
An Implementation of Bigraph Matching

Arne John Glenstrup
Troels Christoffer Damgaard
Lars Birkedal
Espen Højsgaard

IT University Technical Report Series TR-2010-135

ISSN 1600–6100 December 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50525876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© 2010, Arne John Glenstrup
Troels Christoffer Damgaard
Lars Birkedal
Espen Højsgaard

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 978–87–7949–228–8

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

An Implementation of Bigraph Matching

Arne John Glenstrup Troels Christoffer Damgaard Lars Birkedal
Espen Højsgaard

IT University of Copenhagen, Denmark

Abstract

We describe a provably sound and complete matching algorithm for bigraphical reactive systems.
The algorithm has been implemented in our BPL Tool, a first implementation of bigraphical reactive
systems. We describe the tool and present a concrete example of how it can be used to simulate a model
of a mobile phone system in a bigraphical representation of the polyadic π calculus.

1 Introduction
The theory of bigraphical reactive systems [13] provides a general meta-model for describing and analyz-
ing mobile and distributed ubiquituous systems. Bigraphical reactive systems form a graphical model of
computation in which graphs embodying both locality and connectivity can be reconfigured using reac-
tion rules. So far it has been shown how to use the theory for recovering behavioural theories for various
process calculi [12, 13, 15] and how to use the theory for modelling context-aware systems [2].

In this paper we describe the core part of our BPL Tool, a first prototype implementation of bigraphical
reactive systems, which can be used for experimenting with bigraphical models.

The main challenge of implementing the dynamics of bigraphical reactive systems is the matching
problem, that is, to determine for a given bigraph and reaction rule whether and how the reaction rule can
be applied to rewrite the bigraph. When studying the matching problem in detail, one finds that it is a
surprisingly tricky problem (it is related to the NP-complete graph embedding problem). Therefore we
decided early on to study the matching problem quite formally and base our prototype implementation
on a provably correct specification. In previous work [1, 9], we gave a sound and complete inductive
characterization of the matching problem for bigraphs. Our inductive characterization was based on
normal form theorems for binding bigraphs [8].

In the present paper we extend the inductive characterization from graphs to a term representation of
bigraphs. A single bigraph can be represented by several structurally congruent bigraph terms. Using
an equational theory for bigraph terms [8], we essentially get a non-deterministic matching algorithm
operating on bigraph terms. However, such an algorithm will be wildly non-deterministic and we thus
provide an alternative, but still provably sound and complete, characterization of matching on terms,
which is more suited for mechanically finding matching. In particular, it spells out how and where to
make use of structural congruences.

We have implemented the resulting algorithm in our BPL Tool, which we briefly describe in Section 8.
We also present an example of a bigraphical reactive system, an encoding of the polyadic π calculus, and
show how it can be used to simulate a simple model of a mobile phone system.

Bigraphical reactive systems are related to general graph transformation systems; Ehrig et al. [10] pro-
vide a recent comprehensive overview of graph transformation systems. In particular, bigraph matching
is related to the general graph pattern matching (GPM) problem, so general GPM algorithms might also
be applicable to bigraphs [11, 14, 20, 21]. As an alternative to implementing matching for bigraphs, one

1

could try to formalize bigraphical reactive systems as graph transformation systems and then use an ex-
isting implementation of graph transformation systems. Some promising steps in this direction have been
taken [19], but they have so far fallen short of capturing precisely all the aspects of binding bigraphs. For
a more detailed account of related work, in particular on relations between BRSs, graph transformations,
term rewriting and term graph rewriting, see the Thesis of Damgaard [7, Section 6].

The remainder of this paper is organized as follows. In Section 2 we give an informal presentation of
bigraphical reactive systems and normalisation techniques needed for the implementation. In Section 3
we recall the graph-based inductive characterization, then in Section 4 we develop a term-based inductive
characterization, forming the basis for our implementation of matching. Section 5 explains how we can
restrict the kind of inferece trees the algorithm needs to consider, without sacrificing completeness; this is
then used in Section 6, where we describe how to translate the inference system into a working algorithm.
We discuss how to handle nondeterminism in Section 7, and in Section 8 we describe the BPL Tool and
present an example use of it. Finally, we conclude and discuss future work in Section 9.

2 Bigraphs and Reactive Systems
In the following, we present bigraphs informally; for a formal definition, see the work by Jensen and
Milner [13] and Damgaard and Birkedal [8].

2.1 Concrete Bigraphs
A concrete binding bigraph G consists of a place graph GP and a link graph GL. The place graph is an
ordered list of trees indicating location, with roots r0, . . . ,rn, nodes v0, . . . ,vk, and a number of special
leaves s0, . . . ,sm called sites, while the link graph is a general graph over the node set v0, . . . ,vk extended
with inner names x0, . . . ,xl , and equipped with hyper edges, indicating connectivity.

We usually illustrate the place graph by nesting nodes, as shown in the upper part of Figure 1 (ignore
for now the interfaces denoted by “ : · → ·”). A link is a hyper edge of the link graph, either an internal

Bigraph G : 〈3, [{},{},{x0,x2}],X〉 → 〈2, [{y0},{}],Y 〉

0

1

2

y0 y1 y2

x0 x2

x1

e2

v0

v1
v2 v3

e1

X ={x0,x1,x2}
Y ={y0,y1,y2}

Place graph GP : 3→ 2

roots:

sites:

r0

v0

v1

s0

v2

r1

v3

s2 s1

Link graph GL : X → Y

names:

inner names:

y0 y1 y2

v0

v1

v2

v3

x0 x2 x1

e1

e2

Figure 1: Example bigraph illustrated by nesting and as place and link graph.

edge e or a name y. Links that are names are called open, those that are edges are called closed. Names

2

and inner names can be global or local, the latter being located at a specific root or site, respectively. In
Figure 1, y0 is located at r0, indicated by a small ring, and x0 and x2 are located at s2, indicated by writing
them within the site. Global names like y1 and y2 are drawn anywhere at the top, while global inner names
like x1 are drawn anywhere at the bottom. A link, including internal edges like e2 in the figure, can be
located with one binder (the ring), in which case it is a bound link, otherwise it is free. However, a bound
link must satisfy the scope rule, a simple structural requirement that all points (cf. next paragraph) of the
link lie within its location (in the place graph), except for the binder itself. This prevents y2 and e1 in the
example from being bound.

2.2 Controls and Signatures
Every node v has a control K, indicated by v : K, which determines a binding and free arity. In the example
of Figure 1, we could have vi : Ki, i = 0,1,2,3, where arities are given by K0 : 1, K1 : 2, K2 : 3, K3 : 1→ 2,
using K : f as a shorthand for K : 0→ f . The arities determine the number of bound and free ports of the
node, to which bound and free links, respectively, are connected. Ports and inner names are collectively
referred to as points.

In addition to arity, each control is assigned a kind, either atomic, active or passive, and describe
nodes according to their control kinds. We require that atomic nodes contain no nodes except sites; any
site being a descendant of a passive node is passive, otherwise it is active. If all sites of a bigraph G are
active, G is active.

A collection of controls with their associated kinds and arities is referred to as a signature.

2.3 Abstract Bigraphs
While concrete bigraphs with named nodes and internal edges are the basis of bigraph theory [13], our
prime interest is in abstract bigraphs, equivalence classes of concrete bigraphs that differ only in the
names of nodes and internal edges1. Abstract bigraphs are illustrated with their node controls (see Fig-
ure 14 in Section 8). In what follows, “bigraph” will thus mean “abstract bigraph.”

2.4 Interfaces
Every bigraph G has two interfaces I and J, written G : I→ J, where I is the inner face and J the outer
face. An interface is a triple 〈m,~X ,X〉, where m is the width (the number of sites or roots), X the entire
set of local and global names, and ~X indicates the locations of each local name, cf. Figure 1. We let
ε = 〈0, [],{}〉; when m = 1 the interface is prime, and if all x ∈ X are located by ~X , the interface is local.
As in the work by Milner [18] we write G : → J or G : I → for G : I → J when we are not concerned
about about I or J, respectively.

A bigraph G : I→ J is called ground, or an agent, if I = ε , prime if I is local and J prime, and a wiring
if m = n = 0, where m and n are the widths of I and J, respectively. For I = 〈m,~X ,X〉, bigraph idI : I→ I
consists of m roots, each root ri containing just one site si, and a link graph linking each inner name x ∈ X
to name x.

2.5 Discrete and Regular Bigraphs
We say that a bigraph is discrete iff every free link is a name and has exactly one point. The virtue of
discrete bigraphs is that any connectivity by internal edges must be bound, and node ports can be accessed
individually by the names of the outer face. Further, a bigraph is name-discrete iff it is discrete and every

1Formally, we also disregard idle edges: edges not connected to anything.

3

bound link is either an edge, or (if it is a name) has exactly one point. Note that name-discrete implies
discrete.

A bigraph is regular if, for all nodes v and sites i, j,k with i ≤ j ≤ k, if i and k are descendants of v,
then j is also a descendant of v. Further, for roots ri′ and r j′ , and all sites i and j where i is a descendant of
ri′ and j of r j′ , if i≤ j then i′ ≤ j′. The bigraphs in the figures are all regular, the permutation in Table 1
is not. The virtue of regular bigraphs is that permutations can be avoided when composing them from
basic bigraphs.

2.6 Product and Composition
For bigraphs G1 and G2 that share no names or inner names, we can make the tensor product G1⊗G2 by
juxtaposing their place graphs, constructing the union of their link graphs, and increasing the indexes of
sites in G2 by the number of sites of G1. We write

⊗n
i Gi for the iterated tensor G0⊗·· ·⊗Gn−1, which,

in case n = 0, is idε .
The parallel product G1 ||G2 is like the tensor product, except global names can be shared: if y is

shared, all points of y in G1 and G2 become the points of y in G1 ||G2.
The prime product G1 |G2 is like the parallel product, except the result has just one root (also when

G1 and G2 are wirings), produced by merging any roots of G1 and G2 into one.
We can compose bigraphs G2 : I→ I′ and G1 : I′→ J, yielding bigraph G1 ◦G2 : I→ J, by plugging

the sites of G1 with the roots of G2, eliminating both, and connecting names of G2 with inner names of
G1. In the following, we will omit the ‘◦’, and simply write G1G2 for composition, letting it bind tighter
than tensor product.

2.7 Notation, Basic Bigraphs, and Abstraction
In the sequel, we will use the following notation:] denotes union of sets required to be disjoint; we write
{~Y} for Y0]·· ·]Yn−1 when~Y =Y0, . . .Yn−1, and similarly {~y} for {y0, . . . ,yn−1}. For interfaces, we write
n to mean 〈n, [/0, . . . , /0], /0〉, X to mean 〈0, [],X〉, 〈X〉 to mean 〈1, [{}],X〉 and (X) to mean 〈1, [X],X〉.

Any bigraph can be constructed by applying composition, tensor product and abstraction to identities
(on all interfaces) and a set of basic bigraphs, shown in Table 1 [8]. For permutations, when used in any
context, π~X G or Gπ~X , ~X is given entirely by the interface of G; in these cases we simply write π~X as π .

Given a prime P, the abstraction operation localises a subset of its outer names. Note that the scope
rule is necessarily respected since the inner face of a prime P is required to be local, so all points of P are
located within its root. The abstraction operator is denoted by (·)· and reaches as far right as possible.

For a renaming α : X → Y , we write pαq to mean (α ⊗ id1)pXq, and when σ : U → Y , we let
σ̂ = (Y)(σ ⊗ id1)pUq. We write substitutions~y/[/0, . . . , /0] : ε → Y as Y .

Note that []/[] = / /0 = π0 = idε and merge1 = p /0q = π1 = id1, where πi is the nameless permutation
of width i.

2.8 Bigraphical Reactive Systems
Bigraphs in themselves model two essential parts of context: locality and connectivity. To model also
dynamics, we introduce bigraphical reactive systems (BRS) as a collection of rules. Each rule R

ρ−→R′

consists of a regular redex R : I → J, a reactum R′ : I′ → J, and an instantiation ρ , mapping each site
of R′ to a site of R, and mapping local names in I′ to those of I, as illustrated in Figure 2. Interfaces
I = 〈m,~X ,X〉 and I′= 〈m′,~X ′,X ′〉must be local, and are related by X ′i =Xρ(i), where ρ must be a bijection
between X ′i and Xρ(i). We illustrate ρ by ‘i := j’, whenever ρ(i) = j 6= i, or, alternatively, by listing
[ρ(0), . . . ,ρ(m′− 1)]. Given an instantiation ρ and a discrete bigraph d = d0⊗·· ·⊗ dk with prime di’s,
we let ρ(d) = dρ(0)⊗·· ·⊗dρ(k), allowing copying, discarding and reordering parts of d.

4

Notation Example

Merge mergen : n→ 1 merge3 =
0 1 2

Concretion pXq : (X)→ 〈X〉 p{x1,x2}q =
0

x1

x1

x2

x2

Abstraction (Y)P : I→〈1, [Y],Z]Y 〉 ({y1,y2})({y3})p{y1,y2,y3,z}q =
0

y1

y1

y2

y2

y3

y3

z

z

Substitution
σ

~y/~X : X → Y [y1,y2,y3]/[{x1,x2},{},{x3}] =
x1

y1

x2

y2

x3

y3

Renaming
α,β

~y/~x : X → Y [y1,y2,y3]/[x1,x2,x3] =

x1

y1

x2

y2

x3

y3

Closure /X : X →{} /{x1,x2,x3} = x1 x2 x3

Wiring
ω

(id⊗/Z)σ : X → Y
(id{y1,y2}⊗/{z1,z2})
[y1,z1,y2,z2]/
[{},{x1,x2},{x3,x4},{x5}]

=

y1

x1 x2 x3

y2

x4 x5

Ion K~y(~X) : ({~X})→ 〈{~y}〉 K[y1,y2]([{x1},{x2,x3},{}]) =
K

y1 y2

x1 x2 x3

Permutation
π~X

{i 7→ j, . . .} : 〈m,~X ,X〉 → 〈m,π(~X),X〉 {0 7→ 2,1 7→ 0,2 7→ 1}[{x}, /0,{y}] =
1 2 0

y

y

x

x

Table 1: Basic bigraphs, the abstraction operation, and variables ranging over bigraphs.

R
0 1

x1 x2

R′

0 1
x0

1 x0
2 x1

1 x1
2

ρ ρ = [1&[x0
1 7→ x1,x0

2 7→ x2],
1&[x1

1 7→ x1,x1
2 7→ x2]]

Figure 2: A reaction rule

5

Given an agent a, a match of redex R is a decomposition a = C(idZ ⊗R)d, with active context C
and discrete parameter d with its global names Z. Dynamics is achieved by transforming a into a new
agent a′ =C(idZ⊗R′)d′, where d′ = ρ(d), cf. Figure 3. This definition of a match is as given by Jensen

matching

instantiating

composing

d

d′

a′Cρ

R′

R a

Figure 3: The reaction cycle

and Milner [13], except that we here also require R to be regular. This restriction to regular redexes R
simplifies the inductive characterization of matching without limiting the set of possible reactions, as sites
in R and R′ can be renumbered to render R regular.

2.9 Bigraph Terms and Normal Forms
Expressing bigraphs as terms composed by product, composition and abstraction over basic bigraph
terms, Damgaard and Birkedal [8] showed that bigraphs can be expressed on normal forms uniquely up
to certain permutations and renamings. Further, they showed equivalence of term and bigraph equality,
which will allow us in Section 4 to base our implementation on terms rather than graphs.

In this work, we use the normal forms shown in Figure 4, enabling us to express regular bigraphs
simply by removing the permutations. These normal forms are unique up to permutation of Si’s and
renaming of names not visible on the interfaces.

M ::= (idZ⊗K~y(~X))N molecule
S ::= pαq | M singular top-level node
G ::= (idY ⊗mergen)(

⊗n
i Si)π global discrete prime

N ::= (X)G name-discrete prime
P,Q ::= (idZ⊗ σ̂)N discrete prime
D ::= α⊗ (

⊗n
i Pi)π discrete bigraph

B ::= (ω⊗ id(~X))D binding bigraph

Figure 4: Normal forms for binding bigraphs

2.10 Normalising
For normalising an arbitrary bigraph t, we define a normalisation relation t ↓B t ′ for bigraph terms (details
are given in Figure 22 of Appendix A.1), with the following property:

Proposition 1 For any bigraph terms t, t ′, if t represents a bigraph b and t ↓B t ′, then t ′ represents b as
well, and is on B-normal form given in Figure 4.

6

The relation is straightforward, recursively normalising subterms and recombining the results; for
tensor product, the rule stated is

Bten

ti ↓B (ωi⊗ id(~Yi)
)Di Di ≡ αi⊗ (

⊗
j∈ni

P j
i)πi : Ii→ 〈ni,~Yi,Yi〉

ω =
⊗

i∈n ωi α =
⊗

i∈n αi id(~Y) =
⊗

i∈n id(~Yi)
π =

⊗
i∈n πi

P =
⊗

j∈n
⊗

i∈n j
P j

i D≡ α⊗Pπ⊗
i∈n ti ↓B (ω⊗ id(~Y))D

.

We find that the expression
⊗

j∈n
⊗

i∈n j
P j

i in general will lead to name clashes, because we can only
assume that outer, not inner names, of the ωi’s are disjoint.

One solution could be to rename names on P j
i ’s outer face in the Bten rule. However, as Bten is

applied recursively at each level of tensor product, this would lead to multiple renamings of the same
names, causing inefficiency. Instead, we precede normalisation by a renaming phase described in the
following; it will prevent name clashes in normalisation.

2.11 Renaming
While renaming names used in a term might look trivial at first sight, it is in fact not entirely straight-
forward. First, inner and outer names of a term must not be renamed, or we would be representing a
different bigraph. Second, we cannot even require of a renamed term that all internal names are unique,
as a normalised subterm can contain several instances of the same name, due to the use of idY in the
normal form.

Thus, we need to identify a more refined notion of internal horizontal uniqueness, where a name can
be reused vertically in link compositions, but not horizontally in tensor products. To this end, given a
term t, we conceptually replace all occurrences of /X by e1/x1⊗ ·· · ⊗ en/xn, and K~y(~X) by K~y(~e/~X), in
effect naming uniquely each closed link. We then define a function linknames, mapping terms to link
namers (details are given in Figure 23 of Appendix A.2). Using this function we define a predicate
normalisable, which identifies terms whose tensor products and compositions do not produce subterms
with name clashes, and is preserved by normalisation (details are given in Figure 24 of Appendix A.2):

Proposition 2 For any bigraph term t, if normalisable(t), there exists a t ′ such that t ↓B t ′ and normalisable(t ′).

For the actual renaming, we define inductively a renaming judgment U ` α, t ↓β t ′,β a V , where U
is a set of used names and α renames t’s inner names to those of t ′, while β renames t’s outer names to
those of t ′ and V extends U with names used in t ′ (details are given in Figure 25 of Appendix A.2).

We can show that renaming preserves the bigraph, and enables normalisation:

Proposition 3 Given a term t representing a bigraph b : 〈m,~X ,X〉 → 〈n,~Y ,Y 〉, we can derive X ∪Y `
idX , t ↓β t ′′,β a V for some t ′′,β ,V , and set t ′ = ((β glob)−1 ⊗ ̂(β loc)−1)t ′′; then t ′ represents b, and
normalisable(t ′).

2.12 Regularising
As a regular bigraph can be expressed as a term containing permutations, we must define regularising to
represent it as a permutation-free term. This is done by splitting the permutations in the D- and G-normal
forms, recursively pushing them into the subterms where they reorder the tensor product of Si’s.

While D’s permutation π must be a tensor product of πi’s—otherwise the bigraph would not be
regular—G’s permutation, on the other hand, need not be so. However, as the bigraph is regular, it
must be possible to split it into a major permutation π

~X and n minor permutations π
~X
i , based on the local

7

inner faces, ~X , of the Si’s. Then π
~X is elided by permuting the Si’s, and each π

~X
i permutation is handled

recursively in its Si (details are given in Figure 26 of Appendix A.3).
We can show that regularisation is correct:

Proposition 4 Given a term t representing a regular bigraph b, we can infer t ↪→ t ′, for some t ′ where t ′

contains no nontrivial permutations, and t ′ represents b.

2.13 Summary
A detailed illustration of the entire reaction cycle including the preceding transformation technologies
can be seen in Figure 5.

renaming

normalising

regularisingmatching

instantiating

composing

a

a

a

d

d′

a′

Cρ

R′

R

a

Figure 5: Details of the reaction cycle

3 Inferring Matches Using a Graph Representation
In this section we recap matching inference using a graph representation as developed in [9]; this repre-
sentation is the basis for correctness proofs.

For simplicity, we will first consider just place graphs to explain the basic idea behind matching
inference.

3.1 Matching place graphs
A place graph match is captured by a matching sentence:

Definition 5 (Matching Sentence for Place Graphs) A matching sentence for place graphs is a 4-tuple
of bigraphs a,R ↪→C,d, all are regular except C, with a and d ground. A sentence is valid iff a =CRd.

We infer place graph matching sentences using the inference system given in Figure 6. Traversing
an inference tree bottom-up, the agent is decomposed, while constructing the context, using the ION,
MERGE and PAR rules. The PERM rule permutes redex parts to align tensor factors with corresponding
agent factors.

At the point in the agent where a redex root should match, leaving a site in the context, the SWITCH
rule is applied, switching the roles of the context and redex. This allows the remaining rules to be reused
(above the switch rule) for checking that the redex matches the agent. When a site in the redex is reached,
whatever is left of the agent should become (a part of) the parameter—this is captured by the PRIME-
AXIOM rule.

For a match with a redex R : m→ n consisting of n nontrivial (i.e., non-identity) primes, the inference
tree will contain m applications of PRIME-AXIOM and n applications of SWITCH. Further, between any

8

PRIME-AXIOM
p, id ↪→ id, p

ION
p,R ↪→ P,d

K p,R ↪→ KP,d
SWITCH

p, id ↪→ P,d
p,P ↪→ id1,d

PAR
a,R ↪→C,d b,S ↪→ D,e
a⊗b,R⊗S ↪→C⊗D,d⊗ e

PERM
a,
⊗n

i Pπ−1(i) ↪→C,πd

a,
⊗n

i Pi ↪→Cπ,d

MERGE
a,R ↪→C,d

mergea,R ↪→ mergeC,d

Figure 6: Inference rules for deriving place graph matches

leaf and the root of the inference tree, SWITCH will be applied at most once. The structure of a matching
inference tree will thus generally be as illustrated in Figure 7; rules applied above SWITCH match agent

PRIME-AXIOM PRIME-AXIOM

PRIME-AXIOM

PRIME-AXIOM

PRIME-AXIOM

PRIME-AXIOM

SWITCH

SWITCH

SWITCH

Figure 7: A sketch of the general structure of an inference tree for matching

and redex structure, while rules applied below match agent and context structure.

3.2 Matching binding bigraphs
Turning now to consider binding bigraphs, we extend the matching sentences to cater for links:

Definition 6 (Matching Sentence for Binding Bigraphs) A (binding bigraph) matching sentence is a
7-tuple of bigraphs: ωa,ωR,ωC ` a,R ↪→C,d, where a,R,C and d are discrete with local inner faces,
all regular except C, with a and d ground. It is valid iff (id⊗ωa)a = (id⊗ωC)(idZ]V ⊗C)(idZ ⊗ (id⊗
ωR)R)d.

This definition separates the wirings, leaving local wiring in a, R, C and d, while keeping global wiring
of agent, redex and context in ωa, ωR and ωC, respectively; this is possible for any agent, redex and
context [9]. The validity property shows how a valid matching sentence relates to a match, as illustrated
in Figure 8.

To reach a system for inferring valid matching sentences for binding bigraphs, we simply augment the
place graph rules with wirings as shown in Figure 9, and add three rules for dealing with purely wiring
constructs, shown in Figure 10. A detailed explanation of the rules is available in the literature [9], along
with proofs of soundness and completeness of the inference system.

4 From Graph Matching to Term Matching
In this section we transform the graph based inductive characterisation of matching to be based on a term
representation in such a way that correctness and completeness is preserved.

9

a

id⊗ωa

agent→ =

d

idZ
R

ωR id

idZ]V C

id⊗ωC
← context

← redex

agent︷ ︸︸ ︷
(id⊗ωa)a =

context︷ ︸︸ ︷
(id⊗ωC)(idZ]V ⊗C)(idZ⊗

redex︷ ︸︸ ︷
(id⊗ωR)R)d.

Figure 8: Decomposition of the bigraphs of a valid matching sentence

PRIME-AXIOM
σ : W]U → β : Z→U α : V →W τ : X →V p : 〈X]Z〉

σ(β ⊗ατ), idε ,σ ` p, id(V) ↪→ pα q,(β ⊗ τ̂)(X)p

ION
ωa,ωR,ωC ` ((~v)/(~X)⊗ idU)p,R ↪→((~v)/(~Z)⊗ idW)P,d α =~y/~u σ : {~y}→

σ ||ωa,ωR,σα ||ωC ` (K~y(~X)⊗ idU)p,R ↪→(K~u(~Z)⊗ idW)P,d

SWITCH
ωa, idε ,ωC(σ ⊗ωR⊗ idZ) ` p, id ↪→ P,d σ : W →U P : → 〈W]Y 〉 d : 〈m,~X ,X]Z〉

ωa,ωR,ωC ` p,(σ̂ ⊗ idY)(W)P ↪→ pU q,d

PAR
ωa,ωR,ωC ||ω ` a,R ↪→C,d ωb,ωS,ωD ||ω ` b,S ↪→ D,e

ωa ||ωb,ωR ||ωS,ωC ||ωD ||ω ` a⊗b,R⊗S ↪→C⊗D,d⊗ e

PERM
ωa,ωR,ωC ` a,

⊗m
i Pπ−1(i) ↪→C,(π ⊗ id)d

ωa,ωR,ωC ` a,
⊗m

i Pi ↪→Cπ,d

MERGE
ωa,ωR,ωC ` a,R ↪→C,d

ωa,ωR,ωC ` (merge⊗ idY)a,R ↪→(merge⊗ idX)C,d

Figure 9: Place graph rules (shaded) augmented for deriving binding bigraph matches

WIRING-AXIOM
y,X ,y/X ` idε , idε ↪→ idε , idε

ABSTR
σa⊗ωa,ωR,σC⊗ωC ` p,R ↪→ P,d σa : Z→W p : 〈Z]Y 〉 σC : U →W P : → 〈U]X〉

ωa,ωR,ωC ` (σ̂a⊗ idY)(Z)p,R ↪→ (σ̂C⊗ idX)(U)P,d

CLOSE
σa,σR, idYR ⊗σC ` a,R ↪→C,d σa : →U]YR σR : →V]YR σC : →W]YC

(idU ⊗/(YR]YC))σa,(idV ⊗/YR)σR,(idW ⊗/YC)σC ` a,R ↪→C,d

Figure 10: Added inference rules for deriving binding bigraph matches

10

While the graph representation of matching sentences is useful for constructing a relatively simple
inference system amenable to correctness proofs, it is not sufficient for an implementation based on
syntax, that is, bigraph terms. One bigraph can be represented by several different bigraph terms that
are structurally congruent by the axiom rules: a = a⊗ id0 = merge1 a, a⊗ (b⊗ c) = (a⊗ b)⊗ c and
merge(a⊗ b) = merge(b⊗ a). If, for instance, we were to match agent a = merge((K⊗ L)⊗M) with
redex R =K, we would first need to apply the axioms to achieve R = merge((K⊗ id0)⊗ id0) before being
able to apply the MERGE and PAR rules.

In the following, we recast the matching sentences to be tuples of 3 wirings and 4 bigraph terms
ωa,ωR,ωC ` a,R C,d, with the same restrictions and validity as before, interpreting the terms as the
bigraphs they represent. Given this, adding just this one rule would be sufficient to achieve completeness
of the inference system:

STRUCT
a≡ a′ R≡ R′ C ≡C′ h≡ h′ ωa,ωR,ωC ` a′,R′ C′,h′

ωa,ωR,ωC ` a,R C,h

The STRUCT rule says that we can apply structural congruence to rewrite any term a,R,C or h to a
term denoting the same bigraph. With the help of the equational theory for determining bigraph iso-
morphism on the term level [8], we have essentially a nondeterministic algorithm for matching bigraph
terms—implementable in say, Prolog. A brief glance at the equational theory, shows us, though, that the
associative and commutative properties of the basic operators of the language would yield a wildly non-
determinstic inference system, since we would need to apply structural congruence between every step to
infer a match. This is reminiscent of the problems in implementing rewriting logic, that is, term rewriting
modulo a set of static equivalences [5, 6, 16]. Consequentially, we abandon the fully general STRUCT
rule. For the purposes of stating the completeness theorem below, we shall need to refer to sentences
derived from the ruleset for bigraphs (i.e., from section 3.2) recast to terms with the help of the STRUCT
rule above. We shall write such sentences ωa,ωR,ωC ` a,R S C,h for wirings ωa,ωR,ωC and terms
a,R,C and h.

Definition 7 For wirings ωa,ωR,ωC and terms a,R,C and h, sentences ωa,ωR,ωC ` a,R S C,h range
over sentences derived from the rules of Figure 10—reading a,R,C and h as terms—extended with the
STRUCT rule.

5 Normal Inferences
Next, we look at how to restrict the term based inductive characterisation of matching as an enabling
step for designing an algorithm. We define normal inferences, limiting the set of inferences we need to
consider.

Normal inferences is a class of inferences that are complete in the sense that all valid matching sen-
tences can be inferred, but suitably restricted, such that inferences can be built mechanically. In particular,
normal inference definitions for term matching spell out how and where to apply structural congruence.
As a main trick, we utilize a variant of the normal forms proven complete for binding bigraphs (cf. Sec-
tion 2.9), lending us a set of uniform representations of classes of bigraphs based directly on terms for
bigraphs; we define normal inferences that require each inference to start by rewriting the term to be on
normal form.

Before giving the format for normal inferences, we incorporate structural congruence axioms into
PRODUCT and MERGE rules. We derive rules for iterated tensor product and permutations under merge,
arriving at the inference system shown in Figure 11. In this inference system, the terms in the conclusion
of every rule except DNF is in some normal form as given by Figure 4, where e is a discrete prime
(p) or global discrete prime (g). An expression [[t]]G means term t expressed on G-normal form—for

11

PAX
σ : W]Z→ α : V →W τ : X →V g : 〈X]Z〉

σ(idZ⊗ατ), idε ,σ ` g, [[id(V)]]
P [[pαq]]G, [[(idZ⊗ τ̂)(X)g]]P

ION
σa,σR,σC ` (id⊗ (~v)/(~X))n,P (id⊗ (~v)/(~Z))N,q α =~y/~u σ : {~y}→

(σ ||σa),σR,(σα ||σC) ` [[(idU ⊗K~y(~X))n]]
G,P [[(idW ⊗K~u(~Z))N]]G,q

SWX

σ : W →U G : → 〈W]Y 〉 q : 〈n,~X ,X]Z〉 X = {~X}
σa, idε ,σ

C(idZ⊗σ ⊗σR) ` g, [[
⊗n

i id(Xi)]]
P G,q

σa,σR,σC ` g, [[(idY ⊗ σ̂)(W)G]]P [[pUq]]G,q

PARE
n

σ ′ : IR→ Ia (∀i ∈ n) σa
i ,σ

R
i ,σ ||σC

i ` ei,Pi Ei,qi(
Ia ||

n
i σa

i
)
,
(
IR ||

n
i σR

i
)
,
(
σ ′ ||σ || n

i σC
i
)
`
⊗n

i ei,
⊗n

i Pi
⊗n

i Ei,
⊗n

i qi

PARE
≡

P′i j = Pj+∑r∈i lr q′i j = q j+∑r∈i kr P′i j : 〈ki j,~Xi j〉 → ki = ∑ j∈li ki j

σa,σR,σC `
⊗n

i ei,
⊗n

i
⊗li

j P′i j
⊗n

i Ei,
⊗n

i
⊗ki

j q′i j

σa,σR,σC `
⊗n

i ei,
⊗m

i Pi
⊗n

i Ei,
⊗m′

i qi

PERE
σa,σR,σC ` e,

⊗n
i Qπ−1(i) E,

⊗m
i qπ̄−1(i)

σa,σR,σC ` e,
⊗n

i Qi Eπ,
⊗m

i qi

MER
σa,σR,σC `

⊗m
i (id⊗merge)

⊗
j∈ρi,ρ∈ρ̄(n,m) m j,P (

⊗m
i [[Sπ−1(i)]]

G)π̄,q

σa,σR,σC ` (id⊗merge)
⊗n

i mi,P (id⊗merge)
⊗m

i Si,q

ABS
σa

L ⊗σa,σR,σC
L ⊗σC ` g,P G,q σa

L : Z→W σC
L : U →W G : → 〈U]X〉

σa,σR,σC ` (id⊗ σ̂a
L)(Z)g,P (id⊗ σ̂C

L)(U)G,q

CLO
σa,σR, idYR ⊗σC ` p,P Qπ,q

(id⊗/(YR]YC))σ
a,(id⊗/YR)σ

R,(id⊗/YC)σ
C ` p,P Qπ,q

DNF

a≡ p R≡ P C ≡ Qπ h≡ q p,P,Q,q are on normal form R is regular
ωa,ωR,ωC ` p,P Qπ,q

ωa,ωR,ωC ` a,R C,h

Figure 11: Inference rules for binding bigraph terms

12

instance, [[pαq]]G means (idY ⊗merge1)(
⊗1

i pαq)—and similarly for the remaining normal forms. The
expression ρ̄(n,m) denotes the set of n-m-partitions. An n-m-partition ρ is a partition of {0, . . . ,n− 1}
into m (possibly empty) subsets, and for i ∈ m, ρi is the ith subset. Given a metavariable X , X ranges
over iterated tensor products of X ’es. As indicated by the superscript, rules PERE , PARE

n and PARE
≡ can

be used either on discrete primes p and P or global discrete primes g and G.
The main differences from the preceding inference system is that we have replaced the binary PAR rule

by two iterative PAR rules, PARE
n and PARE

≡, and specialised the MERGE rule into a rule, MER, that makes
the partitioning of children in an agent node explicit. The PARE

≡ rule splits up an iterated tensor product
into a number of products matching agent factors, while PARE

n performs the actual inductive inference on
each of the factors. (Note, by the way, that PARE

≡ and MERE
≡ correspond just to particular instances of the

STRUCT-rule, that we abandoned above.)
Furthermore, note that the usage of the previous WIRING-AXIOM-rule for introducing idle linkage

has been inlined to a side-condition on a slightly generalized PAR-rule (i.e., the PARE
n -rule). The σ ′ in

that rule allows us to introduce idle linkage in redex and agent, and link them in context; as previously
allowed by the WIRING-AXIOM-rule. Hence, PARE

n also serves as an axiom, introducing 0-ary products
of idε ’s on G- and P-normal forms.

While this inference system is more explicit about partitioning tensor products (in the MER and PARE
≡

rules), there is still a lot of nondeterministic choice left in the order in which the rules can be applied.
To limit this, we define normal inferences based, essentially, on the order rules were used in the proof of
completeness [9]. We derive a sufficient order that still preserves completeness:

Definition 8 (Normal Inference) A normal inference is a derivation using the term matching rules of
Figure 11 in the order specified by the context free grammar given in Figure 12.

DG ::= PAX · · ·

∣∣∣ ION
ABS

DP
· · ·
· · ·

∣∣∣ SWX
D ′P
· · · D ′G ::= PAX · · ·

∣∣∣ ION
ABS

D ′P
· · ·
· · ·

DP ::= DG

∣∣∣ MER
PERG
PARG

≡

PARG
n

DG · · · DG
· · ·
· · ·
· · ·
· · · D ′P ::= D ′G

∣∣∣ MER
PERG
PARG

≡

PARG
n

D ′G · · · D ′G
· · ·
· · ·
· · ·
· · ·

DB ::= DNF
CLO

PERP
PARP

≡

PARP
n

ABS
DP
· · · · · · ABS

DP
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

Figure 12: Grammar (BNF) for normal inferences for binding bigraphs with start symbol DB

Now we can give the main theorem stating that normal inferences are sufficient for finding all valid
matches. The following theorem states formally for every sentence derivable with the ruleset for bigraphs
recast to bigraph terms by extending with STRUCT, that such a sentence is also derivable as a normal
inference.

Theorem 9 (Normal inferences are sound and complete) For wirings ωa,ωR,ωC and terms a,R,C,d,
we can infer ωa,ωR,ωC ` a,R S C,d iff we can infer ωa,ωR,ωC ` a,R C,d using a normal infer-
ence.

13

Proof. (Sketch) By induction over the structure of the derivation of the sentence ωa,ωR,ωC ` a,R S
C,d. We case on the last rule used to conclude this sentence. By the induction hypothesis (IH), we can
conclude a normal derivation of the sentence used for concluding ωa,ωR,ωC ` a,R S C,d.

STRUCT: By IH, we can construct a normal derivation of ωa,ωR,ωC ` a′,R′ C′,d′, with a = a′,
R′ = R, C′ = C and d′ = d. This normal derivation can be used directly to conclude also ωa,ωR,ωC `
a′,R′ C′,d′.

PRIME-AXIOM: We produce the needed normal inference by starting with an application of PAX,
which introduces the needed prime bigraphs and wiring—that is, each term being equal up to structural
congruence to the sentence concluded with PRIME-AXIOM. Now we proceed to build the needed normal
inference by a building first a DP and then a DB-inference. All steps add only term structure to match a
particular normal form, while not changing the denotation of the terms.

ION: By IH, we can construct a normal derivation of ωa,ωR,ωC ` ((~v)/(~X)⊗ idU)p,R ((~v)/(~Z)⊗
idW)P,d. For this case, we have to unroll that normal derivation up across the DB production except for
the last ABS-step, concluding with a PARP

1 step (since we know p and P are prime). We now have a DP
normal inference with an added ABS-step, which we can use for concluding an ION-step introducing our
needed ion. Referring to the grammar in Figure 12, we see that this produces a DG-inference, which
we have to lead through two series of PAR-PER-MER steps (and one ABS-step), to produce a full normal
inference.

SWITCH: This case needs a little extra care. First, we point out two properties of normal derivations:
(i) any DG and DP inference without SWX is also a D ′G or D ′P inference, respectively; and, (ii) any
sentence, ωa, idε ,ωC ` a, id C,h has a normal derivation with no SWX-steps. Both are easily verified.

Now, by the IH we can construct a normal derivation of a sentence ωa, idε ,ωC(σ ⊗ωR ⊗ idZ) `
p, id P,d for global P. By property (ii), we can assume that this normal derivation does not contain any
applications of SWX. We unroll this normal derivation up across the whole DB production, . This leaves
us with a DP-type normal derivation, which by property (i), we can use also as D ′P derivation. Hence, we
can apply SWX to obtain a DG derivation. We proceed to build first a DP type inference, and then a DB
type inference, in particular applying again ABS to introduce local linkage in p.

PAR: By IH, we can construct normal derivations of ωa,ωR,ωC ||ω ` a,R C,d and ωb,ωS,ωD ||ω `
b,S D,e. Each of these normal derivations we can unroll up to the last application of PARP

n Di and E j,
applied for concluding these PARP

n steps. To construct the required normal inference we simply let instead
a single PARP

n step utilize all of the normal inferences Di and E j.
PERM: By IH, we can construct a normal derivation of ωa,ωR,ωC ` a,

⊗m
i Pπ(i) C,(π ⊗ idZ)d.

Unrolling this normal derivation up through the applications of DNF, CLO, and PERP, we can edit the
PERP-step to also move the permutation π to the context.

MERGE: By IH, we can construct a normal derivation of ωa,ωR,ωC ` a,R C,d for global a and C.
We unroll this derivation up across the DB production to obtain n DP-derivations (for a and C of width n).
We may consider these as DG-derivations, also. We combine these in a single application of PARG

n , and,
after a PARP

≡ and a PER-step, we apply MER to merge the roots as required by the case. We conclude by
adding term structure to the terms of this DP-inference as required by the normal form and lead it through
the steps to produce a DB-derivation.

WIRING-AXIOM: As sketched in the text above, introduction of idle names is now handled by PARP
n .

For this case, we simply start with a PARP
0 -step and proceed through the grammar for DB to produce a

normal inference as needed.
ABSTR: By IH, we can construct a normal derivation of σa⊗ωa,ωR,σC⊗ωC ` p,R P,d. We

unroll this normal derivation up across the entire DB-inference to obtain a DP type inference. (We know
there is only one DP-inference, as p and P are prime.) We construct the required DB inference by starting
with a modified ABS-step, where we introduce the required abstractions and local substitutions.

CLOSE: By IH, we can construct a normal inference for a sentence with only substitutions (i.e., with
no closed links). We simply unroll this normal inference up across the CLO-step, and instead, to produce

14

the needed normal inference, close the needed names in a new CLO-step. �

Normal inferences are sufficiently restricted such that we can base our prototype implementation on
mechanically constructing them.

6 Bigraph Matching Algorithm
In this section, we show how to interpret the inference rules as functions—achieving an implementation
proven correct in great detail.

In general, an inference tree can be divided into two parts: the twigs of the tree, consisting of all the
rule applications above a SWX rule application, and the base of the tree, consisting of the remaining rule
applications, cf. Figure 13. The base and the SWX rule applications determine the locations in the agent

PAX′ PAX′

PAX′
PAX′

PAX′

PAR′n

SWX SWX SWX
PAX

PARn

CLO

DNF

twigs

base

Figure 13: A sketch of the general structure of a normal inference tree for matching; dashed lines represent
rules omitted for brevity

at which the roots of the redex are matched, and each twig determines how the place graph subtree below
a redex root is matched to the corresponding subtree in the agent. Each PAX leaf determines a component
of the parameter, and each PARn leaf corresponds to a leaf node in the agent.

We turn the declarative matching specification of the preceding section into a matching algorithm
by considering each rule operationally. By implementing the inference system faitfully rule by rule, we
ensure that the proof of completeness is valid also for the implemented algorithm.

All rules of Figure 11 except SWX, CLO and DNF can be applied in two flavours: below and above a
SWX rule. We distinguish these applications using primes (′) for rules applied above a SWX rule.

The DNF rule is concerned with normalising a and R, which is done using the algorithm described in
Section 2.10, so for the remaining rules of the base of the tree we have as input to the algorithm wirings
ωa, ωR and discrete bigraphs p̄ (agent) and P̄ (redex). The goal is to find context wiring ωC, context
term Q̄π and parameter term q̄.

In general, there are zero or more matches, so in the implementation the application of each rule re-
turns a lazy list of matches, each containing a context wiring, along with context and parameter bigraphs.

As the matching inference starts at the root of the inference tree, we will do the same, considering
each rule of Figure 11 in turn, and giving an operational interpretation of it:

6.1 Rule Applications in the Base of the Tree
CLO: Operationally, CLO opens ωa and ωR, producing σa and σR and assigning fresh names YR to edges
in ωR.

15

[Aside: We cannot generally conclude there are no matches if the number of edges in ωa is smaller
than the number of edges in ωR! But the number of port-connected edges in ωR must be greater than
or equal to the number of edges in ωa. Unfortunately, port-connectedness is expensive to determine
in the term representation.]

In the implementation, we represent σR as σR
e ⊗σR

n , where σR
n contains all the outer names of ωR, and

σR
e : Xe→ YR contains the edges of ωR for some Xe.

As we do not yet know which edges in ωa : →W match which names in YR, we represent σa as
ασa

e ⊗σa
n , where σa

n contains all the open links of ωa, and α is to be constructed during (i.e., returned
by) the rest of the inference.

Inference must be done under the following condition:

• links in σR
e must only be matched with links in ασa

e

because redex edges can only match agent edges, not open links.
When the premise has been inferred, yielding idYR ⊗σC, we determine σC : →W]YC (as YR is

known), and then YC = (W]YC)\W . Finally, ωC = (id⊗/YC)σ
C.

ABS: During the inference, ABS adds the links σa
L to σa

n ; the inner names of σa
L are collected in a set

L.
As σa

L contains links bound in the agent, inference must be done under the following condition:

• links in σa
n whose inner names are in L must not be matched via σR, but must be matched via σ

(the local outer names of the redex) in the SWX rule.

This enforces the scoping rule for the resulting context bigraph.
When the premise of ABS has been inferred, σC

L is computed by restricting the outer face of the
context wiring to W , the outer names of σa

L.
MER: Taking r be the outer width of redex P̄, we let m = r+1, and compute all partitions of width m.

Setting m > r allows parts of the agent to not be matched by the redex (li = 0 in PARE
n), that is, to become

part of the context. For each partition, the premise is inferred, and if the permutation π̄ in the returned
context really is a pushthrough of some permutation π , the factors Si of the tensor product are permuted
before they are returned.

PER: For each n-permutation π , π̄ is computed by pushing π through
⊗i

n Qi. After the premise
has been inferred on the permuted redex primes, π̄ is used to permute the resulting parameter primes
accordingly before they are returned.

PARE
≡: For each split of m into n parts,

⊗n
i
⊗li

j P′i j is computed, and after the premise has been inferred,
the factors of the resulting parameter tensor product are concatenated into one tensor product before
returning context and parameter.

PARE
n : For each i, the global outer names of ei is used to compute σa

e,i,σ
a
n,i by restriction, and similarly

for P̄i and σR
e,i,σ

R
n,i. The context wirings resulting from inferring the premise are combined using parallel

product, but allowing inner name clashes as long as each operand maps the inner names to the same outer
name.

ION: Letting Y = {~y}, we split σa
e = σY

e ||σa′
e according to whether the inner names are in Y or not;

and similarly for σa
n = σY

n ||σa′
n . Fresh names~v are created

6.2 Application of the SWX Rule
As the SWX rule preserves σa, its representation is not changed above the SWX rule. As CLO requires
the resulting σC to be of the form idYR ⊗σC, where σR

e : → YR, the third wiring above SWX is (idYR ⊗
σC)(idZ⊗σ⊗σR

e ⊗σR
n) = σR

e ⊗σC(idZ⊗σ⊗σR
n). Letting σC

n = σ⊗σR
n , we thus represent the context

wiring above the rule by σC
e ⊗σC(idZ⊗σC

n).

16

In the twigs we are thus given wirings σa
e ,σ

a
n ,σ

R
e ,σR

n ,σC
e ,σC

n and terms p̄ (agent) and P̄ (redex). The
goal is to check that p̄ matches P̄, and find σC,Z,α and q̄, as we want ωa = ασa

e ⊗σa
n , ωR = σR

e ⊗σR
n ,

and ωR = σC
e ⊗σC(idZ⊗σC

n) in the judgment ωa, ωR,ωC ` p̄, id P̄, q̄ above the SWX rule.

6.3 Rule Applications in the Twigs
ABS′: During the inference, the ABS′ rule adds links to σC. By adding them to σC

e , not σC
n , they are

treated like internal edges in R, and thus not linked to the parameter via idZ .
MER′: For each m-permutation π , π̄ is computed; for each partition ρ ∈ ρ̄(n,m) of n into m (possibly

empty) subsets, the tensor product of m j’s are computed, and then the premise is inferred, returning σC,α
and q̄.

PER′: The premise is inferred, and the resulting q̄ are permuted using π̄ before they are returned.
PAR′≡: The premise is inferred, and the resulting list of n tensor products are concatenated and returned

as one product ⊗m
i qi.

PAR′n: Taking PAR′ literally, σa and σC must be split when performing the subinferences. However,
as the inner face of σa must always match the global outer face of a, explicit splitting of σa

e ,σ
a
n ,σ

C
e ,σC

n
can be avoided. This also implies that (1) need only be solved for links mapping outer names of g (i.e.,
X]Z).

ION′: Deconstructing agent and context ions, their controls are checked for equality; for each ui ∈
dom(σC

e) we update α ′ so that α ′σa
e (yi) = σC

e (ui). Using a fresh ~v, the premise is inferred, and α ′ and
σC′ are updated for each ui /∈ dom(σC

e) so that σC′(σC
n (ui)) is equal to α ′σa

e (yi) or σa
n(yi), depending on

whether yi ∈ dom(σa
e) or not.

PAX′: At the PAX′ rule, we are given V,(X] Z) and α , and σa as α ′σa
e ⊗ σa

n , and σC as σC
e ⊗

σC′(idZ⊗σC
n). We must now solve the equation σa = σC(idz⊗ατ), i.e.

α
′
σ

a
e ⊗σ

a
n = (σC

e ⊗σ
C′(idZ⊗σ

C
n))(idZ⊗ατ) (1)

for α ′, σC′, Z and τ , where Xe∩Z = /0 (recall σC
e : Xe→).

7 Nondeterminism
Given these term-based rules and the normal inference grammar, proven correct matching has been ex-
pressed in an operational, that is, implementable, form. However, there is still a fair amount of nondeter-
minism left, but fortunately we can clearly identify where it occurs:

Grammar selection: Which branches to select for DG, DP, D ′G and D ′P.

Tensor grouping: How to group the tensor product in PAR≡.

Children partitioning: How to partition molecules in MER.

Prime permutation: How to permute redex primes in PER.

Context-redex-parameter wiring: How to choose Z,α and τ in PAX.

Mapping closed links: How to find an appropriate decomposition of agent wiring in CLO such that
closed agent links are matched correctly with closed redex links (i.e., determining σa and YR).

When implementing matching, the challenge is to develop a heuristic that will handle typical cases
well. In general, an agent-redex pair can lead to many different matches, so in our implementation we
return for every inference rule a lazy list of possible matches.

17

To handle nondeterminism, we return possible matches as follows, bearing in mind that operationally
speaking, rules applied below SWX are given agent and redex, while rules above SWX are given agent (,
redex) and context:

Grammar selection: For DG and DP, we concatenate the returned lazy lists returned from matching
each branch in turn. However, if PAX succeeds, there is no reason to attempt a SWX match, as no
new matches will result.

For DG
′ and DP

′, we try each branch in turn, returning the first branch that succeeds, as later
branches will not find any new matches.

Tensor grouping: For given m and n in PARE
≡, we compute all the ways of splitting [0, . . . ,m− 1] into

n (possibly empty) subsequences, trying out matching for each split. Note that this need only be
done for applications of PARE

≡ below the SWX rule.

Children partitioning: For given m and n in MER, we compute all the ways of partitioning {0, . . . ,m−1}
into n (possibly empty) sets, trying out matching for each partitioning.

Prime permutation: For given n in PERE , we compute all n-permutations, trying out matching for each
permutation. This is done for applications of PERE below the SWX rule; above, similar permutations
are computed in the MER rule.

Context-redex-parameter wiring: Given global agent wiring, we compute the ways of decomposing it
into σ(idZ⊗ατ), returning a match for each decomposition.

Mapping closed links: We split agent wiring into named and closed links, and postpone the actual map-
ping of each closed link to redex or context links until some constraint, given by ION or PAX
produces it.

Note that even after limiting nondeterminism in this way, we can still in general find several instances of
the same match, reached by different inference trees, as we are computing abstract bigraph matches using
concrete representations. For instance, matching redex R = K1 in agent a = merge(K1⊗K1) produces
matches with context C1 = merge(id1⊗K1) and context C2 = merge(K1⊗ id1).

8 Tool Implementation and Example Modelling
We have implemented a BPL Tool as a reference implementation of binding bigraph matching, and as
a toolbox for experimenting with bigraphs. It is written in SML, consists of parser, normalisation and
matching kernel, and includes web and command line user interfaces [4].

To ensure correctness, we have implemented normalisation, renaming, regularisation and matching
faithfully by implementing one SML function for every inference rule—in the case of matching, two: one
for applications above and one for below the SWX rule.

The BPL Tool handles normalisation, regularisation, matching and reaction for the full set of binding
bigraphs, and allows construction of simple tactics for prescribing the order in which reaction rules should
be applied. The following example output is taken verbatim from the command line interface, which is
based on the SMLNJ interactive system; omitted details are indicated by “[...]”.

As an example, we model the polyadic π calculus, running the mobile phone system introduced in
Milner’s π book [17]. The calculus can be modeled by a family of reaction rules {REACTi | i = 0,1, . . .},
one for each number of names that are to be communicated in a reaction [13]; REACT2 is shown in
Figure 14.

The signature for the nodes modelling the calculus and the mobile phone system is constructed using
passive and atomic functions as shown in Figure 15. For this system, we only need Send and Get

18

REACT2: (x̄〈y1,y2〉.P0 +P1) | (x(z1,z2).P2 +P3)→{zi/yi}P0 | P2

0

1

2

3

Send2 Get2
Sum Sum

x

z1

z2

y1y2

0

1
z1 z2

y1y2x

0:=0,1:=2

REACT2

val REACT2 = "REACT2" :::
Sum o (Send2[x,y1,y2] ‘|‘ idp(1)) ‘|‘ Sum o (Get2[x][[z1],[z2]] ‘|‘ idp(1))
--[0 |-> 0, 1 |-> 2]--|>
(y1/z1 * y2/z2 * x//[] * idp(1)) o (idp(1) ‘|‘ ‘[z1, z2]‘);

Figure 14: π calculus reaction rule shown as bigraphs and BPL value.

(* Pi calculus nodes *) (* Mobile phone system nodes *)
val Sum = passive0 ("Sum") val Car = atomic ("Car" -: 2)
val Send0 = passive ("Send0" -: 0 + 1) val Trans = atomic ("Trans" -: 4)
val Get0 = passive ("Get0" =: 0 --> 1) val Idtrans = atomic ("Idtrans" -: 2)
val Send2 = passive ("Send2" -: 2 + 1) val Control = atomic ("Control" -: 8)
val Get2 = passive ("Get2" =: 2 --> 1)

Figure 15: Signature for π calculus and mobile phone system nodes.

19

nodes for REACT0 and REACT2. Note that all reaction rule nodes are passive, preventing reaction within
a guarded expression.

The system consists of a car, one active and one idle transmitter, and a control centre, as shown in
Figure 16. Internally, a prime product constructed using the ‘|‘ operator is represented by a wiring and

Car

Trans Idtrans

Control

talk1

switch1

lose1

gain1

lose2

gain2

- val System1 = simplify (
Car[talk1,switch1]

‘|‘ Trans[talk1,switch1,gain1,lose1]
‘|‘ Idtrans[gain2,lose2]
‘|‘ Control[lose1,talk2,switch2,gain2,

lose2,talk1,switch1,gain1]);
val System1 =

(lose1//[lose1_83, lose1_98] * talk2/talk2_82 * switch2/switch2_81
* gain2//[gain2_80, gain2_95] * lose2//[lose2_7f, lose2_94]
* talk1//[talk1_7e, talk1_9b, talk1_a5]
* switch1//[switch1_7d, switch1_9a, switch1_a4]
* gain1//[gain1_7c, gain1_99]) o merge(4) o

(Car[talk1_a5, switch1_a4] *
Trans[talk1_9b, switch1_9a, gain1_99, lose1_98] *
Idtrans[gain2_95, lose2_94] *
Control[lose1_83, talk2_82, switch2_81, gain2_80, lose2_7f, talk1_7e,

switch1_7d, gain1_7c])
: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}> : bgval

-

Figure 16: Definition of the mobile phone system, System1

merge2 composed with a binary tensor product. The function simplify applies various heuristics for
producing human-readable bigraph terms, in this case for a prime product of four factors.

The definition of these nodes and connections, shown in Figure 17, allows the control centre to switch
Car communication between the two transmitters (supposedly when the car gets closer to the ilde than
the active transmitter), and allows the car to talk with the active transmitter. Note that in the BPL tool,
we define a node by a rule that unfolds an atomic node into a bigraph corresponding to the defining π

calculus expression.
Our BPL definition of the initial system in Figure 16, System1, is the folded version; as BPL matching

is complete, querying the tool reveals the four possible unfolding matches, illustrated in Figure 18. Here
mkrules constructs the internal representation of a rule set, and print_mv prettyprints a lazy list of
matches, produced by the matches function.

Using react_rule that simply applies a named reaction rule, and ++ that runs its arguments se-
quentially, we construct a tactic, TAC_unfold, for unfolding all four nodes once, shown in Figure 19.
Applying this tactic using function run, we get an unfolded version of the system.

Querying the BPL Tool for all possible matches in the unfolded system reveals exactly the switch and
talk actions, initiated by REACT2 and REACT0 rules, respectively, cf. Figure 20. Applying the π calculus
reaction rules for switching, we arrive at System2, where Car communication has been switched to the
other transmitter, as witnessed by the outer names to which Car ports link, as well as the order of names
to which Control ports link.

This concludes our description of the example highlighting how we can use the BPL Tool to experi-
ment with bigraphical reactive systems.

20

Defining equation BPL definition

Car(talk,switch)def
=

talk.Car〈talk,switch〉
+switch(t,s).Car〈t,s〉

val DEF_Car = "DEF_Car" :::
Car[talk,switch]
----|>
Sum o (Send0[talk] o Car[talk,switch]

‘|‘ Get2[switch][[t],[s]]
o (<[t,s]> Car[t,s]))

Trans(talk,switch,gain, lose)def
=

talk .Trans〈talk,switch,gain, lose〉
+ lose(t,s).switch〈t,s〉

. Idtrans〈gain, lose〉

val DEF_Trans = "DEF_Trans" :::
Trans[talk,switch,gain,lose]
----|>
Sum o (Get0[talk][] o Trans[talk,switch,gain,lose]

‘|‘ Get2[lose][[t],[s]]
o (<[t,s]> Sum o Send2[switch,t,s]

o Idtrans[gain,lose]))

Idtrans(gain, lose)def
=

gain(t,s).Trans〈t,s,gain, lose〉

val DEF_Idtrans = "DEF_Idtrans" :::
Idtrans[gain, lose]
----|>
Sum o Get2[gain][[t],[s]]
o (<[t,s]> Trans[t,s,gain,lose])

Control(lose1, talk2,switch2,gain2,

lose2, talk1,switch1,gain1)
def
=

lose1〈talk2,switch2〉.gain2〈talk2,switch2〉
.Control〈lose2, talk1,switch1,gain1,

lose1, talk2,switch2,gain2〉

val DEF_Control = "DEF_Control" :::
Control[lose1,talk2,switch2,gain2,

lose2,talk1,switch1,gain1]
----|>
Sum o Send2[lose1,talk2,switch2]
o Sum o Send2[gain2,talk2,switch2]
o Control[lose2,talk1,switch1,gain1,

lose1,talk2,switch2,gain2]

Figure 17: Definitions of Car, Trans, Idtrans and Control nodes.

- val rules = mkrules [REACT0, REACT2, DEF_Car, DEF_Trans, DEF_Idtrans, DEF_Control];
[...]
- print_mv (matches rules System1);
[{rule = "DEF_Car",
context
= (lose1//[lose1_d3, lose1_d6] * talk2/talk2_d2 * switch2/switch2_d1

* gain2//[gain2_d0, gain2_d5] * lose2//[lose2_cf, lose2_d4]
* talk1//[talk, talk1_ce, talk1_d9]
* switch1//[switch, switch1_cd, switch1_d8]
* gain1//[gain1_cc, gain1_d7]) o

(merge(4) o
(Trans[talk1_d9, switch1_d8, gain1_d7, lose1_d6] *
Idtrans[gain2_d5, lose2_d4] *
Control[lose1_d3, talk2_d2, switch2_d1, gain2_d0, lose2_cf,

talk1_ce, switch1_cd, gain1_cc])),
parameter = idx0},

{rule = "DEF_Control", [...] },
{rule = "DEF_Idtrans", [...] },
{rule = "DEF_Trans", [...] }]

Figure 18: Determining which rules match System1.

21

- val TAC_unfold =
react_rule "DEF_Car" ++ react_rule "DEF_Trans" ++
react_rule "DEF_Idtrans" ++ react_rule "DEF_Control";

[...]
- val System1_unfolded = run rules TAC_unfold System1;
val System1_unfolded =

(lose1//[lose1_3f9, lose1_419, lose_441, lose_459, lose_45d]
* talk2//[talk2_3f8, talk2_40f, talk2_418]
* switch2//[switch2_3f7, switch2_40e, switch2_417]
* gain2//[gain2_3f6, gain2_410, gain_431, gain_438]
* lose2//[lose2_3fd, lose_430]
* talk1//[talk1_3fc, talk_460, talk_465, talk_482, talk_485]
* switch1//[switch1_3fb, switch_447, switch_45f, switch_480, switch_481]
* gain1//[gain1_3fa, gain_442, gain_45e]) o merge(4) o

(Sum o merge(2) o
(Send0[talk_485] o Car[talk_482, switch_481] *
Get2[switch_480][[t_47d], [s_47c]] o
(<[s_47c, t_47d]> Car[t_47d, s_47c])) *

Sum o merge(2) o
(Get0[talk_465] o Trans[talk_460, switch_45f, gain_45e, lose_45d] *
Get2[lose_459][[t_446], [s_445]] o
(<[s_445, t_446]>

Sum o (Send2[switch_447, t_446, s_445] o Idtrans[gain_442, lose_441]))) *
Sum o Get2[gain_438][[t_433], [s_432]] o
(<[s_432, t_433]> Trans[t_433, s_432, gain_431, lose_430]) *
Sum o
(Send2[lose1_419, talk2_418, switch2_417] o
(Sum o
(Send2[gain2_410, talk2_40f, switch2_40e] o
Control[lose2_3fd, talk1_3fc, switch1_3fb, gain1_3fa, lose1_3f9,

talk2_3f8, switch2_3f7, gain2_3f6]))))
: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}> : agent

Figure 19: Unfolding System1, using the TAC_unfold tactic.

22

Car

Idtrans Trans

Control

talk2

switch2

lose2

gain2

lose1

gain1

- print_mv (matches rules System1_unfolded);
[{rule = "REACT0", [...] }, {rule = "REACT2", [...] }]
[...]
- val TAC_switch =

react_rule "REACT2" ++ (* Control tells Trans to lose. *)
react_rule "REACT2" ++ (* Control tells Idtrans to gain. *)
react_rule "REACT2"; (* Trans tells Car to switch. *)

[...]
- val System2 = run rules TAC_switch System1_unfolded;
val System2 =

(lose1//[lose1_86a, lose_8c0] * talk2//[t_858, talk2_869, t_8bf]
* switch2//[s_857, switch2_868, s_8be] * gain2//[gain_856, gain2_867]
* lose2//[lose_855, lose2_86e] * talk1/talk1_86d * switch1/switch1_86c
* gain1//[gain1_86b, gain_8c1]) o merge(4) o

(Idtrans[gain_8c1, lose_8c0] * Car[t_8bf, s_8be] *
Control[lose2_86e, talk1_86d, switch1_86c, gain1_86b, lose1_86a, talk2_869,

switch2_868, gain2_867] * Trans[t_858, s_857, gain_856, lose_855])
: 0 -> <{lose1, talk2, switch2, gain2, lose2, talk1, switch1, gain1}> : agent

-

Figure 20: Checking possible matches, then switching to System2, using the TAC_switch tactic.

9 Conclusion and Future Work
We have developed a provably sound and complete inference system over bigraph terms for inferring
legal matches of bigraphical reactive systems. Moreover, we have implemented our BPL Tool, the first
implementation of bigraphical reactive systems. We have demonstrated a simple, but concrete, example
of how the tool can be used to simulate bigraphical models. We have found it very useful to base this first
implementation of bigraphical reactive systems so closely on the developed theory—this has naturally
given us greater confidence in the implementation, but the implementation work has also helped to debug
the developed theory.

There are lots of interesting avenues for future work. While the current implementation of BPL Tool
is efficient enough to experiment with small examples, we will try to make it more efficient by using
a number of different techniques: we plan to investigate how to prune off invalid matches quickly, for
instance by making use of sorting information [3]. Moreover, we will investigate to what extent we can
capture the link graph matching via a constraint-based algorithm.

We also plan to investigate smarter ways of combining matching and rewriting. As a starting point,
we have made it possible for users to combine tactics to inform the tool in which order it should attempt
to apply reaction rules.

Jean Krivine and Robin Milner are currently investigating stochastic bigraphs, which will be particu-
larly important for simulation of real systems. We hope that our detailed analysis of matching for binding
bigraphs will make it reaonably straightforward to extend it to stochastic bigraphs.

Acknowledgements
The authors would like to thank Mikkel Bundgaard and anonymous referees for detailed comments to
earlier versions of the paper.

23

References
[1] Lars Birkedal, Troels Christoffer Damgaard, Arne John Glenstrup, and Robin Milner. Matching

of bigraphs. In Proceedings of Graph Transformation for Verification and Concurrency Workshop
2006, Electronic Notes in Theoretical Computer Science. Elsevier, August 2006.

[2] Lars Birkedal, Søren Debois, Ebbe Elsborg, Thomas Troels Hildebrandt, and Henning Niss. Bi-
graphical models of context-aware systems. In Luca Aceto and Anna Ingólfsdóttir, editors, Pro-
ceedings of the 9th International Conference on Foundations of Software Science and Computation
Structure, volume 3921 of Lecture Notes in Computer Science, pages 187–201. Springer-Verlag,
March 2006. ISBN 3-540-33045-3.

[3] Lars Birkedal, Søren Debois, and Thomas Troels Hildebrandt. Sortings for reactive systems. In
Christel Baier and Holger Hermanns, editors, Proceedings of the 17th International Conference on
Concurrency Theory, volume 4137 of Lecture Notes in Computer Science, pages 248–262. Springer-
Verlag, August 2006.

[4] The BPL Group. BPLweb—the BPL tool web demo, 2007. URL
http://tiger.itu.dk:8080/bplweb/. IT University of Copenhagen, Denmark. Prototype.

[5] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer,
and José Francisco Quesada. Maude: Specification and programming in rewriting logic. Theoretical
Computer Science, 2001.

[6] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer,
and Carolyn Talcott. The Maude 2.0 System. In Robert Nieuwenhuis, editor, Rewriting Techniques
and Applications (RTA 2003), volume 2706 of Lecture Notes in Computer Science, pages 76–87.
Springer-Verlag, June 2003.

[7] Troels Christoffer Damgaard. Syntactic theory for bigraphs. Master’s thesis, IT University of
Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen V, December 2006.

[8] Troels Christoffer Damgaard and Lars Birkedal. Axiomatizing binding bigraphs. Nordic Journal of
Computing, 13(1–2):58–77, 2006.

[9] Troels Christoffer Damgaard, Arne John Glenstrup, Lars Birkedal, and Robin Milner. An inductive
characterization of matching in binding bigraphs. to appear, 2011.

[10] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals of Algebraic
Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
2006.

[11] James Jianghai Fu. Directed graph pattern matching and topological embedding. Journal of Algo-
rithms, 22(2):372–391, 1997.

[12] Ole Høgh Jensen. Mobile Processes in Bigraphs. PhD thesis, Univ. of Cambridge, 2008. Forthcom-
ing.

[13] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes (revised). Technical Report
UCAM-CL-TR-580, University of Cambridge, February 2004.

[14] Javier Larrosa and Gabriel Valiente. Constraint satisfaction algorithms for graph pattern matching.
Journal of Mathematical Structures in Computer Science, 12:403–422, 2002.

24

[15] James Judi Leifer and Robin Milner. Transition systems, link graphs and Petri nets. Technical
Report UCAM-CL-TR-598, University of Cambridge, August 2004.

[16] The Maude Team. The Maude system, 2007. http://maude.cs.uiuc.edu/.

[17] Robin Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University Press,
1999.

[18] Robin Milner. Bigraphs whose names have multiple locality. Technical Report UCAM-CL-TR-603,
University of Cambridge, September 2004.

[19] Vladimiro Sassone and Paveł Sobociński. Reactive systems over cospans. In Proceedings of Logic
in Computer Science (LICS’05), pages 311–320. IEEE Press, 2005.

[20] Jeffrey D. Ullman. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1):31–42,
1976.

[21] Albert Zündorf. Graph pattern matching in PROGRES. In Janice E. Cuny, Hartmut Ehrig, Gre-
gor Engels, and Grzegorz Rozenberg, editors, TAGT, volume 1073 of Lecture Notes in Computer
Science, pages 454–468. Springer-Verlag, 1994. ISBN 3-540-61228-9.

A Auxiliary Technologies Details

A.1 Normalising
We define a normalisation relation t ↓B t ′ for elementary bigraphs: mergen,pXq,~y/~X ,K~y(~X) and π as
shown in Figure 21, and inductively for operations: abstraction (X)P, product

⊗n
i Bi and composition

B1B2 as shown in Figure 22, where the notation σ�Y means {X 7→ y ∈ σ | y ∈ Y}.

Bmer
N ≡ (/0)(id /0⊗mergen)

⊗
i∈npid /0q P≡ (id /0⊗ ([])/([]))N D≡ id /0⊗ (

⊗
i∈1 P)idn

mergen ↓B (id /0⊗ id[/0])D

Bcon

N ≡ (/0)(idX ⊗merge1)
⊗

i∈1(idX ⊗ id1)pXq
P≡ (idX ⊗ ([])/([]))N D≡ id /0⊗ (

⊗
i∈1 P)id(X)

pXq ↓B (idX ⊗ id[/0])D
Bwir

~y/~X ↓B (~y/~X⊗ id[])(idX ⊗ id0id0)

Bion

X = {~X} Y = {~y} M ≡ (id /0⊗K~y(~X))(X)(idX ⊗merge1)
⊗

i∈1(idX ⊗ id1)pXq

N ≡ (/0)(idY ⊗merge1)
⊗

i∈1 M P≡ (idY ⊗ ([])/([]))N D≡ id /0⊗ (
⊗

i∈1 P)id(X)

K~y(~X) ↓B (idY ⊗ id[/0])D

Bper

Yi = {~yi} Ni ≡ (Yi)(idYi ⊗merge1)
⊗

j∈1(idYi ⊗ id1)pYiq

Pi ≡ (id /0⊗~̂yi/~yi)Ni D≡ id /0⊗ (
⊗

i∈m Pi)π

π : 〈m,~X ,X〉 → 〈m,~Y ,X〉 ↓B (id /0⊗ id~Y)D

Figure 21: Inference rules for normalising elementary bigraph expressions

25

Babs

b ↓B (z/W ⊗ id([Y]))(id /0⊗ (
⊗

i∈1(idZ⊗~̂y/~X)(W)G)idI)

~zX = [z j←~z | z j ∈ X] ~zX̄ = [z j←~z | z j /∈ X]
~W X = [Wj← ~W | z j ∈ X] ~W X̄ = [Wj← ~W | z j /∈ X]

W X = {~W X} W X̄ = {~W X̄} U = {~y~zX} N ≡ (W X ∪W)G P≡ (idW X̄ ⊗ ̂~y~zX/~X~W X)N

(X)b ↓B (zX̄/W X̄ ⊗ id([U]))(id /0⊗ (
⊗

i∈1 P)idI)

Bten

bi ↓B (ωi⊗ id(~Yi)
)Di Di ≡ αi⊗ (

⊗
j∈ni

P j
i)πi : Ii→ 〈ni,~Yi,Yi〉

ω =
⊗

i∈n ωi α =
⊗

i∈n αi id(~Y) =
⊗

i∈n id(~Yi)
π =

⊗
i∈n πi

P =
⊗

j∈n
⊗

i∈n j
P j

i D≡ α⊗Pπ⊗
i∈n bi ↓B (ω⊗ id(~Y))D

Ccom
σ = (idZ⊗α)(idZ⊗ y/X)

(idZ⊗ (α⊗ id1)pYq)
⊗

i∈1(idZ⊗~̂y/~X)(X)(idU ⊗mergen)S̄ ↓S̄ σ , S̄

Mcom
(idZ⊗N)P̄ ↓N σ ,N′ ~X ′ = σ−1(~X) Z′ = σ−1(Z) Y ′ = σ−1(Y) σ ′ = id{~y}⊗σ�Z]Y

(idZ⊗ (idY ⊗K~y(~X))N)P̄ ↓S̄ σ ′,
⊗

i∈1(idZ′]Y ′ ⊗K~y(~X ′))N
′

Ncom

Pi : 〈mi,~Xi,Xi〉 → 〈1,(Yi),Yi]Wi〉⊗
i∈n P̄i =

⊗
i∈k Pi P̄i : Ii→ 〈ni,~Yi,{~Yi}]Zi〉 (idZi ⊗Si)P̄i ↓S̄ σi, S̄i

S̄ =
⊗

i∈n S̄i : I→ 〈n′,Z′]Y ′〉 σ =
⊗

i∈n σi X ′ = σ−1(X) Z′ = σ−1(Z) Y ′ = σ−1(Y)

(idZ⊗ (X)(idY ⊗mergen)
⊗

i∈n Si)
⊗

i∈k Pi ↓N σ ,(X ′)(idZ′]Y ′ ⊗mergen′)S̄

Pcom
(idZ⊗N)P̄ ↓N σ ,N′ W = σ−1(Z]Z′) ~X ′ = σ−1(~X) σ ′ = σ�Z]Z′

(idZ⊗ (idZ′ ⊗~̂y/~X)N)P̄ ↓P σ ′,(idW ⊗~̂y/~X ′)N′

Bcom

b1 ↓B

(
ω1⊗ id(~U1)

)
D1 : 〈m′,~X ′,X ′]Z〉 → 〈n,~U1,U1]W 〉

b2 ↓B

(
ω2⊗ id(~U2)

)
D2 : 〈m,~X ,X]U〉 → 〈m′,~U2,U2]Z〉

D1 ≡ α1⊗
(⊗

i∈n P1
i

)
π1 : 〈m′,~X ′,X ′]Z〉 → 〈n,~U1,U1]V 1]W 1〉

D2 ≡ α2⊗
(⊗

i∈m′ P
2
i

)
π2 : 〈m,~X ,X]U〉 → 〈m′,~U2,U2]V 2]W 2〉

P1
i : 〈m′i,~X ′i ,X ′i 〉 → 〈(U1

i),U
1
i]V 1

i 〉 P2
i : 〈m′′i ,~X ′′i ,X ′′i 〉 → 〈(U2

i),U
2
i]V 2

i 〉
ω1 : V 1]W 1→W ω2 : V 2]W 2→ Z α1 : Z→W 1 α2 : U →W 2

V 2 =
⊎

i∈m′V
2
i

⊗
i∈m′ P

2
π
−1
1 (i)

=
⊗

i∈n P̄i P̄i : I′i → 〈m′i,~X ′i ,X ′i]Z′i〉

(idZ′i
⊗P1

i)P̄i ↓P σi,Pi σ = idU ⊗
⊗

i∈n σi ω = ω1(α1ω2(α2⊗ idV 2)⊗ idV 1)σ

π = π1~X ′′π2 D≡ idU ⊗
(⊗

i∈n Pi
)
π

b1b2 ↓B

(
ω⊗ id(~U1)

)
D

Figure 22: Inference rules for normalising bigraph abstraction, product and composition expressions

26

A.2 Renaming
Let a link namer be a map µ mapping every link l (outer name or edge) in its domain to a pair (E,X),
where E is a set of names used internally to compose the link, and X are the inner names linking to l. We
let Vi(Y,µ) =

⋃
y∈Y,y7→(X1,X2)∈µ Xi and define link namer composition by

µ1 ◦µ2 = {y1 7→ (E1∪X1∪V1,V2) | y1 7→ (E1,X1) ∈ µ1∧Vi = Vi(X1,µ2)}
∪ {y2 7→ (E2,X2) ∈ µ2 | ∀y1 7→ (E1,X1) ∈ µ1 : y2 /∈ X1},

essentially composing links of µ1 with those of µ2, and adding closed links from µ2.
We then define a function linknames, mapping terms to link namers, by the equations given in Fig-

ure 23. By using the link namers of immediate subterms, we can determine whether a term can be

linknames(mergen) = {}
linknames(pXq) = {x 7→ ({},{x}) | x ∈ X}
linknames(~y/~X) = {yi 7→ ({},Xi) | i ∈ |~y|}
linknames(K~y(~e/~X)) = {yi 7→ ({},{}) | i ∈ |~y|}∪{ei 7→ ({},Xi) | i ∈ |~X |}
linknames(π : → 〈m,~X ,X〉) = {x 7→ ({},{x}) | x ∈ X}
linknames((Y)P) = linknames(P)
linknames(

⊗
i ti) =

⋃
i linknames(ti)

linknames(t1t2) = linknames(t1)◦ linknames(t2)

Figure 23: Function for determining which names are used internally to compose a link

normalised without name clashes. To this end, we define a predicate normalisable by the equations given
in Figure 24. We basically just require, that at no level in the term does two different links share any
internal names.

normalisable(mergen) = true
normalisable(pXq) = true
normalisable(~y/~X) = true
normalisable(K~y(~e/~X)) = true
normalisable(π : → 〈m,~X ,X〉) = true
normalisable((Y)P) = normalisable(P)
normalisable(

⊗
i ti) =

∧
i normalisable(ti)
∧(∀i 6= j : Ei∩E j = /0)
where µi = linknames(ti)

Ei =
⋃

y 7→(E,X)∈µi
E

normalisable(t1t2) = normalisable(t1)∧normalisable(t2)
∧(∀l1 6= l2 : µE(l1)∩µE(l2) = /0)
where µi = linknames(ti)

µ = µ1 ◦µ2
µE(l) = E, if µ(l) = (E,X)

Figure 24: Function for determining whether a (well-formed) term is normalisable

Renaming is achieved by the judgment U ` α, t ↓β t ′,β a V , where U is a set of used names and α

renames t’s inner names to those of t ′, while β renames t’s outer names to those of t ′ and V extends U
with names used in t ′. The system of rules for inferring this judgment is given in Figure 25.

27

Rmer
U ` id /0,mergen ↓β mergen, id /0 aU

Rcon
X ′ = α(X)

U ` α,pXq ↓β pX ′q,α aU

Rwir

Z = {~z} Z∩U = /0 |Z|= |~z|= |~y|
~X ′ = α(~X) β = {yi 7→ zi}

U ` α,~y/~X ↓β ~z/~X ′,β aU ∪Z
Rion

Z = {~z} Z∩U = /0 |Z|= |~z|= |~y|
~X ′ = α(~X) β = {yi 7→ zi}
U ` α,K~y(~X) ↓β K~z(~X ′),β aU ∪Z

Rper
X ′ = α(X) ~X ′ = α(~X) ~Y ′ = α(~Y)

U ` α,π : 〈m,~X ,X〉 → 〈m,~Y ,X〉 ↓β π : 〈m,~X ′,X ′〉 → 〈m,~Y ′,X ′〉,α aU

Rabs
U ` α, t ↓β t ′,β aV X ′ = β (X)

U ` α,(X)t ↓β (X ′)t ′,β aV

Rten
ti : 〈mi,~Xi,Xi〉 → Ji αi = α �Xi Ui ` αi, ti ↓β t ′i ,βi aUi+1 β =

⊗
i∈n βi

U0 ` α,
⊗

i∈n ti ↓β

⊗
i∈n t ′i ,β aUn

Rcom
U1 ` α1, t2 ↓β t ′2,β1 aU2 U2 ` β1, t1 ↓β t ′1,β2 aV2

U1 ` α1, t1t2 ↓β t ′1t ′2,β2 aV2

Figure 25: Renaming rules

A.3 Regularising
The system of rules for inferring a permutation-free term representing a regular bigraph is given in Fig-
ure 26.

α
pαqid(X) ↪→pαq

M
Nπ ↪→N′

(idZ⊗K~y(~X))Nπ ↪→(idZ⊗K~y(~X))N
′

N
Si : 〈mi,~Xi〉 → Ji π = π ′

~X Siπ
′~X
i ↪→S′i

((X)(idY ⊗mergen)
⊗

i∈n Si)π
′ ↪→(X)(idY ⊗mergen)

⊗
i∈n S′

π(i)

D
π =

⊗
i∈n πi πi : I′i → Ii Ni : Ii→ Ji Niπi ↪→N′i

α⊗ (
⊗

i∈n(idZi ⊗~̂yi/~Xi)Ni)π ↪→α⊗
⊗

i∈n(idZi ⊗~̂yi/~Xi)N′i

B D ↪→D′

(ω⊗ id(~X))D ↪→(ω⊗ id(~X))D
′

Figure 26: Removing nontrivial permutations from regular bigraphs.

28

