
IEEE SIGNAL PROCESSING LETTERS, VOL. 16, NO. 2, FEBRUARY 2009 65

Two Families of Radix-2 FFT Algorithms
With Ordered Input and Output Data

Pere Marti-Puig

Abstract—Two radix-2 families of fast Fourier transform (FFT)
algorithms that have the property that both inputs and outputs
are addressed in natural order are derived in this letter. The al-
gorithms obtained have the same complexity that Cooley–Tukey
radix-2 algorithms but avoid the bit-reversal ordering applied to
the input. These algorithms can be thought as a variation of the
radix-2 Cooley–Tukey ones.

Index Terms—Fast algorithms, fast Fourier transform (FFT).

I. INTRODUCTION

T HE discrete fast Fourier transform was first discovered by
Gauss [1] and rediscovered by Cooley and Tukey [2] in

the 1960s. Due to its importance in engineering, many algo-
rithms have been derived since the 1960s, and there is an ex-
tensive bibliography concerning this field. There are algorithms
referred to as higher radix [3], [4], mixed-radix [5], prime-factor
[6], [19], Winograd [7], split-radix [8], [9], [20], [21], identical
geometry from stage-to-stage FFT [12], recursive [10], combi-
nation of decimation-in-time and the decimation-in-frequency
[11], among many variants. Reference [13] provides an inter-
esting overview on the state of the art of FFT. Matrix repre-
sentations for FFT and some tendencies in the field of fast dis-
crete signal transforms are found in [14]–[18]. One of the in-
terests in FFT research algorithms is to reduce its arithmetic
complexity by minimizing the total number of real multipli-
cations and additions as has been done recently in [21], al-
though actual performance of FFT on computers is determined
by many other factors such as cache or central processing unit
pipeline optimization. In practice, many FFT algorithms need
some input or output data permutation, bit-reversal ordering
being the one that most frequently appears. Although bit-re-
versal ordering seems simple, some recent improvements can
be found in [22]–[27]. In [28], there are two flow graphs for
eight point FFT sorted algorithms according to Stockham. In
[28], the authors change the Cooley–Tukey flow graphs to ob-
tain the other algorithms presented in it by applying flow graph
transform rules; it is a method which is easy only in some cases
and above all when the flow graph has reduced dimensions. The
Stockham algorithms are not derived in [28] in which a unique

Manuscript received April 24, 2008; revised June 26, 2008. Current version
published January 08, 2009. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Per Lowenborg.

The author is with the Department of Digital Information Technologies, Uni-
versity of Vic, Vic (Barcelona) 08500, Spain (e-mail: pere.marti@uvic.cat).

Digital Object Identifier 10.1109/LSP.2008.2003993

reference links to a private communication. In [30], input-output
FFT ordered algorithms are derived from the Cooley–Tokey fac-
torizations inserting a—different—permutation matrix between
factors. In [29], they were proposed to be used in vector proces-
sors. Reference [30] compiles the actualized know-how about
FFTs using a common matrix-vector notation under a compu-
tational framework. In this letter, two recursive properties are
presented involving matrix and not reported before.
By iterating them and with some algebra, the sorted radix-2 al-
gorithms are easily obtained. These properties can be extended
to obtain higher radix factorizations or combined with other re-
cursive properties.

II. USED NOTATION

In this section, we briefly present the used notation. Since we
always deal with square matrices in what follows, an
square matrix is denoted by a bold capital letter with subscript
N. In this letter, the number N is a power of two. The ele-
ments of matrix positioned at the row and the column

are denoted by . Sometimes we will use the notation
. A column vector is represented by a bold small

letter and, since its length can always be known from the context
in this letter, its subscript indicates the position of the column
in a matrix. The identity matrix is denoted by , and it
can be written by its column vectors as .
With , we denote the zero matrix. An even-odd per-
mutation matrix in terms of vectors takes the form

. We will sometimes find useful to di-
vide a given matrix into submatrices. The symbol stands for
the right Kronecker product and, for arbitrary square matrices

and , the Kronecker product is an
matrix that can be written using the elements of matrix
as

(1)

Most of the times, we will use the Kronecker product to show
a particular matrix structure. Next, we recall some useful prop-
erties involving the Kronecker product. We have

(2)

(3)

1070-9908/$25.00 © 2009 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RIUVic

https://core.ac.uk/display/50526008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

66 IEEE SIGNAL PROCESSING LETTERS, VOL. 16, NO. 2, FEBRUARY 2009

Note that superscript in a matrix means the power of this
matrix. Finally, the factorization of an arbitrary matrix in
terms of n factors (or stages) is written as follows:

(4)

III. PROBLEM FORMULATION AND DERIVATION

OF ALGORITHMS

Consider and the square root of 1. The Fourier
transform matrix is defined as

(5)

Being the ordered input vector, the or-
dered transformed vector is obtained
by performing the operation . As we know, a fast al-
gorithm can be thought as a sparse factorization of the trans-
form matrix in which the new organization of operations re-
duces the complexity of the direct full matrix vector multiplica-
tion problem (of order) drastically (to order). How-
ever, as a result of computing the FFT in terms of sparse factors,
the output vector appears disordered. In most applications, the
order must be re-established by performing a permutation of the
elements. The most common permutation appeared in FFT al-
gorithms is the bit-reversal one which is simple to perform by
hardware. In some algorithms, the permutation is applied at the
input, and in others, it is applied at the output. Our goal is to
obtain factorizations that avoid the reordering operation. To do
this, we introduce the next two recursion properties involving
matrix and matrix .

Let denote the matrix defined by

(6)

where

(7)

is a diagonal matrix.
Matrix can also be written as

(8)

being

(9)

Then, we have

(10)

(11)

We will obtain two sets of solutions, one from (10) and an-
other from (11).

A. First Set of Solutions

The first set of factorizations comes from expression (10)
taken into account that can be written as

(12)

then, by means of (10) and (12), we can write as

(13)

Using property (3), the next factor from (13) can be reorga-
nized in the following way:

(14)

and, from property (2), being, , becomes

(15)

The same process could be repeated introducing again expres-
sion (10), particularized now for , in (15). By the repeti-
tion of the same operations, the factorization finishes when
is reached. The full factorization takes the form

(16)

with factors (stages) taking the form

(17)

Note that in (16), the results are presented in an ordered form
and no permutation matrices appear at the beginning or at the
end of the factor chain.

1) Example: As an example, let us consider ;
then, from (16), we have

(18)

MARTI-PUIG: TWO FAMILIES OF RADIX-2 FFT ALGORITHMS WITH ORDERED INPUT AND OUTPUT DATA 67

where

and

Note that all three sparse matrices in the example compute
two outputs from only two input elements. This basic operation
is called (radix-2) butterfly, and it is represented graphically in
Fig. 1.

Note also in the same matrices that the indices of the
nonzero elements give the interconnection pattern among inputs
and outputs stage-to-stage (or factor to factor) seeing that the
input is needed to calculate the output. Fig. 2 stands for the
interconnection pattern of the example in terms of butterflies.
Fig. 3, for the same example, shows the signal flow diagram in
which the operations are explicitly indicated in order to realize
that such factorizations could have an efficient implementation
also in terms of multiplication operations.

B. Second Set of Solutions

The second set of factorizations that produces results in an
ordered form comes from expression (11). Matrix can be
written as

(19)

Fig. 1. Radix-2 butterfly representation showing dependence between two in-
puts and two outputs.

Fig. 2. Interconnection pattern representation for the first factorization in terms
of butterflies given � � �. Inputs and outputs are addressed in natural order.

Fig. 3. Signal flow diagram for the same factorization as Fig. 2 �� � ��. Inputs
and outputs are addressed in natural order. The transmittance gain of the arrows
with multiplicative factor different than 1 are represented in bold.

And, in the same way as in the previous section, introducing
(19) in (11), we have

(20)

Then, using also the properties (3) and (2), the factor of the
right-hand side of (20) can be reorganized as follows:

(21)

to obtain

(22)

The same steps can be repeated now for using (11).
By iterating the process, the factorization will be finished when
matrix is reached. The full factorization of the second solu-
tion takes the form

(23)

68 IEEE SIGNAL PROCESSING LETTERS, VOL. 16, NO. 2, FEBRUARY 2009

Fig. 4. Interconnection pattern representation for the second factorization in
terms of butterflies given � � �. Inputs and outputs are addressed in natural
order.

Fig. 5. Signal flow diagram for the second factorization �� � �� corre-
sponding with Fig. 4. Inputs and outputs are addressed in natural order. The
transmittance gain of the arrows with multiplicative factor different than 1 are
represented in bold.

Fig. 4 shows the interconnection pattern and Fig. 5 the signal
flow diagram of this second solution given .

IV. CONCLUSIONS

Two radix-2 families of factorizations that have the property
that both inputs and outputs are addressed in natural order are
derived in this letter. These algorithms can be thought of as vari-
ations of the Cooley–Tukey radix-2 ones. Their computational
complexity in terms of floating-point operations is the same as
a well-programmed Cooley–Tukey-type algorithm because the
same number of multiplications and additions are involved, but
the algorithms presented avoid the bit-reversed ordering applied
at the input or at the output samples. To have an idea of dif-
ferent bit-reversed algorithms and its complexity, see references
[22]–[27]. The strategy presented to obtain the factorizations is
based on a recursive property relating matrix and that
opens the possibility of deriving sorted radix-4, -8, or -16 algo-
rithms taking advantage of its efficiency in terms of algebraic
complexity.

REFERENCES

[1] M. T. Heideman, D. H. Johnson, and C. S. Burrus, “Gauss and the
history of the FFT,” IEEE Acoust., Speech, Signal Process. Mag., vol.
1, pp. 14–21, Oct. 1984.

[2] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calcula-
tion of complex Fourier series,” Math. Comput., vol. 19, pp. 297–301,
Apr. 1965.

[3] G. D. Bergland, “A radix-eight fast-Fourier transform subroutine for
real-valued series,” IEEE Trans. Audio Electroacoust., vol. 17, no. 2,
pp. 138–144, Jun. 1969.

[4] D. Takahashi, “A radix-16 FFT algorithm suitable for multiply-add in-
struction based on Goedecker method,” in Proc. Int. Conf. Acoustics,
Speech, and Signal Processing, ICASSP-2003, Apr. 6–10, 2003, vol. 2,
pp. 665–668.

[5] R. C. Singleton, “An algorithm for computing the mixed radix fast
Fourier transform,” IEEE Trans. Audio Electroacoust., vol. 1, no. 2,
pp. 93–103, Jun. 1969.

[6] D. P. Kolba and T. W. Parks, “A prime factor FFT algorithm
using high-speed convolution,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 25, no. 4, pp. 281–294, Aug. 1977.

[7] S. Winograd, “On computing the discrete Fourier transform,” Math.
Comput., vol. 32, no. 141, pp. 175–199, Jan. 1978.

[8] H. V. Sorensen and C. S. Burrus, “A new efficient algorithm for
computing a few DFT points,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 35, no. 6, pp. 849–863, Jun. 1987.

[9] D. Takahashi, “An extended split-radix FFT algorithm,” IEEE Signal
Process. Lett., vol. 8, no. 5, pp. 145–147, May 2001.

[10] A. R. Varkonyi-Koczy, “A recursive Fast Fourier Transform algo-
rithm,” IEEE Trans. Circuits Syst. II, vol. 42, pp. 614–616, Sep. 1995.

[11] A. Saidi, “Decimation-in-time-frequency FFT algorithm,” in Proc.
IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Apr. 19–22,
1994, vol. 3, pp. 453–456.

[12] M. C. Pease, “An adaptation of the fast Fourier transform for parallel
processing,” J. Assoc. Comput., vol. 15, pp. 252–264, Apr. 1968.

[13] P. Duhamel and M. Vetterli, “Fast Fourier transforms: A tutorial review
and a state of the art,” Signal Process., vol. 19, pp. 259–299, 1990.

[14] J. A. Glassman, “A generalization of the fast Fourier transform,” IEEE
Trans. Comput., vol. C-19, pp. 105–116, Feb. 1970.

[15] M. Drubin, “Kronecker product factorization of the FFT matrix,” IEEE
Trans. Comput., vol. C-20, pp. 590–593, May 1971.

[16] H. Sloate, “Matrix representations for sorting and the fast Fourier trans-
form,” IEEE Trans. Circuits Syst., vol. 21, no. 1, pp. 109–116, Jan.
1974.

[17] J. Granata, M. Conner, and R. Tolimieri, “Recursive fast algorithms
and the role of the tensor product,” IEEE Trans. Signal Process., vol.
40, no. 12, pp. 2921–2930, Dec. 1992.

[18] S. Egner and M. Püschel, “Automatic generation of fast discrete
signal transforms,” IEEE Trans. Signal Process., vol. 49, no. 9, pp.
1992–2002, Sep. 2001.

[19] S. C. Chan and K. L. Ho, “On indexing the prime-factor fast Fourier
transform algorithm,” IEEE Trans. Circuits Syst., vol. 38, no. 8, pp.
951–953, 1991.

[20] P. Duhamel and H. Hollmann, “Split-radix FFT algorithm,” Electron.
Lett., vol. 20, no. 1, pp. 14–16, 1984.

[21] S. G. Johnson and M. Frigo, “A modified split-radix FFT with fewer
arithmetic operations,” IEEE Trans. Signal Process., vol. 55, no. 1, pp.
111–119, Jan. 2007.

[22] R. J. Polge, B. K. Bhagavan, and J. M. Carswell, “Fast computational
algorithms for bit reversal,” IEEE Trans. Comput., vol. C-23, no. 1, pp.
1–9, Jan. 1974.

[23] J. S. Walker, “A new bit reversal algorithm,” IEEE Trans. Acoustics,
Speech, Signal Process., vol. 38, no. 8, pp. 1472–1473, Aug. 1990.

[24] A. Biswas, “Bit reversal in FFT from matrix viewpoint,” IEEE Trans.
Signal Process., vol. 39, no. 6, pp. 1415–1418, Jun. 1991.

[25] A. Edelman, S. Heller, and S. L. Johnsson, “Index transformation al-
gorithms in a linear algebra framework,” IEEE Trans. Parallel Distrib.
Syst., vol. 5, no. 12, pp. 1302–1309, Dec. 1994.

[26] K. Drouiche, “A new efficient computational algorithm for bit reversal
mapping,” IEEE Trans. Signal Process., vol. 49, no. 1, pp. 251–254,
Jan. 2001.

[27] J. Prado, “A new fast bit-reversal permutation algorithm based on a
symmetry,” IEEE Signal Process. Lett., vol. 11, no. 12, pp. 933–936,
Dec. 2004.

[28] W. T. Cochrane, J. W. Cooley, J. W. Favin, D. L. Helms, R. A. Kaenel,
W. W. Lang, G. C. Mailing, D. E. Nelson, C. M. Rader, and P. D.
Welch, “What is the fast Fourier transform?,” IEEE Trans. Audio Elec-
troacoust., vol. 15, pp. 45–55, 1967.

[29] P. N. Swarztrauber, “FFT algorithms for vector computers,” Parallel
Comput., vol. 1, pp. 45–63, 1984.

[30] C. Van Loan, Computational Frameworks for the Fast Fourier Trans-
form. Philadelphia, PA: SIAM, 1992.

