
Combining Local and Global Optimisation

for Virtual Camera Control

Paolo Burelli, Student Member, IEEE, and Georgios N. Yannakakis, Member, IEEE

Abstract— Controlling a virtual camera in 3D computer

games is a complex task. The camera is required to react to
dynamically changing environments and produce high quality
visual results and smooth animations. This paper proposes an
approach that combines local and global search to solve the
virtual camera control problem. The automatic camera control
problem is described and it is decomposed into sub-problems;
then a hierarchical architecture that solves each sub-problem
using the most appropriate optimisation technique is proposed.
The approach is compared to pure local search solutions to
showcase the advantages of the proposed architecture in terms
of visual performance and robustness.

I. INTRODUCTION

Camera control has a deep impact on player experience

and enjoyability in games [24]. The camera represents the

point-of-view of the player through which she perceives the

game world and gets feedback on her actions.

Camera settings for games are usually directly controlled

by the player or statically predefined by designers. Direct

control of the camera by the player increases the complex-

ity of the gameplay interaction and reduces the designer’s

control on game storytelling (e.g. the player might point the

camera towards an area which reveals unwanted informa-

tion). On the other hand, a designer-driven camera control

releases the player from the burden of controlling the point

of view, but often generates undesired camera behaviours

(e.g. the player is hidden behind an object). Moreover, if the

content of the game is procedurally generated, the designer

might not have any information to define a priori the camera

positions and movements.

Automatic camera control aims to define an abstraction

layer that permits the designers to instruct the camera with

high-level and environment-independent rules. The camera

controller should dynamically and efficiently translate these

rules into camera movements while the player plays the

game.

Several techniques for automatic camera control have been

proposed in the past — the reader is referred to [12] for a

comprehensive review. The most common approaches model

the camera control problem as a constraint satisfaction or

optimisation problem. These approaches allow the designer

to define a set of requirements on the frames that the camera

should produce and on the camera motion. Depending on

the approach, the controller positions and animates one or

more virtual cameras that attempt to satisfy the predefined

requirements.

Authors are with the Center for Computer Games Research, IT University
of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark.
Emails: {pabu, yannakakis}@itu.dk

Finding the best camera positions and movements that

satisfy the designer’s requirements in a dynamic three di-

mensional environment is a complex task. Evaluation of

frame properties, such as object visibility, is computationally

expensive and the evaluation functions often generate terrains

that are very rough for a search algorithm to explore [10].

Moreover, the camera is required to react in real-time at

dynamic change of the environment or player action which

forces the computation time to be constrained within small

time intervals (e.g. 16.7 ms for 60 fps).

Pure global optimisation approaches [23], [11], [8], [17]

are capable of producing well composed shots with respect

to designer requirements. However, their high computational

cost makes them inappropriate for real-time interactive ap-

plications such as games.

Local search approaches [4], [6], [9], on the other hand,

offer real-time performance and allow the designer to control

also camera motion parameters such as speed and accelera-

tion but they tend to stick to local optimum solutions.

This paper proposes an approach to the automatic camera

control problem that employs local search, global search

and path planning to generate smooth camera animations

and well composed shots. The camera control problem is

decomposed into smaller tasks and different techniques are

used to perform different tasks overcoming the limitations of

the pure approaches.

The approach proposed extends and draws upon one of

the author’s earlier work on local search based camera

control [9] and on visibility optimisation [10]. The new

camera controller is built upon a layer of three components:

the local search algorithm proposed in [9] is used to find

the best camera configuration; a stochastic population-based

global search algorithm is employed to avoid premature

convergences to local minima and a real-time efficient path

planning algorithm is designed to generate smooth camera

animations and to control camera movements.

The CamOn camera control system, that embeds all three

modules, is evaluated through three case studies varying in

complexity. Results show that the approach proposed demon-

strates robustness and high visual performance across all the

three case studies. It is also apparent that the computational

cost of this combined approach does not differ significantly

from pure local search, but the visual performance, both in

terms of composition and animation, is significantly higher.

This paper is innovative in that it introduces an efficient

and reliable hybrid solution to the automatic camera control

problem coupling local with global search. The proposed ap-

proach successfully combines different optimisation methods

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50525848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


thereby fully exploiting their combined advantages which, in

turn, help towards avoiding algorithm-dependent limitations.

II. RELATED WORK

Automatically controlling the camera in virtual 3D dy-

namic environments is an open research problem. Earliest

approaches [25], [5], [15] focused on the definition of virtual

camera properties and investigated the mapping between

input devices and 3D camera movement. Direct control of

the several degrees of freedom of the camera has shown

to be problematic for the user [14] so researchers started

to investigate how to automatically place and configure

the camera. Christie and Olivier [12] classified different

approaches to automatic camera control into three main

categories according to the modelling algorithm: algebraic

systems, reactive systems and generalised approaches.

The first example of an algebraic camera control system,

was developed by Blinn in 1988; it was an automatic camera

control system for planet visualisation in a space simulation

at NASA [5]. Blinn’s work inspired many other researchers

trying to produce more flexible camera control systems and

attempts to integrate aspects like camera motion and frame

composition [1].

Gleicher and Witkin proposed a reactive technique in-

spired by visual-servoing called Through-the-lens camera

control [15], this technique permits the user to manipulate

the camera by constraining some projected image features.

Through-the-lens based systems are computationally efficient

so they are ideal for tasks such as object manipulation; their

aim, however, is to maintain specific image features (i.e.

keep an object in the centre of the screen) and require a

preliminary camera initialisation.

A. Generalised Approaches

Generalised approaches model the camera control problem

as a constraint satisfaction or optimisation problem. These

approaches require the designer to define a set of required

frame properties and camera motion properties. The defined

properties are then modelled either as an objective function

to be maximised by the solver or as a set of constraints that

the camera configuration must satisfy. Bares et al. [2] first

introduced a detailed definition of these properties and how

to evaluate them.

Jardillier and Langunou [19] developed a first hard-

constraint based system; their approach progressively prunes

the search space for each constraint until the solution space is

found. Although computationally efficient, this system is not

able to find any solution in case of conflicting constraints (i.e.

no solution satisfies all the constraints). Bares and Lester [3]

addressed this issue by identifying conflicting constraints

and produce multiple camera configurations corresponding

to the minimum number of non-conflicting subsets. Bourne

and Sattar [6] extended their solution by adding a weight

property to each constraint to define a relaxation priority.

Other researchers [23], [11], [8] combined constraint satis-

faction with global optimisation. According to that approach,

hard constraints are used to select a feasible solution vol-

ume (therefore reduce the size of the search space) and

global optimisation is then applied to find the best camera

configuration within this space. Pure global optimisation

based systems, like Halper and Olivier’s CAMPLAN [17],

demonstrate more reliable performance and guarantee to find

the best camera configuration for the given requirements but

their computational cost is high.

Due to the complexity of the fitness function evaluation

global search based approaches have proven to be unsuitable

for real-time applications since their required computational

time is too high to keep the camera updated at a reasonable

rate (from 20 to 60 times per second). Moreover, since

the camera needs to maintain frame coherence [18], the

best camera configuration might not always correspond to

the global optimum of the fitness function (i.e. the camera

should not jump every time the global optimum changes).

Using local search to optimise the function permits to avoid

this kind of behaviour and to control the camera motion.

Beckhaus et al. [4] first introduced local search algorithms

to camera control; their system employs Artificial Potential

Fields to generate collision-free camera paths through a

virtual environment. Bourne and Sattar [7] proposed a system

that employs sliding octrees to guide the camera to the

optimal camera configuration. Burelli and Jhala [9] extended

these two approaches to include frame composition and

support multiple-object tracking.

Local search approaches offer reasonable real-time per-

formance and permits the control of dynamic camera pa-

rameters such as speed and acceleration but often converge

prematurely to local optima. Premature convergence becomes

critical when the camera control system is required to opti-

mise visibility of objects of interest since the visibility fitness

landscape includes many local optima areas with almost no

gradient information available to guide local search away

from local visibility minima [10].

B. Occlusion

Successfully avoiding object occlusion constitutes a vital

component of an effective camera controller [12]. Object

visibility plays a key role in frame composition: an ob-

ject satisfying all frame conditions (e.g. position in frame

and projection size) does not provide any of the required

visual information if it is completely invisible due to an

occlusion. The occlusion problem consists of two dependent

tasks: occlusion evaluation/detection and occlusion minimi-

sation/avoidance. Occlusion happens when the object of

interest is hidden fully or partially by one or more other

objects.

A common technique to detect occlusion consists of

casting a series of rays between the object of interest and

the camera [8], [7]. Marchand and Courty [22] generate

a bounding volume containing both the camera and the

object of interest and check whether other objects intersect

this volume. A third approach [18] exploits the graphic

hardware by rendering the scene at a low resolution with a

colour associated with each object and checking the presence



Fig. 1. The CamOn architecture

of the colour associated to the object of interest. These

techniques have been used in local search approaches for

occlusion avoidance (i.e. maintaining an object visible in

the frame) by reacting to incoming occluders [7], and in

global search approaches for occlusion minimisation through

particle swarm optimisation [8].

Pickering [23] proposed a shadow-volume occlusion

avoidance algorithm where the object of interest is modelled

as a light emitter and all the non-illuminated areas of the

scene generated are considered occluded areas.

Occlusion minimisation approaches suffer from the same

limitations global search approaches do. Moreover, occlusion

avoidance is ineffective when the subject is fully occluded

and no local improvement to visibility is available. Bourne

and Sattar [7] devised an escape mechanism from occluded

camera positions which forces the camera to jump to the first

non-occluded position between its current position and the

position of the object of interest. Their approach, however,

generates undesired camera jumps within the game environ-

ment and is unable to handle more than one object of interest.

We propose an approach to camera control that combines

global search, local search and path planning that overcomes

the limitations of both local and global search with respect

to camera control.

III. CAMERA CONTROL SYSTEM

CamOn is an autonomous camera system capable of gen-

erating smooth camera animations and solving camera com-

position tasks. We extend our previous implementation [9]

by embedding it into a high level architecture (Fig. 1) that

combines local search through an Artificial Potential Fields

(APF), global search through a custom-designed Evolution-

ary Algorithm (EA) and path planning implemented using

Probabilistic Roadmaps (PR).

CamOn animates two cameras simultaneously: the real

camera and the ideal camera (Fig. 2). The ideal camera

is the result of the optimisation process and the real camera

is the one that is used for the rendering and follows the ideal

camera at a controlled speed which depends on the desired

motion camera motion properties.

The system iteratively animates the two cameras and at

each iteration it performs the following steps:

Fig. 2. Ideal and real camera

1) CamOn takes the current camera configuration, the

frame description and the current virtual environment

state as input.

2) It calculates and sets the ideal camera orientation.

3) It calculates the new ideal camera position through

local optimisation.

4) If the camera position converged to a local optimum

or the current number of visible objects is less than

a user defined threshold, a new position is calculated

through global optimisation.

5) An available path connecting the current real camera

and ideal camera positions is generated.

6) If a path is found in step (5), real camera position and

rotation are animated towards the ideal camera ones.

If such a path is not available the real camera is placed

and rotated like the ideal one.

7) CamOn returns the real camera position and rotation

as output.

The ideal camera orientation is procedurally calculated

and depends on the desired visible subjects and their desired

position on the screen. The real camera rotates to match the

ideal camera orientation at the desired rotation speed.

Regarding the position of the camera, the ideal camera

is animated through APF to optimise the given frame re-

quirements; if a local optimum is detected by the camera

controller, a position that maximises the targets visibility is

derived through a custom EA. The result of the global search

will also be utilised to identify the targets which cannot be

included in the frame (i.e. all the targets which are not visible

from the position calculated by the global search module).

These targets will not be considered any more as targets until

new global search is required and their properties will not

be take into account by the local search module.

CamOn constantly computes the shortest path between

the two cameras’ positions, and animates the real camera

through this path. If no path is available or the current

number of visible objects is less than a user defined threshold,

the real camera is forced to jump to the ideal position.

A. Camera Properties and Fitness Function

CamOn allows the designer to control the camera through

a set of properties; these properties can be separated in two

groups: camera motion properties and frame composition

properties.

Motion properties control the camera motion dynamics.

CamOn currently supports the following properties:



• Camera Movement Speed: Defines the speed in space

units per second at which the real camera moves to

follow the ideal camera position.

• Camera Rotation Speed: Defines the speed in degrees

per second at which the real camera rotates to match

the ideal camera rotation.

• Frame Coherence: Defines the threshold value (mini-

mum percentage of visible targets) for triggering global

search — i.e. if the current visible surface of all the

targets is below the fraction defined by frame coherence,

CamOn will look for a new position through global

search.

• Obstacle Avoidance: A predefined boolean value that

controls whether the camera should or should not avoid

the objects in the scene during its motion.

Frame composition properties describe the disposition of

the visual elements in the image [1]; following the model

proposed by Bares at al. [2] we have defined a set of

properties each of which may be applied to an object of

interest for the camera.

CamOn supports the following four frame composition

properties.

• Object Visibility: Defines whether an object (or a part

of it) should be visible in the frame. Object Visibility

is a composed property which affects both the camera

position to avoid occlusion and camera orientation to

include the object in the frame.

• Object Projection Size: Defines the size of object in

the frame; size is defined as the quotient between frame

height or width and the relative longest side of the

object’s projected bounding box.

• Object View Angle: Defines the angle from which

the camera should view the object. The view angle is

defined using spherical coordinates.

• Object Frame Position: Defines the cell position

(within a 3x3 grid) that the projected image of the object

should have in the frame.

For an in-depth description of the frame composition proper-

ties and the way they are evaluated the reader is referred to

our previous study on Artificial Potential Fields based camera

control [9].

Camera motion properties are used by the camera con-

troller to animate the real camera towards the ideal camera

position. This position is calculated by optimising a fitness

function which is proportional to the satisfaction level of the

required frame composition properties. Given that N is the

number of composition properties used to describe the frame

and ci is the satisfaction value of the ith property, the fitness

f is calculated as:

f =

N∑

i=0

ciwi (1)

where wi is the predefined importance weight of the ith prop-

erty. While the APF based local search attempts to maximise

this fitness function, when the camera controller requires

a global search for a new camera position another fitness

function is optimised. The fitness function used for global

search considers only Object Visibility properties of eq. 1,

importance weight values are zero for all other properties.

B. Camera Orientation

Two of the previously mentioned composition properties

contribute to the ideal camera orientation: Object Visibility

and Object Frame Position. Each of these properties defines

an ideal camera look-at point (the position which the camera

should look at) the camera orients towards the centre of mass

of these points. Given that V equals to the number of Object

Visibility and Object Frame Position properties and ~li equals

to the ideal look-at point of the ith property, the resulting

look-at position ~L is defined in eq. 2.

~L =

∑V

i=0
~limi∑

V

i=0
mi

(2)

The mass of each point mi is defined as mi = wi×ri where

ri is the radius of the object bounding sphere.

C. Local Optimisation

The local optimisation module is based on APF [9]: frame

composition properties are used to generate the potential field

and the camera position is animated towards the optimal posi-

tion. Artificial Potential Fields [20] is a local search method

commonly employed in the area of robotics to control the

navigation of robots in dynamic environments. Robots are

modelled as particles moving in a field of potentials attracted

by low potential areas and repulsed by high potential areas;

the goal position thus generates an attractive force (a low

potential zone) and obstacles generate repulsive forces (high

potential zones). At each iteration the particle moves along

the force resulting from the sum of all the repulsive and

attractive forces influencing current particle position; the

particle continues to move until it reaches a stable state.

Each frame constraint produces one force attracting or

repulsing camera position.

An example of the potential field generated by a combi-

nation of two Object Visibility and two Object Projection

Size properties can be seen in Fig. 3. In this example two

objects of interest (spheres) have to be fully visible while

their projected image should cover half of the screen and

the shot needs to be taken from the front. The potential

field shown is a sample of the 3D field measured along the

horizontal plane passing through the spheres centre, the low

(light) areas are attractive positions while the high (dark)

areas are repulsive.

Converting frame composition properties to APF requires

the identification of the position goals corresponding to

each property. Ideal camera positions for each property are

modelled as low potential zones; other parts of the search

space have a potential proportional (the exact relation varies

between properties) to the distance from the ideal position

and to the property satisfaction of the corresponding camera

position [9].



(a) Spheres (b) Potential Field

Fig. 3. Example potential field produced for a front shot of two spheres

The net force value at each point equals to the weighted

sum of all the forces produced by the different composition

properties. Each weight is the predefined importance of the

corresponding property, as previously seen in eq. 1.

D. Global Optimisation

Visibility fitness generates rough search spaces mostly

covered by fitness plateaus [10]; gradient based search is

bound to fail in optimizing such a fitness function, making

the camera unable to escape these plateaus. When the camera

is positioned in a visibility plateau, one or more subjects

are potentially non visible preventing any desired visual

information about that subject to be communicated to the

player. In order to escape such local optima the camera

control system employs global optimisation to find a better

solution when a complete occlusion is detected.

Our previous study on visibility optimisation using global

optimisation [10] analysed the performance of different al-

gorithms over different case studies and a custom designed

EA demonstrated the highest performances on all the tests

performed. For this paper, we also considered the use of the

FI-2POP EA algorithm [21] as an alternative global search

method but it demonstrated no performance improvement

when compared to the performance of the custom-designed

EA introduced in [10]. Thus, we decided to adopt the

aforementioned EA as our global optimiser for CamOn. The

algorithm is presented briefly below.

According to this modified version of a generational

EA [16], each chromosome represents a point in the 3D

solution space consisting of three real values. The population,

containing 120 individuals, is randomly placed into the

search space via a Gaussian distribution and evaluated via

(1) at each generation. The search space is defined as a box

surrounding the target objects. The size s of this cube is

calculated as:

s =
T

max
i=0

{ ~Pi − ~C} (3)

where, ~Pi is the three dimensional position of the ith object

that should appear in the frame and, ~C is the centre of

positions of all T objects considered which also defines the

centre of the search cube; i.e. ~C =
∑

T

i=0
~Pi/T .

The algorithm terminates if a camera position found gener-

ates an optimal fitness value (f = 1.0) or when a predefined

timeout is reached (the timeout threshold used in this paper

equals 200 ms).

(a) Graph generation (b) Shortest path

Fig. 4. Probabilistic Roadmaps

The algorithm employs a selection scheme in which the

30 best chromosomes of each generation are selected for

reproduction. Mating of parents is based on their ranking; the

first individual mates with the second, the third mates with

the forth and so on. From each couple 3 offspring are gener-

ated by applying a custom-designed recombination operator

(with 100% probability). The recombination operator applied

is a fitness-based weighted sum of the parents’ position. The

generated offspring ~O is calculated via eq. 4.

~O =

~Pafa + ~Pbfb

fa + fb

(4)

where ~Pa and ~Pb are the two selected parents, and fa and

fb are their corresponding fitness values.

Mutation is applied to all genes of the chromosome with a

probability of 50%. The custom mutation operator applies a

vector translation to the chromosome by adding a vector with

normally distributed random length to it. The average value

of the distribution is 0 and the standard deviation equals

to the 10% of the length of the vector represented in the

chromosome to which the mutation is applied. Generated

offspring replace the 90 least-fit chromosomes of the current

population.

E. Path Planning

At each iteration, CamOn looks for a valid path that

connects the current real camera position with the current

ideal camera position. If such path is available the real

camera is translated along this path. If the path is not

available (e.g. the real camera is in a closed room) the real

camera is translated directly to the ideal camera position

generating a jump. The path between the two cameras is

calculated using Probabilistic Roadmaps (PR) [13].

According to the PR approach, a set of random (normally

distributed) points is generated in the space between the

two camera positions; the mean of the mixed-Gaussian

distribution is located halfway between the two positions and

its standard deviation equals to half of their distance.

All the generated points as well as the real camera position

and the ideal camera position define the nodes of a graph

which is fully interconnected. All the point-connectors which

cross a virtual object are removed and the shortest path



(a) Forest (b) Building (c) City

(d) Forest Animation Path (e) Building Animation Path (f) City Animation Path

Fig. 5. Case Studies

between the node containing the real camera position and

the one containing the ideal camera position is calculated

(see Fig. 4) and used to move the real camera.

IV. PERFORMANCE EVALUATION

Our previous study [9] showed that APF based camera

control is capable of generating smooth camera animations

and well composed shots with real-time performance. The

evaluation performed in that study directly applies to the

proposed solution since the integration of global optimisation

and path planning does not influence the computational

efficiency. However, the visual performance, in terms of

composition and camera animation, could potentially dif-

fer significantly. In order to assess the degree of those

performance differences we designed an experiment that

measures the camera visual quality in a set of game-like

virtual environments; both the experiment designed and the

case studies examined are presented in the remainder of this

section.

A. Experiment

The camera control system is instructed to follow and keep

a target visible while it moves around a virtual environment.

The camera control profile includes the following visual

properties:

• Object Visibility for the full object’s bounding box with

corresponding importance weight value of 1.0.

• Object Projection Size with expected projection size

equal to 1.0 and corresponding importance weight value

of 1.0.

• Object View Angle with expected horizontal and verti-

cal angle equal to 0 degrees and corresponding impor-

tance weight value of 0.1.

The camera movement and rotation speed are set to 1.0 and

frame coherence is set to 100%. The target is a cylindrical

object that moves at variable speed along a predefined path,

illustrated in Fig. 5(d), 5(e), 5(f). The object’s movement

speed varies between 0.1 and 2 meters per second and each

experiment runs for 60 seconds.

Three different configurations of the camera control sys-

tem are evaluated to compare their performance. The con-

figurations include a pure APF based implementation of the

camera control system, a combined APF-EA implementation

and an implementation embedding all three main components

of the camera controller (i.e. APF, EA and PR).

B. Case Studies

Each configuration is evaluated on three virtual envi-

ronments, namely, Forest, Building, and City, illustrated

in Fig. 5(a), Fig. 5(b) and Fig. 5(c). These three virtual

environments represent a wide range of level geometry

met in computer games; furthermore they provide a palette

of testbeds with different search space complexity. The

geometric structure of these environments shows evident

differences which influence the complexity of the search

space. An effective complexity measure for this problem is

based on the average fitness value of the sampled search

space [10]. According to this complexity measure (c = 1−f̄ )

the environments have the following c values: Forest 0.35,

Building 0.76, City 0.85.

The first and least complex environment (Fig. 5(a)) rep-

resents a forest scene in which the target is surrounded

by trees which act as occluders. Due to the narrow shape

of the trees the portions of space in which the camera is

fully occluded are very few and most of the search space

contains valid camera positions. The second environment



(Fig. 5(b)) is a house-like model with walls separating the

space into rooms and doors connecting them. The walls

act as large occluders drastically reducing the portions of

space containing potential optimal positions. The last and

most complex virtual environment is a city model with

large buildings and narrow streets. The target object selected

for the experiment represents a virtual character of realistic

human-like dimensions. It is modelled using a cylindrical

mesh 2 meters tall and 50 cm wide, while all levels are

designed in an area of 17m × 17m (the ceiling in the

Building level is 4 meters tall).

V. RESULTS

This section presents the results of the performance tests

for the three camera control system configurations men-

tioned earlier in section IV. The performance is analysed

with respect to the complexity of the task presented to

the CamOn system configuration. All experiments run on

an Intel MacBook Pro, with a 2.0 GHz Core 2 CPU (the

implemented algorithms use only one core) and 4 GB of

RAM at 1067 MHz. The machine is capable of computing

a maximum a 4000 visibility fitness evaluations per second,

but the average value (due to the system scheduler) is around

3750 evaluations per second. Moreover, the experiments run

at a fixed frame-rate of 30 frames per second, and the APF

solver runs once per frame.

A. Performance Measures

Each test has been carried out for 60 seconds for each

case-study and each configuration examined. The average

visibility over time is calculated at the end of each test

and used to assess the performance of each algorithm. Other

measures of performance considered include the number of

times the real camera jumps to a new position and the

average fitness over time. The average visibility and fitness

provide a measure of the ability of the system to generate

high quality frames, and the number of jumps gives an

indication of the system’s ability to generate smooth camera

animations.

B. Analysis

Tables I, II and III contain, respectively, the performance

measures of average visibility, average fitness and number

of jumps for all three configurations tested. Table rows

present results obtained on the different testbeds ordered by

complexity.

TABLE I

AVERAGE VISIBILITY

APF APF, EA APF, EA, PR

Forest 0.97 0.97 0.97

Building 0.90 0.97 0.96

City 0.75 0.97 0.95

A clear observation is that all configurations perform better

at the easier tasks (e.g. Forest environment) than at the more

complex tasks (e.g. City).

In terms of average visibility the three configurations

perform equally in the Forest environment. In the Building

environment the APF-based controller has an evident drop

of the visibility value which deteriorates further in the City

environment (see table I). The average visibility decreases

since, in the Building and City environments, the occluders

are much larger than in the Forest environment, which results

to increased times spans for the APF to locate the target again

after a full occlusion.

TABLE II

AVERAGE FITNESS

APF APF, EA APF, EA, PR

Forest 0.82 0.79 0.79

Building 0.76 0.79 0.78

City 0.67 0.78 0.78

The other two configurations show almost equal average

visibility on all the test environments; however the config-

uration which does not include the path planning module

has slightly higher average visibility since the camera does

not spend time to move to the new unoccluded position

found using global search, but it jumps directly there. The

path covered by the camera to reach the global visibility

optimum does not consider any fitness thus the time spent

for animation slightly decreases both the average fitness and

the average visibility.

It should be remembered that the evolutionary algorithm

does not consider the full fitness function given by eq. 1 but

only its Object Visibility properties. This explains why the av-

erage fitness is slightly higher for the pure local optimisation

approach than the average fitness of the other configurations

in the Forest environment. The average fitness decreases

(as the average visibility does) when the complexity of the

task increases, making CamOn configurations that include

the EA component more appropriate with regards to this

performance measure (see Table II).

TABLE III

TOTAL NUMBER OF JUMPS

APF APF, EA APF, EA, PR

Forest 0 9 1

Building 0 11 3

City 0 14 2

The gradient search of APF generates smooth camera

animations in its attempt to find the ideal camera position;

this results to a non jumping camera behaviour when attempt-

ing to follow a moving target. On the other hand, running

global search every time a local optimum is found, forces



the camera to jump to the global position fragmenting the

camera movement (see Table III). The number of jumps

generated by the camera controller which integrates directly

local and global optimisation is constantly higher than 0 and

increases with respect to task complexity. Introducing a path

planner to animate the camera to the position found by global

search sensibly decreases the number of jumps significantly

and makes the camera movement smoother. The controller

still makes the camera jump a number of times; this happens

when the path finding algorithm is unable to find a path

between the real camera and the ideal camera.

VI. CONCLUSIONS

This paper proposes a hybrid approach to automatic cam-

era control that combines local optimisation, global optimi-

sation and path planning. We describe the limitations of the

single approaches and we show how each approach can be

used to tackle a specific sub-problem and how they can be

combined under a camera control system we name CamOn.

The proposed solution employs Artificial Potential Fields

to generate smooth camera animation towards the optimal

camera position. If the local search converges prematurely to

a local optimum (i.e. a position where one or more subjects

are completely occluded) the system uses a custom designed

Evolutionary Algorithm to find the position which provides

the best visibility over the objects of interest. Probabilistic

Roadmaps are used to compute the path between the current

camera position and the new one found either using local or

global search.

We evaluated the solution’s performance through an ex-

periment that measures the camera visual quality in a set of

game-like virtual environments. The results of the evaluation

show that the system demonstrates robustness and is able to

generate high quality shots and smooth camera movements

in all the three case studies.

In the least complex case study the proposed hybrid

approach shows similar performance to pure local search.

However, the other two case studies show a progressively

higher difference between the performances, with the hybrid

approach outperforming pure local search.

The current approach allows control of camera motion

within limits. In particular, apart from camera speed and

frame coherence, no other parameters are available to in-

fluence the camera trajectories (e.g. motion smoothness, an-

imation length). Moreover, a better local minimum detection

heuristic could be implemented to reduce the number of

unnecessary global searches.

As a future research step, the impact of automatic camera

control to the player’s experience should be investigated; a

series of experiments involving human players should be

designed and performed to measure how different camera

control paradigms affect the various aspects of the player’s

interaction.

Furthermore, a study on what the player is looking at while

he is playing and how this information relates to the different

player types and games, might provide important insight for

the design of a set of standard camera controller settings.
This information could also be used to adapt dynamically

these standard settings to each player according to his playing

style.

REFERENCES

[1] Daniel Arijon. Grammar of the Film Language. Silman-James Press
LA, 1991.

[2] William Bares, Scott McDermott, Christina Boudreaux, and Somying
Thainimit. Virtual 3d camera composition from frame constraints. In
MULTIMEDIA ’00, pages 177–186. ACM, 2000.

[3] William H. Bares and James C. Lester. Intelligent multi-shot visual-
ization interfaces for dynamic 3d worlds. In IUI ’99, pages 119–126.
ACM, 1999.

[4] Steffi Beckhaus, Felix Ritter, and Thomas Strothotte. Cubicalpath -
dynamic potential fields for guided exploration in virtual environments.
In PG ’00. IEEE Computer Society, 2000.

[5] James Blinn. Where am i? what am i looking at? IEEE Comput.

Graph. Appl., 8(4):76–81, 1988.
[6] Owen Bourne and Abdul Sattar. Applying constraint weighting to

autonomous camera control. In AIIDE ’05, pages 3–8, 2005.
[7] Owen Bourne, Abdul Sattar, and Scott Goodwin. A constraint-based

autonomous 3d camera system. Constraints, 13(1-2):180–205, 2008.
[8] Paolo Burelli, Luca Di Gaspero, Andrea Ermetici, and Roberto Ranon.

Virtual camera composition with particle swarm optimization. In Smart

Graphics, pages 130–141. Springer-Verlag, 2008.
[9] Paolo Burelli and Arnav Jhala. Dynamic artificial potential fields for

autonomous camera control. In Artificial Intelligence and Interactive

Digital Entertainment, 2009.
[10] Paolo Burelli and Georgios N. Yannakakis. Global search for occlusion

minimization in virtual camera control. In Proceedings of the Congress

on Evolutionary Computation, WCCI 2010.
[11] Marc Christie and Jean-Marie Normand. A semantic space partitioning

approach to virtual camera composition. Computer Graphics Forum,
24(3):247–256, 2005.

[12] Marc Christie, Patrick Olivier, and Jean-Marie Normand. Camera
Control in Computer Graphics. In Computer Graphics Forum, 2008.

[13] Jean claude Latombe, Petr Svestka, Mark Overmars, Lydia Kavraki,
and Lydia Kavraki. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. In In IEEE International Conference

on Robotics and Automation, page 171, 1994.
[14] Steven M. Drucker and David Zeltzer. Intelligent camera control in a

virtual environment. In Graphics Interface 94, pages 190–199, 1994.
[15] Michael Gleicher and Andrew Witkin. Through-the-lens camera

control. In Computer Graphics, pages 331–340, 1992.
[16] D. E. Goldberg. Genetic Algorithms in Search, Optimization and

Machine Learning. Addison-Wesley, Reading, MA, 1989.
[17] Nick Halper and Patrick Olivier. Camplan: A camera planning agent.

In Smart Graphics 2000 AAAI Spring Symposium, pages 92–100, 2000.
[18] Nicolas Halper, Ralf Helbing, and Thomas Strothotte. A camera

engine for computer games: Managing the trade-off between constraint
satisfaction and frame coherence, 2001.

[19] Frank Jardillier and Eric Languènou. Screen-space constraints for
camera movements: the virtual cameraman. Computer Graphics

Forum, 17(3):175–186, 1998.
[20] O Khatib. Real-time obstacle avoidance for manipulators and mobile

robots. Int. J. Rob. Res., 5(1):90–98, 1986.
[21] Steven Orla Kimbrough, Gary J. Koehler, Ming Lu, and David Harlan

Wood. On a feasible-infeasible two-population (fi-2pop) genetic
algorithm for constrained optimization: Distance tracing and no free
lunch. European Journal of Operational Research, 190(2):310 – 327,
2008.

[22] Erik Marchand and Nicolas Courty. Controlling a camera in a virtual
environment. The Visual Computer Journal, 18:1–19, 2002.

[23] Jonathan Pickering. Intelligent Camera Planning for Computer Graph-

ics. PhD thesis, University of York, 2002.
[24] D. Pinelle and N. Wong. Heuristic evaluation for games: usability

principles for video game design. In CHI’08: Proceedings of the

twenty-sixth annual SIGCHI conference on Human factors in com-

puting systems, pages 1453–1462, New York, NY, USA, 2008. ACM.
[25] Colin Ware and Steven Osborne. Exploration and virtual camera

control in virtual three dimensional environments. SIGGRAPH,
24(2):175–183, 1990.


