
From Dynamic Condition Response Structures to
Büchi Automata

Raghava Rao Mukkamala
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

rao@itu.dk

Thomas T. Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Abstract—Recently we have presented distributed dynamic
condition response structures (DCR structures) as a declarative
process model conservatively generalizing labelled event struc-
tures to allow for finite specifications of repeated, possibly infinite
behavior. The key ideas are to split the causality relation of event
structures in two dual relations: the condition relation and the
response relation, to split the conflict relation in two relations:
the dynamic exclusion and dynamic inclusion, and finally to allow
configurations to be multi sets of events. In the present abstract
we recall the model and show how to characterise the execution
of DCR structures and the acceptance condition for infinite runs
by giving a map to Büchi-automata. This is the first step towards
automatic verification of processes specified as DCR structures.

I. INTRODUCTION

A key difference between declarative and imperative process
languages is that the control flow for the first kind is defined
implicitly as a set of constraints or rules, and for the latter is
defined explicitly, e.g. as a flow diagram or a sequence of state
changing commands. There is a long tradition for using declar-
ative logic based languages to schedule transactions in the
database community. Several authors have noted that it could
be an advantage to also use a declarative approach to specify
workflow and business processes [3], [8], [9]. An important
motivation for considering a declarative approach is to achieve
more flexible process descriptions [9]. The increased flexibility
is obtained in two ways: Firstly, imperative descriptions tend to
over-constrain the control flow, since one does not think of all
possible ways of fulfilling the intended constraints, whereas
the declarative modes specify the process to the minimum
extent. Secondly, changing or adding a new constraint to an
imperative process description may require that the process
code is completely rewritten, while the declarative approach
just requires the constraint to be changed or added.

A drawback of the declarative approach however, is that the
implicit definition of the control flow makes the flow less easy
to perceive for the user or to compute by the execution engine.
At each state, one has to solve the set of constraints to figure
out what are the next possible events. It becomes even worse
if you are not only interested in knowing the immediate next
event, but also want to get an overview of the complete run
of the process.

This motivates researching the problem of finding an
expressive declarative process model language that can be

easily visualized by the end user, allows an effective run-
time scheduling and can be mapped easily to a state based
model if an overview of the flow graph is needed. In [4]
we have proposed a new such declarative process model
language called dynamic condition response structures (DCR).
The model is inspired by the declarative process matrix model
language [6], [7] used by our industrial partner, Resultmaker
A/S, and (labelled) prime event structures [10]. Indeed, it is
formally a conservative generalization and strict extension of
both event structures and the core primitives of the process
matrix model language. In [4] we gave a labelled transition
semantics for DCR structures and formalized acceptance for
finite runs. In the present abstract we first recall the model and
then show how to characterize the execution of DCR structures
and the acceptance condition for infinite runs by giving a map
to Büchi-automata. This is the first step towards automatic
verification of processes specified as DCR structures.

II. DYNAMIC CONDITION RESPONSE STRUCTURES

An event structure [10] can be regarded as a minimal,
declarative model for concurrent processes. A labelled prime
event structure consists of a set of events, a causality (partial
order) relation between events, a binary conflict relation, and
a labeling function describing the observable action name
of each event. The causality relation states which events
are caused by the previous events (satisfying a condition of
finite cause), or dually, which events are preconditions for the
execution of an event. The conflict relation states which events
can not happen in the same execution, satisfying a condition
of hereditary conflict.

To use event structures as an execution language for concur-
rent reactive systems, several aspects are missing. In particular,
each event can only be executed once and there is no notion
of acceptance condition (except taking all or only maximal
traces to be accepting). Instead, models such as Petri Net,
(asynchronous) transition systems or Büchi-automata have
been used as execution languages and the model of event
structures as an abstract denotational model. In the paper
[4], we have shown how to extend the declarative model of
event structures to allow for finite specifications of repeated,
possibly infinite behavior. Firstly, we allow each event to
happen many times and replace the symmetric conflict relation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50525906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

by an asymmetric relation which dynamically determines
which events are included in or excluded from the structure.
Secondly, the causality relation is split in two relations (not
necessarily partial orders): A condition relation stating which
events must have happened before an event and a response
relation stating which events must happen after (as a response
to) an event. Note that this is slightly more general than the
may and must transitions of Modal Transition Systems [5],
since we do not require the response relation to be a subset of
the condition relation. We then defined a run of a DCR stucture
as a sequence of events satisfying that if an event e is executed,
it must be currently included and all its currently included
conditions have been executed previously. We defined a finite
run to be accepting if it has no pending responses. Finally,
since we wanted to apply the model to workflow processes we
defined distributed DCR structures by adding a set of roles
assigned to persons/processors and actions. Being based on
essentially only four relations between events, our model can
be simply visualized as a directed graph with events (labelled
by activities and roles) as nodes and four different kinds of
arrow as exemplified in Fig. 1. We use the same notation for
condition and response relations as [9]. Note that the work
ibid. differs from our approach by allowing any LTL template
(thus increasing the complexity), but not allowing the dynamic
inclusion/exclusion relations.

In this short paper (and poster) we consider infinite runs,
which are defined to be accepting if no event from some
point in the execution, is required as response and included
continuously without ever being executed. This relates to the
elegant definition of fair runs in true concurrency models
investigated in [2], but differs in that we distinguish between
required events (responses) and allowed events (events for
which all condition events have been executed previously).

Before giving the formal definitions let us consider a small
part of a hospital workflow extracted from a study of paper-
based oncology workflow at danish hospitals [6], with a
rule stating that the doctor must sign after adding medical
prescription to the patient record. A naive imperative process
description may instruct the doctor first to prescribe medicine
and then sign it. In this way the possibility of adding several
prescriptions before or after signing is lost, even if it is
perfectly legal according to the declaratively given rule. With
respect to the second type of flexibility, consider adding the
rule that a nurse should give the prescribed medicine to the
patient, but it is not allowed before the patient record has
been signed. A simple imperative solution may be to just add
a command in the end of the program instructing the nurse
to give the medicine. Perhaps we remember to insert a loop
to allow that the nurse give the medicine repeatedly. But the
nurse should be allowed to give medicine as soon as the first
signature is put and the doctor should also be allowed to add
new prescriptions after or even at the same time as the nurse
gives the medicine. So, the most flexible imperative description
should in fact spawn a new thread for the nurse after the first
signature has been given.

The example described above is modeled using DCR

(a) Prescribe Medicine Example

(b) Prescribe Medicine Example With Check

Figure 1. DCRS example in graphical notation

graphical notation in figure 1(a). It contains three events
uniquely labelled (and thus identified) by the actions: pre-
scribe medicine, sign and give medicine. The events are
also labelled by the assigned roles (D for Doctor and N for
Nurse). The arrow •→• between prescribe medicine and
sign indicates that the two events are related by both the
condition relation and the response relation. The condition
relation(→•) means that the prescribe medicine event must
happen at least once before the sign event. The response
relation (•→) enforces that, if the prescribe medicine event
happens, subsequently at some point of time, the sign event
must happen for the flow to be accepted. Similarly, the
response relation between prescribe medicine and give
medicine enforces that, if the prescribe medicine event
happens, subsequently later the give medicine event must
happen for the flow to be accepted. Finally, the condition
relation between sign and give medicine enforces that the
sign event must have happened before the medicine can be
given. Note the nurse can give medicine many times, and that
the doctor can at any point chose to prescribe new medicine
and sign again. (This will not block the nurse from continue to
give medicine. The interpretation is that the nurse may have to
keep giving medicine according to the previous prescription).

The dynamic inclusion and exclusion of events is illustrated
by an extension to the scenario (also taken from the real case
study): If the nurse distrusts the prescription by the doctor,
it should be possible to indicate it, and this action should
force either a new prescription followed by a new signature
or just a new signature. As long the new signature has not
been added, medicine must not be given to the patient. This
scenario is modeled in Figure 1(b), where one more action
don’t trust is added. Now, the nurse have a choice to indicate
distrust of prescription and thereby avoid give medicine until

the doctor re-executes the sign action. Executing the don’t
trust action will exclude give medicine and make the sign
as pending response. So the only way to execute the give
medicine action is to re-execute thesign action which will
then include give medicine. Here the doctor may choose
to re-do prescribe medicine followed by sign actions (new
prescription) or simply re-do sign.

We are now ready for the formal definitions.
Definition 1: A dynamic condition response structure

(DCR) is a tuple D = (E, Act,→•, •→,±, l) where
(i) E is the set of events

(ii) Act is the set of actions
(iii) →•⊆ E× E is the condition relation
(iv) •→⊆ E× E is the response relation
(v) ± : E × E → {+, %, ∗} is the dynamic inclu-

sion/exclusion relation.
(vi) l : E → Act is a labelling function mapping events to

actions.
Finally, we define distributed dynamic condition response

structures by adding roles and principals.
Definition 2: A distributed dynamic condition response

structure(DDCR) is a tuple

(E, Act,→•, •→,±, l, R, P, as)

where (E, Act,→•, •→,±, l) is a dynamic condition response
structure, R is a set of roles, P is a set of principals (e.g.
persons/processors/agents) and as ⊆ (P∪Act)×R is the role
assignment relation to executors and actions.

For a distributed DCR, the role assignment relation indicates
the roles of principals and which roles gives permission to
execute which actions. As an example, if Peter as Doctor and
Sign as Doctor (for Peter ∈ P and Doctor ∈ R, then Peter
can do the Sign action having the role as Doctor.

We now show how to characterize the execution and accep-
tance criteria for infinite runs for DCR structures by giving
a mapping from finite DCR structures to Büchi-automata.
Recall that the acceptance criteria is that ”no event from some
point in the execution is required as response and included
continuously without ever being executed”. The mapping is not
entirely trivial, since we at any given time may have several
pending responses and thus must make sure that all of them are
eventually executed or excluded. To make sure we progress,
we assume any fixed order of the finite set of events E of the
DCR structure. For an event e ∈ E we write rank(e) for its
rank in that order and for a subset of events E′ ⊆ E we write
min(E′) for the event in E′ with the minimal rank.

Definition 3: For a finite distributed DCR D = (E, Act,→•
, •→,±, l, R, P, as) where E = {e1, . . . , en} we define the
corresponding Büchi-automaton Aut(D) to be the tuple
(S, s,→⊆ S × Act × S, F) where S = P(E) × P(E) ×
P(E) × {1, . . . , n} × {0, 1} is the set of states and s =
(∅, E, ∅, 1, 1) ∈ S is the initial state and F = P(E) ×
P(E)×P(E)×{1, . . . , n}×{1} is the set of accepting states.
→⊆ S× (P×Act×R)×S is the transition relation given by

(E, I,R, i, j)
(p,a,r)
−−−−−−−→ (E ∪ {e}, I ′, R′, i′, j′) where

(i) e ∈ I , l(e) = a, p as r, and a as r
(ii) {e′ ∈ I | e′ →• e} ⊆ E

(iii) I ′ = (I ∪ {e′ | ±(e, e′) = +}) \ {e′ | ±(e, e′) = %}
(iv) R′ = (R \ {e}) ∪ {e′ | e •→ e′}
(v) j′ = 1 if

a) I ′ ∩R′ = ∅ or
b) min(M) ∈ (I ∩R\(I ′ ∩R′)) ∪ {e} or
c) M = ∅ and min(I ∩R) ∈ (I ∩R\(I ′ ∩R′)) ∪ {e}
otherwise j = 0.

(vi) i′ = rank(min(M)) if min(M) ∈ (I ∩R\(I ′ ∩R′)) ∪
{e} or else

(vii) i′ = rank(min(I ∩ R)) if M = ∅ and min(I ∩ R) ∈
(I ∩R\(I ′ ∩R′)) ∪ {e} or else

(viii) i′ = i otherwise.
for M = {e ∈ I ∩R | rank(e) 〉 i}.

The set E in each state of the automaton records the events
that have been executed. The set I records the events that are
currently included. The set R records the pending responses.
The index i is used to make sure that no event stays forever
included and in the response set without being executed.
Finally, the flag j indicates if the state is accepting or not.

Condition (i) captures that the executed event must be
currently included (i.e. in the set I), and record in the label the
principal, action and role. Condition (ii) captures that all the
currently included conditions for the executed event must have
been executed. Condition (iii) captures the dynamic inclusion
and exclusion of events. Condition (iv) removes the currently
executed event from the pending response set R and adds new
pending responses (which may include the currently executed
event as we will see below). Condition (v) defines when a state
is accepting. Either (va) there are no pending responses in the
resulting state which are also included. Or (vb), the included
pending response with the minimal rank above the index i was
excluded or executed. Or (vc), there is no included pending
response with rank above the index i and the included pending
response with the minimal rank was excluded or executed.
Condition (vi) records the new rank if the resulting state is
accepting according to condition (vb). Condition (vii) records
the new rank if the resulting state is accepting according to
condition (vc).

To give a simple example of the mapping consider the
DCR in Fig. 2(a) and the corresponding generalized Büchi-
automaton in Fig. 2(b). The structure consists of two events,
a and b, having themselves as responses. The accepting runs
are all infinite runs which contain either none or an infinite
number a events and similarly for b events.

The key point to note is that the automaton enters an
accepting state if a pending response is executed, but only
if it is the minimal ranked event according to the index i. So,
if a is executed in state S4 we do not enter an accepting state,
even if a is a pending response, because event b is also a
pending response and it is the one to be executed according
to the rank i. Dually, in state S7 only an a event will take us to
an accepting state, even though b is also a pending response.

Fig. 2(c) shows a stratified view of the automaton, dividing
the state sets according to the rank i in order to emphazise the

role of the rank in guaranteeing that both a and b events get
executed infinitely often if they are executed at least once.

(a) DCRS Graphical Notation

(b) Büchi automaton

(c) Stratified automaton

Figure 2. Fair interleaving of two events repeated infinitely (if ever executed)

We end by stating the soundness and completeness of the
mapping from DCR structures to Büchi-automata.

Theorem 1: For a finite distributed DCR structure D the
Büchi-automaton Aut(D) has exactly the valid runs of D
and accepts the infinite runs in which no event from some
point in the execution is required as response and included
continuously without ever being executed.

III. CONCLUSION AND FUTURE WORK

The model of DCR structures is a declarative process model
introduced and studied for finite runs in [4]. It is derived as
a simple generalization of labelled event structures that adds
the possibility to specify repeated, possibly infinite behavior
and acceptance conditions for infinite runs by allowing events
to be executed several times by default, generalizing the
conflict relation to a dynamic inclusion/exclusion relation, and
employing a response relation dual to that of precedence. In
this paper, we have defined a natural notion of acceptance
condition for infinite runs of DCR structures and showed
how to characterize it by a mapping to Büchi automata. The
mapping is not entirely trivial, since we at any given time may
have several pending responses and thus must make sure that
all of them are eventually executed or excluded. We believe
that the DCR model and its graphical presentation is much
simpler to understand than Büchi-automata, e.g. as illustrated
by comparing Fig. 2(a) and Fig. 2(b). Also, the declarative
nature of the model provides the required flexibility in execu-
tion and with respect to addition/change of constraints which
is not provided by Büchi-automata or Petri Nets. Finally, its
execution is much simpler to understand and describe than
Linear-time Temporal Logic (LTL) which is the basis of the
work in [9].

For future work we will consider a more detailed com-
parison between DCR and existing models for concurrency,
including the relation to LTL and the work in [2], [9], [1]. We
also plan to develop an algebra and simulation relations for
DCR structures, and study distributed scheduling and exten-
sions to the model, notably with time, nested sub structures,
soft constraints, and compensation/exceptions.

REFERENCES

[1] B. Bérard, F Cassez, S. Haddad, D. Lime, and O.H. Roux. Comparison
of the expressiveness of timed automata and time petri nets. In
Proceedings of 3rd Int. Conf. on Formal Modeling and Analysis of Timed
Systems (FORMATS’05), pages 211–225, 2005.

[2] Allan Cheng. Petri nets, traces, and local model checking. In
Proceedings of AMAST, pages 322–337, 1995.

[3] Hasam Davulcu, Michael Kifer, C. R. Ramakrishnan, and I.V. Ramakr-
ishnan. Logic based modeling and analysis of workflows. In Proceedings
of ACM SIGACT-SIGMOD-SIGART, pages 1–3. ACM Press, 1998.

[4] Thomas Hildebrandt and Raghava Rao Mukkamala. Distributed dynamic
condition response structures. In Pre-proceedings of International
Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software (PLACES 10), March 2010.

[5] Kim Guldstrand Larsen and Bent Thomsen. A modal process logic. In
LICS, pages 203–210. IEEE Computer Society, 1988.

[6] Karen Marie Lyng, Thomas Hildebrandt, and Raghava Rao Mukkamala.
From paper based clinical practice guidelines to declarative workflow
management. In Proceedings ProHealth 08 workshop, 2008.

[7] Raghava Rao Mukkamala, Thomas Hildebrandt, and Janus Boris Tøth.
The resultmaker online consultant: From declarative workflow manage-
ment in practice to LTL. In Proceeding of DDBP, 2008.

[8] Munindar P. Singh, Greg Meredith, Christine Tomlinson, and Paul C.
Attie. An event algebra for specifying and scheduling workflows. In
Proceedings of DASFAA, pages 53–60. World Scientific Press, 1995.

[9] Wil M.P van der Aalst and Maja Pesic. A declarative approach for
flexible business processes management. In Proceedings DPM 2006,
LNCS. Springer Verlag, 2006.

[10] Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig,
and Grzegorz Rozenberg, editors, Advances in Petri Nets, volume 255
of Lecture Notes in Computer Science, pages 325–392. Springer, 1986.

