
Extending Dylan’s Type System for Better
Type Inference and Error Detection

Hannes Mehnert ∗

IT University of Copenhagen, Denmark
hame@itu.dk

Abstract
Whereas dynamic typing enables rapid prototyping and easy exper-
imentation, static typing provides early error detection and better
compile time optimization. Gradual typing [26] provides the best of
both worlds. This paper shows how to define and implement grad-
ual typing in Dylan, traditionally a dynamically typed language.
Dylan poses several special challenges for gradual typing, such
as multiple return values, variable-arity methods and generic func-
tions (multiple dispatch).

In this paper Dylan is extended with function types and para-
metric polymorphism. We implemented the type system and a
unification-based type inference algorithm in the mainstream Dylan
compiler. As case study we use the Dylan standard library (roughly
32000 lines of code), which witnesses that the implementation gen-
erates faster code with fewer errors. Some previously undiscovered
errors in the Dylan library were revealed.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Polymorphism; F.3.3 [Logics and Meanings of
Programs]: Studies of Program Constructs–Type structure; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages – Program analysis

General Terms Languages, Performance, Algorithms

Keywords Dylan, LISP, Compilers, Object-orientation, gradual
typing, dynamic typing, static typing, type inference, generic func-
tions, multiple dispatch, multimethods

1. Introduction
Dylan is a dynamically typed object-centered programming lan-
guage inspired by Common Lisp and ALGOL. Concepts inherited
from Common Lisp are: methods are first class objects (generic
functions), classes, multiple inheritance, multiple dispatch, key-
word arguments, variable-arity methods, optional type annotations
and macros (which are less powerful). Dylan’s syntax is inherited
from ALGOL, thus it does not have S-expressions, but an infix syn-
tax and explicit end keywords. In contrast to Common Lisp, Dylan
has a separation of compile time and runtime.

∗Work conducted as diploma thesis at TU Berlin, Germany

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ILC 2010 October 19–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0470-2/10/10. . . $10.00

The abstraction λ x.x is written method(x) x end in Dy-
lan. A literal list is written #() (the empty list): #(1, 2, 3) is
the list with 3 elements, 1, 2 and 3. The motivating example to
enhance Dylan’s type inference is map(method(x) x + 1 end,
#(1, 2, 3)) which applies the anonymous method x + 1 to ev-
ery element of the list #(1, 2, 3). Previously the compiler called
the generic function +, since it could not infer precise enough types,
using the type inference algorithm described in [2].

By introduction of parametric polymorphism (type vari-
ables) the types can be inferred more precisely. The for-
mer signature of our map is <function>, <collection>
⇒ <collection>. A more specific signature using type
variables would be <function>α→β, <collection>α ⇒
<collection>β , where the first parameter is a <function>which
is restricted to α→ β, the second parameter is a <collection> of
α, and the return value is a <collection> of β. Using this signa-
ture, αwill be bound to <integer>, and the optimizer can upgrade
the call to + to a direct call to + (<integer>, <integer>), since
the types of the arguments are <integer> and singleton(1).

A problem that emerges is how to deal with a value whose type
is not known until runtime? An initial solution would treat it as
the top of the subtyping hierarchy, which would be <object> in
Dylan. A problem is that then too few programs are accepted by
the type checker, namely method(x) successor(x) end where
successor takes an <integer>, would be rejected. A solution
for this would be to allow implicit down-casts from <object>
to anything. But then too many programs would be accepted,
namely (method(x) successor(x) end)(#t), since #t can be
up-casted to <object> and be down-casted to <integer>, but
would result in a runtime error.

Another solution for dynamic types is gradual typing [26],
which is a formalized type system based on the typed λ-calculus
with a specific type dynamic, which is unknown at compile time.
Further extensions of gradual typing are for objects [27] and a
unification-based type inference algorithm [28].

Dylan is well-suited to gradual typing, since its syntax already
contains optional type annotations and Dylan’s design contains de-
vices to restriction of dynamism. But Dylan provides challenges
for gradual typing, namely a nominal type system with subtyping,
generic functions, multiple and optional parameters, multiple re-
turn values and variable-arity methods; solutions to these will be
presented in this paper. A formalized type system is not accom-
plished, thus no safety proofs are given.

Typed Scheme [32] (now known as Typed Racket) already an-
ticipated several achievements also presented here, namely union-
based subtyping (occurence typing), integration of multiple and op-
tional parameters, multiple return values and variable-arity poly-
morphism. In contrast to Typed Racket, which has Java-style first-
class classes, Dylan has generic functions and multiple dispatch.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50525863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The main goal of gradual typing and Typed Scheme is to have
interlanguage migration of a safe language whose typed portion is
also type-safe, whereas gradual typing has a finer level of granular-
ity in this respect.

Success typing [17] is a similar approach to the presented one,
using type inference for error detection. Success typing was devel-
oped for Erlang and is done after the compiler inserted dynamic
type checks where needed. The inference algorithm finds code lo-
cations where types are definitively disjoint and presents these to
the user. The goal was to provide documentation and error mes-
sages at compile time of unmodified Erlang code.

This paper is based on our diploma thesis [20] written at TU
Berlin, Germany.

Contributions In this paper we show the practicability of grad-
ual typing by extending it for a real-world programming language.
Prior to this work Dylan supported selection of a method of the
generic function by only first-order methods, this was extended to
higher-order methods. Also we implemented type inference and de-
scribe the results compared to the previously implemented algo-
rithm [2].

Structure The paper is structured as follows: The next section
2 gives an overview of Dylan and gradual typing. In section 3 we
develop Dylan extensions for gradual typing. Afterwards, in section
4, we present the results of this approach, using the Dylan library
as a case study. We relate the work in section 5 and finally conclude
and show directions of further work in section 6.

2. Dylan and gradual typing
2.1 Overview of Dylan
Dylan was originally developed by Apple Cambridge, Carnegie
Mellon University and Harlequin in the early 1990s. In 1996 the
Dylan Reference Manual [25] was published, which is the language
standard. Although the main influences of Dylan’s design are Com-
mon Lisp, the Common Lisp Object System and Smalltalk, Dylan
has an ALGOL like syntax.

There are two Dylan compilers available as open source, both
implemented in Dylan: Gwydion Dylan, formerly developed at
CMU, compiles Dylan to C. And Open Dylan1, formerly developed
at Harlequin and Functional Objects, available as open source since
March 2004. Open Dylan compiles either to x86 assembler or to C.
Open Dylan provides an IDE, including profiler, debugger and has
thread support. This paper extends the Open Dylan compiler. The
code can be found in the Open Dylan subversion repository as the
typed-opendylan branch2.

In Dylan methods are first class objects and multiple methods
with the same name can be specified, which need to vary in at
least one argument type. The selection of the most-specific method,
which is actually called, is based on all required arguments. This
concept is named multiple dispatch. According to [22] multiple
dispatch is profitable, since in languages which only provide sin-
gle dispatch the double dispatch design pattern [9] is used. The
latter is based on runtime type introspection (instanceof) and
leads to runtime type checks which decreases runtime speed and
gives fewer opportunities for static analysis. Multiple dispatch also
solves the expression problem [33] in an elegant way.

Because the most-specific method has to be selected at ev-
ery call-site at runtime, generic function dispatches pose a major
performance drawback. To accomplish finding the most-specific
method, the distance between the formal and actual type of every
argument is computed, for every method of the generic function.

1 http://www.opendylan.org
2 svn://anonsvn.opendylan.org/scm/svn/dylan/branches/typed-opendylan

This is a time consuming computation, increasing with the amount
of arguments and defined methods.

In order to allow some optimizations, a concept named seal-
ing [25, Ch 9, Sealing] was introduced in Dylan. This allows to
restrict extensions of generic functions in subsequent libraries or
at runtime, as well as to protect parts of the class hierarchy from
being further extended. For example the generic function + can be
extended by normal developers, but it is sealed on <integer>,
<integer> and subclasses thereof to enable compilers to inline
calls to + with two <integer> arguments, resulting in a direct call
of the method instead of a generic function dispatch.

Other features present in Dylan are exceptions, as found in
Common Lisp. Methods with optional keyword arguments can be
specified as well as variable-arity ones. Every method is compiled
into binary code which contains then multiple entry points [19], one
which reorders the keyword arguments and removes the keywords,
another which expects the arguments to be in the correct order on
the stack.

Dylan also supports multiple inheritance, with a superclass lin-
earization algorithm specified in [25, Ch 5, Types and Classes].
This does not provide method monotonicity, but an algorithm with
monotonicity is described in [4], which would allow compression
of generic function dispatch tables [14]. With a linearization al-
gorithm a class precedence list is built, preventing problems that
a member is inherited multiple times, which might be the case in
other programming languages like C++.

The object initialization is similar to the one in Common Lisp, a
method make is called by the user (new in other languages), which
allocates space for the object, and initializes the slots (members,
fields). Once the space is allocated, the method initialize is
called, which can be customized for any class to do something
special like registration in a global table.

The type inference algorithm [2] is based on call caches, when-
ever a generic function is called with a distinct set of argument
types, the return type of this generic function is cached at compile
time, in order to allow more precise type inference than just using
the most generic return value type.

Type Safety In statically typed languages type safety is defined
such that well-typed programs can’t go wrong. A sound type sys-
tem is not lenient, in that it rejects all invalid programs and some
valid programs. A complete type system accepts all valid programs
and some invalid programs. In a dynamically typed language like
Dylan, the demand to the type system is completeness; dynamic
type checks are emitted where needed. If a program does not con-
tain any dynamic type checks or runtime generic function dis-
patches, it can’t go wrong and is thus sound and complete.

Differences between Dylan and Common Lisp Initially a prefix
syntax (using S-Expressions) was specified for Dylan, but that
syntax was dropped in [25] to attract developers from the C++
community. Because the syntax contains more structure, the macro
system is different than the one of Common Lisp. The macro
system is based on pattern-matching and is hygienic (but allows
explicit unhygienic parts), and is less powerful than the Common
Lisp macro system. An extension [3] has been proposed which
advances the macro system to be as powerful as Common Lisp’s.
This extension is implemented in and used by the Open Dylan
compiler.

Other differences between Common Lisp and Dylan are that
Dylan has a clear separation of compile time and runtime. This
implies that there is no need to have a compiler available at runtime
and there is no eval function. Also, Dylan emphasizes safety by
providing no possibility to access private members. And there is
also no way to force the compiler to remove bounds checks in
potentially unsafe places (opposed to Common Lisps safety 0).

2

γ ∼ γ

τ ∼ ?

? ∼ τ

τ3 ∼ τ1 τ2 ∼ τ4
τ1 → τ2 ∼ τ3 → τ4

Figure 1. Type consistency relation ∼

Dylan also specifies sealing, described above in this section, which
restricts dynamism and allows static analysis.

2.2 Gradual Typing
In this subsection we give an overview of Siek’s and Taha’s work
with some examples of gradual typing [26].

Gradual typing is a concept developed by Siek and Taha [26] to
support a smooth migration from dynamically to statically typed
code. It extends the simply-typed λ calculus (λ→) with a type
representing the dynamic type, unknown at compile time, denoted
by ?. The gradually-typed λ calculus is written λ?

→.
The main idea of gradual typing is the notion of a type whose

structure may only be partially known. The unknown portions are
indicated by ?. An example is the type (number× ?), which repre-
sents a tuple type whose first element is a number, and whose sec-
ond element has an unknown type. Programming in a dynamically
typed style can be done by omission of type annotations, which
then get assigned the type ?. Type annotations can be added to fa-
cilitate more compile time type correctness by the type checker,
possibly with ? inside the types to retain some flexibility.

A static type system should reject programs that have inconsis-
tencies in the known parts of types. For example, the program ((λ
(x : number) (succ x)) #t) should be rejected because the type of
#t is not consistent with the declared type of argument x. That is,
boolean is not consistent with number. On the other hand, the pro-
gram ((λ (x) (succ x)) #t) should be accepted by the type system,
because the type of x is considered unknown. A type error will be
raised at runtime by the application (succ #t).

Since type equality with ? is not sufficient, the type consistency
relation (∼) is introduced and axiomatized with the definition in
figure 1. It is reflexive and symmetric, but not transitive. In the
following, τ will be used as a variable for any type, while γ will
be used for ground types, like number or boolean. Some examples
where the type consistency relation holds are: number∼ number,
number ∼ ?, number → boolean ∼ ?, number → ? ∼ ?
→ number. But the following examples are not type consistent:
number → number 6∼ number → boolean, number → ? 6∼
boolean→ ?.

In [26] the relation of λ?
→ to the untyped λ calculus is presented,

together with a translation which converts any λ term into an
equivalent term of λ?

→. It is not possible to accept all terms of
the untyped λ calculus and provide type safety for full-annotated
terms, because the ill-typed terms are not accepted. An example
is (succ #t), which is a valid term in the untyped λ calculus, but
since succ is of type number→ number, and #t is a boolean, it
is not accepted.

The relation of λ?
→ to the simply typed λ calculus (λ→) is that

both calculi are equivalent for terms of the λ→, proven in [26,
Theorem 1]. A direct consequence of the equivalence is that the
gradual type system catches the same static errors as λ→.

Subtyping In [27] subyping is integrated into gradual typing.
That paper extends the object calculus (Ob<:) of Abadi and

? v τ

γ v γ

τ1 v τ3 τ2 v τ4
τ1 → τ2 v τ3 → τ4

Figure 2. v relation

Cardelli [1] with the dynamic type. There are two kinds of sub-
typing, nominal and structural [23, Chapter 19]. While in a nomi-
nal system a developer explicitly writes down the superclasses of
a class (as done in mainstream object-oriented languages like Java,
Common Lisp, Dylan), in a structural system the subtyping relation
is defined on the structure of types (as done in Ocaml, JavaScript,
F#) and if the members are equivalent, the types are equivalent.
Gradual typing was applied to a structural type system. Aldrich
[18] worked on integration of structural and nominal subtyping.

The subtype relation is denoted by <:. We already motivated
why the dynamic type allows implicit down-casts in the introduc-
tion. If ? is treated as the top of the subtyping hierarchy, the hierar-
chy would end up in a single type. Since the down-cast ? <: S and
the standard up-cast R <:? holds, applying the regular transitivity
rule R <: S would hold for all types R,S and the type checker
would not reject any program.

For that reason the dynamic type ? is treated neutral to subtyp-
ing, the single subtyping rule where ? applies is reflexivity, ? <: ?.
A type system for Ob?<: (the gradual object calculus) is defined in
[27], as well as a type checking algorithm, operational semantics
and safety proofs.

2.3 Unification-based inference
In [28] a type inference algorithm for λ?α

→ (the polymorphic gradu-
ally typed lambda calculus) is presented, which we will summarize
here. First, the relation less or equally informative, written v, is
presented in Figure 2. This relation is the partial order underlying
the ∼ relation presented in the previous section.

The main idea of the presented algorithm is that for each type
variable α a type τ is maintained, which is the lower bound on the
solution of α. When another constraint α ' τ∗ is encountered, the
lower bound is moved up to the least upper bound of τ and τ∗.

Applying this to the previous example, α→ α' ?→ number,
α gets first the type ? assigned. Next the least upper bound of ? and
number is computed, which is number. Thus, α gets the type
number assigned.

This idea is integrated into Huet’s almost linear algorithm [13].
This works in two separate phases, the first generates constraints,
the second solves the constraint set. The algorithm uses a graph
representation, where every type variable as well as each type is a
node. There are two kinds of edges, constraint edges representing
constraints, and graph edges from composite nodes (like→) to their
children.

Constraint Generation The constraint generation judgement has
the form Γ `g e : τ |C, where C is the set of constraints. In figure
3 the constraint generation rules are given. The rules are tightly
connected to the type system, equivalence is shown in [28, Lemma
3]. The only rule which actually generates a constraint is CAPP
between the type of the function expression and the type of the
argument→ a fresh type variable.

Constraint Solver The definition of the algorithm solve is
shown in listing 1. Its input is a set of constraints (line 1). Descrip-
tion of copy dyn and contains vars is deferred to later. In each
iteration (lines 6-19) the algorithm takes a constraint from the set

3

Γ(x) = τ

Γ `g x : τ |{}
CVAR

Γ `g c : typeof(c)|{} CCNST

Γ `g e1 : τ1|C1 Γ `g e2 : τ2|C2

(β fresh) C3 = {τ1 ' τ2 → β} ∪ C1 ∪ C2

Γ `g e1e2 : β|C3
CAPP

Γ(x 7→ τ) `g e : ρ|C
Γ `g λx : τ.e : τ → ρ|C

CABS

Figure 3. Constraint generation for λ?α
→

(line 6), looks up the representatives of both sides of the constraint
(line 7) and then orders (line 9) the nodes and merges the equiv-
alence classes of the nodes (line 10). Afterwards a case analysis
is done on the real types (type) of the nodes (lines 11-20), where
possibly more constraints are added. If the constraint set is empty,
the quotient graph by equivalence class is constructed (line 21). An
equivalence class contains all nodes which share a common rep-
resentative. If the quotient graph is acyclic, a mapping from each
node u in the original graph to the type of its representant is re-
turned (line 23). Otherwise an error is returned (line 24).

Code listing 1 Huet solve algorithm
Input: Constraints C
C := copy dyn(C)
for each node u do

u.contains vars := true
5: while not C.empty

(x ' y) := C.get
u := find(x); v := find(y)
if u 6= v then

(u, v, f) := order(u, v)
10: union(u, v, f)

case type(u) ' type(v) of
u1 → u2 ' v1 → v2 ⇒

C.add(u1 ' v1); C.add(u2 ' v2)
u1 → u2 ' ?⇒

15: if u.contains vars then
u.contains vars := false
C.add(vertex(type=?, contains vars=false) ' u1)
C.add(vertex(type=?, contains vars=false) ' u2)

τ ' var | τ ' ? | γ ' γ ⇒ pass /* do nothing */
20: ⇒ error: inconsistent types
G = quotient graph by equivalence class
if G acyclic then

return { u 7→ type(find(u)) | u a node in original graph }
else error

When two nodes are merged, a decision has to be made which
node overrides which other node. This is based on the less or
equally informative relation shown in figure 2. The decision is
done in the relation order, shown in listing 2. A type variable
α is overridden by any other type (lines 2-4). The dynamic type
? overrides type variables (line 2), but is overridden by any other
type (line 3). The flag returned indicates whether the order of the
nodes is relevant or might be changed by union.

The actual merging is done in union (listing 3), which takes two
nodes and a flag as input (line 1). If the flag is true, the first node
is more informative and is chosen as representative (lines 2-5). The

Code listing 2 Relation order

order(u, v) = case type(u) ' type(v) of
? ' α⇒ (u, v, true)
? ' τ | α ' τ ⇒ (v, u, true)
τ ' α⇒ (u, v, true)
⇒ (u, v, false)

rank is then only increased if the rank of both nodes is equal (lines
3-4). If the passed flag is false, the node with higher rank is chosen
as representative (lines 7, 9), as in a regular union-find algorithm.
Again, the rank is only increased if the rank of both nodes is equal
(lines 10, 11).

Code listing 3 Huet union
union(u, v, order matters?) =

2: if order matters? then
if u.rank = v.rank then

4: u.rank := u.rank + 1
v.representative := u

6: elseif u.rank ¿ v.rank then
v.representative := u

8: else
u.representative := v

10: if u.rank = v.rank then
v.rank := v.rank + 1

The case analysis of solve (lines 11-20) consists of several
cases:

• The first case (line 12-13) matches when two function types are
constrained. Arguments and values of both function types are
constrained separately and added to the constraint set.
• The second case (line 14-18) matches if a function type is

constrained to the dynamic type. Two constraints are added,
both arguments and values of the function type are constrained
to a newly allocated dynamic type each (lines 17 and 18).
• The third case (line 19) catches all other valid constraints,

namely any type constrained to a type variable or the dynamic
type, or a constraint consisting of two equivalent ground types.
Nothing is done for these constraints.
• If none of those cases matches, an error is reported (line 20).

Consider the program (λ f : ?. λ x : α . f x), where the constraint
? ' α → β is generated, β is the result of the application. The
type of f is transformed to ? → ?, thus we have the constraint
? → ? ' α → β, which is then solved to the constraints ? ' α
and ? ' β. If the type of α is α → α, an infinite loop would
occur in the solver (by replacing ? ' α with ? → ? ' α → α,
which is solved to ?→ α twice, etc.). To prevent this infinite loop,
each node has a flag contains vars, which is initialized to true
at the beginning (line 3-4) and set to false when the second case is
matched.

The copy dyn function replaces each ? with a new copy of
?, removing any sharing between ? nodes. Consider the program
from listing 4, which generates (by applying rule CAPP twice) the
constraint set { number→ ?0 ' ?0→ β0, boolean→ ?0 ' ?0→
β1} in the last line, where ?0 is a single node. It is used as return
value of f and g and as type of a. The type variables β0 and β1 are
freshly allocated by the CAPP rule, and represent the return value
of f and g. Solving these constraints results in the contradicting
constraints number ' ?0 and boolean ' ?0. Thus, an error is
reported. To prevent this error, the function copy dyn replaces all

4

?0 with separate nodes, which can then be unified with different
types.

Code listing 4 Conditional, a has distinct types in branches
let z = ...
let f (x : number) = ...
let g (y : boolean) = ...
let h (a : ?) = if z then f a else g a

The quotient graph is constructed by adding each node of the
type graph which is its own representative (all nodes are initialized
to be their own representative). Then each edge of the type graph
which originates in a representative node is put into the quotient
graph. If the quotient graph contains a cycle, an error is reported
(line 24). Otherwise the mapping of type variable to type is returned
(line 23). An example where the quotient graph contains cycles is
λ x . x x. The type of x is constrained with a function type (due to
the application) whose argument is the type of x.

3. Dylan extensions of gradual typing
The type system needs to support the wide variety of type construc-
tors defined by the Dylan language. The type constructors will be
discussed in this section, as well as the extensions to Dylan and the
extensions for the type inference algorithm.

3.1 Type constructors
As already mentioned, Dylan is a class-based programming lan-
guage with a nominal type system. Thus each definition of a class
leads to a type where the supertypes are explicitly written.

But as opposed to some mainstream object-oriented program-
ming languages (like Java), not every type is a class, but there are
other constructors.

Method definitions define the number of required arguments and
their types, as well as optional keyword arguments and types, and
return types. The types of required arguments and return values cor-
respond to a tuple type in type theory, while the optional arguments
form a record type. There are variable-arity arguments, which need
special treatment, a tuple-with-rest type is used.

Singleton types contain a single runtime value, like
singleton(#f) is the type of #f. Singleton types are for
example useful in the instantiation process of Dylan, namely for
the method make, where no instance is yet available, to extend this
method with specific behaviour for custom classes.

Union types, constructed by type-union, a function that takes
any number of types and returns a type which consists of the union
of all given types. This is useful in several places, for instane
in a method which might not succeed, as resolve-host-name,
which translates a host name into an internet address. The re-
turn value of this method is type-union(<internet-address>,
singleton(#f)), thus #f is returned if the host name cannot be
resolved. In other programming languages (like C, Java) special
values (null, -1) have to be reserved and the result value has to be
tested for those special values, while in Dylan the type checker can
use the information that a specific value might be returned apart
from the normal type. Functional languages have the polymorphic
Option[α] or Maybe[α] type, which encapsulates either a value
or None or Some[α]. This bears the inconvenience that to get to
the value, it first needs to be unpacked.

Limited types [25, Ch 5, Limited Types], constructed by the
function limited. Limited types in Dylan constrain a base type.
There are only three different base types which might be con-
strained, <collection>, <integer> and subclass. The ele-
ment type of a collection and its length can be constrained. Inte-
ger ranges can be defined, for example the type of all numbers be-

tween 0 and 16, written limited(<integer>, min: 0, max:
16). Also, the type of a class and all subclasses can be speci-
fied by subclass(<number>), which contains all subclasses of
<number>. This is useful for constructors of a class and its sub-
classes.

3.2 Extensions to Dylan
We implemented two extensions for type constructors in Dylan:
polymorphic type variables and function types.

Previously the only expressible type of a function was
<function>, which does not specify the number and types of ar-
guments and return values. In order that a developer is able to have
more fine-grained control, we introduced new syntax for function
types. For example the type expression <string> => <integer>
specifies a function which has a single argument of type <string>
and returns a single <integer> value.

The other extension are type variables. An example is the type
of the identity function as (forall: A) (x :: A) => (y ::
A) (was (x :: <object>) => (y :: <object>) previously).
Type variables are written in parens just before the argument list,
which is backwards-compatible to existing Dylan code. This en-
ables a developer to write more expressive types, and allows the
type inference to infer more concise types. Looking at the motivat-
ing example of this paper, the type of map can not be specified such
that the type of the given function depends on the type of the given
collection, resulting in more optimization opportunities.

3.3 Extended type inference
The type inference is extended with some language constructs like
loop, conditional and multiple value handling, as well as some more
interesting types, like tuple types, record types and singletons. The
former extend the constraint generation, while the latter extend the
constraint solution phase.

Assignment A variable which is mutated is converted to a refer-
ence cell. The constrained type for a cell is the union of all assigned
values.

Loop Type inference of a loop is done initially with the type of all
loop variables from the outer scope. If after inference the resulting
type of the loop variable is equal to the type of the loop variable in
the outer scope, this type is used. Otherwise the top type is used,
since otherwise safety might be violated.

Conditionals In order to support conditionals, different type en-
vironments are setup for each branch of the conditional. In each
branch then the type of a binding can be made more specific.

Multiple values There are two intermediate language constructs,
one for constructing a multiple return value, one for extracting a
single element out of a multiple value. The former constructs a
tuple type and constrains this with all values which are put into
the multiple value. The latter constrains the indexed value from the
tuple type with the resulting single value.

Singleton At various points during type inference, for example
when a literal list is encountered, a singleton type is not used, but
rather the supertype of the singletons. The most-specific type of
the literal list #(1, 2, 3) would be singleton(#(1, 2, 3)),
but the more general limited(<list>, of: <integer>) is in-
ferred instead. Otherwise the compiler has to do a lot of useless
work in subtype-tests. But the question of how specific types should
be inferred is still open. Success typing [17] uses a threshold value
of four unionees to convert it to a more general type.

Solve algorithm The solve algorithm is extended with additional
composite types and subtyping. The extended union is shown in
listing 7, solve in listing 8.

5

The solution strategy for composite types is propagation to their
children. Both types must be of same structure, thus a tuple type
(×) cannot be unified with a function type (→). A special case is
variable-arity tuple type, which, if unified with a tuple generates
new children nodes on demand. A variable-arity tuple is always
less specific than a tuple. This affects both union and solve.

Instead of using type consistency in solve, the subtype test is
used. Thus, if two types, <number> and <integer> are unified,
<integer> is used as representative, because it is more specific.
This narrows down the types of data flow nodes. This might lead
to type errors, for example in listing 5, where in line 9 y will be
constrained to type <number>; in line 10 it will be constrained
to an <integer>, solving these constraints result in <integer>.
Accordingly, another traversal of the flow graph is needed, which
emits a type check after line 9 that a is actually of type <integer>.

Code listing 5 Type error during type narrowing
define method a (x) => (y :: <number>)

2: . . .
end;

4:

define method b (x :: <integer>)
6: . . .
end;

8:

let y = a(42);
10: b(y)

The extended relation order is changed as shown in listing
6. The added lines are 5 and 6, which take care that a variable-
arity type (denoted rest) is not used as representative of any other
type, since it is less informative. But a variable-arity type is more
informative than a type variable or the dynamic type (lines 2 - 4).

Code listing 6 Extended relation order

order(u, v) = case type(u) ' type(v) of
2: ? ' α⇒ (u, v, true)

? ' τ | α ' τ ⇒ (v, u, true)
4: τ ' α⇒ (u, v, true)

τ ' rest⇒ (u, v, true)
6: rest ' τ ⇒ (v, u, true)

⇒ (u, v, false)

The extended union function is shown in listing 7. The first case
(lines 2-5), if order set the flag that order of arguments is relevant,
is unchanged.

If either subtype?(u.type, v.type) or
subtype?(v.type, u.type), the more specific type is used as
representative (lines 7-12). This alone is unsafe, since it does not
result in the least upper bound, rather the more specific value is
used as representative. This is safe because it is used together with
the mentioned emitted runtime type checks when the result of an
operation returns a broader type then the inferred for a data flow
node.

If those three special tests did not succeed, the common case
from the original algorithm is used, the node with higher rank is
used as representative (lines 13-18).

The case statement of the extended solve algorithm shown in
listing 8. The solve algorithm supports tuple types (lines 8, 9) and
limited collections (line 15), both push constraints to their children,
the same strategy used by→ constraints.

Code listing 7 Extended Huet union
union (u, v, order matters?) =

2: if order matters? then
if u.node− rank = v.node− rank then

4: u.rank := u.rank + 1
v.representative := u

6: else
if subtype?(u.type, v.type) then

8: u.rank := max(u.rank, v.rank) + 1
v.representative := u

10: elseif subtype?(v.type, u.type) then
v.rank := max(u.rank, v.rank) + 1

12: u.representative := v
elseif u.rank ¿ v.rank then

14: v.representative := u
else

16: if u.rank = v.rank then
v.rank := v.rank + 1

18: u.representative := v

Code listing 8 Extended Huet solve
case type(u) ' type(v) of

2: u1 → u2 ' v1 → v2 ⇒ C.add(u1 ' v1); C.add(u2 ' v2)
u1 → u2 ' ?⇒

4: if u.contains vars then
u.contains vars := false

6: C.add(vertex(type=?, contains vars=false) ' u1)
C.add(vertex(type=?, contains vars=false) ' u2)

8: u1 × . . . × un ' v1 × . . . × vn ⇒ C.add(u1 ' v1); . . . ;
C.add(un ' vn)

u1 . . . un '?⇒
10: if u.contains vars then

u.contains vars := false

12: C.add(vertex(type=?, contains vars=false) ' u1)
...

C.add(vertex(type=?, contains vars=false) ' un)
14: lcollCu (τU) ' lcollCV

(τV) ⇒ C.add(CU ' CV);
C.add(τU ' τV)

τ ' var | τ ' ? | γ ' γ ⇒ pass
16: ⇒ error: inconsistent types

4. Evaluation
The explained algorithm was implemented into the mainstream
Dylan compiler. The standard Dylan library, including startup of
the Dylan runtime environment, collections, etc. was used as a case
study. The code size is approximately 32000 lines of code. In this
library already several programming errors were discovered, which
had not been discovered by the former type inference algorithm [2].

Parametric polymorphism was used in make and as, instead
of having the type signature (<type>, #rest arguments) =>
<object> it now has the signature (forall: A)(A == <type>,
#rest arguments) => A. The latter type signature is actually the
documented behavior in [25, Ch 12, Constructing and Initializing
Instances]: “Note that the <class> method on make returns a
newly allocated direct instance of its first argument.”. The coercion
method as is similar, it receives a type t and an object x, and should
return an object of type t, which is x coerced to type t (according
to the documentation).

4.1 Interaction of parametric polymorphism and generic
functions

Parametric polymorphism also affects generic function dispatch.
The definition of method specificity and congruency has to be
extended with parametric polymorphism in mind.

6

Figure 4. Flow graph of method double

Intuitively, if a generic function is defined, only congruent poly-
morphic methods may be added. A polymorphic method is congru-
ent if its signature with the broadest type of all type variables is
congruent.

Method specificity of polymorphic methods depends on the
actual arguments. During method dispatch, the type variables are
bound to the types of the actual values. This idea has been proposed
in [15].

A result of this definition is that if a method contains a poly-
morphic type variable at an argument position, this is the most spe-
cific at that position (within the upper bound). Methods which are
specified on a subtype of the upper bound at the given argument
position will never be more specific. In order to avoid this ambigu-
ity a method definition which has a subtype of a polymorphic type
variable at any argument position is rejected.

Another matter are polymorphic generic functions, which are
useful to specify a given protocol more precisely. Types of poly-
morphic generic functions can be inferred even if the actual method
which is called is unknown at compile time. This is used for ex-
ample for the methods make and as. Methods implementing poly-
morphic generic functions have to fulfill the instantiated polymor-
phism.

4.2 Example: Double
A simple example is the method double, whose code is shown in
listing 9, and its flow graph is in figure 4. The bright nodes are data
flow nodes, while the others are control flow nodes. The dashed
edges are data flow edges, filled are control flow edges. MVT is a
multiple value temporary, thus a data flow element with multiple
values. The initial run of the type inference algorithm builds the
type graph shown in figure 5.

Code listing 9 method double

define method double (a :: <integer>)
=> (result :: <integer>)

2 * a
end

As already described, method upgrading of the generic func-
tion call of * succeeds, because the types of the arguments are sub-
types of <integer> (namely singleton(2) and integer), and the
method * is sealed in the domain (<integer>, <integer>). The
resulting flow graph is shown in figure 6. The inferred type graph
is shown in figure 7. When this type graph is solved (as shown in
figure 8), the optimizer can fold the type check, since the multi-
value temporary MVT1 is guaranteed to contain a single value of
type <integer>. The call to * is inlined and primitives are emit-
ted.

Figure 5. Type graph of method double

Figure 6. Flow graph of upgraded method double

Figure 7. Type graph of upgraded method double

Figure 8. Final type graph of method double

7

4.3 Example: Map
Another example is the code snippet map(method(x) x + 1
end, #(1, 2, 3)). The method map has the signature (forall:
A B)(f :: A => B, l :: limited(<list>, of: A)) =>
(res :: limited(<list>, of: B)).

The inference algorithm works as following: The result type,
which is searched for, is named β. Due to the application, the con-
straint α → β ' (A → B × limited(<list>, of: A)) →
limited(<list>, of: B) is generated. All occurrences of A and
B point to the same node. The right-hand side is the type of map. The
solver decomposes this constraint into two constraints, where alpha
gets decomposed into two type variables (α0 × α1), one for each
part of the tuple type. This gets decomposed into the constraints
α0 ' A→ B and α1 ' limited(<list>, of: A). The type of
the literal list #(1, 2, 3) is used to create the constraint α1 '
limited(<list>, of: <integer>), thus limited(<list>,
of: A) ' limited(<list>, of: <integer>). This is solved
by propagation to the element type, A ' <integer>, which binds
A to <integer>.

Now the constraint α0 ' <integer>→ B is solved. The type
of the anonymous method x + 1 is inferred, where x is of type
<integer>. Thus the call to + is upgraded, since + is sealed on
(<integer>, <integer>), and thus cannot be extended in any
further library. The result type of the specific + method is a single
<integer>, which then binds B to an <integer>.

The last constraint is β ' limited(<list>, of: B), where
B is bound to <integer>, thus β is set to limited(<list>, of:
<integer>).

4.4 Safety results
Some code in the Dylan library was ill-typed, where methods were
called with arguments where they were not defined. An example
is function-next?3, which takes a <method> argument, but was
called with a <lambda>, which is a supertype of <method>. This
was not discovered by the former type inference algorithm, but this
code was never called with a concrete <lambda> or a subclass of
<lambda> disjoint from <method>.

Several monomorphic make and as method implementations of
the polymorphic generic functions specified to return any object,
not an object of the given type. This has been fixed in the Dylan
library, since the definition of the generic function now enforces
the return type to be the requested type.

A subtle problem was in the optimizer of the compiler. It did un-
safe optimizations but upgrading boxed values to unboxed values,
but retaining the boxed type information, particularly for loop vari-
ables. When any such loop was inlined in another method, and type
inferred once more, the declared and expected type did not match.

The unsafe control flow node <guarantee-type> was elim-
inated, which allowed the user to inject a type for any object in
Dylan code. This is a major safety issue, since the compiler trusts
the user to provide only correct type information. It was in the com-
piler to obtain performance in places where the old inference algo-
rithm did not return specific enough (to optimize generic function
dispatches) types.

There were also several ill-typed primitives in the compiler, for
example the primitive apply had declared to take an <integer>
containing the number of arguments.

4.5 Performance results
More specific types are inferred for loop variables. The loop
variable i in Listing 10 was previously inferred to be of type
<object>, while it is now of type <integer>.

3 in discrimination.dylan

Code listing 10 Simple loop example
let i = 0;
while (i ¡ 42)

i := i + 1
end

In the compiler a copy-down method was implemented, where
define copy-down-method takes a method name and a list of
arguments and copies the body of the most specific method of the
generic function and specializes it on the given argument types.
The reason for copy-down methods were performance by reducing
the amount of generic function dispatches. By the implementation
of the more general concept, parametric polymorphism, copy-down
methods are superfluous and could be eliminated.

Since the performance of the implemented algorithm is cur-
rently too low, due to the lack of incremental type inference and
interaction of type inference and optimization, a larger case study
was not accomplished. Once this issue of incremental type infer-
ence has been fixed, a larger case study will be done, an appealing
case study will be the compiler itself.

The presented implementation does not yet handle variable-
arity polymorphism [30] and Dylan’s list comprehension are de-
fined with variable-arity. Thus there are no statistics yet, but our
expectation is that this will decrease the number of generic func-
tion dispatches by an order of magnitude.

Using the current implementation and the mostly unmodified
Dylan library (only introducing a polymorphic as and make) the
improvement is roughly 1%, in both generic function dispatches
and dynamic type checks. The former compiler emitted 2107
generic function dispatches and 1897 dynamic type checks, while
the new type inference implementation emits 2093 generic function
dispatches and 1882 dynamic type checks. This is already a good
result taking into account that the old type inference implementa-
tion had several special cases for commonly used methods where
the inference was not powerful enough to infer specific types. Ad-
ditionally it allowed users to inject types into the inference. Our
implementation does not allow type injection, and has no special
cases for specific method names.

5. Related Work
Soft typing There are several approaches to add or use type in-
formation in untyped languages. Some assist programmers by re-
porting type errors at compile time, while others help compilers to
optimize written code. Either developers have to add type annota-
tions to code or types are inferred.

An early approach (1991) was soft typing, developed by
Cartwright and Fagan [6]. The goal of the research agenda was,
that a developer shouldn’t have to write down any type annotations.
The early soft typing systems inferred complex type expressions
even for simple expressions, thus error messages were not easy to
decipher.

Later soft typing systems improved error messages by using
different inference algorithms, but the error discovery was still
conservative. By providing explicit type annotations, those can be
used to locate errors and provide good error messages.

Strongtalk [5] (1993) is a Smalltalk with a static type system.
In contrast to the presented approach, Strongtalk is based on a
structural type system and does not integrate type inference. Also,
Smalltalk does not have a class-based object system.

Scheme There are several approaches in the Scheme community
on extending Scheme with static types. Scheme is different from
Dylan in several aspects, one is that no class system is specified.

8

Henglein developed already in 1991 in [11] a λ→ calculus
with a Dynamic type and explicit coercions. Using this calculus
he presented 1995 in joint work with Rehof [12] a Scheme to
ML compiler, providing dynamic polymorphic type inference for
Scheme.

A more recent approach is Typed Scheme [32] (now known as
Typed Racket), which presents a type system for Racket. It in-
tegrates type annotations into Racket and polymorphic type vari-
ables. The unique feature of their type system is occurrence typing,
which uses the type information of the test in a conditional in both
branches. Racket code can quite easily be ported to Typed Racket
code and it is also possible to use typed and untyped modules side
by side, while the typed ones cannot be blamed [34]. The granular-
ity of Typed Racket is on a module basis, while in gradual typing it
is a finer level of granularity. Runtime type errors cannot originate
from statically typed code regions. Racket is different from Dy-
lan, it does not contain multiple dispatch but Java-style first-class
classes.

Blame calculus Contemporaneously to Siek and Taha [29],
Tobin-Hochstadt and Felleisen [31] introduced the idea of migrat-
ing untyped modules to typed modules, leaving the system in a
mixed but sound state. Their proof mechanism exploits Findler and
Felleisen’s blame system; to be precise, they showed that if an er-
ror occurs (which also happens in soundly typed languages), then
the blame falls on an untyped module. Wadler and Findler merely
formulated a more elegant framework for this proof and gave it a
name (blame calculus) [34].

Ruby An approach which integrates static types into Ruby is
presented in [8]. A type system, type annotation syntax and a
type inference algorithm were added to Ruby. Their type system
supports object types, since methods are defined inside of objects.
Their inference algorithm is constraint-based and applies a set of
rewrite rules. They disallow dynamic features of Ruby, like runtime
method redefinition. In our work we did not need to disallow
any feature of Dylan, because only non-sealed methods might be
replaced at runtime. Their algorithm produces some false type
errors because of a union types where a part of the union has
already been checked by a conditional, elimination of these type
errors is left as future work.

Sage Another approach is hybrid type checking [10], which con-
tains a Dynamic type for the unknown values. The type system sup-
ports type refinements, which are constraints for types, similar to
limited types in Dylan, but more powerful. Additionally types are
first-class values (types can be returned from functions, and it can
be abstracted over types). When an expression has a type but an-
other type is expected, and subtyping cannot be computed at com-
pile time, a downcast (runtime type check) is inserted. Also, type
checking is deferred to runtime if the subtype algorithm takes too
much time. A notable difference to our approach is that refinement
types may contain any predicate, which are solved with a theorem
prover.

Success typing A similar approach, to use type inference for error
detection, has been accomplished in success typing [17]. Success
typing was developed for Erlang and is done after the compiler
inserted dynamic type checks where needed. The inference algo-
rithm finds code locations where types are definitively disjoint and
presents these to the user. The goal was to provide documentation
and error messages at compile time of unmodified Erlang code.

Multiple dispatch The selection of a method based on all argu-
ment types, not only the first, is called multiple dispatch. An em-
pirical study of multiple dispatch was done in [22].

Formalization of type safety and multiple dispatch was done in
Cecil [7, 16]. In contrast to our work, Cecil has a prototype-based
object system while Dylan has a class-based object system.

Kea [21] is a statically typed programing language which inte-
grated multi-methods and polymorphism. In Kea methods may still
be organised within classes to preserve encapsulation. A result of
this is that the first argument is still given a special status.

Parametrized types Integration of parametrized types into GOO,
a dynamically typed programming language focussing on real time
audio and video transformation, was done in [15]. This is a general-
ization of Dylan’s limited types. It contains ideas how to cope with
parametric polymorphism and generic functions, which served as
a base for the described interaction in that paper. In GOO function
types cannot be parametrized, which is a major effort of this paper.

6. Conclusion and further work
In this paper we integrated gradual typing into Dylan, a language
supporting multiple dispatch, and additionally added union-based
subtyping, multiple and optional parameters and multiple return
values. It uses the optional type annotations of Dylan as a base of
the type inference. The extensions to the Dylan syntax (to support
type variables and function types) are backwards-compatible, so
existing Dylan code can be used with the new type inference.

The type inference algorithm was implemented in the main-
stream Dylan compiler. The results look promising: the type in-
ference algorithm is more precise and enables more optimizations
compared to the original implemented algorithm [2]. The described
algorithm reports more type errors at compile time and the gener-
ated code contains fewer computations which may fail at runtime,
namely type assertions and generic function calls. Additionally we
implemented function types and parametric polymorphism in Dy-
lan, which allows developers to specify more expressive types.

The running speed of the implemented type inference algorithm
is currently slower than of the original algorithm. This has two main
causes: on the one hand it is not incremental, on the other hand
the control flow graph is first converted into a static single assign-
ment form. Additionally, in order to improve performance, each
polymorphic method which has been upgraded to a monomorphic
method should be cached.

An animated graph visualization4 was developed and will edu-
cate people who are interested in compiler construction, especially
in compiler optimizations and type theory to get a deep understand-
ing of what a compiler does during optimization and type inference.

Further work will include a formalization and proofs of the
developed type system and inference algorithm. Most of the rules
are obtained from standard literature [23] and the gradual typing
system [26–28], but there are no formal proofs of the combined
type system.

The presented treatment of subtyping in the type inference algo-
rithm is inadequate. There has been done some work by Pottier [24]
which uses positive and negative annotations on data flow nodes.

Dylan’s list comprehension is defined with variable-arity argu-
ments, a recently published paper covering variable-arity polymor-
phism [30] will be integrated.

Neither collections nor hash tables currently make use of para-
metric polymorphism. Every hash table lookup, store and rehash-
ing involves a generic function call. The collection implementation
has a lot of duplicated code, using copy-down methods, for perfor-
mance when specific element types are stored in the collection.

An additional feature for Dylan’s type system would be
occurrence typing [32], which uses information of introspec-
tion functions. The method instance?(<object>, <type>) =>

4 http://visualization.dylan-user.org/

9

(<boolean>) if used in a test of a conditional can be used to type
the object in the consequence of the conditional to be of the spec-
ified type. This has been formalized in [32] and additionally com-
posed predicates can be used to gather more precise type informa-
tion.

Acknowledgments
Thanks to Dirk Kleeblatt, who supervised the author’s diploma the-
sis at TU Berlin, for his valuable feedback and invested time. Also
thanks to Peter Sestoft, the author’s PhD supervisor at IT University
of Copenhagen, for valuable feedback on this paper. And thanks to
Peter Housel for his feedback and wording improvements. Finally
thanks to the anonymous reviewers for their valuable feedback.

References
[1] M. Abadi and L. Cardelli. A Theory of Objects. 1992.

[2] O. Agesen. Concrete type inference: Delivering object-oriented
applications. Technical report, 1996.

[3] J. Bachrach and K. Playford. D-expressions: Lisp power, Dylan style.
2001.

[4] K. Barrett, B. Cassels, P. Haahr, D. Moon, K. Playford, and
P. Withington. A monotonic superclass linearization for Dylan.
OOPSLA ’96: Proceedings of the 11th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
Oct 1996.

[5] G. Bracha and D. Griswold. Strongtalk: typechecking Smalltalk
in a production environment. OOPSLA ’93: Proceedings of the
eighth annual conference on Object-oriented programming systems,
languages, and applications, Oct 1993.

[6] R. Cartwright and M. Fagan. Soft typing. PLDI ’91: Proceedings
of the ACM SIGPLAN 1991 conference on Programming language
design and implementation, Jun 1991.

[7] C. Chambers. Object-oriented multi-methods in Cecil. ECOOP’92:
Proceedings of the European Conference of Object-Oriented Pro-
gramming, pages 33–56, 1992.

[8] M. Furr, J. hoon An, J. Foster, and M. Hicks. Static type inference for
Ruby. SAC ’09: Proceedings of the 2009 ACM symposium on Applied
Computing, Mar 2009.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns.
Book, 1995.

[10] J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flanagan.
Sage: Hybrid checking for flexible specifications. Scheme and
Functional Programming Workshop, 2006.

[11] F. Henglein. Dynamic typing. ESOP Proceedings of the 4th European
Symposium on Programming, 582:233–253, Apr 1992.

[12] F. Henglein and J. Rehof. Safe polymorphic type inference for a
dynamically typed language: translating Scheme to ML. FPCA ’95:
Proceedings of the seventh international conference on Functional
programming languages and computer architecture, Oct 1995.

[13] G. Huet. Resolution d’equations dans les langages d’ordre 1, 2, ...,
omega. 1976.

[14] E. Kidd. Efficient compression of generic function dispatch tables.
Darthmouth Colege Computer Science Technical Report TR2001-404,
pages 1–22, Nov 2001.

[15] J. Knight. Parametrized types for GOO. Master thesis, 2002.

[16] G. T. Leavens and C. Chambers. Typechecking and modules for
multi-methods. ACM Transactions on Programming Languages and
Systems, 17:1–15, 1994.

[17] T. Lindahl and K. Sagonas. Practical type inference based on
success typings. PPDP ’06: Proceedings of the 8th ACM SIGPLAN
symposium on Principles and practice of declarative programming,
Jul 2006.

[18] D. Malayeri and J. Aldrich. Integrating nominal and structural
subtyping. ECOOP’08 Proceedings of the 22nd European Conference
on Object-Oriented Programming, pages 260–284, 2008.

[19] T. Mann and J. Bachrach. Harlequin Dylan runtime system. 1995.
[20] H. Mehnert. Extending Dylan’s type system for better type inference

and error detection. Diploma thesis, pages 1–92, Oct 2009.
[21] W. B. Mugbridge, J. G. Hosking, and J. Hamer. Functional extensions

to an object-oriented programming language. Technical report, 1990.
[22] R. Muschevici, A. Potanin, E. Tempero, and J. Noble. Multiple

dispatch in practice. OOPSLA ’08: Proceedings of the 23rd ACM
SIGPLAN conference on Object-oriented programming systems
languages and applications, Oct 2008.

[23] B. C. Pierce. Types and Programming Languages. 2002.
[24] F. Pottier. A framework for type inference with subtyping. ICFP ’98:

Proceedings of the third ACM SIGPLAN international conference on
Functional programming, Jan 1999.

[25] A. Shalit, D. Moon, and O. Starbuck. The Dylan Reference Manual.
Aug 1996.

[26] J. G. Siek and W. Taha. Gradual typing for functional languages.
Scheme and Functional Programming 2006, 2006.

[27] J. G. Siek and W. Taha. Gradual typing for objects. European
Conference of Object-Oriented Programming 2007, 2007.

[28] J. G. Siek and M. Vachharajani. Gradual typing with unification-based
inference. Dynamic Languages Symposium, 2008.

[29] J. G. Siek and P. Wadler. Threesomes, with and without blame.
Proceedings for the 1st workshop on Script to Program Evolution,
pages 34–46, 2009.

[30] T. S. Strickland, S. Tobin-Hochstadt, and M. Felleisen. Practical
variable-arity polymorphism. European Symposium on Programming,
pages 32–46, Feb 2009.

[31] S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: from
scripts to programs. OOPSLA ’06: Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, Oct 2006.

[32] S. Tobin-Hochstadt and M. Felleisen. The design and implementation
of typed Scheme. Proceedings of the 35th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages - POPL
’08, page 395, 2008.

[33] P. Wadler. The expression problem. 1998.
[34] P. Wadler and R. B. Findler. Well-typed programs can’t be blamed.

ESOP’09 Proceedings of the European Symposium on Programming,
pages 1–16, 2009.

10

