at a later port. An overstowing
container is expensive, since it must be removed in order to discharge the overstowed container.

As described in the introduction, we investigate the sub-problem of stowing individual locations. Due to the very
large number of constraints and objectives involved in stowing containers in over and under deck locations, we focus
on under-deck locations and have formulated a representative problem called theCSPUDLfor stowing containers in
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Figure 2: Left: a front view of a vessel bay. There are four locations. Location 1 (3) consists of inner stacks under
(over) deck, while location 2 (4) consists of outer stacks ineach side. This arrangement makes it simpler to achieve
transverse stability when distributing containers to locations. Each stack consists of a set of cells where each cell is
divided into a fore (light grey) and aft slot (dark grey). Right: a side view of a partially loaded stack. Each power plug
represents a reefer slot. Reefer containers are drawn with electric cords.

under deck locations with our industrial collaborator. Ourfocus on under deck locations is mainly due to resource
limitations of our work. Over deck locations share most constraints and objectives with under deck locations, and
we expect similar computational results for these locations. TheCSPUDLcovers all constraint and objective classes
of the problem and we expect that it has a high correlation with the complete problem model in terms of solution
algorithm performance. Specifically, the CSPUDL includes stacking rules for 20 and 40-foot containers, FEU and
TEU stack overlapping, reefer containers, loaded containers, and weight and height constraints. The objectives include
overstowage and three rules of thumb used by stowage coordinators to achieve robustness. TheCSPUDLexcludes
break-bulk cargo, out-of-gauge containers, and odd slots (i.e., cells that can only hold a single 20-foot container). In
addition, we do not consider IMO and pallet-wide containerssince these are often placed in special locations.

TheCSPUDLis defined as follows. A feasible stowage plan for an under deck location must satisfy the following
constraints.

Assigned cells must form stacks (containers stand on top of each other in the
stacks. They can not hang in the air).

(1)

20-foot containers can not be stacked on top of 40-foot containers. (2)

A 20-foot reefer container must be placed in a reefer slot. A 40-foot reefer
container must be placed in a cell with at least one reefer slot, either Fore or
Aft.

(3)

The length constraint of a cell must be satisfied (some cells only hold 40 or
20-foot containers).

(4)

The sum of the heights and weights of the containers stowed ina stack are
within the stack limits.

(5)

All loaded containers must be stowed in their original slotsand they can not be
swapped to any other slots.

(6)

A cell must be either empty or with both slots occupied. (7)

Every stowage plan for a location that satisfies these constraints is valid, but since the problem we are solving here is
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to find the best stowage plan possible, a set of objectives is defined to evaluate the quality of the solutions.

Minimize overstows. A 100 unit cost is paid for each container overstowing
any containers below.

(8)

Avoid stacks where containers have many different discharge ports. A 20 unit
cost is paid for each discharge port included in a stack.

(9)

Keep stacks empty if possible. A 10 unit cost is paid for everynew stack used. (10)

Avoid loading non-reefer containers into reefer cells. A 5 unit cost is paid for
each non-reefer container stowed in a reefer cell.

(11)

The second, third, and fourth are rules of thumb of the shipping industry with respect to generating stowage plans
for downstream ports in the route of a vessel. Using as few stacks as possible increases the available space in a location
and reduces the possibility of overstowage in future ports,so does clustering containers with the same discharge port.
Minimizing the reefer objective allows more reefer containers to be loaded in future ports. The cost units reflect the
importance of each objective and has been defined by our industry partner.

3 The IP model

In this section we introduce the binary IP model formulated to solve theCSPUDL. Table 1 presents the constant values
and sets used in the model. Table 2 presents the variables of the model.

I Number of containers
J Number of stacks
D Number of discharge ports
Kj Number of cells in stackj
T Set of 20-foot containers
F Set of 40-foot containers
rjk Number of reefer plugs in cellk of stackj
Wj Weight limit of stackj in kilograms
Hj Height limit of stackj in meters
si Whether containeri is a 20-foot container
li Whether containeri is a 40-foot container
hi Height in meters of containeri
wi Weight in kilograms of containeri
ri Whether containeri is reefer
aid Whether containeri is unloaded at portd

Table 1: Constants and sequences in the IP model

Ojk ∈ {0, 1} Whether container stowed in cellk, stackj overstows container below
Pjd ∈ {0, 1} Whether there is at least one container in stackj being unloaded atd
Ej ∈ {0, 1} Whether stackj is being used
cjki ∈ {0, 1} Whether containeri is stowed in cellk, stackj
δjkd ∈ {0, 1} Whether a container below cellk, stackj is unloaded before portd

Table 2: Variables in the IP model

The first three sets of variables,O, P , andE, are used to represent the overstow (8), clustering (9), andfreestack
(10) objective of theCSPUDL. The fourth set of variables,c, represents the stowage plan, and the fifth set is introduced
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to model the overstowage objective. The IP model can then be defined as:

min θ = 100

J
∑

j=1

Kj
∑

k=1

Ojk + 20

J
∑

j=1

D
∑

d=2

Pjd + 10

J
∑

j=1

Ej

+ 5

J
∑

j=1

Kj
∑

k=1

((
1

2

∑

i∈T

cjki +
∑

i∈F

cjki)rjk −
I

∑

i=1

ricjki) (12)

s .t .

1

2

∑

i∈T

cj(k−1)i +
∑

i∈F

cj(k−1)i −
∑

i∈F

cjki ≥ 0 ∀j∀k (13)

∑

i∈T

cjki −
∑

i∈T

cj(k−1)i ≤ 0 ∀j∀k (14)

1

2

∑

i∈T

cjki +
∑

i∈F

cjki ≤ 1 ∀j∀k (15)

J
∑

j=1

Kj
∑

k=1

cjki = 1 ∀i (16)

∑

i′∈T

cjki′ ≥ 2cjki ∀j∀k∀i ∈ T (17)

I
∑

i=1

cjkiri ≤ rjk ∀j∀k (18)

Kj
∑

k=1

I
∑

i=1

cjkiwi ≤ Wj ∀j (19)

Kj
∑

k=1

I
∑

i=1

(
1

2
(cjkihisi) + cjkihili) ≤ Hj ∀j (20)

k−1
∑

k′=1

d−1
∑

d′=2

I
∑

i=1

aid′cjk′i − 2(k − 1)δjkd ≤ 0 ∀j∀k∀d (21)

aidcjki + δjkd −Ojk ≤ 1 ∀j∀k∀d∀i (22)

Ej − cjki ≥ 0 ∀j∀k∀i (23)

Pjd − aidcjki ≥ 0 ∀j∀k∀i∀d (24)

The objective function (12) is a weighted sum of the four objectives as defined in theCSPUDL. The first three
objectives are calculated straightforward since there arespecific variables in the model that account for them. The
fourth objective is calculated by determining the number ofcontainers stowed in slots with reefer plugs, and then
subtracting the number of containers that are actually reefers.

Inequality (13) ensures that the cell below a cell stowing a 40-foot container stows either 20 or 40-foot containers,
while inequality (14) ensures that a cell below a cell stowing 20-foot containers only stows 20-foot containers, since
20-foot containers can not be stowed on top of 40-foot containers (2). Inequality (15) requires that all cells stow
either two 20-foot or one 40-foot container. The fact that a container must be stowed in just one cell is modeled by
(16). Inequality (17) forces the number of 20-foot containers in a cell stowing a 20-foot container to be greater or
equal to two, since the two sides of a stack must be synchronized (7). The reefer capacity of a cell is constrained by
inequality (18), covering the fact that all reefer containers in a cell must be provided with a reefer plug each (3). The
weight and height limits of stacks (5) are ensured by (19) and(20), respectively. Inequalities (21) and (22) model the
overstowage objective, and inequalities (23) and (24) model the empty stack and clustering objective.
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3.0.1 Cuts

We focus on removing non-integer solutions allowed by the model by modifying inequality (21) used to define variable
δjkd. The model becomes stronger when this constraint is decomposed such that its semantics applies for each term
of the constraint

aid′cjk′i ≤ δjkd ∀j ∀k ∀d ∀i ∀k′ ∀d′ (25)

wherek′ ∈ {1, ..., k − 1} andd′ ∈ {2, ..., d− 1}. We then introduce cut (26) and (27) that sum over all containers
instead of only considering one container at the time, extending the number of left hand side terms from (25) and
making the cut stronger. Two constraints are considered since two 20-foot containers can be stowed in a cell. Cut (28)
adds terms to the left hand side of (25) by summing over all cells below a cellk instead of over all containers. The
cuts are defined by:

1

2

∑

i∈T ′

cjk′i ≤ δjkd ∀j∀k∀d∀k′ (26)

∑

i∈F ′

cjk′i ≤ δjkd ∀j∀k∀d∀k′ (27)

k−1
∑

k′=1

aid′cjk′i ≤ δjkd ∀j∀k∀i∀d∀d′ (28)

wherek′ ∈ {2, ..., d− 1}, d′ ∈ 2, ..., d− 1, andT ′ andF ′ are the set of 20 and 40-foot containers with discharge port
earlier thand, respectively.

4 Global constraint modeling

A Constraint Satisfaction Problem (CSP) is a triple(X,D,C) whereX is a set of variables,D is a mapping of
variables to finite sets of integer values, withD(x) representing the domain ofx ∈ X andD(X) = Πx∈XD(x) being
the Cartesian product of domains, andC is a set of constraints. Eachc ∈ C is defined over a sequenceX ′ ⊆ X as a
subset of allowed combinations ofD(X ′). A solution to a CSP is a complete assignment that maps every variable to
a value in its domain that satisfies all constraints inC.

Constraint programming (CP) is a relatively new technique that combines local consistency algorithms with search.
The process of removing inconsistent values from the domainof the variables is calledpropagation. A depth-first
backtracking search explores the search space of the problem incrementally extending apartial solutionby selecting
unassigned variables fromX and assigning them to values from their domains. This selection process is called
branching, and a strategy to select variables and values following a specific criteria is called abranching strategy.
Propagation is executed every time a new branching is generated. If the domain of each variable has been reduced
to a single value, the CP solver has found a solution to the CSP. For a partial solution, we refer to the minimum and
maximum value of the domain of variablex asx andx, respectively.

In order to find optimal solutions to a CSP, a cost function is defined to evaluate solutions. Abranch and bound
approach is followed, where every time a new solution is found a constraint is posted for the remaining part of the
search space such that new solutions always have lower cost values than the previous ones.

Constraints in CP share information through the variables in X . Each constraint has a scopeX ′ ⊂ X , relatively
small compare to the size ofX , limiting its reasoning power.Global constraintshave been introduced to overcome
this. A global constraint groups together a set of small constraints capturing tractable structures for global propagation.
Below is a brief description of the global constraints used in our CP model.

Let y be an integer variable,z a variable with finite domain, andc an array of variables or constants, i.e.,c =
[x1, ..., xn]. The element constraintHentenryck and Carrillon [1988] states thatz is equal to they-th variable or
constant inc, or z = xy.

element(y, z, c) =

{(e, f, d1, ..., dn) | e ∈ D(y), f ∈ D(z), ∀i.di ∈ D(xi), f = de}
(29)

6



Let M = (Q,Σ, δ, q0, F ) be a deterministic finite automaton or a regular expression recognizing the strings in the
languageL(M), and letX = {x1, ..., xn} be a set of variables withD(xi) ⊆ Σ for 1 ≤ i ≤ n. Then theregular
constraintPesant [2004] is defined as

regular(X,M) = {(d1, ..., dn) | ∀i.di ∈ D(xi), d1...dn ∈ L(M)}. (30)

Let N andV be two integer values, andX = {x1, ..., xm} a set of finite domain variables. Theexactly constraint
ensures that exactlyN variables inX are assigned to valueV .

exactly(N,X, V ) = {(d1, ..., dm)|∀i.di ∈ D(xi), |{di|di = V }| = N} (31)

Let X = {x1, ..., xn} andY = {y1, ..., yn} be two sets of finite domain variables with domainsD(X) = D(Y ) =
{1, ..., n}. Thechanneling constraintstates that a valuej assigned to a variablexi ∈ X represents the index of the
variableyj ∈ Y that has been assigned valuei from its domain. More specifically

channeling(X,Y ) = {(dx1, ..., dxn, dy1, ..., dyn)|

∀i, j . dxi ∈ D(xi), dyj ∈ D(yj), dxi = j ⇔ dyj = i}.
(32)

A channeling constraint is used to increase the reasoning power of the model by using several isomorphic variable sets
(also known asviewpointsSmith [2006]). IfX is variables representing positions with boxes{1, . . . , n} as domains
andY is variables representing boxes with positions{1, . . . , n} as domains then clearly a channeling constraint will
link them consistently together. In particular, notice that the channeling constraint embeds thealldifferent constraint
that in our example ensures that a position only can hold one box and vice versa.

5 The CP Model

Table 3 presents the index sets and constants of our CP model.All index sets are integer subsets. The stack in the left
most part of the location has the lowest index inStacks. Indices inSlots are assigned to physical slots as follows. For
each cell, the aft and fore slots have consecutive indices. The slot indices in each stack are ordered bottom-up and the
slot indices between stacks are ordered from left to right inthe location. According to this, the aft and fore slots at the
bottom of the left most stack will be assigned to ids 1 and 2, respectively, and the aft and fore slots in the next cell of
the same stack to ids 3 and 4. The aft and fore bottom slots of the next stack are then assigned to idsk + 1 andk + 2,
wherek is the number of slots in the left most stack. We haveSlotsk = SlotsFk ∪ SlotsAk . We havePOD i < PODj

iff the vessel calls the discharge port of containeri before the discharge port of containerj. The set ofblocked slots
are slots that are unavailable due to the physical structureof the vessel like the two slots in stack 1 and tier 3 over deck
in the left drawing of Figure 2. The blocked slots are defined by SlotsB .

In our model, the decision variables represent the stowage plan for a set of preselected containers to stow (solution).
We consider two possible representations. The first one defines a decision variable for each container inCont to stow,
and as domain of the variables the slots inSlots. The second one defines a decision variable for each slot inSlots , and
as domain of the variables the set of containers inCont to be stowed.

We include the two sets of decision variables mentioned above as keystones for two different viewpoints in our CP
model. To efficiently link the two viewpoints a channeling constraint (32) is posted in the combined model, such that
both viewpoints contain the same information all the time. The current formulation of the problem, however, does not
allow a straightforward use of this constraint since in mostof the cases the number of slots is larger than the number
of containers, which breaks an important precondition of the channeling constraint. To tackle this issue, we modify
the original definition of the problem by extending the number of containers with artificial containers to match the
number of slots. First, since a 40-foot container occupies two 20-foot slots, all 40-foot containers are split into two
smaller containers,Aft40 andFore40 , of the size of a slot each. All 40-foot containers fromCont andCont40 are
replaced byAft40 andFore40 containers. We defineCont40A andCont40F to be the indices ofAft40 andFore40
containers, respectively.Cont40A andCont40F have the same cardinality, andCont40Ai andCont40Fi represent the
40-foot containeri. Virtual containers, ContV , that will be stowed in slots meant to remain empty are also added,
together withblocking containers, ContB, that will be allocated in the blocked slots of the location.In the remainder
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Stacks Stack index set
Slots Slot index set
Cont Container index set
Slots{A,F} Aft (A) and Fore (F ) slots
Slotsk Slots of stackk

Slots
{A,F}
k Aft (A) and Fore(F ) slots of stackk

Slots{R,¬R} Reefer (R) and non-reefer (¬R) slots
Slots¬RC Slots in cells with no reefer plugs
Slots{B ,20 ,40} Blocked (B), 20 (20), and 40-foot (40) capacity slots
Cont{V ,B ,L} Virtual (V ), blocking (B), and loaded containers (L)
Cont{20 ,40} 20 (20) and 40-foot (40) containers
Cont40{A,F} Aft40 (F ), Fore40 (A) 40-foot containers
Cont{20R,40R} 20-foot (20R) and 40-foot (40R) reefer containers
Cont¬R Non-reefer 20 and 40-foot containers
Weight i Weight of containeri
POD i Discharge port of containeri
Lengthi Length of containeri
Height i Height of containeri
ContP=p Number of containers with discharge portp
ContW=w,H=h Number of containers with weightw and heighth
Cont{NC ,HC} Number of normal (NC ) and high-cube (HC ) containers

stack
{w,h}
k h=height,w=weight physical limit of stackk

Classes Possible classifications of stacks according to their features
classi Set of stacks of classi

Table 3: Index sets and constants of the CP model.

of the paperCont will refer to this extended set of containers. Finally,Cont¬R is defined as the set of non-reefer
containers that are neither virtual nor blocking containers. Table 4 summarizes the variables in the CP model. In
addition to the two sets of decision variables previously defined, extra sets of auxiliary variables are defined in order
to facilitate the modeling of the constraints and objectives. The objectives of the CP model are given by:

Ov =
∑

i∈SlotsA

ov(i) (33)

Ou =
∑

i∈Stacks

(

(
∑

j∈Slotsi

pj) > 0
)

(34)

Op =
∑

i∈Stacks

(

(
∑

ρ∈POD

(
∑

j∈Slotsi

(pj = ρ))) > 0
)

(35)

Or =
∑

i∈SlotsR

(si ∈ Cont¬R) (36)

O = 100Ov + 20Op + 10Ou + 5Or (37)

Objective (33) calculates the total number of overstows. Inorder to do so, letov : SlotsA → {0, 1, 2} denote the
number of overstowing containers in a cell represented by its aft slot. We have

ov (i) =















2 if si ∈ Cont20 ∧ pi > minP(be(i)) ∧ pi+1 > minP(be(i))
1 if si ∈ Cont40 ∧ pi > minP(be(i))∨

si ∈ Cont20 ∧ (pi > minP(be(i))⊕ pi+1 > minP(be(i)))
0 otherwise
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C = 〈c1, . . . , c|Cont|〉 ci ∈ Slots is the slot index of containeri
S = 〈s1, . . . , s|Slots|〉 sj ∈ Conts is the container index of slotj
L = 〈l1, . . . , l|Slots|〉 lj ∈ Length is the length of the container stowed in slotj
H = 〈h1, . . . , h|Slots|〉 hj ∈ Height is the height of the container stowed in slotj
W = 〈w1, . . . , w|Slots|〉 wj ∈ Weight is the weight of the container stowed in slotj
P = 〈p1, . . . , p|Slots|〉 pj ∈ POD is the POD of the container stowed in slotj

HS = 〈hs1, . . . , hs |Stacks|〉 hsk ∈ {0, ..., stackhk} is the current height of stackk

Lengths
{A,F}
k Aft (A) and Fore (F ) variables ofL for stackk

CV ∈ C Virtual containers
SE
k ∈ S Slots with the same features in stackk

Dk ∈ {0, ..., |POD|} Number of different discharge ports in stackk
Ov ∈ {0, ..., |Conts|} Number of overstowing containers
Ou ∈ {1, ..., |Stacks|} Number of used stacks
Op ∈ {1, ..., |Stacks| ∗ |POD |} Total number of different discharge ports in each stack
Or ∈ {0, ..., |SlotsR|} Number of non-reefer containers stowed in reefer cells
O ∈ {0, ...,∞} Solution cost variable

Table 4: Variables of the CP model.

wherebe : Slots → 2Slots associates a slot with the set of slots in the same stack that are below it,minP : 2Slots →
POD is the earliest discharge port among the containers allocated in a set of slots, and⊕ denotes the exclusive or
Boolean operator. The empty stack objective (10), is represented by (34). The smallest discharge port index,0, is
assigned to virtual and blocking containers, thus, when a stacki is empty, the sum of the values assigned to the subset
of P variables ini is 0, otherwise the stack is being used. Objective (35) calculates the number of different discharge
ports of containers stowed in each stack and objective (36) counts the number of non-reefer containers stowed in reefer
slots. Objective (37) defines the cost function of theCSPUDL. The branch and bound algorithm applied to solve this
problem constrains the cost variableO of the next solution to be lower than the cost of the solution with lowest cost
found so far. The constraints of the CP model are given by:
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channeling(C, S) (38)

cj = ck + 1, ∀i ∈ {1, ..., |Cont40F |}, j = Cont40Fi , k = Cont40Ai (39)

element(si, ti,Length), ∀i ∈ Slots (40)

element(si, hi,Height), ∀i ∈ Slots (41)

element(si, wi,Weight), ∀i ∈ Slots (42)

element(si, pi,POD), ∀i ∈ Slots (43)

si ∈ ContB, ∀i ∈ SlotsB (44)

spos(j) = j, ∀j ∈ ContL (45)

regular(Lengthπ
i , R), π ∈ {A,F}, ∀i ∈ Stacks (46)

si 6∈ Cont20R, ∀i ∈ Slots¬R (47)

si 6∈ Cont40R, ∀i ∈ Slots¬RC (48)

si ∈ Cont20, ∀i ∈ Slots20 (49)

si ∈ Cont40, ∀i ∈ Slots40 (50)
∑

j∈Slotsπ
i

hj ≤ hs i, π ∈ {A,F}, ∀i ∈ Stacks (51)

∑

j∈Slotsi

wj ≤ stackw
i , ∀i ∈ Stacks (52)

Constraint (38) connects the two viewpoints such that both sets of variablesC andS have the same level of infor-
mation all the time. Constraint (39) guarantees that eachAft40 andFore40 container representing the same 40-foot
container are stowed in the same cell. Element constraints (29) are posted to bind all auxiliary variables introduced
to the model to a viewpoint. Constraints (40) , (41), (42), and (43) bind each slot variable to the auxiliary variables
representing the length, height, weight and discharge portof the container stowed in such slot, i. e., in the case of
constraint (40), the element constraints representLengthsi

= li, ∀i ∈ Slots . Blockedslots are restricted to stow just
Blockedcontainers by constraint (44), andLoadedcontainers are stowed in their pre-defined slots by constraint (45),
wherepos : ContL → Slots is a function that associates loaded containers with the slots they occupy. The valid pat-
terns that containers stowed in stacks must follow according to their length are defined by (1) and (2). After assigning
a length of -1 and 0 to blocked and virtual containers, respectively, we define a regular expressionR = −1∗20∗40∗0∗

that recognizes all the valid patterns length wise according to these two constraints. Constraint (46) introduces a reg-
ular constraint (30) for each aft and fore stack in order to restrict their stacking patterns to follow those defined byR.
Constraints (47) and (48) model the reefer constraint (3). Constraint (47) removes 20-foot reefer containers from the
domain of non-reefer slots, whilst for the 40-foot reefer containers, constraint (48) removes 40-foot reefer containers
from cells where neither aft nor fore slots are reefer slots.Constraints (49) and (50) restrict the domains of slots that
just have 20 or 40-foot container capacity to be within the set of 20 and 40-foot containers, respectively. The height
limit of each stack in the location is constrained by (51). All containers stowed in each side of a stack must be less or
equal to the variable representing the height limit of the stack1. Constraint (52) restricts the weight of all containers
stowed in a stack to be within the limits.

5.1 Symmetry-breaking and implied constraints

We introduce a set of constraints to the CP model that aim at reducing the size of the search space of the problem.
These constraints do not represent any new features of theCSPUDL, but instead they improve the reasoning power of

1TheHS variables are not necessary to define the height constraint but play an important role in the height constraint lower bound introduced
in Section 5.3.
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the solver by exploiting the different combinatorial structures of the model and making explicit restrictions introduced
to the problem also in our model.

exactly(V , 0, |ContV |+ |ContB|), ∀V ∈ {P,W,H} (53)

exactly(P, p, ContP=p), ∀ p ∈ POD (54)

exactly(W,w,ContW=w), ∀w ∈ Weights (55)

exactly(H,Hα, Contα), ∀α ∈ {N,HC} (56)

hj = hk, ∀ i ∈ Stacks , ∀j,k. j ∈ SlotsAi ∧ k ∈ SlotsFi ∧ same(j, k) (57)

sort(CV ) (58)

si 6∈ Cont40A, ∀ i ∈ SlotF (59)

si 6∈ Cont40F , ∀ i ∈ SlotA (60)

sj ≤ sk, ∀ i ∈ Stacks , ∀j,k. j ∈ SlotsAi ∧ k ∈ SlotsFi ∧ equal(j, k) (61)

sort(SE
i ), ∀ i ∈ Stacks (62)

lex(classi), ∀ i ∈ Classes (63)

Constraints (53), (54), (55), and (56) are implied constraints meant to improve the propagation power of the
solver with respect to the auxiliary variablesP , W , andH . Each individual auxiliary variablezi is linked to a slot
variablesi with an element constraint. This ensures correctness but leads to weak propagation between the two set of
variables due to a lack of global perspective by the element constraints. To improve this, we first assign to the weight,
height, and discharge port of virtual and blocking containers the value zero. Since these containers are not suppose to
affect total height, weight, or overstowage of each stack. Then, constraint (53) limits the number of variables set to
zero fromP , W , andH to be the exact sum of blocked and virtual containers. Additionally, constraints (54), (55),
and (56) restrict the number of variables fromP , W , andH assigned to each possible discharge port, weight or
height to match the total number of containers with such feature, respectively. Since a cell must be either empty
or with its two slots occupied (7), and there are no 20-foot high-cube containers according to the definition of our
problem, constraint (57) is posted to limit the height of twoslots in the same cell to have the same height. A function
same : Slots × Slots → {true, false} that associates pairs of slots to the Boolean value true whenthey belong to
the same cell is defined.

The weight of the containers make each of them almost unique,limiting the possibility of applying symmetry
breaking constraints. It is possible, however, to break some of the symmetries introduced into the problem by our
model. First, since all virtual containers have the same features, it is not relevant where each container is stowed.
Constraint (58) posts a sorting constraint over the virtualcontainers, forcing the slots where these containers will
be stowed to follow a non-decreasing order, removing symmetrical solutions generated by swapping them. Second,
splitting up all 40-foot containers into two smaller containersAft40 andFore40 also generates symmetrical solutions
that are broken by constraint (59) and (60). Third, constraint (61) limits the possibility of swapping containers between
two slots of a cell that have the same features. A functionequal : Slots × Slots → {true, false} similar to function
same defined above associates pairs of slots to the Boolean value true when they belong to the same cell and have
the same features, i.e., same reefer plug and length restrictions. Fourth, when all containers have the same discharge
port, symmetrical solutions are generated by swapping containers stowed in slots with the same features within the
same stack. Constraint (62) sorts in a non-decreasing orderthe indices of the containers stowed in slots with the same
feature for each stack of the location. It is necessary, however, to assign indices to containers in a fixed way in order
to avoid conflicts between this constraint and the one that constrains stacking patterns (46). 20-foot containers will be
assigned a lower index than 40-foot containers, and virtualcontainers will have the highest index possible. Finally,
the possible symmetries between stacks with identical characteristics are considered. Stacks are classified according
to their features: slot capacity, reefer capacity, height and weight limit. Constraint (63) avoids symmetrical solutions
generated by the containers stowed in similar stacks being swapped with each other by requiring a lexicographical
ordering on the container indices of the containers stowed in these stacks. This constraint works as follows: let
Stack1={s1, s2, s3} andStack2 = {s4, s5, s6} be two stacks with the same features. A complete assignmentA1 =
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{s1 = 1, s2 = 2, s3 = 3, s4 = 4, s5 = 5, s6 = 6} is symmetrical toA2 = {s1 = 4, s2 = 5, s3 = 6, s4 = 1, s5 = 2,
s6 = 3}, sinceA2 is generated by swapping containers from slots at the same tier level inStack1 andStack2. The
lexical order constraint between stacksStack1 andStack2 will rule out assignmentA2, since(4, 5, 6) 6<d (1, 2, 3).

5.2 Branching strategies

Our branching takes advantage of the structure of the model and uses the sets of different auxiliary variables in
order to find high-quality solutions early in the search. To do so, we decompose the branching process into four
sub-branchings: the first one focuses on finding high-quality solutions, the second and third on feasibility of two
problematic constraints, and the fourth finds a valid assignment for the decision variablesS. In the case of the first
sub-branching, since three of the four objectives of theCSPUDL rely on the discharge port of the containers stowed
in the slots of the location, we start by branching over the set of discharge port variablesP and prefer to assign slots
with a container that favors the clustering and overstowageobjectives among the first free slots bottom-up of all stacks.
First we determine the discharge ports of the containers already stowed in each stack. Then, when possible, we select
a slot with a container in its domain that has a discharge portthat has been previously used in the same stack as the
slot, in order to avoid increasing the pure stack and overstowage objectives. If it is not possible to find such slot, a
slot with a container in its domain having a discharge port less or equal to the one stowed in the slot right beneath is
selected, reducing the probability of overstowage. The slots from stacks already used are considered first to reduce
the used stack objective. When it is necessary to select a slot from an empty stack, the farthest discharge port possible
for the slot is selected. The stacks are considered in a non-increasing order according to their available slots. After
assigning all variables inP , we branch over the height and weight variables,H andW . We start by branching overH
following a best-fit decreasing approach, stowing a container with heighth into the first slot bottom-up in the stack.
ForW we follow the same approach as withH , but the best fit is considered to be the stack with the greatest amount
of free weight. Finally, we branch overS in order to generate a concrete stowage plan after the discharge port, height,
and weight of the containers to be stowed in each slot have been decided. Slots from stacks are selected bottom-up,
choosing the container with the smallest index from the domain of the variables. The domain size of variables inP are
considerably smaller than that of any of the viewpoints, making the process of finding valid assignments forP easier.
Once a valid stowage plan is found, most of the time the searchalgorithm backtracks directly to theP variables in order
to find solutions with a better objective value. Therefore, alarge part of the search process concentrates on a much
smaller sub-problem. It only branches over the remaining variables when a solution with a better objective value is
likely to be found. Additionally, this decomposition of thebranching allows us to introduce a new symmetry-breaking
constraint. After the first branching has finished dischargeports have been assigned to all slots in the location. It is
possible then to generate symmetrical solutions by swapping containers with the same discharge port within the same
stack stowed in slots with the same features. A sorting constraint over each sub-set of slots within a stack with the
same features and discharge port is posted to break this symmetry.

5.3 Lower bounds

Five domain pruning rules are defined over partial solutions. Each rule solves a relaxed version of a sub-problem
related to an objective or a constraint, generating lower bounds for their corresponding objectives and pruning values
from the domain of the variables in the scope of the rule.

Overstowage. To calculate a lower bound on the overstowage of a partial solution ρ, we define a new function
minP (X) = mini∈X(pi|pi ∈ P ) that considers the upper boundpi of each variablepi ∈ P . We then define a lower
boundovρ(i) of ov (i) for any completion ofρ as

ovρ(i) =



















2 if si ∈ Cont20 ∧ p
i
> minP (be(i)) ∧ p

i+1
> minP (be(i))

1 if si ∈ Cont40 ∧ p
i
> minP (be(i))∨

si ∈ Cont20 ∧ (p
i
> minP (be(i))⊕ p

i+1
> minP (be(i)))

0 otherwise

Proposition 5.1. ov(i) ≥ ovρ(i) for any completion ofρ.
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Proof. Assume by contradictionovρ(i) = 2 for some celli, but there exists a completion ofρ whereov(i) = 1. Since
ovρ(i) = 2 we have thatp

i
> minP (be(i)) ∧ p

i+1
> minP (be(i)) but this implies thatpi > minP(be(i)) ∧ pi+1 >

minP(be(i)) for any completion ofρ which means thatov (i) = 2 for any completion ofρ which is impossible. The
remaining cases can be shown in a similar fashion.

The pruning effect of the lower bound is achieved by adding the constraintOv ≥
∑

i∈SlotsA ovρ(i). An additional
pruning rule can be applied when the domain ofOv has been reduced to a single value that is equal to the lower
bound. In this situation we can enforce that containers below a cell that has been identified by the lower bound to be
non-overstowing actually are so

|D(Ov)| = 1 ∧
∑

iSlotsA

ovρ(i) = Ov →

∀i,j . i ∈ {k|k ∈ Slots ∧ ovρ(k) = 0} ∧ j ∈ be(i) ∧ pi ≤ pj.

This rule plays an important role in situations where the value ofOv has been determine by some constraint other
than the overstowage constraint, e.g., a linear constraintthat calculates the total objective value of a stowage plan.

Empty stack. In the remainder, we call a containeri unstowedwhen the domain ofci has not been reduced to a
single slot yet|D(ci)| > 1. For the empty stack lower bound, a relaxation of the stowageproblem is solved, where the
height capacity of the stacks is the only constraint considered and all unstowed and non-virtual containers,ContNρ =

{i|i ∈ Cont , |D(ci)| > 1 , i 6∈ ContV }, are accounted as normal height containers. We first consider the used
stacks ofρ where there are containers already stowed, defined asStacksUρ = {i ∈ Stacks | ∃j ∈ Stacks i, |D(sj)| =

1, sj 6∈ ContB∪ContV }. The lower bound procedure stows as many containers as possible fromContNp in StacksUρ ,
such that the height capacity constraint is fulfilled. Once the used stacks are completely filled up, the empty stacks
StacksEρ = Stacks \ StacksUρ are sorted in decreasing order by height capacity and filled up following this order with

the remaining containers ofContNρ . The number of used stacksLu
ρ is then the sum of used stacks|StacksUρ | plus

the empty stacks necessary to stow all remaining containersin ContNp . Lu
ρ is a lower bound of the number of used

stacks of any completion ofρ since the approach to solve the relaxed problem clearly is optimal. Since the height of
all containers inContNp have been reduced to the normal height, the order of stowing is irrelevant and leads to the
largest number of additional containers stowed in used stacks inρ. Since the empty stacks are filled in order of largest
capacity first and the order of allocation again is irrelevant, the fewest possible number of empty stacks are being used.
The pruning effect of the lower bound is achieved by adding the constraintOu ≥ Lu

ρ .
Pure stack. As with the used stack lower bound, a relaxed assignment problem is solved considering just the height

capacity constraint and all containers not yet stowed as normal height containers. First, we introduce an alternative
definition of the pure stack objective. LetQi = |{s ∈ Stacks | ∃j ∈ Stackss . pj = i}| be the number of stacks where
at least one container with discharge porti is stowed. We can express the pure stack objective asOp =

∑

i∈POD Qi.

For this definition of the pure stack objective, we introducea lower bound for a partial solutionρ. LetContN,P=i
ρ be

the set of unstowed containers inρ with discharge porti, StacksP=i
ρ be the set of stacks stowing at least one container

with discharge porti, andStacks¬P=i
ρ = Stacks \ StacksP=i

ρ be the set of stacks where no container with discharge
port i is allocated. Our goal is to generate a lower bound,Lp

ρ(i) independently for eachQi, based on the approach
followed to generate lower bounds for the used stacks objective. To computeLp

ρ(i) for somei ∈ POD and partial

solutionρ, we solve a relaxed allocation problem where only containers inContN,P=i
ρ are stowed. When a container

from ContN,P=i
ρ is stowed in a stackStacksP=i no penalty is paid. On the contrary, if such container is stowed in a

stackStacks¬P=i, a penalty must be paid. This situation resembles the one from the used stacks objective. We have
a set of stacks where containers can be allocated without paying any penalty and a set of stacks where the containers
must pay a penalty for being allocated. Our lower bound aims at using as few stacks as possible from the set of stacks
Stacks¬P=i where a penalty must be paid.

Thus, by treatingStacksP=i
ρ asStacksUρ , Stacks¬P=i

ρ asStacksVρ , andContN,P=i
ρ asContNρ and following

the allocation approach for the used stacks objective, we get an optimal solution to the relaxed problem such that
Qi ≥ Lp

ρ(i). The pruning effect of the lower bound is achieved by adding the constraintOp ≥
∑

i∈POD Lp
ρ(i).

ReeferA lower boundLr
ρ for the reefer objective of a partial solutionρ can be deduced from a counting argument.

LetS¬R
ρ = |{i ∈ SlotsR |D(si) = 1, si /∈ ContR}| denote the number of reefer slots stowing a non-reefer container
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in ρ. Clearly,Or ≥ S¬R
ρ for any completion ofρ. We tighten the lower bound of the reefer objective by considering

the unstowed reefer containers and the reefer slots with more than one container in their domain that will not stow a
virtual container. LetCR

ρ = |{i ∈ (Cont40R∩Cont40A)∪Cont20R | |D(ci)| > 1}| denote the number of unstowed
reefer containers inρ (we only count the aft part of a 40-foot container reefer to avoid counting the container twice).
Further, letSUR

ρ = |{i ∈ SlotsR | |D(si)| > 1, D(si) ∩ ContV = ∅}| be the reefer slots where no virtual container
will be stowed. IfSUR

ρ > CR
ρ then at leastSUR

ρ −CR
ρ extra reefer slots will stow non-reefer containers. Thus, we can

tightenLr
ρ as follows

Lr
ρ =

{

SUR
ρ − CR

ρ + S¬R
ρ : if SUR

ρ > CR
ρ

S¬R
ρ : otherwise

The pruning effect of the lower bound is achieved as usual by adding the constraintOr ≥ Lr
ρ.

Height. The domains of auxiliary variables from sequencesH andHS are tightened, and some conditions neces-
sary for a partial solution to be viable are checked by solving three relaxed problems. First, the number of normal and
high-cube containers that can possibly be stowed in the remaining free space of each stack is calculated. A stackj of
some partial solutionρ has free heighthρ(j) = hsj −hs

j, wherehs
j denote the height of the stowed containers in stack

j. LetMN
ρ (j) andMHC

ρ (j) denote the maximum number of normal and high-cube containers that can be placed in
stackj, respectively. We then have

MN
ρ (j) = ⌊hρ(j)/h(N)⌋,

MHC
ρ (j) = ⌊hρ(j)/h(HC )⌋,

whereh(N) andh(HC ) denote the height of normal and high-cube containers. LetCN
ρ andCHC

ρ denote the number
of unassigned normal and high-cube containers ofρ, respectively. Then, all possible stowage plans generatedfrom
partial solutionρ must satisfy

∑

j∈Stacks

MN
ρ (j) ≥ CN

ρ ∧
∑

j∈Stacks

MHC
ρ (j) ≥ CHC

ρ .

Since containers cannot hang in the air, they must be stowed consecutively, bottom-up in all stacks. Therefore, when
the sum of the height of containers stowed below tiern equals tohsj , slots above tiern will not stow real containers.
We stow virtual containers in slots of stackj that are above its height upper boundhsj . In the cases where the height
of the container to be stowed in a slot is not known yet, it is assumed that the container will have normal height, since
this generates an upper bound in the number of slots used in stackj. Additionally, the virtual containers are removed
from slots that are belowhsj , since these slots must stow real containers. Now we proceedto updatehsj . Clear, we
can apply the bin packing propagator suggested by Paul [2004]

hsj ≥
∑

i∈Cont

Heighti −
∑

i∈Stacks\{j}

hs i, ∀j ∈ Stacks .

6 Experiments

236CSPUDLinstances have been derived from stowage plans provided by our industrial collaborator. Each instance
corresponds to restowing a random location in one of these plans. Since the plans have been applied in real life, we
can assume that the distribution of instances corresponds to what any hierarchical stowage planning system has to
handle well when solving the low-level problem of assigningcontainers to slots in locations. To investigate the impact
of different features of the instances, we have partitionedthem into the classes shown in Table 5. All the experiments
were run on a Linux machine with two Quad Core Opteron processors at 1.7 GHz and 8 GB of memory. The CP and
IP model were implemented in Gecode 3.3 Gecode Team [2006] and CPLEX 12.1, respectively.

6.1 Impact of CP enhancements

Here we analyze the impact of the different enhancements of the CP model introduced in Section 5. We define four CP
models. Thebasicmodel includes only the constraints and objectives of theCSPUDL(33 - 52). A simple branching
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Class 40’ 20’ Reefer HC DSP> 1 # Inst.

1 * 13
2 * 22
3 * * 13
4 * * 78
5 * * * 36
6 * * * 15
7 * * * * 14
8 * * * 14
9 * * * * 16
10 * * * * 8
11 * * * * * 6

Table 5: Grouping of Instances. The first column is the group index. Column 2, 3, 4, 5, and 6 define the characteristics
of the group instances in terms of the presence of 40’, 20’, reefer, and high-cube containers and whether more than
one discharge port is represented. Column 7 is the number of instances in the group.

strategy is used in this model, where the stacks are filled up bottom-up from left to right and the container with
the smallest index in the domain of the slot variable to be branched on is stowed in the slot. Theimprovedmodel
includes the symmetry-breaking and implied constraints from Section 5.1. Its branching strategy is similar to thebasic
model, but additionally, the containers are assigned indices based on their features to avoid conflicts with some of the
new constraints introduced. Finally, thebranchingandadvancedmodels include the tailor-made branching strategy
introduced in Section 5.2 and the lower bounds of Section 5.3, respectively.

SinceCSPUDL instances must be solved fast, we set a runtime limit of one second. The solver can return an
optimal solution before that, but after one second it must return its current solution. The results are summarised in
table 6. As expected, the total number of instances solved and proven optimal increases for each extension of the basic

Class Basic Improved Branching Advanced
sol opt sol opt sol opt sol opt all

1 13 9 13 11 13 13 13 13 13
2 19 12 18 11 20 19 20 20 18
3 12 8 12 9 13 13 13 13 12
4 64 9 65 48 75 70 75 74 58
5 19 4 25 16 32 27 33 31 13
6 12 1 14 6 15 14 15 14 12
7 10 0 9 2 9 4 9 8 5
8 11 2 11 4 13 13 13 13 7
9 13 3 11 2 13 8 13 13 8
10 5 1 7 3 8 5 8 8 6
11 4 1 5 2 5 4 5 5 4

Total 182 50 190 114 216 190 217 212 156

Table 6: Number of instances solved and proven to optimalityby the CP models. The last column is the number of
instances solved by all four models.

model. A more careful inspection of the table shows that thisdoes not apply to all classes individually, but overall the
impact of the model improvements are quite similar for each class.

We use the subset of 156 instances solved by all four CP modelsto compare their runtime and optimality charac-
teristics. The left graph of Figure 3, shows the runtime of the models for each instance. We have sorted the instances
such that the expected runtime dominance between the modelsis clearly observable. This dominance is also reflected
in the total runtime for the 156 instances which was 110.75, 58.98., 22.45, and 9.45 seconds for the basic, improved,
branching, and advanced model, respectively. The right graph shows the optimality gap of 39 out of the 156 instances
that at least one model solved suboptimally. Again, we have sorted the instances to highlight a quite robust optimality
dominance between the models. An investigation of the runtime and optimality characteristics of each instance class
did not show any significant difference.
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Figure 3: Runtime (left) and optimality dominance (right) of the four CP models.

6.2 Comparing the performance of our IP and CP models

In this section we compare the performance of the IP and CP model using a one second and 10 seconds runtime
limit. Table 7 summarizes the performance of the models overthe instance classes. For the one second time limit

Class both IP CP none
1 13 0 0 0
2 13 1 7 1
3 7 0 6 0
4 67 1 8 2
5 11 0 22 3
6 15 0 0 0
7 4 0 5 5
8 7 1 6 0
9 6 0 7 4
10 7 0 1 0
11 4 0 1 1

Total: 154 3 63 16

Class both IP CP none
1 13 0 0 0
2 19 2 1 0
3 12 0 1 0
4 76 1 1 0
5 25 3 8 0
6 15 0 0 0
7 7 2 2 3
8 10 1 3 0
9 12 1 3 1
10 8 0 0 0
11 4 0 1 1

Total: 201 10 20 5

Table 7: For both tables, column 2 is the number of instances solved by at least one of the models. Column 3 and 4 is
the number of instances solved just by the IP and CP model. Column 5 is the number of instances solved by neither of
the two models. The left and right table shows the results forthe experiment with a one and 10 seconds runtime limit.

experiment, a total of 154 instances are solved by both models. All solutions produced by the CP model are optimal.
The IP model produced 12 suboptimal solutions with optimality gap ranging from 90% to 2400%. The suboptimal
instances have in common that high-cube containers are present and the number of discharge ports is greater than one.
For the 10 seconds time limit experiment, the number of instances solved by both models increased considerably (47
instances). The number of suboptimal solutions was also reduced for the IP model (from 12 to 6) , but there were still
five instances that remain with a high gap (from 800% to 2400%).

Figure 4 compares the response time of the two models for the two experiments. A total time of 5.2 (38.3) and 54.8
(409.6) seconds was used by the CP and IP model to solve all 154(201) instances of the one (10) second experiment,
respectively.

7 Literature review

Stowage planning for container vessels is a recognized problem in the literature, but it has not received as much
attention as one would expect from its economic impact. Mostapproaches fall into two main categories: approaches
addressing the complete problem in a single phase, and approaches decomposing the problem hierarchically into a
number of sub-problems that individually can be solved using different methods.
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Figure 4: Runtime comparison of the CP and IP model for the experiments with one second (left) and 10 seconds
(right) runtime limit.

One-phase approaches are characterized by models that introduce decision variables or similar for the assignment
of each container to a slot. Initial attempts of using traditional 0-1 IP models have not been able to scale to the size
of modern vessels (e.g., Botter and Brinati [1992], Avriel et al. [1998]). Heuristic approaches were then formulated.
Botter and Brinati (Botter and Brinati [1992]) proposed a heuristic enumeration with the ability of generating stowage
plans for a vessel of 740 TEUs, while Avriel et al. (Avriel et al. [1998]) introduced thesuspensory heuristicthat was
evaluated on 300 randomly generated instances with vessel capacity ranging from 300 to 1700 TEUs. At the same time,
Ambrosino and Sciomachen (Ambrosino and Sciomachen [1998]) introduced a constraint satisfaction formulation for
generating stowage plans for a complete vessel. The model was formulated according to the state-of-the-art Prolog-
based solution methods by the time, but only scaled to very small feeder vessels.

Attempts to generate stowage plans using one-phase approaches then moved completely towards heuristic ap-
proaches. Dubrovsky and Penn (Dubrovsky and Penn [2002]) introduced a genetic algorithm model similar to Avriel
et al.’s. This approach produced stowage plans for randomlygenerated problems of about 1000 TEUs in 30 minutes.
More recently, two heuristic approaches for generating stowage plans were introduced by Ambrosino et al. Ambrosino
et al. [2010]. The first approach was a constructive heuristic that produced stowage plans following some rules ex-
tracted from the author’s previous work Ambrosino et al. [2009]. The second was an ant colony optimization model
that according to their experiments could stow a medium sizevessel of 5632 TEUs in 139.4 seconds in average.

Initial decomposition approaches hierarchically divide the problem in two levels. At the first level, the problem
of distributing containers among different sections of theship is solved, whilst at the second level, specific slots
are found for containers within each section independently, following the distribution generated by the first level.
Wilson and Roach (Wilson and Roach [2000]) introduced the first model of a hierarchically decomposition solving
a vessel of size 696 TEUs in approximately 90 minutes. Kang and Kim (Kang and Kim [2002]) proposed a similar
decomposition approach that iteratively improved the quality of the stowage plan. According to the computational
results, they could solve random instances of up to 4000 TEUsin about 11 minutes. Ambrosino et al. (Ambrosino
et al. [2006], Ambrosino et al. [2009]) proposed a three-phase heuristic where the problem also was hierarchically
decomposed in two levels. However, after solving the two levels of the decomposition, a third phase post-optimizes
the stowage plan in order to improve stability conditions. Two vessels of 198 and 2124 TEU capacity were stowed
in their experimental section in 24.5 and 74.7 seconds, respectively. Gumus et al. (Gumus et al. [2008]) introduced
a four-level decomposition approach that they claimed to bescalable and modular, but no computational results were
given. Finally, an automatic stowage system was introducedin Yoke et al. (Yoke et al. [2009]) where the process of
generating stowage plans was consecutive rather than hierarchical and each phase considered different constraints of
the problem. A vessel with 5000 TEUs capacity was used in their experiments.

Since all the work described above present approaches for generating complete stowage plans, there has not pre-
viously been published an independent model and experimental analysis of the sub-problem of assigning individual
containers to slots in vessel bays. Wilson and Roach (Wilsonand Roach [2000]) briefly described a tabu search al-
gorithm for solving a version of this sub-problem that must have included reefer slots, length restrictions and also
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considered minimizing overstowage and avoiding dischargeport mixing of stacks. They implemented a tabu search
approach and claimed that near optimal solutions could be computed fast. But they only described experimental re-
sults for generating a complete stowage plan for a single vessel. Kang and Kim (Kang and Kim [2002]) described an
enumeration approach for solving a very simple version of the problem where only overstow minimization and sorting
of 40-foot containers after weight was considered. As for Wilson and Roach, no independent experimental evaluation
of the algorithm was provided. Ambrosino et al. (Ambrosino et al. [2009]) described a 0-1 IP model for stowing
individual vessel bays optimally. The model minimized the time for stowing containers. 20 and 40-foot containers
were considered and containers were sorted according to weight in each stack. The experimental section considered
generating a complete stowage plan for a 198 and 2124 TEU container vessel where the biggest bay had a capacity of
20-120 TEUs. No computational time was provided for solvingthese sub-problems and the bays were assumed only
to hold containers to a single discharge port.

8 Conclusions

In this paper we have presented the first independent study ofa class of important sub-problems for hierarchically
decomposed methods to stowage planning that assigns containers to slots in sections of vessel bays. We have intro-
duced an accurate model of the problem calledCSPUDLthat has been validated by the industry. We have developed
a CP and IP model to solve theCSPUDLoptimally. The CP model works well on the practical instances considered.
It is demonstrated that this CP model performs better than the (basic) IP model on these instances. Future research
includes improving the performance and stability of our solvers (e.g., diving heuristics and other techniques may be
used to improve the IP model) and extending theCSPUDLto include over deck locations and special containers such
as out-of-gauge, pallet-wide, and containers with dangerous goods.
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