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Abstract 

In this paper we propose the inversion of nonlinear 
distortions in order to improve the recognition rates of a 
speaker recognizer system. We study the effect of 
saturations on the test signals, trying to take into account 
real situations where the training material has been recorded 
in a controlled situation but the testing signals present some 
mismatch with the input signal level (saturations). The 
experimental results shows that a combination of several 
strategies can improve the recognition rates with saturated 
test sentences from 80% to 89.39%, while the results with 
clean speech (without saturation) is 87.76% for one 
microphone. 

1. Introduction 

This paper proposes a non-linear channel distortion 
estimation and compensation in order to improve the 
recognition rates of a speaker recognizer. Mainly it is 
studied the effect of a saturation on the test signals and the 
compensation of this non-linear perturbation. This paper is 
organized as follows. Section 2 describes the Wiener model, 
its parameterization, and obtains the cost function based on 
statistical independence. Section 3 summarizes the speaker 
recognition application. Section 4 deals the experiments 
using the blind inversion in conjunction with the speaker 
recognition application. 

2. Non-parametric approach to blind 
deconvolution of nonlinear channels 

When linear models fail, nonlinear models appear to be 
powerful tools for modeling practical situations. Many 
researches have been done in the identification and/or the 
inversion of nonlinear systems. These works assume that 
both the input and the output of the distortion are available 
[1]; they are based on higher-order input/output cross-
correlation [2], bispectrum estimation [3, 4] or on the 
application of the Bussgang and Prices theorems [5, 6] for 
nonlinear systems with Gaussian inputs. However, in a real 
world situations, one often does not have access to the 
distortion input. In this case, blind identification of the 
nonlinearity becomes the only way to solve the problem. 
This paper is concerned by a particular class of nonlinear 
systems, composed by a linear filter followed by a 

memoryless nonlinear distortion (figure 1, top). This class of 
nonlinear systems, also known as a Wiener system, is a nice 
and mathematically attracting model, but also a realistic 
model used in various areas [7]. We use a fully blind 
inversion method inspired on recent advances in source 
separation of nonlinear mixtures. Although deconvolution 
can be viewed as a single input/single output (SISO) source 
separation problem in convolutive mixtures (which are 
consequently not cited in this paper), the current approach is 
actually very different. It is mainly based on equivalence 
between instantaneous postnonlinear mixtures and Wiener 
systems, provided a well-suited parameterization. 
 

 
h

 s(t)  e(t)
  f (.) 

w  y(t) x(t)  e(t)
g(.)

 
 
Figure 1: The unknown nonlinear convolution system (top) 
and the proposed inversion structure (bottom). 

2.1. Model and assumptions 

We suppose that the input of the system S={s(t)} is an 
unknown non-Gaussian independent and identically 
distributed (i.i.d.) process, and that subsystems h, f are a 
linear filter and a memoryless nonlinear function, 
respectively, both unknown and invertible. We would like to 
estimate s(t) by only observing the system output. This 
implies the blind estimation of the inverse structure (figure 
1, bottom), composed of similar subsystems: a memoryless 
nonlinear function g followed by a linear filter w. Such a 
system is known as a Hammerstein system. Let s and e be 
the vectors of infinite dimension, whose t-th entries are s(t) 
or e(t), respectively. The unknown input-output transfer can 
be written as: 
 

( )f= He s  (1) 
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where:  (2) 
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is an infinite dimension Toeplitz matrix which represents the 
action of the filter h to the signal s(t). The matrix H is non-
singular provided that the filter h is invertible, i.e. satisfies  

h-1∗h(t) = h∗h-1(t) = δ(t), where δ(t) is the Dirac impulse. 
The infinite dimension of vectors and matrix is due to the 
lack of assumption on the filter order. If the filter h is a finite 
impulse response (FIR) filter of order Nh, the matrix 
dimension can be reduced to the size Nh. In practice, because 
infinite-dimension equations are not tractable, we have to 
choose a pertinent (finite) value for Nh. 
Equation (1) corresponds to a post-nonlinear (pnl) model [8]. 
This model has been recently studied in nonlinear source 
separation, but only for a finite dimensional case. In fact, 
with the above parameterization, the i.i.d. nature of s(t) 
implies the spatial independence of the components of the 
infinite vector s. Similarly, the output of the inversion 
structure can be written  with xy W= ( ) ( )( )tegtx = . 
Following [8, 9] the inverse system (g, w) can be estimated 
by minimizing the output mutual information, i.e. spatial 
independence of y which is equivalent to the i.i.d. nature of 
y(t). 

2.2.  Cost function 

The mutual information of a random vector of dimension n, 
defined by 

( ) ( ) ( )∑
=
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n
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can be extended to a vector of infinite dimension, using the 
notion of entropy rates of stationary stochastic processes 
[10] 
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where τ is arbitrary due to the stationarity assumption. We 
can notice that I(Z) is always positive and vanishes iff z(t) is 
i.i.d. Since S is stationary, and h and w are time-invariant 
filters, then Y is stationary too, and I(Y) is defined by 
( ) ( )( ) (YHyHYI −τ= )     (5) 

Using the Lemma 1 of [9], the last right term of equation (5) 
becomes 
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Moreover, using  and the stationarity of 
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Combining (6) and (7) in (5) leads finally to: 
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3. Speaker recognition 

One of the main sources of degradation in speaker 
recognition is the mismatch between training and testing 
conditions. For instance, in [11] we evaluated the relevance 
of different training and testing languages, and in [12] we 
also studied other mismatch, such as the use of different 
microphones. 
In this paper, we study a different source of degradation: 
different input level signals in training and testing. Mainly 
we consider the effect of a saturation. We try to emulate a 
real scenario where a person speaks too close to the 
microphone or to loud, producing a saturated signal. Taking 
into account that the perturbations are more damaging when 
they are present just during training or testing but not in both 
situations, we have used a clean database and artificially 
produced a saturation in the test signals. Although it would 
be desirable to use a “real” saturated database, we don’t 
have this kind of database, and the simulation give us more 
control about “how the algorithm is performing”. 
Anyway, we have used a real saturated speech sentence in 
order to estimate the nonlinear distortion using the algorithm 
described in section 2 and the results have been successful. 
Figure 2 shows a real saturated speech frame and the 
corresponding estimate of the NL perturbation. 
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Figure 2: Saturated frame and the estimated channel 
function. 

3.1. Database 

For our experiments we have used a subcorpora of the Gaudi 
database, that follows the design of [13]. It consists on 49 
speakers acquired with a simultaneous stereo recording with 
two different microphones (AKG C-420 and SONY 
ECM66B). The speech is in wav format at fs=16 kHz, 16 
bit/sample and the bandwidth is 8 kHz. 
We have applied the potsband routine that can be 
downloaded from: 
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
in order to obtain narrow-band signals. This function meets 
the specifications of G.151 for any sampling frequency. 
The speech signals are pre-emphasized by a first order filter 
whose transfer function is H(z)=1-0.95z-1. A 30 ms 
Hamming window is used, and the overlapping between 
adjacent frames is 2/3. One minute of read text is used for 
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training, and 5 sentences for testing (each sentence is about 
two seconds long). 

3.2. Speaker recognition algorithm 

We have choose a second-order based measure for the 
recognition of a speaker. 
In the training phase, we compute for each speaker empirical 
covariance matrices (CM) based on feature vectors extracted 
from overlapped short time segments of the speech signals, 

i.e., , where  denotes estimate of the mean 

and x

[ T
nnj xxEC ˆ= ] Ê

n represents the features vector for frame n.  As features 
representing short time spectra we use mel-frequency 
cepstral coefficients. 
In the speaker-recognition system, the trained covariance 
matrices (CM) for each speaker are compared to an estimate 
of the covariance matrix obtained from a test sequence from 
a speaker. An arithmetic-harmonic sphericity measure is 
used in order to compare the matrices [14]: 

( ) ( )lCCCCd testjjtest log2)tr()tr(log 11 −= −− , 

where denotes the trace operator, l is the dimension of 

the feature vector, C

)tr(⋅
test and Cj is the covariance estimate 

from the test speaker and speaker model j, respectively. 

4. Experiments and conclusions 

Using the database described in section 3, we have 
artificially generated a test signal database, using the 
following procedure: 
 All the test signals are normalized to achieve unitary 

maximum amplitude. 
 A saturated database has been artificially created using 

the following equation: 
( )kxtanhx =′ , where k is a positive constant. 

The training set remains the same, so no saturation is added. 
In order to show the improvement due to the compensation 
method, figure 3 shows one frame that has been artificially 
saturated with a dramatic value (k=10), the original, and the 
recovered frame applying the blind inversion of the 
distortion. 
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Figure 3: Example of original, saturated, and recovered 
frame using the proposed procedure. 
 
Using the original (clean) and artificially generated database 
(saturated) we have evaluated the identification rates. 

For the saturated test sentences scenario, we have estimated 
one different channel model for each test sentence, applying 
the method described in section 2. This is a way to manage 
real situations where the possible amount of saturation is not 
known in advance and must be estimated for each particular 
test sentence. 
In order to improve the results an opinion fusion is done, 
using the scheme shown in figure 4. Thus, we present the 
results in three different combination scenarios for speaker 
recognition: 
 just one opinion (1 or 2 or 3 or 4) 
 To use the fusion of two opinions (1&2 or 2&3). 
 The combination of the four available opinions.  

Table 1 shows the results for k=2 in all this possible 
scenarios using two different combinations rules (arithmetic 
and geometric mean) [15], with a previous distance 
normalization [16]. 
 

Combination Recognition rate 
1 (AKG+NL compensation) 83.67 % 
2 (AKG) 82.04 % 
3 (SONY+NL compensation) 80.82 % 
4 (SONY) 80 % 

Arithmetic 84.9 % 1&2 
Geometric 84.9 % 
Arithmetic 89.39% 1&3 
Geometric 87.35% 
Arithmetic 88.16% 2&4 
Geometric 86.53 % 
Arithmetic 88.16 % 1&2&3&4 
Geometric 87.76 % 

Table 1: Results for several classifiers, shown in figure 4. 
 
Main conclusions are: 
 The use of the NL compensation improves the obtained 

results with the same conditions than without this 
compensation block. 

 The combination between different classifiers improves 
the results. These results can be even more improved 
using a weighted sum instead a mean. Anyway, we 
have preferred a fixed combination rule than a trained 
rule. 

 We think that using a more suitable paramete-rization, 
the improvements would be higher. 
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Figure 4: General Scheme of the recognition system 
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