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Abstract 

Introduction. Genetic epidemiology is focused on the study of the genetic causes 

that determine health and diseases in populations. To achieve this goal a common 

strategy is to explore differences in genetic variability between diseased and non-

diseased individuals. Usual markers of genetic variability are single nucleotide 

polymorphisms (SNPs) which are changes in just one base in the genome. The 

usual statistical approach in genetic epidemiology study is a marginal analysis, 

where each SNP is analyzed separately for association with the phenotype. 

Motivation. It has been observed, that for common diseases the single-SNP 

analysis is not very powerful for detecting genetic causing variants. In this work, 

we consider Gene Set Analysis (GSA) as an alternative to standard marginal 

association approaches. GSA aims to assess the overall association of a set of 

genetic variants with a phenotype and has the potential to detect subtle effects of 

variants in a gene or a pathway that might be missed when assessed individually. 

Objective. We present a new optimized implementation of a pair of gene set 

analysis methodologies for analyze the individual evidence of SNPs in biological 

pathways. We perform a simulation study for exploring the power of the proposed 

methodologies in a set of scenarios with different number of causal SNPs under 

different effect sizes. In addition, we compare the results with the usual single-SNP 

analysis method. Moreover, we show the advantage of using the proposed gene set 

approaches in the context of an Alzheimer disease case-control study where we 

explore the Reelin signal pathway. 
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Chapter 1

Introduction and Goals

Genetic epidemiology is focused on the identification of genetic variants that

determine health and disease in populations, and also, in the study of how the genetic

variants interact with environmental factors. A common strategy is to explore

differences in genetic variability between diseased and non-diseased individuals

using single nucleotide polymorphisms (SNPs) as markers of the variability in a

genome region. The usual statistical approach in this kind of study is a marginal

analysis, where each SNP is analyzed separately for association with the phenotype.

We will refer to this as single-SNP analysis. When the number of SNPs to be

analyzed is very large, as in Genome Wide Association Studies (GWAS), the

multiple testing corrections that are required reduce dramatically the power of the

single-SNP strategy.

An alternative to single-SNP analysis is gene-set analysis (GSA) where the joint

effect of a set of M SNPs is measured. The set of SNPs that are jointly analyzed

may have a biological relationship, for instance, we may test for the joint effect

of SNPs within a gene or the joint effect of SNPs within a pathway. Thus, GSA

provides a combined association evidence of a set of SNPs (a gene-p-value or a
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Chapter 1. Introduction and Goals

pathway-p-value) which is meaningful and could be more powerful than single-SNP

analysis when the individual effects are small.

Our starting point is the Adaptive Rank Truncated Product method (ARTP)

proposed by Yu et. al, (2009)[22]. This GSA method consists on the combination

of the K smallest marginal p-values, where K is determined in an adaptive way.

One limitation of this approach, and also of other GSA methods, is that they

assume the same mode of inheritance for all the SNPs in the set (usually, the

additive model). But, the most important limitation is computational since the

final gene-set p-value relies on the nonparametric null distribution of the ARTP test

statistic which is estimated using permutational procedures. The main objective of

this work consists in improve these two important limitations.

Summarizing, the scientific archivements of this scientific proposal are the

following:

• We propose two alternative algorithms that improve the original ARTP

method [see Chapter 3]:

GSA-globalARTP: This method allows different modes of inheritance for

each SNPs in the set (max-statistic) using the same permutational proceduce

as in ARTP method, improving the first limitation.

GSA-globalEVT: This method reduces the computational requirements

fitting the ARTP statistic using the extreme value theory (EVT), also allowing

max-statistic test, improving both limitations mentioned.

• Moreover, we implement the proposed theorical algorithms into a R code

package (globalGSA1) [see Annex ].

1Available at: http://cran.r-project.org/web/packages/globalGSA/index.html
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• In addition, we perform a simulation study [see Chapter 4] to compare

the statistical power and the computational time among the proposed GSA

methods including also, the comparison with the results of single-SNP analysis

correcting for multiple testing using Benjamini-Hochberg method (Benjamini-

Hochberg, 1995 [3]).

• Finally, we apply these methodologies in the context of Alzheimer disease [see

Chapter 5] using the public GWAS data of Reiman et al., 2007 [14] study.
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Chapter 2

General concepts of genetic association

studies

The objective of Genetic Association Studies is to identify genetic variants that

explains the phenotype variability, and concretely, that modifies the risk of disease.

The most common genetic variation in the population is called single nucleotide

polymorphism (SNP) and the chromosomal location often called a locus. SNPs are

genetic variations in a DNA sequence that occurs when a single position in a genome

is altered. Most SNPs are biallelic polymorphisms, and it means that two possible

variants (alleles) are observed in the population at that specific locus. In the

majority of scenarios that we will consider, the marker locus has only two distinct

alleles, e.g., alleles A and a. Denoting by A the allele that is more frequent in the

population (wild-type or major allele) and by a the less frequent allele (minor or

variant allele), and taking into account that humans are diploid (each cell contains

two copies of the genome) each SNP locus can have three possible genotypes: AA

for major homozygous, Aa for heterozygous and aa for minor homozygous.
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Chapter 2. General concepts of genetic association studies

2.1 Statistical genetic principles

Genomic Association studies are typically case–control designs where we consider

some individuals that are genotyped to detect nonrandom occurences between

each genotype frequency related to the two different stages of the disease. In this

context, we distinguish between cases and controls individuals. Such, binary traits

can be coded by Y , where Y = 1 denotes cases and Y = 0 denotes controls, and the

penetrance function (see Equation 2.1) represents probabilities for each considered

genotype G,

P (Y = 1 | G) + P (Y = 0 | G) = 0. (2.1)

In a statistical context, SNPs are expressed like categorical variables that

can always be coded in the form of numerical or indicator variables. Different

codifications of the genotypes correspond to different modes of inheritance as is

summarized in Table 2.1. In the dominant model, a single copy of the variant allele

Table 2.1: SNP codification under different inheritance modes.

Dominant Recessive Additive Codominant
Genotype G G G G1 G2

AA 0 0 0 0 0
Aa 1 0 1 1 0
aa 1 1 2 0 1

is sufficient to modify (increase or decrease) the risk of disease,

Pr(Y = 1 | G = Aa) = Pr(Y = 1 | G = aa). (2.2)

In contrast, in the recessive model two copies of the variant allele are necessary to
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modify the risk,

Pr(Y = 1 | G = Aa) = Pr(Y = 1 | G = AA). (2.3)

In the additive model, each copy of the variant allele confers an additive increase

(or decrease) in risk (in the appropriate disease risk scale). In this case, disease risk

is linearly related with the number of minor alleles. And finally, the most general

model is the codominant where the three genotypes have different effects on disease

risk,

Pr(Y = 1 | G = AA) 6= Pr(Y = 1 | G = Aa) 6= Pr(Y = 1 | G = aa). (2.4)

2.2 Statistical approaches for disease risk prediction

The usual strategy for considering disease models in Genomic Association Analysis

is marginal variable selection, defined in our work as single-SNP analysis. It tests

genetic association of individual SNPs and identifies only the most significant subset

that captures the majority of the information of genotype-phenotype association.

As we have described, for the human genetic setting, the genotype at a given

SNP has three levels: homozygous wildtype, heterozygous, and homozygous rare.

Considering a binary outcome, the data can be represented by the 2×3 contingency

table, and in this setting, a commonly used measure of association is the odds ratio

(OR) defined as the ratio of the odds of disease given a specific genotype to the

odds of disease among individuals without the specified genotype. Hence, each

locus is evaluated individually for its marginal association with disease performing

a marginal chi-square test where the genotypes with a p-value below a specified

threshold are included in the prediction model.
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Chapter 2. General concepts of genetic association studies

Alternatively, a logistic regression model as in (see Equation 2.5) can be fitted

where G is the codification of the SNP as specified in Table 2.1, and Z represents

other non genetic covariates, where π = Pr(Y = 1 | G, Z)

logit(π) = β0 + β1G+ δZ (2.5)

In this model, exp(β1) is the odds-ratio of the group with G = 1 with respect to

the reference group.

However, it has been observed that the single-SNP analysis is not very powerful

for detecting genetic causing variants of common diseases; concretely most causal

SNPs effects are not detectable with the common single-SNP testing procedure

followed by correction for multiple comparisons, because the identified SNPs

represent only a small fraction of the genetic variants contributing to diseases under

study, and the majority of them represent statistical noise. Perhaps, we need to set

other focus of interest taking into account other forms of genomic modifications.

These drawbacks raise the possibility that genetic variants with a small individual

effects can have more jointly significant genetic impact.
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Chapter 3

Gene Set Analysis

We consider Gene-set analysis to try to solve common limitations of single-SNP

analysis. Gene Set Analysis (GSA) as an alternative to single-SNP analysis that

could improve the power of genetic association studies by exploring functionally

and biologically meaningful sets of SNPs, corresponding to genes or pathways.

This strategy aims to obtain a more accurate measurement of association of a set

of genetic variants with a phenotype, and also provides the potential to detect

combined effects of SNPs in a gene or a pathway that might be missed doing a

marginal single analysis. Moreover, it reduces the multiple testing burden that

appears when performing a large number of single-SNP tests and it incorporates

biological knowledge in the statistical analysis, improving the statistical power to

detect causal genes.

3.1 Methods

In this work we consider two different approaches in order to combine the statistical

information obtained from the single-SNP tests starting from the idea of the

Adaptative Rank Truncated Product method (Yu, et al. 2009 [22]).
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Chapter 3. Gene Set Analysis

3.1.1 Adaptive rank truncation product method

Adaptive Rank Truncated Product method (ARTP), is a GSA method for combining

the individual evidence of association over different SNPs within a gene or pathway

using the product of the K smallest marginal p-values

W
(b)
K =

Kj∏
i=1

p
(b)
(i) , 1 ≤ j. (3.1)

In the initial method RTP (Zaykin et al., 2002 [23]), the value K was fixed and

specified in advance, while in the ARTP method K is obtained in an adaptive way

and the gene-p-value is obtained from the permutational null distribution of WK .

The main goal of this work consists in improve some limitations of the origi-

nal ARTP algorithm. The first improvement consists in taking into account the

inheritance information of genetic variants, because, this an other GSA methods,

only consider p-values assuming an additive model. Following this idea, we propose

an improvement of the ARTP method by combining the p-values obtained from

the max-statistic test. We will refer to this as the globalARTP method.

3.1.2 Combining statistical tests by permutation procedure

The proposed methodology improves the original algorithms by introducing an

additional step where a global test for the best mode of inheritance of each SNP is

performed. Using the global adaptation it can be determined whether the global

pattern of a group of SNPs is significantly related to some phenotype of interest.

For easy of explanation we describe the proposed algorithms in the simplest case

where all M SNPs belong to the same set (gene). In this case, the algorithms

provide a gene-p-value which indicates if variation within the gene is associated
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with the phenotype. However, the implemented approach is more general and

allows the SNPs in the study to belong to different sets.

Algorithm

Step 1. Best genetic model: In terms of our proposed algorithm, the first step

performs an association analysis of each SNP with the phenotype, considering the

three different modes of inheritance (dominant, recessive, and additive) taking the

minimum of the three p-values, based on the likelihood ratio test. So, this first step

provides M p-values, one for each SNP in the gene, that are sorted increasingly:

p(1) ≤ p(2) ≤ . . . ≤ p(M). (3.2)

Step 2. Rank truncated product statistic: Given a value K ≤M , we would compute

the rank truncated product statistic Wk for each candidate truncation point k ≤ K

as defined in Equation 3.3. Indeed, in order to improve computational efficiency

and avoid computational problems we will work with the log transformation of Wk,

denoted by

Vk =
k∑
j=1

− log(p(j)), 1 ≤ k ≤ K. (3.3)

Step 3. Permutational null distribution of statistics Vk: We obtain the permutational

null distribution of Vk, 1 ≤ k ≤ K, under the null hypothesis that none of the M

SNPs in the gene are associated with the disease, by resampling the phenotype

variable B times and performing steps 1 and 2 on each permutated datasets. From

step 1, we obtain and sort the M single-SNP p-values corresponding to the best

inheritance mode of each SNP:

pb(1) ≤ pb(2) ≤ . . . ≤ pb(M), 0 ≤ b ≤ B, (3.4)

13



Chapter 3. Gene Set Analysis

where b = 0 corresponds to the original dataset. When performing step 2 we

obtain the test statistic, V
(b)
k , 1 ≤ k ≤ K, 0 ≤ b ≤ B. Significance of the

original test statistics can be explored by comparing V
(0)
k , 1 ≤ k ≤ K with

V
(b)
k , 1 ≤ k ≤ K, 1 ≤ b ≤ B. The following expression provides the permutational

p-values for statistics V
(0)
k , 1 ≤ k ≤ K under the null hypothesis:

Ŝ
(0)
k =

∑B
l=0 I(V

(l)
k ≥ V

(0)
k )

B + 1
, 1 ≤ k ≤ K. (3.5)

In fact, the algorithm requires the computation of the p-values not only for the

original statistics, but also for the permuted statistics, which are given by

Ŝ
(b)
k =

∑B
l=0 I(V

(l)
k ≥ V

(b)
k )

B + 1
, 1 ≤ k ≤ K, 1 ≤ b ≤ B. (3.6)

Step 4. Best truncated point: An additional step is to optimize the number k

of SNPs that are combined for each gene. For this we define k
(b)
opt, 0 ≤ b ≤ B as

the number k ∈ {1, . . . , K} that minimizes Ŝ
(b)
k , and this minimum is denoted as

minP (b):

minP (b) = min1≤k≤KS
(b)
k , 0 ≤ b ≤ B. (3.7)

Step 5. Gene-p-value: Finally, we estimate the gene-p-value by comparing the

original dataset minP (0) with the permuted datasets minP (b), 1 ≤ b ≤ B:

gene− p− value =

∑B
l=0 I(minP (l) ≤ minP (0))

B + 1
, 0 ≤ b ≤ B. (3.8)

Still, an important limitation of both, the ARTP and the globalARTP methods,

is computational. Both rely on permutational procedures for estimating the

non parametric null distribution of the test statistic. Dudbridge et. al., (2004)
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proposed the use of the generalized extreme-value distribution for estimating the

null distribution of this statistic. The maximum likelihood estimation of the three

parameters (location, scale, and shape parameters) of the generalized extreme-value

distribution also requires the performance of a large number of permutations, but

much less than the nonparametric estimation and the tales of the distribution are

estimated more accurately.

Hence, we also propose an alternative algorithm, referred as globalEVT, for

estimating the null distribution of the ARTP statistic using the extreme-value theory

(EVT). This proposed method reduces importantly the computational requirements

since only one-parameter distributions are to be fitted. In addition, we improve the

statistical power of the globalEVT approach allowing different modes of inheritance

for each SNP in the set by using the Max-statistic test (Gonzalez et al., 2008 [8])

as in the previous proposed algorithm.

3.1.3 Combining statistical tests using Extreme-value theory

Considering the same notation as in the previous method, the proposed algorithm

is based on the following result:

Proposition 1. If U1, U2, · · · , UM are independent and identically distributed uni-

form random variables in the interval [0, 1], then the lth order statistic, denoted by

U(l), follows a Beta distribution Beta(l,M + 1− l) with density given by

fU(l)
(u) =

M !

(l − 1)!(M − l)!
ul−1(1− u)u−l (3.9)

Assumption: We will also assume that when independence does not hold, that

is, when U1, U2, · · · , UM are dependent variables with standard Uniform distribution,

it is possible to find a number m∗ < M so that the distribution of the lth order
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Chapter 3. Gene Set Analysis

statistic, U(l), is approximately a Beta distribution Beta(l,m∗ + 1− l), where m∗ is

interpreted as the effective number of independent tests.

Taking these considerations, we propose the following algorithm for obtaining

the combined effect of a set of M SNPs:

Algorithm

Step 1. Best genetic model and transformation to uniformly distributed p-values:

The first step performs an association analysis of each SNP with the phenotype,

considering three different modes of inheritance (dominant, recessive, and additive)

and takes the minimum of the three likelihood ratio test p-values. So, this first

step provides M p-values, one for each SNP in the gene:

pminj = min{pdomj , precj , paddj }, j = 1, . . . ,M, (3.10)

where pdomj , precj and paddj are the p-values of j-SNP assuming a dominant, a

recessive and an additive model respectively. If the three test were independent the

distribution of pmin would follow a Beta(1, 3) distribution (see Proposition 1 with

l = 1 and M = 3), but, since the three tests are performed on the same SNP, the

three p-values are dependent and pmin follows a Beta(1, x) where x, the effective

number of tests, has been estimated to be equal to 2.2 (Sladek et al., 2007 [17]).

We transform pminj , j = 1, . . . ,M into values from a standard Uniform distribution

by applying the inverse distribution function:

rj = F−1
Beta(1,x=2.2)(p

min
j ), j = 1, . . . ,M (3.11)

Step 2. Summarizing the k most associated SNPs: We sort increasingly the

uniformly distributed p-values obtained in step 1, considering the k best results for
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k ∈ {1, ...,M}. That is, we want to summarize the k first order statistics into a

unique statistic,

r(1) ≤ r(2) ≤ . . . ≤ r(M) (3.12)

If the SNPs were not correlated, the order statistics, r(j), follows a Beta distribution

Beta(j,M − j + 1), j ∈ {1, . . . , k}, but if the SNPs are correlated, the distribution

is Beta(j, y − j + 1), j ∈ {1, . . . , k}, where y is the effective number of tests.

We estimate y through a permutational approach. As in the previous step, we

transform the order statistics r(j), j = 1, . . . , k into values from a standard Uniform

distribution by applying their inverse distribution function:

tj = F−1
Beta(j,y−j+1)(r(j)), j = 1, . . . , k (3.13)

As a summary statistic we take:

Sk = −2
k∑
j=1

log tj. (3.14)

As in Fisher’s method (Fisher, 1925 [7]), since tj are uniformly distributed, then

−2 log tj follow a chi-squared distribution with 2 degrees of freedom and, if the

k SNPs were uncorrelated the summary statistic Sk would follow a chi-squared

distribution with 2k degrees of freedom. Since the SNPs may be correlated, the

distribution of Sk is chi-squared distribution with ν degrees of freedom where ν

should be estimated through a permutational approach. We transform the sum

statistic Sk into a uniformly distributed value by applying its inverse distribution

function:

Uk = F−1
Chi(ν)(Sk) (3.15)
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Chapter 3. Gene Set Analysis

Step 3. Adaptive step: selection of the best truncation point: We repeat Step 2

for every k from 1 to K, where K is a specified truncation parameter. As a final

statistic gene set statistic we take the best of all:

W = min{U1, . . . , UK}. (3.16)

If the values Uk were independent and identically distributed (i.i.d), W follows a

Beta distribution Beta(1, K) but the Uk are correlated because they are calculated

as a cumulative sum of values, thus, it is necessary to approximate its distribution

by Beta(1, z), where z is the effective number of tests and is estimated using

a permutational procedure. Finally, the transformation of W to a uniformly

distributed valued provides the adjusted p-value for the set of M SNPs:

genesetpadjust = F−1
Beta(1,z)(W ) (3.17)

Model fitting: The proposed model requires the estimation of three different

parameters; y, z, ν. We apply a permutational approach to estimating the first

two parameters taking into account the relationship between the mean and the

second shape parameter of a Beta distribution. Concretely, we reproduce a hundred

permutations of a Beta distribution, Beta(a, b), where the first shape parameter, a,

is known. Our purpose is estimate the second shape parameter, b, that is the total

number of effective tests (denoted by y and z in each case), as b̂ = µ̂−a
µ̂

.

On the other hand, in order to estimate ν, that is defined as the degrees of

freedom from a Chi squared fitted distribution, we also reproduce a permutational

procedure considering a hundred permutations, taking the mean from the permuted

values.
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Chapter 4

Simulation study

4.1 Simulation design

We performed a simulation study with the goal of exploring the power and per-

formance of the proposed globalGSA methodology for detecting genes associated

with a phenotype. For this, we generated different scenarios corresponding to

balanced case-control studies with sample size N = 2, 000 (1,000 cases and 1,000

controls). We consider genes containing M independent SNPs (M = 10, 50, 100)

with a random minor allele frequency following a Beta distribution restricted to

the interval [0, 0.5] with mean equal to 0.2.

For generating the disease status we considered a disease prevalence equal to 0.2

and assumed that the first c SNPs in the dataset were causal SNPs with the same

effect size (RR = 1.2, 1.1), where RR is the relative risk of the heterozygous group

versus major homozygous group and the relative risk of the minor homozygous

group versus major homozygous group is RR2 (Urrea, et al., 2014 [20]).

We explore the size of the test in the case where there is no causal SNP (c = 0)

and the power of the test for detecting association at the gene-level in the scenarios

with c = 10 causal SNPs within the gene-set. This produces a total of twelve
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Chapter 4. Simulation study

scenarios. For each scenario we compute the gene p-value using the globalARTP

algorithm allocating the number of permutations to B = 10, 000 and the truncation

point value equal to K = 10, and also, we compute the gene-p-value using the

globalEVT method considering B = 100 and K = 10. We repeat this process a

thousand of times for each scenario and we averaged the results over the thousand

replications providing the percentage of times (Pc) that the gene is significant (gene

p-value< 0.05).

Notice that GSA methods and single-SNP analysis are difficult to compare since

one is a gene-set approach providing just one p-value of the gene while the single-

SNP analysis provides several p-values related to the gene. But the comparison is

very important since it will indicate whether the gene-set analysis is more powerful

than the standard single-SNP approach or not. With this comparative goal, we

perform single-SNP analysis and declar that a gene was significantly associated with

the disease when at least one SNP in the gene was significant at the usual 0.05 level

after Benjamini and Holchberg multiple testing correction (Benjamini-Holchberg,

1995 [3]) for the M univariate tests performed in each gene.

4.2 Simulation results

Results are summarized in Tables 4.1 to 4.3. Table 4.1 provides the size of the tests,

that is the percentage of significant results when there is no causal SNP. While both

globalGSA methodologies control the size around the specified significance level

(5%), both, single-SNP results are rather conservative. Tables 4.2 and 4.3 provide

the power of the test, that is, the percentage of significant results (Pc) when there

are c = 10 causal SNPs within the M available SNPs in a gene. In Table 4.2 we can

compare the performance of the gene set analysis and single-SNP analysis when

the effect of the 10 causal SNPs is relatively high (RR = 1.2). When all SNPs in
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the gene are causal (M = c = 10), all the methods cosidered are very powerful to

detect association of the gene. When the number M of SNPs in the gene increases

to 50 and 100 the globalARTP methods are still very powerful (Pc = 100%) while

we can observe a slight decrease in the power of single-SNP analysis due to the

multiple testing correction: Pc = 96% and Pc = 93%. If we focus on the globalEVT

results we can observe that there are similar to those arising from the single-SNP

analysis, and lower than the globalARTP results. However, if we consider the

computational time, globalEVT becomes more quicker.

In Table 4.3 we can compare the results when the marginal risk effect of each

individual causal SNPs is very small (RR = 1.1). The gene-based approaches

are clearly more powerful than the single-SNP analysis. The increase in power

is very evident when all SNPs in the gene are causal. In this case the advantage

of globalGSA over the single-SNP analysis is approximately larger than 30% in

globalARTP method, and larger than 15% in globalEVT method. However, when

the relative risks are so small, the inclusion of noise (null SNPs in the gene when

M = 50 and M = 100) reduces the power of all considered approaches, although

globalGSA methods are still above single-SNP analysis results.

In summary, globalGSA methods are more powerful than single-SNP analysis

in all different considered scenarios. Furthermore, globalGSA adapted methods

reduce the lost of power produced by the multiple testing correction, and allows

the incorporation of biological knowledge too. Results obtained by comparing

globalGSA methods suggest that the adapted approaches have a similar behavior.

On the other hand, if we compare the two different consireded GSA strategies, we

can see that globalARTP is slightly above globalEVT as far as association risk

detection is concerned. However, in order to obtain an acceptable level of statistical
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Table 4.1: Size of the tests
Methodology M = 10 M = 50 M = 100
globalARTP c = 0 5.3% 4.5% 2.4%
globalEVT c = 0 3.5% 5.1% 2.8%
FDR c = 0 4.1% 1.1% 1.8%

Table 4.2: Power of the tests when RR = 1.2
Methodology M = 10 M = 50 M = 100
globalARTP c = 10 100% 100% 100%
globalEVT c = 10 100% 98.5% 97.1%
FDR c = 10 100% 96.2% 93.4%

Table 4.3: Power of the tests when RR = 1.1
Methodology M = 10 M = 50 M = 100
globalARTP c = 10 79.7% 34.6% 33.2%
globalEVT c = 10 55.7% 34.2% 33.1%
FDR c = 10 42.9% 20.1% 11.8%

significance, permutational procedures require a high number of permutations (at

least 10,000 permutations to obtain a significance level of 1e − 04). Even if we

are rigorous, as we are working in a genetic context, the required significance level

should be 1e− 07 needing in this case a total of 10,000,000 permutations, that are

very expensive (maybe impossible) to compute. So, if we taking into account the

computational time, in order to obtain a suitable level of statistical significance,

globalEVT becomes much more efficient.

In conclusion, the GSA proposed methods increases the statistical power in

genetic association studies compared with single-SNP analysis. Moreover, the use

of extreme-value distribution (EVT) produce a reduction in computation compared

with a standard permutation test, and this can be translate to significant time

savings.
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Alzheimer disease application

We apply the proposed methodologies to an Alzheimer disease study for determining

which genes are associated with Reelin signal, a protein that is thought to be related

with an increase risk of Alzheimer disease (Rice et al., 2001 [15]; Tissir et al.,

2003 [19]). In this context we compare the gene set analysis proposed approaches

with the usual single-SNP analysis results.

5.1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder without cure that afflects

an increasing part of our ageing population. It was described by Alois Alzheimer in

1906 (Alzheimer, 1906 [1]) and it is characterized by amyloid plaques, neurofibrillary

tangles and loss of synapses (Berchtold et al., 1998 [4]). Alzheimer’s disease is

usually diagnosed clinically based on the presence of neurological characteristics and

neuropsychological features. However an accurate diagnosis can only be obtained

post-mortem when brain material is available and can be examined histologicaly,

as is extensively explained in (Nussbaum et al., 2003 [13].

We still know very little about the etiology of Alzheimer’s disease but it is clear

that there is a genetic component. Some genes have been associated with AD
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as amyloid precursor protein (APP) and presenilins 1 (PSEN1) and 2 (PSEN2)

(Waring et al., 2008 [21]). But, in fact, the best known genetic risk factor is the

inheritance of the e4 allele of the apolipoprotein E gene (APOE). It has been

demonstrated that between 50%− 80% of people with Alzheimer disease carry at

least one APOE-e4 allele (Mahley et al., 2006 [12]); Strittmatter et al., 1993 [18]).

APOE occurs in 3 common isoforms (E2, E3, E4) in the human population and

APOE-e4 is the primary genetic risk factor for late-onset Alzheimer’s disease. This

strong genetic association suggest that APOE receptors are very related with the

Alzheimer’s Disease patogenesis (Herz et al., 2000 [10]; Herz et al., 2006 [11]). In

addition to these well known genes, other genetic pathways, as the Reelin pathway,

are currently investigated for their association with the risk of AD.

5.2 Importance of Reelin in Alzheimer disease

Many studies connect Reelin protein with Alzheimer disease (Botella-López et al.,

2006 [5]; Baloyannis, 2005 [2]; Saez-Valero et al., 2003 [16]). Clinical investigations

have shown that Reelin plays an eminent role at the most active neurogenesis sites

in interaction with APOE protein. According with many studies, Reelin expression

is altered in Alzheimer’s disease. In the cortex of the patients, Reelin levels were

40% higher compared with controls, but the cerebella levels of the protein remain

normal in the same patients. These evidences drives to the hypothesis that an

inappropriate activation of Reelin signal can be associated with cellular harm and

cellular death.

The objective and motivation of this application is to use our new implented

GSA approaches, globalARTP and globalEVT, to derive gene-level association

signals of the Reelin pathway with AD and compare these results with single-SNP

analysis.
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5.3 Descriptive Information

The data for this study is extracted from a public GWAS from Reiman et al.,

2007 [14], reporting 312,316 SNPs in a case-control study with 1411 individuals

(861 cases, 550 controls). An exhaustive analysis about the Reelin signal pathway

was carried out using Biomart website (http://www.biomart.org), identifying 32

genes in this pathway (682 SNPs). Data information can be consulted on Table

5.1. It contains the gene’s name, the chromosome, the strand, the staffed position,

the length and the promotor’s position. Also, we have information about APOE

genotypes. We can observe in Table 5.2 and in Figure 5.1 that 80% of individuals

with at least one copy of the e4 allele were affected by the disease.

Figure 5.1: Cases and controls Apoe genotypes distribution.

This percentage increase more than 90% for individuals with two e4 alleles and

it decreases until 50%, for non APOE-e4 carriers.
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Table 5.1: Genomic data information.
Gene Chr no SNPs Str bp1 bp2 length
Abl1 9 27 + 132578987 132752883 173896
Abl2 1 8 - 177335085 177465155 130070
ApoE 19 11 + 50100879 50104489 3610
APP 21 50 - 26174733 26465003 290270
Bdnf 11 6 - 27633016 27700181 67165
CDC42 1 12 + 22235157 22292024 56867
Cdk5 7 4 - 150381832 150385929 4097
CNR1 6 8 - 88906302 88932385 26083
Dab1 1 252 - 57233039 58488763 1255724
Emx2 10 1 + 119291946 119299043 7097
EPHA1 7 3 - 142798331 142816107 17776
Fyn 6 37 - 112089190 112301320 212130
GSK3B 3 7 - 121028238 121295954 267716
itga3 17 10 + 45488488 45522842 34354
LDLR 19 4 + 11061132 11105490 44358
LRP2 2 44 - 169691865 169927368 235503
TP73 1 4 + 3558989 3639716 80727
AKT1 14 3 - 104306734 104333125 26391
PLK2 5 1 - 57785571 57791670 6099
PSEN1 14 4 + 72672908 72756862 83954
PSEN2 1 6 + 225124896 225150429 25533
RAC1 7 5 + 6380651 6410123 29472
Reln 7 83 - 102899473 103417198 517725
Rho 3 3 + 130730172 130736867 6695
RHOA 3 4 - 49371585 49424530 52945
INPP5D 2 18 + 233633433 233781287 147854
Src 20 4 + 35407971 35467867 59896
MAPT 17 31 + 41327624 41461547 133923
VLDLR 9 7 + 2611793 2644485 32692

26
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Table 5.2: Cases and controls Apoe genotypes distribution.
Controls Cases

Allele e2e2 85.71 14.29
Allele e2e3 71.43 28.57
Allele e2e4 19.51 80.49
Allele e3e3 53.44 46.56
Allele e3e4 21.70 78.30
Allele e4e4 5.30 94.70

Non-e4 carriers 56.45 43.55
e4 carriers 18.20 81.80

5.4 Statistical analysis

5.4.1 single-SNP analysis

In this step we perform a marginal association analysis of each SNP with the

phenotype (where we consider Y = 1 as an affected individual, and Y = 0 as a

control individual). Since carriers of APOE-e4 variant have an increased risk of

disease, we should consider this in the marginal analysis. Specifically, we define

the APOE indicator variable (IndApoe) as the indicator for those individuals

carrying at least one copy of APOE-e4. Then, we analyze three different datasets;

all individuals adjusting by APOE Indicator variable, non APOE carriers, and

APOE carriers. Since the response is dichotomous (status: case/control) we adjust

a logistic regression model using the GWassociation function from SNPassoc

R package (Gonzalez, et al., 2007 [9]). This function provides SNPs’ p-values

considering different inheritance modes (dominant, codominant, recessive and

additive).

With a significance level equal to 1%, we obtain 13 significant SNPs for the

adjusted model without multiple testing correction (see Table 5.3), 11 significant
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SNPs for carriers (see Table 5.4) and 20 significant SNPs for non-carriers (see Table

5.5). But, if we correct the results using Benjamini-Holchberg method (Benjamini-

Holchberg, 1995 [3]), all the SNPs become non-significant. Hence, in summary,

single-SNP analysis is not able to identify any genetic variant in the Reelin pathway

that is significantly associated with Alzheimer’s disease.

Figure 5.2: Manhattan plots.
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Figure 5.3: Manhattan plots.

Figure 5.4: Manhattan plots.
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Table 5.3: Significant SNPs without multiple correction all individuals.
Gene codominant dominant recessive additive p min p adjust

rs17416642 DAB1 1.35e-02 6.30e-03 5.30e-01 1.08e-02 6.30e-03 0.387
rs17115767 DAB1 2.32e-02 5.07e-01 6.16e-03 2.18e-01 6.16e-03 0.387
rs10493223 DAB1 3.30e-04 2.21e-01 7.38e-02 5.11e-02 3.30e-04 0.047*
rs1404388 DAB1 9.08e-03 9.08e-03 0.387

rs10493230 DAB1 8.88e-03 1.13e-02 3.38e-01 1.03e-01 8.88e-03 0.387
rs1202774 DAB1 2.17e-03 7.50e-01 6.47e-04 8.23e-01 6.47e-04 0.147
rs4448540 DAB1 5.44e-04 5.44e-04 0.147

rs16845844 PSMD14 1.05e-02 4.22e-01 2.58e-03 1.42e-01 2.58e-03 0.292
rs2193193 LRP2 2.75e-02 2.35e-01 7.88e-03 1.89e-02 7.88e-03 0.387
rs2239594 LRP2 9.28e-03 2.18e-02 7.87e-03 2.44e-03 2.44e-03 0.292
rs830959 LRP2 1.12e-02 5.31e-03 5.19e-02 3.34e-03 3.34e-03 0.324

rs17111118 ARSI 1.94e-02 8.74e-03 7.67e-01 2.42e-02 8.74e-03 0.387
rs11030102 BDNF 1.24e-03 3.22e-01 2.22e-03 6.99e-01 1.24e-03 0.211

Table 5.4: Significant SNPs without multiple correction Apoe4 carriers.
Gene codominant dominant recessive additive p min p adjust

rs10917139 CDC42 6.16e-03 6.95e-01 2.96e-03 6.01e-01 2.96e-03 0.551
rs6680219 DAB1 1.34e-02 3.24e-01 3.32e-03 1.80e-02 3.32e-03 0.551

rs17482980 DAB1 1.05e-02 2.16e-03 1.00 1.05e-02 2.16e-03 0.551
rs10493230 DAB1 8.06e-03 6.94e-02 5.35e-02 5.26e-01 8.06e-03 0.551
rs1202774 DAB1 4.26e-03 1.22e-01 3.13e-02 4.26e-03 4.26e-03 0.551
rs4448540 DAB1 8.51e-03 8.51e-03 0.551
rs6663243 DAB1 3.07e-02 1.20e-02 1.27e-01 8.64e-03 8.64e-03 0.551
rs6668200 ABL2 2.61e-02 9.65e-01 9.07e-03 4.35e-01 9.07e-03 0.551

rs16845844 PSMD14 9.20e-03 2.11e-02 1.17e-02 5.24e-03 5.24e-03 0.551
rs11689553 LRP2 9.21e-03 2.17e-02 1.60e-01 1.54e-01 9.21e-03 0.551
rs7752758 CNR1 1.98e-02 5.83e-03 2.77e-01 5.35e-03 5.35e-03 0.551
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Table 5.5: Significant SNPs without multiple correction non-Apoe4 carriers.
Gene codominant dominant recessive additive p min p adjust

rs17416642 DAB1 2.47e-03 2.47e-03 0.274
rs10493223 DAB1 4.85e-03 1.46e-01 2.82e-03 4.85e-03 2.82e-03 0.274
rs17472030 DAB1 7.08e-03 1.34e-02 2.55e-01 1.08e-01 7.08e-03 0.279
rs11207103 DAB1 6.70e-03 6.19e-03 4.96e-01 4.56e-02 6.19e-03 0.279
rs12143653 DAB1 7.77e-03 9.33e-03 3.89e-01 6.95e-02 7.77e-03 0.279
rs2052297 LRP2 2.51e-02 2.78e-01 6.86e-03 2.06e-02 6.86e-03 0.279
rs2193193 LRP2 9.06e-03 6.96e-02 3.36e-03 3.64e-03 3.36e-03 0.279
rs2268370 LRP2 2.51e-02 3.28e-02 2.29e-02 7.03e-03 7.03e-03 0.279
rs2239594 LRP2 2.25e-02 1.28e-01 7.58e-03 1.10e-02 7.58e-03 0.279

rs16856748 LRP2 6.73e-04 3.03e-04 6.98e-01 1.62e-03 3.03e-04 0.206
rs830955 LRP2 2.16e-02 2.06e-02 3.29e-02 5.99e-03 5.99e-03 0.279

rs11792273 ABL1 2.58e-02 9.90e-03 1.99e-01 7.20e-03 7.20e-03 0.279
rs6018100 SRC 7.03e-03 1.00e+00 2.25e-03 3.91e-01 2.25e-03 0.274
rs2830073 APP 1.73e-02 5.59e-03 1.18e-01 7.01e-03 5.59e-03 0.279
rs2830075 APP 8.47e-03 2.65e-03 1.37e-01 2.41e-03 2.41e-03 0.274
rs2830076 APP 9.41e-03 6.42e-03 3.49e-02 2.26e-03 2.26e-03 0.274
rs432766 APP 1.51e-02 8.90e-03 4.05e-02 4.02e-03 4.02e-03 0.279
rs375369 APP 1.72e-02 9.84e-03 5.01e-02 4.79e-03 4.79e-03 0.279

rs2186302 APP 3.12e-02 1.19e-02 1.46e-01 8.91e-03 8.91e-03 0.303
rs436011 APP 5.93e-03 7.00e-03 1.46e-02 1.48e-03 1.48e-03 0.274
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5.4.2 Gene Set Analysis

The proposed globalARTP and globalEVT methods, as GSA approaches, estimate

the joint effect of all genetic variants in each gene. So, we use the to obtaining

significative genes associated with Alzheimer disease. For globalARTP method, we

fix B = 10, 000 permutated data sets and K = 10 as the truncation point. For

globalEVT we fix B = 100 permutations and also K = 10 as a truncation point.

The results are given in Tables 5.6, 5.7 and 5.8. Table 5.9 provides a summary of

the significatively associated genes identified with both methodologies.

Applying globalARTP we obtain that the most significative genes are Bdnf

and Tbr1, for APOE-e4 carriers the only significative gene is CNR1, while, for

non-APOE-e4 carriers model the most important gens is Src. Applying globalEVT

we obtain that the most significative genes are Dab1, Bdnf, AKT1 and Cdk5 for all

individuals, Dab1 for carriers model, and LRP2, Src for non carriers model.

Table 5.9: GlobalGSA Results

Methodology

Model globalARTP globalEVT

All individuals Bdnf,Tbr1 Dab1, Bdnf, AKT1, CDK5

Apoe4 carriers CNR1 Dab1

Non-Apoe4 carriers Src Src, LRP2

In conclusion, we can observe while using the single-SNP analysis we don’t

find statistical significance after multiple testing correction, our proposed GSA

methodologies get to capture some genes that are associated with Alzheimer disease.
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Table 5.6: GSA adjusted model results
Gene globalARTP pvalue globalEVT pvalue
TP73 0.75 0.994
CDC42 0.53 1
ApoER2 0.88 1
Dab1 0.07 2.184e-41
Abl2 0.17 0.991
PSEN2 0.47 0.999
Tbr1 0.04 0.954
LRP2 0.13 0.999
SHIP 0.48 0.999
RHOA 0.21 0.999
GSK3B 0.58 0.999
Rho 0.30 0.661
PIK3R1 0.91 0.999
CAMK2A 0.27 0.997
CNR1 0.62 0.999
Fyn 0.48 0.999
RAC1 0.33 0.932
Reln 0.94 0.999
EPHA1 0.80 0.999
Cdk5 0.28 0.031
VLDLR 0.43 0.993
Abl1 0.44 0.999
Bdnf 0.02 0.008
PSEN1 0.68 0.999
AKT1 0.25 0.039
Tau 0.54 0.999
itga3 0.69 0.999
LDLR 0.64 0.771
Src 0.31 0.999
APP 0.45 0.999
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Table 5.7: GSA APOE-e4 carriers model results
Gene globalARTP pvalue globalEVT pvalue
TP73 0.49 0.999
CDC42 0.09 0.703
ApoER2 0.25 0.999
Dab1 0.51 0.0295
Abl2 0.13 0.999
PSEN2 0.61 0.999
Tbr1 0.08 0.623
LRP2 0.58 1
SHIP 0.73 0.999
RHOA 0.49 0.993
GSK3B 0.31 0.929
Rho 0.13 0.057
PIK3R1 0.84 1
CAMK2A 0.92 0.999
CNR1 0.05 0.561
Fyn 0.87 0.999
RAC1 0.63 0.999
Reln 0.89 0.999
EPHA1 0.26 0.824
Cdk5 0.34 0.501
VLDLR 0.74 0.999
Abl1 0.95 1
Bdnf 0.21 0.994
PSEN1 0.26 0.921
AKT1 0.26 0.155
Tau 0.33 0.999
itga3 0.91 0.999
LDLR 0.93 0.999
Src 0.51 0.999
APP 0.70 0.999
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Table 5.8: GSA APOE-e4 non carriers model results
Gene globalARTP pvalue globalEVT pvalue
TP73 0.52 0.664
CDC42 0.55 0.999
ApoER2 1.00 1
Dab1 0.58 0.999
Abl2 0.29 0.994
PSEN2 0.14 0.901
Tbr1 0.51 0.999
LRP2 0.06 5.38e-13
SHIP 0.40 0.999
RHOA 0.60 0.991
GSK3B 0.56 0.999
Rho 0.85 0.973
PIK3R1 0.72 0.999
CAMK2A 0.26 0.986
CNR1 0.36 0.904
Fyn 0.64 0.999
RAC1 0.52 0.997
Reln 0.83 1
EPHA1 0.93 0.781
Cdk5 0.50 0.982
VLDLR 0.67 0.999
Abl1 0.22 0.986
Bdnf 0.19 0.855
PSEN1 0.98 0.999
AKT1 0.84 0.991
Tau 0.52 1
itga3 0.84 1
LDLR 0.42 0.564
Src 0.04 9.16e-06
APP 0.05 0.915
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Discussion

In this project we center on Gene Set Analysis (GSA), a strategy for combining

the effects of many genetic variants within a gene. We propose the algorithms

globalARTP and globalEVT, as a new implementations of the ARTP method

that are specifically designed for genetic association studies involving SNPs. New

implementation incorporates the selection of the best inheritance model for each

SNP as a first step of the algorithm, and in the case of globalEVT, the computational

time required is improved.

Through a simulation study we proved that Gene Set Analysis proposed ap-

proaches increase the power to detect genetic associations when the individual

effects are very small, which is the usual case in complex diseases. In this situation,

most causal SNPs effects are not detectable with the common single-SNP testing

procedure followed by correction for multiple comparisons. By combining the

p-values of a set of SNPs in a gene we reduce the number of tests, and thus the

multiple testing corrections needed. Moreover, in many cases, the association results

given at the gene level may be more biologically interpretable. We also applied

GSA in a real case in the context of Alzheimer’s disease. While the single-SNP
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analysis does not detect any association at the univariate level, GSA detects some

interesting genes that are worth further investigating.

Hence, in conclusion, obtained results show that the two proposed new method-

ologies increase significantly statistical power opposite to single-SNP analysis and,

concretely, the second proposed method (globalEVT) reduces importantly the

computational requirements since only one-parameter distributions are to be fitted.

But, GSA has also some limitations. This strategy will only be useful in the

presence of marginal effects. However, it will not be effective when the genetic

association is due to gene interactions without marginal individual effects. This will

require specific methods for gene-gene interaction detection such as the MB-MDR

method (Calle et al., 2010 [6]).
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globalGSA-package Gene-set analysis for combining p-values in a joint test of association
between a phenotype and a set of genetic variants (SNPs). Previously,
a global test for the best inheritance model of each SNP is performed.
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2 globalARTP

Description

This package implements four different Gene-set analysis (GSA) methods for combining individ-
ual p-values of a set of SNPs using two different strategies. Each method provides a p-value for
a joint test of association between the phenotype and the specified set of genetic variants. The
four implemented methods are: Fisher method [1], Simes method [2], ARTP method [3] and EVT
method.

Since the SNPs in a set may follow different modes of inheritance, previously to the GSA, a global
test for the best inheritance model (dominant, recessive, log-additive and co-dominant) is performed
on every SNP. The permutational p-value of the best model is obtained.

Details

Package: globalGSA
Type: Package
Version: 1.0
Date: 2013-09-22
License: GPL (>= 2)

Author(s)

Natalia Vilor, M.Luz Calle

Maintainer: natalia.vilor@uvic.cat

References

[1] Fisher, R.A. (1925). Statistical Methods for Research Workers. ISBN 0-05-002170-2.

[2] Simes, R.J. (1986). An Improved Bonferroni Procedure for Multiple Tests of Significance.
Biometrika, 73, 751-754.

[3] Yu, K. Li, Q. Bergen, A.W. Pfeiffer, R.M. Rosenberg, P.S. Caporaso, N. Kraft, P. and Chatter-
jee,N. (2009). Pathway analysis by adaptive combination of P-values. Genet, Epidemiol. Decem-
ber; 33(8): 700-709.

globalARTP Global Adaptive Rank Truncated Product method.

Description

This function provides the p-value for a joint test of association between a phenotype and a set
of genetic variants (SNPs) using the Adaptive Rank Truncated Product method [1] after a global
test for the best mode of inheritance of every SNP. The final gene-p-value is obtained from the
permutational null distribution of the test statistic.

Usage

globalARTP(data, B, K, gene_list, Gene = "all", addit = FALSE,
covariable = NULL, family = binomial)
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Arguments

data Data frame containing the variables in the model. The first column is the depen-
dent variable which must be a binary variable defined as factor (in case-control
studies, the usual codification is 1 for cases and 0 for controls). SNP values may
be codified in a numerical form (0,1,2) denoting the number of minor alleles, or
using a character form where the two alleles are specified, without spaces, tabs
or any other symbol between the two alleles.

B Number of permutations considered in the permutational procedure.

K Integer that indicates the maximum truncation point.

gene_list File that provides the name of the set (for instance, gene) where each SNP be-
longs. This file has two columns: the SNP-Id ("Id"), and the Gene-Id ("Gene").
The SNP-Id must have the same label as the colnames of the data file.

Gene Name of the gene that we want to analyze. The default value is Gene= "all"
that indicates that the p-values of all SNPs in the database are to be combined.
In this case it is not necessary to specify the gene_list file. In other case, we
need to specify the name of the gene, for instance, Gene = "Gene1", and also the
gene_list file.

addit logical to determine if only an additive inheritance model should be considered
in the global Test or, conversely, if we want to consider all possible inheritance
models (dominant, recessive, log-additive and co-dominant). By default, addit
= FALSE.

covariable Data frame containing the covariables in the model. Each column represents
one covariable. By default, covariable=NULL.

family This can be a character string naming a family distribution. By default, fam-
ily=binomial.

Value

List with the following components:

nPerm Number of permutations.

Gene Considered Gene.

Trunkpoint Considered truncation point.

Kopt Optimal truncation point.

genevalue gene-pvalue.

References

[3] Yu, K. Li, Q. Bergen, A.W. Pfeiffer, R.M. Rosenberg, P.S. Caporaso, N. Kraft, P. and Chatter-
jee,N. (2009). Pathway analysis by adaptive combination of P-values. Genet, Epidemiol. Decem-
ber; 33(8): 700-709.

Examples

# load the included example dataset.
# This is a simulated case/control study data set
# with 2000 patients (1000 cases / 1000 controls)
# and 10 SNPs, where all of them have
# a direct association with the outcome:
data(data)
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#globalARTP(data, B=1000, K=10, Gene="all", addit = FALSE)

# it may take some time,
# hence the result of this example is included:
data(ans11)

# You can test:
globalARTP(data, B=1, K=10, Gene="all", addit = FALSE)

# We consider that the first four SNPs
# are included in "Gene1",
# and the other six SNPs
# are included in "Gene2":
data(gene_list)
#globalARTP(data, B=1000, K=10, gene_list=gene_list, Gene="Gene1", addit = FALSE)

# it may take some time,
# hence the result of this example is included:
data(ans1)

# You can test:
globalARTP(data, B=1, K=10, gene_list=gene_list, Gene="Gene1", addit = FALSE)

globalEVT Global Adaptive Extreme Value Distribution method.

Description

This function provides the p-value for a joint test of association between a phenotype and a set of
genetic variants (SNPs) using an Adaptive Extreme Value Distribution after a global test for the best
mode of inheritance of every SNP. The final gene-p-value is obtained from

Usage

globalEVT(data, K)

Arguments

data Data frame containing the variables in the model. The first column is the depen-
dent variable which must be a binary variable defined as factor (in case-control
studies, the usual codification is 1 for cases and 0 for controls). SNP values may
be codified in a numerical form (0,1,2) denoting the number of minor alleles, or
using a character form where the two alleles are specified, without spaces, tabs
or any other symbol between the two alleles.

K Integer that indicates the maximum truncation point.

Value

List with the following components:

genevalue gene-pvalue.
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Examples

# load the included example dataset.
# This is a simulated case/control study data set
# with 2000 patients (1000 cases / 1000 controls)
# and 10 SNPs, where all of them have
# a direct association with the outcome:
data(data)
globalEVT(data, K=10)

globalFisher Global Fisher combination method.

Description

This function provides the p-value for a joint test of association between a phenotype and a set
of genetic variants (SNPs) using the Fisher method [1] after a global test for the best mode of
inheritance of every SNP. The final gene-p-value is obtained from the permutational null distribution
of the test statistic

Usage

globalFisher(data, B, gene_list, Gene = "all", addit = FALSE,
covariable = NULL, family = binomial)

Arguments

data Data frame containing the variables in the model. The first column is the depen-
dent variable which must be a binary variable defined as factor (in case-control
studies, the usual codification is 1 for cases and 0 for controls). SNP values may
be codified in a numerical form (0,1,2) denoting the number of minor alleles, or
using a character form where the two alleles are specified, without spaces, tabs
or any other symbol between the two alleles.

B Number of permutations considered in the permutational procedure.

gene_list File that provides the name of the set (for instance, gene) where each SNP be-
longs. This file has two columns: the SNP-Id ("Id"), and the Gene-Id ("Gene").
The SNP-Id must have the same label as the colnames of the data file.

Gene Name of the gene that we want to analyze. The default value is Gene= "all"
that indicates that the p-values of all SNPs in the database are to be combined.
In this case it is not necessary to specify the gene_list file. In other case, we
need to specify the name of the gene, for instance, Gene = "Gene1", and also the
gene_list file.

addit logical to determine if only an additive inheritance model should be considered
in the global Test or, conversely, if we want to consider all possible inheritance
models (dominant, recessive, log-additive and co-dominant). By default, addit
= FALSE.

covariable Data frame containing the covariables in the model. Each column represents
one covariable. By default, covariable=NULL.

family This can be a character string naming a family distribution. By default, fam-
ily=binomial.
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Value

List with the following components:

nPerm Number of permutations.

Gene Considered Gene.

genevalue gene-pvalue.

References

[1] Fisher, R.A. (1925). Statistical Methods for Research Workers. ISBN 0-05-002170-2.

Examples

# load the included example dataset.
# This is a simulated case/control study data set
# with 2000 patients (1000 cases / 1000 controls)
# and 10 SNPs, where all of them have
# a direct association with the outcome:
data(data)
#globalFisher(data, B=1000, Gene="all", addit=FALSE)

# it may take some time,
# hence the result of this example is included:
data(ans21)

# You can test:
globalFisher(data, B=1, Gene="all", addit=FALSE)

# We consider that the first four SNPs
# are included in "Gene1",
# and the other six SNPs
# are included in "Gene2":
data(gene_list)
#globalFisher(data, B=1000, gene_list=gene_list, Gene="Gene1", addit=FALSE)

# it may take some time,
# hence the result of this example is included:
data(ans2)

# You can test:
globalFisher(data, B=1, gene_list=gene_list, Gene="Gene1", addit=FALSE)

globalSimes Global Simes’ combination method.

Description

This function provides the p-value for a joint test of association between a phenotype and a set
of genetic variants (SNPs) using the Simes method [1] after a global test for the best mode of
inheritance of every SNP. The final gene-p-value is obtained from the permutational null distribution
of the test statistic
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Usage

globalSimes(data, B, gene_list, Gene = "all", addit = FALSE,
covariable = NULL, family = binomial)

Arguments

data Data frame containing the variables in the model. The first column is the depen-
dent variable which must be a binary variable defined as factor (in case-control
studies, the usual codification is 1 for cases and 0 for controls). SNP values may
be codified in a numerical form (0,1,2) denoting the number of minor alleles, or
using a character form where the two alleles are specified, without spaces, tabs
or any other symbol between the two alleles.

B Number of permutations considered in the permutational procedure.

gene_list File that provides the name of the set (for instance, gene) where each SNP be-
longs. This file has two columns: the SNP-Id ("Id"), and the Gene-Id ("Gene").
The SNP-Id must have the same label as the colnames of the data file.

Gene Name of the gene that we want to analyze. The default value is Gene= "all"
that indicates that the p-values of all SNPs in the database are to be combined.
In this case it is not necessary to specify the gene_list file. In other case, we
need to specify the name of the gene, for instance, Gene = "Gene1", and also the
gene_list file.

addit logical to determine if only an additive inheritance model should be considered
in the global Test or, conversely, if we want to consider all possible inheritance
models (dominant, recessive, log-additive and co-dominant). By default, addit
= FALSE.

covariable Data frame containing the covariables in the model. Each column represents
one covariable. By default, covariable=NULL.

family This can be a character string naming a family distribution. By default, fam-
ily=binomial.

Value

List with the following components:

nPerm Number of permutations.

Gene Considered Gene.

genevalue gene-pvalue.

References

[1] Simes, R.J. (1986). An Improved Bonferroni Procedure for Multiple Tests of Significance.
Biometrika, 73, 751-754.

Examples

# load the included example dataset.
# This is a simulated case/control study data set
# with 2000 patients (1000 cases / 1000 controls)
# and 10 SNPs, where all of them have
# a direct association with the outcome:
data(data)
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#globalSimes(data, B=1000, Gene="all", addit=FALSE)

# it may take some time,
# hence the result of this example is included:
data(ans31)

# You can test:
globalSimes(data, B=1, Gene="all", addit=FALSE)

# We consider that the first four SNPs
# are included in "Gene1",
# and the other six SNPs
# are included in "Gene2":
data(gene_list)
#globalSimes(data, B=1000, gene_list=gene_list, Gene="Gene1", addit=FALSE)

# it may take some time,
# hence the result of this example is included:
data(ans3)

# You can test:
globalSimes(data, B=1, gene_list=gene_list, Gene="Gene1", addit=FALSE)
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