View metadata, citation and similar papers at core.ac.uk brought to you byj’f CORE

provided by The IT University of Copenhagen's Repository

IT University

of Copenhagen

A Constraint Programming Model for Fast Optimal
Stowage of Container Vessel Bays

Alberto Delgado (IT University of Copenhagen, Denmark)

Rune Mgller Jensen (IT University of Copenhagen, Denmark)

Kira Janstrup (Department of Transport, Technical University of Denmark)

Trine Hayer Rose (Department of Mathematical Sciences, Uwersity of Copenhagen)
Kent Hgj Andersen (Department of Mathematical ScienceArhus University, Denmark)

IT University Technical Report Series
ISSN 1600-6100

TR-2010-133
October 2010

https://core.ac.uk/display/50526019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright (© 2010, Alberto Delgado (IT University of Copenhagen, Denmd«)
Rune Mgller Jensen (IT University of Copenhagen, Denmark)
Kira Janstrup (Department of Transport, Technical University of Denmark)
Trine Hoyer Rose (Department of Mathematical Sciences, Unersity of Cop
Kent Haj Andersen (Department of Mathematical ScienceArhus University,

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600-6100

ISBN 9788779492264

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +4572 1850 00
Telefax: +45 72 18 50 01
Web WW. i tu. dk

A Constraint Programming Model for Fast Optimal Stowage of
Container Vessel Bays

Alberto Delgado (IT University of Copenhagen, Denmark)
Rune Mgller Jensen (IT University of Copenhagen, Denmark)
Kira Janstrup (Department of Transport, Technical Uniedf Denmark)
Trine Hayer Rose (Department of Mathematical Sciencesyéssity of Copenhagen)
Kent Hgj Andersen (Department of Mathematical Sciedchys University, Denmark)

1 Introduction

Seaborne transportation has become the most importaspteation mean for trade cargo. Approximat@hy of

all non-bulk cargo is carried in container vessels. An intgreconomical parameter for liner shipping companies
is to be able to stow their vessels fast. This not only savessfpes but also increases the buffer time in schedules
which saves bunker due to reduced speeds. For this reasoahifis recently been an increasing interest in developing
stowage planning optimization algorithms that can prodédeision support for human stowage coordinators. These
algorithms must also be fast, since stowage coordinators wader time pressure and may have to recompute plans
due to loadlist changes. The desire of our industrial collator within the liner shipping industry is to use at most 10
minutes of computation time.

A container vessel stowage plan assigns containers tomidte vessel. It is hard to generate good stowage plans
manually since containers cannot be stacked freely dueotmagtonstraints like stability, stress forces, and many
interfering local rules for arranging containers in stacks

Early work on stowage planning optimization has mainly fexion “flat” models that introduce a decision vari-
able for each possible slot assignment of the containegs Better and Brinati [1992], Giemesch and Jellinghaus
[2003]). None of these models scale beyond small feedeeisega few hundred 20-foot equivalent units (TEUS).
Approaches with some scalability are heuristic (e.g., Amsho et al. [2004], Avriel et al. [1998], Dubrovsky and Penn
[2002]), in particular by decomposing the problem hierarally (e.g.,Ambrosino et al. [2006], Kang and Kim [2002],
Wilson and Roach [2000], Gumus et al. [2008], Ambrosino ef2009]). These hierarchically decompositions are
based on a natural two-level decomposition of the probleahftlows the approach used by stowage coordinators.
At the first level, containers are assigned to locationsn@ge areas in bays) such that the re-handling of containers
is minimized, crane utility in ports is maximized, and hilgvel constraints such as stability and stress requiresnent
of the vessel are satisfied. At the second level, each lotaistowed independently by assigning the containers to
specific physical positions called slots such that stackites and intra location objectives are satisfied. Thusther
decomposed methods, an important sub-problem is to stowea get of containers into a location. Since modern
vessels typically are divided into more than 100 locatidimsse sub-problems must be solved within a few seconds in
order to solve the overall stowage planning problem in leas tL0 minutes, unless heavy parallelization is used.

In this paper, we present the first accurate model of thesgmliiems called th€SPUDLthat we have for-
mulated in collaboration with our industrial partner. Wenhintroduce an Integer Programming (IP) and Constraint
Programming (CP) model for solving tiegSPUDLto optimality. The CP model uses state-of-the-art modgléch-
nigues including multiple viewpoints, specific domain gngirules, and dynamic lower bounds. The IP model is a
0-1 formulation where cuts are introduced to strengtheh Eheelaxation.

It is to our knowledge the first time that modern CP modellegiques have been applied to stowage planning,
and even though we are dealing with an optimization problehich is typically not a type of problem where CP
techniques are applied, it turns out that our instancesadved faster with state-of-the-art CP software applieduo o

CP model than with state-of-the-art IP software appliedto B model. Furthermore, our CP model has the advantage
that it is easy for industrial modelers to understand, na&ireind extend.

In general, theCSPUDLIis NP-Complete when stacks are uncapacitated Avriel e2@0(Q], but our experimental
evaluation of the IP and CP models shows that these subemnshdften are very easy to solve in practice. We have
generated 236 test instances by re-stowing containegastio locations in real stowage plans used by our indlistria
collaborator. 92% of the instances could be solved by udaig-®f-the-art CP software on our CP model within one
second.

The rest of the paper is organized as follows: Section 2 gesva definition of the problem that we address in this
paper. Section 4 gives a brief introduction to global caistrmodelling. In Section 3 we give a detailed description
of our IP model, and in Section 5 we present our CP model. Theraxental evaluation is presented in Section 6.
Related work is presented in Section 7, and finally Sectioma8vel conclusions and discusses directions for future
work.

2 Container stowage

A container vessel is a ship that transports box formed @uertsion a fixed cyclic route. The cargo space in a vessel is
divided in sub-sections calldshys each bay is divided into asver deckandunder declpart by ahatch coverwhich

is a flat, leak-proof structure that prevents the vessel fiadmng in water and allows containers to be stowed on top
of it (see Figure 1). An under deck stack, as depicted in thigieture of Figure 2, is composed of two Twenty-foot

1211 0 9 8 7 6 5 4 3 2 1 Hatch No.

44 40 36 32 28 24 2 16 12 08 04 40’ Bay No.
45‘43‘ 4139 3735 3331 2927 2523 2119 1715 1311 0907 0503 01 20’ Bay No.

— T] T

= | [EEIE =

9

= L

Figure 1: The arrangement of bays in a container vessel. @t ltover is drawn as a thick line between the over
and under deck part of a bay.

Equivalent Unit (TEU) stacks and a Forty-foot EquivalenityREU) stack, holding vertically arrangesdiis indexed
by tiers. Quay cranes at ports carry out the loading and unloading of containethénvessel, accessing only those
containers on top the of each stack at a time.

A locationis a set of stacks that are either over or under deck. Theskssa@e not necessarily adjacent, but the
stacks are all either over or under deck. The left drawinggdife 2 shows a typical arrangement of locations in a bay.
Each stack has a weight and height limit that must be satibfjatie containers allocated there. Cells in stacks are
divided in twoslots fore andaft. The aft slot refers to the position toward the stern on thesek while fore slots are
allocated on the bow side. Some slots have a power plug tadqeelectricity to containers in case their cargo needs
to be refrigerated. Such slots are caltedferslots. Right picture of Figure 2 shows the structure of akstac

A containeris a box in which goods are stored. Each container has a wéiglght, length, and port where it
has to be unloaded (discharge port), and may need to be prbwiith electric powerréefer containey. In an under
deck location, containers can be 20 or 40 feet long and 8'@'@t high. Containers that are 9’6" high are called
high-cube containersHigh-cube containers are 40 feet long. Each cell in a stackhold one 40-foot container or
two 20-foot containers, but there may be some cells in thatioe that are limited to a single length. Container that
are already on board the vessel when the stowage plan is madalkedloaded containersA container in a stack
is overstowinganother container in the stack if it is stowed above it andtdisged at a later port. An overstowing
container is expensive, since it must be removed in ordeisttherge the overstowed container.

As described in the introduction, we investigate the sudbfem of stowing individual locations. Due to the very
large number of constraints and objectives involved in sigwontainers in over and under deck locations, we focus
on under-deck locations and have formulated a represeafatoblem called th€ SPUDLfor stowing containers in

Bow
Stack Over Deck

1.2, 3. 4.5 6, .78 Stack
stackFore stackAft

I
3 7} | tier 5
DTieDrkz i
eeeee 1 | tier 4
Port . Starboard = 0 == — — — — — =
‘ 40’%10 tier 3
Tier N D 2 B e R O I
Under Deck 2 .)
L 40° ier
1 p
12 345 67
20’ R 20’ i
Stack Under Deck | tier 1
Stern

Figure 2: Left: a front view of a vessel bay. There are fouatamns. Location 1 (3) consists of inner stacks under
(over) deck, while location 2 (4) consists of outer stackeach side. This arrangement makes it simpler to achieve
transverse stability when distributing containers to tmses. Each stack consists of a set of cells where each cell is
divided into a fore (light grey) and aft slot (dark grey). Riga side view of a partially loaded stack. Each power plug
represents a reefer slot. Reefer containers are drawn igittrie cords.

under deck locations with our industrial collaborator. @acus on under deck locations is mainly due to resource
limitations of our work. Over deck locations share most ¢@ists and objectives with under deck locations, and
we expect similar computational results for these locatiorheCSPUDLcovers all constraint and objective classes
of the problem and we expect that it has a high correlatioh #ie complete problem model in terms of solution
algorithm performance. Specifically, the CSPUDL includesking rules for 20 and 40-foot containers, FEU and
TEU stack overlapping, reefer containers, loaded contsjiaad weight and height constraints. The objectives delu
overstowage and three rules of thumb used by stowage caetodénto achieve robustness. TGEPUDLexcludes
break-bulk cargo, out-of-gauge containers, and odd slets ¢ells that can only hold a single 20-foot containen). |
addition, we do not consider IMO and pallet-wide contairgimse these are often placed in special locations.

TheCSPUDLIs defined as follows. A feasible stowage plan for an undek teation must satisfy the following
constraints.

Assigned cells must form stacks (containers stand on topci ether in the

stacks. They can not hang in the air). @
20-foot containers can not be stacked on top of 40-foot coats. 2
A 20-foot reefer container must be placed in a reefer slot. 0Xabt reefer

container must be placed in a cell with at least one reefér sither Fore or (3)
Aft.

The length constraint of a cell must be satisfied (some cellg loold 40 or @)
20-foot containers).

The sum of the heights and weights of the containers stowedstack are (5)
within the stack limits.

All loaded containers must be stowed in their original sétd they can not be ©6)
swapped to any other slots.

A cell must be either empty or with both slots occupied. @)

Every stowage plan for a location that satisfies these cainsiris valid, but since the problem we are solving here is

to find the best stowage plan possible, a set of objectivesfisatl to evaluate the quality of the solutions.

Minimize overstows. A 100 unit cost is paid for each contaioeerstowing

any containers below. (8)
Avoiq stagks where cqntainers havg many different disahpagts. A 20 unit ©)
cost is paid for each discharge port included in a stack.

Keep stacks empty if possible. A 10 unit cost is paid for eveny stack used. (10)
Avoid loading non-reefer containers into reefer cells. Ariit gost is paid for (11)

each non-reefer container stowed in a reefer cell.

The second, third, and fourth are rules of thumb of the shippidustry with respect to generating stowage plans
for downstream ports in the route of a vessel. Using as feskstas possible increases the available space in a location
and reduces the possibility of overstowage in future psdgjoes clustering containers with the same discharge port.
Minimizing the reefer objective allows more reefer cont&to be loaded in future ports. The cost units reflect the
importance of each objective and has been defined by ourtiychesrtner.

3 The IP model

In this section we introduce the binary IP model formulateddlve theCSPUDL Table 1 presents the constant values
and sets used in the model. Table 2 presents the variables ofddel.

I Number of containers

J Number of stacks

D Number of discharge ports

K; Number of cells in stack

T Set of 20-foot containers

F Set of 40-foot containers
rjx Number of reefer plugs in cell of stackj
W; Weight limit of stackj in kilograms
H; Height limit of stackj in meters

s; Whether containeris a 20-foot container
l; Whether containeris a 40-foot container
h; Height in meters of container

w; Weight in kilograms of container

r; Whether containeris reefer
a;q Whether containeris unloaded at pod

Table 1: Constants and sequences in the IP model

Ojr € {0,1} Whether container stowed in céi] stack;j overstows container below
P,; € {0,1} Whether there is at least one container in stablking unloaded at
E; € {0,1} Whether stack is being used
ciki € {0,1} Whether containeris stowed in celk, stackj
dira € {0,1} Whether a container below cdl| stackj is unloaded before poit

Table 2: Variables in the IP model

The first three sets of variable@, P, andE, are used to represent the overstow (8), clustering (9)fraedtack
(10) objective of theCSPUDL The fourth set of variables, represents the stowage plan, and the fifth set is introduced

to model the overstowage objective. The IP model can therebeat! as:

min 9—10022@;#2022 d+1OZE

j=1 k=1 j=1d=2
J Kj
+ 522 ZCJ’” + Zcﬂﬂ Tjk — Zrlcﬂﬂ (12)
j=1k=1 1€T ieF
s.t.
ch =i F D Citm1)i — Y ki = 0 Yk (13)
zET ieF ieF
D ciki = D €i(k-1i S0 VjVk (14)
ieT ieT
1
B Z Cjki + Z Ciki <1 ViVk (15)
i€T ieF

J K
> i =1 Vi (16)

j=1 k=1
> cirir > 25k VjvkYi € T (17)
V€T
I
> ciniri < Tk vk (18)
i1
K; 1
Z cikiw; < Wj Vj (19)
k=1i=1
K; 1 1
Z Z(i(cjkihisi) + Cj]m‘hili) < Hj vy (20)
k=1 i=1
k=1 d—1 I
> aiwcjpi — 2(k = 1)5jka < 0 VjVkvd (21)
k'=1d'=2 i=1
@idCiki + Ojka — Ojr < 1 VjVkYdYi (22)
Bj — ¢jti 2 0 Vi (23)
Pjq — aiacjri = 0 VjVkVivd (24)

The objective function (12) is a weighted sum of the four otij@s as defined in th€SPUDL The first three
objectives are calculated straightforward since therespeeific variables in the model that account for them. The
fourth objective is calculated by determining the numbecafitainers stowed in slots with reefer plugs, and then
subtracting the number of containers that are actuallyersef

Inequality (13) ensures that the cell below a cell stowin@dabt container stows either 20 or 40-foot containers,
while inequality (14) ensures that a cell below a cell stayp@®-foot containers only stows 20-foot containers, since
20-foot containers can not be stowed on top of 40-foot caetai (2). Inequality (15) requires that all cells stow
either two 20-foot or one 40-foot container. The fact thabatainer must be stowed in just one cell is modeled by
(16). Inequality (17) forces the number of 20-foot contasnia a cell stowing a 20-foot container to be greater or
equal to two, since the two sides of a stack must be synchedi{iz). The reefer capacity of a cell is constrained by
inequality (18), covering the fact that all reefer containi@ a cell must be provided with a reefer plug each (3). The
weight and height limits of stacks (5) are ensured by (19)(@0, respectively. Inequalities (21) and (22) model the
overstowage objective, and inequalities (23) and (24) mibeeempty stack and clustering objective.

3.0.1 Cuts

We focus on removing non-integer solutions allowed by theehby modifying inequality (21) used to define variable
d;kq- The model becomes stronger when this constraint is decsegguch that its semantics applies for each term
of the constraint

Qi Ciwri < Oina Vi VkVAYiVE Vd' (25)
J J

wherek’ € {1,..,.k — 1} andd’ € {2,...,d — 1}. We then introduce cut (26) and (27) that sum over all coetain
instead of only considering one container at the time, aitenthe number of left hand side terms from (25) and
making the cut stronger. Two constraints are considerextgimo 20-foot containers can be stowed in a cell. Cut (28)
adds terms to the left hand side of (25) by summing over al$ dmlow a cellk instead of over all containers. The
cuts are defined by:

% > cjwri < bjra VYR (26)
eT’
> Ciwi < Gjka VjVEYAVE (27)
i€ F’
k—1
> tiarciri < Gjka VjvEYivavd (28)
k=1

wherek’ € {2,...,d —1},d € 2,...,d —1,andT” andF” are the set of 20 and 40-foot containers with discharge port
earlier thard, respectively.

4 Global constraint modeling

A Constraint Satisfaction Problem (CSP) is a trigl€, D, C) where X is a set of variablesD is a mapping of
variables to finite sets of integer values, wiitiz) representing the domain ofe X andD(X) = II,c x D(z) being
the Cartesian product of domains, afids a set of constraints. Eache C is defined over a sequenég C X as a
subset of allowed combinations 8f(X’). A solution to a CSP is a complete assignment that maps eegigble to
a value in its domain that satisfies all constraint§’in

Constraint programming (CP) is a relatively new technidna¢ tombines local consistency algorithms with search.
The process of removing inconsistent values from the domofthe variables is callegropagation A depth-first
backtracking search explores the search space of the prabtgementally extending partial solutionby selecting
unassigned variables frodd and assigning them to values from their domains. This selegirocess is called
branching and a strategy to select variables and values followinge&ifip criteria is called dranching strategy
Propagation is executed every time a new branching is gester#f the domain of each variable has been reduced
to a single value, the CP solver has found a solution to the E&Pa partial solution, we refer to the minimum and
maximum value of the domain of variabteasz andz, respectively.

In order to find optimal solutions to a CSP, a cost functionefireed to evaluate solutions. Branch and bound
approach is followed, where every time a new solution is tbarconstraint is posted for the remaining part of the
search space such that new solutions always have loweraaogisithan the previous ones.

Constraints in CP share information through the variabieX i Each constraint has a scofé C X, relatively
small compare to the size df, limiting its reasoning powerGlobal constrainthave been introduced to overcome
this. A global constraint groups together a set of small traires capturing tractable structures for global propiaga
Below is a brief description of the global constraints usedur CP model.

Let y be an integer variable; a variable with finite domain, andan array of variables or constants, i.e.=
[1,...,2,]. Theelement constrainHentenryck and Carrillon [1988] states thats equal to they-th variable or
constantire, orz = x,.

element(y, z,c) =

29
{(e, f,d1,...,dn) |e € D(y), f € D(2),Vi.d; € D(x;), f =dc} (29)

Let M = (Q,%, 6, qo, F) be a deterministic finite automaton or a regular expressaengnizing the strings in the
languagel (M), and letX = {z1,...,x,} be a set of variables with(z;) C X for 1 < i < n. Then theregular
constraintPesant [2004] is defined as

regular(X, M) = {(d1, ...,d,) | Vi.d; € D(x;),d;...d,, € L(M)}. (30)

Let N andV be two integer values, antl = {z1,...,x,,} a set of finite domain variables. Tlegactly constraint
ensures that exactly variables inX are assigned to valué.

exactly(N, X, V) = {(d1, ..., dm)|Vi.d; € D(z;),|{d;|d; =V} = N} (31)

Let X = {z1,...,z,} andY = {y1, ..., y» } be two sets of finite domain variables with domaib&X) = D(Y) =
{1,...,n}. Thechanneling constrainstates that a valugassigned to a variable; € X represents the index of the
variabley; € Y that has been assigned valueom its domain. More specifically

channeling(X,Y) = {(dz1, ..., dxy, dy1, ..., dyn)]|

Vi, j.dx; € D(x;),dy; € D(y;),dx; = j < dy; = i}. (32)
A channeling constraint is used to increase the reasoniwgipaf the model by using several isomorphic variable sets
(also known awiewpointsSmith [2006]). If X is variables representing positions with boxXés. .., n} as domains
andY is variables representing boxes with positidis. .., n} as domains then clearly a channeling constraint will
link them consistently together. In particular, noticetttie channeling constraint embeds #ilelifferent constraint
that in our example ensures that a position only can hold orehd vice versa.

5 The CP Model

Table 3 presents the index sets and constants of our CP nfdbieldex sets are integer subsets. The stack in the left
most part of the location has the lowest indeXSiacks. Indices inSiots are assigned to physical slots as follows. For
each cell, the aft and fore slots have consecutive indicks slot indices in each stack are ordered bottom-up and the
slot indices between stacks are ordered from left to rigtiénlocation. According to this, the aft and fore slots at the
bottom of the left most stack will be assigned to ids 1 and &peetively, and the aft and fore slots in the next cell of
the same stack to ids 3 and 4. The aft and fore bottom slotsafdht stack are then assigned tokds 1 andk + 2,
wherek is the number of slots in the left most stack. We h&ugs;, = Slots,f U Slots,f. We havePOD; < POD;

iff the vessel calls the discharge port of contaihbefore the discharge port of contaijerThe set oblocked slots

are slots that are unavailable due to the physical strucfittee vessel like the two slots in stack 1 and tier 3 over deck
in the left drawing of Figure 2. The blocked slots are defing$lts”.

In our model, the decision variables represent the stowkgpefpr a set of preselected containers to stow (solution).
We consider two possible representations. The first oneafefidecision variable for each containe€imt to stow,
and as domain of the variables the slots$ints. The second one defines a decision variable for each skibia, and
as domain of the variables the set of container§im¢ to be stowed.

We include the two sets of decision variables mentioned @bs\keystones for two different viewpoints in our CP
model. To efficiently link the two viewpoints a channelingistraint (32) is posted in the combined model, such that
both viewpoints contain the same information all the timiee Turrent formulation of the problem, however, does not
allow a straightforward use of this constraint since in majghe cases the number of slots is larger than the number
of containers, which breaks an important precondition ef¢hanneling constraint. To tackle this issue, we modify
the original definition of the problem by extending the numbicontainers with artificial containers to match the
number of slots. First, since a 40-foot container occupis20-foot slots, all 40-foot containers are split into two
smaller containersdft40 and Fore0, of the size of a slot each. All 40-foot containers fra@fant and Cont4? are
replaced byAft/0 and Fore/0 containers. We defin€ont*** and Cont*°F to be the indices oflft;0 and Fore40
containers, respectivelyCont '’ and Cont*°"" have the same cardinality, ariébnt:°* and Cont " represent the
40-foot containei. Virtual containers Cont", that will be stowed in slots meant to remain empty are alstedd
together withblocking containersCont?, that will be allocated in the blocked slots of the locatitmthe remainder

Stacks Stack index set

Slots Slot index set

Cont Container index set

Slots{A-F} Aft (A) and Fore F) slots

Slotsy, Slots of stacke

SlotsiA’F} Aft (A) and Foref") slots of stacke

Slots\ -1} Reefer R) and non-reefer{R) slots

Slots™RC Slots in cells with no reefer plugs

SlotsiB:20:40} Blocked (B), 20 (20), and 40-foot40) capacity slots
ContlV-B.L} Virtual (1), blocking (B), and loaded container)

Cont{20740}
Cont40{A.F}
Cont{QOR,40R}

20 (20) and 40-foot 40) containers
Aft40 (F), Fore40 (A) 40-foot containers
20-foot QO R) and 40-foot 40 R) reefer containers

Cont™F Non-reefer 20 and 40-foot containers
Weight; Weight of containet

POD; Discharge port of containér

Length, Length of containetf

Height, Height of containet

Contt=r Number of containers with discharge pprt

Cont W=w,H=h

Number of containers with weight and height:

ConttNC-HC}E — Number of normal /C) and high-cube K C) containers

stack;,jw’h} h=height,.w=weight physical limit of stack
Classes Possible classifications of stacks according to their featu
class® Set of stacks of clags

Table 3: Index sets and constants of the CP model.

of the paperCont will refer to this extended set of containers. Finalljpnt ™ is defined as the set of non-reefer
containers that are neither virtual nor blocking contanefable 4 summarizes the variables in the CP model. In
addition to the two sets of decision variables previouslindel, extra sets of auxiliary variables are defined in order
to facilitate the modeling of the constraints and objeaivehe objectives of the CP model are given by:

0= > ov(i) (33)

i€ Slots?

or= 3 (> »)>0) (34)

i€Stacks jeSlots,

0= 3 ((X (X m=p)>0) (35)

i€Stacks pePOD jeSlots;

0= > (si € Cont™") (36)
i€ Slots T
O = 1000" + 200” + 100" 4 50" (37)

Objective (33) calculates the total number of overstowsortter to do so, lebw : Slots”® — {0, 1,2} denote the
number of overstowing containers in a cell representedsdfitsiot. We have

2 if 5; € Cont® A p; > minP(be(i)) A piy1 > minP(be(i))
1 if s; € Cont™ A p; > minP(be(i))V

5; € Cont® A (p; > minP(be(i)) © piy1 > minP(be(i)))
0 otherwise

ov(i) =

C ={c1,---,¢Cont|) ¢; € Slots is the slot index of container

S = (51,...,5|Slots|) s; € Conts is the container index of slgt
L={l1,...,l|st0ts]) l; € Length is the length of the container stowed in sjot
H = (h1,..., hsiots|) h; € Height is the height of the container stowed in sjot
W = (wi,..., W si0ts]) w; € Weight is the weight of the container stowed in sjot
P = (p1,...,D|St0ts|) p; € POD is the POD of the container stowed in sjot
HS = (hs1, ..., hs|stacks|) hsy € {0, ..., stackZ} is the current height of stadk
LengthsiA’F } Aft (A) and Fore F) variables ofL for stackk

cVec Virtual containers

Sfes Slots with the same features in stack

Dy, € {0,...,|POD|} Number of different discharge ports in stalck

O €/0,...,|Conts|} Number of overstowing containers

o" € {1,...,|Stacks|} Number of used stacks

Or € {1,...,|Stacks| x |POD|} Total number of different discharge ports in each stack
O" €0, ..., |Slots"|} Number of non-reefer containers stowed in reefer cells
0 €{0,...,00} Solution cost variable

Table 4: Variables of the CP model.

wherebe : Slots — 29°* associates a slot with the set of slots in the same stack tditedow it, minP : 259t —
POD is the earliest discharge port among the containers aéiddata set of slots, ang denotes the exclusive or
Boolean operator. The empty stack objective (10), is regmmesl by (34). The smallest discharge port indexs
assigned to virtual and blocking containers, thus, wheaekstis empty, the sum of the values assigned to the subset
of P variables ini is 0, otherwise the stack is being used. Objective (35) tatiesi the number of different discharge
ports of containers stowed in each stack and objective @@)ts the number of non-reefer containers stowed in reefer
slots. Objective (37) defines the cost function of &P UDL. The branch and bound algorithm applied to solve this
problem constrains the cost varialileof the next solution to be lower than the cost of the solutidth yowest cost
found so far. The constraints of the CP model are given by:

channeling(C, S) (38)

¢j=cr+1, Yie{l,..|Cont |}, j= Conti®F k= Cont{** (39)
element(s;, t;, Length), Vi € Slots (40)
element(s;, hi, Height),Vi € Slots (41)
element(s;, w;, Weight), Vi € Slots (42)
element(s;, p;, POD), Vi € Slots (43)
s; € Cont? Vi € Slots? (44)
Spos(j) = J, V] € Cont” (45)
regular(Length] ,R),m € {A, F},Vi € Stacks (46)
s; & Cont®* B Vi e Slots™ " 47
s; & Cont* | Vi e Slots RC (48)
s; € Cont®®, Vi € Slots® (49)
s; € Cont™®, Vi e Slots*® (50)

> hyj < hsi, m € {AF},Vi€ Stacks (51)
j€SlotsT

Z wj; < stack;’, Vi€ Stacks (52)
jeSlots;

Constraint (38) connects the two viewpoints such that beth sf variables” and S have the same level of infor-
mation all the time. Constraint (39) guarantees that edfti0 and Fore/0 container representing the same 40-foot
container are stowed in the same cell. Element constréd28sgre posted to bind all auxiliary variables introduced
to the model to a viewpoint. Constraints (40) , (41), (42)] &3) bind each slot variable to the auxiliary variables
representing the length, height, weight and dischargegfdtie container stowed in such slot, i. e., in the case of
constraint (40), the element constraints repregenyth,. = [;, Vi € Slots. Blockedslots are restricted to stow just
Blockedcontainers by constraint (44), ahdadedcontainers are stowed in their pre-defined slots by comst{4b),
wherepos : Cont™ — Slots is a function that associates loaded containers with the #iey occupy. The valid pat-
terns that containers stowed in stacks must follow accgrtdirtheir length are defined by (1) and (2). After assigning
a length of -1 and 0 to blocked and virtual containers, retyedg, we define a regular expressiéhn= —1*20*40*0*

that recognizes all the valid patterns length wise accagrtirthese two constraints. Constraint (46) introduces a reg
ular constraint (30) for each aft and fore stack in order strigt their stacking patterns to follow those definediy
Constraints (47) and (48) model the reefer constraint (8nstaint (47) removes 20-foot reefer containers from the
domain of non-reefer slots, whilst for the 40-foot reefentainers, constraint (48) removes 40-foot reefer containe
from cells where neither aft nor fore slots are reefer sl@mnstraints (49) and (50) restrict the domains of slots that
just have 20 or 40-foot container capacity to be within thieo$®0 and 40-foot containers, respectively. The height
limit of each stack in the location is constrained by (51). cdintainers stowed in each side of a stack must be less or
equal to the variable representing the height limit of traelét Constraint (52) restricts the weight of all containers
stowed in a stack to be within the limits.

5.1 Symmetry-breaking and implied constraints

We introduce a set of constraints to the CP model that aimdataiag the size of the search space of the problem.
These constraints do not represent any new features &$fJDL, but instead they improve the reasoning power of

1The HS variables are not necessary to define the height constraindidsy an important role in the height constraint lower bimtroduced
in Section 5.3.

10

the solver by exploiting the different combinatorial stures of the model and making explicit restrictions introeldi
to the problem also in our model.

exactly(V,0,|Cont" | 4+ |Cont®|), VV € {P,W, H} (53)
ezactly(P, p, Cont’=P), ¥Yp e POD (54)
ezactly(W,w, Cont'"V="), Yw € Weights (55)
exactly(H, H*,Cont®), YVa € {N,HC} (56)
hj = hy, Vie Stacks, Vji. j€ SlotsiA Nk € Slotsf A same(j, k) (57)
sort(CV) (58)
s; & Cont*™, Vi e Slot? (59)
si & Cont™F | Vi e Slot? (60)
s; < s, Vi€ Stacks V. j € SlotsiA Nk e Slotsf A equal(j, k) (61)
sort(SE), Vi € Stacks (62)
lex(class"), Vi € Classes (63)

Constraints (53), (54), (55), and (56) are implied consteameant to improve the propagation power of the
solver with respect to the auxiliary variabl&s W, and H. Each individual auxiliary variable; is linked to a slot
variables; with an element constraint. This ensures correctness ads I weak propagation between the two set of
variables due to a lack of global perspective by the elemamtcaints. To improve this, we first assign to the weight,
height, and discharge port of virtual and blocking contesribe value zero. Since these containers are not suppose to
affect total height, weight, or overstowage of each stadkerl constraint (53) limits the number of variables set to
zero fromP, W, and H to be the exact sum of blocked and virtual containers. Addéily, constraints (54), (55),
and (56) restrict the number of variables fraf W, and H assigned to each possible discharge port, weight or
height to match the total number of containers with suchufegatrespectively. Since a cell must be either empty
or with its two slots occupied (7), and there are no 20-foghkhtube containers according to the definition of our
problem, constraint (57) is posted to limit the height of slots in the same cell to have the same height. A function
same : Slots x Slots — {true, false} that associates pairs of slots to the Boolean value true wWienbelong to
the same cell is defined.

The weight of the containers make each of them almost uniguéing the possibility of applying symmetry
breaking constraints. It is possible, however, to breakesofithe symmetries introduced into the problem by our
model. First, since all virtual containers have the samé&ufes, it is not relevant where each container is stowed.
Constraint (58) posts a sorting constraint over the virtaaitainers, forcing the slots where these containers will
be stowed to follow a hon-decreasing order, removing symoa¢solutions generated by swapping them. Second,
splitting up all 40-foot containers into two smaller comisAft40 and Fore/0 also generates symmetrical solutions
that are broken by constraint (59) and (60). Third, const(@&il) limits the possibility of swapping containers betne
two slots of a cell that have the same features. A funatiprul : Slots x Slots — {true, false} similar to function
same defined above associates pairs of slots to the Boolean valaevhen they belong to the same cell and have
the same features, i.e., same reefer plug and length testsc Fourth, when all containers have the same discharge
port, symmetrical solutions are generated by swappingadoaits stowed in slots with the same features within the
same stack. Constraint (62) sorts in a non-decreasing thrééndices of the containers stowed in slots with the same
feature for each stack of the location. It is necessary, kiew¢o assign indices to containers in a fixed way in order
to avoid conflicts between this constraint and the one thastcains stacking patterns (46). 20-foot containers veill b
assigned a lower index than 40-foot containers, and vidaatainers will have the highest index possible. Finally,
the possible symmetries between stacks with identicalactaristics are considered. Stacks are classified acgprdin
to their features: slot capacity, reefer capacity, heigitt aeight limit. Constraint (63) avoids symmetrical sobunts
generated by the containers stowed in similar stacks beiaged with each other by requiring a lexicographical
ordering on the container indices of the containers stowethése stacks. This constraint works as follows: let
Stack1={s1, s2, s3} and Stacks = {s4, s5, s¢} be two stacks with the same features. A complete assignrent

11

{s1=1,80=2,83=3,84=14,55 =5, s¢ = 6} is symmetrical tads = {s1 = 4,50 = 5,83 = 6,84 = 1, 85 = 2,
s¢ = 3}, sinceAs is generated by swapping containers from slots at the sanketiel in Stack; and Stacks. The
lexical order constraint between stacka.ck; andStack- will rule out assignmentl,, since(4, 5, 6) £9 (1,2, 3).

5.2 Branching strategies

Our branching takes advantage of the structure of the mattkluges the sets of different auxiliary variables in
order to find high-quality solutions early in the search. Tosb, we decompose the branching process into four
sub-branchings: the first one focuses on finding high-quablutions, the second and third on feasibility of two
problematic constraints, and the fourth finds a valid asemmt for the decision variables In the case of the first
sub-branching, since three of the four objectives of @ UDL rely on the discharge port of the containers stowed
in the slots of the location, we start by branching over thegdischarge port variableB and prefer to assign slots
with a container that favors the clustering and overstovedigectives among the first free slots bottom-up of all stacks
First we determine the discharge ports of the containeesdir stowed in each stack. Then, when possible, we select
a slot with a container in its domain that has a dischargetpatthas been previously used in the same stack as the
slot, in order to avoid increasing the pure stack and ovessge objectives. If it is not possible to find such slot, a
slot with a container in its domain having a discharge pas ler equal to the one stowed in the slot right beneath is
selected, reducing the probability of overstowage. Thesdlom stacks already used are considered first to reduce
the used stack objective. When it is necessary to select @ an empty stack, the farthest discharge port possible
for the slot is selected. The stacks are considered in amedsing order according to their available slots. After
assigning all variables if?, we branch over the height and weight variablEésandW. We start by branching oveé{
following a best-fit decreasing approach, stowing a coetaivith heighth into the first slot bottom-up in the stack.
For W we follow the same approach as with but the best fit is considered to be the stack with the greatesunt

of free weight. Finally, we branch ovérin order to generate a concrete stowage plan after the dgebpart, height,

and weight of the containers to be stowed in each slot have teeided. Slots from stacks are selected bottom-up,
choosing the container with the smallest index from the domthe variables. The domain size of variable$iare
considerably smaller than that of any of the viewpoints, imgkhe process of finding valid assignments foeasier.
Once avalid stowage plan is found, most of the time the sedgahtithm backtracks directly to the variables in order

to find solutions with a better objective value. Thereforéarge part of the search process concentrates on a much
smaller sub-problem. It only branches over the remainin@aiées when a solution with a better objective value is
likely to be found. Additionally, this decomposition of tbeanching allows us to introduce a new symmetry-breaking
constraint. After the first branching has finished dischamg#s have been assigned to all slots in the location. Itis
possible then to generate symmetrical solutions by swagpgontainers with the same discharge port within the same
stack stowed in slots with the same features. A sorting caimstover each sub-set of slots within a stack with the
same features and discharge port is posted to break this sfrgnm

5.3 Lower bounds

Five domain pruning rules are defined over partial solutioBach rule solves a relaxed version of a sub-problem
related to an objective or a constraint, generating lowemnks for their corresponding objectives and pruning values
from the domain of the variables in the scope of the rule.

Overstowage To calculate a lower bound on the overstowage of a partlatiso p, we define a new function
minP(X) = min;ex (P;|p; € P) that considers the upper boupdof each variable; € P. We then define a lower
boundov,(7) of ov (i) for any completion op as

2 if s, € Cont®™ A p, > minP(be(i)) A Pyt > minP(be(i))
o, (i) = 1 if s; € Cont™ A p, > minP(be(i)) V
PR s; € Cont®® A (p, > minP(be (1)) Op,, > minP(be(i)))

0 otherwise

Proposition 5.1. ov(i) > ov,(i) for any completion op.

12

Proof. Assume by contradictionw, (i) = 2 for some cell, but there exists a completion pivhereouv(i) = 1. Since
ov,(i) = 2 we have thap, > minP(be(i)) A Pyt > minP(be(i)) but this implies thap; > minP(be(i)) A pir1 >
minP (be(i)) for any completion op which means thatv (i) = 2 for any completion op which is impossible. The
remaining cases can be shown in a similar fashion. O

The pruning effect of the lower bound is achieved by addirgctnstrainO” > > . ¢, .. 0v,(i). An additional
pruning rule can be applied when the domain(if has been reduced to a single value that is equal to the lower
bound. In this situation we can enforce that containersibaleell that has been identified by the lower bound to be
non-overstowing actually are so

IDO")|=1A > ov,(i)=0"—
iSlotsA
Vi1 € {k|k € Slots A ov,(k) =0} Aj € be(i) Ap; < p,.

This rule plays an important role in situations where theigaf O has been determine by some constraint other
than the overstowage constraint, e.g., a linear constitsntalculates the total objective value of a stowage plan.

Empty stack In the remainder, we call a containeunstowedvhen the domain of; has not been reduced to a
single slot yetD(c;)| > 1. For the empty stack lower bound, a relaxation of the stovgagklem is solved, where the
height capacity of the stacks is the only constraint comedland all unstowed and non-virtual containe?sntjpv =
{ili € Cont, |D(c;)] > 1,i ¢ Cont"'}, are accounted as normal height containers. We first cantideused
stacks ofp where there are containers already stowed, defineﬂhaﬁ:sp’] = {i € Stacks|3j € Stacks;, |D(s;)| =
1, s; ¢ Cont® U Cont" }. The lower bound procedure stows as many containers adfmgsim Cont ' in Stacks,
such that the height capacity constraint is fulfilled. Ortoe tised stacks are completely filled up, the empty stacks
Stack:s‘;J = Stacks \ StackspU are sorted in decreasing order by height capacity and filiefdilowing this order with
the remaining containers dt‘ont[f\’. The number of used staclls; is then the sum of used stac}&tackspU| plus
the empty stacks necessary to stow all remaining containe@?antév. L7 is a lower bound of the number of used
stacks of any completion ¢f since the approach to solve the relaxed problem clearlytisnap Since the height of
all containers inCont;V have been reduced to the normal height, the order of stowimgelevant and leads to the
largest number of additional containers stowed in usedstag. Since the empty stacks are filled in order of largest
capacity first and the order of allocation again is irreldytre fewest possible number of empty stacks are being used.
The pruning effect of the lower bound is achieved by addiegcnstrainO* > L?.

Pure stack As with the used stack lower bound, a relaxed assignmebtemrois solved considering just the height
capacity constraint and all containers not yet stowed asablneight containers. First, we introduce an alternative
definition of the pure stack objective. L@ = |{s € Stacks | 3j € Stacks, . p; = i}| be the number of stacks where
at least one container with discharge poig stowed. We can express the pure stack objective’as 3., Q.

For this definition of the pure stack objective, we introdadewer bound for a partial solution Let Contff’P:i be
the set of unstowed containersgmwith discharge port, Stack:sf =’ be the set of stacks stowing at least one container

with discharge port, andStacks ;=" = Stacks \ Stacks, ' be the set of stacks where no container with discharge
porti is allocated. Our goal is to generate a lower boub¥l;i) independently for eac);, based on the approach
followed to generate lower bounds for the used stacks dtgecTo computelt (i) for somei € POD and partial

solutionp, we solve a relaxed allocation problem where only contaiire€ont*"=" are stowed. When a container

;) P
from Conti,vf:l is stowed in a stacl§tacks” = no penalty is paid. On the contrary, if such container is sthin a

stackStacks""=", a penalty must be paid. This situation resembles the ome tihe used stacks objective. We have
a set of stacks where containers can be allocated withoingayy penalty and a set of stacks where the containers
must pay a penalty for being allocated. Our lower bound atnasiag as few stacks as possible from the set of stacks
Stacks™ =" where a penalty must be paid.

Thus, by treatingStacks), ~' as Stacks, , Stacks,” =" as Stacks), , and Cont))""=" as Cont,’ and following
the allocation approach for the used stacks objective, weag@ptimal solution to the relaxed problem such that
Qi > Lb(i). The pruning effect of the lower bound is achieved by addiregdonstrainO? > >~ Lh(i).

ReeferA lower boundLj, for the reefer objective of a partial solutiprean be deduced from a counting argument.

Let S f =|{i e Slots™ | D(s;) = 1, s; ¢ Cont™}| denote the number of reefer slots stowing a non-reefer irerta

13

in p. Clearly,0" > S;R for any completion op. We tighten the lower bound of the reefer objective by cossigy
the unstowed reefer containers and the reefer slots witle h@n one container in their domain that will not stow a
virtual container. LeCZ® = |{i € (Cont**" N Cont"**)U Cont*** | |D(c;)| > 1}| denote the number of unstowed
reefer containers ip (we only count the aft part of a 40-foot container reefer toidwounting the container twice).
Further, letSY® = |{i € Slots" | |D(s;)| > 1, D(s;) N Cont” = 0}| be the reefer slots where no virtual container
will be stowed. IfSY# > C* then at least’/ ¥ — C'* extra reefer slots will stow non-reefer containers. Thuscan
tightenL7, as follows

. :{ SUR _CR 4 goR . if SUR 5 OR

p S;R : otherwise

The pruning effect of the lower bound is achieved as usuabloljng the constraind” > L7.

Height The domains of auxiliary variables from sequen&eand HS are tightened, and some conditions neces-
sary for a partial solution to be viable are checked by sagltimree relaxed problems. First, the number of normal and
high-cube containers that can possibly be stowed in theirgnggfree space of each stack is calculated. A staok
some partial solutiop has free height,(j) = hs; — h$, whereh; denote the height of the stowed containers in stack
j. Let M[f"(j) andeC (7) denote the maximum number of hormal and high-cube conthet can be placed in
stackj, respectively. We then have

MY () = |ho(d)/h(N)],
M) = [ho(§)/R(HC)],

whereh(N) andh(HC) denote the height of normal and high-cube containersCileandC/’“ denote the number
of unassigned normal and high-cube containerg, akspectively. Then, all possible stowage plans genefabed
partial solutiorpy must satisfy

SooMNGy=coX oA > MECy) > cle

JEStacks JjEStacks

Since containers cannot hang in the air, they must be stoagkcutively, bottom-up in all stacks. Therefore, when
the sum of the height of containers stowed belowti@quals tahs;, slots above tien will not stow real containers.
We stow virtual containers in slots of stagkhat are above its height upper boulg. In the cases where the height
of the container to be stowed in a slot is not known yet, it suaged that the container will have normal height, since
this generates an upper bound in the number of slots useddk stAdditionally, the virtual containers are removed
from slots that are belows ;, since these slots must stow real containers. Now we prdcegpdatehs ;. Clear, we
can apply the bin packing propagator suggested by Paul [2004

hs; > Z Height; — Z hs;, Yj € Stacks.

i€ Cont i€Stacks\{j}

6 Experiments

236 CSPUDLinstances have been derived from stowage plans providedhindustrial collaborator. Each instance
corresponds to restowing a random location in one of themasplSince the plans have been applied in real life, we
can assume that the distribution of instances correspandéat any hierarchical stowage planning system has to
handle well when solving the low-level problem of assigniegtainers to slots in locations. To investigate the impact
of different features of the instances, we have partitidhed into the classes shown in Table 5. All the experiments
were run on a Linux machine with two Quad Core Opteron praossa 1.7 GHz and 8 GB of memory. The CP and
IP model were implemented in Gecode 3.3 Gecode Team [20@6TBLEX 12.1, respectively.

6.1 Impact of CP enhancements

Here we analyze the impact of the different enhancemented®P model introduced in Section 5. We define four CP
models. Thébasicmodel includes only the constraints and objectives of@8€UDL(33 - 52). A simple branching

14

Class | 40" | 20' | Reefer| HC | DSP>1 | #Inst.
1 * 13
2 * 22
3 * * 13
4 * * 78
5 * * * 36
6 * * * 15
7 * * * * 14
8 * * * 14
9 * * * * 16

10 * * * * 8
ll * * * * * 6

Table 5: Grouping of Instances. The first column is the gradex. Column 2, 3, 4, 5, and 6 define the characteristics
of the group instances in terms of the presence of 40’, 2@fereand high-cube containers and whether more than
one discharge port is represented. Column 7 is the numbastafrices in the group.

strategy is used in this model, where the stacks are filledatfoim-up from left to right and the container with
the smallest index in the domain of the slot variable to bentinad on is stowed in the slot. Thmprovedmodel
includes the symmetry-breaking and implied constraimsifEection 5.1. Its branching strategy is similar tolthsic
model, but additionally, the containers are assigned asliased on their features to avoid conflicts with some of the
new constraints introduced. Finally, tbeanchingandadvancednodels include the tailor-made branching strategy
introduced in Section 5.2 and the lower bounds of SectionrBspectively.

SinceCSPUDLIinstances must be solved fast, we set a runtime limit of onersk The solver can return an
optimal solution before that, but after one second it muttrreits current solution. The results are summarised in
table 6. As expected, the total number of instances solvegeven optimal increases for each extension of the basic

Class Basic Improved | Branching | Advanced
sol | opt| sol | opt | sol | opt | sol | opt | all
1 13 9 13 11 13 13 13 13 13
2 19 12 18 11 20 19 20 20 18
3 12 8 12 9 13 13 13 13 12
4 64 9 65 48 75 70 75 74 58
5 19 4 25 16 32 27 | 33 31 13
6 12 1 14 6 15 14 15 14 12
7 10 0 9 2 9 4 9 8 5
8 11 2 11 4 13 13 13 13 7
9 13 3 11 2 13 8 13 13 8
10 5 1 7 3 8 5 8 8 6
11 4 1 5 2 5 4 5 5 4
Total 182 | 50 | 190 | 114 | 216 | 190 | 217 | 212 | 156

Table 6: Number of instances solved and proven to optimbiitthe CP models. The last column is the number of
instances solved by all four models.

model. A more careful inspection of the table shows thatdbiss not apply to all classes individually, but overall the
impact of the model improvements are quite similar for edabsc

We use the subset of 156 instances solved by all four CP muamletsmpare their runtime and optimality charac-
teristics. The left graph of Figure 3, shows the runtime efrtiodels for each instance. We have sorted the instances
such that the expected runtime dominance between the misd#ésrly observable. This dominance is also reflected
in the total runtime for the 156 instances which was 110.898&., 22.45, and 9.45 seconds for the basic, improved,
branching, and advanced model, respectively. The rigitttgshows the optimality gap of 39 out of the 156 instances
that at least one model solved suboptimally. Again, we havied the instances to highlight a quite robust optimality
dominance between the models. An investigation of the mantind optimality characteristics of each instance class
did not show any significant difference.

15

basic —— basic ——

improved - improved e
1 , branching —*—] branching —=--
advance -

400 -

time(s)
optimality gap(%)

100

o S DU DL DU DR LAY D0 O D0 2
0 20 40 60 80 100 120 140 0 5 10 15 20 25 30 35
instance instance

Figure 3: Runtime (left) and optimality dominance (right}loe four CP models.

6.2 Comparing the performance of our IP and CP models

In this section we compare the performance of the IP and CPemeing a one second and 10 seconds runtime
limit. Table 7 summarizes the performance of the models tweiinstance classes. For the one second time limit

Class || both | IP | CP | none Class || both | IP | CP | none
1 13 0 0 0 1 13 0 0 0
2 13 1 7 1 2 19 2 1 0
3 7 0 6 0 3 12 0 1 0
4 67 1 8 2 4 76 1 1 0
5 11 0| 22 3 5 25 3 8 0
6 15 0 0 0 6 15 0 0 0
7 4 0 5 5 7 7 2 2 3
8 7 1 6 0 8 10 1 3 0
9 6 0 7 4 9 12 1 3 1
10 7 0 1 0 10 8 0 0 0
11 4 0 1 1 11 4 0 1 1

Total: 154 | 3 63 16 Total 201 | 10 | 20 5

Table 7: For both tables, column 2 is the number of instancked by at least one of the models. Column 3 and 4 is
the number of instances solved just by the IP and CP modelin@ob is the number of instances solved by neither of
the two models. The left and right table shows the resultthfeexperiment with a one and 10 seconds runtime limit.

experiment, a total of 154 instances are solved by both msoddll solutions produced by the CP model are optimal.
The IP model produced 12 suboptimal solutions with optitpajap ranging from 90% to 2400%. The suboptimal
instances have in common that high-cube containers aremrasd the number of discharge ports is greater than one.
For the 10 seconds time limit experiment, the number of inesta solved by both models increased considerably (47
instances). The number of suboptimal solutions was alsacestifor the IP model (from 12 to 6) , but there were still
five instances that remain with a high gap (from 800% to 2400%)

Figure 4 compares the response time of the two models fonihexperiments. A total time of 5.2 (38.3) and 54.8
(409.6) seconds was used by the CP and IP model to solve a{PD34 instances of the one (10) second experiment,
respectively.

7 Literature review

Stowage planning for container vessels is a recognizedigmoin the literature, but it has not received as much
attention as one would expect from its economic impact. Mpgiroaches fall into two main categories: approaches
addressing the complete problem in a single phase, and agipge decomposing the problem hierarchically into a
number of sub-problems that individually can be solved gisiifferent methods.

16

0.01 |-

IP time (s)
IP time(s)

0.001 |
0.001
0.0001

0.0001 L L L L 1605 L L L L L L
0.0001 0.001 0.01 0.1 1 1e-05 0.0001 0.001 0.01 0.1 1 10

CP time (s) CP time(s)

Figure 4: Runtime comparison of the CP and IP model for theegwpents with one second (left) and 10 seconds
(right) runtime limit.

One-phase approaches are characterized by models ttoatliogr decision variables or similar for the assignment
of each container to a slot. Initial attempts of using triadil 0-1 IP models have not been able to scale to the size
of modern vessels (e.g., Botter and Brinati [1992], Avriehk [1998]). Heuristic approaches were then formulated.
Botter and Brinati (Botter and Brinati [1992]) proposed aifigtic enumeration with the ability of generating stowage
plans for a vessel of 740 TEUs, while Avriel et al. (Avriel €t[4998]) introduced thesuspensory heuristithat was
evaluated on 300 randomly generated instances with vesgsatity ranging from 300 to 1700 TEUs. Atthe same time,
Ambrosino and Sciomachen (Ambrosino and Sciomachen [}@88pduced a constraint satisfaction formulation for
generating stowage plans for a complete vessel. The modetomaulated according to the state-of-the-art Prolog-
based solution methods by the time, but only scaled to vesli$eeder vessels.

Attempts to generate stowage plans using one-phase app#dwen moved completely towards heuristic ap-
proaches. Dubrovsky and Penn (Dubrovsky and Penn [2002ddaced a genetic algorithm model similar to Avriel
et al.'s. This approach produced stowage plans for randgegrated problems of about 1000 TEUs in 30 minutes.
More recently, two heuristic approaches for generatinggatye plans were introduced by Ambrosino et al. Ambrosino
et al. [2010]. The first approach was a constructive heartbtt produced stowage plans following some rules ex-
tracted from the author’s previous work Ambrosino et al.q2P The second was an ant colony optimization model
that according to their experiments could stow a mediumaiasel of 5632 TEUs in 139.4 seconds in average.

Initial decomposition approaches hierarchically divide problem in two levels. At the first level, the problem
of distributing containers among different sections of #fdp is solved, whilst at the second level, specific slots
are found for containers within each section independgefdliowing the distribution generated by the first level.
Wilson and Roach (Wilson and Roach [2000]) introduced thst firodel of a hierarchically decomposition solving
a vessel of size 696 TEUs in approximately 90 minutes. Kangkim (Kang and Kim [2002]) proposed a similar
decomposition approach that iteratively improved the itpiaff the stowage plan. According to the computational
results, they could solve random instances of up to 4000 TiE@bout 11 minutes. Ambrosino et al. (Ambrosino
et al. [2006], Ambrosino et al. [2009]) proposed a threegehlaeuristic where the problem also was hierarchically
decomposed in two levels. However, after solving the twellewf the decomposition, a third phase post-optimizes
the stowage plan in order to improve stability conditionsioTvessels of 198 and 2124 TEU capacity were stowed
in their experimental section in 24.5 and 74.7 secondsersely. Gumus et al. (Gumus et al. [2008]) introduced
a four-level decomposition approach that they claimed tedagable and modular, but no computational results were
given. Finally, an automatic stowage system was introducéfke et al. (Yoke et al. [2009]) where the process of
generating stowage plans was consecutive rather tharr¢héral and each phase considered different constraints of
the problem. A vessel with 5000 TEUs capacity was used im thgieriments.

Since all the work described above present approaches fi@rggng complete stowage plans, there has not pre-
viously been published an independent model and experahanalysis of the sub-problem of assigning individual
containers to slots in vessel bays. Wilson and Roach (WissahRoach [2000]) briefly described a tabu search al-
gorithm for solving a version of this sub-problem that muavéincluded reefer slots, length restrictions and also

17

considered minimizing overstowage and avoiding dischpaggemixing of stacks. They implemented a tabu search
approach and claimed that near optimal solutions could bgpated fast. But they only described experimental re-
sults for generating a complete stowage plan for a singlseleKang and Kim (Kang and Kim [2002]) described an
enumeration approach for solving a very simple version efttoblem where only overstow minimization and sorting
of 40-foot containers after weight was considered. As fols@fi and Roach, no independent experimental evaluation
of the algorithm was provided. Ambrosino et al. (Ambrosinak [2009]) described a 0-1 IP model for stowing
individual vessel bays optimally. The model minimized thee for stowing containers. 20 and 40-foot containers
were considered and containers were sorted according ghtviei each stack. The experimental section considered
generating a complete stowage plan for a 198 and 2124 TEW@ioentvessel where the biggest bay had a capacity of
20-120 TEUs. No computational time was provided for solvimgse sub-problems and the bays were assumed only
to hold containers to a single discharge port.

8 Conclusions

In this paper we have presented the first independent studycti#ss of important sub-problems for hierarchically
decomposed methods to stowage planning that assigns mergad slots in sections of vessel bays. We have intro-
duced an accurate model of the problem call&PUDLthat has been validated by the industry. We have developed
a CP and IP model to solve tit@&SPUDLoptimally. The CP model works well on the practical instancensidered.

It is demonstrated that this CP model performs better thar(tihsic) IP model on these instances. Future research
includes improving the performance and stability of ouvsod (e.g., diving heuristics and other techniques may be
used to improve the IP model) and extending@®&PUDLto include over deck locations and special containers such
as out-of-gauge, pallet-wide, and containers with dangegoods.

9 Acknowledgements

We would like to thank Associate Professor Christian Sehaittd PhD student Mikael Lagerkvist from the KTH Royal
Institute of Technology for their fruitful suggestions dretConstraint Programming model introduced in this report.

References

Daniela Ambrosino and Anna Sciomachen. A Constraint Satisfn Approach for Master Bay Plandaritime
Engineering and Ports36, 1998.

Daniela Ambrosino, Anna Sciomachen, and Elena Tanfaniwipa conteinership: the master bay plan problem.
Transportation Research Part A: Policy and PractiG8(2):81-99, 2004.

Daniela Ambrosino, Anna Sciomachen, and Elena Tanfani.ddahgosition heuristics for the container ship stowage
problem.Journal of Heuristics12(3), 2006.

Daniela Ambrosino, Anna Sciomachen, Davide Anghinolfi, Bfasimo Paolucci. A new three-step heuristic for the
master bay plan problenMaritime Economics and Logistic$1(1):98-120, March 2009.

Daniela Ambrosino, Davide Anghinolfi, Massimo Paoluccid @&nna Sciomachen. An Experimental Comparison of
Different Heuristics for the Master Bay Plan Problem*.Hrperimental Algorithmspages 314-325, 2010.

Mordecai Avriel, Michal Penn, Naomi Shpirer, and Smadart&tibon. Stowage planning for container ships to reduce
the number of shiftsAnnals of Operations Researcr6(55-71), 1998.

Mordecai Avriel, Michal Penn, and Naomi Shpirer. Contaigleip stowage problem: complexity and connection to
the coloring of circle graphdiscrete Applied Mathematic$03:271-279, 2000.

18

R.C. Botter and M.A. Brinati. Stowage container planningmadel for getting an optimal solutiorRroceedings of
the Seventh International Conference on Computer Apjdicatn the Automation of Shipyard Operation and Ship
Design VII(C):217-229, 1992.

Opher Dubrovsky and Gregory Levitin Michal Penn. A genelgpdathm with a compact solution encoding for the
container ship stowage probledournal of Heuristics8(585-599), 2002.

Gecode Team. Gecode: Generic constraint development oamvént, 2006. Available from
http://ww. gecode. org.

Peer Giemesch and Andreas Jellinghaus. Optimization redalethe containership stowage problem. 2003.

Mehmet Gumus, Philip Kaminsky, Erik Tiemroth, and MehmeikAyA multi-stage decomposition heuristic for the
container stowage problem. Rroceedings of the 2008 MSOM Confereri2@08.

P. Van Hentenryck and J. P. Carrillon. Generality vs. spatifian experience with ai and or techniquesPhoceed-
ings of the National Conference on Artificial Inteligencé\@y), pages 660-664. ACM press, 1988.

J.G. Kang and Y.D. Kim. Stowage Planning in Maritime Congaifiransportationlournal of the Operations Research
society 53(4):415-426, 2002.

Shaw Paul. A constraint for bin packing. Rioceeding of Principles and practice of constraint progwaing volume
3258 ofLecture Notes in Computer Scienpages 648—-662. Springer, 2004.

Gilles Pesant. A regular language membership constraifitnite sequences of variables. Pmoceeding of Principles
and practice of constraint programmingolume 3258 ofLecture Notes in Computer Sciengeages 482-495.
Springer, 2004.

B. Smith. Modelling. In F. Rossi, P. van Beek, and T. Walshtoed, Handbook of Constraint Programminghap-
ter 11. Elsevier, 2006.

I. D. Wilson and P. Roach. Container Stowage Planning: A Methogy for Generating Computerised Solutions.
Journal of the Operational Research Socjéi§(11):248—255, 2000.

Malcolm Yoke, Hean Low, Xiantao Xiao, Fan Liu, Shell Ying Hhgg Wen Jing Hsu, and Zhengping Li. An Automated
Stowage Planning System for Large Containershipsn Proceedings of the 4th Virtual International Conference
on Intelligent Production Machines and Syste2309.

19

