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Global Search for Occlusion Minimisation
in Virtual Camera Control
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Abstract— This paper presents a fast and reliable global- visibility accuracy due to the computational cost of visi-
search approach to the problem of virtual camera positioning  bility estimation in real-time. Moreover, in the majority o
when multiple objects that need to be within the reach of the occlusion situations met in computer games the objects of
camera are fully occluded. For this purpose, a comparative anal- . .
ysis of global-search algorithms is presented for the problem of Interest are much. smaller tha_ln scene geometry features. Thi
maximising camera visibility across different tasks of varying Suggests that objects are either occluded or non-occluded;
complexity and within different real-time windows. A custom- the situations where objects are partially occluded are. rar
designed genetic algorithm is compared to octree-based search On that basis, visibility fitness generates rough searcbespa
and random search and results showcase the advantages of thethe vast majority of which is covered by multimodal fitness
genetic algorithm proposed with respect to efficiency, robustnes lat f di
and computational effort. plateaus of near-zero gra ient. . _

Gradient search [7] and local search (e.g. artificial péaént
. INTRODUCTION fields [9]) are bound to fail in such problems. Instead, rbbus

_ . . and efficient global search algorithms are required to atec
Camera control is a vital component of player experlenc%”y, or partially, un-occluded camera positions. Thippa

and enjoyability in games [23]. A camera in games providegq,ces a comparative study of search algorithms forsol
the player with a means for exploring the game world, getting, the problem of visibility occlusion in camera control. A
feedback on her actions, and updating the state of the gamstom-designed genetic algorithm (GA) for the investidat
Given its critical importance in 3D virtual environments, opiem “octree-based search [1] (best-first and dept-firs
camera control may provide means of challenge for angy rangom search are evaluated in occlusion problems of
justifiability of artificial mte]hgence. Camera settingsr increasing complexity and their speed is evaluated across
games are usually predefined by designers and potentigferent time windows. Algorithm performance is accessed

camera visibility problems (e.g. in the case of occluded;, yhe amount of object visibility of the generated sologip
objects) are tackled via simple, nevertheless, unjustéfiabd e nymber of times a global maximum is found and the time

unrealistic solutions — i.e. the camera rapidly jumps to § ;o the algorithm to find the maximum.

_selected non-occluded position towards the closest object Results show that the GA proposed demonstrates robust-
interest. ness and real-time efficiency across four dissimilar odotus

In this paper we propose a top-down global search apyse stydies containing three objects of interest andngryi
proach to the problem of finding a non-occluded point whep, complexity. It is also apparent that the GA approach

in-gameobjects of interesare fully occluded. Occlusion 0C- nerforms well consistently with respect to real-time perfo
curs when points (or objects) of interest that the camerés\e€y 3 ce in all case studies examined. Random search performs
to look at are fully, or partially, hidden by objects or walls,;q in complex problems but it performs poorly in simpler
of the designed scene geometry. Under these circumstancghiems. Finally, octree-based search is outperformed by

the camera controller is required to find a path towardg,q aforementioned algorithms and performs well in simple
an occlusion-free point (ideally a fully non-occluded pdin problems only.

within a realistic time frame. If the controller is unsucsks This paper is innovative in that it introduces an efficient

W't_h'n, a short time window (e.g. 2_00ms maximum), the;nq reliable GA solution to the problem of full occlusion in
reliability of game camera control is challenged and an¥amera control; it examines complex case studies of meltipl
immersion emerged by cinematographic game experience({fee) objects of interest; and it provides a comparative

lost. analysis of search algorithms (including genetic and ramdo

The problem of camera visibility is challenging becausgearch) with respect to problem complexity and real-time
(a) visibility heuristics are computationally expensieectl- performance.

culate in real-time, and (b) the generated visibility fuoist

terrains are very rough for a search algorithm to explore. [l. BACKGROUND

In particular, in order to evaluate the visibility “goodsés  The problem of automatically controlling the camera in
of a camera position, rays need to be casted towards tgy,al 3D environments has recently received significant
object(s) of interest; the designer often has to sacrificgiention from the research community [11]. The majority

of the earliest approaches to camera control [24], [6], [13
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of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhag@erark. focus on the mapping between user input and the de_grees
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control of the several DOFs of the camera showed to oftesomposition and support multiple-object visibility.
be problematic for the user [12] so researchers started toLocal search approaches offer reasonable real-time perfor
investigate how to automatically place and configure thmance and handle well frame coherence but often converge
camera. prematurely to local minima. This characteristic becomes
One of the first examples of automatic camera control, wagitical when the camera control system has to optimise
developed by Blinn already in 1988; it was an automati¥isibility of objects of interessince the visibility heuristic
camera control system for planet visualization in a spad@nsists of many local minima areas with almost no gradient
simulation at NASA [6]. Blinn’s work has inspired many information available to guide local search (see Section IV
other researchers trying to produce more flexible autoncsmox. Occlusion

camera systems and attempting to integrate aspects like ) _ _ ) _
camera motion and frame composition [2]. Successfully handling object occlusion constitutes al vita

cgmponent of an efficient camera controller [11]. Object

More generic approaches model camera control as ibility ol K lein f ition. For
constraint satisfaction or optimisation problem. These aﬂ'SI 'Yy plays a KEy Tole In irame composition. For instah
n object satisfying all frame conditions (e.g. position in

proaches require the designer to define a set of requirecdafra? d et : q i id fth
properties which are then modelled either as an objecti game and projection S.'ZE). J0€s hot provide any ol the
function to be maximised by the solver or as a set 0rrequwed visual information if it is completely invisibleud
constraints that the camera configuration must satisfys@ heto an occlusion.

properties describe how the frame should look like in termg. Thellobjectt doccluzmnt tprokblfam (I:an_ be S?pa{.ategh;z two

of object size, visibility and positioning. Bares et al. [Bbt |sosl|m| alr yetdependen tgs /S' opdc usion gva Iua_loe h

introduced a detailed definition of these constraints. and occlusion minimisation/avoldance. “Jcciusion happens
when the object of interest is hidden fully or partially by

OI_G_Iot’JaIC(')A\p'\';:rgll_sAa’i:orlsbased syitems (seethHaIper’sdalrhdnother object. A common technique to detect occlusion
VIers [15] approach among others) mode consists of casting a series of rays between the object of

these requirements as a fitness function (a weighted s Merest and the camera [8], [7]. A similar approach [21]
of each required frame property) and search the space g) '

th f i tina th X fit Enerates a bounding volume containing both the camera
€ camera configuration generating the maximum MiNese,y the object of interest and checks whether other objects

value. Thg s€ approqchgs guarantee to f|'nd a resuIF but tr.W]'trersect this volume. A third approach [16] exploits the
computational cost is high. On that basis, constraint -sat%i

) e raphic hardware by rendering the scene at a low resolution
faction systems [17] are much more efficient but may n P y 9

¢ It if there i p i tisfvinathd ith a color associated to each object and checking the
return any result if there is no configuration satisfying esence of the color associated to the object of interest.

. > r

frame requwements at t.he same time. .B"?“es and Lc_aster F[%’Illese techniques have been used for occlusion avoidance
addres;ed the ISsue by |dent|fy|n'g confhctmg CO”S”&""!'* i.e. maintaining an object visible in the frame) by reagtio
producing multiple camera configurations corresponding 4 coming occluders [7], and via particle swarm optimisatio
the minimum number of non-conflicting subsets. Bourne ang} Pickering [22] pro’posed 2 shadow-volume occlusion
Sattgr [7] extended Bares’ and Lgsters SO!UtIOI’] by addm oidance algorithm where the object of interest is modelle
a\_/ve_lght property to each constraint to define a reIaxgtlo%S a light emitter and all the shadow-volumes generated
prlorltty._At[notr:.e; setF of ?pprolac??s [ZE]I [1O]I, [8]. co are considered occluded areas. However, the aforemedtione
constraint satistaction to select feasible volumes ( .approaches are not suitable for dynamic environments like
reduce the size of the search space) and optimisation to fla mes due to their high computational cost. Bourne and

the best camera conﬂg.uratlon W'thm_ these spaces. __ Sattar [7] devised an escape mechanism from occluded
‘Due to the complexity of evaluating a proper objectiveamera positions which forces the camerjutapto the first
(fitness) function for camera contrpl the aforem_enthneﬂon-occluded position between its current position and the
approaches have proven to be unsuitable for real-time-intefysition of the object of interest. Their approach, however
active applications since their required computationaieti generates undesired camera jumping behaviours within a

is too high to keep the camera updated at a reasonable rgigne environment and considers just one object of interest.
(from 20 to 60 times per second). Moreover, in several cases

the best camera configuration might not correspond to t& The Camera Control System Utilized

global optimum of the fitness function, since the camera We have developed CamOn [9], an autonomous camera
needs to maintain frame coherence (continuity between Sugiystem capable of generating smooth camera animations
cessive frames) [16]. and solving camera composition tasks. Artificial Potential
Beckhaus et al. [5] investigated first the application oFields (APFs) [19] are used to model camera constraints;
local search algorithms to camera control. Their systend useach constraint is translated into a force vector attrgadin
Artificial Potential Fields (APFs) to guide the camera tigbu repulsing the camera position, gradient search is theneappl
a museum and generate smooth virtual tours. Bourne atm animate the camera towards an optimal configuration.
Sattar [7] proposed a system that employed sliding octeeesThe APF camera system guarantees real-time performance
guide the camera to the optimal camera configuration. Burelind frame-coherence during camera animation. The CamOn
and Jhala [9] extended these two approaches to include frameclusion avoidance system, inspired by [7], uses ocatusio



information to modify the APF which, in turn, drives the A. Genetic Algorithm
camera out of the occluded position. Although this techeiqu e implemented a modified version of a generational
is very efficient, being a local search approach it is unable igenetic Algorithm (GA)[14] with custom crossover and
escape local visibility optima (i.e. when the object of & mytation operators. Each chromosome, consisting of three
is fully covered by another object). real values, represents the location of the camera in the 3D
This paper is the first to propose an efficient yet cosipace. The population, containing 120 individuals, is ran-
effective global search solution for minimising occlusiongom|ly placed into the search space via a uniform distrilutio
The approach is also innovative in that it is able to handlgng evaluated via (1) at each generation.
visibility requirements for multiple targets rather thamsj  \we use an elitism selection scheme where the 30 best
one. Furthermore the paper introduces a comparative stughiromosomes of each generation are selected for reproduc-
of efficiency, robustness and effort cost of dissimilar glob tjon, Mating of parents is based on their ranking within the
search algorithms for occlusion minimisation. The customgp pest chromosomes: the first mates with the second, the
designed genetic algorithm is found to be the most reliabigird mates with the forth and so on. Ninety offspring are
approach for the problem. generated by applying a custom-designed crossover operato
(with 100% probability) to each pair of selected parentse Th
crossover operator applied is a fitness-based weighted sum
We employed four different global search algorithms tef the parents’ position. The generated offspr{ﬁgs defined
search for optimal un-occluded camera positions in didaimi as follows: ~ ~
three dimensional scenes: a custom-designed genetichsearc G Pofa+ P fy
algorithm, octree-based best first and depth first search and fat 1o
random search. In order to make a fair comparison amor%%‘

Ill. SEARCH ALGORITHMS

®3)

ere P, and P, are the two selected parents; afidand

them, all implemented algorithms share the same sear ) ) )
are their corresponding fitness values.

space, the same fitness evaluation method and the sa S ! .
P ﬁ/lutatlon is applied to all genes of the chromosome with a

termination conditions. " . .

. . . Probablllty of 50%. The custom mutation operator applies a
We assess the quality of a three dimensional camera . ; )
osition via the following fitness functiory: vector translation to the chromosome by adding a uniformly-

P 9 " distributed random vector to it. The maximum value of the

N dimensions of the translation vector equals 10% the size of
f= quwz (1)  the search space (i.6.1s). Generated offspring replace the
=0

90 worst chromosomes of the current population.
yvhere,vi, is the vjsible fra(;tion qf thé-th object of interest B. Octree-based search
in the frame;w;, is the object’s importance expressed as a ) ) )
weight value [9]; and)V, is the number of objects considered OCtrée generation [1] is a very popular technique of search
and need to co-exist within the camera’s view-frame. In th@ithin 3D virtual environments which makes it ideal for
experiments presented hefé,equals 3 andy contains equal COMParison against genetic and random search.
values (/N = 0.33) for all three objects examined. On that
basis, f values lie between 0 (no visibility of objects) and 1
(maximum visibility of all objects).

Visibility, v, is calculated by casting 9 rays from the
camera’s current position to the bounding box of each object
Eight rays are casted towards the corners and 1 towards the
centre of the object. We chose ray-casting among other-occlu
sion detection techniques due to their implementation,ease
platform independency and hardware acceleration potentia

The search space that all four mechanisms consider is
defined as a cube that surrounds the objects of interest. The
size s of this cube is calculated as follows:

Fig. 1: Octree space subdivision

s = max{P, — C} 2 Specifically, we utilize octree spatial subdivision (see

' Fig. 1) and apply both best-first and depth-first search on
where, P, is the position of thei-th object in the frame the generated tree. Each node of the octree corresponds to a
and,C, is the centre of positions of alV objects considered cubic subspace. During the octree exploration a fithes®valu
which also defines the centre of the search cube;(.e- is assigned at each subspace corresponding to the fitness
SN, P,/N. value of its centre point.

All algorithms are terminated if a camera position found The best-first algorithm picks the node of the octree with

generates an optimal fitness valug &€ 1.0) or when a the highest fitness at each iteration and recursively sidmtiv
predefined time window is elapsed. its corresponding cube and searches within. Breadth-first



search operates a full search through all nodes of the octrgmrtions of space where all the objects are visible at the
at each iteration all nodes are evaluated and ranked byditnesame time. In the Building scene, there is one small area

Children nodes are generated and evaluated following tiem where all three objects are fully visible.

fitness ranking. In both search algorithms a node is selected
randomly if two or more nodes have equal best fitness values.

C. Random Search

Random search generates a sequence of uniformly-
distributed random points which are evaluated via (1). The
algorithm stops if the termination conditions are satisfied
(maximum expected fitness is reached) and the camera
position with best fithess value is returned. Random search
can be very efficient in very rough fitness landscapes and
it is expected to work well in maximising camera visibility
due to the morphology of the fitness terrains generated. This
search mechanism is used as a control baseline.

IV. OBJECTOCCLUSION CASE STUDIES

This section presents the four test-bed scenes designed
to test the efficiency and robustness of the four search
algorithms; the complexity generated by each case study is
also discussed.

The four scenes, namellpprest Building, City, and Tun-
nels are illustrated in Fig. 2a, Fig. 2b, Fig. 2c and Fig. 2d,
respectively. There are three objects (i.e. virtual charay
that need to be within the camera’s viewpoint namgkos
Porthosand Aramis We believe that those four case studies
cover a wide range of scene geometry met in computer
games; furthermore they provide a palette of testbeds that
diversify the complexity of search.

(a) Forest (b) Building
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(c) City (d) Tunnels
Fig. 2: The four test-bed scenes examined

Fig. 3: Top-down view of the fitness landscapes of the four
testbeds. The sample is calculated setting the cameragposit
at a height of one meter from the ground level of the maps,
This corresponds to half the height of the virtual character

The first test-bed scene (Fig. 2a) represents a forest-like
environment, in which objects are surrounded by trees which The third test-bed scene (Fig. 2c) is a city model with
act as occluders. Due to the narrow shape of the trees tlaege buildings and narrow streets and the last test-beg (Fi
areas where the camera is fully occluded are very few. Figugsl) represents a three-tunnel crossing. The three objests a
3a shows also that the portion of space where all the thredaced on the streets and in the tunnels of the City and the
objects are visible is predominant. The second test-bagl (FiTunnels scenes, respectively. It is worth noticing thateghe
2b) consists of a house-like environment with walls separais no area from which all objects are visible in the City
ing the space into rooms and the objects placed in differeatene. That scene, however, has three local optima areas fro
rooms. The fithess landscape illustrated in Fig. 3b showshere only two of the three objects are fully visible. In the
that the walls act as large occluders drastically redudieg t Tunnels scene all objects are visible from the area of the



tunnel crossing. over the total search space. This measure approximates
The fitness landscapes of all scenes reveal some common the probability of hitting anyjeasiblesolution by chance

characteristics. Due to the nature of the visibility prable but it considers global optima solutions as feasible
and the way the fithess function is calculated, the landscape solutions. The feasible space size value for the Forest,
is split into several sub-areas with constant visibilityues Building, City and Tunnel map is 93%, 36%, 23% and

(plateaus) while the borders between these areas are very 4%, respectively.

steep. This results to a search space with limited areas ine The fitness-based complexitgeasure considers the av-
which the gradient is non-zero. It is worth noting that the  erage fitness value of a sufficient number of camera
steepness of the areas between fithess plateaus is dependentpositions. Thus, scene complexity,is calculated as

on the size of the objects and the occluders. The three

objects selected for the experiments presented here éualvir c—1_ Do fi (4)
characters of realistic human-like dimensions. Each aligec n

a cylinder 2 meters tall and 50 cm wide while all scenes  where f; is the fitness value of théth position, and
are designed in an area of 17s117m (the ceiling in the n is the number of camera positions considered for

Building scene is 4 meters tall). These scene types (small the calculation ofc; n equals10® in this paper and it
objects; large occluders) increase the complexity of the is obtained by uniformly discretising the search space
visibility problem and the need of global search algorithms (100, 100 and 10 samples along the x, z, and y axis,
to find an un-occluded camera position in the search space; respectively). Thec value for the Forest, Building,
local search is very likely to fail in such fitness terrains.  City and Tunnel scenes is 0.4, 0.85, 0.89, and 0.91,
The particular morphology of the fitness landscapes is an respectively.
evident sign of high problem difficulty as confirmed by the All above measures indicate that complexity increases
Fitness Distance Correlation (FDC) [18] calculated for alfrom the Forest scene to the Building scene, and furthereto th
four scenes which approximates zero values for all foutity scene reaching a maximum value at the Tunnels scene.
testbeds (Forest-1.9 - 1079, Building: —5.9 - 107%, City:  The difference of the complexity in between the scenes is
—2.5-107%, Tunnels:—5.4 - 1077). dependent on the complexity measure considered. However,
The above poses the question of whether the performangg three provide the same ranking of scenes with respect to
(fitness) function selected is appropriate for our problentomplexity; in that sense all of them are appropriate messur
More rays toward an object would probably provide moréor our scope. We pick the fitness-based value as a measure
information about the level of visibility and would assistof complexity since it incorporates fithess information of
in approximating visibility more accurately. However, fay the whole search space including both partial and global
casting is computationally expensive and a designer h@ssibility areas.
to maintain the right balance between computational time
of fitness evaluation and approximation of fitness in the
demanding task of camera control. Given that 200 ms is the In this section we test the performance of the search
largest acceptable time window available more rays wouldlgorithms with respect to the complexity of the task to
have an negative impact on the performance of all seardle solved and the time taken for the algorithm to reach
algorithms. a solution. All experiments run on a Intel MacBook Pro,
A. Complexity Measure with a 2.0 GHz Core 2 CPU (the implemented algorithms
o use only one core) and 4 GB of RAM at 1067 MHz. The
To assess the difficulty of each case study a measure gfchine is capable of computing a maximum a 4000 fitness
complexity is required. While FDC can be a reliable measurg, 4 1uations per second, but the average value (due to the

of problem complexity we argue that it is inappropriatesystem scheduler) is around 3750 evaluations per second.
for the problem of object visibility since the fithess maps

reveal that there is no sufficient fithess variation with ezsp A. Algorithm Performance Measures
to distance from the global optimum resulting in near- Each test has been carried out 100 times for each case-
zero FDCs. Thus, alternatively, we propose the followingtudy and each time window investigated. The average and
measures of problem complexity: optimal space size, feasibstandard deviation of the generated fitness values are-calcu
space size, and fitness-based complexity. lated at the end of each test and used to assess the perfor-
o The optimal space sizés calculated as the percentagemance of each algorithm. Other measures of performance
of the global optima subspace over the total searatonsidered include the number of times the algorithm finds
space. This measure approximates the probability ® global optimum and the time required to find the global
hit a global optimum by chance; however, it does nobptimum. The average fitnesg, and the number of times
consider the other partial solutions. The optimal spacie global maximum was found;, provide measures of
size value for the Forest, Building, City and Tunnel maglgorithm efficiency. The standard deviation of fitness aefin
is 40%, 0.5%, 0.1% and 0.1%, respectively. a measure of algorithm robustness while the average time
« Thefeasible space siZe calculated as the percentage ofrequired to find a global maximum is suggested as a measure
the subspace containing positions with non-zero fitness computational effort.

V. RESULTS
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Fig. 4. Average fitness versus complexity,and time,t (in ms).

B. Time Windows

To examine how performance evolves over time all alg
rithms are terminated after some predefined time elapses. ™
real-time window valuest, selected in the experiments re-
ported in this paper are 15, 30, 40, 100 and 200 millisecon
corresponding, respectively,
algorithm executions per second. These time-windows are

important to evaluate how camera movement synchronises

TABLE I: Average fithess

with the game rendering cycle, which is commonly executed ]

between 20 and 60 Hz.

Camera positioning occurs in real-time and in response
to users’ actions; thereby the camera controller has to act
rapidly so that the user does not perceive any delay betweer
action and response. We believe that 200 ms is the maximun
allowed time window in which the player does not perceive

any camera positioning delay in a game. The time windows

investigated here have been chosen to reflect this assumptio

C. Analysis

Table | contains the performance measures of average
fitness and fitness standard deviation (within parentheses

for all four algorithms tested. Table columns present tssul

obtained on the different testbeds ordered by complexity.
As a general observation all algorithms appear to perform

equally or better when given more computational time.

Another clear observation is that algorithms perform lette

the easier tasks (e.g. Forest scene) than at the more compl
tasks (e.g. Tunnels). The exception from this observation

is the random search and the GA which both appear to
perform better at the Tunnels scene than at the City scene
This exception is discussed at the dedicated GA and random
search section that follows.

t Forest \ Building \ City \ Tunnels ‘
Octree best-first search
15ms || 0.96 (0.01)| 0.00 (0.00)| 0.33 (0.00)| 0.00 (0.00)
30ms || 0.96 (0.01) | 0.66 (0.11) | 0.33 (0.00)| 0.00 (0.00)
NI 40ms || 0.99 (0.01)| 0.66 (0.00)| 0.33 (0.00)| 0.00 (0.00)
100ms 1 (0.00) | 0.66 (0.00)| 0.33 (0.00)| 0.00 (0.00)
200ms 1 (0.00) | 0.66 (0.00)| 0.33 (0.00)| 0.00 (0.00)
Octree breadth-first search
15ms || 0.96 (0.01)| 0.00 (0.00)| 0.33 (0.00)| 0.00 (0.00)
30ms || 0.96 (0.01) | 0.49 (0.29) | 0.33 (0.00)| 0.00 (0.00)
40ms || 0.99 (0.01) | 0.66 (0.00) | 0.33 (0.00) | 0.00 (0.00)
100ms 1 (0.00) | 0.66 (0.00)| 0.33 (0.00)| 0.00 (0.00)
200ms 1 (0.00) | 0.66 (0.00)| 0.33 (0.00)| 0.00 (0.00)
Random search
15ms || 0.78 (0.13)| 0.64 (0.09)| 0.37 (0.08)| 0.33 (0.23)
30ms || 0.88 (0.10) | 0.67 (0.04) | 0.41 (0.08)| 0.64 (0.14)
40ms || 0.90 (0.08) | 0.67 (0.05)| 0.40 (0.10) | 0.65 (0.14)
100ms || 0.96 (0.04) | 0.71 (0.09) | 0.48 (0.07)| 0.74 (0.13)
,,200ms | 0.97 (0.02) | 0.71 (0.09) | 0.51 (0.06) | 0.81 (0.15)
Genetic algorithm
15ms || 0.86 (0.10)| 0.68 (0.08)| 0.42 (0.09)| 0.63 (0.15)
30ms || 0.92 (0.07) | 0.69 (0.08) | 0.46 (0.08)| 0.70 (0.14)
40ms || 0.95 (0.04) | 0.73 (0.11) | 0.45 (0.08) | 0.78 (0.14)
100ms || 0.98 (0.02) | 0.76 (0.12) | 0.50 (0.06)| 0.82 (0.15)
200ms || 0.99 (0.02) | 0.76 (0.12) | 0.50 (0.07)| 0.87 (0.14)

1) Octree-based Searcht appears that both octree-based
search (OBS) algorithms (see Table 1) generate high per-

to the high number of misleading local optima existent in the
osSearch space which guide the algorithm far from the global
aximum. Despite of the deterministic nature of spatial
subdivision, both algorithms show a little standard deorat
agthin the experiment, this happens because the algorithms
to 60, 30, 25, 10 and 5 p(ﬁbntiorder randomly the nodes with equivalent fitness.

formances in low complexity testbeds, but their average Results indicate that OBS algorithms are useful when a
fithess drops drastically as problem complexity increasesolution needs to be found rapidly in simple tasks (i.e. Sore
Both OBS algorithms perform poorly in complex scenes duscene) since the fitness they generate is significantly rbette



than the genetic and random search within the time-window TABLE 1I: Average time taken to find optimum (in ms)

of 15ms. ’ t H Forest\ Building \ City \ Tunnels‘
A t-test between OBS and random search (best-first p- Random search
value = 0.0; breadth-first p-value = 0.0) and between OBS 15ms 10 5] 13 6
and GA (best-first p-value 2.7 x 10~!; breadth-first p- 30ms 19 25 | 19 12
value =2.7 x 107!!) reveal those statistically significant 20ms 14 20| 29 15
differences. 100ms 38 62 | 47 63
While performing well on fast and simple tasks, OBS 200ms 124 82| 72 103
algorithms perform poorly on typical occlusion minimisgati Genetic algorithm
problems like Building and City. Subsequently, our anaysi 15ms 11 7 8 7
will concentrate on the GA and random search approaches 30ms 18 22| 15 11
and their relationship since both appear to be more appro- 40ms 13 21| 18 21
priate for the problem we investigate (see Table I). 100ms 42 60 | 28 65
2) GA versus Random SearclEigure 4 depicts the 200ms || 126 68 | 32 "

impact of time limit and the scene complexity on the average
fithess of the GA and random search mechanisms. It appears
that random search (see also Table 1) reveals good perf%rl-

in all h read ored q r%orithm performance (see Table I).
mance in all scenes; however, as already mentioned, randonly ohqaning the number of times the algorithms manage

§earch _does not reach the pe_rformange of OBS approacl?gsﬁnd the global maximum (Fig. 5) and the average time it
n the simple Forest scene. This resglt 1S sqmewhgt expegt%%k them (Table II) it is clear that the GA is more efficient
since ra_ndom search does not exploit any fitness mfo_rmatl%d faster in all scenarios examined while, in the City scene
to |dent|_fy the best areas to search within. The algorlthm_ ¥ performs equally well with random search. As already
performing very well in highly complex scenes Sl.JCh as Clt¥nentioned, the City scene constitutes a rather hard problem
a}nd T”T‘”e's- Qn the contrary, the stgndard devn_attlon of tr?8r global search consisting of three global maxima and no
fitness is the highest among all algorithms examined due 1.2 that provides full visibility of the three objects teth
the stochastic nature of the algorithm. camera.

The GA (see Fig. 4 and Table I) demonstrates efficiency The performance obtained for the random search and the
(via average fitness performance) and robustness (via stafla proposed reveals that both algorithms could be sucdessfu
dard deviation of fitness) in all four testbeds and for ally camera positioning when objects are occluded. However,
five time windows. It performs similarly to the octree-ihe GA is significantly better in low complexity case studies
based algorithms (the standard deviation is higher due Igy showcases higher robustness and speed independently
the stochastic nature of the GA) in the Forest scene but it complexity and time constraints. Such properties make it
achieves consistently better performance in the otheibest the most preferred algorithm among those examined in this
scenes for all the time limits. study.

Compared to random search, the GA performs signifi-
cantly better (both in terms of average fithess and standard VI. CONCLUSIONS
deviation) in the vast majority of scenarios independently This paper investigates search-based approaches for cam-
of time window and problem complexity. The difference inera positioning in dynamic virtual environments. In partix
terms of performance is more evident in the least compleye examine the problem of finding a non-occluded camera
test-bed while the performance of the two algorithms corposition for viewing multiple objects appearing in a 3D game
verges as complexity increases. A t-test between the tvemvironment. In game virtual words local search algorithms
mechanisms shows a statistically significant difference qé.g. artificial potential fields) fail evidently due to the
average fitness as the p-values calculated for the Foresémplex search space landscapes generated by camera visi-
Building, and Tunnel scenes within the 200ms time windowpility measures. Fitness landscapes are generally mudtino
are, respectively 0.01, 0.01, and 0.0003. While the G#onsisting of zero gradient plateaus whose fitness distance
performs better than random search in the City scene givedrrelation approximates zero.
short time windows (i.e. 15ms — 40ms) the two mechanisms Stochastic global search is expected to perform better in
appear to perform similarly as time goes by (e.g. p-value fauch fitness terrains and results obtained from this paper
200ms is 0.06). confirm our hypothesis. Four search algorithms (octreedbas

It is also worth noticing that both mechanisms generateest-first, octree-based depth-first, random search aretigen
lower performance for the City scene than that of the Tunnetgearch) are assessed in the comparative analysis presented
scene which is inconsistent with the complexity measureslgorithm performance is evaluated across dissimilar gask
proposed. This suggests that other complexity measurés tharying in complexity and real-time taken to achieve the cor
embed notions of multimodality could be more appropriateesponding performance. Results suggest that the proposed
to classify scenes such as City. However, it should be notegknetic algorithm is significantly better than octree dednc
that thec measure of complexity is consistent with OBSall case studies examined. Moreover, the GA outperforms
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(b) Random search

Fig. 5: Number of times the global maximum was fougdyersus complexityg, and time,t (in ms).

random search in problems of low complexity; however,[7]
the two algorithms generate similar performances in som
tasks of high complication. The GA proposed is consistentl
the fastest, most robust and effective approach, from those
investigated, to the problem of maximising object vistyili [
As a future research step, alternative genetic search al-
gorithms, suitable for constraint satisfaction problemd| [10]
be examined and compared with the proposed GA; the
Feasible Infeasible Two-Population (FI 2-Pop) genetioalg [11]
rithm [20] is a sensible choice to make with that regard.
Another obvious future step of this research is the design &
algorithms that will efficiently generate the shortest and/ 13
most scenicpath to the non-occluded position found by the
search algorithm. Intelligent camera occlusion detectiod  [14]
avoidance will collectively advance the current statehef- |15
art in camera control systems in games and enhance player
experience during gameplay. (16]
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