
Building a Context World for Dynamic Service Composition

Lian Yu, Arne Glenstrup
1
, Shuang Su, Yang Zhang

School of Software and Electronics, Peking University, Beijing, 102600, PRC

lianyu@ss.pku.edu.cn, panic@itu.dk
1
IT University of Copenhagen, Denmark

Abstract
1

Dynamic service composition requires responding and

adapting to changes in the computing environment when

orchestrating existing services into one or more new

services that fit better to a composite application. This

paper abstracts the changes of the environment as a

context world to store the physical contexts of the

computing environment, user profiles and computed

results of services as well. We use ontology techniques to

model the domain concepts of application contexts.

Context Condition/Effect Description Language is

designed to describe the dynamic semantics of the

requirements and capabilities of goals and services in a

concise and editable manner. Goal-driven and planning

techniques are used to dynamically implement the service

composition according to the domain knowledge and facts

in the context world.

Keywords: Context world, Ontology modeling, Context

condition/effect description language, Reasoning, Goal

driven planning

1. Introduction

The goal of dynamic service composition is to realize

flexible and adaptable applications by properly selecting

and combining services based on user requests and

environment contexts. Dynamic service composition is

even able to bring forth a number of useful applications at

runtime that are not envisioned at design time. Therefore,

dynamic service composition is suitable for end-user

applications in changing environments where physical

contexts are dynamic and expected users may vary.

Existing dynamic service composition systems, such as

eFlow, ICARIS, SWORD, SHOP2, request the user‟s

requests in strict syntax formats. This makes them difficult

to generate and understand. Fujii and Suda propose a

semantics-based service composition architecture, which

obtains the semantics of the service requested in an

1 The research is supported by Danish Strategic Research

Council (No 2106-08-0046) and by the National Science

Foundation of China (No. 60973001).

978-1-4244-9142-1/10/$26.00©2010 IEEE

intuitive form, and dynamically composes the requested

service based on the semantics of the service. They did not

take into consideration the contexts, which reflect the

situations of the computing environment and are the

important factors to enable dynamic service composition.

 This paper proposes to build a context world, where

the formal semantics of the goal and services and the facts

are stored and updated dynamically. A context-aware

system can both sense and react with the help of sensors

and actuators, providing services based on context

information, such as temperature, location, weather, user

profile, velocity and state of an entity. For the purpose of

making composed services in context that automatically

adapt to changing contexts, it is also imperative to take

context information into consideration in service

composition.

Context information considered in this paper includes

physical context information, user context information

and computing context information. Physical context

information refers to the physical information that can be

sensed by electronic devices, including light, noise,

weather, location, and status. User context information

refers to personal profile, including name, age, sex,

preference, etc. Computing context information includes

service availability and service computing results. The

context information above can be obtained and adopted in

the process of dynamic service composition.

The system architecture is depicted in Figure 1, which

includes three layers: Composition/Discovery and Runner

Layer, Context Reasoner Layer and Service Layer.

Service Layer: This layer is responsible for gathering

context information and serving end-users. In this system,

the physical context information is obtained by Physical

Context Acquisition Services using sensors, e.g., infrared

sensors, RFID systems, and microphones. Physical

Context Acquisition Services monitor the context data in

the physical data buffer, and filter, fuse and format them

into unified context information that can be imported into

the context world for planning. User Information

Gathering Services gather the profile information of users

directly by user interface. Functional Services refer to all

these services that work for end-users. The semantics

descriptions of all of the services are the foundation of

planning.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50525874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Composition/Discovery and Runner Layer: This

layer is responsible for planning a service path (i.e., a list

of services) and running services. The description of goals

and services is interpreted and stored in a repository. The

planning process is triggered by a user requirement from a

user interface. During the planning process, context

Reasoner modules and relevant services will be invoked.

The planner generates a service path according to the

relevant goal and service definition as well as the current

context for an end-user, and the runner is responsible for

executing each service in the path and interacting with the

end-user by communication devices.

Context Reasoner Layer: The context Reasoner Layer

consists of reasoning related modules. The domain

concept model can be constructed according to the

Context Domain Description script, and the Context

World can be instantiated as a facts‟ container. The

modules of the context condition/effect builders, and the

context condition/effect executors are responsible for

interpreting or executing a context condition and effect

script, which is written in a goal description or service

description. All of the formatted context information can

be imported into the context world by the context world

updater. During the planning and running process, the

instance set of each goal node is organized and

manipulated by the Process Handler module, and services

are selected by the Service Selector module. The

contribution of this paper is not the reasoning engine, but

is the contribution of building Context World based on top

of the engine. Pellet (http://clarkparsia.com/pellet/), an

open source of OWL 2 Reasoner, is utilized in our

implementation.

Context World

Context Ontology Model Builder

Context

Condition

Executor

Context

Reasoner Layer

Context Domain

Description Parser

Context World Builder

Context World Updater

Context Effect Executor
Context

Condition

Builder

Context

Effect

Builder

Reasoner Interface

DL Reasonner

Context World

Manipulator

2

Process

Handler

Context

Domain

Description

Service Layer

User Interaction

Gathering

Services

Physical Context Acquisition

Services
Parse

Filter

Fusion

Fromat

Physical Data Buffer

Domain Functional

Services

1

Planner/ Composition

Service
Service

Runner

Service

Discovery

Composition/

Discovery and

Runner Layer

3

Figure 1 Architecture of CASC System

The rest of the paper is organized as follows. Section 2

presents the context modeling. Section 3 describes the

context condition and context effect. Section 4 presents a

survey on the related work. Section 5 concludes the paper.

2. Context Modeling

Before planning or reasoning can be performed, the

domain context needs to be formally modeled. The formal

model provides a definition of structures and meanings of

domain concepts, based on which the information can be

formatted and imported to represent the facts.

2.1. Context Ontology Meta Model

The context ontology meta-model is domain

independent with several concepts defined in Figure 2.

SimpleContextType

ComplexContextType

DataType

ContextTypeAtom

hasCtxTypeAtom

ContextType

ContextProperty

ContextObjectProperty

ContextRelationProperty

ContextObject
hasProperty

hasContextType

generalize

ContextRelation
hasProperty

hasRelation

Figure 2 Context Ontology Meta Model

Context Object is defined as ο=(ιo, Λ, Γ), where ιo is

the context object name, Λ is a set of context properties,

and Γ is a set of type context relations.

Context Property is defined as p=(ιp, o, τ, ν), where ιp

is the context property name, o is the context object which

the context property belongs to, τ is the context type of the

property value, and ν is the value of the context property.

Context relation property and context object property are

two subclasses of context property.

Context Relation is defined as r=(ιr, so, to, Λ), where ιr
is context relation name, so is the source context object, to

is the target context object, and Λ is a set of context

properties.

Context Type is defined as τ=(ιτ, Ξ), where ιτ is the

context type name and Ξ is a set of context type atom.

There are three types of context type: simple context type,

complex context type, and data type. The simple context

type and complex context type are generally called as

ontology context type, which contains the semantics of the

data value.

2.2. Context World

The Context World is the knowledge base

implementation of a specific domain, which contains

domain concepts and facts. This paper uses the Context

Domain Description Language to build a context world.

The Context Domain Description Language is a simple

and easy-to-understand script language, which uses the

constructs of Context Ontology Meta Models to define the

domain concepts.

(1) Context Domain Description Language

Context Domain Description Language is a simple and

easy-to-understand script language, which using the

constructs of Context Ontology Meta Model to define

the domain concepts. Figure 3 shows an example of a

context Domain description script.

i

i

Figure 3 Context Domain Description Script

The language is defined with B.N.F. described in Table 1.

Table 1 Context Domain Description Language Definition

(2) Context World Construction
The Context World can be constructed with a Context

World Builder, which is depicted in Figure 4.

Context Domain Description Parser: The context

domain description is firstly parsed by the document

parser. The context object, types, properties and relations

are realized and relevant data structures are constructed,

and finally a context world model is constructed.

Context World Model: The Context World Model is

the domain concept model with the domain concepts

defined according to the context domain description script.

The Context World Model can be instantiated to one or

more context world.

Context World Builder

Context

World

Context Domain

Description Parser

Context World Builder

Context Domain

Description

Context World Model

Figure 4 Context World Builder

Context World Builder: The Context World Builder

instantiates the context world model to a concrete context

world. The Description Logic Reasoner is used to create

the ontology classes and properties according to the

definitions in the context world model. With the Context

World built, the facts can be added and the reasoning can

be performed during the planning and running process.

 For instance, a context object Drug has an instance d1,

and the context object Drug has a context property effect

defined in the context domain description script, and the

property effect has context type DrugEffect. The concepts

and facts in Context World are depicted in Figure 5. All of

the ontology classes (including ContextProperty,

DateTime, Drug, DrugEffect and its atoms Analgesic and

Painkiller), and ontology properties (including

objppt_Drug_effect and objppt_Durg_effect_inv) are

created by the Context World Builder according to the

definitions in the Context Domain Description script. At

the planning time or running time, relevant instances are

created by Context World Updater to represent facts.

When an instance d1 is created, an ontology individual

d1_effect and d1_effect_value are created by Context

World Updater to represent the context property effect and

its value.

Drug

ContextProperty

d1_effect

DateTime

validFrom

2010.3.1

12:30:34
validTo

2011.3.1

12:30:34

objppt_Drug_effect

d1

d1_effect

_value

hasPropertyInsValue
objppt_Drug_effect_inv

Painkiller
Analgesic

DrugEffect

Figure 5 Context Property in the Context World

 Another illustration is depicted in Figure 6. The context

objects Patient and InnerArea have context relation

Patient_LocWith. When their instances p1 and r1 are

asserted to be related within Patient_LocWith, an ontology

individual p1_locWith_1 is created to represent the

relation instance, and ontology individual

p1_locWith_1_direct and p1_locWith_1_value are created

to represent the context property direct and its value.

p1_locWith

_1

ValidFrom

ValidTo

tarrel_patient_locWithp1

relppt_patient_locWtih_ditect

tarrel_patient_locWith_inv

P1_locWith

_1_direct

P1_locWith_

direct_value

hasPropertyInsValue

r1

srcrel_patient_locWith_inv
srcrel_patient_locWith

relppt_patient_locWtih_ditect_inv
DateTime

2012.3.1

12:30:34

2010.3.1

12:30:34

Patient
InnerArea

Patient_

locWith

ContextProperty

Direction_East

Figure 6 Context Relation in the Context World

 Note that in the examples of the context world, both

drug and patient are considered as contexts because

they are interacting and impacting with each other.

2.3. Planning, Composition and Running with

Context World

Having the Context World constructed,

planning/composition and running can be performed. This

paper proposes a Context Condition to describe a domain

constraint or selective condition, and proposes Context

Effect to describe the service performance to the context.

Context Condition and Context Effect is the easy-to-use

script language, which can be edited and modified during

domain analysis. In the planning process, context

condition is commanded to be executed and the result can

be obtained according to the facts in a context world, and

context effect is commanded to update the facts in the

context world. The updated context world will affect the

result obtained by the context condition. Context

condition and context effect are organized in the goal

description script and service description script, and the

planning result will be gotten with the execution of them.

3. Context Condition and Context Effect

This section will describe the context condition and

context effect, including the definition and the

interpretation process and execution process.

3.1 Context Condition

The Context Condition consists of variable declarations

and context condition atoms. Each condition atom has one

or more decision operation. Firstly, we will introduce the

Decision Operation with which the context condition can

be defined. Table 2 shows the semantics of Decision

Operation.

Table 2 Semantics of Decision Operation

Expression Semantics

x :- y Decide whether x belongs to y. The operator can only
be used when x is the variable or constant with the

type of Ontology Context Type. The result of the

execution of the decision expression could be true,
unknown or false.

x :include y Decide whether x includes y.

x :exact y Decide whether x exactly equals y.

x :exist Decide whether x exists. There are three type the
existence decision:

Target exist: decide whether the target of a context

object instance within a context relation exists;

Relation exist: decide whether the relation of two

context object instance exists;

Property exists: decide whether the property value is
not unknown.

x :more y Decide whether x is more than y. x, y should be

context property variable/constant or context property

value variable/constant. The context type of x, y
should be data type. If the value of x or y is unknown,

the result is unknown.

x :less y Decide whether x is less than y.

x:moreEqualy Decide whether x is more or equals than y.

x :lessEqual y Decide whether x is less or equals than y.

x :equal y Decide whether x equals than y.

x :notEqual y Decide whether x does not equals than y.

 The decision operation can be added one or more

prefixes to modify its semantics. Prefix includes “#t”, “#f”,

“#u” and “#r”. “#t” means that unknown should be

translated to false. “#f” means that unknown should be

translated to true. “#u” means that unknown should be

translated to true, and true should be translated to false.

This prefix is commonly used to decide whether the result

of the expression is unknown. “#r” means that true should

be translated to false, and false should be translated to true.

Table 3 shows the B.N.F of Context Condition.

Table 3 Definition of the Context Condition Language

An example of a context condition is shown as follows.

The declaration block defines the variables to which

certain instants will be assigned before the execution of

the context condition. The property of both context object

and context relation can be visited with the pattern of

“.<property name>”. The decision operator can be used to

express judgments with property values. For instants,

“pa1.name : equals „Bob‟”.

declare{ pa1:Patient; do1:Doctor; }

condition{ <pa1,do1>.medicalCare :exist;

<pa1,do1>.medicalCare.medRegisterID :equal 'A102';

<do1,(?rfid:RFIDItem)>.hasRFID.status :-

RFIDAssignStatus.Expired;

pa1.medicalCare.workingRoom.locWith.location :equal 'Q141';

pa1.medicalCare[.medRegisterID:equal

'A102', .status:-MEDCareStatus.Available].workingRoom

:exist; }

A context relation is expressed with a pair of context

object variable names. A user can also use the pattern of

“<context object name>.<context relation name>” to

express the target context object instances of the relation.

Then the relation names can be linked as a sequence to get

the target context object instances that do not have a direct

relation with the source context object instance. Figure 7

shows the process of interpretation and execution of the

context condition.

Context
World

Context Condition Builder

Context Condition Executor

Context Condition
Bundle

Context
Condition
Script

Variable
Binding

Condition
Result

Retrieval
Requirement

Script

Figure 7 Interpretation and Execution of Context
Condition

Context Condition Script: The text script of a group

of context conditions.

Retrieval Requirement: The text script of a group of

retrieval requirements.

Context Condition Builder: This module loads and

verifies the text scripts, and interprets them according to

the context model. Finally the context condition bundles

are generated.

Context Condition Bundle: The inner structure of a

context condition. A context condition bundle can be

saved in a repository.

Variable Binding: Before executing context conditions,

the pre-binding variables of the context condition need to

be assigned with instances. Variable binding is a set of

variable-instance pairs, according to which the

corresponding variables in the context condition will be

assigned with the instance.

Context Condition Executor: When a context

condition bundle is commanded to be executed, the

Context condition executor will load the context condition

bundle and assign its pre-binding variables according to

variable bindings. The Pellet [5]

 ABox Query Engine

and Pellet Service Programming Interface (SPI) are used

to perform the execution.

Context Condition Result: The context condition

result includes the result status (true, unknown or false),

the accepting binding set, pending binding set and the

rejected binding set.

3.2 Context Effect

An example of a context effect script is shown as

follows.

declare{ pa1:Patient; do1:Doctor; docName:XSDString; }

effect{ pa1 <<; do1<<; }

effect{ pa1.name <<‟Smith‟; do1.name<<docName;

pa1.medicalCare<< do1;

<pa1,do1>.medicalCare.status<<MEDCareStatus.Available;}

In the declaration block, all of the variables appearing

in the effect expressions are declared. The effect

expressions are written in the effect blocks. The instance

binding of the variable can come from the process

structure of goals and services in the CASC system. At

execution time, the effect atoms will be executed with the

sequence appearing in the script. During the execution of

an effect block, the variable binding will not be modified;

instead the variable binding modification will be

performed just after each effect block is executed. Figure

8 shows the execution process and corresponding modules

of context effects.

Context
World

Context Effect Builder

Context Effect Executor

Context Effect Bundle

Context Effect
Script

Variable Binding

Context

World

Updater

Figure 8 Execution Process

Context Effect Script: The text script of a group of

context effects.

Context Effect Builder: The effect script is interpreted

into the structure called effect bundle by the effect builder

module, and the effect bundle can be stored in a certain

repository. In the interpretation process, the effect script is

realized and verified according to context world model,

and an update command list will be constructed.

Context Effect Bundle: The inner structure of a

context effect. A context effect bundle contains the

declaration set and an update command list generated by

the Context Effect Builder.

Variable Binding: The variable binding is a set of

variable-instance pair, according to which the

corresponding variables in the context condition will be

assigned with instances.

Context Effect Executor: When the effect execution

command arrives, the effect bundle will be loaded and

executed by the Context Effect Executor. The variables in

the context effect bundle will be assigned according to the

variable binding, and the executor will invoke the context

world updater model to execute the update commands

sequentially.

Context World Updater is responsible for updating the

context world according to the update command, which

consists of a batch of update operations. Update

operations include creating or removing of instances of

context objects or context relations, and modifying

context property values.

In the planning process, sometimes it is necessary to

rollback the update, which means undoing update

operations and returning to previous states of the context

world. This system adapts the Logging Update Strategy,

recording all of the update operations in logs, and using a

history repository to record history values. If the rollback

command arrives, the Context World Updater reads logs

and performs related reverse operations. For the remove

or value-modify operation, the old value will be read from

the history repository.

4. Related Work

Gu et al. [1] propose a context model based on ontology

using Web Ontology Language to address issues including

semantic context representation, reasoning, knowledge

sharing, classification, dependency and quality. For rapid

prototyping, a SOCAM architecture is established, which

has the ability to adopt various context reasoning

mechanisms for various contexts.

Maamar et al. [2]

use concepts of agent and context to

reduce the complexity of service composition, where

agent represents an autonomous entity that acts on behalf

of users. Their work mainly focuses on the agent

conversation mechanism to decide whether services will

participate in composition.

Situation calculus is used by [3] [4] for service

formalizing and automatical composition. Paper [3]

adopts and extends Golog to formalize service reasoning

about action. Besides using situation calculus to model

dynamic systems, paper [4] also establishes some basic

situation calculus planning systems. Yet situation calculus

is based on First-order logic, where undecidability

problem limits the reasoning for services.

The theory of Dynamic Description Logic (DDL) is

established in [6] to perform service composition in

logical level, where the syntax and semantic is extended

from Description Logic. An action symbol is added, and

the concept of possible world is introduced to give the

semantic model to interpret action. An extended tableaux

algorithm is used for satisfiability-checking of a formula.

In their further work [7] , a service formalizing method is

proposed based on DDL, and the reasoning of action is

used for service matching and composition. Yet no

detailed plan strategy is presented, although it is

mentioned in their work.

CB-SeC [8] [9]

is a framework to put forward for

context-based service discovery and composition, where

services are incrementally filtered and ranked according to

the evaluation of contextual information for providing

best composite services. The framework is layered by

tasks and functionalities for flexibility and adaptability,

but it is a preliminary framework without details in each

part.

5. Conclusion and Future Work

This paper presents the design and implementation of a

context world to support dynamic service composition.

The Context World is the knowledge base implementation

of a specific domain, which contains domain concepts and

facts. Context information from the physical environment,

user interaction, and functional service results are stored

in the context world. The semantics descriptions of all of

the services are the foundation of planning and dynamic

service composition. Context Ontology Model is proposed

to model domain concepts in context. Context Condition

and Context Effect are proposed to describe dynamic

semantics in an editable and easily-modified script manner.

The ontology reasoning system is enhanced by

accommodating context condition/effect execution.

Reference

[1] Gu, T., et al. 2004. An ontology-based context model in

intelligent environments. In Proceedings of the

Communication Networks and Distributed Systems

Modeling and Simulation Conf., Soc. for Modeling and

Simulation Int‟l.

[2] Maamar, Z., Kouadri, S., and Yahyaoui, H. 2004.

Symposium a web services composition approach based on

software agents and context. In Proceedings of the 2004

ACM symposium on Applied computing, 14-17.

[3] McIlraith, S. A. and Son, T. C. 2002. Adapting golog for

composition of semantic web services. In Proceedings of

the 8th International Conference on Principles of

Knowledge Representation and Reasoning, 482—496

[4] Reiter, R. 2001. Knowledge in action：logical foundations

for describing and implementing dynamical

Systems．Cambridge，MA：MIT Press.

[5] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya

Kalyanpur, Yarden Katz. Pellet: A practical OWL-DL

reasoner [J]. Web Semantics: Science, Services and Agents

on the World Wide Web. 2007,5(2): 51-53.

[6] Chang, L., Shi, Z., Qiu, L., and Lin, F. 2007. Dynamic

description logic: embracing actions into description logic.

In Proc. of the 20th International Workshop on Description

Logics (DL‟07), Italy.

[7] Chang, L., Lin, F., and Shi, Z. 2007. A dynamic description

logic for semantic web service. In: 3rd Int. Conf. on

Semantics, Knowledge and Grid, IEEE Press, Los

Alamitos.

[8] Mostefaoui, S. K. and Hirsbrunner, B. 2003. Towards a

context-based service composition framework. In

Proceedings of the International Conference on Web

Service, ICWS‟03, Las Vagas, Nevada, 23-26.

[9] Mostefaoui, S. K., Tafat-Bouzid, A., and Hirsbrunner, B.

2003. Using context information for service discovery and

composition. In iiWAS.

